/* * This file is part of the coreboot project. * * Copyright (C) 2007 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include "../../../northbridge/amd/amdfam10/amdfam10.h" #include #include #include #include #include #include #include extern void prep_pstates_all(void); extern void init_pstates(device_t dev, u32 nodeid, u32 coreid); extern device_t get_node_pci(u32 nodeid, u32 fn); void cpus_ready_for_init(void) { prep_pstates_all(); #if MEM_TRAIN_SEQ == 1 struct sys_info *sysinfox = (struct sys_info *)((CONFIG_LB_MEM_TOPK<<10) - DCACHE_RAM_GLOBAL_VAR_SIZE); // wait for ap memory to trained wait_all_core0_mem_trained(sysinfox); #endif } #define MCI_STATUS 0x401 static inline msr_t rdmsr_amd(u32 index) { msr_t result; __asm__ __volatile__ ( "rdmsr" : "=a" (result.lo), "=d" (result.hi) : "c" (index), "D" (0x9c5a203a) ); return result; } static inline void wrmsr_amd(u32 index, msr_t msr) { __asm__ __volatile__ ( "wrmsr" : /* No outputs */ : "c" (index), "a" (msr.lo), "d" (msr.hi), "D" (0x9c5a203a) ); } #define MTRR_COUNT 8 #define ZERO_CHUNK_KB 0x800UL /* 2M */ #define TOLM_KB 0x400000UL struct mtrr { msr_t base; msr_t mask; }; struct mtrr_state { struct mtrr mtrrs[MTRR_COUNT]; msr_t top_mem, top_mem2; msr_t def_type; }; static void save_mtrr_state(struct mtrr_state *state) { int i; for(i = 0; i < MTRR_COUNT; i++) { state->mtrrs[i].base = rdmsr(MTRRphysBase_MSR(i)); state->mtrrs[i].mask = rdmsr(MTRRphysMask_MSR(i)); } state->top_mem = rdmsr(TOP_MEM); state->top_mem2 = rdmsr(TOP_MEM2); state->def_type = rdmsr(MTRRdefType_MSR); } static void restore_mtrr_state(struct mtrr_state *state) { int i; disable_cache(); for(i = 0; i < MTRR_COUNT; i++) { wrmsr(MTRRphysBase_MSR(i), state->mtrrs[i].base); wrmsr(MTRRphysMask_MSR(i), state->mtrrs[i].mask); } wrmsr(TOP_MEM, state->top_mem); wrmsr(TOP_MEM2, state->top_mem2); wrmsr(MTRRdefType_MSR, state->def_type); enable_cache(); } #if 0 static void print_mtrr_state(struct mtrr_state *state) { int i; for(i = 0; i < MTRR_COUNT; i++) { printk_debug("var mtrr %d: %08x%08x mask: %08x%08x\n", i, state->mtrrs[i].base.hi, state->mtrrs[i].base.lo, state->mtrrs[i].mask.hi, state->mtrrs[i].mask.lo); } printk_debug("top_mem: %08x%08x\n", state->top_mem.hi, state->top_mem.lo); printk_debug("top_mem2: %08x%08x\n", state->top_mem2.hi, state->top_mem2.lo); printk_debug("def_type: %08x%08x\n", state->def_type.hi, state->def_type.lo); } #endif static void set_init_ecc_mtrrs(void) { msr_t msr; int i; disable_cache(); /* First clear all of the msrs to be safe */ for(i = 0; i < MTRR_COUNT; i++) { msr_t zero; zero.lo = zero.hi = 0; wrmsr(MTRRphysBase_MSR(i), zero); wrmsr(MTRRphysMask_MSR(i), zero); } /* Write back cache the first 1MB */ msr.hi = 0x00000000; msr.lo = 0x00000000 | MTRR_TYPE_WRBACK; wrmsr(MTRRphysBase_MSR(0), msr); msr.hi = 0x000000ff; msr.lo = ~((CONFIG_LB_MEM_TOPK << 10) - 1) | 0x800; wrmsr(MTRRphysMask_MSR(0), msr); /* Set the default type to write combining */ msr.hi = 0x00000000; msr.lo = 0xc00 | MTRR_TYPE_WRCOMB; wrmsr(MTRRdefType_MSR, msr); /* Set TOP_MEM to 4G */ msr.hi = 0x00000001; msr.lo = 0x00000000; wrmsr(TOP_MEM, msr); enable_cache(); } static inline void clear_2M_ram(unsigned long basek, struct mtrr_state *mtrr_state) { unsigned long limitk; unsigned long size; void *addr; /* Report every 64M */ if ((basek % (64*1024)) == 0) { /* Restore the normal state */ map_2M_page(0); restore_mtrr_state(mtrr_state); enable_lapic(); /* Print a status message */ printk_debug("%c", (basek >= TOLM_KB)?'+':'-'); /* Return to the initialization state */ set_init_ecc_mtrrs(); disable_lapic(); } limitk = (basek + ZERO_CHUNK_KB) & ~(ZERO_CHUNK_KB - 1); size = (limitk - basek) << 10; addr = map_2M_page(basek >> 11); if (addr == MAPPING_ERROR) { printk_err("Cannot map page: %x\n", basek >> 11); return; } /* clear memory 2M (limitk - basek) */ addr = (void *)(((u32)addr) | ((basek & 0x7ff) << 10)); clear_memory(addr, size); } static void init_ecc_memory(u32 node_id) { unsigned long startk, begink, endk; unsigned long hole_startk = 0; unsigned long basek; struct mtrr_state mtrr_state; device_t f1_dev, f2_dev, f3_dev; int enable_scrubbing; u32 dcl; f1_dev = get_node_pci(node_id, 1); if (!f1_dev) { die("Cannot find cpu function 1\n"); } f2_dev = get_node_pci(node_id, 2); if (!f2_dev) { die("Cannot find cpu function 2\n"); } f3_dev = get_node_pci(node_id, 3); if (!f3_dev) { die("Cannot find cpu function 3\n"); } /* See if we scrubbing should be enabled */ enable_scrubbing = 1; get_option(&enable_scrubbing, "hw_scrubber"); /* Enable cache scrubbing at the lowest possible rate */ if (enable_scrubbing) { pci_write_config32(f3_dev, DRAM_SCRUB_RATE_CTRL, (SCRUB_84ms << 16) | (SCRUB_84ms << 8) | (SCRUB_NONE << 0)); } else { pci_write_config32(f3_dev, DRAM_SCRUB_RATE_CTRL, (SCRUB_NONE << 16) | (SCRUB_NONE << 8) | (SCRUB_NONE << 0)); printk_debug("Scrubbing Disabled\n"); } /* If ecc support is not enabled don't touch memory */ dcl = pci_read_config32(f2_dev, DRAM_CONFIG_LOW); if (!(dcl & DCL_DimmEccEn)) { printk_debug("ECC Disabled\n"); return; } startk = (pci_read_config32(f1_dev, 0x40 + (node_id*8)) & 0xffff0000) >> 2; endk = ((pci_read_config32(f1_dev, 0x44 + (node_id*8)) & 0xffff0000) >> 2) + 0x4000; #if HW_MEM_HOLE_SIZEK != 0 u32 val; val = pci_read_config32(f1_dev, 0xf0); if(val & 1) { hole_startk = ((val & (0xff<<24)) >> 10); } #endif /* Don't start too early */ begink = startk; if (begink < CONFIG_LB_MEM_TOPK) { begink = CONFIG_LB_MEM_TOPK; } printk_debug("Clearing memory %uK - %uK: ", begink, endk); /* Save the normal state */ save_mtrr_state(&mtrr_state); /* Switch to the init ecc state */ set_init_ecc_mtrrs(); disable_lapic(); /* Walk through 2M chunks and zero them */ #if HW_MEM_HOLE_SIZEK != 0 /* here hole_startk can not be equal to begink, never. Also hole_startk is in 2M boundary, 64M? */ if ( (hole_startk != 0) && ((begink < hole_startk) && (endk>(4*1024*1024)))) { for(basek = begink; basek < hole_startk; basek = ((basek + ZERO_CHUNK_KB) & ~(ZERO_CHUNK_KB - 1))) { clear_2M_ram(basek, &mtrr_state); } for(basek = 4*1024*1024; basek < endk; basek = ((basek + ZERO_CHUNK_KB) & ~(ZERO_CHUNK_KB - 1))) { clear_2M_ram(basek, &mtrr_state); } } else #endif for(basek = begink; basek < endk; basek = ((basek + ZERO_CHUNK_KB) & ~(ZERO_CHUNK_KB - 1))) { clear_2M_ram(basek, &mtrr_state); } /* Restore the normal state */ map_2M_page(0); restore_mtrr_state(&mtrr_state); enable_lapic(); /* Set the scrub base address registers */ pci_write_config32(f3_dev, DRAM_SCRUB_ADDR_LOW, startk << 10); pci_write_config32(f3_dev, DRAM_SCRUB_ADDR_HIGH, startk >> 22); /* Enable the scrubber? */ if (enable_scrubbing) { /* Enable scrubbing at the lowest possible rate */ pci_write_config32(f3_dev, DRAM_SCRUB_RATE_CTRL, (SCRUB_84ms << 16) | (SCRUB_84ms << 8) | (SCRUB_84ms << 0)); } printk_debug(" done\n"); } static inline void fam10_errata(void) { msr_t msr; /* FIXME: Is doing errata here too late? */ /* 298 : FIXME: Fixed in B3/C1 */ /* msr = rdmsr(0xC0010015); msr.lo |= 1 << 3; wrmsr(0xC0010015, msr); msr = rdmsr(0xC0010023); msr.lo |= 1 << 1; wrmsr(0xC0010023, msr); */ } static void smash1Gpages(void) { msr_t msr; /* 1G pages are smashed and installed in the TLB as 2M pages. BIOS must set this bit for revision B. */ /* FIXME: What about RevC? */ msr = rdmsr(0xC001102A); msr.lo |= 1 << 29; wrmsr(0xC001102A, msr); } void model_10xxx_init(device_t dev) { unsigned long i; msr_t msr; struct node_core_id id; #if CONFIG_LOGICAL_CPUS == 1 unsigned siblings; #endif /* Turn on caching if we haven't already */ x86_enable_cache(); amd_setup_mtrrs(); x86_mtrr_check(); disable_cache(); /* zero the machine check error status registers */ msr.lo = 0; msr.hi = 0; for(i=0; i < 5; i++) { wrmsr(MCI_STATUS + (i * 4),msr); } fam10_errata(); enable_cache(); /* Enable the local cpu apics */ setup_lapic(); #if CONFIG_LOGICAL_CPUS == 1 siblings = cpuid_ecx(0x80000008) & 0xff; if (siblings > 0) { msr = rdmsr_amd(CPU_ID_FEATURES_MSR); msr.lo |= 1 << 28; wrmsr_amd(CPU_ID_FEATURES_MSR, msr); msr = rdmsr_amd(LOGICAL_CPUS_NUM_MSR); msr.lo = (siblings+1)<<16; wrmsr_amd(LOGICAL_CPUS_NUM_MSR, msr); msr = rdmsr_amd(CPU_ID_EXT_FEATURES_MSR); msr.hi |= 1<<(33-32); wrmsr_amd(CPU_ID_EXT_FEATURES_MSR, msr); } printk_debug("siblings = %02d, ", siblings); #endif id = get_node_core_id(read_nb_cfg_54()); // pre e0 nb_cfg_54 can not be set printk_debug("nodeid = %02d, coreid = %02d\n", id.nodeid, id.coreid); init_pstates(dev, id.nodeid, id.coreid); // is it a good place? some cores are clearing their ram /* Is this a bad location? In particular can another node prefecth * data from this node before we have initialized it? */ if (id.coreid == 0) init_ecc_memory(id.nodeid); // only do it for core 0 #if CONFIG_LOGICAL_CPUS==1 /* Start up my cpu siblings */ // if(id.coreid==0) amd_sibling_init(dev); // Don't need core1 is already be put in the CPU BUS in bus_cpu_scan #endif smash1Gpages(); } static struct device_operations cpu_dev_ops = { .init = model_10xxx_init, }; static struct cpu_device_id cpu_table[] = { //AMD_GH_SUPPORT { X86_VENDOR_AMD, 0x100f00 }, /* SH-F0 L1 */ { X86_VENDOR_AMD, 0x100f10 }, /* M2 */ { X86_VENDOR_AMD, 0x100f20 }, /* S1g1 */ { X86_VENDOR_AMD, 0x100f21 }, { X86_VENDOR_AMD, 0x100f2A }, { X86_VENDOR_AMD, 0x100f22 }, { X86_VENDOR_AMD, 0x100f23 }, { 0, 0 }, }; static struct cpu_driver model_10xxx __cpu_driver = { .ops = &cpu_dev_ops, .id_table = cpu_table, };