/** * @file * * Southbridge Initial routine * * * * @xrefitem bom "File Content Label" "Release Content" * @e project: CIMx-SB * @e sub-project: * @e \$Revision:$ @e \$Date:$ * */ /*;******************************************************************************** ; ; Copyright (c) 2011, Advanced Micro Devices, Inc. ; All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in the ; documentation and/or other materials provided with the distribution. ; * Neither the name of Advanced Micro Devices, Inc. nor the names of ; its contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ; WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ; DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY ; DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ; (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ; ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ; ;*********************************************************************************/ #include "SbPlatform.h" #include "cbtypes.h" #include "AmdSbLib.h" // // Declaration of local functions // VOID abcfgTbl (IN ABTBLENTRY* pABTbl); VOID A13ResumeResetTwoSecondRtcWakeup (void); /*--------------------------- Documentation Pages ---------------------------*/ /** * @page LegacyInterfaceCalls Legacy Interface Calls * @subpage SB_POWERON_INIT_Page "SB_POWERON_INIT" * @subpage SB_BEFORE_PCI_INIT_Page "SB_BEFORE_PCI_INIT" * @subpage SB_AFTER_PCI_INIT_Page "SB_AFTER_PCI_INIT" * @subpage SB_LATE_POST_INIT_Page "SB_LATE_POST_INIT" * @subpage SB_BEFORE_PCI_RESTORE_INIT_Page "SB_BEFORE_PCI_RESTORE_INIT" * @subpage SB_AFTER_PCI_RESTORE_INIT_Page "SB_AFTER_PCI_RESTORE_INIT" * @subpage SB_SMM_SERVICE_Page "SB_SMM_SERVICE" * @subpage SB_SMM_ACPION_Page "SB_SMM_ACPION" * * @page LegacyInterfaceCallOuts Legacy Interface CallOuts * @subpage CB_SBGPP_RESET_ASSERT_Page CB_SBGPP_RESET_ASSERT * @subpage CB_SBGPP_RESET_DEASSERT_Page CB_SBGPP_RESET_DEASSERT * */ /** * sbEarlyPostByteInitTable - PCI device registers initial during early POST. * */ REG8MASK sbEarlyPostByteInitTable[] = { // SMBUS Device (Bus 0, Dev 20, Func 0) {0x00, SMBUS_BUS_DEV_FUN, 0}, {SB_CFG_REG10, 0X00, (SBCIMx_Version & 0xFF)}, //Program the version information {SB_CFG_REG11, 0X00, (SBCIMx_Version >> 8)}, {0xFF, 0xFF, 0xFF}, // IDE Device (Bus 0, Dev 20, Func 1) {0x00, IDE_BUS_DEV_FUN, 0}, {SB_IDE_REG62 + 1, ~BIT0, BIT5}, // Enabling IDE Explicit Pre-Fetch IDE PCI Config 0x62[8]=0 // Allow MSI capability of IDE controller to be visible. IDE PCI Config 0x62[13]=1 {0xFF, 0xFF, 0xFF}, // Azalia Device (Bus 0, Dev 20, Func 2) {0x00, AZALIA_BUS_DEV_FUN, 0}, {SB_AZ_REG4C, ~BIT0, BIT0}, {0xFF, 0xFF, 0xFF}, // LPC Device (Bus 0, Dev 20, Func 3) {0x00, LPC_BUS_DEV_FUN, 0}, {SB_LPC_REG40, ~BIT2, BIT2}, // RPR Enabling LPC DMA Function 0x40[2]=1b 0x78[0]=0b {SB_LPC_REG48, 0x00, BIT0 + BIT1 + BIT2}, {SB_LPC_REG78, 0xFC, 00}, // RPR Enabling LPC DMA Function 0x40[2]=1b 0x78[0]=0b / Disables MSI capability {SB_LPC_REGBB, ~BIT0, BIT0 + BIT3 + BIT4 + BIT5}, // Enabled SPI Prefetch from HOST. {0xFF, 0xFF, 0xFF}, // PCIB Bridge (Bus 0, Dev 20, Func 4) {0x00, PCIB_BUS_DEV_FUN, 0}, {SB_PCIB_REG40, 0xFF, BIT5}, // RPR PCI-bridge Subtractive Decode {SB_PCIB_REG4B, 0xFF, BIT7}, // {SB_PCIB_REG66, 0xFF, BIT4}, // RPR Enabling One-Prefetch-Channel Mode, PCIB_PCI_config 0x64 [20] {SB_PCIB_REG65, 0xFF, BIT7}, // RPR proper operation of CLKRUN#. {SB_PCIB_REG0D, 0x00, 0x40}, // Setting Latency Timers to 0x40, Enables the PCIB to retain ownership {SB_PCIB_REG1B, 0x00, 0x40}, // of the bus on the Primary side and on the Secondary side when GNT# is deasserted. {SB_PCIB_REG66 + 1, 0xFF, BIT1}, // RPR Enable PCI bus GNT3#.. {0xFF, 0xFF, 0xFF}, // SATA Device (Bus 0, Dev 17, Func 0) {0x00, SATA_BUS_DEV_FUN, 0}, {SB_SATA_REG44, 0xff, BIT0}, // RPR Enables the SATA watchdog timer register prior to the SATA BIOS post {SB_SATA_REG44 + 2, 0, 0x20}, // RPR SATA PCI Watchdog timer setting // [SB01923] Set timer out to 0x20 to fix IDE to SATA Bridge dropping drive issue. {0xFF, 0xFF, 0xFF}, }; /** * sbPmioEPostInitTable - Southbridge ACPI MMIO initial during POST. * */ AcpiRegWrite sbPmioEPostInitTable[] = { {00, 00, 0xB0, 0xAC}, // Signature // HPET workaround {PMIO_BASE >> 8, SB_PMIOA_REG54 + 3, 0xFC, BIT0 + BIT1}, {PMIO_BASE >> 8, SB_PMIOA_REG54 + 2, 0x7F, BIT7}, {PMIO_BASE >> 8, SB_PMIOA_REG54 + 2, 0x7F, 0x00}, // End of HPET workaround // Enable Hudson-2 A12 ACPI bits at PMIO 0xC0 [30, 10:3] // ClrAllStsInThermalEvent 3 Set to 1 to allow ASF remote power down/power cycle, Thermal event, Fan slow event to clear all the Gevent status and enabled bits. The bit should be set to 1 all the time. // UsbGoodClkDlyEn 4 Set to 1 to delay de-assertion of Usb clk by 6 Osc clk. The bit should be set to 1 all the time. // ForceNBCPUPwr 5 Set to 1 to force CPU pwrGood to be toggled along with NB pwrGood. // MergeUsbPerReq 6 Set to 1 to merge usb perdical traffic into usb request as one of break event. // IMCWatchDogRstEn 7 Set to 1 to allow IMC watchdog timer to reset entire acpi block. The bit should be set to 1 when IMC is enabled. // GeventStsFixEn 8 1: Gevent status is not reset by its enable bit. 0: Gevent status is reset by its enable bit. // PmeTimerFixEn 9 Set to 1 to reset Pme Timer when going to sleep state. // UserRst2EcEn 10 Set to 1 to route user reset event to Ec. The bit should be set to 1 when IMC is enabled. // Smbus0ClkSEn 30 Set to 1 to enable SMBus0 controller clock stretch support. {PMIO_BASE >> 8, SB_PMIOA_REGC4, ~BIT2, BIT2}, {PMIO_BASE >> 8, SB_PMIOA_REGC0, 0, 0xF9}, {PMIO_BASE >> 8, SB_PMIOA_REGC0 + 1, 0x04, 0x03}, // RtcSts 19-17 RTC_STS set only in Sleep State. // GppPme 20 Set to 1 to enable PME request from SB GPP. // Pcireset 22 Set to 1 to allow SW to reset PCIe. {PMIO_BASE >> 8, SB_PMIOA_REGC2, 0x20, 0x58}, {PMIO_BASE >> 8, SB_PMIOA_REGC2 + 1, 0, 0x40}, {PMIO_BASE >> 8, SB_PMIOA_REGC2, ~(BIT4), BIT4}, {PMIO_BASE >> 8, SB_PMIOA_REGCC, 0xF8, 0x01}, {PMIO_BASE >> 8, SB_PMIOA_REG74, 0x00, BIT0 + BIT1 + BIT2 + BIT4}, {PMIO_BASE >> 8, SB_PMIOA_REG74 + 3, ~BIT5, 0}, {PMIO_BASE >> 8, SB_PMIOA_REGDE + 1, ~(BIT0 + BIT1), BIT0 + BIT1}, {PMIO_BASE >> 8, SB_PMIOA_REGDE, ~BIT4, BIT4}, {PMIO_BASE >> 8, SB_PMIOA_REGBA, ~BIT3, BIT3}, {PMIO_BASE >> 8, SB_PMIOA_REGBA + 1, ~BIT6, BIT6}, {PMIO_BASE >> 8, SB_PMIOA_REGBC, ~BIT1, BIT1}, {PMIO_BASE >> 8, SB_PMIOA_REGED, ~(BIT4 + BIT0 + BIT1), 0}, //RPR Hiding Flash Controller PM_IO 0xDC[7] = 0x0 & PM_IO 0xDC [1:0]=0x01 {PMIO_BASE >> 8, SB_PMIOA_REGDC, 0x7C, BIT0}, {SMI_BASE >> 8, SB_SMI_Gevent1, 0, 1}, {SMI_BASE >> 8, SB_SMI_Gevent3, 0, 3}, {SMI_BASE >> 8, SB_SMI_Gevent4, 0, 4}, {SMI_BASE >> 8, SB_SMI_Gevent5, 0, 5}, {SMI_BASE >> 8, SB_SMI_Gevent6, 0, 6}, {SMI_BASE >> 8, SB_SMI_Gevent23, 0, 23}, {SMI_BASE >> 8, SB_SMI_xHC0Pme, 0, 11}, {SMI_BASE >> 8, SB_SMI_xHC1Pme, 0, 11}, {SMI_BASE >> 8, SB_SMI_Usbwakup0, 0, 11}, {SMI_BASE >> 8, SB_SMI_Usbwakup1, 0, 11}, #ifndef USB_LOGO_SUPPORT {SMI_BASE >> 8, SB_SMI_Usbwakup2, 0, 11}, {SMI_BASE >> 8, SB_SMI_Usbwakup3, 0, 11}, #endif {SMI_BASE >> 8, SB_SMI_IMCGevent0, 0, 12}, {SMI_BASE >> 8, SB_SMI_FanThGevent, 0, 13}, {SMI_BASE >> 8, SB_SMI_SBGppPme0, 0, 15}, {SMI_BASE >> 8, SB_SMI_SBGppPme1, 0, 16}, {SMI_BASE >> 8, SB_SMI_SBGppPme2, 0, 17}, {SMI_BASE >> 8, SB_SMI_SBGppPme3, 0, 18}, {SMI_BASE >> 8, SB_SMI_GecPme, 0, 19}, {SMI_BASE >> 8, SB_SMI_CIRPme, 0, 28}, {SMI_BASE >> 8, SB_SMI_Gevent8, 0, 24}, {SMI_BASE >> 8, SB_SMI_AzaliaPme, 0, 27}, {SMI_BASE >> 8, SB_SMI_SataGevent0, 0, 30}, {SMI_BASE >> 8, SB_SMI_SataGevent1, 0, 31}, {SMI_BASE >> 8, SB_SMI_REG08, 0xE7, 0}, {SMI_BASE >> 8, SB_SMI_REG0C + 2, ~BIT3, BIT3}, {SMI_BASE >> 8, SB_SMI_TWARN, 0, 9}, // RPR CG PLL CMOX Clock Driver Setting for power saving {MISC_BASE >> 8, SB_MISC_REG18 + 0x06, 0, 0xE0}, {MISC_BASE >> 8, SB_MISC_REG18 + 0x07, 0, 0x1F}, //{SERIAL_DEBUG_BASE >> 8, SB_SDB_REG74, 0, 0}, {0xFF, 0xFF, 0xFF, 0xFF}, }; /** * abTblEntry800 - AB-Link Configuration Table for Hudson-2 * */ ABTBLENTRY abTblEntry800[] = { // RPR Enable downstream posted transactions to pass non-posted transactions. {ABCFG, SB_ABCFG_REG10090, BIT8 + BIT16, BIT8 + BIT16}, // RPR Enable Hudson-2 to issue memory read/write requests in the upstream direction. {AXCFG, SB_AB_REG04, BIT2, BIT2}, // RPR Enabling IDE/PCIB Prefetch for Performance Enhancement // PCIB prefetch ABCFG 0x10060 [20] = 1 ABCFG 0x10064 [20] = 1 {ABCFG, SB_ABCFG_REG10060, BIT20, BIT20}, // PCIB prefetch enable {ABCFG, SB_ABCFG_REG10064, BIT20, BIT20}, // PCIB prefetch enable // RPR Controls the USB OHCI controller prefetch used for enhancing performance of ISO out devices. // RPR Setting B-Link Prefetch Mode (ABCFG 0x80 [18:17] = 11) {ABCFG, SB_ABCFG_REG80, BIT0 + BIT17 + BIT18, BIT0 + BIT17 + BIT18}, // RPR Enabled SMI ordering enhancement. ABCFG 0x90[21] // RPR 7.7 USB Delay A-Link Express L1 State. ABCFG 0x90[16] {ABCFG, SB_ABCFG_REG90, BIT21 + BIT16, BIT21 + BIT16}, // RPR Disable the credit variable in the downstream arbitration equation // RPR Register bit to qualify additional address bits into downstream register programming. (A12 BIT1 default is set) {ABCFG, SB_ABCFG_REG9C, BIT0, BIT0}, // RPR Enabling Detection of Upstream Interrupts ABCFG 0x94 [20] = 1 // ABCFG 0x94 [19:0] = cpu interrupt delivery address [39:20] {ABCFG, SB_ABCFG_REG94, BIT20, BIT20 + 0x00FEE}, // RPR Programming cycle delay for AB and BIF clock gating // RPR Enable the AB and BIF clock-gating logic. // RPR Enable the A-Link int_arbiter enhancement to allow the A-Link bandwidth to be used more efficiently // RPR Enable the requester ID for upstream traffic. [16]: SB/NB link [17]: GPP {ABCFG, SB_ABCFG_REG10054, 0x00FFFFFF, 0x010407FF}, {ABCFG, SB_ABCFG_REG98, 0xFFFC00FF, 0x00034700}, {ABCFG, SB_ABCFG_REG54, 0x00FF0000, 0x00040000}, // RPR Non-Posted Memory Write Support {AXINDC, SB_AX_INDXC_REG10, BIT9, BIT9}, // RPR 4.18 UMI L1 Configuration //Step 1: AXINDC_Reg 0x02[0] = 0x1 Set REGS_DLP_IGNORE_IN_L1_EN to ignore DLLPs during L1 so that txclk can be turned off. //Step 2: AXINDP_Reg 0x02[15] = 0x1 Sets REGS_LC_ALLOW_TX_L1_CONTROL to allow TX to prevent LC from going to L1 when there are outstanding completions. {AXINDC, SB_AX_INDXC_REG02, BIT0, BIT0}, {AXINDP, SB_AX_INDXP_REG02, BIT15, BIT15}, {ABCFG, 0, 0, (UINT8) 0xFF}, // This dummy entry is to clear ab index { (UINT8)0xFF, (UINT8)0xFF, (UINT8)0xFF, (UINT8)0xFF}, }; /** * SbPcieOrderRule - AB-Link Configuration Table for ablink Post Pass Np Downstream/Upstream Feature * */ ABTBLENTRY SbPcieOrderRule[] = { // abPostPassNpDownStreamTbl {ABCFG, SB_ABCFG_REG10060, BIT31, BIT31}, {ABCFG, SB_ABCFG_REG1009C, BIT4 + BIT5, BIT4 + BIT5}, {ABCFG, SB_ABCFG_REG9C, BIT2 + BIT3 + BIT4 + BIT5 + BIT6 + BIT7, BIT2 + BIT3 + BIT4 + BIT5 + BIT6 + BIT7}, {ABCFG, SB_ABCFG_REG90, BIT21 + BIT22 + BIT23, BIT21 + BIT22 + BIT23}, {ABCFG, SB_ABCFG_REGF0, BIT6 + BIT5, BIT6 + BIT5}, {AXINDC, SB_AX_INDXC_REG02, BIT9, BIT9}, {ABCFG, SB_ABCFG_REG10090, BIT9 + BIT10 + BIT11 + BIT12, BIT9 + BIT10 + BIT11 + BIT12}, // abPostPassNpUpStreamTbl {ABCFG, SB_ABCFG_REG58, BIT10, BIT10}, {ABCFG, SB_ABCFG_REGF0, BIT3 + BIT4, BIT3 + BIT4}, {ABCFG, SB_ABCFG_REG54, BIT1, BIT1}, { (UINT8)0xFF, (UINT8)0xFF, (UINT8)0xFF, (UINT8)0xFF}, }; /** * Table for SD controller capability register * * * * */ UINT32 sdCap[] = { 0x00000000, // 0x039FD972, // 0x839ED972, // 0x839AD972, // 0x839DD972, // 0x839CD972, // 0x8398D972, // }; /** * Table for Spread Spectrum * * RPR 12.9 Internal Clock Generator Spread Profile - to set default value to 0.363%. * * */ SB_SPREAD_SPECTRUM_ENTRY SpreadParameterTable[] = { {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // Disabled {1, 0x318, 0, 0x6F83, 0x90, 0, 0x07, 0, 1, 1},// -3630 ppm :1:Default {1, 0x318, 0, 0x7AE1, 0x9F, 0, 0x0D, 0, 1, 1},// -4000 ppm :2 {1, 0x318, 0, 0x77CF, 0x9B, 0, 0x0B, 0, 1, 1},// -3900 ppm :3 {1, 0x318, 0, 0x74BC, 0x94, 0, 0x0A, 0, 1, 1},// -3800 ppm :4 {1, 0x318, 0, 0x71AA, 0x93, 0, 0x08, 0, 1, 1},// -3700 ppm :5 {1, 0x318, 0, 0x6FD2, 0x90, 0, 0x07, 0, 1, 1},// -3640 ppm :6 {1, 0x318, 0, 0x6F83, 0x90, 0, 0x07, 0, 1, 1},// -3630 ppm :7 {1, 0x318, 0, 0x6F35, 0x8F, 0, 0x07, 0, 1, 1},// -3620 ppm :8 {1, 0x318, 0, 0x6EE6, 0x8F, 0, 0x07, 0, 1, 1},// -3610 ppm :9 {1, 0x318, 0, 0x6E98, 0x8F, 0, 0x07, 0, 1, 1},// -3600 ppm :10 {1, 0x318, 0, 0x6E49, 0x8E, 0, 0x07, 0, 1, 1},// -3590 ppm :11 {1, 0x018, 0, 0x6666, 0x83, 0, 0x00, 0, 0, 1} // -3500 ppm :12 }; /** * commonInitEarlyBoot - Config Southbridge SMBUS/ACPI/IDE/LPC/PCIB. * * This settings should be done during S3 resume also * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID commonInitEarlyBoot ( IN AMDSBCFG* pConfig ) { UINT32 abValue; UINT16 dwTempVar; SB_CPUID_DATA CpuId; UINT8 cimNativepciesupport; UINT8 cimIrConfig; UINT8 Data; UINT8 cimALinkClkGateOff; UINT8 cimBLinkClkGateOff; cimNativepciesupport = (UINT8) pConfig->NativePcieSupport; cimIrConfig = (UINT8) pConfig->IrConfig; cimALinkClkGateOff = (UINT8) pConfig->ALinkClkGateOff; cimBLinkClkGateOff = (UINT8) pConfig->BLinkClkGateOff; #if SB_CIMx_PARAMETER == 0 cimNativepciesupport = cimNativepciesupportDefault; cimIrConfig = cimIrConfigDefault; #endif //Clear hwmSbtsiAutoPollStarted pConfig->hwm.hwmSbtsiAutoPollStarted = FALSE; //Ac Loss Control AcLossControl (pConfig->PwrFailShadow); //SB VGA Init // OBS194249 Cobia_Nutmeg_DP-VGA Electrical SI validation_Lower RGB Luminance level BGADJ=0x1F & DACADJ=0x1B // Removed for OBS194249 causes display issue in Windows // SbVgaInit (); //IR init Logical device 0x05 if ( cimIrConfig ) { EnterEcConfig (); RWEC8 (0x07, 0x00, 0x05); //Select logical device 05, IR controller RWEC8 (0x60, 0x00, 0x05); //Set Base Address to 550h RWEC8 (0x61, 0x00, 0x50); RWEC8 (0x70, 0xF0, 0x05); //Set IRQ to 05h RWEC8 (0x30, 0x00, 0x01); //Enable logical device 5, IR controller Data = 0xAB; WriteIO (0x550, AccWidthUint8, &Data); ReadIO (0x551, AccWidthUint8, &Data); Data = (((Data & 0xFC ) | 0x20) | cimIrConfig); WriteIO (0x551, AccWidthUint8, &Data); // Data = 0xCA; // WriteIO (0x550, AccWidthUint8, &Data); // Data = 0x81; // WriteIO (0x551, AccWidthUint8, &Data); ExitEcConfig (); Data = 0xA0; // EC APIC index WriteIO (SB_IOMAP_REGC00, AccWidthUint8, &Data); Data = 0x05; // IRQ5 WriteIO (SB_IOMAP_REGC01, AccWidthUint8, &Data); } else { EnterEcConfig (); //if (pConfig->Sdb != 1 ) { //RWMEM (ACPI_MMIO_BASE + SERIAL_DEBUG_BASE + 0x04, AccWidthUint8, 0, 0); //} RWEC8 (0x07, 0x00, 0x05); //Select logical device 05, IR controller RWEC8 (0x30, 0x00, 0x00); //Disable logical device 5, IR controller ExitEcConfig (); } TRACE ((DMSG_SB_TRACE, "CIMx - Entering commonInitEarlyBoot \n")); CpuidRead (0x01, &CpuId); // // SB CFG programming // //Make BAR registers of smbus visible. RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC8 + 1, AccWidthUint8, ~BIT6, 0); //Early post initialization of pci config space programPciByteTable ((REG8MASK*) FIXUP_PTR (&sbEarlyPostByteInitTable[0]), sizeof (sbEarlyPostByteInitTable) / sizeof (REG8MASK) ); if ( pConfig->BuildParameters.SmbusSsid != NULL ) { RWPCI ((SMBUS_BUS_DEV_FUN << 16) + SB_CFG_REG2C, AccWidthUint32 | S3_SAVE, 0x00, pConfig->BuildParameters.SmbusSsid); } //Make BAR registers of smbus invisible. RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC8 + 1, AccWidthUint8, ~BIT6, BIT6); // // LPC CFG programming // // SSID for LPC Controller if (pConfig->BuildParameters.LpcSsid != NULL ) { RWPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REG2C, AccWidthUint32 | S3_SAVE, 0x00, pConfig->BuildParameters.LpcSsid); } // LPC MSI if ( pConfig->BuildParameters.LpcMsi) { RWPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REG78, AccWidthUint32 | S3_SAVE, ~BIT1, BIT1); } // // PCIB CFG programming // //Disable or Enable PCI Clks based on input Data = ~(pConfig->PciClks); RWPCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG42, AccWidthUint8 | S3_SAVE, ~(BIT5 + BIT4 + BIT3 + BIT2), (Data & 0x0F) << 2 ); RWPCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG4A, AccWidthUint8 | S3_SAVE, ~(BIT3 + BIT2 + BIT1 + BIT0), Data >> 4 ); // PCIB MSI if ( pConfig->BuildParameters.PcibMsi) { RWPCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG40, AccWidthUint8 | S3_SAVE, ~BIT3, BIT3); } if ( pConfig->SlowSpeedABlinkClock ) { RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG40, AccWidthUint8, ~BIT1, BIT1); } else { RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG40, AccWidthUint8, ~BIT1, 0); } // // AB CFG programming // // Read Arbiter address, Arbiter address is in PMIO 6Ch ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG6C, AccWidthUint16, &dwTempVar); RWIO (dwTempVar, AccWidthUint8, 0, 0); // Write 0 to enable the arbiter abLinkInitBeforePciEnum (pConfig); // Set ABCFG registers // AB MSI if ( pConfig->BuildParameters.AbMsi) { abValue = readAlink (SB_ABCFG_REG94 | (UINT32) (ABCFG << 29)); abValue = abValue | BIT20; writeAlink (SB_ABCFG_REG94 | (UINT32) (ABCFG << 29), abValue); } // // SB Specific Function programming // // PCIE Native setting RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGBA + 1, AccWidthUint8, ~BIT14, 0); if ( pConfig->NativePcieSupport == 1) { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG74 + 3, AccWidthUint8, ~(BIT3 + BIT1 + BIT0), BIT3 + BIT2 + BIT0); } else { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG74 + 3, AccWidthUint8, ~(BIT3 + BIT1 + BIT0), BIT3 + BIT2); } #ifdef ACPI_SLEEP_TRAP // Set SLP_TYPE as SMI event RWMEM (ACPI_MMIO_BASE + SMI_BASE + SB_SMI_REGB0, AccWidthUint8, ~(BIT2 + BIT3), BIT2); // Disabled SLP function for S1/S3/S4/S5 RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGBE, AccWidthUint8, ~BIT5, 0x00); // Set S state transition disabled (BIT0) force ACPI to send SMI message when writing to SLP_TYP Acpi register. (BIT1) RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG08 + 3, AccWidthUint8, ~(BIT0 + BIT1), BIT1); // Enabled Global Smi ( BIT7 clear as 0 to enable ) RWMEM (ACPI_MMIO_BASE + SMI_BASE + SB_SMI_REG98 + 3 , AccWidthUint8, ~BIT7, 0x00); #endif // Set Stutter timer settings RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80 + 1, AccWidthUint8, ~(BIT3 + BIT4), BIT3 + BIT4); // Set LDTSTP# duration to 10us for HydraD CPU, or when HT link is 200MHz if ((pConfig->AnyHT200MhzLink) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x100080) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x100090) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x1000A0)) { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94, AccWidthUint8, 0, 0x0A); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80 + 3, AccWidthUint8, 0xFE, 0x28); } else { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94, AccWidthUint8, 0, 0x01); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80 + 3, AccWidthUint8, 0xFE, 0x20); } // A/B Clock Gate-OFF if ( (IsSbA12Plus ()) && ( cimALinkClkGateOff || cimBLinkClkGateOff )) { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG04 + 2, AccWidthUint8, ~(BIT0), BIT0); } if ( cimALinkClkGateOff ) { RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2E, AccWidthUint8, 0xFE, BIT0); } else { RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2E, AccWidthUint8, 0xFE, 0x00); } if ( cimBLinkClkGateOff ) { if ( IsSbA11 () ) { // RPR13.7 B-Link Clock Gating Threshold for A11 only RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2D, AccWidthUint8, 0xEF, 0x10); //A11 Only } RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2E, AccWidthUint8, 0xFD, BIT1); } else { RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2E, AccWidthUint8, 0xFD, 0x00); } // RPR SSC will provide better jitter margin RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x13, AccWidthUint8, 0xFC, 0x01); // Set ACPIMMIO by OEM Input table programSbAcpiMmioTbl ((AcpiRegWrite *) (pConfig->OEMPROGTBL.OemProgrammingTablePtr_Ptr)); // 2.9 NB Power Good Control on System Reset RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGBF, AccWidthUint8, ~ (BIT0), 0); // 2.10 Extend SerIrq request RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG50, AccWidthUint32, ~ (BIT29), (BIT29)); // 2.13 Clear status of SATA PERR Data = BIT6; WriteMEM (ACPI_MMIO_BASE + SMI_BASE + SB_SMI_REG3C, AccWidthUint8, &Data); Data = BIT7; WriteMEM (ACPI_MMIO_BASE + SMI_BASE + SB_SMI_REG84 + 2, AccWidthUint8, &Data); if (IsSbA13Plus ()) { // 2.14 Enable Delayed SLP_S3/S5 to the Board RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC0 + 1, AccWidthUint8, 0xFF, BIT2); // 2.15 Enable C-State Wake-up before Warm Reset RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGBE, AccWidthUint8, ~ (BIT0), BIT0); // 3.16 Disable LPC A-Link Cycle Bypass RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG50, AccWidthUint32, ~ (BIT19), (BIT19)); } //RPR 3.5 Enabling LPCCLK0 Power-down Function //OBS261463 Torpedo-IMC Fan Control-System stops somewhere when running S3 if ((!isImcEnabled ()) && (IsSbA13Plus ())) { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD2, AccWidthUint8, ~ (BIT3), BIT3); } else { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD2, AccWidthUint8, ~ (BIT3), 0); } TRACE ((DMSG_SB_TRACE, "CIMx - Exiting commonInitEarlyBoot \n")); } /** * abSpecialSetBeforePciEnum - Special setting ABCFG registers before PCI emulation. * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID abSpecialSetBeforePciEnum ( IN AMDSBCFG* pConfig ) { UINT32 abValue; abValue = readAlink (SB_ABCFG_REGC0 | (UINT32) (ABCFG << 29)); abValue &= 0xf0; if ( pConfig->SbPcieOrderRule && abValue ) { abValue = readAlink (SB_RCINDXC_REG02 | (UINT32) (RCINDXC << 29)); abValue = abValue | BIT9; writeAlink (SB_RCINDXC_REG02 | (UINT32) (RCINDXC << 29), abValue); } } /** * commonInitEarlyPost - Config Southbridge SMBUS/ACPI/IDE/LPC/PCIB. * * This settings might not program during S3 resume * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID commonInitEarlyPost ( IN AMDSBCFG* pConfig ) { UINT8 dbPortStatus; UINT8 Data; UINT32 Data32; UINT8 cimSpreadSpectrum; UINT8 maxSpreadEntry; AMDSBCFG* pTmp; pTmp = pConfig; maxSpreadEntry = (sizeof SpreadParameterTable) / (sizeof (SB_SPREAD_SPECTRUM_ENTRY)); cimSpreadSpectrum = pConfig->SpreadSpectrum; #if SB_CIMx_PARAMETER == 0 cimSpreadSpectrum = cimSpreadSpectrumDefault; #endif programSbAcpiMmioTbl ((AcpiRegWrite*) FIXUP_PTR (&sbPmioEPostInitTable[0])); // Turn on and configure LPC clock (48MHz) RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x28, AccWidthUint32, ~(BIT21 + BIT20 + BIT19), 2 << 19); RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG40, AccWidthUint8, ~BIT7, 0); if ( cimSpreadSpectrum ) { if ( IsSbA11 () ) { // Misc_Reg_40[25]=1 -> allow to change spread profile // Misc_Reg19=83 -> new spread profile // Misc_Reg[12:10]=9975be // Misc_Reg0B=91 // Misc_Reg09=21 // Misc_Misc_Reg_08[0]=1 -> enable spread RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x43, AccWidthUint8, ~BIT1, BIT1); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x19, AccWidthUint8, 0, 0x83); getChipSysMode (&dbPortStatus); if ( ((dbPortStatus & ChipSysIntClkGen) != ChipSysIntClkGen) ) { RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x1A, AccWidthUint8, ~(BIT5 + BIT6 + BIT7), 0x80); } RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x12, AccWidthUint8, 0, 0x99); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x11, AccWidthUint8, 0, 0x75); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccWidthUint8, 0, 0xBE); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x0B, AccWidthUint8, 0, 0x91); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x09, AccWidthUint8, 0, 0x21); } if ( cimSpreadSpectrum >= maxSpreadEntry ) { cimSpreadSpectrum = 1; } if ( IsSbA12Plus () ) { RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x40, AccWidthUint32, (UINT32) (~(0x1 << 25)), ( SpreadParameterTable[cimSpreadSpectrum].P_40_25 << 25)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccWidthUint32, (UINT32) (~(0x1 << 0)), (0x0 << 0)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x18, AccWidthUint32, (UINT32) (~(0x7FF << 5)), (SpreadParameterTable[cimSpreadSpectrum].P_18_15_5 << 5)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x18, AccWidthUint32, (UINT32) (~(0xF << 16)), (SpreadParameterTable[cimSpreadSpectrum].P_18_19_16 << 16)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccWidthUint32, (UINT32) (~(0xFFFF << 8)), (SpreadParameterTable[cimSpreadSpectrum].P_10_23_8 << 8)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccWidthUint32, (UINT32) (~(0xFF << 0)), (SpreadParameterTable[cimSpreadSpectrum].P_10_7_0 << 0)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x1C, AccWidthUint32, (UINT32) (~(0x3F << 0)), (SpreadParameterTable[cimSpreadSpectrum].P_1C_5_0 << 0)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccWidthUint32, (UINT32) (~(0xF << 28)), (SpreadParameterTable[cimSpreadSpectrum].P_08_31_28 << 28)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccWidthUint32, (UINT32) (~(0x1 << 7)), (SpreadParameterTable[cimSpreadSpectrum].P_08_7 << 7)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccWidthUint32, (UINT32) (~(0x1 << 8)), (SpreadParameterTable[cimSpreadSpectrum].P_08_8 << 8)); RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccWidthUint32, (UINT32) (~(0x3 << 24)), (SpreadParameterTable[cimSpreadSpectrum].P_10_25_24 << 24)); } if ( IsExternalClockMode () ) { RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG08, AccWidthUint8, 0xFE, 0x00); } else { RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG08, AccWidthUint8, 0xFE, 0x01); } } else { RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG08, AccWidthUint8, 0xFE, 0x00); } // SD Configuration if ( pConfig->sdConfig ) { //OBS263741 TTP1000D: SD Host Controller can't be enabled after disabling it in BIOS setup. RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD3, AccWidthUint8, 0xBF, 0x40); RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG41, AccWidthUint8, 0xF1, 0x48); RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG42, AccWidthUint8, 0xFE, 0x00); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGE7, AccWidthUint8, 0x00, 0x12); // INT#A SD resource Data = 0x97; // Azalia APIC index WriteIO (SB_IOMAP_REGC00, AccWidthUint8, &Data); Data = 0x10; // IRQ16 (INTA#) WriteIO (SB_IOMAP_REGC01, AccWidthUint8, &Data); ReadPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REGA4, AccWidthUint32, &Data32); Data32 |= BIT31 + BIT24 + BIT18 + BIT16; //ADMA if ( pConfig->sdConfig == 2) { Data32 &= ~(BIT16 + BIT24); //DMA } else if ( pConfig->sdConfig == 3) { Data32 &= ~(BIT16 + BIT18 + BIT24); //PIO } Data32 &= ~(BIT17 + BIT23); //clear bitwidth Data32 |= (pConfig->sdSpeed << 17) + (pConfig->sdBitwidth << 23); RWPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REGA4, AccWidthUint32 | S3_SAVE, 0, Data32); //SB02544: SD: Some SD cards cannot be detected in HIGH speed mode if ( IsSbA12Plus () ) { RWPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REGB0, AccWidthUint32 | S3_SAVE, (UINT32) (~ (0x03 << 10)), (UINT32) (0x03 << 10)); } //BUG260949 There isn't code that set SSID of SD Controller in Hudson CIMX ReadPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REG00, AccWidthUint32, &Data32); RWPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REG2C, AccWidthUint32 | S3_SAVE, 0, Data32); } else { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD3, AccWidthUint8, 0xBF, 0x00); } // RPR PLL 100Mhz Reference Clock Buffer setting for internal clock generator mode (BIT5) // RPR OSC Clock setting for internal clock generator mode (BIT6) getChipSysMode (&dbPortStatus); if ( ((dbPortStatus & ChipSysIntClkGen) == ChipSysIntClkGen) ) { RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG04 + 1, AccWidthUint8, ~(BIT5 + BIT6), BIT5 + BIT6); } // Set ASF SMBUS master function enabled here (temporary) RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG28, AccWidthUint16 | S3_SAVE, ~(BIT0 + BIT2), BIT0 + BIT2); programSbAcpiMmioTbl ((AcpiRegWrite *) (pConfig->OEMPROGTBL.OemProgrammingTablePtr_Ptr)); #ifndef NO_EC_SUPPORT // Software IMC enable if (((pConfig->BuildParameters.ImcEnableOverWrite == 1) && ((dbPortStatus & ChipSysEcEnable) == 0)) || ((pConfig->BuildParameters.ImcEnableOverWrite == 2) && ((dbPortStatus & ChipSysEcEnable) == ChipSysEcEnable))) { if (validateImcFirmware (pConfig)) { softwareToggleImcStrapping (pConfig); } } #endif } /** * abLinkInitBeforePciEnum - Set ABCFG registers before PCI emulation. * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID abLinkInitBeforePciEnum ( IN AMDSBCFG* pConfig ) { UINT32 cimResetCpuOnSyncFlood; ABTBLENTRY *pAbTblPtr; AMDSBCFG* Temp; cimResetCpuOnSyncFlood = pConfig->ResetCpuOnSyncFlood; #if SB_CIMx_PARAMETER == 0 cimResetCpuOnSyncFlood = cimResetCpuOnSyncFloodDefault; #endif Temp = pConfig; if ( pConfig->SbPcieOrderRule == 1 ) { pAbTblPtr = (ABTBLENTRY *) FIXUP_PTR (&SbPcieOrderRule[0]); abcfgTbl (pAbTblPtr); } if ( pConfig->SbPcieOrderRule == 2 ) { rwAlink (SB_ABCFG_REG10090 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x7 << 10), (UINT32) (0x7 << 10)); rwAlink (SB_ABCFG_REG58 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1F << 11), (UINT32) (0x1C << 11)); rwAlink (SB_ABCFG_REGB4 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x3 << 0), (UINT32) (0x3 << 0)); } pAbTblPtr = (ABTBLENTRY *) FIXUP_PTR (&abTblEntry800[0]); abcfgTbl (pAbTblPtr); if ( cimResetCpuOnSyncFlood ) { rwAlink (SB_ABCFG_REG10050 | (UINT32) (ABCFG << 29), ~BIT2, BIT2); } if ( pConfig->AbClockGating ) { rwAlink (SB_ABCFG_REG10054 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16)); rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16)); rwAlink (SB_ABCFG_REG10054 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 24), (UINT32) (0x1 << 24)); rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 24), (UINT32) (0x1 << 24)); } else { rwAlink (SB_ABCFG_REG10054 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 24), (UINT32) (0x0 << 24)); rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 24), (UINT32) (0x0 << 24)); } if ( pConfig->GppClockGating ) { rwAlink (SB_ABCFG_REG98 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xF << 12), (UINT32) (0x4 << 12)); rwAlink (SB_ABCFG_REG98 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xF << 8), (UINT32) (0x7 << 8)); rwAlink (SB_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 0), (UINT32) (0x1 << 0)); } else { rwAlink (SB_ABCFG_REG98 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xF << 8), (UINT32) (0x0 << 8)); rwAlink (SB_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 0), (UINT32) (0x0 << 0)); } if ( pConfig->L1TimerOverwrite ) { rwAlink (SB_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x7 << 12), (UINT32) (pConfig->L1TimerOverwrite << 12)); rwAlink (SB_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 15), (UINT32) (0x1 << 15)); } if ( pConfig->UmiLinkWidth ) { // rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16)); } if ( pConfig->UmiDynamicSpeedChange ) { rwAlink ((UINT32) SB_AX_INDXP_REGA4, ~ (UINT32) (0x1 << 0), (UINT32) (0x1 << 0)); rwAlink ((UINT32) SB_AX_CFG_REG88, ~ (UINT32) (0xF << 0), (UINT32) (0x2 << 0)); rwAlink ((UINT32) SB_AX_INDXP_REGA4, ~ (UINT32) (0x1 << 18), (UINT32) (0x1 << 18)); } if ( pConfig->PcieRefClockOverclocking ) { // rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16)); } if ( pConfig->SbAlinkGppTxDriverStrength ) { rwAlink (SB_ABCFG_REGA8 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x3 << 18), (UINT32) ((pConfig->SbAlinkGppTxDriverStrength - 1) << 18)); rwAlink (SB_ABCFG_REGA0 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 8), (UINT32) (0x1 << 8)); } if ( pConfig->PcieAER ) { // rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16)); } if ( pConfig->PcieRAS ) { // rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16)); } } /** * abcfgTbl - Program ABCFG by input table. * * * @param[in] pABTbl ABCFG config table. * */ VOID abcfgTbl ( IN ABTBLENTRY* pABTbl ) { UINT32 ddValue; while ( (pABTbl->regType) != 0xFF ) { TRACE ((DMSG_SB_TRACE, "RegType: %X, RegNumber: %X, AndMask = %X, OrMask = %X \n", pABTbl->regType, pABTbl->regIndex, pABTbl->regMask, pABTbl->regData)); if ( pABTbl->regType == AXINDC ) { ddValue = 0x30 | (pABTbl->regType << 29); writeAlink (ddValue, (pABTbl->regIndex & 0x00FFFFFF)); ddValue = 0x34 | (pABTbl->regType << 29); writeAlink (ddValue, ((readAlink (ddValue)) & (0xFFFFFFFF^ (pABTbl->regMask))) | pABTbl->regData); } else if ( pABTbl->regType == AXINDP ) { ddValue = 0x38 | (pABTbl->regType << 29); writeAlink (ddValue, (pABTbl->regIndex & 0x00FFFFFF)); ddValue = 0x3C | (pABTbl->regType << 29); writeAlink (ddValue, ((readAlink (ddValue)) & (0xFFFFFFFF^ (pABTbl->regMask))) | pABTbl->regData); } else { ddValue = pABTbl->regIndex | (pABTbl->regType << 29); writeAlink (ddValue, ((readAlink (ddValue)) & (0xFFFFFFFF^ (pABTbl->regMask))) | pABTbl->regData); } ++pABTbl; } //Clear ALink Access Index ddValue = 0; WriteIO (ALINK_ACCESS_INDEX, AccWidthUint32 | S3_SAVE, &ddValue); TRACE ((DMSG_SB_TRACE, "Exiting abcfgTbl\n")); } /** * commonInitLateBoot - Prepare Southbridge register setting to boot to OS. * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID commonInitLateBoot ( IN AMDSBCFG* pConfig ) { UINT8 dbValue; UINT32 ddVar; UINT8 NStBit; UINT8 NSBit; UINT8 indexValue; // We need to do the following setting in late post also because some bios core pci enumeration changes these values // programmed during early post. // RPR 4.5 Master Latency Timer dbValue = 0x40; WritePCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG0D, AccWidthUint8, &dbValue); WritePCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG1B, AccWidthUint8, &dbValue); //RPR 6.4 CLKRUN# // SB P2P AutoClock control settings. // ddVar = (pConfig->PcibAutoClkCtrlLow) | (pConfig->PcibAutoClkCtrlLow); if ( pConfig->ClockRun ) { ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG54, AccWidthUint8, &dbValue); NStBit = dbValue & 0x03; NSBit = (dbValue & 0x3F ) >> 2; ddVar = (4 + (NStBit * 2) + (( 17 + NSBit) * 3) + 4) | 0x01; if ( IsSbA12Plus () ) { ddVar = 9; //4 clocks } WritePCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG4C, AccWidthUint32, &ddVar); } ddVar = (pConfig->PcibClkStopOverride); RWPCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG50, AccWidthUint16, 0x3F, (UINT16) (ddVar << 6)); RWPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REGBB, AccWidthUint8, 0xBF | S3_SAVE, BIT3 + BIT4 + BIT5); if ( IsGCPU () ) { GcpuRelatedSetting (pConfig); } else { c3PopupSetting (pConfig); } //[RPR 2.12] Mt C1E Enable MtC1eEnable (pConfig); RWPCI ((0xC1 << 16) + 0xBC, AccWidthUint8, 0x7f, 0x80); //if (pConfig->Sdb == 1 ) { //RWMEM (ACPI_MMIO_BASE + SERIAL_DEBUG_BASE + SB_SDB_REG00, AccWidthUint8, 0xFF, 0x05); //} if ( pConfig->XhciSwitch == 1 ) { ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x10, AccWidthUint8, &dbValue); indexValue = XHCI_REGISTER_BAR00; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x11, AccWidthUint8, &dbValue); indexValue = XHCI_REGISTER_BAR01; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x12, AccWidthUint8, &dbValue); indexValue = XHCI_REGISTER_BAR02; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x13, AccWidthUint8, &dbValue); indexValue = XHCI_REGISTER_BAR03; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x04, AccWidthUint8, &dbValue); indexValue = XHCI_REGISTER_04H; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x0C, AccWidthUint8, &dbValue); indexValue = XHCI_REGISTER_0CH; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x3C, AccWidthUint8, &dbValue); indexValue = XHCI_REGISTER_3CH; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x10, AccWidthUint8, &dbValue); indexValue = XHCI1_REGISTER_BAR00; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x11, AccWidthUint8, &dbValue); indexValue = XHCI1_REGISTER_BAR01; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x12, AccWidthUint8, &dbValue); indexValue = XHCI1_REGISTER_BAR02; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x13, AccWidthUint8, &dbValue); indexValue = XHCI1_REGISTER_BAR03; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x04, AccWidthUint8, &dbValue); indexValue = XHCI1_REGISTER_04H; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x0C, AccWidthUint8, &dbValue); indexValue = XHCI1_REGISTER_0CH; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x3C, AccWidthUint8, &dbValue); indexValue = XHCI1_REGISTER_3CH; WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue); WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue); } } /** * hpetInit - Program Southbridge HPET function * * * * @param[in] pConfig Southbridge configuration structure pointer. * @param[in] pStaticOptions Platform build configuration table. * */ VOID hpetInit ( IN AMDSBCFG* pConfig, IN BUILDPARAM *pStaticOptions ) { DESCRIPTION_HEADER* pHpetTable; UINT8 cimHpetTimer; UINT8 cimHpetMsiDis; cimHpetTimer = (UINT8) pConfig->HpetTimer; cimHpetMsiDis = (UINT8) pConfig->HpetMsiDis; #if SB_CIMx_PARAMETER == 0 cimHpetTimer = cimHpetTimerDefault; cimHpetMsiDis = cimHpetMsiDisDefault; #endif pHpetTable = NULL; if ( cimHpetTimer == TRUE ) { //Program the HPET BAR address RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50, AccWidthUint32 | S3_SAVE, 0xFFFFF800, pStaticOptions->HpetBase); //Enabling decoding of HPET MMIO //Enable HPET MSI support //Enable High Precision Event Timer (also called Multimedia Timer) interrupt if ( cimHpetMsiDis == FALSE ) { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50, AccWidthUint32 | S3_SAVE, 0xFFFFF800, BIT0 + BIT1 + BIT2 + BIT3 + BIT4); #ifdef SB_TIMER_TICK_INTERVAL_WA RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50, AccWidthUint32 | S3_SAVE, 0xFFFFF800, BIT0 + BIT1); #endif } else { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50, AccWidthUint32 | S3_SAVE, 0xFFFFF800, BIT0 + BIT1); } } else { if ( ! (pConfig->S3Resume) ) { pHpetTable = (DESCRIPTION_HEADER*) ACPI_LocateTable (Int32FromChar('T', 'E', 'P', 'H')); } if ( pHpetTable != NULL ) { pHpetTable->Signature = Int32FromChar('H', 'P', 'E', 'T'); } } } /** * c3PopupSetting - Program Southbridge C state function * * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID c3PopupSetting ( IN AMDSBCFG* pConfig ) { AMDSBCFG* Temp; UINT8 dbValue; Temp = pConfig; dbValue = getNumberOfCpuCores (); #define NON_SUPPORT_PREVIOUS_C3 TRUE #ifndef NON_SUPPORT_PREVIOUS_C3 if (dbValue > 1) { //PM 0x80[2]=1, For system with dual core CPU, set this bit to 1 to automatically clear BM_STS when the C3 state is being initiated. //PM 0x80[1]=1, For system with dual core CPU, set this bit to 1 and BM_STS will cause C3 to wakeup regardless of BM_RLD //PM 0x7E[6]=1, Enable pop-up for C3. For internal bus mastering or BmReq# from the NB, the SB will de-assert //LDTSTP# (pop-up) to allow DMA traffic, then assert LDTSTP# again after some idle time. RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint8 | S3_SAVE, ~(BIT1 + BIT2), (BIT1 + BIT2)); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7E, AccWidthUint8 | S3_SAVE, ~BIT6, BIT6); } //SB800 needs to changed for RD790 support //PM 0x80 [8] = 0 for system with RS780 //Note: RS690 north bridge has AllowLdtStop built for both display and PCIE traffic to wake up the HT link. //BmReq# needs to be ignored otherwise may cause LDTSTP# not to toggle. //PM_IO 0x80[3]=1, Ignore BM_STS_SET message from NB RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT9 + BIT8 + BIT7 + BIT4 + BIT3 + BIT2 + BIT1 + BIT0), 0x21F); //LdtStartTime = 10h for minimum LDTSTP# de-assertion duration of 16us in StutterMode. This is to guarantee that //the HT link has been safely reconnected before it can be disconnected again. If C3 pop-up is enabled, the 16us also //serves as the minimum idle time before LDTSTP# can be asserted again. This allows DMA to finish before the HT //link is disconnected. RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94 + 2, AccWidthUint8, 0, 0x10); //This setting provides 16us delay before the assertion of LDTSTOP# when C3 is entered. The //delay will allow USB DMA to go on in a continuous manner RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG98 + 1, AccWidthUint8, 0, 0x10); // Not in the RPR so far, it's hand writing from ASIC RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7C, AccWidthUint8 | S3_SAVE, 0, 0x85); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7C + 1, AccWidthUint8 | S3_SAVE, 0, 0x01); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7E + 1, AccWidthUint8 | S3_SAVE, ~(BIT7 + BIT5), BIT7 + BIT5); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG88 + 1, AccWidthUint8 | S3_SAVE, ~BIT4, BIT4); // RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94, AccWidthUint8, 0, 0x10); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG98 + 3, AccWidthUint8, 0, 0x10); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGB4 + 1, AccWidthUint8, 0, 0x0B); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG88, AccWidthUint8 | S3_SAVE, ~(BIT4 + BIT5), BIT4 + BIT5); #else //RPR2.4 C-State and VID/FID Change RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG88, AccWidthUint8 | S3_SAVE, ~(BIT5), BIT5); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT2), BIT2); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT1), BIT1); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7E, AccWidthUint8 | S3_SAVE, ~(BIT6), BIT6); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94, AccWidthUint8 | S3_SAVE, 0, 0x01); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG89, AccWidthUint8 | S3_SAVE, ~BIT4, BIT4); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG88, AccWidthUint8 | S3_SAVE, ~BIT4, BIT4); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG9B, AccWidthUint8 | S3_SAVE, ~(BIT6 + BIT5 + BIT4), BIT4); //RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT10), BIT10); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG9B, AccWidthUint8 | S3_SAVE, ~(BIT1 + BIT0), 0); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG96, AccWidthUint8 | S3_SAVE, 0, 0x10); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG99, AccWidthUint8 | S3_SAVE, 0, 0x10); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG8E, AccWidthUint8 | S3_SAVE, 0, 0x80); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG97, AccWidthUint8 | S3_SAVE, ~(BIT1 + BIT0), 0); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT4), BIT4); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT9), BIT9); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT7), 0); #endif } /** * GcpuRelatedSetting - Program GCPU C related function * * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID GcpuRelatedSetting ( IN AMDSBCFG* pConfig ) { UINT8 cimAcDcMsg; UINT8 cimTimerTickTrack; UINT8 cimClockInterruptTag; UINT8 cimOhciTrafficHanding; UINT8 cimEhciTrafficHanding; UINT8 cimFusionMsgCMultiCore; UINT8 cimFusionMsgCStage; UINT32 ddValue; cimAcDcMsg = (UINT8) pConfig->AcDcMsg; cimTimerTickTrack = (UINT8) pConfig->TimerTickTrack; cimClockInterruptTag = (UINT8) pConfig->ClockInterruptTag; cimOhciTrafficHanding = (UINT8) pConfig->OhciTrafficHanding; cimEhciTrafficHanding = (UINT8) pConfig->EhciTrafficHanding; cimFusionMsgCMultiCore = (UINT8) pConfig->FusionMsgCMultiCore; cimFusionMsgCStage = (UINT8) pConfig->FusionMsgCStage; #if SB_CIMx_PARAMETER == 0 cimAcDcMsg = cimAcDcMsgDefault; cimTimerTickTrack = cimTimerTickTrackDefault; cimClockInterruptTag = cimClockInterruptTagDefault; cimOhciTrafficHanding = cimOhciTrafficHandingDefault; cimEhciTrafficHanding = cimEhciTrafficHandingDefault; cimFusionMsgCMultiCore = cimFusionMsgCMultiCoreDefault; cimFusionMsgCStage = cimFusionMsgCStageDefault; #endif ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGA0, AccWidthUint32 | S3_SAVE, &ddValue); ddValue = ddValue & 0xC07F00A0; if ( cimAcDcMsg ) { ddValue = ddValue | BIT0; } if ( cimTimerTickTrack ) { ddValue = ddValue | BIT1; } if ( cimClockInterruptTag ) { ddValue = ddValue | BIT10; } if ( cimOhciTrafficHanding ) { ddValue = ddValue | BIT13; } if ( cimEhciTrafficHanding ) { ddValue = ddValue | BIT15; } if ( cimFusionMsgCMultiCore ) { ddValue = ddValue | BIT23; } if ( cimFusionMsgCMultiCore ) { ddValue = (ddValue | (BIT6 + BIT4 + BIT3 + BIT2)); } WriteMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGA0, AccWidthUint32 | S3_SAVE, &ddValue); } /** * MtC1eEnable - Program Mt C1E Enable Function * * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID MtC1eEnable ( IN AMDSBCFG* pConfig ) { if ( pConfig->MtC1eEnable ) { RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7A, AccWidthUint16 | S3_SAVE, ~ BIT15, BIT15); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7A, AccWidthUint16 | S3_SAVE, ~ (BIT3 + BIT2 + BIT1 + BIT0), 0x01); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~ BIT13, BIT13); RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~ BIT7, BIT7); } } #ifndef NO_EC_SUPPORT /** * validateImcFirmware - Validate IMC Firmware. * * * @param[in] pConfig Southbridge configuration structure pointer. * * @retval TRUE Pass * @retval FALSE Failed */ BOOLEAN validateImcFirmware ( IN AMDSBCFG* pConfig ) { UINT32 ImcSig; UINT32 ImcSigAddr; UINT32 ImcAddr; UINT32 CurAddr; UINT32 ImcBinSig0; UINT32 ImcBinSig1; UINT16 ImcBinSig2; UINT8 dbIMCChecksume; UINT8 dbIMC; ImcAddr = 0; // Software IMC enable ImcSigAddr = 0x80000; // start from 512k to 64M ImcSig = 0x0; // while ( ( ImcSig != 0x55aa55aa ) && ( ImcSigAddr <= 0x4000000 ) ) { CurAddr = 0xffffffff - ImcSigAddr + 0x20001; ReadMEM (CurAddr, AccWidthUint32, &ImcSig); ReadMEM ((CurAddr + 4), AccWidthUint32, &ImcAddr); ImcSigAddr <<= 1; } dbIMCChecksume = 0xff; if ( ImcSig == 0x55aa55aa ) { // "_AMD_IMC_C" at offset 0x2000 of the binary ReadMEM ((ImcAddr + 0x2000), AccWidthUint32, &ImcBinSig0); ReadMEM ((ImcAddr + 0x2004), AccWidthUint32, &ImcBinSig1); ReadMEM ((ImcAddr + 0x2008), AccWidthUint16, &ImcBinSig2); if ((ImcBinSig0 == 0x444D415F) && (ImcBinSig1 == 0x434D495F) && (ImcBinSig2 == 0x435F) ) { dbIMCChecksume = 0; for ( CurAddr = ImcAddr; CurAddr < ImcAddr + 0x10000; CurAddr++ ) { ReadMEM (CurAddr, AccWidthUint8, &dbIMC); dbIMCChecksume = dbIMCChecksume + dbIMC; } } } if ( dbIMCChecksume ) { return FALSE; } else { return TRUE; } } /** * softwareToggleImcStrapping - Software Toggle IMC Firmware Strapping. * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID softwareToggleImcStrapping ( IN AMDSBCFG* pConfig ) { UINT8 dbValue; UINT8 dbPortStatus; UINT32 abValue; UINT32 abValue1; getChipSysMode (&dbPortStatus); ReadPMIO (SB_PMIOA_REGBF, AccWidthUint8, &dbValue); //if ( (dbValue & (BIT6 + BIT7)) != 0xC0 ) { // PwrGoodOut =1, PwrGoodEnB=1 //The strapStatus register is not mapped into StrapOveride not in the same bit position. The following is difference. //StrapStatus StrapOverride // bit4 bit17 // bit6 bit12 // bit12 bit15 // bit15 bit16 // bit16 bit18 ReadMEM ((ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG80), AccWidthUint32, &abValue); abValue1 = abValue & (~ (BIT4 + BIT6 + BIT17 + BIT12 + BIT15 + BIT16 + BIT18)); if (abValue & BIT4) { abValue1 = (abValue1 & ~BIT4) | BIT17; } if (abValue & BIT6) { abValue1 = (abValue1 & ~BIT6) | BIT12; } if (abValue & BIT12) { abValue1 = (abValue1 & ~BIT12) | BIT15; } if (abValue & BIT15) { abValue1 = (abValue1 & ~BIT15) | BIT16; } if (abValue & BIT16) { abValue1 = (abValue1 & ~BIT16) | BIT18; } abValue1 |= BIT31; // Overwrite enable if ((dbPortStatus & ChipSysEcEnable) == 0) { abValue1 |= BIT2; // bit2- EcEnableStrap } else { abValue1 &= ~BIT2; // bit2=0 EcEnableStrap } WriteMEM ((ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG84), AccWidthUint32, &abValue1); dbValue |= (BIT6 + BIT7); // PwrGoodOut =1, PwrGoodEnB=1 WritePMIO (SB_PMIOA_REGBF, AccWidthUint8, &dbValue); dbValue = 06; WriteIO (0xcf9, AccWidthUint8, &dbValue); SbStall (0xffffffff); } #endif /** * A13ResumeResetTwoSecondRtcWakeup - A13 Resume Reset 2 Seconds * RTC Wakeup * * * * @retval Nothing * */ VOID A13ResumeResetTwoSecondRtcWakeup ( void ) { if ( IsSbA13Plus () ) { //Configure RTC clocks and power failure to "off" ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG57) |= 0x03; ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG56) |= 0x80; ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG56) &= 0x7f; ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG5B) = 0x04; //set 2 seconds RTC wake up ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x00) = 0; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x01) = 2; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x02) = 0; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x03) = 0; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x04) = 0; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x05) = 0; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x0d) = 0x80; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x0b) |= 0x22; //Do ResumeReset by SB A13 ECO WriteIo8 (0x80, 0xef); ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD6) |= 0x40; do { WriteIo8 (0x80, 0xfe); } while ( ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD6) ); } } /** * StressResetModeLate - Stress Reset Mode * * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID StressResetModeLate ( IN AMDSBCFG* pConfig ) { switch ( pConfig->StressResetMode ) { case 1: WriteIo8 ((UINT16) (0x64), 0xFE); break; case 2: WriteIo8 ((UINT16) (0xCF9), 0x06); break; case 3: WriteIo8 ((UINT16) (0xCF9), 0x0E); break; case 4: A13ResumeResetTwoSecondRtcWakeup (); return; default: return; } while (pConfig->StressResetMode) { } } /** * CheckEfuse - Check Efuse * * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID CheckEfuse ( IN AMDSBCFG* pConfig ) { UINT8 EfuseIndex; UINT8 EfuseFailureCount; pConfig->EfuseRemainder = 0; pConfig->EfuseSum = 0; RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC8, AccWidthUint8, ~BIT5, BIT5); for ( EfuseIndex = 0; EfuseIndex < 0x20; EfuseIndex ++ ) { pConfig->EfuseByte [EfuseIndex] = getEfuseByte (EfuseIndex); } RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC8, AccWidthUint8, ~BIT5, 0); for ( EfuseIndex = 0x10; EfuseIndex < 0x20; EfuseIndex ++ ) { pConfig->EfuseSum = pConfig->EfuseSum + pConfig->EfuseByte [EfuseIndex]; pConfig->EfuseRemainder = (((pConfig->EfuseRemainder) << 8) + pConfig->EfuseByte [0x2f - EfuseIndex]) % 0xc1; } pConfig->EfuseSum = (UINT8) (0x100 - pConfig->EfuseSum); if (!(( pConfig->EfuseByte [0x0e] == 0 ) && ( pConfig->EfuseByte [0x0f] == 0 ))) { if (( pConfig->EfuseRemainder != pConfig->EfuseByte [0x0e] ) || ( pConfig->EfuseSum != pConfig->EfuseByte [0x0f])) { EfuseFailureCount = ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_RAM_BASE + 0x0D); if ( EfuseFailureCount == 0xff ) { EfuseFailureCount = 0; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_RAM_BASE + 0x0D) = 0; } if ( EfuseFailureCount < 2 ) { EfuseFailureCount++; ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_RAM_BASE + 0x0D) = EfuseFailureCount; A13ResumeResetTwoSecondRtcWakeup (); } } } } /** * ValidateFchVariant - Validate FCH Variant * * * * @param[in] pConfig Southbridge configuration structure pointer. * */ VOID ValidateFchVariant ( IN AMDSBCFG* pConfig ) { UINT8 XhciEfuse; UINT8 PcieEfuse; UINT8 FchVariantEfuse; switch ( pConfig->FchVariant ) { case FCH_M3T: //Disable Devices for M3T pConfig->GecConfig = 1; pConfig->hwm.hwmEnable = 0; pConfig->sdConfig = 0; pConfig->IrConfig = 0; // pConfig->USBMODE.UsbMode.Ohci3 = 0; // pConfig->USBMODE.UsbMode.Ehci3 = 0; break; default: break; } // add Efuse checking for Xhci enable/disable XhciEfuse = XHCI_EFUSE_LOCATION; getEfuseStatus (&XhciEfuse); if ((XhciEfuse & (BIT0 + BIT1)) == (BIT0 + BIT1)) { pConfig->XhciSwitch = 0; } // add Efuse checking for PCIE Gen2 enable PcieEfuse = PCIE_FORCE_GEN1_EFUSE_LOCATION; getEfuseStatus (&PcieEfuse); if ( PcieEfuse & BIT0 ) { pConfig->NbSbGen2 = 0; pConfig->GppGen2 = 0; } FchVariantEfuse = FCH_Variant_EFUSE_LOCATION; getEfuseStatus (&FchVariantEfuse); if ((FchVariantEfuse == 0x07) || (FchVariantEfuse == 0x08)) { pConfig->NbSbGen2 = 0; } } /** * Is GCPU? * * * @retval TRUE or FALSE * */ BOOLEAN IsGCPU ( OUT VOID ) { UINT8 ExtendedFamily; UINT8 ExtendedModel; UINT8 BaseFamily; UINT8 BaseModel; UINT8 Stepping; UINT8 Family; UINT8 Model; SB_CPUID_DATA CpuId; CpuidRead (0x01, &CpuId); ExtendedFamily = (UINT8) ((CpuId.EAX_Reg >> 20) & 0xff); ExtendedModel = (UINT8) ((CpuId.EAX_Reg >> 16) & 0xf); BaseFamily = (UINT8) ((CpuId.EAX_Reg >> 8) & 0xf); BaseModel = (UINT8) ((CpuId.EAX_Reg >> 4) & 0xf); Stepping = (UINT8) ((CpuId.EAX_Reg >> 0) & 0xf); Family = BaseFamily + ExtendedFamily; Model = (ExtendedModel >> 4) + BaseModel; if ( (Family == 0x12) || \ (Family == 0x14) || \ (Family == 0x16) || \ ((Family == 0x15) && ((Model == 0x10) || (Model == 0x30))) ) { return TRUE; } else { return FALSE; } } /** * Is UMI One Lane GEN1 Mode? * * * @retval TRUE or FALSE * */ BOOLEAN IsUmiOneLaneGen1Mode ( OUT VOID ) { UINT32 abValue; abValue = readAlink ((UINT32) (SB_AX_CFG_REG68)); abValue >>= 16; if (((abValue & 0x0f) == 1) && ((abValue & 0x03f0) == 0x0010)) { return (TRUE); } else { return (FALSE); } } /** * Record SMI Status * * * @retval Nothing * */ VOID RecordSmiStatus ( OUT VOID ) { UINTN i; UINT8 SwSmiValue; ACPIMMIO8 (0xfed80320) |= 0x01; for ( i = 0; i < 20; i++ ) { ACPIMMIO8 (0xfed10020 + i) = ACPIMMIO8 (0xfed80280 + i); } SwSmiValue = ReadIo8 (0xb0); ACPIMMIO8 (0xfed10040) = SwSmiValue; }