/* * mini-arm.c: ARM backend for the Mono code generator * * Authors: * Paolo Molaro (lupus@ximian.com) * Dietmar Maurer (dietmar@ximian.com) * * (C) 2003 Ximian, Inc. */ #include "mini.h" #include #include #include #include "mini-arm.h" #include "inssel.h" #include "cpu-arm.h" #include "trace.h" #include "mono/arch/arm/arm-fpa-codegen.h" /* * TODO: * floating point support: on ARM it is a mess, there are at least 3 * different setups, each of which binary incompat with the other. * 1) FPA: old and ugly, but unfortunately what current distros use * the double binary format has the two words swapped. 8 double registers. * Implemented usually by kernel emulation. * 2) softfloat: the compiler emulates all the fp ops. Usually uses the * ugly swapped double format (I guess a softfloat-vfp exists, too, though). * 3) VFP: the new and actually sensible and useful FP support. Implemented * in HW or kernel-emulated, requires new tools. I think this ios what symbian uses. * * The plan is to write the FPA support first. softfloat can be tested in a chroot. */ int mono_exc_esp_offset = 0; #define arm_is_imm12(v) ((v) > -4096 && (v) < 4096) #define arm_is_imm8(v) ((v) > -256 && (v) < 256) #define arm_is_fpimm8(v) ((v) >= -1020 && (v) <= 1020) const char* mono_arch_regname (int reg) { static const char * rnames[] = { "arm_r0", "arm_r1", "arm_r2", "arm_r3", "arm_v1", "arm_v2", "arm_v3", "arm_v4", "arm_v5", "arm_v6", "arm_v7", "arm_fp", "arm_ip", "arm_sp", "arm_lr", "arm_pc" }; if (reg >= 0 && reg < 16) return rnames [reg]; return "unknown"; } const char* mono_arch_fregname (int reg) { static const char * rnames[] = { "arm_f0", "arm_f1", "arm_f2", "arm_f3", "arm_f4", "arm_f5", "arm_f6", "arm_f7", "arm_f8", "arm_f9", "arm_f10", "arm_f11", "arm_f12", "arm_f13", "arm_f14", "arm_f15", "arm_f16", "arm_f17", "arm_f18", "arm_f19", "arm_f20", "arm_f21", "arm_f22", "arm_f23", "arm_f24", "arm_f25", "arm_f26", "arm_f27", "arm_f28", "arm_f29", "arm_f30", "arm_f31" }; if (reg >= 0 && reg < 32) return rnames [reg]; return "unknown"; } static guint8* emit_big_add (guint8 *code, int dreg, int sreg, int imm) { int imm8, rot_amount; if ((imm8 = mono_arm_is_rotated_imm8 (imm, &rot_amount)) >= 0) { ARM_ADD_REG_IMM (code, dreg, sreg, imm8, rot_amount); return code; } g_assert (dreg != sreg); code = mono_arm_emit_load_imm (code, dreg, imm); ARM_ADD_REG_REG (code, dreg, dreg, sreg); return code; } static guint8* emit_memcpy (guint8 *code, int size, int dreg, int doffset, int sreg, int soffset) { /* we can use r0-r3, since this is called only for incoming args on the stack */ if (size > sizeof (gpointer) * 4) { guint8 *start_loop; code = emit_big_add (code, ARMREG_R0, sreg, soffset); code = emit_big_add (code, ARMREG_R1, dreg, doffset); start_loop = code = mono_arm_emit_load_imm (code, ARMREG_R2, size); ARM_LDR_IMM (code, ARMREG_R3, ARMREG_R0, 0); ARM_STR_IMM (code, ARMREG_R3, ARMREG_R1, 0); ARM_ADD_REG_IMM8 (code, ARMREG_R0, ARMREG_R0, 4); ARM_ADD_REG_IMM8 (code, ARMREG_R1, ARMREG_R1, 4); ARM_SUBS_REG_IMM8 (code, ARMREG_R2, ARMREG_R2, 4); ARM_B_COND (code, ARMCOND_NE, 0); arm_patch (code - 4, start_loop); return code; } g_assert (arm_is_imm12 (doffset)); g_assert (arm_is_imm12 (doffset + size)); g_assert (arm_is_imm12 (soffset)); g_assert (arm_is_imm12 (soffset + size)); while (size >= 4) { ARM_LDR_IMM (code, ARMREG_LR, sreg, soffset); ARM_STR_IMM (code, ARMREG_LR, dreg, doffset); doffset += 4; soffset += 4; size -= 4; } g_assert (size == 0); return code; } /* * mono_arch_get_argument_info: * @csig: a method signature * @param_count: the number of parameters to consider * @arg_info: an array to store the result infos * * Gathers information on parameters such as size, alignment and * padding. arg_info should be large enought to hold param_count + 1 entries. * * Returns the size of the activation frame. */ int mono_arch_get_argument_info (MonoMethodSignature *csig, int param_count, MonoJitArgumentInfo *arg_info) { int k, frame_size = 0; int size, align, pad; int offset = 8; if (MONO_TYPE_ISSTRUCT (csig->ret)) { frame_size += sizeof (gpointer); offset += 4; } arg_info [0].offset = offset; if (csig->hasthis) { frame_size += sizeof (gpointer); offset += 4; } arg_info [0].size = frame_size; for (k = 0; k < param_count; k++) { if (csig->pinvoke) size = mono_type_native_stack_size (csig->params [k], &align); else size = mono_type_stack_size (csig->params [k], &align); /* ignore alignment for now */ align = 1; frame_size += pad = (align - (frame_size & (align - 1))) & (align - 1); arg_info [k].pad = pad; frame_size += size; arg_info [k + 1].pad = 0; arg_info [k + 1].size = size; offset += pad; arg_info [k + 1].offset = offset; offset += size; } align = MONO_ARCH_FRAME_ALIGNMENT; frame_size += pad = (align - (frame_size & (align - 1))) & (align - 1); arg_info [k].pad = pad; return frame_size; } /* * Initialize the cpu to execute managed code. */ void mono_arch_cpu_init (void) { } /* * This function returns the optimizations supported on this cpu. */ guint32 mono_arch_cpu_optimizazions (guint32 *exclude_mask) { guint32 opts = 0; /* no arm-specific optimizations yet */ *exclude_mask = 0; return opts; } static gboolean is_regsize_var (MonoType *t) { if (t->byref) return TRUE; t = mono_type_get_underlying_type (t); switch (t->type) { case MONO_TYPE_I4: case MONO_TYPE_U4: case MONO_TYPE_I: case MONO_TYPE_U: case MONO_TYPE_PTR: case MONO_TYPE_FNPTR: return TRUE; case MONO_TYPE_OBJECT: case MONO_TYPE_STRING: case MONO_TYPE_CLASS: case MONO_TYPE_SZARRAY: case MONO_TYPE_ARRAY: return TRUE; case MONO_TYPE_VALUETYPE: return FALSE; } return FALSE; } GList * mono_arch_get_allocatable_int_vars (MonoCompile *cfg) { GList *vars = NULL; int i; for (i = 0; i < cfg->num_varinfo; i++) { MonoInst *ins = cfg->varinfo [i]; MonoMethodVar *vmv = MONO_VARINFO (cfg, i); /* unused vars */ if (vmv->range.first_use.abs_pos >= vmv->range.last_use.abs_pos) continue; if (ins->flags & (MONO_INST_VOLATILE|MONO_INST_INDIRECT) || (ins->opcode != OP_LOCAL && ins->opcode != OP_ARG)) continue; /* we can only allocate 32 bit values */ if (is_regsize_var (ins->inst_vtype)) { g_assert (MONO_VARINFO (cfg, i)->reg == -1); g_assert (i == vmv->idx); vars = mono_varlist_insert_sorted (cfg, vars, vmv, FALSE); } } return vars; } #define USE_EXTRA_TEMPS 0 GList * mono_arch_get_global_int_regs (MonoCompile *cfg) { GList *regs = NULL; regs = g_list_prepend (regs, GUINT_TO_POINTER (ARMREG_V1)); regs = g_list_prepend (regs, GUINT_TO_POINTER (ARMREG_V2)); regs = g_list_prepend (regs, GUINT_TO_POINTER (ARMREG_V3)); regs = g_list_prepend (regs, GUINT_TO_POINTER (ARMREG_V4)); regs = g_list_prepend (regs, GUINT_TO_POINTER (ARMREG_V5)); /*regs = g_list_prepend (regs, GUINT_TO_POINTER (ARMREG_V6));*/ /*regs = g_list_prepend (regs, GUINT_TO_POINTER (ARMREG_V7));*/ return regs; } /* * mono_arch_regalloc_cost: * * Return the cost, in number of memory references, of the action of * allocating the variable VMV into a register during global register * allocation. */ guint32 mono_arch_regalloc_cost (MonoCompile *cfg, MonoMethodVar *vmv) { /* FIXME: */ return 2; } void mono_arch_flush_icache (guint8 *code, gint size) { __asm __volatile ("mov r0, %0\n" "mov r1, %1\n" "mov r2, %2\n" "swi 0x9f0002 @ sys_cacheflush" : /* no outputs */ : "r" (code), "r" (code + size), "r" (0) : "r0", "r1", "r3" ); } #define NOT_IMPLEMENTED(x) \ g_error ("FIXME: %s is not yet implemented. (trampoline)", x); enum { RegTypeGeneral, RegTypeBase, RegTypeFP, RegTypeStructByVal, RegTypeStructByAddr }; typedef struct { gint32 offset; guint16 vtsize; /* in param area */ guint8 reg; guint8 regtype : 4; /* 0 general, 1 basereg, 2 floating point register, see RegType* */ guint8 size : 4; /* 1, 2, 4, 8, or regs used by RegTypeStructByVal */ } ArgInfo; typedef struct { int nargs; guint32 stack_usage; guint32 struct_ret; ArgInfo ret; ArgInfo sig_cookie; ArgInfo args [1]; } CallInfo; #define DEBUG(a) static void inline add_general (guint *gr, guint *stack_size, ArgInfo *ainfo, gboolean simple) { if (simple) { if (*gr > ARMREG_R3) { ainfo->offset = *stack_size; ainfo->reg = ARMREG_SP; /* in the caller */ ainfo->regtype = RegTypeBase; *stack_size += 4; } else { ainfo->reg = *gr; } } else { if (*gr > ARMREG_R2) { /**stack_size += 7; *stack_size &= ~7;*/ ainfo->offset = *stack_size; ainfo->reg = ARMREG_SP; /* in the caller */ ainfo->regtype = RegTypeBase; *stack_size += 8; } else { /*if ((*gr) & 1) (*gr) ++;*/ ainfo->reg = *gr; } (*gr) ++; } (*gr) ++; } static CallInfo* calculate_sizes (MonoMethodSignature *sig, gboolean is_pinvoke) { guint i, gr; int n = sig->hasthis + sig->param_count; guint32 simpletype; guint32 stack_size = 0; CallInfo *cinfo = g_malloc0 (sizeof (CallInfo) + sizeof (ArgInfo) * n); gr = ARMREG_R0; /* FIXME: handle returning a struct */ if (MONO_TYPE_ISSTRUCT (sig->ret)) { add_general (&gr, &stack_size, &cinfo->ret, TRUE); cinfo->struct_ret = ARMREG_R0; } n = 0; if (sig->hasthis) { add_general (&gr, &stack_size, cinfo->args + n, TRUE); n++; } DEBUG(printf("params: %d\n", sig->param_count)); for (i = 0; i < sig->param_count; ++i) { if ((sig->call_convention == MONO_CALL_VARARG) && (i == sig->sentinelpos)) { /* Prevent implicit arguments and sig_cookie from being passed in registers */ gr = ARMREG_R3 + 1; /* Emit the signature cookie just before the implicit arguments */ add_general (&gr, &stack_size, &cinfo->sig_cookie, TRUE); } DEBUG(printf("param %d: ", i)); if (sig->params [i]->byref) { DEBUG(printf("byref\n")); add_general (&gr, &stack_size, cinfo->args + n, TRUE); n++; continue; } simpletype = mono_type_get_underlying_type (sig->params [i])->type; switch (simpletype) { case MONO_TYPE_BOOLEAN: case MONO_TYPE_I1: case MONO_TYPE_U1: cinfo->args [n].size = 1; add_general (&gr, &stack_size, cinfo->args + n, TRUE); n++; break; case MONO_TYPE_CHAR: case MONO_TYPE_I2: case MONO_TYPE_U2: cinfo->args [n].size = 2; add_general (&gr, &stack_size, cinfo->args + n, TRUE); n++; break; case MONO_TYPE_I4: case MONO_TYPE_U4: cinfo->args [n].size = 4; add_general (&gr, &stack_size, cinfo->args + n, TRUE); n++; break; case MONO_TYPE_I: case MONO_TYPE_U: case MONO_TYPE_PTR: case MONO_TYPE_FNPTR: case MONO_TYPE_CLASS: case MONO_TYPE_OBJECT: case MONO_TYPE_STRING: case MONO_TYPE_SZARRAY: case MONO_TYPE_ARRAY: case MONO_TYPE_R4: cinfo->args [n].size = sizeof (gpointer); add_general (&gr, &stack_size, cinfo->args + n, TRUE); n++; break; case MONO_TYPE_TYPEDBYREF: case MONO_TYPE_VALUETYPE: { gint size; int align_size; int nwords; if (simpletype == MONO_TYPE_TYPEDBYREF) { size = sizeof (MonoTypedRef); } else { MonoClass *klass = mono_class_from_mono_type (sig->params [i]); if (is_pinvoke) size = mono_class_native_size (klass, NULL); else size = mono_class_value_size (klass, NULL); } DEBUG(printf ("load %d bytes struct\n", mono_class_native_size (sig->params [i]->data.klass, NULL))); align_size = size; nwords = 0; align_size += (sizeof (gpointer) - 1); align_size &= ~(sizeof (gpointer) - 1); nwords = (align_size + sizeof (gpointer) -1 ) / sizeof (gpointer); cinfo->args [n].regtype = RegTypeStructByVal; /* FIXME: align gr and stack_size if needed */ if (gr > ARMREG_R3) { cinfo->args [n].size = 0; cinfo->args [n].vtsize = nwords; } else { int rest = ARMREG_R3 - gr + 1; int n_in_regs = rest >= nwords? nwords: rest; cinfo->args [n].size = n_in_regs; cinfo->args [n].vtsize = nwords - n_in_regs; cinfo->args [n].reg = gr; gr += n_in_regs; } cinfo->args [n].offset = stack_size; /*g_print ("offset for arg %d at %d\n", n, stack_size);*/ stack_size += nwords * sizeof (gpointer); n++; break; } case MONO_TYPE_U8: case MONO_TYPE_I8: case MONO_TYPE_R8: cinfo->args [n].size = 8; add_general (&gr, &stack_size, cinfo->args + n, FALSE); n++; break; default: g_error ("Can't trampoline 0x%x", sig->params [i]->type); } } { simpletype = mono_type_get_underlying_type (sig->ret)->type; switch (simpletype) { case MONO_TYPE_BOOLEAN: case MONO_TYPE_I1: case MONO_TYPE_U1: case MONO_TYPE_I2: case MONO_TYPE_U2: case MONO_TYPE_CHAR: case MONO_TYPE_I4: case MONO_TYPE_U4: case MONO_TYPE_I: case MONO_TYPE_U: case MONO_TYPE_PTR: case MONO_TYPE_FNPTR: case MONO_TYPE_CLASS: case MONO_TYPE_OBJECT: case MONO_TYPE_SZARRAY: case MONO_TYPE_ARRAY: case MONO_TYPE_STRING: cinfo->ret.reg = ARMREG_R0; break; case MONO_TYPE_U8: case MONO_TYPE_I8: cinfo->ret.reg = ARMREG_R0; break; case MONO_TYPE_R4: case MONO_TYPE_R8: cinfo->ret.reg = ARMREG_R0; /* FIXME: cinfo->ret.reg = ???; cinfo->ret.regtype = RegTypeFP;*/ break; case MONO_TYPE_VALUETYPE: break; case MONO_TYPE_TYPEDBYREF: case MONO_TYPE_VOID: break; default: g_error ("Can't handle as return value 0x%x", sig->ret->type); } } /* align stack size to 8 */ DEBUG (printf (" stack size: %d (%d)\n", (stack_size + 15) & ~15, stack_size)); stack_size = (stack_size + 7) & ~7; cinfo->stack_usage = stack_size; return cinfo; } /* * Set var information according to the calling convention. arm version. * The locals var stuff should most likely be split in another method. */ void mono_arch_allocate_vars (MonoCompile *m) { MonoMethodSignature *sig; MonoMethodHeader *header; MonoInst *inst; int i, offset, size, align, curinst; int frame_reg = ARMREG_FP; /* FIXME: this will change when we use FP as gcc does */ m->flags |= MONO_CFG_HAS_SPILLUP; /* allow room for the vararg method args: void* and long/double */ if (mono_jit_trace_calls != NULL && mono_trace_eval (m->method)) m->param_area = MAX (m->param_area, sizeof (gpointer)*8); header = mono_method_get_header (m->method); /* * We use the frame register also for any method that has * exception clauses. This way, when the handlers are called, * the code will reference local variables using the frame reg instead of * the stack pointer: if we had to restore the stack pointer, we'd * corrupt the method frames that are already on the stack (since * filters get called before stack unwinding happens) when the filter * code would call any method (this also applies to finally etc.). */ if ((m->flags & MONO_CFG_HAS_ALLOCA) || header->num_clauses) frame_reg = ARMREG_FP; m->frame_reg = frame_reg; if (frame_reg != ARMREG_SP) { m->used_int_regs |= 1 << frame_reg; } sig = mono_method_signature (m->method); offset = 0; curinst = 0; if (MONO_TYPE_ISSTRUCT (sig->ret)) { m->ret->opcode = OP_REGVAR; m->ret->inst_c0 = ARMREG_R0; } else { /* FIXME: handle long and FP values */ switch (mono_type_get_underlying_type (sig->ret)->type) { case MONO_TYPE_VOID: break; default: m->ret->opcode = OP_REGVAR; m->ret->inst_c0 = ARMREG_R0; break; } } /* local vars are at a positive offset from the stack pointer */ /* * also note that if the function uses alloca, we use FP * to point at the local variables. */ offset = 0; /* linkage area */ /* align the offset to 16 bytes: not sure this is needed here */ //offset += 8 - 1; //offset &= ~(8 - 1); /* add parameter area size for called functions */ offset += m->param_area; offset += 8 - 1; offset &= ~(8 - 1); if (m->flags & MONO_CFG_HAS_FPOUT) offset += 8; /* allow room to save the return value */ if (mono_jit_trace_calls != NULL && mono_trace_eval (m->method)) offset += 8; /* the MonoLMF structure is stored just below the stack pointer */ if (sig->call_convention == MONO_CALL_VARARG) { m->sig_cookie = 0; } if (MONO_TYPE_ISSTRUCT (sig->ret)) { inst = m->ret; offset += sizeof(gpointer) - 1; offset &= ~(sizeof(gpointer) - 1); inst->inst_offset = offset; inst->opcode = OP_REGOFFSET; inst->inst_basereg = frame_reg; offset += sizeof(gpointer); if (sig->call_convention == MONO_CALL_VARARG) m->sig_cookie += sizeof (gpointer); } curinst = m->locals_start; for (i = curinst; i < m->num_varinfo; ++i) { inst = m->varinfo [i]; if ((inst->flags & MONO_INST_IS_DEAD) || inst->opcode == OP_REGVAR) continue; /* inst->unused indicates native sized value types, this is used by the * pinvoke wrappers when they call functions returning structure */ if (inst->unused && MONO_TYPE_ISSTRUCT (inst->inst_vtype) && inst->inst_vtype->type != MONO_TYPE_TYPEDBYREF) size = mono_class_native_size (mono_class_from_mono_type (inst->inst_vtype), &align); else size = mono_type_size (inst->inst_vtype, &align); /* FIXME: if a structure is misaligned, our memcpy doesn't work, * since it loads/stores misaligned words, which don't do the right thing. */ if (align < 4 && size >= 4) align = 4; offset += align - 1; offset &= ~(align - 1); inst->inst_offset = offset; inst->opcode = OP_REGOFFSET; inst->inst_basereg = frame_reg; offset += size; //g_print ("allocating local %d to %d\n", i, inst->inst_offset); } curinst = 0; if (sig->hasthis) { inst = m->varinfo [curinst]; if (inst->opcode != OP_REGVAR) { inst->opcode = OP_REGOFFSET; inst->inst_basereg = frame_reg; offset += sizeof (gpointer) - 1; offset &= ~(sizeof (gpointer) - 1); inst->inst_offset = offset; offset += sizeof (gpointer); if (sig->call_convention == MONO_CALL_VARARG) m->sig_cookie += sizeof (gpointer); } curinst++; } for (i = 0; i < sig->param_count; ++i) { inst = m->varinfo [curinst]; if (inst->opcode != OP_REGVAR) { inst->opcode = OP_REGOFFSET; inst->inst_basereg = frame_reg; size = mono_type_size (sig->params [i], &align); /* FIXME: if a structure is misaligned, our memcpy doesn't work, * since it loads/stores misaligned words, which don't do the right thing. */ if (align < 4 && size >= 4) align = 4; offset += align - 1; offset &= ~(align - 1); inst->inst_offset = offset; offset += size; if ((sig->call_convention == MONO_CALL_VARARG) && (i < sig->sentinelpos)) m->sig_cookie += size; } curinst++; } /* align the offset to 8 bytes */ offset += 8 - 1; offset &= ~(8 - 1); /* change sign? */ m->stack_offset = offset; } /* Fixme: we need an alignment solution for enter_method and mono_arch_call_opcode, * currently alignment in mono_arch_call_opcode is computed without arch_get_argument_info */ /* * take the arguments and generate the arch-specific * instructions to properly call the function in call. * This includes pushing, moving arguments to the right register * etc. * Issue: who does the spilling if needed, and when? */ MonoCallInst* mono_arch_call_opcode (MonoCompile *cfg, MonoBasicBlock* bb, MonoCallInst *call, int is_virtual) { MonoInst *arg, *in; MonoMethodSignature *sig; int i, n; CallInfo *cinfo; ArgInfo *ainfo; sig = call->signature; n = sig->param_count + sig->hasthis; cinfo = calculate_sizes (sig, sig->pinvoke); if (cinfo->struct_ret) call->used_iregs |= 1 << cinfo->struct_ret; for (i = 0; i < n; ++i) { ainfo = cinfo->args + i; if ((sig->call_convention == MONO_CALL_VARARG) && (i == sig->sentinelpos)) { MonoInst *sig_arg; cfg->disable_aot = TRUE; MONO_INST_NEW (cfg, sig_arg, OP_ICONST); sig_arg->inst_p0 = call->signature; MONO_INST_NEW (cfg, arg, OP_OUTARG); arg->inst_imm = cinfo->sig_cookie.offset; arg->inst_left = sig_arg; /* prepend, so they get reversed */ arg->next = call->out_args; call->out_args = arg; } if (is_virtual && i == 0) { /* the argument will be attached to the call instrucion */ in = call->args [i]; call->used_iregs |= 1 << ainfo->reg; } else { MONO_INST_NEW (cfg, arg, OP_OUTARG); in = call->args [i]; arg->cil_code = in->cil_code; arg->inst_left = in; arg->inst_right = (MonoInst*)call; arg->type = in->type; /* prepend, we'll need to reverse them later */ arg->next = call->out_args; call->out_args = arg; if (ainfo->regtype == RegTypeGeneral) { arg->unused = ainfo->reg; call->used_iregs |= 1 << ainfo->reg; if (arg->type == STACK_I8) call->used_iregs |= 1 << (ainfo->reg + 1); if (arg->type == STACK_R8) { if (ainfo->size == 4) { arg->opcode = OP_OUTARG_R4; } else { call->used_iregs |= 1 << (ainfo->reg + 1); } cfg->flags |= MONO_CFG_HAS_FPOUT; } } else if (ainfo->regtype == RegTypeStructByAddr) { /* FIXME: where si the data allocated? */ arg->unused = ainfo->reg; call->used_iregs |= 1 << ainfo->reg; g_assert_not_reached (); } else if (ainfo->regtype == RegTypeStructByVal) { int cur_reg; /* mark the used regs */ for (cur_reg = 0; cur_reg < ainfo->size; ++cur_reg) { call->used_iregs |= 1 << (ainfo->reg + cur_reg); } arg->opcode = OP_OUTARG_VT; /* vtsize and offset have just 12 bits of encoding in number of words */ g_assert (((ainfo->vtsize | (ainfo->offset / 4)) & 0xfffff000) == 0); arg->unused = ainfo->reg | (ainfo->size << 4) | (ainfo->vtsize << 8) | ((ainfo->offset / 4) << 20); } else if (ainfo->regtype == RegTypeBase) { arg->opcode = OP_OUTARG_MEMBASE; arg->unused = (ainfo->offset << 8) | ainfo->size; } else if (ainfo->regtype == RegTypeFP) { arg->unused = ainfo->reg; /* FPA args are passed in int regs */ call->used_iregs |= 1 << ainfo->reg; if (ainfo->size == 8) { arg->opcode = OP_OUTARG_R8; call->used_iregs |= 1 << (ainfo->reg + 1); } else { arg->opcode = OP_OUTARG_R4; } cfg->flags |= MONO_CFG_HAS_FPOUT; } else { g_assert_not_reached (); } } } /* * Reverse the call->out_args list. */ { MonoInst *prev = NULL, *list = call->out_args, *next; while (list) { next = list->next; list->next = prev; prev = list; list = next; } call->out_args = prev; } call->stack_usage = cinfo->stack_usage; cfg->param_area = MAX (cfg->param_area, cinfo->stack_usage); cfg->flags |= MONO_CFG_HAS_CALLS; /* * should set more info in call, such as the stack space * used by the args that needs to be added back to esp */ g_free (cinfo); return call; } /* * Allow tracing to work with this interface (with an optional argument) */ void* mono_arch_instrument_prolog (MonoCompile *cfg, void *func, void *p, gboolean enable_arguments) { guchar *code = p; code = mono_arm_emit_load_imm (code, ARMREG_R0, (guint32)cfg->method); ARM_MOV_REG_IMM8 (code, ARMREG_R1, 0); /* NULL ebp for now */ code = mono_arm_emit_load_imm (code, ARMREG_R2, (guint32)func); ARM_MOV_REG_REG (code, ARMREG_LR, ARMREG_PC); ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_R2); return code; } enum { SAVE_NONE, SAVE_STRUCT, SAVE_ONE, SAVE_TWO, SAVE_FP }; void* mono_arch_instrument_epilog (MonoCompile *cfg, void *func, void *p, gboolean enable_arguments) { guchar *code = p; int save_mode = SAVE_NONE; int offset; MonoMethod *method = cfg->method; int rtype = mono_type_get_underlying_type (mono_method_signature (method)->ret)->type; int save_offset = cfg->param_area; save_offset += 7; save_offset &= ~7; offset = code - cfg->native_code; /* we need about 16 instructions */ if (offset > (cfg->code_size - 16 * 4)) { cfg->code_size *= 2; cfg->native_code = g_realloc (cfg->native_code, cfg->code_size); code = cfg->native_code + offset; } handle_enum: switch (rtype) { case MONO_TYPE_VOID: /* special case string .ctor icall */ if (strcmp (".ctor", method->name) && method->klass == mono_defaults.string_class) save_mode = SAVE_ONE; else save_mode = SAVE_NONE; break; case MONO_TYPE_I8: case MONO_TYPE_U8: save_mode = SAVE_TWO; break; case MONO_TYPE_R4: case MONO_TYPE_R8: save_mode = SAVE_FP; break; case MONO_TYPE_VALUETYPE: save_mode = SAVE_STRUCT; break; default: save_mode = SAVE_ONE; break; } switch (save_mode) { case SAVE_TWO: ARM_STR_IMM (code, ARMREG_R0, cfg->frame_reg, save_offset); ARM_STR_IMM (code, ARMREG_R1, cfg->frame_reg, save_offset + 4); if (enable_arguments) { ARM_MOV_REG_REG (code, ARMREG_R2, ARMREG_R1); ARM_MOV_REG_REG (code, ARMREG_R1, ARMREG_R0); } break; case SAVE_ONE: ARM_STR_IMM (code, ARMREG_R0, cfg->frame_reg, save_offset); if (enable_arguments) { ARM_MOV_REG_REG (code, ARMREG_R1, ARMREG_R0); } break; case SAVE_FP: /* FIXME: what reg? */ if (enable_arguments) { /* FIXME: what reg? */ } break; case SAVE_STRUCT: if (enable_arguments) { /* FIXME: get the actual address */ ARM_MOV_REG_REG (code, ARMREG_R1, ARMREG_R0); } break; case SAVE_NONE: default: break; } code = mono_arm_emit_load_imm (code, ARMREG_R0, (guint32)cfg->method); code = mono_arm_emit_load_imm (code, ARMREG_IP, (guint32)func); ARM_MOV_REG_REG (code, ARMREG_LR, ARMREG_PC); ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_IP); switch (save_mode) { case SAVE_TWO: ARM_LDR_IMM (code, ARMREG_R0, cfg->frame_reg, save_offset); ARM_LDR_IMM (code, ARMREG_R1, cfg->frame_reg, save_offset + 4); break; case SAVE_ONE: ARM_LDR_IMM (code, ARMREG_R0, cfg->frame_reg, save_offset); break; case SAVE_FP: /* FIXME */ break; case SAVE_NONE: default: break; } return code; } /* * The immediate field for cond branches is big enough for all reasonable methods */ #define EMIT_COND_BRANCH_FLAGS(ins,condcode) \ if (ins->flags & MONO_INST_BRLABEL) { \ if (0 && ins->inst_i0->inst_c0) { \ ARM_B_COND (code, (condcode), (code - cfg->native_code + ins->inst_i0->inst_c0) & 0xffffff); \ } else { \ mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_LABEL, ins->inst_i0); \ ARM_B_COND (code, (condcode), 0); \ } \ } else { \ if (0 && ins->inst_true_bb->native_offset) { \ ARM_B_COND (code, (condcode), (code - cfg->native_code + ins->inst_true_bb->native_offset) & 0xffffff); \ } else { \ mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_BB, ins->inst_true_bb); \ ARM_B_COND (code, (condcode), 0); \ } \ } #define EMIT_COND_BRANCH(ins,cond) EMIT_COND_BRANCH_FLAGS(ins, branch_cc_table [(cond)]) /* emit an exception if condition is fail * * We assign the extra code used to throw the implicit exceptions * to cfg->bb_exit as far as the big branch handling is concerned */ #define EMIT_COND_SYSTEM_EXCEPTION_FLAGS(condcode,exc_name) \ do { \ mono_add_patch_info (cfg, code - cfg->native_code, \ MONO_PATCH_INFO_EXC, exc_name); \ ARM_BL_COND (code, (condcode), 0); \ } while (0); #define EMIT_COND_SYSTEM_EXCEPTION(cond,exc_name) EMIT_COND_SYSTEM_EXCEPTION_FLAGS(branch_cc_table [(cond)], (exc_name)) static void peephole_pass (MonoCompile *cfg, MonoBasicBlock *bb) { MonoInst *ins, *last_ins = NULL; ins = bb->code; while (ins) { switch (ins->opcode) { case OP_MUL_IMM: /* remove unnecessary multiplication with 1 */ if (ins->inst_imm == 1) { if (ins->dreg != ins->sreg1) { ins->opcode = OP_MOVE; } else { last_ins->next = ins->next; ins = ins->next; continue; } } else { int power2 = mono_is_power_of_two (ins->inst_imm); if (power2 > 0) { ins->opcode = OP_SHL_IMM; ins->inst_imm = power2; } } break; case OP_LOAD_MEMBASE: case OP_LOADI4_MEMBASE: /* * OP_STORE_MEMBASE_REG reg, offset(basereg) * OP_LOAD_MEMBASE offset(basereg), reg */ if (last_ins && (last_ins->opcode == OP_STOREI4_MEMBASE_REG || last_ins->opcode == OP_STORE_MEMBASE_REG) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { if (ins->dreg == last_ins->sreg1) { last_ins->next = ins->next; ins = ins->next; continue; } else { //static int c = 0; printf ("MATCHX %s %d\n", cfg->method->name,c++); ins->opcode = OP_MOVE; ins->sreg1 = last_ins->sreg1; } /* * Note: reg1 must be different from the basereg in the second load * OP_LOAD_MEMBASE offset(basereg), reg1 * OP_LOAD_MEMBASE offset(basereg), reg2 * --> * OP_LOAD_MEMBASE offset(basereg), reg1 * OP_MOVE reg1, reg2 */ } if (last_ins && (last_ins->opcode == OP_LOADI4_MEMBASE || last_ins->opcode == OP_LOAD_MEMBASE) && ins->inst_basereg != last_ins->dreg && ins->inst_basereg == last_ins->inst_basereg && ins->inst_offset == last_ins->inst_offset) { if (ins->dreg == last_ins->dreg) { last_ins->next = ins->next; ins = ins->next; continue; } else { ins->opcode = OP_MOVE; ins->sreg1 = last_ins->dreg; } //g_assert_not_reached (); #if 0 /* * OP_STORE_MEMBASE_IMM imm, offset(basereg) * OP_LOAD_MEMBASE offset(basereg), reg * --> * OP_STORE_MEMBASE_IMM imm, offset(basereg) * OP_ICONST reg, imm */ } else if (last_ins && (last_ins->opcode == OP_STOREI4_MEMBASE_IMM || last_ins->opcode == OP_STORE_MEMBASE_IMM) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { //static int c = 0; printf ("MATCHX %s %d\n", cfg->method->name,c++); ins->opcode = OP_ICONST; ins->inst_c0 = last_ins->inst_imm; g_assert_not_reached (); // check this rule #endif } break; case OP_LOADU1_MEMBASE: case OP_LOADI1_MEMBASE: if (last_ins && (last_ins->opcode == OP_STOREI1_MEMBASE_REG) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { if (ins->dreg == last_ins->sreg1) { last_ins->next = ins->next; ins = ins->next; continue; } else { //static int c = 0; printf ("MATCHX %s %d\n", cfg->method->name,c++); ins->opcode = OP_MOVE; ins->sreg1 = last_ins->sreg1; } } break; case OP_LOADU2_MEMBASE: case OP_LOADI2_MEMBASE: if (last_ins && (last_ins->opcode == OP_STOREI2_MEMBASE_REG) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { if (ins->dreg == last_ins->sreg1) { last_ins->next = ins->next; ins = ins->next; continue; } else { //static int c = 0; printf ("MATCHX %s %d\n", cfg->method->name,c++); ins->opcode = OP_MOVE; ins->sreg1 = last_ins->sreg1; } } break; case CEE_CONV_I4: case CEE_CONV_U4: case OP_MOVE: case OP_SETREG: ins->opcode = OP_MOVE; /* * OP_MOVE reg, reg */ if (ins->dreg == ins->sreg1) { if (last_ins) last_ins->next = ins->next; ins = ins->next; continue; } /* * OP_MOVE sreg, dreg * OP_MOVE dreg, sreg */ if (last_ins && last_ins->opcode == OP_MOVE && ins->sreg1 == last_ins->dreg && ins->dreg == last_ins->sreg1) { last_ins->next = ins->next; ins = ins->next; continue; } break; } last_ins = ins; ins = ins->next; } bb->last_ins = last_ins; } /* * the branch_cc_table should maintain the order of these * opcodes. case CEE_BEQ: case CEE_BGE: case CEE_BGT: case CEE_BLE: case CEE_BLT: case CEE_BNE_UN: case CEE_BGE_UN: case CEE_BGT_UN: case CEE_BLE_UN: case CEE_BLT_UN: */ static const guchar branch_cc_table [] = { ARMCOND_EQ, ARMCOND_GE, ARMCOND_GT, ARMCOND_LE, ARMCOND_LT, ARMCOND_NE, ARMCOND_HS, ARMCOND_HI, ARMCOND_LS, ARMCOND_LO }; static void insert_after_ins (MonoBasicBlock *bb, MonoInst *ins, MonoInst *to_insert) { if (ins == NULL) { ins = bb->code; bb->code = to_insert; to_insert->next = ins; } else { to_insert->next = ins->next; ins->next = to_insert; } } #define NEW_INS(cfg,dest,op) do { \ (dest) = mono_mempool_alloc0 ((cfg)->mempool, sizeof (MonoInst)); \ (dest)->opcode = (op); \ insert_after_ins (bb, last_ins, (dest)); \ } while (0) static int map_to_reg_reg_op (int op) { switch (op) { case OP_ADD_IMM: return CEE_ADD; case OP_SUB_IMM: return CEE_SUB; case OP_AND_IMM: return CEE_AND; case OP_COMPARE_IMM: return OP_COMPARE; case OP_ADDCC_IMM: return OP_ADDCC; case OP_ADC_IMM: return OP_ADC; case OP_SUBCC_IMM: return OP_SUBCC; case OP_SBB_IMM: return OP_SBB; case OP_OR_IMM: return CEE_OR; case OP_XOR_IMM: return CEE_XOR; case OP_LOAD_MEMBASE: return OP_LOAD_MEMINDEX; case OP_LOADI4_MEMBASE: return OP_LOADI4_MEMINDEX; case OP_LOADU4_MEMBASE: return OP_LOADU4_MEMINDEX; case OP_LOADU1_MEMBASE: return OP_LOADU1_MEMINDEX; case OP_LOADI2_MEMBASE: return OP_LOADI2_MEMINDEX; case OP_LOADU2_MEMBASE: return OP_LOADU2_MEMINDEX; case OP_LOADI1_MEMBASE: return OP_LOADI1_MEMINDEX; case OP_STOREI1_MEMBASE_REG: return OP_STOREI1_MEMINDEX; case OP_STOREI2_MEMBASE_REG: return OP_STOREI2_MEMINDEX; case OP_STOREI4_MEMBASE_REG: return OP_STOREI4_MEMINDEX; case OP_STORE_MEMBASE_REG: return OP_STORE_MEMINDEX; case OP_STORER4_MEMBASE_REG: return OP_STORER4_MEMINDEX; case OP_STORER8_MEMBASE_REG: return OP_STORER8_MEMINDEX; case OP_STORE_MEMBASE_IMM: return OP_STORE_MEMBASE_REG; case OP_STOREI1_MEMBASE_IMM: return OP_STOREI1_MEMBASE_REG; case OP_STOREI2_MEMBASE_IMM: return OP_STOREI2_MEMBASE_REG; case OP_STOREI4_MEMBASE_IMM: return OP_STOREI4_MEMBASE_REG; } g_assert_not_reached (); } /* * Remove from the instruction list the instructions that can't be * represented with very simple instructions with no register * requirements. */ static void mono_arch_lowering_pass (MonoCompile *cfg, MonoBasicBlock *bb) { MonoInst *ins, *next, *temp, *last_ins = NULL; int rot_amount, imm8, low_imm; /* setup the virtual reg allocator */ if (bb->max_ireg > cfg->rs->next_vireg) cfg->rs->next_vireg = bb->max_ireg; ins = bb->code; while (ins) { loop_start: switch (ins->opcode) { case OP_ADD_IMM: case OP_SUB_IMM: case OP_AND_IMM: case OP_COMPARE_IMM: case OP_ADDCC_IMM: case OP_ADC_IMM: case OP_SUBCC_IMM: case OP_SBB_IMM: case OP_OR_IMM: case OP_XOR_IMM: if ((imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount)) < 0) { NEW_INS (cfg, temp, OP_ICONST); temp->inst_c0 = ins->inst_imm; temp->dreg = mono_regstate_next_int (cfg->rs); ins->sreg2 = temp->dreg; ins->opcode = map_to_reg_reg_op (ins->opcode); } break; case OP_MUL_IMM: if (ins->inst_imm == 1) { ins->opcode = OP_MOVE; break; } if (ins->inst_imm == 0) { ins->opcode = OP_ICONST; ins->inst_c0 = 0; break; } imm8 = mono_is_power_of_two (ins->inst_imm); if (imm8 > 0) { ins->opcode = OP_SHL_IMM; ins->inst_imm = imm8; break; } NEW_INS (cfg, temp, OP_ICONST); temp->inst_c0 = ins->inst_imm; temp->dreg = mono_regstate_next_int (cfg->rs); ins->sreg2 = temp->dreg; ins->opcode = CEE_MUL; break; case OP_LOAD_MEMBASE: case OP_LOADI4_MEMBASE: case OP_LOADU4_MEMBASE: case OP_LOADU1_MEMBASE: /* we can do two things: load the immed in a register * and use an indexed load, or see if the immed can be * represented as an ad_imm + a load with a smaller offset * that fits. We just do the first for now, optimize later. */ if (arm_is_imm12 (ins->inst_offset)) break; NEW_INS (cfg, temp, OP_ICONST); temp->inst_c0 = ins->inst_offset; temp->dreg = mono_regstate_next_int (cfg->rs); ins->sreg2 = temp->dreg; ins->opcode = map_to_reg_reg_op (ins->opcode); break; case OP_LOADI2_MEMBASE: case OP_LOADU2_MEMBASE: case OP_LOADI1_MEMBASE: if (arm_is_imm8 (ins->inst_offset)) break; NEW_INS (cfg, temp, OP_ICONST); temp->inst_c0 = ins->inst_offset; temp->dreg = mono_regstate_next_int (cfg->rs); ins->sreg2 = temp->dreg; ins->opcode = map_to_reg_reg_op (ins->opcode); break; case OP_LOADR4_MEMBASE: case OP_LOADR8_MEMBASE: if (arm_is_fpimm8 (ins->inst_offset)) break; low_imm = ins->inst_offset & 0x1ff; if ((imm8 = mono_arm_is_rotated_imm8 (ins->inst_offset & ~0x1ff, &rot_amount)) >= 0) { NEW_INS (cfg, temp, OP_ADD_IMM); temp->inst_imm = ins->inst_offset & ~0x1ff; temp->sreg1 = ins->inst_basereg; temp->dreg = mono_regstate_next_int (cfg->rs); ins->inst_basereg = temp->dreg; ins->inst_offset = low_imm; break; } /* FPA doesn't have indexed load instructions */ g_assert_not_reached (); break; case OP_STORE_MEMBASE_REG: case OP_STOREI4_MEMBASE_REG: case OP_STOREI1_MEMBASE_REG: if (arm_is_imm12 (ins->inst_offset)) break; NEW_INS (cfg, temp, OP_ICONST); temp->inst_c0 = ins->inst_offset; temp->dreg = mono_regstate_next_int (cfg->rs); ins->sreg2 = temp->dreg; ins->opcode = map_to_reg_reg_op (ins->opcode); break; case OP_STOREI2_MEMBASE_REG: if (arm_is_imm8 (ins->inst_offset)) break; NEW_INS (cfg, temp, OP_ICONST); temp->inst_c0 = ins->inst_offset; temp->dreg = mono_regstate_next_int (cfg->rs); ins->sreg2 = temp->dreg; ins->opcode = map_to_reg_reg_op (ins->opcode); break; case OP_STORER4_MEMBASE_REG: case OP_STORER8_MEMBASE_REG: if (arm_is_fpimm8 (ins->inst_offset)) break; low_imm = ins->inst_offset & 0x1ff; if ((imm8 = mono_arm_is_rotated_imm8 (ins->inst_offset & ~ 0x1ff, &rot_amount)) >= 0 && arm_is_fpimm8 (low_imm)) { NEW_INS (cfg, temp, OP_ADD_IMM); temp->inst_imm = ins->inst_offset & ~0x1ff; temp->sreg1 = ins->inst_destbasereg; temp->dreg = mono_regstate_next_int (cfg->rs); ins->inst_destbasereg = temp->dreg; ins->inst_offset = low_imm; break; } /*g_print ("fail with: %d (%d, %d)\n", ins->inst_offset, ins->inst_offset & ~0x1ff, low_imm);*/ /* FPA doesn't have indexed store instructions */ g_assert_not_reached (); break; case OP_STORE_MEMBASE_IMM: case OP_STOREI1_MEMBASE_IMM: case OP_STOREI2_MEMBASE_IMM: case OP_STOREI4_MEMBASE_IMM: NEW_INS (cfg, temp, OP_ICONST); temp->inst_c0 = ins->inst_imm; temp->dreg = mono_regstate_next_int (cfg->rs); ins->sreg1 = temp->dreg; ins->opcode = map_to_reg_reg_op (ins->opcode); last_ins = temp; goto loop_start; /* make it handle the possibly big ins->inst_offset */ } last_ins = ins; ins = ins->next; } bb->last_ins = last_ins; bb->max_ireg = cfg->rs->next_vireg; } void mono_arch_local_regalloc (MonoCompile *cfg, MonoBasicBlock *bb) { if (!bb->code) return; mono_arch_lowering_pass (cfg, bb); mono_local_regalloc (cfg, bb); } static guchar* emit_float_to_int (MonoCompile *cfg, guchar *code, int dreg, int sreg, int size, gboolean is_signed) { /* sreg is a float, dreg is an integer reg */ ARM_FIXZ (code, dreg, sreg); if (!is_signed) { if (size == 1) ARM_AND_REG_IMM8 (code, dreg, dreg, 0xff); else if (size == 2) { ARM_SHL_IMM (code, dreg, dreg, 16); ARM_SHR_IMM (code, dreg, dreg, 16); } } else { if (size == 1) { ARM_SHL_IMM (code, dreg, dreg, 24); ARM_SAR_IMM (code, dreg, dreg, 24); } else if (size == 2) { ARM_SHL_IMM (code, dreg, dreg, 16); ARM_SAR_IMM (code, dreg, dreg, 16); } } return code; } typedef struct { guchar *code; const guchar *target; int absolute; int found; } PatchData; #define is_call_imm(diff) ((gint)(diff) >= -33554432 && (gint)(diff) <= 33554431) static int search_thunk_slot (void *data, int csize, int bsize, void *user_data) { PatchData *pdata = (PatchData*)user_data; guchar *code = data; guint32 *thunks = data; guint32 *endthunks = (guint32*)(code + bsize); int i, count = 0; int difflow, diffhigh; /* always ensure a call from pdata->code can reach to the thunks without further thunks */ difflow = (char*)pdata->code - (char*)thunks; diffhigh = (char*)pdata->code - (char*)endthunks; if (!((is_call_imm (thunks) && is_call_imm (endthunks)) || (is_call_imm (difflow) && is_call_imm (diffhigh)))) return 0; /* * The thunk is composed of 3 words: * load constant from thunks [2] into ARM_IP * bx to ARM_IP * address constant * Note that the LR register is already setup */ //g_print ("thunk nentries: %d\n", ((char*)endthunks - (char*)thunks)/16); if ((pdata->found == 2) || (pdata->code >= code && pdata->code <= code + csize)) { while (thunks < endthunks) { //g_print ("looking for target: %p at %p (%08x-%08x)\n", pdata->target, thunks, thunks [0], thunks [1]); if (thunks [2] == (guint32)pdata->target) { arm_patch (pdata->code, (guchar*)thunks); mono_arch_flush_icache (pdata->code, 4); pdata->found = 1; return 1; } else if ((thunks [0] == 0) && (thunks [1] == 0) && (thunks [2] == 0)) { /* found a free slot instead: emit thunk */ code = (guchar*)thunks; ARM_LDR_IMM (code, ARMREG_IP, ARMREG_PC, 0); ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_IP); thunks [2] = (guint32)pdata->target; mono_arch_flush_icache ((guchar*)thunks, 12); arm_patch (pdata->code, (guchar*)thunks); mono_arch_flush_icache (pdata->code, 4); pdata->found = 1; return 1; } /* skip 12 bytes, the size of the thunk */ thunks += 3; count++; } //g_print ("failed thunk lookup for %p from %p at %p (%d entries)\n", pdata->target, pdata->code, data, count); } return 0; } static void handle_thunk (int absolute, guchar *code, const guchar *target) { MonoDomain *domain = mono_domain_get (); PatchData pdata; pdata.code = code; pdata.target = target; pdata.absolute = absolute; pdata.found = 0; mono_domain_lock (domain); mono_code_manager_foreach (domain->code_mp, search_thunk_slot, &pdata); if (!pdata.found) { /* this uses the first available slot */ pdata.found = 2; mono_code_manager_foreach (domain->code_mp, search_thunk_slot, &pdata); } mono_domain_unlock (domain); if (pdata.found != 1) g_print ("thunk failed for %p from %p\n", target, code); g_assert (pdata.found == 1); } void arm_patch (guchar *code, const guchar *target) { guint32 ins = *(guint32*)code; guint32 prim = (ins >> 25) & 7; guint32 ovf; //g_print ("patching 0x%08x (0x%08x) to point to 0x%08x\n", code, ins, target); if (prim == 5) { /* 101b */ /* the diff starts 8 bytes from the branch opcode */ gint diff = target - code - 8; if (diff >= 0) { if (diff <= 33554431) { diff >>= 2; ins = (ins & 0xff000000) | diff; *(guint32*)code = ins; return; } } else { /* diff between 0 and -33554432 */ if (diff >= -33554432) { diff >>= 2; ins = (ins & 0xff000000) | (diff & ~0xff000000); *(guint32*)code = ins; return; } } handle_thunk (TRUE, code, target); return; } if ((ins & 0x0ffffff0) == 0x12fff10) { /* branch and exchange: the address is constructed in a reg */ g_assert_not_reached (); } else { guint32 ccode [3]; guint32 *tmp = ccode; ARM_LDR_IMM (tmp, ARMREG_IP, ARMREG_PC, 0); ARM_MOV_REG_REG (tmp, ARMREG_LR, ARMREG_PC); ARM_MOV_REG_REG (tmp, ARMREG_PC, ARMREG_IP); if (ins == ccode [2]) { tmp = (guint32*)code; tmp [-1] = (guint32)target; return; } if (ins == ccode [0]) { tmp = (guint32*)code; tmp [2] = (guint32)target; return; } g_assert_not_reached (); } // g_print ("patched with 0x%08x\n", ins); } /* * Return the >= 0 uimm8 value if val can be represented with a byte + rotation * (with the rotation amount in *rot_amount. rot_amount is already adjusted * to be used with the emit macros. * Return -1 otherwise. */ int mono_arm_is_rotated_imm8 (guint32 val, gint *rot_amount) { guint32 res, i; for (i = 0; i < 31; i+= 2) { res = (val << (32 - i)) | (val >> i); if (res & ~0xff) continue; *rot_amount = i? 32 - i: 0; return res; } return -1; } /* * Emits in code a sequence of instructions that load the value 'val' * into the dreg register. Uses at most 4 instructions. */ guint8* mono_arm_emit_load_imm (guint8 *code, int dreg, guint32 val) { int imm8, rot_amount; #if 0 ARM_LDR_IMM (code, dreg, ARMREG_PC, 0); /* skip the constant pool */ ARM_B (code, 0); *(int*)code = val; code += 4; return code; #endif if ((imm8 = mono_arm_is_rotated_imm8 (val, &rot_amount)) >= 0) { ARM_MOV_REG_IMM (code, dreg, imm8, rot_amount); } else if ((imm8 = mono_arm_is_rotated_imm8 (~val, &rot_amount)) >= 0) { ARM_MVN_REG_IMM (code, dreg, imm8, rot_amount); } else { if (val & 0xFF) { ARM_MOV_REG_IMM8 (code, dreg, (val & 0xFF)); if (val & 0xFF00) { ARM_ADD_REG_IMM (code, dreg, dreg, (val & 0xFF00) >> 8, 24); } if (val & 0xFF0000) { ARM_ADD_REG_IMM (code, dreg, dreg, (val & 0xFF0000) >> 16, 16); } if (val & 0xFF000000) { ARM_ADD_REG_IMM (code, dreg, dreg, (val & 0xFF000000) >> 24, 8); } } else if (val & 0xFF00) { ARM_MOV_REG_IMM (code, dreg, (val & 0xFF00) >> 8, 24); if (val & 0xFF0000) { ARM_ADD_REG_IMM (code, dreg, dreg, (val & 0xFF0000) >> 16, 16); } if (val & 0xFF000000) { ARM_ADD_REG_IMM (code, dreg, dreg, (val & 0xFF000000) >> 24, 8); } } else if (val & 0xFF0000) { ARM_MOV_REG_IMM (code, dreg, (val & 0xFF0000) >> 16, 16); if (val & 0xFF000000) { ARM_ADD_REG_IMM (code, dreg, dreg, (val & 0xFF000000) >> 24, 8); } } //g_assert_not_reached (); } return code; } void mono_arch_output_basic_block (MonoCompile *cfg, MonoBasicBlock *bb) { MonoInst *ins; MonoCallInst *call; guint offset; guint8 *code = cfg->native_code + cfg->code_len; MonoInst *last_ins = NULL; guint last_offset = 0; int max_len, cpos; int imm8, rot_amount; if (cfg->opt & MONO_OPT_PEEPHOLE) peephole_pass (cfg, bb); /* we don't align basic blocks of loops on arm */ if (cfg->verbose_level > 2) g_print ("Basic block %d starting at offset 0x%x\n", bb->block_num, bb->native_offset); cpos = bb->max_offset; if (cfg->prof_options & MONO_PROFILE_COVERAGE) { //MonoCoverageInfo *cov = mono_get_coverage_info (cfg->method); //g_assert (!mono_compile_aot); //cpos += 6; //if (bb->cil_code) // cov->data [bb->dfn].iloffset = bb->cil_code - cfg->cil_code; /* this is not thread save, but good enough */ /* fixme: howto handle overflows? */ //x86_inc_mem (code, &cov->data [bb->dfn].count); } ins = bb->code; while (ins) { offset = code - cfg->native_code; max_len = ((guint8 *)arm_cpu_desc [ins->opcode])[MONO_INST_LEN]; if (offset > (cfg->code_size - max_len - 16)) { cfg->code_size *= 2; cfg->native_code = g_realloc (cfg->native_code, cfg->code_size); code = cfg->native_code + offset; } // if (ins->cil_code) // g_print ("cil code\n"); mono_debug_record_line_number (cfg, ins, offset); switch (ins->opcode) { case OP_TLS_GET: g_assert_not_reached (); break; /*case OP_BIGMUL: ppc_mullw (code, ppc_r4, ins->sreg1, ins->sreg2); ppc_mulhw (code, ppc_r3, ins->sreg1, ins->sreg2); break; case OP_BIGMUL_UN: ppc_mullw (code, ppc_r4, ins->sreg1, ins->sreg2); ppc_mulhwu (code, ppc_r3, ins->sreg1, ins->sreg2); break;*/ case OP_STOREI1_MEMBASE_IMM: code = mono_arm_emit_load_imm (code, ARMREG_LR, ins->inst_imm & 0xFF); g_assert (arm_is_imm12 (ins->inst_offset)); ARM_STRB_IMM (code, ARMREG_LR, ins->inst_destbasereg, ins->inst_offset); break; case OP_STOREI2_MEMBASE_IMM: code = mono_arm_emit_load_imm (code, ARMREG_LR, ins->inst_imm & 0xFFFF); g_assert (arm_is_imm8 (ins->inst_offset)); ARM_STRH_IMM (code, ARMREG_LR, ins->inst_destbasereg, ins->inst_offset); break; case OP_STORE_MEMBASE_IMM: case OP_STOREI4_MEMBASE_IMM: code = mono_arm_emit_load_imm (code, ARMREG_LR, ins->inst_imm); g_assert (arm_is_imm12 (ins->inst_offset)); ARM_STR_IMM (code, ARMREG_LR, ins->inst_destbasereg, ins->inst_offset); break; case OP_STOREI1_MEMBASE_REG: g_assert (arm_is_imm12 (ins->inst_offset)); ARM_STRB_IMM (code, ins->sreg1, ins->inst_destbasereg, ins->inst_offset); break; case OP_STOREI2_MEMBASE_REG: g_assert (arm_is_imm8 (ins->inst_offset)); ARM_STRH_IMM (code, ins->sreg1, ins->inst_destbasereg, ins->inst_offset); break; case OP_STORE_MEMBASE_REG: case OP_STOREI4_MEMBASE_REG: /* this case is special, since it happens for spill code after lowering has been called */ if (arm_is_imm12 (ins->inst_offset)) { ARM_STR_IMM (code, ins->sreg1, ins->inst_destbasereg, ins->inst_offset); } else { code = mono_arm_emit_load_imm (code, ARMREG_LR, ins->inst_offset); ARM_STR_REG_REG (code, ins->sreg1, ins->inst_destbasereg, ARMREG_LR); } break; case OP_STOREI1_MEMINDEX: ARM_STRB_REG_REG (code, ins->sreg1, ins->inst_destbasereg, ins->sreg2); break; case OP_STOREI2_MEMINDEX: /* note: the args are reversed in the macro */ ARM_STRH_REG_REG (code, ins->inst_destbasereg, ins->sreg1, ins->sreg2); break; case OP_STORE_MEMINDEX: case OP_STOREI4_MEMINDEX: ARM_STR_REG_REG (code, ins->sreg1, ins->inst_destbasereg, ins->sreg2); break; case CEE_LDIND_I: case CEE_LDIND_I4: case CEE_LDIND_U4: g_assert_not_reached (); break; case OP_LOADU4_MEM: g_assert_not_reached (); break; case OP_LOAD_MEMINDEX: case OP_LOADI4_MEMINDEX: case OP_LOADU4_MEMINDEX: ARM_LDR_REG_REG (code, ins->dreg, ins->inst_basereg, ins->sreg2); break; case OP_LOADI1_MEMINDEX: /* note: the args are reversed in the macro */ ARM_LDRSB_REG_REG (code, ins->inst_basereg, ins->dreg, ins->sreg2); break; case OP_LOADU1_MEMINDEX: ARM_LDRB_REG_REG (code, ins->dreg, ins->inst_basereg, ins->sreg2); break; case OP_LOADI2_MEMINDEX: /* note: the args are reversed in the macro */ ARM_LDRSH_REG_REG (code, ins->inst_basereg, ins->dreg, ins->sreg2); break; case OP_LOADU2_MEMINDEX: /* note: the args are reversed in the macro */ ARM_LDRH_REG_REG (code, ins->inst_basereg, ins->dreg, ins->sreg2); break; case OP_LOAD_MEMBASE: case OP_LOADI4_MEMBASE: case OP_LOADU4_MEMBASE: /* this case is special, since it happens for spill code after lowering has been called */ if (arm_is_imm12 (ins->inst_offset)) { ARM_LDR_IMM (code, ins->dreg, ins->inst_basereg, ins->inst_offset); } else { code = mono_arm_emit_load_imm (code, ARMREG_LR, ins->inst_offset); ARM_LDR_REG_REG (code, ins->dreg, ins->inst_basereg, ARMREG_LR); } break; case OP_LOADI1_MEMBASE: g_assert (arm_is_imm8 (ins->inst_offset)); ARM_LDRSB_IMM (code, ins->dreg, ins->inst_basereg, ins->inst_offset); break; case OP_LOADU1_MEMBASE: g_assert (arm_is_imm12 (ins->inst_offset)); ARM_LDRB_IMM (code, ins->dreg, ins->inst_basereg, ins->inst_offset); break; case OP_LOADU2_MEMBASE: g_assert (arm_is_imm8 (ins->inst_offset)); ARM_LDRH_IMM (code, ins->dreg, ins->inst_basereg, ins->inst_offset); break; case OP_LOADI2_MEMBASE: g_assert (arm_is_imm8 (ins->inst_offset)); ARM_LDRSH_IMM (code, ins->dreg, ins->inst_basereg, ins->inst_offset); break; case CEE_CONV_I1: ARM_SHL_IMM (code, ins->dreg, ins->sreg1, 24); ARM_SAR_IMM (code, ins->dreg, ins->dreg, 24); break; case CEE_CONV_I2: ARM_SHL_IMM (code, ins->dreg, ins->sreg1, 16); ARM_SAR_IMM (code, ins->dreg, ins->dreg, 16); break; case CEE_CONV_U1: ARM_AND_REG_IMM8 (code, ins->dreg, ins->sreg1, 0xff); break; case CEE_CONV_U2: ARM_SHL_IMM (code, ins->dreg, ins->sreg1, 16); ARM_SHR_IMM (code, ins->dreg, ins->dreg, 16); break; case OP_COMPARE: ARM_CMP_REG_REG (code, ins->sreg1, ins->sreg2); break; case OP_COMPARE_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_CMP_REG_IMM (code, ins->sreg1, imm8, rot_amount); break; case OP_X86_TEST_NULL: g_assert_not_reached (); break; case CEE_BREAK: *(int*)code = 0xe7f001f0; *(int*)code = 0xef9f0001; code += 4; //ARM_DBRK (code); break; case OP_ADDCC: ARM_ADDS_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case CEE_ADD: ARM_ADD_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_ADC: ARM_ADCS_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_ADDCC_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_ADDS_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case OP_ADD_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_ADD_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case OP_ADC_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_ADCS_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case CEE_ADD_OVF: ARM_ADD_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_FALSE, PPC_BR_EQ, "OverflowException"); break; case CEE_ADD_OVF_UN: ARM_ADD_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_FALSE, PPC_BR_EQ, "OverflowException"); break; case CEE_SUB_OVF: ARM_SUB_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_FALSE, PPC_BR_EQ, "OverflowException"); break; case CEE_SUB_OVF_UN: ARM_SUB_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_TRUE, PPC_BR_EQ, "OverflowException"); break; case OP_ADD_OVF_CARRY: ARM_ADCS_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_FALSE, PPC_BR_EQ, "OverflowException"); break; case OP_ADD_OVF_UN_CARRY: ARM_ADCS_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_FALSE, PPC_BR_EQ, "OverflowException"); break; case OP_SUB_OVF_CARRY: ARM_SBCS_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_FALSE, PPC_BR_EQ, "OverflowException"); break; case OP_SUB_OVF_UN_CARRY: ARM_SBCS_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_TRUE, PPC_BR_EQ, "OverflowException"); break; case OP_SUBCC: ARM_SUBS_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_SUBCC_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_SUBS_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case CEE_SUB: ARM_SUB_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_SBB: ARM_SBCS_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_SUB_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_SUB_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case OP_SBB_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_SBCS_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case OP_ARM_RSBS_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_RSBS_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case OP_ARM_RSC_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_RSC_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case CEE_AND: ARM_AND_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_AND_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_AND_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case CEE_DIV: case CEE_DIV_UN: case OP_DIV_IMM: case CEE_REM: case CEE_REM_UN: case OP_REM_IMM: /* crappy ARM arch doesn't have a DIV instruction */ g_assert_not_reached (); case CEE_OR: ARM_ORR_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_OR_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_ORR_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case CEE_XOR: ARM_EOR_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_XOR_IMM: imm8 = mono_arm_is_rotated_imm8 (ins->inst_imm, &rot_amount); g_assert (imm8 >= 0); ARM_EOR_REG_IMM (code, ins->dreg, ins->sreg1, imm8, rot_amount); break; case CEE_SHL: ARM_SHL_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_SHL_IMM: if (ins->inst_imm) ARM_SHL_IMM (code, ins->dreg, ins->sreg1, (ins->inst_imm & 0x1f)); break; case CEE_SHR: ARM_SAR_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_SHR_IMM: if (ins->inst_imm) ARM_SAR_IMM (code, ins->dreg, ins->sreg1, (ins->inst_imm & 0x1f)); break; case OP_SHR_UN_IMM: if (ins->inst_imm) ARM_SHR_IMM (code, ins->dreg, ins->sreg1, (ins->inst_imm & 0x1f)); break; case CEE_SHR_UN: ARM_SHR_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case CEE_NOT: ARM_MVN_REG_REG (code, ins->dreg, ins->sreg1); break; case CEE_NEG: ARM_RSB_REG_IMM8 (code, ins->dreg, ins->sreg1, 0); break; case CEE_MUL: if (ins->dreg == ins->sreg2) ARM_MUL_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); else ARM_MUL_REG_REG (code, ins->dreg, ins->sreg2, ins->sreg1); break; case OP_MUL_IMM: g_assert_not_reached (); break; case CEE_MUL_OVF: /* FIXME: handle ovf/ sreg2 != dreg */ ARM_MUL_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case CEE_MUL_OVF_UN: /* FIXME: handle ovf/ sreg2 != dreg */ ARM_MUL_REG_REG (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_ICONST: case OP_SETREGIMM: code = mono_arm_emit_load_imm (code, ins->dreg, ins->inst_c0); break; case OP_AOTCONST: g_assert_not_reached (); mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_i1, ins->inst_p0); break; case CEE_CONV_I4: case CEE_CONV_U4: case OP_MOVE: case OP_SETREG: if (ins->dreg != ins->sreg1) ARM_MOV_REG_REG (code, ins->dreg, ins->sreg1); break; case OP_SETLRET: { int saved = ins->sreg2; if (ins->sreg2 == ARM_LSW_REG) { ARM_MOV_REG_REG (code, ARMREG_LR, ins->sreg2); saved = ARMREG_LR; } if (ins->sreg1 != ARM_LSW_REG) ARM_MOV_REG_REG (code, ARM_LSW_REG, ins->sreg1); if (saved != ARM_MSW_REG) ARM_MOV_REG_REG (code, ARM_MSW_REG, saved); break; } case OP_SETFREG: case OP_FMOVE: ARM_MVFD (code, ins->dreg, ins->sreg1); break; case OP_FCONV_TO_R4: ARM_MVFS (code, ins->dreg, ins->sreg1); break; case CEE_JMP: /* * Keep in sync with mono_arch_emit_epilog */ g_assert (!cfg->method->save_lmf); code = emit_big_add (code, ARMREG_SP, cfg->frame_reg, cfg->stack_usage); ARM_POP_NWB (code, cfg->used_int_regs | ((1 << ARMREG_SP)) | ((1 << ARMREG_LR))); mono_add_patch_info (cfg, (guint8*) code - cfg->native_code, MONO_PATCH_INFO_METHOD_JUMP, ins->inst_p0); ARM_B (code, 0); break; case OP_CHECK_THIS: /* ensure ins->sreg1 is not NULL */ ARM_LDR_IMM (code, ARMREG_LR, ins->sreg1, 0); break; case OP_ARGLIST: { #if ARM_PORT if (ppc_is_imm16 (cfg->sig_cookie + cfg->stack_usage)) { ppc_addi (code, ppc_r11, cfg->frame_reg, cfg->sig_cookie + cfg->stack_usage); } else { ppc_load (code, ppc_r11, cfg->sig_cookie + cfg->stack_usage); ppc_add (code, ppc_r11, cfg->frame_reg, ppc_r11); } ppc_stw (code, ppc_r11, 0, ins->sreg1); #endif break; } case OP_FCALL: case OP_LCALL: case OP_VCALL: case OP_VOIDCALL: case CEE_CALL: call = (MonoCallInst*)ins; if (ins->flags & MONO_INST_HAS_METHOD) mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_METHOD, call->method); else mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_ABS, call->fptr); if (cfg->method->dynamic) { ARM_LDR_IMM (code, ARMREG_IP, ARMREG_PC, 0); ARM_B (code, 0); *(gpointer*)code = NULL; code += 4; ARM_MOV_REG_REG (code, ARMREG_LR, ARMREG_PC); ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_IP); } else { ARM_BL (code, 0); } break; case OP_FCALL_REG: case OP_LCALL_REG: case OP_VCALL_REG: case OP_VOIDCALL_REG: case OP_CALL_REG: ARM_MOV_REG_REG (code, ARMREG_LR, ARMREG_PC); ARM_MOV_REG_REG (code, ARMREG_PC, ins->sreg1); break; case OP_FCALL_MEMBASE: case OP_LCALL_MEMBASE: case OP_VCALL_MEMBASE: case OP_VOIDCALL_MEMBASE: case OP_CALL_MEMBASE: g_assert (arm_is_imm12 (ins->inst_offset)); g_assert (ins->sreg1 != ARMREG_LR); ARM_MOV_REG_REG (code, ARMREG_LR, ARMREG_PC); ARM_LDR_IMM (code, ARMREG_PC, ins->sreg1, ins->inst_offset); break; case OP_OUTARG: g_assert_not_reached (); break; case OP_LOCALLOC: { /* keep alignment */ int alloca_waste = cfg->param_area; alloca_waste += 7; alloca_waste &= ~7; /* round the size to 8 bytes */ ARM_ADD_REG_IMM8 (code, ins->dreg, ins->sreg1, 7); ARM_BIC_REG_IMM8 (code, ins->dreg, ins->sreg1, 7); ARM_ADD_REG_IMM8 (code, ins->dreg, ins->dreg, alloca_waste); ARM_SUB_REG_REG (code, ARMREG_SP, ARMREG_SP, ins->dreg); /* memzero the area: dreg holds the size, sp is the pointer */ if (ins->flags & MONO_INST_INIT) { guint8 *start_loop, *branch_to_cond; ARM_MOV_REG_IMM8 (code, ARMREG_LR, 0); branch_to_cond = code; ARM_B (code, 0); start_loop = code; ARM_STR_REG_REG (code, ARMREG_LR, ARMREG_SP, ins->dreg); arm_patch (branch_to_cond, code); /* decrement by 4 and set flags */ ARM_SUBS_REG_IMM8 (code, ins->dreg, ins->dreg, 4); ARM_B_COND (code, ARMCOND_LT, 0); arm_patch (code - 4, start_loop); } ARM_ADD_REG_IMM8 (code, ins->dreg, ARMREG_SP, alloca_waste); break; } case CEE_RET: g_assert_not_reached (); ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_LR); break; case CEE_THROW: { if (ins->sreg1 != ARMREG_R0) ARM_MOV_REG_REG (code, ARMREG_R0, ins->sreg1); mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_INTERNAL_METHOD, (gpointer)"mono_arch_throw_exception"); if (cfg->method->dynamic) { ARM_LDR_IMM (code, ARMREG_IP, ARMREG_PC, 0); ARM_B (code, 0); *(gpointer*)code = NULL; code += 4; ARM_MOV_REG_REG (code, ARMREG_LR, ARMREG_PC); ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_IP); } else { ARM_BL (code, 0); } break; } case OP_RETHROW: { if (ins->sreg1 != ARMREG_R0) ARM_MOV_REG_REG (code, ARMREG_R0, ins->sreg1); mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_INTERNAL_METHOD, (gpointer)"mono_arch_rethrow_exception"); if (cfg->method->dynamic) { ARM_LDR_IMM (code, ARMREG_IP, ARMREG_PC, 0); ARM_B (code, 0); *(gpointer*)code = NULL; code += 4; ARM_MOV_REG_REG (code, ARMREG_LR, ARMREG_PC); ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_IP); } else { ARM_BL (code, 0); } break; } case OP_START_HANDLER: if (arm_is_imm12 (ins->inst_left->inst_offset)) { ARM_STR_IMM (code, ARMREG_LR, ins->inst_left->inst_basereg, ins->inst_left->inst_offset); } else { code = mono_arm_emit_load_imm (code, ARMREG_IP, ins->inst_left->inst_offset); ARM_STR_REG_REG (code, ARMREG_LR, ins->inst_left->inst_basereg, ARMREG_IP); } break; case OP_ENDFILTER: if (ins->sreg1 != ARMREG_R0) ARM_MOV_REG_REG (code, ARMREG_R0, ins->sreg1); if (arm_is_imm12 (ins->inst_left->inst_offset)) { ARM_LDR_IMM (code, ARMREG_IP, ins->inst_left->inst_basereg, ins->inst_left->inst_offset); } else { g_assert (ARMREG_IP != ins->inst_left->inst_basereg); code = mono_arm_emit_load_imm (code, ARMREG_IP, ins->inst_left->inst_offset); ARM_LDR_REG_REG (code, ARMREG_IP, ins->inst_left->inst_basereg, ARMREG_IP); } ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_IP); break; case CEE_ENDFINALLY: if (arm_is_imm12 (ins->inst_left->inst_offset)) { ARM_LDR_IMM (code, ARMREG_IP, ins->inst_left->inst_basereg, ins->inst_left->inst_offset); } else { g_assert (ARMREG_IP != ins->inst_left->inst_basereg); code = mono_arm_emit_load_imm (code, ARMREG_IP, ins->inst_left->inst_offset); ARM_LDR_REG_REG (code, ARMREG_IP, ins->inst_left->inst_basereg, ARMREG_IP); } ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_IP); break; case OP_CALL_HANDLER: mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_BB, ins->inst_target_bb); ARM_BL (code, 0); break; case OP_LABEL: ins->inst_c0 = code - cfg->native_code; break; case CEE_BR: if (ins->flags & MONO_INST_BRLABEL) { /*if (ins->inst_i0->inst_c0) { ARM_B (code, 0); //x86_jump_code (code, cfg->native_code + ins->inst_i0->inst_c0); } else*/ { mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_LABEL, ins->inst_i0); ARM_B (code, 0); } } else { /*if (ins->inst_target_bb->native_offset) { ARM_B (code, 0); //x86_jump_code (code, cfg->native_code + ins->inst_target_bb->native_offset); } else*/ { mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_BB, ins->inst_target_bb); ARM_B (code, 0); } } break; case OP_BR_REG: ARM_MOV_REG_REG (code, ARMREG_PC, ins->sreg1); break; case CEE_SWITCH: /* * In the normal case we have: * ldr pc, [pc, ins->sreg1 << 2] * nop * If aot, we have: * ldr lr, [pc, ins->sreg1 << 2] * add pc, pc, lr * After follows the data. * FIXME: add aot support. */ max_len += 4 * GPOINTER_TO_INT (ins->klass); if (offset > (cfg->code_size - max_len - 16)) { cfg->code_size += max_len; cfg->code_size *= 2; cfg->native_code = g_realloc (cfg->native_code, cfg->code_size); code = cfg->native_code + offset; } ARM_LDR_REG_REG_SHIFT (code, ARMREG_PC, ARMREG_PC, ins->sreg1, ARMSHIFT_LSL, 2); ARM_NOP (code); code += 4 * GPOINTER_TO_INT (ins->klass); break; case OP_CEQ: ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_EQ); break; case OP_CLT: ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_LT); break; case OP_CLT_UN: ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_LO); break; case OP_CGT: ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_GT); break; case OP_CGT_UN: ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_HI); break; case OP_COND_EXC_EQ: case OP_COND_EXC_NE_UN: case OP_COND_EXC_LT: case OP_COND_EXC_LT_UN: case OP_COND_EXC_GT: case OP_COND_EXC_GT_UN: case OP_COND_EXC_GE: case OP_COND_EXC_GE_UN: case OP_COND_EXC_LE: case OP_COND_EXC_LE_UN: EMIT_COND_SYSTEM_EXCEPTION (ins->opcode - OP_COND_EXC_EQ, ins->inst_p1); break; case OP_COND_EXC_C: case OP_COND_EXC_OV: case OP_COND_EXC_NC: case OP_COND_EXC_NO: g_assert_not_reached (); break; case CEE_BEQ: case CEE_BNE_UN: case CEE_BLT: case CEE_BLT_UN: case CEE_BGT: case CEE_BGT_UN: case CEE_BGE: case CEE_BGE_UN: case CEE_BLE: case CEE_BLE_UN: EMIT_COND_BRANCH (ins, ins->opcode - CEE_BEQ); break; /* floating point opcodes */ case OP_R8CONST: /* FIXME: we can optimize the imm load by dealing with part of * the displacement in LDFD (aligning to 512). */ code = mono_arm_emit_load_imm (code, ARMREG_LR, (guint32)ins->inst_p0); ARM_LDFD (code, ins->dreg, ARMREG_LR, 0); break; case OP_R4CONST: code = mono_arm_emit_load_imm (code, ARMREG_LR, (guint32)ins->inst_p0); ARM_LDFS (code, ins->dreg, ARMREG_LR, 0); break; case OP_STORER8_MEMBASE_REG: g_assert (arm_is_fpimm8 (ins->inst_offset)); ARM_STFD (code, ins->sreg1, ins->inst_destbasereg, ins->inst_offset); break; case OP_LOADR8_MEMBASE: g_assert (arm_is_fpimm8 (ins->inst_offset)); ARM_LDFD (code, ins->dreg, ins->inst_basereg, ins->inst_offset); break; case OP_STORER4_MEMBASE_REG: g_assert (arm_is_fpimm8 (ins->inst_offset)); ARM_STFS (code, ins->sreg1, ins->inst_destbasereg, ins->inst_offset); break; case OP_LOADR4_MEMBASE: g_assert (arm_is_fpimm8 (ins->inst_offset)); ARM_LDFS (code, ins->dreg, ins->inst_basereg, ins->inst_offset); break; case CEE_CONV_R_UN: { int tmpreg; tmpreg = ins->dreg == 0? 1: 0; ARM_CMP_REG_IMM8 (code, ins->sreg1, 0); ARM_FLTD (code, ins->dreg, ins->sreg1); ARM_B_COND (code, ARMCOND_GE, 8); /* save the temp register */ ARM_SUB_REG_IMM8 (code, ARMREG_SP, ARMREG_SP, 8); ARM_STFD (code, tmpreg, ARMREG_SP, 0); ARM_LDFD (code, tmpreg, ARMREG_PC, 12); ARM_FPA_ADFD (code, ins->dreg, ins->dreg, tmpreg); ARM_LDFD (code, tmpreg, ARMREG_SP, 0); ARM_ADD_REG_IMM8 (code, ARMREG_SP, ARMREG_SP, 8); /* skip the constant pool */ ARM_B (code, 8); code += 4; *(int*)code = 0x41f00000; code += 4; *(int*)code = 0; code += 4; /* FIXME: adjust: * ldfltd ftemp, [pc, #8] 0x41f00000 0x00000000 * adfltd fdest, fdest, ftemp */ break; } case CEE_CONV_R4: ARM_FLTS (code, ins->dreg, ins->sreg1); break; case CEE_CONV_R8: ARM_FLTD (code, ins->dreg, ins->sreg1); break; case OP_X86_FP_LOAD_I8: g_assert_not_reached (); /*x86_fild_membase (code, ins->inst_basereg, ins->inst_offset, TRUE);*/ break; case OP_X86_FP_LOAD_I4: g_assert_not_reached (); /*x86_fild_membase (code, ins->inst_basereg, ins->inst_offset, FALSE);*/ break; case OP_FCONV_TO_I1: code = emit_float_to_int (cfg, code, ins->dreg, ins->sreg1, 1, TRUE); break; case OP_FCONV_TO_U1: code = emit_float_to_int (cfg, code, ins->dreg, ins->sreg1, 1, FALSE); break; case OP_FCONV_TO_I2: code = emit_float_to_int (cfg, code, ins->dreg, ins->sreg1, 2, TRUE); break; case OP_FCONV_TO_U2: code = emit_float_to_int (cfg, code, ins->dreg, ins->sreg1, 2, FALSE); break; case OP_FCONV_TO_I4: case OP_FCONV_TO_I: code = emit_float_to_int (cfg, code, ins->dreg, ins->sreg1, 4, TRUE); break; case OP_FCONV_TO_U4: case OP_FCONV_TO_U: code = emit_float_to_int (cfg, code, ins->dreg, ins->sreg1, 4, FALSE); break; case OP_FCONV_TO_I8: case OP_FCONV_TO_U8: g_assert_not_reached (); /* Implemented as helper calls */ break; case OP_LCONV_TO_R_UN: g_assert_not_reached (); /* Implemented as helper calls */ break; case OP_LCONV_TO_OVF_I: { #if ARM_PORT guint32 *negative_branch, *msword_positive_branch, *msword_negative_branch, *ovf_ex_target; // Check if its negative ppc_cmpi (code, 0, 0, ins->sreg1, 0); negative_branch = code; ppc_bc (code, PPC_BR_TRUE, PPC_BR_LT, 0); // Its positive msword == 0 ppc_cmpi (code, 0, 0, ins->sreg2, 0); msword_positive_branch = code; ppc_bc (code, PPC_BR_TRUE, PPC_BR_EQ, 0); ovf_ex_target = code; //EMIT_COND_SYSTEM_EXCEPTION_FLAGS (PPC_BR_ALWAYS, 0, "OverflowException"); // Negative ppc_patch (negative_branch, code); ppc_cmpi (code, 0, 0, ins->sreg2, -1); msword_negative_branch = code; ppc_bc (code, PPC_BR_FALSE, PPC_BR_EQ, 0); ppc_patch (msword_negative_branch, ovf_ex_target); ppc_patch (msword_positive_branch, code); if (ins->dreg != ins->sreg1) ppc_mr (code, ins->dreg, ins->sreg1); #endif if (ins->dreg != ins->sreg1) ARM_MOV_REG_REG (code, ins->dreg, ins->sreg1); break; } case OP_FADD: ARM_FPA_ADFD (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_FSUB: ARM_FPA_SUFD (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_FMUL: ARM_FPA_MUFD (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_FDIV: ARM_FPA_DVFD (code, ins->dreg, ins->sreg1, ins->sreg2); break; case OP_FNEG: ARM_MNFD (code, ins->dreg, ins->sreg1); break; case OP_FREM: /* emulated */ g_assert_not_reached (); break; case OP_FCOMPARE: /* each fp compare op needs to do its own */ g_assert_not_reached (); ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); break; case OP_FCEQ: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_EQ); break; case OP_FCLT: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_MI); break; case OP_FCLT_UN: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_MI); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_VS); break; case OP_FCGT: /* swapped */ ARM_FCMP (code, ARM_FPA_CMF, ins->sreg2, ins->sreg1); ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_MI); break; case OP_FCGT_UN: /* swapped */ ARM_FCMP (code, ARM_FPA_CMF, ins->sreg2, ins->sreg1); ARM_MOV_REG_IMM8 (code, ins->dreg, 0); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_MI); ARM_MOV_REG_IMM8_COND (code, ins->dreg, 1, ARMCOND_VS); break; /* ARM FPA flags table: * N Less than ARMCOND_MI * Z Equal ARMCOND_EQ * C Greater Than or Equal ARMCOND_CS * V Unordered ARMCOND_VS */ case OP_FBEQ: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); EMIT_COND_BRANCH (ins, CEE_BEQ - CEE_BEQ); break; case OP_FBNE_UN: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); EMIT_COND_BRANCH (ins, CEE_BNE_UN - CEE_BEQ); break; case OP_FBLT: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_MI); /* N set */ break; case OP_FBLT_UN: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_VS); /* V set */ EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_MI); /* N set */ break; case OP_FBGT: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg2, ins->sreg1); EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_MI); /* N set, swapped args */ break; case OP_FBGT_UN: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg2, ins->sreg1); EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_VS); /* V set */ EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_MI); /* N set, swapped args */ break; case OP_FBGE: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_CS); break; case OP_FBGE_UN: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg1, ins->sreg2); EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_VS); /* V set */ EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_GE); break; case OP_FBLE: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg2, ins->sreg1); EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_CS); /* swapped */ break; case OP_FBLE_UN: ARM_FCMP (code, ARM_FPA_CMF, ins->sreg2, ins->sreg1); EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_VS); /* V set */ EMIT_COND_BRANCH_FLAGS (ins, ARMCOND_GE); /* swapped */ break; case CEE_CKFINITE: { /*ppc_stfd (code, ins->sreg1, -8, ppc_sp); ppc_lwz (code, ppc_r11, -8, ppc_sp); ppc_rlwinm (code, ppc_r11, ppc_r11, 0, 1, 31); ppc_addis (code, ppc_r11, ppc_r11, -32752); ppc_rlwinmd (code, ppc_r11, ppc_r11, 1, 31, 31); EMIT_COND_SYSTEM_EXCEPTION (CEE_BEQ - CEE_BEQ, "ArithmeticException");*/ g_assert_not_reached (); break; } default: g_warning ("unknown opcode %s in %s()\n", mono_inst_name (ins->opcode), __FUNCTION__); g_assert_not_reached (); } if ((cfg->opt & MONO_OPT_BRANCH) && ((code - cfg->native_code - offset) > max_len)) { g_warning ("wrong maximal instruction length of instruction %s (expected %d, got %d)", mono_inst_name (ins->opcode), max_len, code - cfg->native_code - offset); g_assert_not_reached (); } cpos += max_len; last_ins = ins; last_offset = offset; ins = ins->next; } cfg->code_len = code - cfg->native_code; } void mono_arch_register_lowlevel_calls (void) { } #define patch_lis_ori(ip,val) do {\ guint16 *__lis_ori = (guint16*)(ip); \ __lis_ori [1] = (((guint32)(val)) >> 16) & 0xffff; \ __lis_ori [3] = ((guint32)(val)) & 0xffff; \ } while (0) void mono_arch_patch_code (MonoMethod *method, MonoDomain *domain, guint8 *code, MonoJumpInfo *ji, gboolean run_cctors) { MonoJumpInfo *patch_info; for (patch_info = ji; patch_info; patch_info = patch_info->next) { unsigned char *ip = patch_info->ip.i + code; const unsigned char *target; if (patch_info->type == MONO_PATCH_INFO_SWITCH) { gpointer *table = (gpointer *)patch_info->data.table->table; gpointer *jt = (gpointer*)(ip + 8); int i; /* jt is the inlined jump table, 2 instructions after ip * In the normal case we store the absolute addresses, * otherwise the displacements. */ for (i = 0; i < patch_info->data.table->table_size; i++) { jt [i] = code + (int)patch_info->data.table->table [i]; } continue; } target = mono_resolve_patch_target (method, domain, code, patch_info, run_cctors); switch (patch_info->type) { case MONO_PATCH_INFO_IP: g_assert_not_reached (); patch_lis_ori (ip, ip); continue; case MONO_PATCH_INFO_METHOD_REL: g_assert_not_reached (); *((gpointer *)(ip)) = code + patch_info->data.offset; continue; case MONO_PATCH_INFO_METHODCONST: case MONO_PATCH_INFO_CLASS: case MONO_PATCH_INFO_IMAGE: case MONO_PATCH_INFO_FIELD: case MONO_PATCH_INFO_VTABLE: case MONO_PATCH_INFO_IID: case MONO_PATCH_INFO_SFLDA: case MONO_PATCH_INFO_LDSTR: case MONO_PATCH_INFO_TYPE_FROM_HANDLE: case MONO_PATCH_INFO_LDTOKEN: g_assert_not_reached (); /* from OP_AOTCONST : lis + ori */ patch_lis_ori (ip, target); continue; case MONO_PATCH_INFO_R4: case MONO_PATCH_INFO_R8: g_assert_not_reached (); *((gconstpointer *)(ip + 2)) = patch_info->data.target; continue; case MONO_PATCH_INFO_EXC_NAME: g_assert_not_reached (); *((gconstpointer *)(ip + 1)) = patch_info->data.name; continue; case MONO_PATCH_INFO_NONE: case MONO_PATCH_INFO_BB_OVF: case MONO_PATCH_INFO_EXC_OVF: /* everything is dealt with at epilog output time */ continue; default: break; } arm_patch (ip, target); } } /* * Stack frame layout: * * ------------------- fp * MonoLMF structure or saved registers * ------------------- * locals * ------------------- * spilled regs * ------------------- * optional 8 bytes for tracing * ------------------- * param area size is cfg->param_area * ------------------- sp */ guint8 * mono_arch_emit_prolog (MonoCompile *cfg) { MonoMethod *method = cfg->method; MonoBasicBlock *bb; MonoMethodSignature *sig; MonoInst *inst; int alloc_size, pos, max_offset, i, rot_amount; guint8 *code; CallInfo *cinfo; int tracing = 0; int lmf_offset = 0; int prev_sp_offset; if (mono_jit_trace_calls != NULL && mono_trace_eval (method)) tracing = 1; sig = mono_method_signature (method); cfg->code_size = 256 + sig->param_count * 20; code = cfg->native_code = g_malloc (cfg->code_size); ARM_MOV_REG_REG (code, ARMREG_IP, ARMREG_SP); alloc_size = cfg->stack_offset; pos = 0; if (!method->save_lmf) { ARM_PUSH (code, (cfg->used_int_regs | (1 << ARMREG_IP) | (1 << ARMREG_LR))); prev_sp_offset = 8; /* ip and lr */ for (i = 0; i < 16; ++i) { if (cfg->used_int_regs & (1 << i)) prev_sp_offset += 4; } } else { ARM_PUSH (code, 0x5ff0); prev_sp_offset = 4 * 10; /* all but r0-r3, sp and pc */ pos += sizeof (MonoLMF) - prev_sp_offset; lmf_offset = pos; } alloc_size += pos; // align to MONO_ARCH_FRAME_ALIGNMENT bytes if (alloc_size & (MONO_ARCH_FRAME_ALIGNMENT - 1)) { alloc_size += MONO_ARCH_FRAME_ALIGNMENT - 1; alloc_size &= ~(MONO_ARCH_FRAME_ALIGNMENT - 1); } /* the stack used in the pushed regs */ if (prev_sp_offset & 4) alloc_size += 4; cfg->stack_usage = alloc_size; if (alloc_size) { if ((i = mono_arm_is_rotated_imm8 (alloc_size, &rot_amount)) >= 0) { ARM_SUB_REG_IMM (code, ARMREG_SP, ARMREG_SP, i, rot_amount); } else { code = mono_arm_emit_load_imm (code, ARMREG_IP, alloc_size); ARM_SUB_REG_REG (code, ARMREG_SP, ARMREG_SP, ARMREG_IP); } } if (cfg->frame_reg != ARMREG_SP) ARM_MOV_REG_REG (code, cfg->frame_reg, ARMREG_SP); //g_print ("prev_sp_offset: %d, alloc_size:%d\n", prev_sp_offset, alloc_size); prev_sp_offset += alloc_size; /* compute max_offset in order to use short forward jumps * we could skip do it on arm because the immediate displacement * for jumps is large enough, it may be useful later for constant pools */ max_offset = 0; for (bb = cfg->bb_entry; bb; bb = bb->next_bb) { MonoInst *ins = bb->code; bb->max_offset = max_offset; if (cfg->prof_options & MONO_PROFILE_COVERAGE) max_offset += 6; while (ins) { max_offset += ((guint8 *)arm_cpu_desc [ins->opcode])[MONO_INST_LEN]; ins = ins->next; } } /* load arguments allocated to register from the stack */ pos = 0; cinfo = calculate_sizes (sig, sig->pinvoke); if (MONO_TYPE_ISSTRUCT (sig->ret)) { ArgInfo *ainfo = &cinfo->ret; inst = cfg->ret; g_assert (arm_is_imm12 (inst->inst_offset)); ARM_STR_IMM (code, ainfo->reg, inst->inst_basereg, inst->inst_offset); } for (i = 0; i < sig->param_count + sig->hasthis; ++i) { ArgInfo *ainfo = cinfo->args + i; inst = cfg->varinfo [pos]; if (cfg->verbose_level > 2) g_print ("Saving argument %d (type: %d)\n", i, ainfo->regtype); if (inst->opcode == OP_REGVAR) { if (ainfo->regtype == RegTypeGeneral) ARM_MOV_REG_REG (code, inst->dreg, ainfo->reg); else if (ainfo->regtype == RegTypeFP) { g_assert_not_reached (); } else if (ainfo->regtype == RegTypeBase) { g_assert (arm_is_imm12 (prev_sp_offset + ainfo->offset)); ARM_LDR_IMM (code, inst->dreg, ARMREG_SP, (prev_sp_offset + ainfo->offset)); } else g_assert_not_reached (); if (cfg->verbose_level > 2) g_print ("Argument %d assigned to register %s\n", pos, mono_arch_regname (inst->dreg)); } else { /* the argument should be put on the stack: FIXME handle size != word */ if (ainfo->regtype == RegTypeGeneral) { switch (ainfo->size) { case 1: if (arm_is_imm12 (inst->inst_offset)) ARM_STRB_IMM (code, ainfo->reg, inst->inst_basereg, inst->inst_offset); else { code = mono_arm_emit_load_imm (code, ARMREG_IP, inst->inst_offset); ARM_STRB_REG_REG (code, ainfo->reg, inst->inst_basereg, ARMREG_IP); } break; case 2: g_assert (arm_is_imm8 (inst->inst_offset)); ARM_STRH_IMM (code, ainfo->reg, inst->inst_basereg, inst->inst_offset); break; case 8: g_assert (arm_is_imm12 (inst->inst_offset)); ARM_STR_IMM (code, ainfo->reg, inst->inst_basereg, inst->inst_offset); g_assert (arm_is_imm12 (inst->inst_offset + 4)); ARM_STR_IMM (code, ainfo->reg + 1, inst->inst_basereg, inst->inst_offset + 4); break; default: if (arm_is_imm12 (inst->inst_offset)) { ARM_STR_IMM (code, ainfo->reg, inst->inst_basereg, inst->inst_offset); } else { code = mono_arm_emit_load_imm (code, ARMREG_IP, inst->inst_offset); ARM_STR_REG_REG (code, ainfo->reg, inst->inst_basereg, ARMREG_IP); } break; } } else if (ainfo->regtype == RegTypeBase) { g_assert (arm_is_imm12 (prev_sp_offset + ainfo->offset)); switch (ainfo->size) { case 1: ARM_LDR_IMM (code, ARMREG_LR, ARMREG_SP, (prev_sp_offset + ainfo->offset)); g_assert (arm_is_imm12 (inst->inst_offset)); ARM_STRB_IMM (code, ARMREG_LR, inst->inst_basereg, inst->inst_offset); break; case 2: ARM_LDR_IMM (code, ARMREG_LR, ARMREG_SP, (prev_sp_offset + ainfo->offset)); g_assert (arm_is_imm8 (inst->inst_offset)); ARM_STRH_IMM (code, ARMREG_LR, inst->inst_basereg, inst->inst_offset); break; case 8: g_assert (arm_is_imm12 (inst->inst_offset)); ARM_LDR_IMM (code, ARMREG_LR, ARMREG_SP, (prev_sp_offset + ainfo->offset)); ARM_STR_IMM (code, ARMREG_LR, inst->inst_basereg, inst->inst_offset); g_assert (arm_is_imm12 (prev_sp_offset + ainfo->offset + 4)); g_assert (arm_is_imm12 (inst->inst_offset + 4)); ARM_LDR_IMM (code, ARMREG_LR, ARMREG_SP, (prev_sp_offset + ainfo->offset + 4)); ARM_STR_IMM (code, ARMREG_LR, inst->inst_basereg, inst->inst_offset + 4); break; default: g_assert (arm_is_imm12 (inst->inst_offset)); ARM_LDR_IMM (code, ARMREG_LR, ARMREG_SP, (prev_sp_offset + ainfo->offset)); ARM_STR_IMM (code, ARMREG_LR, inst->inst_basereg, inst->inst_offset); break; } } else if (ainfo->regtype == RegTypeFP) { g_assert_not_reached (); } else if (ainfo->regtype == RegTypeStructByVal) { int doffset = inst->inst_offset; int soffset = 0; int cur_reg; int size = 0; if (mono_class_from_mono_type (inst->inst_vtype)) size = mono_class_native_size (mono_class_from_mono_type (inst->inst_vtype), NULL); for (cur_reg = 0; cur_reg < ainfo->size; ++cur_reg) { g_assert (arm_is_imm12 (doffset)); ARM_STR_IMM (code, ainfo->reg + cur_reg, inst->inst_basereg, doffset); soffset += sizeof (gpointer); doffset += sizeof (gpointer); } if (ainfo->vtsize) { /* FIXME: handle overrun! with struct sizes not multiple of 4 */ //g_print ("emit_memcpy (prev_sp_ofs: %d, ainfo->offset: %d, soffset: %d)\n", prev_sp_offset, ainfo->offset, soffset); code = emit_memcpy (code, ainfo->vtsize * sizeof (gpointer), inst->inst_basereg, doffset, ARMREG_SP, prev_sp_offset + ainfo->offset); } } else if (ainfo->regtype == RegTypeStructByAddr) { g_assert_not_reached (); /* FIXME: handle overrun! with struct sizes not multiple of 4 */ code = emit_memcpy (code, ainfo->vtsize * sizeof (gpointer), inst->inst_basereg, inst->inst_offset, ainfo->reg, 0); } else g_assert_not_reached (); } pos++; } if (method->save_lmf) { mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_INTERNAL_METHOD, (gpointer)"mono_get_lmf_addr"); if (cfg->method->dynamic) { ARM_LDR_IMM (code, ARMREG_IP, ARMREG_PC, 0); ARM_B (code, 0); *(gpointer*)code = NULL; code += 4; ARM_MOV_REG_REG (code, ARMREG_LR, ARMREG_PC); ARM_MOV_REG_REG (code, ARMREG_PC, ARMREG_IP); } else { ARM_BL (code, 0); } /* we build the MonoLMF structure on the stack - see mini-arm.h */ /* lmf_offset is the offset from the previous stack pointer, * alloc_size is the total stack space allocated, so the offset * of MonoLMF from the current stack ptr is alloc_size - lmf_offset. * The pointer to the struct is put in r1 (new_lmf). * r2 is used as scratch * The callee-saved registers are already in the MonoLMF structure */ code = emit_big_add (code, ARMREG_R1, ARMREG_SP, alloc_size - lmf_offset); /* r0 is the result from mono_get_lmf_addr () */ ARM_STR_IMM (code, ARMREG_R0, ARMREG_R1, G_STRUCT_OFFSET (MonoLMF, lmf_addr)); /* new_lmf->previous_lmf = *lmf_addr */ ARM_LDR_IMM (code, ARMREG_R2, ARMREG_R0, G_STRUCT_OFFSET (MonoLMF, previous_lmf)); ARM_STR_IMM (code, ARMREG_R2, ARMREG_R1, G_STRUCT_OFFSET (MonoLMF, previous_lmf)); /* *(lmf_addr) = r1 */ ARM_STR_IMM (code, ARMREG_R1, ARMREG_R0, G_STRUCT_OFFSET (MonoLMF, previous_lmf)); /* save method info */ code = mono_arm_emit_load_imm (code, ARMREG_R2, method); ARM_STR_IMM (code, ARMREG_R2, ARMREG_R1, G_STRUCT_OFFSET (MonoLMF, method)); ARM_STR_IMM (code, ARMREG_SP, ARMREG_R1, G_STRUCT_OFFSET (MonoLMF, ebp)); /* save the current IP */ ARM_MOV_REG_REG (code, ARMREG_R2, ARMREG_PC); ARM_STR_IMM (code, ARMREG_R2, ARMREG_R1, G_STRUCT_OFFSET (MonoLMF, eip)); } if (tracing) code = mono_arch_instrument_prolog (cfg, mono_trace_enter_method, code, TRUE); cfg->code_len = code - cfg->native_code; g_assert (cfg->code_len < cfg->code_size); g_free (cinfo); return code; } void mono_arch_emit_epilog (MonoCompile *cfg) { MonoJumpInfo *patch_info; MonoMethod *method = cfg->method; int pos, i, rot_amount; int max_epilog_size = 16 + 20*4; guint8 *code; if (cfg->method->save_lmf) max_epilog_size += 128; if (mono_jit_trace_calls != NULL) max_epilog_size += 50; if (cfg->prof_options & MONO_PROFILE_ENTER_LEAVE) max_epilog_size += 50; while (cfg->code_len + max_epilog_size > (cfg->code_size - 16)) { cfg->code_size *= 2; cfg->native_code = g_realloc (cfg->native_code, cfg->code_size); mono_jit_stats.code_reallocs++; } /* * Keep in sync with CEE_JMP */ code = cfg->native_code + cfg->code_len; if (mono_jit_trace_calls != NULL && mono_trace_eval (method)) { code = mono_arch_instrument_epilog (cfg, mono_trace_leave_method, code, TRUE); } pos = 0; if (method->save_lmf) { int lmf_offset; /* all but r0-r3, sp and pc */ pos += sizeof (MonoLMF) - (4 * 10); lmf_offset = pos; /* r2 contains the pointer to the current LMF */ code = emit_big_add (code, ARMREG_R2, cfg->frame_reg, cfg->stack_usage - lmf_offset); /* ip = previous_lmf */ ARM_LDR_IMM (code, ARMREG_IP, ARMREG_R2, G_STRUCT_OFFSET (MonoLMF, previous_lmf)); /* lr = lmf_addr */ ARM_LDR_IMM (code, ARMREG_LR, ARMREG_R2, G_STRUCT_OFFSET (MonoLMF, lmf_addr)); /* *(lmf_addr) = previous_lmf */ ARM_STR_IMM (code, ARMREG_IP, ARMREG_LR, G_STRUCT_OFFSET (MonoLMF, previous_lmf)); /* FIXME: speedup: there is no actual need to restore the registers if * we didn't actually change them (idea from Zoltan). */ /* restore iregs */ /* point sp at the registers to restore: 10 is 14 -4, because we skip r0-r3 */ ARM_ADD_REG_IMM8 (code, ARMREG_SP, ARMREG_R2, (sizeof (MonoLMF) - 10 * sizeof (gulong))); ARM_POP_NWB (code, 0xaff0); /* restore ip to sp and lr to pc */ } else { if ((i = mono_arm_is_rotated_imm8 (cfg->stack_usage, &rot_amount)) >= 0) { ARM_ADD_REG_IMM (code, ARMREG_SP, cfg->frame_reg, i, rot_amount); } else { code = mono_arm_emit_load_imm (code, ARMREG_IP, cfg->stack_usage); ARM_ADD_REG_REG (code, ARMREG_SP, ARMREG_SP, ARMREG_IP); } ARM_POP_NWB (code, cfg->used_int_regs | ((1 << ARMREG_SP) | (1 << ARMREG_PC))); } cfg->code_len = code - cfg->native_code; g_assert (cfg->code_len < cfg->code_size); } /* remove once throw_exception_by_name is eliminated */ static int exception_id_by_name (const char *name) { if (strcmp (name, "IndexOutOfRangeException") == 0) return MONO_EXC_INDEX_OUT_OF_RANGE; if (strcmp (name, "OverflowException") == 0) return MONO_EXC_OVERFLOW; if (strcmp (name, "ArithmeticException") == 0) return MONO_EXC_ARITHMETIC; if (strcmp (name, "DivideByZeroException") == 0) return MONO_EXC_DIVIDE_BY_ZERO; if (strcmp (name, "InvalidCastException") == 0) return MONO_EXC_INVALID_CAST; if (strcmp (name, "NullReferenceException") == 0) return MONO_EXC_NULL_REF; if (strcmp (name, "ArrayTypeMismatchException") == 0) return MONO_EXC_ARRAY_TYPE_MISMATCH; g_error ("Unknown intrinsic exception %s\n", name); } void mono_arch_emit_exceptions (MonoCompile *cfg) { MonoJumpInfo *patch_info; int nthrows, i; guint8 *code; const guint8* exc_throw_pos [MONO_EXC_INTRINS_NUM] = {NULL}; guint8 exc_throw_found [MONO_EXC_INTRINS_NUM] = {0}; guint32 code_size; int exc_count = 0; int max_epilog_size = 50; /* count the number of exception infos */ /* * make sure we have enough space for exceptions * 12 is the simulated call to throw_exception_by_name */ for (patch_info = cfg->patch_info; patch_info; patch_info = patch_info->next) { if (patch_info->type == MONO_PATCH_INFO_EXC) { i = exception_id_by_name (patch_info->data.target); if (!exc_throw_found [i]) { max_epilog_size += 12; exc_throw_found [i] = TRUE; } } } while (cfg->code_len + max_epilog_size > (cfg->code_size - 16)) { cfg->code_size *= 2; cfg->native_code = g_realloc (cfg->native_code, cfg->code_size); mono_jit_stats.code_reallocs++; } code = cfg->native_code + cfg->code_len; /* add code to raise exceptions */ for (patch_info = cfg->patch_info; patch_info; patch_info = patch_info->next) { switch (patch_info->type) { case MONO_PATCH_INFO_EXC: { unsigned char *ip = patch_info->ip.i + cfg->native_code; const char *ex_name = patch_info->data.target; i = exception_id_by_name (patch_info->data.target); if (exc_throw_pos [i]) { arm_patch (ip, exc_throw_pos [i]); patch_info->type = MONO_PATCH_INFO_NONE; break; } else { exc_throw_pos [i] = code; } arm_patch (ip, code); //*(int*)code = 0xef9f0001; code += 4; /*mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_EXC_NAME, patch_info->data.target);*/ ARM_LDR_IMM (code, ARMREG_R0, ARMREG_PC, 0); /* we got here from a conditional call, so the calling ip is set in lr already */ patch_info->type = MONO_PATCH_INFO_INTERNAL_METHOD; patch_info->data.name = "mono_arch_throw_exception_by_name"; patch_info->ip.i = code - cfg->native_code; ARM_B (code, 0); *(gpointer*)code = ex_name; code += 4; break; } default: /* do nothing */ break; } } cfg->code_len = code - cfg->native_code; g_assert (cfg->code_len < cfg->code_size); } void mono_arch_setup_jit_tls_data (MonoJitTlsData *tls) { } void mono_arch_free_jit_tls_data (MonoJitTlsData *tls) { } void mono_arch_emit_this_vret_args (MonoCompile *cfg, MonoCallInst *inst, int this_reg, int this_type, int vt_reg) { int this_dreg = ARMREG_R0; if (vt_reg != -1) this_dreg = ARMREG_R1; /* add the this argument */ if (this_reg != -1) { MonoInst *this; MONO_INST_NEW (cfg, this, OP_SETREG); this->type = this_type; this->sreg1 = this_reg; this->dreg = mono_regstate_next_int (cfg->rs); mono_bblock_add_inst (cfg->cbb, this); mono_call_inst_add_outarg_reg (inst, this->dreg, this_dreg, FALSE); } if (vt_reg != -1) { MonoInst *vtarg; MONO_INST_NEW (cfg, vtarg, OP_SETREG); vtarg->type = STACK_MP; vtarg->sreg1 = vt_reg; vtarg->dreg = mono_regstate_next_int (cfg->rs); mono_bblock_add_inst (cfg->cbb, vtarg); mono_call_inst_add_outarg_reg (inst, vtarg->dreg, ARMREG_R0, FALSE); } } MonoInst* mono_arch_get_inst_for_method (MonoCompile *cfg, MonoMethod *cmethod, MonoMethodSignature *fsig, MonoInst **args) { return NULL; } gboolean mono_arch_print_tree (MonoInst *tree, int arity) { return 0; } MonoInst* mono_arch_get_domain_intrinsic (MonoCompile* cfg) { return NULL; } MonoInst* mono_arch_get_thread_intrinsic (MonoCompile* cfg) { return NULL; } void mono_arch_flush_register_windows (void) { } void mono_arch_fixup_jinfo (MonoCompile *cfg) { /* max encoded stack usage is 64KB * 4 */ g_assert ((cfg->stack_usage & ~(0xffff << 2)) == 0); cfg->jit_info->used_regs |= cfg->stack_usage << 14; }