#include #include #include #include #include /* control registers - Moto names */ #define RTC_REG_A 10 #define RTC_REG_B 11 #define RTC_REG_C 12 #define RTC_REG_D 13 /********************************************************************** * register details **********************************************************************/ #define RTC_FREQ_SELECT RTC_REG_A /* update-in-progress - set to "1" 244 microsecs before RTC goes off the bus, * reset after update (may take 1.984ms @ 32768Hz RefClock) is complete, * totalling to a max high interval of 2.228 ms. */ # define RTC_UIP 0x80 # define RTC_DIV_CTL 0x70 /* divider control: refclock values 4.194 / 1.049 MHz / 32.768 kHz */ # define RTC_REF_CLCK_4MHZ 0x00 # define RTC_REF_CLCK_1MHZ 0x10 # define RTC_REF_CLCK_32KHZ 0x20 /* 2 values for divider stage reset, others for "testing purposes only" */ # define RTC_DIV_RESET1 0x60 # define RTC_DIV_RESET2 0x70 /* Periodic intr. / Square wave rate select. 0=none, 1=32.8kHz,... 15=2Hz */ # define RTC_RATE_SELECT 0x0F # define RTC_RATE_NONE 0x00 # define RTC_RATE_32786HZ 0x01 # define RTC_RATE_16384HZ 0x02 # define RTC_RATE_8192HZ 0x03 # define RTC_RATE_4096HZ 0x04 # define RTC_RATE_2048HZ 0x05 # define RTC_RATE_1024HZ 0x06 # define RTC_RATE_512HZ 0x07 # define RTC_RATE_256HZ 0x08 # define RTC_RATE_128HZ 0x09 # define RTC_RATE_64HZ 0x0a # define RTC_RATE_32HZ 0x0b # define RTC_RATE_16HZ 0x0c # define RTC_RATE_8HZ 0x0d # define RTC_RATE_4HZ 0x0e # define RTC_RATE_2HZ 0x0f /**********************************************************************/ #define RTC_CONTROL RTC_REG_B # define RTC_SET 0x80 /* disable updates for clock setting */ # define RTC_PIE 0x40 /* periodic interrupt enable */ # define RTC_AIE 0x20 /* alarm interrupt enable */ # define RTC_UIE 0x10 /* update-finished interrupt enable */ # define RTC_SQWE 0x08 /* enable square-wave output */ # define RTC_DM_BINARY 0x04 /* all time/date values are BCD if clear */ # define RTC_24H 0x02 /* 24 hour mode - else hours bit 7 means pm */ # define RTC_DST_EN 0x01 /* auto switch DST - works f. USA only */ /**********************************************************************/ #define RTC_INTR_FLAGS RTC_REG_C /* caution - cleared by read */ # define RTC_IRQF 0x80 /* any of the following 3 is active */ # define RTC_PF 0x40 # define RTC_AF 0x20 # define RTC_UF 0x10 /**********************************************************************/ #define RTC_VALID RTC_REG_D # define RTC_VRT 0x80 /* valid RAM and time */ /**********************************************************************/ static inline unsigned char cmos_read(unsigned char addr) { int offs = 0; if (addr >= 128) { offs = 2; addr -= 128; } outb(addr, RTC_BASE_PORT + offs + 0); return inb(RTC_BASE_PORT + offs + 1); } static inline void cmos_write(unsigned char val, unsigned char addr) { int offs = 0; if (addr >= 128) { offs = 2; addr -= 128; } outb(addr, RTC_BASE_PORT + offs + 0); outb(val, RTC_BASE_PORT + offs + 1); } static int rtc_checksum_valid(int range_start, int range_end, int cks_loc) { int i; unsigned sum, old_sum; sum = 0; for(i = range_start; i <= range_end; i++) { sum += cmos_read(i); } sum = (~sum)&0x0ffff; old_sum = ((cmos_read(cks_loc)<<8) | cmos_read(cks_loc+1))&0x0ffff; return sum == old_sum; } static void rtc_set_checksum(int range_start, int range_end, int cks_loc) { int i; unsigned sum; sum = 0; for(i = range_start; i <= range_end; i++) { sum += cmos_read(i); } sum = ~(sum & 0x0ffff); cmos_write(((sum >> 8) & 0x0ff), cks_loc); cmos_write(((sum >> 0) & 0x0ff), cks_loc+1); } #define RTC_CONTROL_DEFAULT (RTC_24H) #define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ) #if 0 /* alpha setup */ #undef RTC_CONTROL_DEFAULT #undef RTC_FREQ_SELECT_DEFAULT #define RTC_CONTROL_DEFAULT (RTC_SQWE | RTC_24H) #define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ) #endif void rtc_init(int invalid) { unsigned char x; int cmos_invalid, checksum_invalid; printk_debug("RTC Init\n"); #if HAVE_OPTION_TABLE /* See if there has been a CMOS power problem. */ x = cmos_read(RTC_VALID); cmos_invalid = !(x & RTC_VRT); /* See if there is a CMOS checksum error */ checksum_invalid = !rtc_checksum_valid(PC_CKS_RANGE_START, PC_CKS_RANGE_END,PC_CKS_LOC); if (invalid || cmos_invalid || checksum_invalid) { printk_warning("RTC:%s%s%s zeroing cmos\n", invalid?" Clear requested":"", cmos_invalid?" Power Problem":"", checksum_invalid?" Checksum invalid":""); #if 0 cmos_write(0, 0x01); cmos_write(0, 0x03); cmos_write(0, 0x05); for(i = 10; i < 48; i++) { cmos_write(0, i); } if (cmos_invalid) { /* Now setup a default date of Sat 1 January 2000 */ cmos_write(0, 0x00); /* seconds */ cmos_write(0, 0x02); /* minutes */ cmos_write(1, 0x04); /* hours */ cmos_write(7, 0x06); /* day of week */ cmos_write(1, 0x07); /* day of month */ cmos_write(1, 0x08); /* month */ cmos_write(0, 0x09); /* year */ } #endif } #endif /* Setup the real time clock */ cmos_write(RTC_CONTROL_DEFAULT, RTC_CONTROL); /* Setup the frequency it operates at */ cmos_write(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT); #if HAVE_OPTION_TABLE /* See if there is a LB CMOS checksum error */ checksum_invalid = !rtc_checksum_valid(LB_CKS_RANGE_START, LB_CKS_RANGE_END,LB_CKS_LOC); if(checksum_invalid) printk_debug("Invalid CMOS LB checksum\n"); /* Make certain we have a valid checksum */ rtc_set_checksum(PC_CKS_RANGE_START, PC_CKS_RANGE_END,PC_CKS_LOC); #endif /* Clear any pending interrupts */ (void) cmos_read(RTC_INTR_FLAGS); } #if USE_OPTION_TABLE == 1 /* * Functions to save/return values stored in the 256byte cmos. * * To be able to use space maximally we want to only store as many bits as * needed, and not be limited by byte boundaries. We therefor clamp the size * down to an unsigned int. Since the values that we are allowed to touch are * either an enum or a hexadecimal value, this size should suit most purposes. * * These two functions are doing bitshifting, and are therefor a bit * nontrivial. To understand these operations, first read the ones outside the * loop. The ones inside the loop are just adding i to the same calculations, * with the shift twice inverted, as negative shifts aren't nice. */ static unsigned int get_cmos_value(int bit, int length) { unsigned int tmp; int i; /* negative left shift --> right shift */ tmp = cmos_read(bit / 8) >> (bit % 8); for (i = 1; (8 * i) < ((bit % 8) + length); i++) tmp |= cmos_read((bit / 8) + i) << ((8 * i) - (bit % 8)); /* 1 << 32 - 1 isn't cool inside an int */ if (length != 32) tmp &= (1 << length) - 1; return tmp; } static void set_cmos_value(int bit, int length, unsigned int value) { unsigned int mask; unsigned char cmos; int i; /* 1 << 32 - 1 isn't cool inside an int */ if (length != 32) mask = (1 << length) - 1; else mask = -1; value &= mask; /* negative right shifts --> left shifts */ cmos = cmos_read(bit / 8); cmos &= ~(mask << (bit % 8)); cmos |= value << (bit % 8); cmos_write(cmos, bit / 8); for (i = 1; (8 * i) < ((bit % 8) + length); i++) { cmos = cmos_read((bit / 8) + i); cmos &= ~(mask >> ((8 * i) - (bit % 8))); cmos |= value >> ((8 * i) - (bit % 8)); cmos_write(cmos, (bit / 8) + i); } } int get_option(char *name, unsigned int *value) { extern struct cmos_option_table option_table; struct cmos_option_table *ct; struct cmos_entries *ce; size_t namelen; int found=0; /* Figure out how long name is */ namelen = strnlen(name, CMOS_MAX_NAME_LENGTH); /* find the requested entry record */ ct=&option_table; ce=(struct cmos_entries*)((unsigned char *)ct + ct->header_length); for(;ce->tag==LB_TAG_OPTION; ce=(struct cmos_entries*)((unsigned char *)ce + ce->size)) { if (memcmp(ce->name, name, namelen) == 0) { found=1; break; } } if(!found) { printk_err("ERROR: No cmos option '%s'\n", name); return(-2); } if (ce->length > 32) { printk_err("ERROR: cmos option '%s' is too large.\n", name); return -3; } *value = get_cmos_value(ce->bit, ce->length); if(!rtc_checksum_valid(LB_CKS_RANGE_START, LB_CKS_RANGE_END,LB_CKS_LOC)) return(-4); return(0); } int set_option(char *name, unsigned int value) { extern struct cmos_option_table option_table; struct cmos_option_table *ct; struct cmos_entries *ce; size_t namelen; int found = 0; /* Figure out how long name is */ namelen = strnlen(name, CMOS_MAX_NAME_LENGTH); /* find the requested entry record */ ct = &option_table; ce = (struct cmos_entries*) ((unsigned char *) ct + ct->header_length); for(;ce->tag==LB_TAG_OPTION; ce=(struct cmos_entries*)((unsigned char *)ce + ce->size)) { if (memcmp(ce->name, name, namelen) == 0) { found=1; break; } } if (!found) { printk_err("ERROR: Unknown cmos option '%s'\n", name); return(-2); } if (ce->length > 32) { printk_err("ERROR: cmos option '%s' is too large.\n", name); return -3; } set_cmos_value(ce->bit, ce->length, value); /* We should not update the checksum here. */ return 0; } #else int get_option(char *name, unsigned int *value) { return -2; } int set_option(char *name, unsigned int value) { return -2; } #endif /* USE_OPTION_TABLE */