#include #include #include #include #include #define CMOS_READ(addr) ({ \ outb((addr),RTC_PORT(0)); \ inb(RTC_PORT(1)); \ }) #define CMOS_WRITE(val, addr) ({ \ outb((addr),RTC_PORT(0)); \ outb((val),RTC_PORT(1)); \ }) /* control registers - Moto names */ #define RTC_REG_A 10 #define RTC_REG_B 11 #define RTC_REG_C 12 #define RTC_REG_D 13 /********************************************************************** * register details **********************************************************************/ #define RTC_FREQ_SELECT RTC_REG_A /* update-in-progress - set to "1" 244 microsecs before RTC goes off the bus, * reset after update (may take 1.984ms @ 32768Hz RefClock) is complete, * totalling to a max high interval of 2.228 ms. */ # define RTC_UIP 0x80 # define RTC_DIV_CTL 0x70 /* divider control: refclock values 4.194 / 1.049 MHz / 32.768 kHz */ # define RTC_REF_CLCK_4MHZ 0x00 # define RTC_REF_CLCK_1MHZ 0x10 # define RTC_REF_CLCK_32KHZ 0x20 /* 2 values for divider stage reset, others for "testing purposes only" */ # define RTC_DIV_RESET1 0x60 # define RTC_DIV_RESET2 0x70 /* Periodic intr. / Square wave rate select. 0=none, 1=32.8kHz,... 15=2Hz */ # define RTC_RATE_SELECT 0x0F # define RTC_RATE_NONE 0x00 # define RTC_RATE_32786HZ 0x01 # define RTC_RATE_16384HZ 0x02 # define RTC_RATE_8192HZ 0x03 # define RTC_RATE_4096HZ 0x04 # define RTC_RATE_2048HZ 0x05 # define RTC_RATE_1024HZ 0x06 # define RTC_RATE_512HZ 0x07 # define RTC_RATE_256HZ 0x08 # define RTC_RATE_128HZ 0x09 # define RTC_RATE_64HZ 0x0a # define RTC_RATE_32HZ 0x0b # define RTC_RATE_16HZ 0x0c # define RTC_RATE_8HZ 0x0d # define RTC_RATE_4HZ 0x0e # define RTC_RATE_2HZ 0x0f /**********************************************************************/ #define RTC_CONTROL RTC_REG_B # define RTC_SET 0x80 /* disable updates for clock setting */ # define RTC_PIE 0x40 /* periodic interrupt enable */ # define RTC_AIE 0x20 /* alarm interrupt enable */ # define RTC_UIE 0x10 /* update-finished interrupt enable */ # define RTC_SQWE 0x08 /* enable square-wave output */ # define RTC_DM_BINARY 0x04 /* all time/date values are BCD if clear */ # define RTC_24H 0x02 /* 24 hour mode - else hours bit 7 means pm */ # define RTC_DST_EN 0x01 /* auto switch DST - works f. USA only */ /**********************************************************************/ #define RTC_INTR_FLAGS RTC_REG_C /* caution - cleared by read */ # define RTC_IRQF 0x80 /* any of the following 3 is active */ # define RTC_PF 0x40 # define RTC_AF 0x20 # define RTC_UF 0x10 /**********************************************************************/ #define RTC_VALID RTC_REG_D # define RTC_VRT 0x80 /* valid RAM and time */ /**********************************************************************/ static int rtc_checksum_valid(int range_start, int range_end, int cks_loc) { int i; unsigned sum, old_sum; sum = 0; for(i = range_start; i <= range_end; i++) { sum += CMOS_READ(i); } sum = (~sum)&0x0ffff; old_sum = ((CMOS_READ(cks_loc)<<8) | CMOS_READ(cks_loc+1))&0x0ffff; return sum == old_sum; } static void rtc_set_checksum(int range_start, int range_end, int cks_loc) { int i; unsigned sum; sum = 0; for(i = range_start; i <= range_end; i++) { sum += CMOS_READ(i); } sum = ~(sum & 0x0ffff); CMOS_WRITE(((sum >> 8) & 0x0ff), cks_loc); CMOS_WRITE(((sum >> 0) & 0x0ff), cks_loc+1); } #define RTC_CONTROL_DEFAULT (RTC_24H) #define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ) #if 0 /* alpha setup */ #undef RTC_CONTROL_DEFAULT #undef RTC_FREQ_SELECT_DEFAULT #define RTC_CONTROL_DEFAULT (RTC_SQWE | RTC_24H) #define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ) #endif void rtc_init(int invalid) { unsigned char x; int cmos_invalid, checksum_invalid; printk_debug("RTC Init\n"); #if HAVE_OPTION_TABLE /* See if there has been a CMOS power problem. */ x = CMOS_READ(RTC_VALID); cmos_invalid = !(x & RTC_VRT); /* See if there is a CMOS checksum error */ checksum_invalid = !rtc_checksum_valid(PC_CKS_RANGE_START, PC_CKS_RANGE_END,PC_CKS_LOC); if (invalid || cmos_invalid || checksum_invalid) { printk_warning("RTC:%s%s%s zeroing cmos\n", invalid?" Clear requested":"", cmos_invalid?" Power Problem":"", checksum_invalid?" Checksum invalid":""); #if 0 CMOS_WRITE(0, 0x01); CMOS_WRITE(0, 0x03); CMOS_WRITE(0, 0x05); for(i = 10; i < 48; i++) { CMOS_WRITE(0, i); } if (cmos_invalid) { /* Now setup a default date of Sat 1 January 2000 */ CMOS_WRITE(0, 0x00); /* seconds */ CMOS_WRITE(0, 0x02); /* minutes */ CMOS_WRITE(1, 0x04); /* hours */ CMOS_WRITE(7, 0x06); /* day of week */ CMOS_WRITE(1, 0x07); /* day of month */ CMOS_WRITE(1, 0x08); /* month */ CMOS_WRITE(0, 0x09); /* year */ } #endif } #endif /* Setup the real time clock */ CMOS_WRITE(RTC_CONTROL_DEFAULT, RTC_CONTROL); /* Setup the frequency it operates at */ CMOS_WRITE(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT); #if HAVE_OPTION_TABLE /* See if there is a LB CMOS checksum error */ checksum_invalid = !rtc_checksum_valid(LB_CKS_RANGE_START, LB_CKS_RANGE_END,LB_CKS_LOC); if(checksum_invalid) printk_debug("Invalid CMOS LB checksum\n"); /* Make certain we have a valid checksum */ rtc_set_checksum(PC_CKS_RANGE_START, PC_CKS_RANGE_END,PC_CKS_LOC); #endif /* Clear any pending interrupts */ (void) CMOS_READ(RTC_INTR_FLAGS); } #if USE_OPTION_TABLE == 1 /* This routine returns the value of the requested bits input bit = bit count from the beginning of the cmos image length = number of bits to include in the value ret = a character pointer to where the value is to be returned output the value placed in ret returns 0 = successful, -1 = an error occurred */ static int get_cmos_value(unsigned long bit, unsigned long length, void *vret) { unsigned char *ret; unsigned long byte,byte_bit; unsigned long i; unsigned char uchar; /* The table is checked when it is built to ensure all values are valid. */ ret = vret; byte=bit/8; /* find the byte where the data starts */ byte_bit=bit%8; /* find the bit in the byte where the data starts */ if(length<9) { /* one byte or less */ uchar = CMOS_READ(byte); /* load the byte */ uchar >>= byte_bit; /* shift the bits to byte align */ /* clear unspecified bits */ ret[0] = uchar & ((1 << length) -1); } else { /* more that one byte so transfer the whole bytes */ for(i=0;length;i++,length-=8,byte++) { /* load the byte */ ret[i]=CMOS_READ(byte); } } return 0; } int get_option(void *dest, char *name) { extern struct cmos_option_table option_table; struct cmos_option_table *ct; struct cmos_entries *ce; size_t namelen; int found=0; /* Figure out how long name is */ namelen = strnlen(name, CMOS_MAX_NAME_LENGTH); /* find the requested entry record */ ct=&option_table; ce=(struct cmos_entries*)((unsigned char *)ct + ct->header_length); for(;ce->tag==LB_TAG_OPTION; ce=(struct cmos_entries*)((unsigned char *)ce + ce->size)) { if (memcmp(ce->name, name, namelen) == 0) { found=1; break; } } if(!found) { printk_err("ERROR: No cmos option '%s'\n", name); return(-2); } if(get_cmos_value(ce->bit, ce->length, dest)) return(-3); if(!rtc_checksum_valid(LB_CKS_RANGE_START, LB_CKS_RANGE_END,LB_CKS_LOC)) return(-4); return(0); } #endif /* USE_OPTION_TABLE */