/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #include #include "sch.h" #define DEBUG_SMI #define APM_CNT 0xb2 #define APM_STS 0xb3 #define ACPI_DISABLE 0x1e #define ACPI_ENABLE 0xe1 /* I945 */ #define SMRAM 0x9d #define D_OPEN (1 << 6) #define D_CLS (1 << 5) #define D_LCK (1 << 4) #define G_SMRANE (1 << 3) #define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0)) /* ICH7 */ #define PM1_STS 0x00 #define PM1_EN 0x02 #define PM1_CNT 0x04 #define PM1_TMR 0x08 #define PROC_CNT 0x10 #define LV2 0x14 #define LV3 0x15 #define LV4 0x16 #define PM2_CNT 0x20 // mobile only #define GPE0_STS 0x28 #define GPE0_EN 0x2c #define SMI_EN 0x30 #define EL_SMI_EN (1 << 25) // Intel Quick Resume Technology #define INTEL_USB2_EN (1 << 18) // Intel-Specific USB2 SMI logic #define LEGACY_USB2_EN (1 << 17) // Legacy USB2 SMI logic #define PERIODIC_EN (1 << 14) // SMI on PERIODIC_STS in SMI_STS #define TCO_EN (1 << 13) // Enable TCO Logic (BIOSWE et al) #define MCSMI_EN (1 << 11) // Trap microcontroller range access #define BIOS_RLS (1 << 7) // asserts SCI on bit set #define SWSMI_TMR_EN (1 << 6) // start software smi timer on bit set #define APMC_EN (1 << 5) // Writes to APM_CNT cause SMI# #define SLP_SMI_EN (1 << 4) // Write to SLP_EN in PM1_CNT asserts SMI# #define LEGACY_USB_EN (1 << 3) // Legacy USB circuit SMI logic #define BIOS_EN (1 << 2) // Assert SMI# on setting GBL_RLS bit #define EOS (1 << 1) // End of SMI (deassert SMI#) #define GBL_SMI_EN (1 << 0) // SMI# generation at all? #define SMI_STS 0x34 #define ALT_GP_SMI_EN 0x38 #define ALT_GP_SMI_STS 0x3a #define GPE_CNTL 0x42 #define DEVACT_STS 0x44 #define SS_CNT 0x50 #define C3_RES 0x54 //#include "i82801gx_nvs.h" /* While we read PMBASE dynamically in case it changed, let's * initialize it with a sane value */ static u16 pmbase = DEFAULT_PMBASE; // disabled because SMM doesn't actually work yet #if 0 /** * @brief read and clear PM1_STS * @return PM1_STS register */ static u16 reset_pm1_status(void) { u16 reg16; reg16 = inw(pmbase + PM1_STS); /* set status bits are cleared by writing 1 to them */ outw(reg16, pmbase + PM1_STS); return reg16; } static void dump_pm1_status(u16 pm1_sts) { printk(BIOS_DEBUG, "PM1_STS: "); if (pm1_sts & (1 << 15)) printk(BIOS_DEBUG, "WAK "); if (pm1_sts & (1 << 14)) printk(BIOS_DEBUG, "PCIEXPWAK "); if (pm1_sts & (1 << 11)) printk(BIOS_DEBUG, "PRBTNOR "); if (pm1_sts & (1 << 10)) printk(BIOS_DEBUG, "RTC "); if (pm1_sts & (1 << 8)) printk(BIOS_DEBUG, "PWRBTN "); if (pm1_sts & (1 << 5)) printk(BIOS_DEBUG, "GBL "); if (pm1_sts & (1 << 4)) printk(BIOS_DEBUG, "BM "); if (pm1_sts & (1 << 0)) printk(BIOS_DEBUG, "TMROF "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear SMI_STS * @return SMI_STS register */ static u32 reset_smi_status(void) { u32 reg32; reg32 = inl(pmbase + SMI_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + SMI_STS); return reg32; } static void dump_smi_status(u32 smi_sts) { printk(BIOS_DEBUG, "SMI_STS: "); if (smi_sts & (1 << 26)) printk(BIOS_DEBUG, "SPI "); if (smi_sts & (1 << 25)) printk(BIOS_DEBUG, "EL_SMI "); if (smi_sts & (1 << 21)) printk(BIOS_DEBUG, "MONITOR "); if (smi_sts & (1 << 20)) printk(BIOS_DEBUG, "PCI_EXP_SMI "); if (smi_sts & (1 << 18)) printk(BIOS_DEBUG, "INTEL_USB2 "); if (smi_sts & (1 << 17)) printk(BIOS_DEBUG, "LEGACY_USB2 "); if (smi_sts & (1 << 16)) printk(BIOS_DEBUG, "SMBUS_SMI "); if (smi_sts & (1 << 15)) printk(BIOS_DEBUG, "SERIRQ_SMI "); if (smi_sts & (1 << 14)) printk(BIOS_DEBUG, "PERIODIC "); if (smi_sts & (1 << 13)) printk(BIOS_DEBUG, "TCO "); if (smi_sts & (1 << 12)) printk(BIOS_DEBUG, "DEVMON "); if (smi_sts & (1 << 11)) printk(BIOS_DEBUG, "MCSMI "); if (smi_sts & (1 << 10)) printk(BIOS_DEBUG, "GPI "); if (smi_sts & (1 << 9)) printk(BIOS_DEBUG, "GPE0 "); if (smi_sts & (1 << 8)) printk(BIOS_DEBUG, "PM1 "); if (smi_sts & (1 << 6)) printk(BIOS_DEBUG, "SWSMI_TMR "); if (smi_sts & (1 << 5)) printk(BIOS_DEBUG, "APM "); if (smi_sts & (1 << 4)) printk(BIOS_DEBUG, "SLP_SMI "); if (smi_sts & (1 << 3)) printk(BIOS_DEBUG, "LEGACY_USB "); if (smi_sts & (1 << 2)) printk(BIOS_DEBUG, "BIOS "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear GPE0_STS * @return GPE0_STS register */ static u32 reset_gpe0_status(void) { u32 reg32; reg32 = inl(pmbase + GPE0_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + GPE0_STS); return reg32; } static void dump_gpe0_status(u32 gpe0_sts) { int i; printk(BIOS_DEBUG, "GPE0_STS: "); for (i=31; i<= 16; i--) { if (gpe0_sts & (1 << i)) printk(BIOS_DEBUG, "GPIO%d ", (i-16)); } if (gpe0_sts & (1 << 14)) printk(BIOS_DEBUG, "USB4 "); if (gpe0_sts & (1 << 13)) printk(BIOS_DEBUG, "PME_B0 "); if (gpe0_sts & (1 << 12)) printk(BIOS_DEBUG, "USB3 "); if (gpe0_sts & (1 << 11)) printk(BIOS_DEBUG, "PME "); if (gpe0_sts & (1 << 10)) printk(BIOS_DEBUG, "EL_SCI/BATLOW "); if (gpe0_sts & (1 << 9)) printk(BIOS_DEBUG, "PCI_EXP "); if (gpe0_sts & (1 << 8)) printk(BIOS_DEBUG, "RI "); if (gpe0_sts & (1 << 7)) printk(BIOS_DEBUG, "SMB_WAK "); if (gpe0_sts & (1 << 6)) printk(BIOS_DEBUG, "TCO_SCI "); if (gpe0_sts & (1 << 5)) printk(BIOS_DEBUG, "AC97 "); if (gpe0_sts & (1 << 4)) printk(BIOS_DEBUG, "USB2 "); if (gpe0_sts & (1 << 3)) printk(BIOS_DEBUG, "USB1 "); if (gpe0_sts & (1 << 2)) printk(BIOS_DEBUG, "HOT_PLUG "); if (gpe0_sts & (1 << 0)) printk(BIOS_DEBUG, "THRM "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear TCOx_STS * @return TCOx_STS registers */ static u32 reset_tco_status(void) { u32 tcobase = pmbase + 0x60; u32 reg32; reg32 = inl(tcobase + 0x04); /* set status bits are cleared by writing 1 to them */ outl(reg32 & ~(1<<18), tcobase + 0x04); // Don't clear BOOT_STS before SECOND_TO_STS if (reg32 & (1 << 18)) outl(reg32 & (1<<18), tcobase + 0x04); // clear BOOT_STS return reg32; } static void dump_tco_status(u32 tco_sts) { printk(BIOS_DEBUG, "TCO_STS: "); if (tco_sts & (1 << 20)) printk(BIOS_DEBUG, "SMLINK_SLV "); if (tco_sts & (1 << 18)) printk(BIOS_DEBUG, "BOOT "); if (tco_sts & (1 << 17)) printk(BIOS_DEBUG, "SECOND_TO "); if (tco_sts & (1 << 16)) printk(BIOS_DEBUG, "INTRD_DET "); if (tco_sts & (1 << 12)) printk(BIOS_DEBUG, "DMISERR "); if (tco_sts & (1 << 10)) printk(BIOS_DEBUG, "DMISMI "); if (tco_sts & (1 << 9)) printk(BIOS_DEBUG, "DMISCI "); if (tco_sts & (1 << 8)) printk(BIOS_DEBUG, "BIOSWR "); if (tco_sts & (1 << 7)) printk(BIOS_DEBUG, "NEWCENTURY "); if (tco_sts & (1 << 3)) printk(BIOS_DEBUG, "TIMEOUT "); if (tco_sts & (1 << 2)) printk(BIOS_DEBUG, "TCO_INT "); if (tco_sts & (1 << 1)) printk(BIOS_DEBUG, "SW_TCO "); if (tco_sts & (1 << 0)) printk(BIOS_DEBUG, "NMI2SMI "); printk(BIOS_DEBUG, "\n"); } #endif /* We are using PCIe accesses for now * 1. the chipset can do it * 2. we don't need to worry about how we leave 0xcf8/0xcfc behind */ //#include "../../../northbridge/intel/i945/pcie_config.c" int southbridge_io_trap_handler(int smif) { //global_nvs_t *gnvs = (global_nvs_t *)0xc00; switch (smif) { case 0x32: printk(BIOS_DEBUG, "OS Init\n"); //gnvs->smif = 0; break; default: /* Not handled */ return 0; } /* On success, the IO Trap Handler returns 0 * On failure, the IO Trap Handler returns a value != 0 * * For now, we force the return value to 0 and log all traps to * see what's going on. */ //gnvs->smif = 0; return 1; /* IO trap handled */ } /** * @brief Set the EOS bit */ void southbridge_smi_set_eos(void) { u8 reg8; reg8 = inb(pmbase + SMI_EN); reg8 |= EOS; outb(reg8, pmbase + SMI_EN); } /** * @brief Interrupt handler for SMI# * * @param smm_revision revision of the smm state save map */ void southbridge_smi_handler(unsigned int node, smm_state_save_area_t *state_save) { // FIXME: the necessary magic isn't available yet. the code // below is a partially adapted ICH7 version of the handler #if 0 u8 reg8; u16 pmctrl; u16 pm1_sts; u32 smi_sts, gpe0_sts, tco_sts; pmbase = pcie_read_config16(PCI_DEV(0, 0x1f, 0), 0x48) & 0xfffc; printk(BIOS_SPEW, "SMI#: pmbase = 0x%04x\n", pmbase); /* We need to clear the SMI status registers, or we won't see what's * happening in the following calls. */ smi_sts = reset_smi_status(); dump_smi_status(smi_sts); if (smi_sts & (1 << 21)) { // MONITOR global_nvs_t *gnvs = (global_nvs_t *)0xc00; u32 reg32; reg32 = RCBA32(0x1e00); TRSR - Trap Status Register //#if 0 /* Comment in for some useful debug */ for (i=0; i<4; i++) { if (reg32 & (1 << i)) { printk(BIOS_DEBUG, " io trap #%d\n", i); } } //#endif RCBA32(0x1e00) = reg32; TRSR reg32 = RCBA32(0x1e10); if ((reg32 & 0xfffc) != 0x808) { printk(BIOS_DEBUG, " trapped io address = 0x%x\n", reg32 & 0xfffc); printk(BIOS_DEBUG, " AHBE = %x\n", (reg32 >> 16) & 0xf); printk(BIOS_DEBUG, " read/write: %s\n", (reg32 & (1 << 24)) ? "read" : "write"); } if (!(reg32 & (1 << 24))) { /* Write Cycle */ reg32 = RCBA32(0x1e18); printk(BIOS_DEBUG, " iotrap written data = 0x%08x\n", reg32); } if (gnvs->smif) io_trap_handler(gnvs->smif); // call function smif } if (smi_sts & (1 << 13)) { // TCO tco_sts = reset_tco_status(); dump_tco_status(tco_sts); if (tco_sts & (1 << 8)) { // BIOSWR u8 bios_cntl; bios_cntl = pcie_read_config16(PCI_DEV(0, 0x1f, 0), 0xdc); if (bios_cntl & 1) { /* BWE is RW, so the SMI was caused by a * write to BWE, not by a write to the BIOS */ /* This is the place where we notice someone * is trying to tinker with the BIOS. We are * trying to be nice and just ignore it. A more * resolute answer would be to power down the * box. */ printk(BIOS_DEBUG, "Switching back to RO\n"); pcie_write_config32(PCI_DEV(0, 0x1f, 0), 0xdc, (bios_cntl & ~1)); } /* No else for now? */ } } if (smi_sts & (1 << 8)) { // PM1 pm1_sts = reset_pm1_status(); dump_pm1_status(pm1_sts); } if (smi_sts & (1 << 9)) { // GPE0 gpe0_sts = reset_gpe0_status(); dump_gpe0_status(gpe0_sts); } if (smi_sts & (1 << 5)) { // APM /* Emulate B2 register as the FADT / Linux expects it */ reg8 = inb(0xb2); switch (reg8) { case ACPI_DISABLE: pmctrl = inw(pmbase + 0x04); pmctrl |= (1 << 0); outw(pmctrl, pmbase + 0x04); printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n"); break; case ACPI_ENABLE: pmctrl = inw(pmbase + 0x04); pmctrl &= ~(1 << 0); outw(pmctrl, pmbase + 0x04); printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n"); break; } } if (smi_sts & (1 << 4)) { // SLP_SMI u32 reg32; /* First, disable further SMIs */ reg8 = inb(pmbase + SMI_EN); reg8 &= ~SLP_SMI_EN; outb(reg8, pmbase + SMI_EN); /* Next, do the deed, we should change * power on after power loss bits here * if we're going to S5 */ /* Write back to the SLP register to cause the * originally intended event again. We need to set BIT13 * (SLP_EN) though to make the sleep happen. */ reg32 = inl(pmbase + 0x04); printk(BIOS_DEBUG, "SMI#: SLP = 0x%08x\n", reg32); printk(BIOS_DEBUG, "SMI#: Powering off.\n"); outl(reg32 | (1 << 13), pmbase + 0x04); } #endif }