// // pending.cs: Pending method implementation // // Authors: // Miguel de Icaza (miguel@gnu.org) // Marek Safar (marek.safar@gmail.com) // // Dual licensed under the terms of the MIT X11 or GNU GPL // // Copyright 2001, 2002 Ximian, Inc (http://www.ximian.com) // Copyright 2003-2008 Novell, Inc. // using System.Collections.Generic; using System.Linq; #if STATIC using IKVM.Reflection; using IKVM.Reflection.Emit; #else using System.Reflection; using System.Reflection.Emit; #endif namespace Mono.CSharp { struct TypeAndMethods { public TypeSpec type; public IList methods; // // Whether it is optional, this is used to allow the explicit/implicit // implementation when a base class already implements an interface. // // For example: // // class X : IA { } class Y : X, IA { IA.Explicit (); } // public bool optional; // // This flag on the method says `We found a match, but // because it was private, we could not use the match // public MethodData [] found; // If a method is defined here, then we always need to // create a proxy for it. This is used when implementing // an interface's indexer with a different IndexerName. public MethodSpec [] need_proxy; } public class PendingImplementation { /// /// The container for this PendingImplementation /// TypeContainer container; /// /// This is the array of TypeAndMethods that describes the pending implementations /// (both interfaces and abstract methods in base class) /// TypeAndMethods [] pending_implementations; PendingImplementation (TypeContainer container, MissingInterfacesInfo[] missing_ifaces, MethodSpec[] abstract_methods, int total) { var type_builder = container.Definition; this.container = container; pending_implementations = new TypeAndMethods [total]; int i = 0; if (abstract_methods != null) { int count = abstract_methods.Length; pending_implementations [i].methods = new MethodSpec [count]; pending_implementations [i].need_proxy = new MethodSpec [count]; pending_implementations [i].methods = abstract_methods; pending_implementations [i].found = new MethodData [count]; pending_implementations [i].type = type_builder; ++i; } foreach (MissingInterfacesInfo missing in missing_ifaces) { var iface = missing.Type; var mi = MemberCache.GetInterfaceMethods (iface); int count = mi.Count; pending_implementations [i].type = iface; pending_implementations [i].optional = missing.Optional; pending_implementations [i].methods = mi; pending_implementations [i].found = new MethodData [count]; pending_implementations [i].need_proxy = new MethodSpec [count]; i++; } } struct MissingInterfacesInfo { public TypeSpec Type; public bool Optional; public MissingInterfacesInfo (TypeSpec t) { Type = t; Optional = false; } } static MissingInterfacesInfo [] EmptyMissingInterfacesInfo = new MissingInterfacesInfo [0]; static MissingInterfacesInfo [] GetMissingInterfaces (TypeContainer container) { // // Notice that Interfaces will only return the interfaces that the Type // is supposed to implement, not all the interfaces that the type implements. // var impl = container.Definition.Interfaces; if (impl == null || impl.Count == 0) return EmptyMissingInterfacesInfo; MissingInterfacesInfo[] ret = new MissingInterfacesInfo[impl.Count]; for (int i = 0; i < impl.Count; i++) ret [i] = new MissingInterfacesInfo (impl [i]); // we really should not get here because Object doesnt implement any // interfaces. But it could implement something internal, so we have // to handle that case. if (container.BaseType == null) return ret; var base_impls = container.BaseType.Interfaces; if (base_impls != null) { foreach (TypeSpec t in base_impls) { for (int i = 0; i < ret.Length; i++) { if (t == ret[i].Type) { ret[i].Optional = true; break; } } } } return ret; } // // Factory method: if there are pending implementation methods, we return a PendingImplementation // object, otherwise we return null. // // Register method implementations are either abstract methods // flagged as such on the base class or interface methods // static public PendingImplementation GetPendingImplementations (TypeContainer container) { TypeSpec b = container.BaseType; var missing_interfaces = GetMissingInterfaces (container); // // If we are implementing an abstract class, and we are not // ourselves abstract, and there are abstract methods (C# allows // abstract classes that have no abstract methods), then allocate // one slot. // // We also pre-compute the methods. // bool implementing_abstract = ((b != null) && b.IsAbstract && (container.ModFlags & Modifiers.ABSTRACT) == 0); MethodSpec[] abstract_methods = null; if (implementing_abstract){ var am = MemberCache.GetNotImplementedAbstractMethods (b); if (am == null) { implementing_abstract = false; } else { abstract_methods = new MethodSpec[am.Count]; am.CopyTo (abstract_methods, 0); } } int total = missing_interfaces.Length + (implementing_abstract ? 1 : 0); if (total == 0) return null; return new PendingImplementation (container, missing_interfaces, abstract_methods, total); } public enum Operation { // // If you change this, review the whole InterfaceMethod routine as there // are a couple of assumptions on these three states // Lookup, ClearOne, ClearAll } /// /// Whether the specified method is an interface method implementation /// public MethodSpec IsInterfaceMethod (MemberName name, TypeSpec ifaceType, MethodData method) { return InterfaceMethod (name, ifaceType, method, Operation.Lookup); } public void ImplementMethod (MemberName name, TypeSpec ifaceType, MethodData method, bool clear_one) { InterfaceMethod (name, ifaceType, method, clear_one ? Operation.ClearOne : Operation.ClearAll); } /// /// If a method in Type `t' (or null to look in all interfaces /// and the base abstract class) with name `Name', return type `ret_type' and /// arguments `args' implements an interface, this method will /// return the MethodInfo that this method implements. /// /// If `name' is null, we operate solely on the method's signature. This is for /// instance used when implementing indexers. /// /// The `Operation op' controls whether to lookup, clear the pending bit, or clear /// all the methods with the given signature. /// /// The `MethodInfo need_proxy' is used when we're implementing an interface's /// indexer in a class. If the new indexer's IndexerName does not match the one /// that was used in the interface, then we always need to create a proxy for it. /// /// public MethodSpec InterfaceMethod (MemberName name, TypeSpec iType, MethodData method, Operation op) { if (pending_implementations == null) return null; TypeSpec ret_type = method.method.ReturnType; ParametersCompiled args = method.method.ParameterInfo; bool is_indexer = method.method is Indexer.SetIndexerMethod || method.method is Indexer.GetIndexerMethod; foreach (TypeAndMethods tm in pending_implementations){ if (!(iType == null || tm.type == iType)) continue; int method_count = tm.methods.Count; MethodSpec m; for (int i = 0; i < method_count; i++){ m = tm.methods [i]; if (m == null) continue; if (is_indexer) { if (!m.IsAccessor || m.Parameters.IsEmpty) continue; } else { if (name.Name != m.Name) continue; if (m.Arity != name.Arity) continue; } if (!TypeSpecComparer.Override.IsEqual (m.Parameters, args)) continue; if (!TypeSpecComparer.Override.IsEqual (m.ReturnType, ret_type)) { tm.found[i] = method; continue; } // // `need_proxy' is not null when we're implementing an // interface indexer and this is Clear(One/All) operation. // // If `name' is null, then we do a match solely based on the // signature and not on the name (this is done in the Lookup // for an interface indexer). // if (op != Operation.Lookup) { // If `t != null', then this is an explicitly interface // implementation and we can always clear the method. // `need_proxy' is not null if we're implementing an // interface indexer. In this case, we need to create // a proxy if the implementation's IndexerName doesn't // match the IndexerName in the interface. if (m.DeclaringType.IsInterface && iType == null && name.Name != m.Name) { // TODO: This is very expensive comparison tm.need_proxy[i] = method.method.Spec; } else { tm.methods[i] = null; } } else { tm.found [i] = method; } // // Lookups and ClearOne return // if (op != Operation.ClearAll) return m; } // If a specific type was requested, we can stop now. if (tm.type == iType) return null; } return null; } /// /// C# allows this kind of scenarios: /// interface I { void M (); } /// class X { public void M (); } /// class Y : X, I { } /// /// For that case, we create an explicit implementation function /// I.M in Y. /// void DefineProxy (TypeSpec iface, MethodSpec base_method, MethodSpec iface_method) { // TODO: Handle nested iface names string proxy_name; var ns = iface.MemberDefinition.Namespace; if (string.IsNullOrEmpty (ns)) proxy_name = iface.MemberDefinition.Name + "." + iface_method.Name; else proxy_name = ns + "." + iface.MemberDefinition.Name + "." + iface_method.Name; var param = iface_method.Parameters; MethodBuilder proxy = container.TypeBuilder.DefineMethod ( proxy_name, MethodAttributes.HideBySig | MethodAttributes.NewSlot | MethodAttributes.CheckAccessOnOverride | MethodAttributes.Virtual, CallingConventions.Standard | CallingConventions.HasThis, base_method.ReturnType.GetMetaInfo (), param.GetMetaInfo ()); if (iface_method.IsGeneric) { var gnames = iface_method.GenericDefinition.TypeParameters.Select (l => l.Name).ToArray (); proxy.DefineGenericParameters (gnames); } for (int i = 0; i < param.Count; i++) { string name = param.FixedParameters [i].Name; ParameterAttributes attr = ParametersCompiled.GetParameterAttribute (param.FixedParameters [i].ModFlags); proxy.DefineParameter (i + 1, attr, name); } int top = param.Count; var ec = new EmitContext (null, proxy.GetILGenerator (), null); // TODO: GetAllParametersArguments for (int i = 0; i <= top; i++) ParameterReference.EmitLdArg (ec, i); ec.Emit (OpCodes.Call, base_method); ec.Emit (OpCodes.Ret); container.TypeBuilder.DefineMethodOverride (proxy, (MethodInfo) iface_method.GetMetaInfo ()); } /// /// This function tells whether one of our base classes implements /// the given method (which turns out, it is valid to have an interface /// implementation in a base /// bool BaseImplements (TypeSpec iface_type, MethodSpec mi, out MethodSpec base_method) { var base_type = container.BaseType; // // Setup filter with no return type to give better error message // about mismatch at return type when the check bellow rejects them // var filter = new MemberFilter (mi.Name, mi.Arity, MemberKind.Method, mi.Parameters, null); base_method = (MethodSpec) MemberCache.FindMember (base_type, filter, BindingRestriction.None); if (base_method == null || (base_method.Modifiers & Modifiers.PUBLIC) == 0) return false; if (base_method.DeclaringType.IsInterface) return false; if (!TypeSpecComparer.Override.IsEqual (mi.ReturnType, base_method.ReturnType)) return false; if (!base_method.IsAbstract && !base_method.IsVirtual) // FIXME: We can avoid creating a proxy if base_method can be marked 'final virtual' instead. // However, it's too late now, the MethodBuilder has already been created (see bug 377519) DefineProxy (iface_type, base_method, mi); return true; } /// /// Verifies that any pending abstract methods or interface methods /// were implemented. /// public bool VerifyPendingMethods (Report Report) { int top = pending_implementations.Length; bool errors = false; int i; for (i = 0; i < top; i++){ TypeSpec type = pending_implementations [i].type; bool base_implements_type = type.IsInterface && container.BaseType != null && container.BaseType.ImplementsInterface (type, false); for (int j = 0; j < pending_implementations [i].methods.Count; ++j) { var mi = pending_implementations[i].methods[j]; if (mi == null) continue; if (type.IsInterface){ var need_proxy = pending_implementations [i].need_proxy [j]; if (need_proxy != null) { DefineProxy (type, need_proxy, mi); continue; } if (pending_implementations [i].optional) continue; MethodSpec candidate = null; if (base_implements_type || BaseImplements (type, mi, out candidate)) continue; if (candidate == null) { MethodData md = pending_implementations [i].found [j]; if (md != null) candidate = md.method.Spec; } Report.SymbolRelatedToPreviousError (mi); if (candidate != null) { Report.SymbolRelatedToPreviousError (candidate); if (candidate.IsStatic) { Report.Error (736, container.Location, "`{0}' does not implement interface member `{1}' and the best implementing candidate `{2}' is static", container.GetSignatureForError (), mi.GetSignatureForError (), TypeManager.CSharpSignature (candidate)); } else if ((candidate.Modifiers & Modifiers.PUBLIC) == 0) { Report.Error (737, container.Location, "`{0}' does not implement interface member `{1}' and the best implementing candidate `{2}' in not public", container.GetSignatureForError (), mi.GetSignatureForError (), candidate.GetSignatureForError ()); } else { Report.Error (738, container.Location, "`{0}' does not implement interface member `{1}' and the best implementing candidate `{2}' return type `{3}' does not match interface member return type `{4}'", container.GetSignatureForError (), mi.GetSignatureForError (), TypeManager.CSharpSignature (candidate), TypeManager.CSharpName (candidate.ReturnType), TypeManager.CSharpName (mi.ReturnType)); } } else { Report.Error (535, container.Location, "`{0}' does not implement interface member `{1}'", container.GetSignatureForError (), mi.GetSignatureForError ()); } } else { Report.SymbolRelatedToPreviousError (mi); Report.Error (534, container.Location, "`{0}' does not implement inherited abstract member `{1}'", container.GetSignatureForError (), mi.GetSignatureForError ()); } errors = true; } } return errors; } } }