#include #include #include #include #include #define _GNU_SOURCE #include #include "elf.h" #include "elf_boot.h" #include "convert.h" #include "x86-linux.h" #include "mkelfImage.h" static unsigned char payload[] = { #include "convert.bin.c" }; struct kernel_info; static void (*parse_kernel_type)(struct kernel_info *info, char *kernel_buf, size_t kernel_size); static void parse_bzImage_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size); static void parse_elf32_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size); static void parse_elf64_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size); char *vmlinux_x86_64_probe(char *kernel_buf, off_t kernel_size); char *vmlinux_i386_probe(char *kernel_buf, off_t kernel_size) { Elf32_Ehdr *ehdr; Elf32_Phdr *phdr; int i; int phdrs; ehdr = (Elf32_Ehdr *)kernel_buf; if ( (ehdr->e_ident[EI_MAG0] != ELFMAG0) || (ehdr->e_ident[EI_MAG1] != ELFMAG1) || (ehdr->e_ident[EI_MAG2] != ELFMAG2) || (ehdr->e_ident[EI_MAG3] != ELFMAG3)) { return "No ELF signature found on kernel\n"; } if (ehdr->e_ident[EI_CLASS] != ELFCLASS32) { return vmlinux_x86_64_probe(kernel_buf, kernel_size); // return "Not a 32bit ELF kernel\n"; } if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) { return "Not a little endian ELF kernel\n"; } if (le16_to_cpu(ehdr->e_type) != ET_EXEC) { return "Not an executable kernel\n"; } if (le16_to_cpu(ehdr->e_machine) != EM_386) { return "Not an i386 kernel\n"; } if ( (ehdr->e_ident[EI_VERSION] != EV_CURRENT) || (le32_to_cpu(ehdr->e_version) != EV_CURRENT)) { return "Kernel not using ELF version 1.\n"; } if (le16_to_cpu(ehdr->e_phentsize) != sizeof(*phdr)) { return "Kernel uses bad program header size.\n"; } phdr = (Elf32_Phdr *)(kernel_buf + le32_to_cpu(ehdr->e_phoff)); phdrs = 0; for(i = 0; i < le16_to_cpu(ehdr->e_phnum); i++) { if (le32_to_cpu(phdr[i].p_type) != PT_LOAD) continue; phdrs++; } if (phdrs == 0) { return "No PT_LOAD segments!\n"; } parse_kernel_type = parse_elf32_kernel; return 0; } char *vmlinux_x86_64_probe(char *kernel_buf, off_t kernel_size) { Elf64_Ehdr *ehdr; Elf64_Phdr *phdr; int i; int phdrs = 0; ehdr = (Elf64_Ehdr *)kernel_buf; if ( (ehdr->e_ident[EI_MAG0] != ELFMAG0) || (ehdr->e_ident[EI_MAG1] != ELFMAG1) || (ehdr->e_ident[EI_MAG2] != ELFMAG2) || (ehdr->e_ident[EI_MAG3] != ELFMAG3)) { return "No ELF signature found on kernel\n"; } if (ehdr->e_ident[EI_CLASS] != ELFCLASS64) { return "Not a 64bit ELF kernel\n"; } if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) { return "Not a little endian ELF kernel\n"; } if (le16_to_cpu(ehdr->e_type) != ET_EXEC) { return "Not an executable kernel\n"; } if (le16_to_cpu(ehdr->e_machine) != EM_X86_64) { return "Not an x86_64 kernel\n"; } if ( (ehdr->e_ident[EI_VERSION] != EV_CURRENT) || (le32_to_cpu(ehdr->e_version) != EV_CURRENT)) { return "Kernel not using ELF version 1.\n"; } if (le16_to_cpu(ehdr->e_phentsize) != sizeof(*phdr)) { return "Kernel uses bad program header size.\n"; } phdr = (Elf64_Phdr *)(kernel_buf + le64_to_cpu(ehdr->e_phoff)); phdrs = 0; for(i = 0; i < le16_to_cpu(ehdr->e_phnum); i++) { if (le32_to_cpu(phdr[i].p_type) != PT_LOAD) continue; phdrs++; } if (phdrs == 0) { return "No PT_LOAD segments!\n"; } parse_kernel_type = parse_elf64_kernel; return 0; } char *bzImage_i386_probe(char *kernel_buf, off_t kernel_size) { struct x86_linux_header *hdr; unsigned long offset; int setup_sects; hdr = (struct x86_linux_header *)kernel_buf; if (le16_to_cpu(hdr->boot_sector_magic) != 0xaa55) { return "No bootsector magic"; } if (memcmp(hdr->header_magic, "HdrS", 4) != 0) { return "Not a linux kernel"; } if (le16_to_cpu(hdr->protocol_version) < 0x202) { return "Kernel protcols version before 2.02 not supported"; } setup_sects = hdr->setup_sects; if (setup_sects == 0) { setup_sects = 4; } offset = 512 + (512 *setup_sects); if (offset > kernel_size) { return "Not enough bytes"; } parse_kernel_type = parse_bzImage_kernel; return 0; } char *linux_i386_probe(char *kernel_buf, off_t kernel_size) { char *result; result = ""; if (result) result = bzImage_i386_probe(kernel_buf, kernel_size); if (result) result = vmlinux_i386_probe(kernel_buf, kernel_size); if (result) result = bzImage_i386_probe(kernel_buf, kernel_size); return result; } #define NR_SECTIONS 16 struct kernel_info { int phdrs; void *kernel[NR_SECTIONS]; size_t filesz[NR_SECTIONS]; size_t memsz[NR_SECTIONS]; size_t paddr[NR_SECTIONS]; size_t vaddr[NR_SECTIONS]; size_t entry; size_t switch_64; char *version; }; static void parse_elf32_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size) { Elf32_Ehdr *ehdr; Elf32_Phdr *phdr; int i; int phdrs; ehdr = (Elf32_Ehdr *)kernel_buf; phdr = (Elf32_Phdr *)(kernel_buf + ehdr->e_phoff); phdrs = 0; for(i = 0; i < le16_to_cpu(ehdr->e_phnum); i++) { if (le32_to_cpu(phdr[i].p_type) != PT_LOAD) continue; if(phdrs == NR_SECTIONS) die("NR_SECTIONS is too small\n"); info->kernel[phdrs] = kernel_buf + le32_to_cpu(phdr[i].p_offset); info->filesz[phdrs] = le32_to_cpu(phdr[i].p_filesz); info->memsz[phdrs] = le32_to_cpu(phdr[i].p_memsz); info->paddr[phdrs] = le32_to_cpu(phdr[i].p_paddr) & 0xfffffff; info->vaddr[phdrs] = le32_to_cpu(phdr[i].p_vaddr); phdrs++; } if(!phdrs) die("We need at least one phdr\n"); info->phdrs = phdrs; info->entry = le32_to_cpu(ehdr->e_entry); info->switch_64 = 0; //not convert from elf64 info->version = "unknown"; } static void parse_elf64_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size) { Elf64_Ehdr *ehdr; Elf64_Phdr *phdr; int i; int phdrs; ehdr = (Elf64_Ehdr *)kernel_buf; phdr = (Elf64_Phdr *)(kernel_buf + le64_to_cpu(ehdr->e_phoff)); phdrs = 0; for(i = 0; i < le16_to_cpu(ehdr->e_phnum); i++) { if (le32_to_cpu(phdr[i].p_type) != PT_LOAD) continue; if(phdrs == NR_SECTIONS) die("NR_SECTIONS is too small\n"); info->kernel[phdrs] = kernel_buf + le64_to_cpu(phdr[i].p_offset); info->filesz[phdrs] = le64_to_cpu(phdr[i].p_filesz); info->memsz[phdrs] = le64_to_cpu(phdr[i].p_memsz); info->paddr[phdrs] = le64_to_cpu(phdr[i].p_paddr) & 0xfffffff; info->vaddr[phdrs] = le64_to_cpu(phdr[i].p_vaddr); phdrs++; } if(!phdrs) die("We need at least one phdr\n"); info->phdrs = phdrs; info->entry = le64_to_cpu(ehdr->e_entry); #if 0 if (info->entry != info->paddr[0]) { info->entry = info->paddr[0]; // we still have startup_32 there info->switch_64 = 0; //not convert from elf64 } else #endif info->switch_64 = 1; //convert from elf64 info->version = "unknown"; } static void parse_bzImage_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size) { struct x86_linux_header *hdr; unsigned long offset; int setup_sects; hdr = (struct x86_linux_header *)kernel_buf; setup_sects = hdr->setup_sects; if (setup_sects == 0) { setup_sects = 4; } offset = 512 + (512 *setup_sects); info->kernel[0] = kernel_buf + offset; info->filesz[0] = kernel_size - offset; info->memsz[0] = 0x700000; info->paddr[0] = 0x100000; info->vaddr[0] = 0x100000; info->phdrs = 1; info->entry = info->paddr[0]; info->switch_64 = 0; //not convert from elf64, even later bzImage become elf64, it still includes startup_32 info->version = kernel_buf + 512 + le16_to_cpu(hdr->kver_addr); } static void parse_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size) { memset(info, 0, sizeof(*info)); if (parse_kernel_type) { parse_kernel_type(info, kernel_buf, kernel_size); } else { die("Unknown kernel format"); } } void linux_i386_usage(void) { printf( " --command-line= Set the command line to \n" " --append= Set the command line to \n" " --initrd= Set the initrd to \n" " --ramdisk= Set the initrd to \n" " --ramdisk-base= Set the initrd load address to \n" ); return; } #define OPT_CMDLINE OPT_MAX+0 #define OPT_RAMDISK OPT_MAX+1 #define OPT_RAMDISK_BASE OPT_MAX+2 #define DEFAULT_RAMDISK_BASE (8*1024*1024) int linux_i386_mkelf(int argc, char **argv, struct memelfheader *ehdr, char *kernel_buf, off_t kernel_size) { const char *ramdisk, *cmdline; unsigned long ramdisk_base; char *payload_buf, *ramdisk_buf; off_t payload_size, ramdisk_size; struct memelfphdr *phdr; struct memelfnote *note; struct kernel_info kinfo; struct image_parameters *params; int index; int i; int opt; static const struct option options[] = { MKELF_OPTIONS { "command-line", 1, 0, OPT_CMDLINE }, { "append", 1, 0, OPT_CMDLINE }, { "initrd", 1, 0, OPT_RAMDISK }, { "ramdisk", 1, 0, OPT_RAMDISK }, { "ramdisk-base", 1, 0, OPT_RAMDISK_BASE }, { 0 , 0, 0, 0 }, }; static const char short_options[] = MKELF_OPT_STR; ramdisk_base = DEFAULT_RAMDISK_BASE; ramdisk = 0; cmdline=""; while((opt = getopt_long(argc, argv, short_options, options, 0)) != -1) { switch(opt) { case '?': error("Unknown option %s\n", argv[optind]); break; case OPT_RAMDISK_BASE: { char *end; unsigned long base; base = strtoul(optarg, &end, 0); if ((end == optarg) || (*end != '\0')) { error("Invalid ramdisk base\n"); } ramdisk_base = base; } case OPT_RAMDISK: ramdisk = optarg; break; case OPT_CMDLINE: cmdline = optarg; break; default: break; } } ehdr->ei_class = ELFCLASS32; ehdr->ei_data = ELFDATA2LSB; ehdr->e_type = ET_EXEC; ehdr->e_machine = EM_386; /* locate the payload buffer */ payload_buf = payload; payload_size = sizeof(payload); /* slurp the input files */ ramdisk_buf = slurp_file(ramdisk, &ramdisk_size); /* parse the kernel */ parse_kernel(&kinfo, kernel_buf, kernel_size); /* Find the parameters */ params = (void *)(payload_buf + (payload_size - sizeof(*params))); /* A sanity check against bad versions of binutils */ if (params->convert_magic != CONVERT_MAGIC) { die("Internal error convert_magic %08x != %08x\n", params->convert_magic, CONVERT_MAGIC); } /* Copy the command line */ strncpy(params->cmdline, cmdline, sizeof(params->cmdline)); params->cmdline[sizeof(params->cmdline)-1]= '\0'; /* Add a program header for the note section */ index = 4; index += (kinfo.phdrs - 1); index += ramdisk_size ? 1:0; phdr = add_program_headers(ehdr, index); /* Fill in the program headers*/ phdr[0].p_type = PT_NOTE; /* Fill in the converter program headers */ phdr[1].p_paddr = CONVERTLOC; phdr[1].p_vaddr = CONVERTLOC; phdr[1].p_filesz = payload_size; phdr[1].p_memsz = payload_size + params->bss_size; phdr[1].p_data = payload; /* Reserve space for the REAL MODE DATA segment AND the GDT segment */ phdr[2].p_paddr = REAL_MODE_DATA_LOC; phdr[2].p_vaddr = REAL_MODE_DATA_LOC; phdr[2].p_filesz = 0; if(!kinfo.switch_64) phdr[2].p_memsz = (GDTLOC - REAL_MODE_DATA_LOC) + params->gdt_size; else phdr[2].p_memsz = (PGTLOC - REAL_MODE_DATA_LOC) + params->pgt_size; phdr[2].p_data = 0; if( (phdr[1].p_paddr + phdr[1].p_memsz) > phdr[2].p_paddr) { die("Internal error: need to increase REAL_MODE_DATA_LOC !\n"); } index = 3; /* Put the second kernel frament if present */ for(i=0;iinitrd_start = params->initrd_size = 0; if (ramdisk_size) { if( (phdr[index-1].p_paddr + phdr[index-1].p_memsz) > ramdisk_base) { die("need to increase increase ramdisk_base !\n"); } phdr[index].p_paddr = ramdisk_base; phdr[index].p_vaddr = ramdisk_base; phdr[index].p_filesz = ramdisk_size; phdr[index].p_memsz = ramdisk_size; phdr[index].p_data = ramdisk_buf; params->initrd_start = phdr[index].p_paddr; params->initrd_size = phdr[index].p_filesz; index++; } /* Set the start location */ params->entry = kinfo.entry; params->switch_64 = kinfo.switch_64; ehdr->e_entry = phdr[1].p_paddr; /* Setup the elf notes */ note = add_notes(ehdr, 3); note[0].n_type = EIN_PROGRAM_NAME; note[0].n_name = "ELFBoot"; note[0].n_desc = "Linux"; note[0].n_descsz = strlen(note[0].n_desc)+1; note[1].n_type = EIN_PROGRAM_VERSION; note[1].n_name = "ELFBoot"; note[1].n_desc = kinfo.version; note[1].n_descsz = strlen(note[1].n_desc); note[2].n_type = EIN_PROGRAM_CHECKSUM; note[2].n_name = "ELFBoot"; note[2].n_desc = 0; note[2].n_descsz = 2; return 0; }