// // membercache.cs: A container for all member lookups // // Author: Miguel de Icaza (miguel@gnu.org) // Marek Safar (marek.safar@gmail.com) // // Dual licensed under the terms of the MIT X11 or GNU GPL // // Copyright 2001 Ximian, Inc (http://www.ximian.com) // Copyright 2004-2010 Novell, Inc // // using System; using System.Text; using System.Collections.Generic; using System.Globalization; using System.Reflection.Emit; using System.Reflection; namespace Mono.CSharp { [Flags] public enum MemberKind { Constructor = 1, Event = 1 << 1, Field = 1 << 2, Method = 1 << 3, Property = 1 << 4, Indexer = 1 << 5, Operator = 1 << 6, Destructor = 1 << 7, //Constant = 1 << 8, NestedType = 1 << 10, Class = 1 << 11, Struct = 1 << 12, Delegate = 1 << 13, Enum = 1 << 14, Interface = 1 << 15, MaskType = Constructor | Event | Field | Method | Property | NestedType | Indexer | Operator | Destructor, All = MaskType } [Flags] public enum BindingRestriction { None = 0, // Member has to be accessible AccessibleOnly = 1, // Inspect only queried type members DeclaredOnly = 1 << 1, // Excluded static InstanceOnly = 1 << 2, // NoOverloadableOverrides = 1 << 3 } /* public struct MemberFilter : IEquatable { public readonly string Name; public readonly MemberKind Kind; public readonly TypeSpec[] Parameters; public readonly TypeSpec MemberType; public MemberFilter (IMethod m) { Name = m.MethodBuilder.Name; Kind = MemberKind.Method; Parameters = m.Parameters.Types; MemberType = m.ReturnType; } public MemberFilter (string name, MemberKind kind) { Name = name; Kind = kind; Parameters = null; MemberType = null; } public MemberFilter (string name, MemberKind kind, TypeSpec[] param, TypeSpec type) : this (name, kind) { Name = name; Kind = kind; Parameters = param; MemberType = type; } public static MemberFilter Constuctor (TypeSpec[] param) { return new MemberFilter (System.Reflection.ConstructorInfo.ConstructorName, MemberKind.Constructor, param, null); } public static MemberFilter Property (string name, TypeSpec type) { return new MemberFilter (name, MemberKind.Property, null, type); } public static MemberFilter Field (string name, TypeSpec type) { return new MemberFilter (name, MemberKind.Field, null, type); } public static MemberFilter Method (string name, TypeSpec[] param, TypeSpec type) { return new MemberFilter (name, MemberKind.Method, param, type); } #region IEquatable Members public bool Equals (MemberCore other) { // Is the member of the correct type ? if ((other.MemberKind & Kind & MemberKind.MaskType) == 0) return false; if (Parameters != null) { if (other is IParametersMember) { AParametersCollection other_param = ((IParametersMember) other).Parameters; if (TypeSpecArrayComparer.Default.Equals (Parameters, other_param.Types)) return true; } return false; } if (MemberType != null) { //throw new NotImplementedException (); } return true; } #endregion } */ /// /// This is a readonly list of MemberInfo's. /// public class MemberList : IList { public readonly IList List; int count; /// /// Create a new MemberList from the given IList. /// public MemberList (IList list) { if (list != null) this.List = list; else this.List = new List (); count = List.Count; } /// /// Concatenate the ILists `first' and `second' to a new MemberList. /// public MemberList (IList first, IList second) { var list = new List (); list.AddRange (first); list.AddRange (second); count = list.Count; List = list; } public static readonly MemberList Empty = new MemberList (Array.AsReadOnly (new MemberInfo[0])); /// /// Cast the MemberList into a MemberInfo[] array. /// /// /// This is an expensive operation, only use it if it's really necessary. /// public static explicit operator MemberInfo [] (MemberList list) { Timer.StartTimer (TimerType.MiscTimer); MemberInfo [] result = new MemberInfo [list.Count]; list.CopyTo (result, 0); Timer.StopTimer (TimerType.MiscTimer); return result; } // ICollection public int Count { get { return count; } } public void CopyTo (MemberInfo[] array, int index) { List.CopyTo (array, index); } // IEnumerable public IEnumerator GetEnumerator () { return List.GetEnumerator (); } System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator () { return List.GetEnumerator (); } // IList public bool IsFixedSize { get { return true; } } public bool IsReadOnly { get { return true; } } MemberInfo IList.this [int index] { get { return List [index]; } set { throw new NotSupportedException (); } } // FIXME: try to find out whether we can avoid the cast in this indexer. public MemberInfo this [int index] { get { return (MemberInfo) List [index]; } } public void Add (MemberInfo value) { throw new NotSupportedException (); } public void Clear () { throw new NotSupportedException (); } public bool Contains (MemberInfo value) { return List.Contains (value); } public int IndexOf (MemberInfo value) { return List.IndexOf (value); } public void Insert (int index, MemberInfo value) { throw new NotSupportedException (); } public bool Remove (MemberInfo value) { throw new NotSupportedException (); } public void RemoveAt (int index) { throw new NotSupportedException (); } } /// /// This interface is used to get all members of a class when creating the /// member cache. It must be implemented by all DeclSpace derivatives which /// want to support the member cache and by TypeHandle to get caching of /// non-dynamic types. /// public interface IMemberContainer { /// /// The name of the IMemberContainer. This is only used for /// debugging purposes. /// string Name { get; } /// /// The type of this IMemberContainer. /// Type Type { get; } /// /// Returns the IMemberContainer of the base class or null if this /// is an interface or TypeManger.object_type. /// This is used when creating the member cache for a class to get all /// members from the base class. /// MemberCache BaseCache { get; } /// /// Whether this is an interface. /// bool IsInterface { get; } /// /// Returns all members of this class with the corresponding MemberTypes /// and BindingFlags. /// /// /// When implementing this method, make sure not to return any inherited /// members and check the MemberTypes and BindingFlags properly. /// Unfortunately, System.Reflection is lame and doesn't provide a way to /// get the BindingFlags (static/non-static,public/non-public) in the /// MemberInfo class, but the cache needs this information. That's why /// this method is called multiple times with different BindingFlags. /// MemberList GetMembers (MemberTypes mt, BindingFlags bf); } /// /// The MemberCache is used by dynamic and non-dynamic types to speed up /// member lookups. It has a member name based hash table; it maps each member /// name to a list of CacheEntry objects. Each CacheEntry contains a MemberInfo /// and the BindingFlags that were initially used to get it. The cache contains /// all members of the current class and all inherited members. If this cache is /// for an interface types, it also contains all inherited members. /// /// There are two ways to get a MemberCache: /// * if this is a dynamic type, lookup the corresponding DeclSpace and then /// use the DeclSpace.MemberCache property. /// * if this not a dynamic type, call TypeHandle.GetTypeHandle() to get a /// TypeHandle instance for the type and then use TypeHandle.MemberCache. /// public class MemberCache { public readonly IMemberContainer Container; protected Dictionary> member_hash; protected Dictionary> method_hash; Dictionary locase_table; static List overrides = new List (); /// /// Create a new MemberCache for the given IMemberContainer `container'. /// public MemberCache (IMemberContainer container) { this.Container = container; Timer.IncrementCounter (CounterType.MemberCache); Timer.StartTimer (TimerType.CacheInit); // If we have a base class (we have a base class unless we're // TypeManager.object_type), we deep-copy its MemberCache here. if (Container.BaseCache != null) member_hash = SetupCache (Container.BaseCache); else member_hash = new Dictionary> (); // If this is neither a dynamic type nor an interface, create a special // method cache with all declared and inherited methods. Type type = container.Type; if (!(type is TypeBuilder) && !type.IsInterface && // !(type.IsGenericType && (type.GetGenericTypeDefinition () is TypeBuilder)) && !TypeManager.IsGenericType (type) && !TypeManager.IsGenericParameter (type) && (Container.BaseCache == null || Container.BaseCache.method_hash != null)) { method_hash = new Dictionary> (); AddMethods (type); } // Add all members from the current class. AddMembers (Container); Timer.StopTimer (TimerType.CacheInit); } public MemberCache (Type baseType, IMemberContainer container) { this.Container = container; if (baseType == null) this.member_hash = new Dictionary> (); else this.member_hash = SetupCache (TypeManager.LookupMemberCache (baseType)); } public MemberCache (Type[] ifaces) { // // The members of this cache all belong to other caches. // So, 'Container' will not be used. // this.Container = null; member_hash = new Dictionary> (); if (ifaces == null) return; foreach (Type itype in ifaces) AddCacheContents (TypeManager.LookupMemberCache (itype)); } public MemberCache (IMemberContainer container, Type base_class, Type[] ifaces) { this.Container = container; // If we have a base class (we have a base class unless we're // TypeManager.object_type), we deep-copy its MemberCache here. if (Container.BaseCache != null) member_hash = SetupCache (Container.BaseCache); else member_hash = new Dictionary> (); if (base_class != null) AddCacheContents (TypeManager.LookupMemberCache (base_class)); if (ifaces != null) { foreach (Type itype in ifaces) { MemberCache cache = TypeManager.LookupMemberCache (itype); if (cache != null) AddCacheContents (cache); } } } /// /// Bootstrap this member cache by doing a deep-copy of our base. /// static Dictionary> SetupCache (MemberCache base_class) { if (base_class == null) return new Dictionary> (); var hash = new Dictionary> (base_class.member_hash.Count); var it = base_class.member_hash.GetEnumerator (); while (it.MoveNext ()) { hash.Add (it.Current.Key, new List (it.Current.Value)); } return hash; } // // Converts ModFlags to BindingFlags // static BindingFlags GetBindingFlags (Modifiers modifiers) { BindingFlags bf; if ((modifiers & Modifiers.STATIC) != 0) bf = BindingFlags.Static; else bf = BindingFlags.Instance; if ((modifiers & Modifiers.PRIVATE) != 0) bf |= BindingFlags.NonPublic; else bf |= BindingFlags.Public; return bf; } /// /// Add the contents of `cache' to the member_hash. /// void AddCacheContents (MemberCache cache) { var it = cache.member_hash.GetEnumerator (); while (it.MoveNext ()) { List list; if (!member_hash.TryGetValue (it.Current.Key, out list)) member_hash [it.Current.Key] = list = new List (); var entries = it.Current.Value; for (int i = entries.Count-1; i >= 0; i--) { var entry = entries [i]; if (entry.Container != cache.Container) break; list.Add (entry); } } } /// /// Add all members from class `container' to the cache. /// void AddMembers (IMemberContainer container) { // We need to call AddMembers() with a single member type at a time // to get the member type part of CacheEntry.EntryType right. if (!container.IsInterface) { AddMembers (MemberTypes.Constructor, container); AddMembers (MemberTypes.Field, container); } AddMembers (MemberTypes.Method, container); AddMembers (MemberTypes.Property, container); AddMembers (MemberTypes.Event, container); // Nested types are returned by both Static and Instance searches. AddMembers (MemberTypes.NestedType, BindingFlags.Static | BindingFlags.Public, container); AddMembers (MemberTypes.NestedType, BindingFlags.Static | BindingFlags.NonPublic, container); } void AddMembers (MemberTypes mt, IMemberContainer container) { AddMembers (mt, BindingFlags.Static | BindingFlags.Public, container); AddMembers (mt, BindingFlags.Static | BindingFlags.NonPublic, container); AddMembers (mt, BindingFlags.Instance | BindingFlags.Public, container); AddMembers (mt, BindingFlags.Instance | BindingFlags.NonPublic, container); } public void AddMember (MemberInfo mi, MemberSpec mc) { AddMember (mi.MemberType, GetBindingFlags (mc.Modifiers), Container, mi.Name, mi); } public void AddGenericMember (MemberInfo mi, InterfaceMemberBase mc) { AddMember (mi.MemberType, GetBindingFlags (mc.ModFlags), Container, MemberName.MakeName (mc.GetFullName (mc.MemberName), mc.MemberName.TypeArguments), mi); } public void AddNestedType (DeclSpace type) { AddMember (MemberTypes.NestedType, GetBindingFlags (type.ModFlags), (IMemberContainer) type.Parent, type.TypeBuilder.Name, type.TypeBuilder); } public void AddInterface (MemberCache baseCache) { if (baseCache.member_hash.Count > 0) AddCacheContents (baseCache); } void AddMember (MemberTypes mt, BindingFlags bf, IMemberContainer container, string name, MemberInfo member) { // We use a name-based hash table of ArrayList's. List list; if (!member_hash.TryGetValue (name, out list)) { list = new List (1); member_hash.Add (name, list); } // When this method is called for the current class, the list will // already contain all inherited members from our base classes. // We cannot add new members in front of the list since this'd be an // expensive operation, that's why the list is sorted in reverse order // (ie. members from the current class are coming last). list.Add (new CacheEntry (container, member, mt, bf)); } /// /// Add all members from class `container' with the requested MemberTypes and /// BindingFlags to the cache. This method is called multiple times with different /// MemberTypes and BindingFlags. /// void AddMembers (MemberTypes mt, BindingFlags bf, IMemberContainer container) { MemberList members = container.GetMembers (mt, bf); foreach (MemberInfo member in members) { string name = member.Name; AddMember (mt, bf, container, name, member); if (member is MethodInfo) { string gname = TypeManager.GetMethodName ((MethodInfo) member); if (gname != name) AddMember (mt, bf, container, gname, member); } } } /// /// Add all declared and inherited methods from class `type' to the method cache. /// void AddMethods (Type type) { AddMethods (BindingFlags.Static | BindingFlags.Public | BindingFlags.FlattenHierarchy, type); AddMethods (BindingFlags.Static | BindingFlags.NonPublic | BindingFlags.FlattenHierarchy, type); AddMethods (BindingFlags.Instance | BindingFlags.Public, type); AddMethods (BindingFlags.Instance | BindingFlags.NonPublic, type); } void AddMethods (BindingFlags bf, Type type) { MethodBase [] members = type.GetMethods (bf); Array.Reverse (members); foreach (MethodBase member in members) { string name = member.Name; // We use a name-based hash table of ArrayList's. List list; if (!method_hash.TryGetValue (name, out list)) { list = new List (1); method_hash.Add (name, list); } MethodInfo curr = (MethodInfo) member; while (curr.IsVirtual && (curr.Attributes & MethodAttributes.NewSlot) == 0) { MethodInfo base_method = curr.GetBaseDefinition (); if (base_method == curr) // Not every virtual function needs to have a NewSlot flag. break; overrides.Add (curr); list.Add (new CacheEntry (null, base_method, MemberTypes.Method, bf)); curr = base_method; } if (overrides.Count > 0) { for (int i = 0; i < overrides.Count; ++i) TypeManager.RegisterOverride ((MethodBase) overrides [i], curr); overrides.Clear (); } // Unfortunately, the elements returned by Type.GetMethods() aren't // sorted so we need to do this check for every member. BindingFlags new_bf = bf; if (member.DeclaringType == type) new_bf |= BindingFlags.DeclaredOnly; list.Add (new CacheEntry (Container, member, MemberTypes.Method, new_bf)); } } /// /// Compute and return a appropriate `EntryType' magic number for the given /// MemberTypes and BindingFlags. /// protected static EntryType GetEntryType (MemberTypes mt, BindingFlags bf) { EntryType type = EntryType.None; if ((mt & MemberTypes.Constructor) != 0) type |= EntryType.Constructor; if ((mt & MemberTypes.Event) != 0) type |= EntryType.Event; if ((mt & MemberTypes.Field) != 0) type |= EntryType.Field; if ((mt & MemberTypes.Method) != 0) type |= EntryType.Method; if ((mt & MemberTypes.Property) != 0) type |= EntryType.Property; // Nested types are returned by static and instance searches. if ((mt & MemberTypes.NestedType) != 0) type |= EntryType.NestedType | EntryType.Static | EntryType.Instance; if ((bf & BindingFlags.Instance) != 0) type |= EntryType.Instance; if ((bf & BindingFlags.Static) != 0) type |= EntryType.Static; if ((bf & BindingFlags.Public) != 0) type |= EntryType.Public; if ((bf & BindingFlags.NonPublic) != 0) type |= EntryType.NonPublic; if ((bf & BindingFlags.DeclaredOnly) != 0) type |= EntryType.Declared; return type; } /// /// The `MemberTypes' enumeration type is a [Flags] type which means that it may /// denote multiple member types. Returns true if the given flags value denotes a /// single member types. /// public static bool IsSingleMemberType (MemberTypes mt) { switch (mt) { case MemberTypes.Constructor: case MemberTypes.Event: case MemberTypes.Field: case MemberTypes.Method: case MemberTypes.Property: case MemberTypes.NestedType: return true; default: return false; } } /// /// We encode the MemberTypes and BindingFlags of each members in a "magic" /// number to speed up the searching process. /// [Flags] public enum EntryType { None = 0x000, Instance = 0x001, Static = 0x002, MaskStatic = Instance|Static, Public = 0x004, NonPublic = 0x008, MaskProtection = Public|NonPublic, Declared = 0x010, Constructor = 0x020, Event = 0x040, Field = 0x080, Method = 0x100, Property = 0x200, NestedType = 0x400, NotExtensionMethod = 0x800, MaskType = Constructor|Event|Field|Method|Property|NestedType } public class CacheEntry { public readonly IMemberContainer Container; public EntryType EntryType; public readonly MemberInfo Member; public CacheEntry (IMemberContainer container, MemberInfo member, MemberTypes mt, BindingFlags bf) { this.Container = container; this.Member = member; this.EntryType = GetEntryType (mt, bf); } public override string ToString () { return String.Format ("CacheEntry ({0}:{1}:{2})", Container.Name, EntryType, Member); } } /// /// This is called each time we're walking up one level in the class hierarchy /// and checks whether we can abort the search since we've already found what /// we were looking for. /// protected bool DoneSearching (IList list) { // // We've found exactly one member in the current class and it's not // a method or constructor. // if (list.Count == 1 && !(list [0] is MethodBase)) return true; // // Multiple properties: we query those just to find out the indexer // name // if ((list.Count > 0) && (list [0] is PropertyInfo)) return true; return false; } /// /// Looks up members with name `name'. If you provide an optional /// filter function, it'll only be called with members matching the /// requested member name. /// /// This method will try to use the cache to do the lookup if possible. /// /// Unlike other FindMembers implementations, this method will always /// check all inherited members - even when called on an interface type. /// /// If you know that you're only looking for methods, you should use /// MemberTypes.Method alone since this speeds up the lookup a bit. /// When doing a method-only search, it'll try to use a special method /// cache (unless it's a dynamic type or an interface) and the returned /// MemberInfo's will have the correct ReflectedType for inherited methods. /// The lookup process will automatically restart itself in method-only /// search mode if it discovers that it's about to return methods. /// List global = new List (); bool using_global; static MemberInfo [] emptyMemberInfo = new MemberInfo [0]; public MemberInfo [] FindMembers (MemberTypes mt, BindingFlags bf, string name, MemberFilter filter, object criteria) { if (using_global) throw new Exception (); bool declared_only = (bf & BindingFlags.DeclaredOnly) != 0; bool method_search = mt == MemberTypes.Method; // If we have a method cache and we aren't already doing a method-only search, // then we restart a method search if the first match is a method. bool do_method_search = !method_search && (method_hash != null); List applicable; // If this is a method-only search, we try to use the method cache if // possible; a lookup in the method cache will return a MemberInfo with // the correct ReflectedType for inherited methods. if (method_search && (method_hash != null)) method_hash.TryGetValue (name, out applicable); else member_hash.TryGetValue (name, out applicable); if (applicable == null) return emptyMemberInfo; // // 32 slots gives 53 rss/54 size // 2/4 slots gives 55 rss // // Strange: from 25,000 calls, only 1,800 // are above 2. Why does this impact it? // global.Clear (); using_global = true; Timer.StartTimer (TimerType.CachedLookup); EntryType type = GetEntryType (mt, bf); IMemberContainer current = Container; bool do_interface_search = current.IsInterface; // `applicable' is a list of all members with the given member name `name' // in the current class and all its base classes. The list is sorted in // reverse order due to the way how the cache is initialy created (to speed // things up, we're doing a deep-copy of our base). for (int i = applicable.Count-1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; // This happens each time we're walking one level up in the class // hierarchy. If we're doing a DeclaredOnly search, we must abort // the first time this happens (this may already happen in the first // iteration of this loop if there are no members with the name we're // looking for in the current class). if (entry.Container != current) { if (declared_only) break; if (!do_interface_search && DoneSearching (global)) break; current = entry.Container; } // Is the member of the correct type ? if ((entry.EntryType & type & EntryType.MaskType) == 0) continue; // Is the member static/non-static ? if ((entry.EntryType & type & EntryType.MaskStatic) == 0) continue; // Apply the filter to it. if (filter (entry.Member, criteria)) { if ((entry.EntryType & EntryType.MaskType) != EntryType.Method) { do_method_search = false; } // Because interfaces support multiple inheritance we have to be sure that // base member is from same interface, so only top level member will be returned if (do_interface_search && global.Count > 0) { bool member_already_exists = false; foreach (MemberInfo mi in global) { if (mi is MethodBase) continue; if (IsInterfaceBaseInterface (TypeManager.GetInterfaces (mi.DeclaringType), entry.Member.DeclaringType)) { member_already_exists = true; break; } } if (member_already_exists) continue; } global.Add (entry.Member); } } Timer.StopTimer (TimerType.CachedLookup); // If we have a method cache and we aren't already doing a method-only // search, we restart in method-only search mode if the first match is // a method. This ensures that we return a MemberInfo with the correct // ReflectedType for inherited methods. if (do_method_search && (global.Count > 0)){ using_global = false; return FindMembers (MemberTypes.Method, bf, name, filter, criteria); } using_global = false; MemberInfo [] copy = new MemberInfo [global.Count]; global.CopyTo (copy); return copy; } /// /// Returns true if iterface exists in any base interfaces (ifaces) /// static bool IsInterfaceBaseInterface (Type[] ifaces, Type ifaceToFind) { foreach (Type iface in ifaces) { if (iface == ifaceToFind) return true; Type[] base_ifaces = TypeManager.GetInterfaces (iface); if (base_ifaces.Length > 0 && IsInterfaceBaseInterface (base_ifaces, ifaceToFind)) return true; } return false; } // find the nested type @name in @this. public Type FindNestedType (string name) { List applicable; if (!member_hash.TryGetValue (name, out applicable)) return null; for (int i = applicable.Count-1; i >= 0; i--) { CacheEntry entry = applicable [i]; if ((entry.EntryType & EntryType.NestedType & EntryType.MaskType) != 0) return (Type) entry.Member; } return null; } public MemberInfo FindBaseEvent (Type invocation_type, string name) { List applicable; if (!member_hash.TryGetValue (name, out applicable)) return null; // // Walk the chain of events, starting from the top. // for (int i = applicable.Count - 1; i >= 0; i--) { CacheEntry entry = applicable [i]; if ((entry.EntryType & EntryType.Event) == 0) continue; EventInfo ei = (EventInfo)entry.Member; return ei.GetAddMethod (true); } return null; } // // Looks for extension methods with defined name and extension type // public List FindExtensionMethods (Assembly thisAssembly, Type extensionType, string name, bool publicOnly) { List entries; if (method_hash != null) method_hash.TryGetValue (name, out entries); else { member_hash.TryGetValue (name, out entries); } if (entries == null) return null; EntryType entry_type = EntryType.Static | EntryType.Method | EntryType.NotExtensionMethod; EntryType found_entry_type = entry_type & ~EntryType.NotExtensionMethod; List candidates = null; foreach (CacheEntry entry in entries) { if ((entry.EntryType & entry_type) == found_entry_type) { MethodBase mb = (MethodBase)entry.Member; // Simple accessibility check if ((entry.EntryType & EntryType.Public) == 0 && publicOnly) { MethodAttributes ma = mb.Attributes & MethodAttributes.MemberAccessMask; if (ma != MethodAttributes.Assembly && ma != MethodAttributes.FamORAssem) continue; if (!TypeManager.IsThisOrFriendAssembly (thisAssembly, mb.DeclaringType.Assembly)) continue; } IMethodData md = TypeManager.GetMethod (mb); AParametersCollection pd = md == null ? TypeManager.GetParameterData (mb) : md.ParameterInfo; Type ex_type = pd.ExtensionMethodType; if (ex_type == null) { entry.EntryType |= EntryType.NotExtensionMethod; continue; } if (candidates == null) candidates = new List (2); candidates.Add (Import.CreateMethod (mb)); } } return candidates; } // // This finds the method or property for us to override. invocation_type is the type where // the override is going to be declared, name is the name of the method/property, and // param_types is the parameters, if any to the method or property // // Because the MemberCache holds members from this class and all the base classes, // we can avoid tons of reflection stuff. // public MemberInfo FindMemberToOverride (Type invocation_type, string name, AParametersCollection parameters, GenericMethod generic_method, bool is_property) { List applicable; if (method_hash != null && !is_property) method_hash.TryGetValue (name, out applicable); else member_hash.TryGetValue (name, out applicable); if (applicable == null) return null; // // Walk the chain of methods, starting from the top. // for (int i = applicable.Count - 1; i >= 0; i--) { CacheEntry entry = applicable [i]; if ((entry.EntryType & (is_property ? (EntryType.Property | EntryType.Field) : EntryType.Method)) == 0) continue; PropertyInfo pi = null; MethodInfo mi = null; FieldInfo fi = null; AParametersCollection cmp_attrs; if (is_property) { if ((entry.EntryType & EntryType.Field) != 0) { fi = (FieldInfo)entry.Member; cmp_attrs = ParametersCompiled.EmptyReadOnlyParameters; } else { pi = (PropertyInfo) entry.Member; cmp_attrs = TypeManager.GetParameterData (pi); } } else { mi = (MethodInfo) entry.Member; cmp_attrs = TypeManager.GetParameterData (mi); } if (fi != null) { // TODO: Almost duplicate ! // Check visibility switch (fi.Attributes & FieldAttributes.FieldAccessMask) { case FieldAttributes.PrivateScope: continue; case FieldAttributes.Private: // // A private method is Ok if we are a nested subtype. // The spec actually is not very clear about this, see bug 52458. // if (!invocation_type.Equals (entry.Container.Type) && !TypeManager.IsNestedChildOf (invocation_type, entry.Container.Type)) continue; break; case FieldAttributes.FamANDAssem: case FieldAttributes.Assembly: // // Check for assembly methods // if (fi.DeclaringType.Assembly != CodeGen.Assembly.Builder) continue; break; } return entry.Member; } // // Check the arguments // if (cmp_attrs.Count != parameters.Count) continue; int j; for (j = 0; j < cmp_attrs.Count; ++j) { // // LAMESPEC: No idea why `params' modifier is ignored // if ((parameters.FixedParameters [j].ModFlags & ~Parameter.Modifier.PARAMS) != (cmp_attrs.FixedParameters [j].ModFlags & ~Parameter.Modifier.PARAMS)) break; if (!TypeManager.IsEqual (parameters.Types [j], cmp_attrs.Types [j])) break; } if (j < cmp_attrs.Count) continue; // // check generic arguments for methods // if (mi != null) { Type [] cmpGenArgs = TypeManager.GetGenericArguments (mi); if (generic_method == null && cmpGenArgs != null && cmpGenArgs.Length != 0) continue; if (generic_method != null && cmpGenArgs != null && cmpGenArgs.Length != generic_method.TypeParameters.Length) continue; } // // get one of the methods because this has the visibility info. // if (is_property) { mi = pi.GetGetMethod (true); if (mi == null) mi = pi.GetSetMethod (true); } // // Check visibility // switch (mi.Attributes & MethodAttributes.MemberAccessMask) { case MethodAttributes.PrivateScope: continue; case MethodAttributes.Private: // // A private method is Ok if we are a nested subtype. // The spec actually is not very clear about this, see bug 52458. // if (!invocation_type.Equals (entry.Container.Type) && !TypeManager.IsNestedChildOf (invocation_type, entry.Container.Type)) continue; break; case MethodAttributes.FamANDAssem: case MethodAttributes.Assembly: // // Check for assembly methods // if (!TypeManager.IsThisOrFriendAssembly (invocation_type.Assembly, mi.DeclaringType.Assembly)) continue; break; } return entry.Member; } return null; } /// /// The method is looking for conflict with inherited symbols (errors CS0108, CS0109). /// We handle two cases. The first is for types without parameters (events, field, properties). /// The second are methods, indexers and this is why ignore_complex_types is here. /// The latest param is temporary hack. See DoDefineMembers method for more info. /// public MemberInfo FindMemberWithSameName (string name, bool ignore_complex_types, MemberInfo ignore_member) { List applicable = null; if (method_hash != null) method_hash.TryGetValue (name, out applicable); if (applicable != null) { for (int i = applicable.Count - 1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; if ((entry.EntryType & EntryType.Public) != 0) return entry.Member; } } if (member_hash == null) return null; if (member_hash.TryGetValue (name, out applicable)) { for (int i = applicable.Count - 1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; if ((entry.EntryType & EntryType.Public) != 0 & entry.Member != ignore_member) { if (ignore_complex_types) { if ((entry.EntryType & EntryType.Method) != 0) continue; // Does exist easier way how to detect indexer ? if ((entry.EntryType & EntryType.Property) != 0) { AParametersCollection arg_types = TypeManager.GetParameterData ((PropertyInfo)entry.Member); if (arg_types.Count > 0) continue; } } return entry.Member; } } } return null; } /// /// Builds low-case table for CLS Compliance test /// public Dictionary GetPublicMembers () { if (locase_table != null) return locase_table; locase_table = new Dictionary (); foreach (var entry in member_hash) { var members = entry.Value; for (int ii = 0; ii < members.Count; ++ii) { CacheEntry member_entry = members [ii]; if ((member_entry.EntryType & EntryType.Public) == 0) continue; // TODO: Does anyone know easier way how to detect that member is internal ? switch (member_entry.EntryType & EntryType.MaskType) { case EntryType.Constructor: continue; case EntryType.Field: if ((((FieldInfo)member_entry.Member).Attributes & (FieldAttributes.Assembly | FieldAttributes.Public)) == FieldAttributes.Assembly) continue; break; case EntryType.Method: if ((((MethodInfo)member_entry.Member).Attributes & (MethodAttributes.Assembly | MethodAttributes.Public)) == MethodAttributes.Assembly) continue; break; case EntryType.Property: PropertyInfo pi = (PropertyInfo)member_entry.Member; if (pi.GetSetMethod () == null && pi.GetGetMethod () == null) continue; break; case EntryType.Event: EventInfo ei = (EventInfo)member_entry.Member; MethodInfo mi = ei.GetAddMethod (); if ((mi.Attributes & (MethodAttributes.Assembly | MethodAttributes.Public)) == MethodAttributes.Assembly) continue; break; } string lcase = ((string)entry.Key).ToLower (System.Globalization.CultureInfo.InvariantCulture); locase_table [lcase] = member_entry.Member; break; } } return locase_table; } public IDictionary> Members { get { return member_hash; } } /// /// Cls compliance check whether methods or constructors parameters differing only in ref or out, or in array rank /// /// // TODO: refactor as method is always 'this' public static void VerifyClsParameterConflict (IList al, MethodCore method, MemberInfo this_builder, Report Report) { EntryType tested_type = (method is Constructor ? EntryType.Constructor : EntryType.Method) | EntryType.Public; for (int i = 0; i < al.Count; ++i) { var entry = al [i]; // skip itself if (entry.Member == this_builder) continue; if ((entry.EntryType & tested_type) != tested_type) continue; MethodBase method_to_compare = (MethodBase)entry.Member; AttributeTester.Result result = AttributeTester.AreOverloadedMethodParamsClsCompliant ( method.Parameters, TypeManager.GetParameterData (method_to_compare)); if (result == AttributeTester.Result.Ok) continue; IMethodData md = TypeManager.GetMethod (method_to_compare); // TODO: now we are ignoring CLSCompliance(false) on method from other assembly which is buggy. // However it is exactly what csc does. if (md != null && !md.IsClsComplianceRequired ()) continue; Report.SymbolRelatedToPreviousError (entry.Member); switch (result) { case AttributeTester.Result.RefOutArrayError: Report.Warning (3006, 1, method.Location, "Overloaded method `{0}' differing only in ref or out, or in array rank, is not CLS-compliant", method.GetSignatureForError ()); continue; case AttributeTester.Result.ArrayArrayError: Report.Warning (3007, 1, method.Location, "Overloaded method `{0}' differing only by unnamed array types is not CLS-compliant", method.GetSignatureForError ()); continue; } throw new NotImplementedException (result.ToString ()); } } public bool CheckExistingMembersOverloads (MemberCore member, string name, ParametersCompiled parameters, Report Report) { List entries; if (!member_hash.TryGetValue (name, out entries)) return true; int method_param_count = parameters.Count; for (int i = entries.Count - 1; i >= 0; --i) { CacheEntry ce = (CacheEntry) entries [i]; if (ce.Container != member.Parent.PartialContainer) return true; Type [] p_types; AParametersCollection pd; if ((ce.EntryType & EntryType.Property) != 0) { pd = TypeManager.GetParameterData ((PropertyInfo) ce.Member); p_types = pd.Types; } else { MethodBase mb = (MethodBase) ce.Member; // TODO: This is more like a hack, because we are adding generic methods // twice with and without arity name if (TypeManager.IsGenericMethod (mb) && !member.MemberName.IsGeneric) continue; pd = TypeManager.GetParameterData (mb); p_types = pd.Types; } if (p_types.Length != method_param_count) continue; if (method_param_count > 0) { int ii = method_param_count - 1; Type type_a, type_b; do { type_a = parameters.Types [ii]; type_b = p_types [ii]; if (TypeManager.IsGenericParameter (type_a) && type_a.DeclaringMethod != null) type_a = typeof (TypeParameter); if (TypeManager.IsGenericParameter (type_b) && type_b.DeclaringMethod != null) type_b = typeof (TypeParameter); if ((pd.FixedParameters [ii].ModFlags & Parameter.Modifier.ISBYREF) != (parameters.FixedParameters [ii].ModFlags & Parameter.Modifier.ISBYREF)) break; } while (TypeManager.IsEqual (type_a, type_b) && ii-- != 0); if (ii >= 0) continue; // // Operators can differ in return type only // if (member is Operator) { Operator op = TypeManager.GetMethod ((MethodBase) ce.Member) as Operator; if (op != null && op.ReturnType != ((Operator) member).ReturnType) continue; } // // Report difference in parameter modifiers only // if (pd != null && member is MethodCore) { ii = method_param_count; while (ii-- != 0 && parameters.FixedParameters [ii].ModFlags == pd.FixedParameters [ii].ModFlags && parameters.ExtensionMethodType == pd.ExtensionMethodType); if (ii >= 0) { MethodCore mc = TypeManager.GetMethod ((MethodBase) ce.Member) as MethodCore; Report.SymbolRelatedToPreviousError (ce.Member); if ((member.ModFlags & Modifiers.PARTIAL) != 0 && (mc.ModFlags & Modifiers.PARTIAL) != 0) { if (parameters.HasParams || pd.HasParams) { Report.Error (758, member.Location, "A partial method declaration and partial method implementation cannot differ on use of `params' modifier"); } else { Report.Error (755, member.Location, "A partial method declaration and partial method implementation must be both an extension method or neither"); } } else { if (member is Constructor) { Report.Error (851, member.Location, "Overloaded contructor `{0}' cannot differ on use of parameter modifiers only", member.GetSignatureForError ()); } else { Report.Error (663, member.Location, "Overloaded method `{0}' cannot differ on use of parameter modifiers only", member.GetSignatureForError ()); } } return false; } } } if ((ce.EntryType & EntryType.Method) != 0) { Method method_a = member as Method; Method method_b = TypeManager.GetMethod ((MethodBase) ce.Member) as Method; if (method_a != null && method_b != null && (method_a.ModFlags & method_b.ModFlags & Modifiers.PARTIAL) != 0) { const Modifiers partial_modifiers = Modifiers.STATIC | Modifiers.UNSAFE; if (method_a.IsPartialDefinition == method_b.IsPartialImplementation) { if ((method_a.ModFlags & partial_modifiers) == (method_b.ModFlags & partial_modifiers) || method_a.Parent.IsUnsafe && method_b.Parent.IsUnsafe) { if (method_a.IsPartialImplementation) { method_a.SetPartialDefinition (method_b); entries.RemoveAt (i); } else { method_b.SetPartialDefinition (method_a); method_a.caching_flags |= MemberCore.Flags.PartialDefinitionExists; } continue; } if ((method_a.ModFlags & Modifiers.STATIC) != (method_b.ModFlags & Modifiers.STATIC)) { Report.SymbolRelatedToPreviousError (ce.Member); Report.Error (763, member.Location, "A partial method declaration and partial method implementation must be both `static' or neither"); } Report.SymbolRelatedToPreviousError (ce.Member); Report.Error (764, member.Location, "A partial method declaration and partial method implementation must be both `unsafe' or neither"); return false; } Report.SymbolRelatedToPreviousError (ce.Member); if (method_a.IsPartialDefinition) { Report.Error (756, member.Location, "A partial method `{0}' declaration is already defined", member.GetSignatureForError ()); } else { Report.Error (757, member.Location, "A partial method `{0}' implementation is already defined", member.GetSignatureForError ()); } return false; } Report.SymbolRelatedToPreviousError (ce.Member); IMethodData duplicate_member = TypeManager.GetMethod ((MethodBase) ce.Member); if (member is Operator && duplicate_member is Operator) { Report.Error (557, member.Location, "Duplicate user-defined conversion in type `{0}'", member.Parent.GetSignatureForError ()); return false; } bool is_reserved_a = member is AbstractPropertyEventMethod || member is Operator; bool is_reserved_b = duplicate_member is AbstractPropertyEventMethod || duplicate_member is Operator; if (is_reserved_a || is_reserved_b) { Report.Error (82, member.Location, "A member `{0}' is already reserved", is_reserved_a ? TypeManager.GetFullNameSignature (ce.Member) : member.GetSignatureForError ()); return false; } } else { Report.SymbolRelatedToPreviousError (ce.Member); } Report.Error (111, member.Location, "A member `{0}' is already defined. Rename this member or use different parameter types", member.GetSignatureForError ()); return false; } return true; } } }