// // decl.cs: Declaration base class for structs, classes, enums and interfaces. // // Author: Miguel de Icaza (miguel@gnu.org) // Marek Safar (marek.safar@seznam.cz) // // Dual licensed under the terms of the MIT X11 or GNU GPL // // Copyright 2001 Ximian, Inc (http://www.ximian.com) // Copyright 2004-2008 Novell, Inc // // using System; using System.Text; using System.Collections; using System.Globalization; using System.Reflection.Emit; using System.Reflection; #if BOOTSTRAP_WITH_OLDLIB || NET_2_1 using XmlElement = System.Object; #else using System.Xml; #endif namespace Mono.CSharp { // // Better name would be DottenName // public class MemberName { public readonly string Name; public readonly TypeArguments TypeArguments; public readonly MemberName Left; public readonly Location Location; public static readonly MemberName Null = new MemberName (""); bool is_double_colon; private MemberName (MemberName left, string name, bool is_double_colon, Location loc) { this.Name = name; this.Location = loc; this.is_double_colon = is_double_colon; this.Left = left; } private MemberName (MemberName left, string name, bool is_double_colon, TypeArguments args, Location loc) : this (left, name, is_double_colon, loc) { if (args != null && args.Count > 0) this.TypeArguments = args; } public MemberName (string name) : this (name, Location.Null) { } public MemberName (string name, Location loc) : this (null, name, false, loc) { } public MemberName (string name, TypeArguments args, Location loc) : this (null, name, false, args, loc) { } public MemberName (MemberName left, string name) : this (left, name, left != null ? left.Location : Location.Null) { } public MemberName (MemberName left, string name, Location loc) : this (left, name, false, loc) { } public MemberName (MemberName left, string name, TypeArguments args, Location loc) : this (left, name, false, args, loc) { } public MemberName (string alias, string name, TypeArguments args, Location loc) : this (new MemberName (alias, loc), name, true, args, loc) { } public MemberName (MemberName left, MemberName right) : this (left, right, right.Location) { } public MemberName (MemberName left, MemberName right, Location loc) : this (null, right.Name, false, right.TypeArguments, loc) { if (right.is_double_colon) throw new InternalErrorException ("Cannot append double_colon member name"); this.Left = (right.Left == null) ? left : new MemberName (left, right.Left); } // TODO: Remove public string GetName () { return GetName (false); } public bool IsGeneric { get { if (TypeArguments != null) return true; else if (Left != null) return Left.IsGeneric; else return false; } } public string GetName (bool is_generic) { string name = is_generic ? Basename : Name; if (Left != null) return Left.GetName (is_generic) + (is_double_colon ? "::" : ".") + name; return name; } public ATypeNameExpression GetTypeExpression () { if (Left == null) { if (TypeArguments != null) return new SimpleName (Basename, TypeArguments, Location); return new SimpleName (Name, Location); } if (is_double_colon) { if (Left.Left != null) throw new InternalErrorException ("The left side of a :: should be an identifier"); return new QualifiedAliasMember (Left.Name, Name, TypeArguments, Location); } Expression lexpr = Left.GetTypeExpression (); return new MemberAccess (lexpr, Name, TypeArguments, Location); } public MemberName Clone () { MemberName left_clone = Left == null ? null : Left.Clone (); return new MemberName (left_clone, Name, is_double_colon, TypeArguments, Location); } public string Basename { get { if (TypeArguments != null) return MakeName (Name, TypeArguments); return Name; } } public string GetSignatureForError () { string append = TypeArguments == null ? "" : "<" + TypeArguments.GetSignatureForError () + ">"; if (Left == null) return Name + append; string connect = is_double_colon ? "::" : "."; return Left.GetSignatureForError () + connect + Name + append; } public override bool Equals (object other) { return Equals (other as MemberName); } public bool Equals (MemberName other) { if (this == other) return true; if (other == null || Name != other.Name) return false; if (is_double_colon != other.is_double_colon) return false; if ((TypeArguments != null) && (other.TypeArguments == null || TypeArguments.Count != other.TypeArguments.Count)) return false; if ((TypeArguments == null) && (other.TypeArguments != null)) return false; if (Left == null) return other.Left == null; return Left.Equals (other.Left); } public override int GetHashCode () { int hash = Name.GetHashCode (); for (MemberName n = Left; n != null; n = n.Left) hash ^= n.Name.GetHashCode (); if (is_double_colon) hash ^= 0xbadc01d; if (TypeArguments != null) hash ^= TypeArguments.Count << 5; return hash & 0x7FFFFFFF; } public int CountTypeArguments { get { if (TypeArguments != null) return TypeArguments.Count; else if (Left != null) return Left.CountTypeArguments; else return 0; } } public static string MakeName (string name, TypeArguments args) { if (args == null) return name; return name + "`" + args.Count; } public static string MakeName (string name, int count) { return name + "`" + count; } } /// /// Base representation for members. This is used to keep track /// of Name, Location and Modifier flags, and handling Attributes. /// public abstract class MemberCore : Attributable, IResolveContext { /// /// Public name /// protected string cached_name; // TODO: Remove in favor of MemberName public string Name { get { if (cached_name == null) cached_name = MemberName.GetName (!(this is GenericMethod) && !(this is Method)); return cached_name; } } // Is not readonly because of IndexerName attribute private MemberName member_name; public MemberName MemberName { get { return member_name; } } /// /// Modifier flags that the user specified in the source code /// private int mod_flags; public int ModFlags { set { mod_flags = value; if ((value & Modifiers.COMPILER_GENERATED) != 0) caching_flags = Flags.IsUsed | Flags.IsAssigned; } get { return mod_flags; } } public /*readonly*/ DeclSpace Parent; /// /// Location where this declaration happens /// public Location Location { get { return member_name.Location; } } /// /// XML documentation comment /// protected string comment; /// /// Represents header string for documentation comment /// for each member types. /// public abstract string DocCommentHeader { get; } [Flags] public enum Flags { Obsolete_Undetected = 1, // Obsolete attribute has not been detected yet Obsolete = 1 << 1, // Type has obsolete attribute ClsCompliance_Undetected = 1 << 2, // CLS Compliance has not been detected yet ClsCompliant = 1 << 3, // Type is CLS Compliant CloseTypeCreated = 1 << 4, // Tracks whether we have Closed the type HasCompliantAttribute_Undetected = 1 << 5, // Presence of CLSCompliantAttribute has not been detected HasClsCompliantAttribute = 1 << 6, // Type has CLSCompliantAttribute ClsCompliantAttributeTrue = 1 << 7, // Type has CLSCompliant (true) Excluded_Undetected = 1 << 8, // Conditional attribute has not been detected yet Excluded = 1 << 9, // Method is conditional MethodOverloadsExist = 1 << 10, // Test for duplication must be performed IsUsed = 1 << 11, IsAssigned = 1 << 12, // Field is assigned HasExplicitLayout = 1 << 13, PartialDefinitionExists = 1 << 14, // Set when corresponding partial method definition exists HasStructLayout = 1 << 15 // Has StructLayoutAttribute } /// /// MemberCore flags at first detected then cached /// internal Flags caching_flags; public MemberCore (DeclSpace parent, MemberName name, Attributes attrs) : base (attrs) { this.Parent = parent; member_name = name; caching_flags = Flags.Obsolete_Undetected | Flags.ClsCompliance_Undetected | Flags.HasCompliantAttribute_Undetected | Flags.Excluded_Undetected; } protected virtual void SetMemberName (MemberName new_name) { member_name = new_name; cached_name = null; } protected bool CheckAbstractAndExtern (bool has_block) { if (Parent.PartialContainer.Kind == Kind.Interface) return true; if (has_block) { if ((ModFlags & Modifiers.EXTERN) != 0) { Report.Error (179, Location, "`{0}' cannot declare a body because it is marked extern", GetSignatureForError ()); return false; } if ((ModFlags & Modifiers.ABSTRACT) != 0) { Report.Error (500, Location, "`{0}' cannot declare a body because it is marked abstract", GetSignatureForError ()); return false; } } else { if ((ModFlags & (Modifiers.ABSTRACT | Modifiers.EXTERN | Modifiers.PARTIAL)) == 0) { if (RootContext.Version >= LanguageVersion.LINQ) { Property.PropertyMethod pm = this as Property.PropertyMethod; if (pm is Indexer.GetIndexerMethod || pm is Indexer.SetIndexerMethod) pm = null; if (pm != null && (pm.Property.Get.IsDummy || pm.Property.Set.IsDummy)) { Report.Error (840, Location, "`{0}' must have a body because it is not marked abstract or extern. The property can be automatically implemented when you define both accessors", GetSignatureForError ()); return false; } } Report.Error (501, Location, "`{0}' must have a body because it is not marked abstract, extern, or partial", GetSignatureForError ()); return false; } } return true; } public void CheckProtectedModifier () { if ((ModFlags & Modifiers.PROTECTED) == 0) return; if (Parent.PartialContainer.Kind == Kind.Struct) { Report.Error (666, Location, "`{0}': Structs cannot contain protected members", GetSignatureForError ()); return; } if ((Parent.ModFlags & Modifiers.STATIC) != 0) { Report.Error (1057, Location, "`{0}': Static classes cannot contain protected members", GetSignatureForError ()); return; } if ((Parent.ModFlags & Modifiers.SEALED) != 0 && (ModFlags & Modifiers.OVERRIDE) == 0 && !(this is Destructor)) { Report.Warning (628, 4, Location, "`{0}': new protected member declared in sealed class", GetSignatureForError ()); return; } } public abstract bool Define (); public virtual string DocComment { get { return comment; } set { comment = value; } } // // Returns full member name for error message // public virtual string GetSignatureForError () { if (Parent == null || Parent.Parent == null) return member_name.GetSignatureForError (); return Parent.GetSignatureForError () + "." + member_name.GetSignatureForError (); } /// /// Base Emit method. This is also entry point for CLS-Compliant verification. /// public virtual void Emit () { if (!RootContext.VerifyClsCompliance) return; if (Report.WarningLevel > 0) VerifyClsCompliance (); } public bool IsCompilerGenerated { get { if ((mod_flags & Modifiers.COMPILER_GENERATED) != 0) return true; return Parent == null ? false : Parent.IsCompilerGenerated; } } public virtual bool IsUsed { get { return (caching_flags & Flags.IsUsed) != 0; } } public void SetMemberIsUsed () { caching_flags |= Flags.IsUsed; } /// /// Returns instance of ObsoleteAttribute for this MemberCore /// public virtual ObsoleteAttribute GetObsoleteAttribute () { if ((caching_flags & (Flags.Obsolete_Undetected | Flags.Obsolete)) == 0) return null; caching_flags &= ~Flags.Obsolete_Undetected; if (OptAttributes == null) return null; Attribute obsolete_attr = OptAttributes.Search (PredefinedAttributes.Get.Obsolete); if (obsolete_attr == null) return null; caching_flags |= Flags.Obsolete; ObsoleteAttribute obsolete = obsolete_attr.GetObsoleteAttribute (); if (obsolete == null) return null; return obsolete; } /// /// Checks for ObsoleteAttribute presence. It's used for testing of all non-types elements /// public virtual void CheckObsoleteness (Location loc) { ObsoleteAttribute oa = GetObsoleteAttribute (); if (oa != null) AttributeTester.Report_ObsoleteMessage (oa, GetSignatureForError (), loc); } // Access level of a type. const int X = 1; enum AccessLevel { // Each column represents `is this scope larger or equal to Blah scope' // Public Assembly Protected Protected = (0 << 0) | (0 << 1) | (X << 2), Public = (X << 0) | (X << 1) | (X << 2), Private = (0 << 0) | (0 << 1) | (0 << 2), Internal = (0 << 0) | (X << 1) | (0 << 2), ProtectedOrInternal = (0 << 0) | (X << 1) | (X << 2), } static AccessLevel GetAccessLevelFromModifiers (int flags) { if ((flags & Modifiers.INTERNAL) != 0) { if ((flags & Modifiers.PROTECTED) != 0) return AccessLevel.ProtectedOrInternal; else return AccessLevel.Internal; } else if ((flags & Modifiers.PROTECTED) != 0) return AccessLevel.Protected; else if ((flags & Modifiers.PRIVATE) != 0) return AccessLevel.Private; else return AccessLevel.Public; } // // Returns the access level for type `t' // static AccessLevel GetAccessLevelFromType (Type t) { if (t.IsPublic) return AccessLevel.Public; if (t.IsNestedPrivate) return AccessLevel.Private; if (t.IsNotPublic) return AccessLevel.Internal; if (t.IsNestedPublic) return AccessLevel.Public; if (t.IsNestedAssembly) return AccessLevel.Internal; if (t.IsNestedFamily) return AccessLevel.Protected; if (t.IsNestedFamORAssem) return AccessLevel.ProtectedOrInternal; if (t.IsNestedFamANDAssem) throw new NotImplementedException ("NestedFamANDAssem not implemented, cant make this kind of type from c# anyways"); // nested private is taken care of throw new Exception ("I give up, what are you?"); } // // Checks whether the type P is as accessible as this member // public bool IsAccessibleAs (Type p) { // // if M is private, its accessibility is the same as this declspace. // we already know that P is accessible to T before this method, so we // may return true. // if ((mod_flags & Modifiers.PRIVATE) != 0) return true; while (TypeManager.HasElementType (p)) p = TypeManager.GetElementType (p); if (TypeManager.IsGenericParameter (p)) return true; if (TypeManager.IsGenericType (p)) { foreach (Type t in TypeManager.GetTypeArguments (p)) { if (!IsAccessibleAs (t)) return false; } } for (Type p_parent = null; p != null; p = p_parent) { p_parent = p.DeclaringType; AccessLevel pAccess = GetAccessLevelFromType (p); if (pAccess == AccessLevel.Public) continue; bool same_access_restrictions = false; for (MemberCore mc = this; !same_access_restrictions && mc != null && mc.Parent != null; mc = mc.Parent) { AccessLevel al = GetAccessLevelFromModifiers (mc.ModFlags); switch (pAccess) { case AccessLevel.Internal: if (al == AccessLevel.Private || al == AccessLevel.Internal) same_access_restrictions = TypeManager.IsThisOrFriendAssembly (p.Assembly); break; case AccessLevel.Protected: if (al == AccessLevel.Protected) { same_access_restrictions = mc.Parent.IsBaseType (p_parent); break; } if (al == AccessLevel.Private) { // // When type is private and any of its parents derives from // protected type then the type is accessible // while (mc.Parent != null) { if (mc.Parent.IsBaseType (p_parent)) same_access_restrictions = true; mc = mc.Parent; } } break; case AccessLevel.ProtectedOrInternal: if (al == AccessLevel.Protected) same_access_restrictions = mc.Parent.IsBaseType (p_parent); else if (al == AccessLevel.Internal) same_access_restrictions = TypeManager.IsThisOrFriendAssembly (p.Assembly); else if (al == AccessLevel.ProtectedOrInternal) same_access_restrictions = mc.Parent.IsBaseType (p_parent) && TypeManager.IsThisOrFriendAssembly (p.Assembly); break; case AccessLevel.Private: // // Both are private and share same parent // if (al == AccessLevel.Private) same_access_restrictions = TypeManager.IsEqual (mc.Parent.TypeBuilder, p_parent); break; default: throw new InternalErrorException (al.ToString ()); } } if (!same_access_restrictions) return false; } return true; } /// /// Analyze whether CLS-Compliant verification must be execute for this MemberCore. /// public override bool IsClsComplianceRequired () { if ((caching_flags & Flags.ClsCompliance_Undetected) == 0) return (caching_flags & Flags.ClsCompliant) != 0; if (GetClsCompliantAttributeValue () && IsExposedFromAssembly ()) { caching_flags &= ~Flags.ClsCompliance_Undetected; caching_flags |= Flags.ClsCompliant; return true; } caching_flags &= ~Flags.ClsCompliance_Undetected; return false; } /// /// Returns true when MemberCore is exposed from assembly. /// public bool IsExposedFromAssembly () { if ((ModFlags & (Modifiers.PUBLIC | Modifiers.PROTECTED)) == 0) return false; DeclSpace parentContainer = Parent; while (parentContainer != null && parentContainer.ModFlags != 0) { if ((parentContainer.ModFlags & (Modifiers.PUBLIC | Modifiers.PROTECTED)) == 0) return false; parentContainer = parentContainer.Parent; } return true; } /// /// Goes through class hierarchy and gets value of first found CLSCompliantAttribute. /// If no is attribute exists then assembly CLSCompliantAttribute is returned. /// public virtual bool GetClsCompliantAttributeValue () { if ((caching_flags & Flags.HasCompliantAttribute_Undetected) == 0) return (caching_flags & Flags.ClsCompliantAttributeTrue) != 0; caching_flags &= ~Flags.HasCompliantAttribute_Undetected; if (OptAttributes != null) { Attribute cls_attribute = OptAttributes.Search ( PredefinedAttributes.Get.CLSCompliant); if (cls_attribute != null) { caching_flags |= Flags.HasClsCompliantAttribute; bool value = cls_attribute.GetClsCompliantAttributeValue (); if (value) caching_flags |= Flags.ClsCompliantAttributeTrue; return value; } } // It's null for TypeParameter if (Parent == null) return false; if (Parent.GetClsCompliantAttributeValue ()) { caching_flags |= Flags.ClsCompliantAttributeTrue; return true; } return false; } /// /// Returns true if MemberCore is explicitly marked with CLSCompliantAttribute /// protected bool HasClsCompliantAttribute { get { if ((caching_flags & Flags.HasCompliantAttribute_Undetected) != 0) GetClsCompliantAttributeValue (); return (caching_flags & Flags.HasClsCompliantAttribute) != 0; } } /// /// Returns true when a member supports multiple overloads (methods, indexers, etc) /// public virtual bool EnableOverloadChecks (MemberCore overload) { return false; } /// /// The main virtual method for CLS-Compliant verifications. /// The method returns true if member is CLS-Compliant and false if member is not /// CLS-Compliant which means that CLS-Compliant tests are not necessary. A descendants override it /// and add their extra verifications. /// protected virtual bool VerifyClsCompliance () { if (!IsClsComplianceRequired ()) { if (HasClsCompliantAttribute && Report.WarningLevel >= 2) { if (!IsExposedFromAssembly ()) { Attribute a = OptAttributes.Search (PredefinedAttributes.Get.CLSCompliant); Report.Warning (3019, 2, a.Location, "CLS compliance checking will not be performed on `{0}' because it is not visible from outside this assembly", GetSignatureForError ()); } if (!CodeGen.Assembly.IsClsCompliant) { Attribute a = OptAttributes.Search (PredefinedAttributes.Get.CLSCompliant); Report.Warning (3021, 2, a.Location, "`{0}' does not need a CLSCompliant attribute because the assembly is not marked as CLS-compliant", GetSignatureForError ()); } } return false; } if (HasClsCompliantAttribute) { if (CodeGen.Assembly.ClsCompliantAttribute == null && !CodeGen.Assembly.IsClsCompliant) { Attribute a = OptAttributes.Search (PredefinedAttributes.Get.CLSCompliant); Report.Warning (3014, 1, a.Location, "`{0}' cannot be marked as CLS-compliant because the assembly is not marked as CLS-compliant", GetSignatureForError ()); return false; } if (!Parent.IsClsComplianceRequired ()) { Attribute a = OptAttributes.Search (PredefinedAttributes.Get.CLSCompliant); Report.Warning (3018, 1, a.Location, "`{0}' cannot be marked as CLS-compliant because it is a member of non CLS-compliant type `{1}'", GetSignatureForError (), Parent.GetSignatureForError ()); return false; } } if (member_name.Name [0] == '_') { Report.Warning (3008, 1, Location, "Identifier `{0}' is not CLS-compliant", GetSignatureForError () ); } return true; } // // Raised (and passed an XmlElement that contains the comment) // when GenerateDocComment is writing documentation expectedly. // internal virtual void OnGenerateDocComment (XmlElement intermediateNode) { } // // Returns a string that represents the signature for this // member which should be used in XML documentation. // public virtual string GetDocCommentName (DeclSpace ds) { if (ds == null || this is DeclSpace) return DocCommentHeader + Name; else return String.Concat (DocCommentHeader, ds.Name, ".", Name); } // // Generates xml doc comments (if any), and if required, // handle warning report. // internal virtual void GenerateDocComment (DeclSpace ds) { try { DocUtil.GenerateDocComment (this, ds); } catch (Exception e) { throw new InternalErrorException (this, e); } } public override IResolveContext ResolveContext { get { return this; } } #region IResolveContext Members public DeclSpace DeclContainer { get { return Parent; } } public virtual DeclSpace GenericDeclContainer { get { return DeclContainer; } } public bool IsInObsoleteScope { get { if (GetObsoleteAttribute () != null) return true; return Parent == null ? false : Parent.IsInObsoleteScope; } } public bool IsInUnsafeScope { get { if ((ModFlags & Modifiers.UNSAFE) != 0) return true; return Parent == null ? false : Parent.IsInUnsafeScope; } } #endregion } /// /// Base class for structs, classes, enumerations and interfaces. /// /// /// They all create new declaration spaces. This /// provides the common foundation for managing those name /// spaces. /// public abstract class DeclSpace : MemberCore { /// /// This points to the actual definition that is being /// created with System.Reflection.Emit /// public TypeBuilder TypeBuilder; /// /// If we are a generic type, this is the type we are /// currently defining. We need to lookup members on this /// instead of the TypeBuilder. /// public Type CurrentType; // // This is the namespace in which this typecontainer // was declared. We use this to resolve names. // public NamespaceEntry NamespaceEntry; private Hashtable Cache = new Hashtable (); public readonly string Basename; protected Hashtable defined_names; public TypeContainer PartialContainer; protected readonly bool is_generic; readonly int count_type_params; protected TypeParameter[] type_params; TypeParameter[] type_param_list; // // Whether we are Generic // public bool IsGeneric { get { if (is_generic) return true; else if (Parent != null) return Parent.IsGeneric; else return false; } } static string[] attribute_targets = new string [] { "type" }; public DeclSpace (NamespaceEntry ns, DeclSpace parent, MemberName name, Attributes attrs) : base (parent, name, attrs) { NamespaceEntry = ns; Basename = name.Basename; defined_names = new Hashtable (); PartialContainer = null; if (name.TypeArguments != null) { is_generic = true; count_type_params = name.TypeArguments.Count; } if (parent != null) count_type_params += parent.count_type_params; } public override DeclSpace GenericDeclContainer { get { return this; } } /// /// Adds the member to defined_names table. It tests for duplications and enclosing name conflicts /// protected virtual bool AddToContainer (MemberCore symbol, string name) { MemberCore mc = (MemberCore) defined_names [name]; if (mc == null) { defined_names.Add (name, symbol); return true; } if (((mc.ModFlags | symbol.ModFlags) & Modifiers.COMPILER_GENERATED) != 0) return true; if (symbol.EnableOverloadChecks (mc)) return true; Report.SymbolRelatedToPreviousError (mc); if ((mc.ModFlags & Modifiers.PARTIAL) != 0 && (symbol is ClassOrStruct || symbol is Interface)) { Error_MissingPartialModifier (symbol); return false; } if (this is ModuleContainer) { Report.Error (101, symbol.Location, "The namespace `{0}' already contains a definition for `{1}'", ((DeclSpace)symbol).NamespaceEntry.GetSignatureForError (), symbol.MemberName.Name); } else if (symbol is TypeParameter) { Report.Error (692, symbol.Location, "Duplicate type parameter `{0}'", symbol.GetSignatureForError ()); } else { Report.Error (102, symbol.Location, "The type `{0}' already contains a definition for `{1}'", GetSignatureForError (), symbol.MemberName.Name); } return false; } protected void RemoveFromContainer (string name) { defined_names.Remove (name); } /// /// Returns the MemberCore associated with a given name in the declaration /// space. It doesn't return method based symbols !! /// /// public MemberCore GetDefinition (string name) { return (MemberCore)defined_names [name]; } public bool IsStaticClass { get { return (ModFlags & Modifiers.STATIC) != 0; } } // // root_types contains all the types. All TopLevel types // hence have a parent that points to `root_types', that is // why there is a non-obvious test down here. // public bool IsTopLevel { get { return (Parent != null && Parent.Parent == null); } } public virtual bool IsUnmanagedType () { return false; } public virtual void CloseType () { if ((caching_flags & Flags.CloseTypeCreated) == 0){ try { TypeBuilder.CreateType (); } catch { // // The try/catch is needed because // nested enumerations fail to load when they // are defined. // // Even if this is the right order (enumerations // declared after types). // // Note that this still creates the type and // it is possible to save it } caching_flags |= Flags.CloseTypeCreated; } } protected virtual TypeAttributes TypeAttr { get { return Module.DefaultCharSetType; } } /// /// Should be overriten by the appropriate declaration space /// public abstract TypeBuilder DefineType (); protected void Error_MissingPartialModifier (MemberCore type) { Report.Error (260, type.Location, "Missing partial modifier on declaration of type `{0}'. Another partial declaration of this type exists", type.GetSignatureForError ()); } public override void Emit () { if (type_params != null) { int offset = count_type_params - type_params.Length; for (int i = offset; i < type_params.Length; i++) CurrentTypeParameters [i - offset].Emit (); } if ((ModFlags & Modifiers.COMPILER_GENERATED) != 0 && !Parent.IsCompilerGenerated) PredefinedAttributes.Get.CompilerGenerated.EmitAttribute (TypeBuilder); base.Emit (); } public override string GetSignatureForError () { return MemberName.GetSignatureForError (); } public bool CheckAccessLevel (Type check_type) { Type tb = TypeBuilder; if (this is GenericMethod) { tb = Parent.TypeBuilder; // FIXME: Generic container does not work with nested generic // anonymous method stories if (TypeBuilder == null) return true; } check_type = TypeManager.DropGenericTypeArguments (check_type); if (check_type == tb) return true; // TODO: When called from LocalUsingAliasEntry tb is null // because we are in RootDeclSpace if (tb == null) tb = typeof (RootDeclSpace); // // Broken Microsoft runtime, return public for arrays, no matter what // the accessibility is for their underlying class, and they return // NonPublic visibility for pointers // if (TypeManager.HasElementType (check_type)) return CheckAccessLevel (TypeManager.GetElementType (check_type)); TypeAttributes check_attr = check_type.Attributes & TypeAttributes.VisibilityMask; switch (check_attr){ case TypeAttributes.Public: return true; case TypeAttributes.NotPublic: return TypeManager.IsThisOrFriendAssembly (check_type.Assembly); case TypeAttributes.NestedPublic: return CheckAccessLevel (check_type.DeclaringType); case TypeAttributes.NestedPrivate: Type declaring = check_type.DeclaringType; return tb == declaring || TypeManager.IsNestedChildOf (tb, declaring); case TypeAttributes.NestedFamily: // // Only accessible to methods in current type or any subtypes // return FamilyAccessible (tb, check_type); case TypeAttributes.NestedFamANDAssem: return TypeManager.IsThisOrFriendAssembly (check_type.Assembly) && FamilyAccessible (tb, check_type); case TypeAttributes.NestedFamORAssem: return FamilyAccessible (tb, check_type) || TypeManager.IsThisOrFriendAssembly (check_type.Assembly); case TypeAttributes.NestedAssembly: return TypeManager.IsThisOrFriendAssembly (check_type.Assembly); } throw new NotImplementedException (check_attr.ToString ()); } static bool FamilyAccessible (Type tb, Type check_type) { Type declaring = check_type.DeclaringType; return TypeManager.IsNestedFamilyAccessible (tb, declaring); } public bool IsBaseType (Type baseType) { if (TypeManager.IsInterfaceType (baseType)) throw new NotImplementedException (); Type type = TypeBuilder; while (type != null) { if (TypeManager.IsEqual (type, baseType)) return true; type = type.BaseType; } return false; } private Type LookupNestedTypeInHierarchy (string name) { Type t = null; // if the member cache has been created, lets use it. // the member cache is MUCH faster. if (MemberCache != null) { t = MemberCache.FindNestedType (name); if (t == null) return null; // // FIXME: This hack is needed because member cache does not work // with nested base generic types, it does only type name copy and // not type construction // #if !GMCS_SOURCE return t; #endif } // no member cache. Do it the hard way -- reflection for (Type current_type = TypeBuilder; current_type != null && current_type != TypeManager.object_type; current_type = current_type.BaseType) { Type ct = TypeManager.DropGenericTypeArguments (current_type); if (ct is TypeBuilder) { TypeContainer tc = ct == TypeBuilder ? PartialContainer : TypeManager.LookupTypeContainer (ct); if (tc != null) t = tc.FindNestedType (name); } else { t = TypeManager.GetNestedType (ct, name); } if ((t == null) || !CheckAccessLevel (t)) continue; if (!TypeManager.IsGenericType (current_type)) return t; Type[] args = TypeManager.GetTypeArguments (current_type); Type[] targs = TypeManager.GetTypeArguments (t); for (int i = 0; i < args.Length; i++) targs [i] = args [i]; #if GMCS_SOURCE t = t.MakeGenericType (targs); #endif return t; } return null; } public virtual ExtensionMethodGroupExpr LookupExtensionMethod (Type extensionType, string name, Location loc) { return null; } // // Public function used to locate types. // // Set 'ignore_cs0104' to true if you want to ignore cs0104 errors. // // Returns: Type or null if they type can not be found. // public FullNamedExpression LookupNamespaceOrType (string name, Location loc, bool ignore_cs0104) { if (Cache.Contains (name)) return (FullNamedExpression) Cache [name]; FullNamedExpression e; int errors = Report.Errors; Type t = LookupNestedTypeInHierarchy (name); if (t != null) e = new TypeExpression (t, Location.Null); else if (Parent != null) e = Parent.LookupNamespaceOrType (name, loc, ignore_cs0104); else e = NamespaceEntry.LookupNamespaceOrType (this, name, loc, ignore_cs0104); if (errors == Report.Errors) Cache [name] = e; return e; } /// /// This function is broken and not what you're looking for. It should only /// be used while the type is still being created since it doesn't use the cache /// and relies on the filter doing the member name check. /// /// // [Obsolete ("Only MemberCache approach should be used")] public virtual MemberList FindMembers (MemberTypes mt, BindingFlags bf, MemberFilter filter, object criteria) { throw new NotSupportedException (); } /// /// If we have a MemberCache, return it. This property may return null if the /// class doesn't have a member cache or while it's still being created. /// public abstract MemberCache MemberCache { get; } public virtual ModuleContainer Module { get { return Parent.Module; } } public override void ApplyAttributeBuilder (Attribute a, CustomAttributeBuilder cb, PredefinedAttributes pa) { if (a.Type == pa.Required) { Report.Error (1608, a.Location, "The RequiredAttribute attribute is not permitted on C# types"); return; } TypeBuilder.SetCustomAttribute (cb); } TypeParameter[] initialize_type_params () { if (type_param_list != null) return type_param_list; DeclSpace the_parent = Parent; if (this is GenericMethod) the_parent = null; ArrayList list = new ArrayList (); if (the_parent != null && the_parent.IsGeneric) { // FIXME: move generics info out of DeclSpace TypeParameter[] parent_params = the_parent.PartialContainer.TypeParameters; list.AddRange (parent_params); } int count = type_params != null ? type_params.Length : 0; for (int i = 0; i < count; i++) { TypeParameter param = type_params [i]; list.Add (param); if (Parent.IsGeneric) { foreach (TypeParameter tp in Parent.PartialContainer.CurrentTypeParameters) { if (tp.Name != param.Name) continue; Report.SymbolRelatedToPreviousError (tp.Location, null); Report.Warning (693, 3, param.Location, "Type parameter `{0}' has the same name as the type parameter from outer type `{1}'", param.Name, Parent.GetSignatureForError ()); } } } type_param_list = new TypeParameter [list.Count]; list.CopyTo (type_param_list, 0); return type_param_list; } public virtual void SetParameterInfo (ArrayList constraints_list) { if (!is_generic) { if (constraints_list != null) { Report.Error ( 80, Location, "Constraints are not allowed " + "on non-generic declarations"); } return; } TypeParameterName[] names = MemberName.TypeArguments.GetDeclarations (); type_params = new TypeParameter [names.Length]; // // Register all the names // for (int i = 0; i < type_params.Length; i++) { TypeParameterName name = names [i]; Constraints constraints = null; if (constraints_list != null) { int total = constraints_list.Count; for (int ii = 0; ii < total; ++ii) { Constraints constraints_at = (Constraints)constraints_list[ii]; // TODO: it is used by iterators only if (constraints_at == null) { constraints_list.RemoveAt (ii); --total; continue; } if (constraints_at.TypeParameter == name.Name) { constraints = constraints_at; constraints_list.RemoveAt(ii); break; } } } type_params [i] = new TypeParameter ( Parent, this, name.Name, constraints, name.OptAttributes, name.Variance, Location); AddToContainer (type_params [i], name.Name); } if (constraints_list != null && constraints_list.Count > 0) { foreach (Constraints constraint in constraints_list) { Report.Error(699, constraint.Location, "`{0}': A constraint references nonexistent type parameter `{1}'", GetSignatureForError (), constraint.TypeParameter); } } } public TypeParameter[] TypeParameters { get { if (!IsGeneric) throw new InvalidOperationException (); if ((PartialContainer != null) && (PartialContainer != this)) return PartialContainer.TypeParameters; if (type_param_list == null) initialize_type_params (); return type_param_list; } } public TypeParameter[] CurrentTypeParameters { get { if (!IsGeneric) throw new InvalidOperationException (); // TODO: Something is seriously broken here if (type_params == null) return new TypeParameter [0]; return type_params; } } public int CountTypeParameters { get { return count_type_params; } } public TypeParameterExpr LookupGeneric (string name, Location loc) { if (!IsGeneric) return null; TypeParameter [] current_params; if (this is TypeContainer) current_params = PartialContainer.CurrentTypeParameters; else current_params = CurrentTypeParameters; foreach (TypeParameter type_param in current_params) { if (type_param.Name == name) return new TypeParameterExpr (type_param, loc); } if (Parent != null) return Parent.LookupGeneric (name, loc); return null; } // Used for error reporting only public virtual Type LookupAnyGeneric (string typeName) { return NamespaceEntry.NS.LookForAnyGenericType (typeName); } public override string[] ValidAttributeTargets { get { return attribute_targets; } } protected override bool VerifyClsCompliance () { if (!base.VerifyClsCompliance ()) { return false; } if (type_params != null) { foreach (TypeParameter tp in type_params) { if (tp.Constraints == null) continue; tp.Constraints.VerifyClsCompliance (); } } IDictionary cache = TypeManager.AllClsTopLevelTypes; if (cache == null) return true; string lcase = Name.ToLower (System.Globalization.CultureInfo.InvariantCulture); if (!cache.Contains (lcase)) { cache.Add (lcase, this); return true; } object val = cache [lcase]; if (val == null) { Type t = AttributeTester.GetImportedIgnoreCaseClsType (lcase); if (t == null) return true; Report.SymbolRelatedToPreviousError (t); } else { Report.SymbolRelatedToPreviousError ((DeclSpace)val); } Report.Warning (3005, 1, Location, "Identifier `{0}' differing only in case is not CLS-compliant", GetSignatureForError ()); return true; } } /// /// This is a readonly list of MemberInfo's. /// public class MemberList : IList { public readonly IList List; int count; /// /// Create a new MemberList from the given IList. /// public MemberList (IList list) { if (list != null) this.List = list; else this.List = new ArrayList (); count = List.Count; } /// /// Concatenate the ILists `first' and `second' to a new MemberList. /// public MemberList (IList first, IList second) { ArrayList list = new ArrayList (); list.AddRange (first); list.AddRange (second); count = list.Count; List = list; } public static readonly MemberList Empty = new MemberList (new ArrayList (0)); /// /// Cast the MemberList into a MemberInfo[] array. /// /// /// This is an expensive operation, only use it if it's really necessary. /// public static explicit operator MemberInfo [] (MemberList list) { Timer.StartTimer (TimerType.MiscTimer); MemberInfo [] result = new MemberInfo [list.Count]; list.CopyTo (result, 0); Timer.StopTimer (TimerType.MiscTimer); return result; } // ICollection public int Count { get { return count; } } public bool IsSynchronized { get { return List.IsSynchronized; } } public object SyncRoot { get { return List.SyncRoot; } } public void CopyTo (Array array, int index) { List.CopyTo (array, index); } // IEnumerable public IEnumerator GetEnumerator () { return List.GetEnumerator (); } // IList public bool IsFixedSize { get { return true; } } public bool IsReadOnly { get { return true; } } object IList.this [int index] { get { return List [index]; } set { throw new NotSupportedException (); } } // FIXME: try to find out whether we can avoid the cast in this indexer. public MemberInfo this [int index] { get { return (MemberInfo) List [index]; } } public int Add (object value) { throw new NotSupportedException (); } public void Clear () { throw new NotSupportedException (); } public bool Contains (object value) { return List.Contains (value); } public int IndexOf (object value) { return List.IndexOf (value); } public void Insert (int index, object value) { throw new NotSupportedException (); } public void Remove (object value) { throw new NotSupportedException (); } public void RemoveAt (int index) { throw new NotSupportedException (); } } /// /// This interface is used to get all members of a class when creating the /// member cache. It must be implemented by all DeclSpace derivatives which /// want to support the member cache and by TypeHandle to get caching of /// non-dynamic types. /// public interface IMemberContainer { /// /// The name of the IMemberContainer. This is only used for /// debugging purposes. /// string Name { get; } /// /// The type of this IMemberContainer. /// Type Type { get; } /// /// Returns the IMemberContainer of the base class or null if this /// is an interface or TypeManger.object_type. /// This is used when creating the member cache for a class to get all /// members from the base class. /// MemberCache BaseCache { get; } /// /// Whether this is an interface. /// bool IsInterface { get; } /// /// Returns all members of this class with the corresponding MemberTypes /// and BindingFlags. /// /// /// When implementing this method, make sure not to return any inherited /// members and check the MemberTypes and BindingFlags properly. /// Unfortunately, System.Reflection is lame and doesn't provide a way to /// get the BindingFlags (static/non-static,public/non-public) in the /// MemberInfo class, but the cache needs this information. That's why /// this method is called multiple times with different BindingFlags. /// MemberList GetMembers (MemberTypes mt, BindingFlags bf); } /// /// The MemberCache is used by dynamic and non-dynamic types to speed up /// member lookups. It has a member name based hash table; it maps each member /// name to a list of CacheEntry objects. Each CacheEntry contains a MemberInfo /// and the BindingFlags that were initially used to get it. The cache contains /// all members of the current class and all inherited members. If this cache is /// for an interface types, it also contains all inherited members. /// /// There are two ways to get a MemberCache: /// * if this is a dynamic type, lookup the corresponding DeclSpace and then /// use the DeclSpace.MemberCache property. /// * if this not a dynamic type, call TypeHandle.GetTypeHandle() to get a /// TypeHandle instance for the type and then use TypeHandle.MemberCache. /// public class MemberCache { public readonly IMemberContainer Container; protected Hashtable member_hash; protected Hashtable method_hash; /// /// Create a new MemberCache for the given IMemberContainer `container'. /// public MemberCache (IMemberContainer container) { this.Container = container; Timer.IncrementCounter (CounterType.MemberCache); Timer.StartTimer (TimerType.CacheInit); // If we have a base class (we have a base class unless we're // TypeManager.object_type), we deep-copy its MemberCache here. if (Container.BaseCache != null) member_hash = SetupCache (Container.BaseCache); else member_hash = new Hashtable (); // If this is neither a dynamic type nor an interface, create a special // method cache with all declared and inherited methods. Type type = container.Type; if (!(type is TypeBuilder) && !type.IsInterface && // !(type.IsGenericType && (type.GetGenericTypeDefinition () is TypeBuilder)) && !TypeManager.IsGenericType (type) && !TypeManager.IsGenericParameter (type) && (Container.BaseCache == null || Container.BaseCache.method_hash != null)) { method_hash = new Hashtable (); AddMethods (type); } // Add all members from the current class. AddMembers (Container); Timer.StopTimer (TimerType.CacheInit); } public MemberCache (Type baseType, IMemberContainer container) { this.Container = container; if (baseType == null) this.member_hash = new Hashtable (); else this.member_hash = SetupCache (TypeManager.LookupMemberCache (baseType)); } public MemberCache (Type[] ifaces) { // // The members of this cache all belong to other caches. // So, 'Container' will not be used. // this.Container = null; member_hash = new Hashtable (); if (ifaces == null) return; foreach (Type itype in ifaces) AddCacheContents (TypeManager.LookupMemberCache (itype)); } public MemberCache (IMemberContainer container, Type base_class, Type[] ifaces) { this.Container = container; // If we have a base class (we have a base class unless we're // TypeManager.object_type), we deep-copy its MemberCache here. if (Container.BaseCache != null) member_hash = SetupCache (Container.BaseCache); else member_hash = new Hashtable (); if (base_class != null) AddCacheContents (TypeManager.LookupMemberCache (base_class)); if (ifaces != null) { foreach (Type itype in ifaces) { MemberCache cache = TypeManager.LookupMemberCache (itype); if (cache != null) AddCacheContents (cache); } } } /// /// Bootstrap this member cache by doing a deep-copy of our base. /// static Hashtable SetupCache (MemberCache base_class) { if (base_class == null) return new Hashtable (); Hashtable hash = new Hashtable (base_class.member_hash.Count); IDictionaryEnumerator it = base_class.member_hash.GetEnumerator (); while (it.MoveNext ()) { hash.Add (it.Key, ((ArrayList) it.Value).Clone ()); } return hash; } // // Converts ModFlags to BindingFlags // static BindingFlags GetBindingFlags (int modifiers) { BindingFlags bf; if ((modifiers & Modifiers.STATIC) != 0) bf = BindingFlags.Static; else bf = BindingFlags.Instance; if ((modifiers & Modifiers.PRIVATE) != 0) bf |= BindingFlags.NonPublic; else bf |= BindingFlags.Public; return bf; } /// /// Add the contents of `cache' to the member_hash. /// void AddCacheContents (MemberCache cache) { IDictionaryEnumerator it = cache.member_hash.GetEnumerator (); while (it.MoveNext ()) { ArrayList list = (ArrayList) member_hash [it.Key]; if (list == null) member_hash [it.Key] = list = new ArrayList (); ArrayList entries = (ArrayList) it.Value; for (int i = entries.Count-1; i >= 0; i--) { CacheEntry entry = (CacheEntry) entries [i]; if (entry.Container != cache.Container) break; list.Add (entry); } } } /// /// Add all members from class `container' to the cache. /// void AddMembers (IMemberContainer container) { // We need to call AddMembers() with a single member type at a time // to get the member type part of CacheEntry.EntryType right. if (!container.IsInterface) { AddMembers (MemberTypes.Constructor, container); AddMembers (MemberTypes.Field, container); } AddMembers (MemberTypes.Method, container); AddMembers (MemberTypes.Property, container); AddMembers (MemberTypes.Event, container); // Nested types are returned by both Static and Instance searches. AddMembers (MemberTypes.NestedType, BindingFlags.Static | BindingFlags.Public, container); AddMembers (MemberTypes.NestedType, BindingFlags.Static | BindingFlags.NonPublic, container); } void AddMembers (MemberTypes mt, IMemberContainer container) { AddMembers (mt, BindingFlags.Static | BindingFlags.Public, container); AddMembers (mt, BindingFlags.Static | BindingFlags.NonPublic, container); AddMembers (mt, BindingFlags.Instance | BindingFlags.Public, container); AddMembers (mt, BindingFlags.Instance | BindingFlags.NonPublic, container); } public void AddMember (MemberInfo mi, MemberCore mc) { AddMember (mi.MemberType, GetBindingFlags (mc.ModFlags), Container, mi.Name, mi); } public void AddGenericMember (MemberInfo mi, InterfaceMemberBase mc) { AddMember (mi.MemberType, GetBindingFlags (mc.ModFlags), Container, MemberName.MakeName (mc.GetFullName (mc.MemberName), mc.MemberName.TypeArguments), mi); } public void AddNestedType (DeclSpace type) { AddMember (MemberTypes.NestedType, GetBindingFlags (type.ModFlags), (IMemberContainer) type.Parent, type.TypeBuilder.Name, type.TypeBuilder); } public void AddInterface (MemberCache baseCache) { if (baseCache.member_hash.Count > 0) AddCacheContents (baseCache); } void AddMember (MemberTypes mt, BindingFlags bf, IMemberContainer container, string name, MemberInfo member) { // We use a name-based hash table of ArrayList's. ArrayList list = (ArrayList) member_hash [name]; if (list == null) { list = new ArrayList (1); member_hash.Add (name, list); } // When this method is called for the current class, the list will // already contain all inherited members from our base classes. // We cannot add new members in front of the list since this'd be an // expensive operation, that's why the list is sorted in reverse order // (ie. members from the current class are coming last). list.Add (new CacheEntry (container, member, mt, bf)); } /// /// Add all members from class `container' with the requested MemberTypes and /// BindingFlags to the cache. This method is called multiple times with different /// MemberTypes and BindingFlags. /// void AddMembers (MemberTypes mt, BindingFlags bf, IMemberContainer container) { MemberList members = container.GetMembers (mt, bf); foreach (MemberInfo member in members) { string name = member.Name; AddMember (mt, bf, container, name, member); if (member is MethodInfo) { string gname = TypeManager.GetMethodName ((MethodInfo) member); if (gname != name) AddMember (mt, bf, container, gname, member); } } } /// /// Add all declared and inherited methods from class `type' to the method cache. /// void AddMethods (Type type) { AddMethods (BindingFlags.Static | BindingFlags.Public | BindingFlags.FlattenHierarchy, type); AddMethods (BindingFlags.Static | BindingFlags.NonPublic | BindingFlags.FlattenHierarchy, type); AddMethods (BindingFlags.Instance | BindingFlags.Public, type); AddMethods (BindingFlags.Instance | BindingFlags.NonPublic, type); } static ArrayList overrides = new ArrayList (); void AddMethods (BindingFlags bf, Type type) { MethodBase [] members = type.GetMethods (bf); Array.Reverse (members); foreach (MethodBase member in members) { string name = member.Name; // We use a name-based hash table of ArrayList's. ArrayList list = (ArrayList) method_hash [name]; if (list == null) { list = new ArrayList (1); method_hash.Add (name, list); } MethodInfo curr = (MethodInfo) member; while (curr.IsVirtual && (curr.Attributes & MethodAttributes.NewSlot) == 0) { MethodInfo base_method = curr.GetBaseDefinition (); if (base_method == curr) // Not every virtual function needs to have a NewSlot flag. break; overrides.Add (curr); list.Add (new CacheEntry (null, base_method, MemberTypes.Method, bf)); curr = base_method; } if (overrides.Count > 0) { for (int i = 0; i < overrides.Count; ++i) TypeManager.RegisterOverride ((MethodBase) overrides [i], curr); overrides.Clear (); } // Unfortunately, the elements returned by Type.GetMethods() aren't // sorted so we need to do this check for every member. BindingFlags new_bf = bf; if (member.DeclaringType == type) new_bf |= BindingFlags.DeclaredOnly; list.Add (new CacheEntry (Container, member, MemberTypes.Method, new_bf)); } } /// /// Compute and return a appropriate `EntryType' magic number for the given /// MemberTypes and BindingFlags. /// protected static EntryType GetEntryType (MemberTypes mt, BindingFlags bf) { EntryType type = EntryType.None; if ((mt & MemberTypes.Constructor) != 0) type |= EntryType.Constructor; if ((mt & MemberTypes.Event) != 0) type |= EntryType.Event; if ((mt & MemberTypes.Field) != 0) type |= EntryType.Field; if ((mt & MemberTypes.Method) != 0) type |= EntryType.Method; if ((mt & MemberTypes.Property) != 0) type |= EntryType.Property; // Nested types are returned by static and instance searches. if ((mt & MemberTypes.NestedType) != 0) type |= EntryType.NestedType | EntryType.Static | EntryType.Instance; if ((bf & BindingFlags.Instance) != 0) type |= EntryType.Instance; if ((bf & BindingFlags.Static) != 0) type |= EntryType.Static; if ((bf & BindingFlags.Public) != 0) type |= EntryType.Public; if ((bf & BindingFlags.NonPublic) != 0) type |= EntryType.NonPublic; if ((bf & BindingFlags.DeclaredOnly) != 0) type |= EntryType.Declared; return type; } /// /// The `MemberTypes' enumeration type is a [Flags] type which means that it may /// denote multiple member types. Returns true if the given flags value denotes a /// single member types. /// public static bool IsSingleMemberType (MemberTypes mt) { switch (mt) { case MemberTypes.Constructor: case MemberTypes.Event: case MemberTypes.Field: case MemberTypes.Method: case MemberTypes.Property: case MemberTypes.NestedType: return true; default: return false; } } /// /// We encode the MemberTypes and BindingFlags of each members in a "magic" /// number to speed up the searching process. /// [Flags] protected enum EntryType { None = 0x000, Instance = 0x001, Static = 0x002, MaskStatic = Instance|Static, Public = 0x004, NonPublic = 0x008, MaskProtection = Public|NonPublic, Declared = 0x010, Constructor = 0x020, Event = 0x040, Field = 0x080, Method = 0x100, Property = 0x200, NestedType = 0x400, NotExtensionMethod = 0x800, MaskType = Constructor|Event|Field|Method|Property|NestedType } protected class CacheEntry { public readonly IMemberContainer Container; public EntryType EntryType; public readonly MemberInfo Member; public CacheEntry (IMemberContainer container, MemberInfo member, MemberTypes mt, BindingFlags bf) { this.Container = container; this.Member = member; this.EntryType = GetEntryType (mt, bf); } public override string ToString () { return String.Format ("CacheEntry ({0}:{1}:{2})", Container.Name, EntryType, Member); } } /// /// This is called each time we're walking up one level in the class hierarchy /// and checks whether we can abort the search since we've already found what /// we were looking for. /// protected bool DoneSearching (ArrayList list) { // // We've found exactly one member in the current class and it's not // a method or constructor. // if (list.Count == 1 && !(list [0] is MethodBase)) return true; // // Multiple properties: we query those just to find out the indexer // name // if ((list.Count > 0) && (list [0] is PropertyInfo)) return true; return false; } /// /// Looks up members with name `name'. If you provide an optional /// filter function, it'll only be called with members matching the /// requested member name. /// /// This method will try to use the cache to do the lookup if possible. /// /// Unlike other FindMembers implementations, this method will always /// check all inherited members - even when called on an interface type. /// /// If you know that you're only looking for methods, you should use /// MemberTypes.Method alone since this speeds up the lookup a bit. /// When doing a method-only search, it'll try to use a special method /// cache (unless it's a dynamic type or an interface) and the returned /// MemberInfo's will have the correct ReflectedType for inherited methods. /// The lookup process will automatically restart itself in method-only /// search mode if it discovers that it's about to return methods. /// ArrayList global = new ArrayList (); bool using_global = false; static MemberInfo [] emptyMemberInfo = new MemberInfo [0]; public MemberInfo [] FindMembers (MemberTypes mt, BindingFlags bf, string name, MemberFilter filter, object criteria) { if (using_global) throw new Exception (); bool declared_only = (bf & BindingFlags.DeclaredOnly) != 0; bool method_search = mt == MemberTypes.Method; // If we have a method cache and we aren't already doing a method-only search, // then we restart a method search if the first match is a method. bool do_method_search = !method_search && (method_hash != null); ArrayList applicable; // If this is a method-only search, we try to use the method cache if // possible; a lookup in the method cache will return a MemberInfo with // the correct ReflectedType for inherited methods. if (method_search && (method_hash != null)) applicable = (ArrayList) method_hash [name]; else applicable = (ArrayList) member_hash [name]; if (applicable == null) return emptyMemberInfo; // // 32 slots gives 53 rss/54 size // 2/4 slots gives 55 rss // // Strange: from 25,000 calls, only 1,800 // are above 2. Why does this impact it? // global.Clear (); using_global = true; Timer.StartTimer (TimerType.CachedLookup); EntryType type = GetEntryType (mt, bf); IMemberContainer current = Container; bool do_interface_search = current.IsInterface; // `applicable' is a list of all members with the given member name `name' // in the current class and all its base classes. The list is sorted in // reverse order due to the way how the cache is initialy created (to speed // things up, we're doing a deep-copy of our base). for (int i = applicable.Count-1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; // This happens each time we're walking one level up in the class // hierarchy. If we're doing a DeclaredOnly search, we must abort // the first time this happens (this may already happen in the first // iteration of this loop if there are no members with the name we're // looking for in the current class). if (entry.Container != current) { if (declared_only) break; if (!do_interface_search && DoneSearching (global)) break; current = entry.Container; } // Is the member of the correct type ? if ((entry.EntryType & type & EntryType.MaskType) == 0) continue; // Is the member static/non-static ? if ((entry.EntryType & type & EntryType.MaskStatic) == 0) continue; // Apply the filter to it. if (filter (entry.Member, criteria)) { if ((entry.EntryType & EntryType.MaskType) != EntryType.Method) { do_method_search = false; } // Because interfaces support multiple inheritance we have to be sure that // base member is from same interface, so only top level member will be returned if (do_interface_search && global.Count > 0) { bool member_already_exists = false; foreach (MemberInfo mi in global) { if (mi is MethodBase) continue; if (IsInterfaceBaseInterface (TypeManager.GetInterfaces (mi.DeclaringType), entry.Member.DeclaringType)) { member_already_exists = true; break; } } if (member_already_exists) continue; } global.Add (entry.Member); } } Timer.StopTimer (TimerType.CachedLookup); // If we have a method cache and we aren't already doing a method-only // search, we restart in method-only search mode if the first match is // a method. This ensures that we return a MemberInfo with the correct // ReflectedType for inherited methods. if (do_method_search && (global.Count > 0)){ using_global = false; return FindMembers (MemberTypes.Method, bf, name, filter, criteria); } using_global = false; MemberInfo [] copy = new MemberInfo [global.Count]; global.CopyTo (copy); return copy; } /// /// Returns true if iterface exists in any base interfaces (ifaces) /// static bool IsInterfaceBaseInterface (Type[] ifaces, Type ifaceToFind) { foreach (Type iface in ifaces) { if (iface == ifaceToFind) return true; Type[] base_ifaces = TypeManager.GetInterfaces (iface); if (base_ifaces.Length > 0 && IsInterfaceBaseInterface (base_ifaces, ifaceToFind)) return true; } return false; } // find the nested type @name in @this. public Type FindNestedType (string name) { ArrayList applicable = (ArrayList) member_hash [name]; if (applicable == null) return null; for (int i = applicable.Count-1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; if ((entry.EntryType & EntryType.NestedType & EntryType.MaskType) != 0) return (Type) entry.Member; } return null; } public MemberInfo FindBaseEvent (Type invocation_type, string name) { ArrayList applicable = (ArrayList) member_hash [name]; if (applicable == null) return null; // // Walk the chain of events, starting from the top. // for (int i = applicable.Count - 1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; if ((entry.EntryType & EntryType.Event) == 0) continue; EventInfo ei = (EventInfo)entry.Member; return ei.GetAddMethod (true); } return null; } // // Looks for extension methods with defined name and extension type // public ArrayList FindExtensionMethods (Type extensionType, string name, bool publicOnly) { ArrayList entries; if (method_hash != null) entries = (ArrayList)method_hash [name]; else entries = (ArrayList)member_hash [name]; if (entries == null) return null; EntryType entry_type = EntryType.Static | EntryType.Method | EntryType.NotExtensionMethod; EntryType found_entry_type = entry_type & ~EntryType.NotExtensionMethod; ArrayList candidates = null; foreach (CacheEntry entry in entries) { if ((entry.EntryType & entry_type) == found_entry_type) { MethodBase mb = (MethodBase)entry.Member; // Simple accessibility check if ((entry.EntryType & EntryType.Public) == 0 && publicOnly) { MethodAttributes ma = mb.Attributes & MethodAttributes.MemberAccessMask; if (ma != MethodAttributes.Assembly && ma != MethodAttributes.FamORAssem) continue; if (!TypeManager.IsThisOrFriendAssembly (mb.DeclaringType.Assembly)) continue; } IMethodData md = TypeManager.GetMethod (mb); AParametersCollection pd = md == null ? TypeManager.GetParameterData (mb) : md.ParameterInfo; Type ex_type = pd.ExtensionMethodType; if (ex_type == null) { entry.EntryType |= EntryType.NotExtensionMethod; continue; } //if (implicit conversion between ex_type and extensionType exist) { if (candidates == null) candidates = new ArrayList (2); candidates.Add (mb); //} } } return candidates; } // // This finds the method or property for us to override. invocation_type is the type where // the override is going to be declared, name is the name of the method/property, and // param_types is the parameters, if any to the method or property // // Because the MemberCache holds members from this class and all the base classes, // we can avoid tons of reflection stuff. // public MemberInfo FindMemberToOverride (Type invocation_type, string name, AParametersCollection parameters, GenericMethod generic_method, bool is_property) { ArrayList applicable; if (method_hash != null && !is_property) applicable = (ArrayList) method_hash [name]; else applicable = (ArrayList) member_hash [name]; if (applicable == null) return null; // // Walk the chain of methods, starting from the top. // for (int i = applicable.Count - 1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; if ((entry.EntryType & (is_property ? (EntryType.Property | EntryType.Field) : EntryType.Method)) == 0) continue; PropertyInfo pi = null; MethodInfo mi = null; FieldInfo fi = null; AParametersCollection cmp_attrs; if (is_property) { if ((entry.EntryType & EntryType.Field) != 0) { fi = (FieldInfo)entry.Member; cmp_attrs = ParametersCompiled.EmptyReadOnlyParameters; } else { pi = (PropertyInfo) entry.Member; cmp_attrs = TypeManager.GetParameterData (pi); } } else { mi = (MethodInfo) entry.Member; cmp_attrs = TypeManager.GetParameterData (mi); } if (fi != null) { // TODO: Almost duplicate ! // Check visibility switch (fi.Attributes & FieldAttributes.FieldAccessMask) { case FieldAttributes.PrivateScope: continue; case FieldAttributes.Private: // // A private method is Ok if we are a nested subtype. // The spec actually is not very clear about this, see bug 52458. // if (!invocation_type.Equals (entry.Container.Type) && !TypeManager.IsNestedChildOf (invocation_type, entry.Container.Type)) continue; break; case FieldAttributes.FamANDAssem: case FieldAttributes.Assembly: // // Check for assembly methods // if (fi.DeclaringType.Assembly != CodeGen.Assembly.Builder) continue; break; } return entry.Member; } // // Check the arguments // if (cmp_attrs.Count != parameters.Count) continue; int j; for (j = 0; j < cmp_attrs.Count; ++j) { // // LAMESPEC: No idea why `params' modifier is ignored // if ((parameters.FixedParameters [j].ModFlags & ~Parameter.Modifier.PARAMS) != (cmp_attrs.FixedParameters [j].ModFlags & ~Parameter.Modifier.PARAMS)) break; if (!TypeManager.IsEqual (parameters.Types [j], cmp_attrs.Types [j])) break; } if (j < cmp_attrs.Count) continue; // // check generic arguments for methods // if (mi != null) { Type [] cmpGenArgs = TypeManager.GetGenericArguments (mi); if (generic_method == null && cmpGenArgs != null && cmpGenArgs.Length != 0) continue; if (generic_method != null && cmpGenArgs != null && cmpGenArgs.Length != generic_method.TypeParameters.Length) continue; } // // get one of the methods because this has the visibility info. // if (is_property) { mi = pi.GetGetMethod (true); if (mi == null) mi = pi.GetSetMethod (true); } // // Check visibility // switch (mi.Attributes & MethodAttributes.MemberAccessMask) { case MethodAttributes.PrivateScope: continue; case MethodAttributes.Private: // // A private method is Ok if we are a nested subtype. // The spec actually is not very clear about this, see bug 52458. // if (!invocation_type.Equals (entry.Container.Type) && !TypeManager.IsNestedChildOf (invocation_type, entry.Container.Type)) continue; break; case MethodAttributes.FamANDAssem: case MethodAttributes.Assembly: // // Check for assembly methods // if (!TypeManager.IsThisOrFriendAssembly (mi.DeclaringType.Assembly)) continue; break; } return entry.Member; } return null; } /// /// The method is looking for conflict with inherited symbols (errors CS0108, CS0109). /// We handle two cases. The first is for types without parameters (events, field, properties). /// The second are methods, indexers and this is why ignore_complex_types is here. /// The latest param is temporary hack. See DoDefineMembers method for more info. /// public MemberInfo FindMemberWithSameName (string name, bool ignore_complex_types, MemberInfo ignore_member) { ArrayList applicable = null; if (method_hash != null) applicable = (ArrayList) method_hash [name]; if (applicable != null) { for (int i = applicable.Count - 1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; if ((entry.EntryType & EntryType.Public) != 0) return entry.Member; } } if (member_hash == null) return null; applicable = (ArrayList) member_hash [name]; if (applicable != null) { for (int i = applicable.Count - 1; i >= 0; i--) { CacheEntry entry = (CacheEntry) applicable [i]; if ((entry.EntryType & EntryType.Public) != 0 & entry.Member != ignore_member) { if (ignore_complex_types) { if ((entry.EntryType & EntryType.Method) != 0) continue; // Does exist easier way how to detect indexer ? if ((entry.EntryType & EntryType.Property) != 0) { AParametersCollection arg_types = TypeManager.GetParameterData ((PropertyInfo)entry.Member); if (arg_types.Count > 0) continue; } } return entry.Member; } } } return null; } Hashtable locase_table; /// /// Builds low-case table for CLS Compliance test /// public Hashtable GetPublicMembers () { if (locase_table != null) return locase_table; locase_table = new Hashtable (); foreach (DictionaryEntry entry in member_hash) { ArrayList members = (ArrayList)entry.Value; for (int ii = 0; ii < members.Count; ++ii) { CacheEntry member_entry = (CacheEntry) members [ii]; if ((member_entry.EntryType & EntryType.Public) == 0) continue; // TODO: Does anyone know easier way how to detect that member is internal ? switch (member_entry.EntryType & EntryType.MaskType) { case EntryType.Constructor: continue; case EntryType.Field: if ((((FieldInfo)member_entry.Member).Attributes & (FieldAttributes.Assembly | FieldAttributes.Public)) == FieldAttributes.Assembly) continue; break; case EntryType.Method: if ((((MethodInfo)member_entry.Member).Attributes & (MethodAttributes.Assembly | MethodAttributes.Public)) == MethodAttributes.Assembly) continue; break; case EntryType.Property: PropertyInfo pi = (PropertyInfo)member_entry.Member; if (pi.GetSetMethod () == null && pi.GetGetMethod () == null) continue; break; case EntryType.Event: EventInfo ei = (EventInfo)member_entry.Member; MethodInfo mi = ei.GetAddMethod (); if ((mi.Attributes & (MethodAttributes.Assembly | MethodAttributes.Public)) == MethodAttributes.Assembly) continue; break; } string lcase = ((string)entry.Key).ToLower (System.Globalization.CultureInfo.InvariantCulture); locase_table [lcase] = member_entry.Member; break; } } return locase_table; } public Hashtable Members { get { return member_hash; } } /// /// Cls compliance check whether methods or constructors parameters differing only in ref or out, or in array rank /// /// // TODO: refactor as method is always 'this' public static void VerifyClsParameterConflict (ArrayList al, MethodCore method, MemberInfo this_builder) { EntryType tested_type = (method is Constructor ? EntryType.Constructor : EntryType.Method) | EntryType.Public; for (int i = 0; i < al.Count; ++i) { MemberCache.CacheEntry entry = (MemberCache.CacheEntry) al [i]; // skip itself if (entry.Member == this_builder) continue; if ((entry.EntryType & tested_type) != tested_type) continue; MethodBase method_to_compare = (MethodBase)entry.Member; AttributeTester.Result result = AttributeTester.AreOverloadedMethodParamsClsCompliant ( method.Parameters, TypeManager.GetParameterData (method_to_compare)); if (result == AttributeTester.Result.Ok) continue; IMethodData md = TypeManager.GetMethod (method_to_compare); // TODO: now we are ignoring CLSCompliance(false) on method from other assembly which is buggy. // However it is exactly what csc does. if (md != null && !md.IsClsComplianceRequired ()) continue; Report.SymbolRelatedToPreviousError (entry.Member); switch (result) { case AttributeTester.Result.RefOutArrayError: Report.Warning (3006, 1, method.Location, "Overloaded method `{0}' differing only in ref or out, or in array rank, is not CLS-compliant", method.GetSignatureForError ()); continue; case AttributeTester.Result.ArrayArrayError: Report.Warning (3007, 1, method.Location, "Overloaded method `{0}' differing only by unnamed array types is not CLS-compliant", method.GetSignatureForError ()); continue; } throw new NotImplementedException (result.ToString ()); } } public bool CheckExistingMembersOverloads (MemberCore member, string name, ParametersCompiled parameters) { ArrayList entries = (ArrayList)member_hash [name]; if (entries == null) return true; int method_param_count = parameters.Count; for (int i = entries.Count - 1; i >= 0; --i) { CacheEntry ce = (CacheEntry) entries [i]; if (ce.Container != member.Parent.PartialContainer) return true; Type [] p_types; AParametersCollection pd; if ((ce.EntryType & EntryType.Property) != 0) { pd = TypeManager.GetParameterData ((PropertyInfo) ce.Member); p_types = pd.Types; } else { MethodBase mb = (MethodBase) ce.Member; // TODO: This is more like a hack, because we are adding generic methods // twice with and without arity name if (TypeManager.IsGenericMethod (mb) && !member.MemberName.IsGeneric) continue; pd = TypeManager.GetParameterData (mb); p_types = pd.Types; } if (p_types.Length != method_param_count) continue; if (method_param_count > 0) { int ii = method_param_count - 1; Type type_a, type_b; do { type_a = parameters.Types [ii]; type_b = p_types [ii]; #if GMCS_SOURCE if (TypeManager.IsGenericParameter (type_a) && type_a.DeclaringMethod != null) type_a = typeof (TypeParameter); if (TypeManager.IsGenericParameter (type_b) && type_b.DeclaringMethod != null) type_b = typeof (TypeParameter); #endif if ((pd.FixedParameters [ii].ModFlags & Parameter.Modifier.ISBYREF) != (parameters.FixedParameters [ii].ModFlags & Parameter.Modifier.ISBYREF)) type_a = null; } while (type_a == type_b && ii-- != 0); if (ii >= 0) continue; // // Operators can differ in return type only // if (member is Operator) { Operator op = TypeManager.GetMethod ((MethodBase) ce.Member) as Operator; if (op != null && op.ReturnType != ((Operator) member).ReturnType) continue; } // // Report difference in parameter modifiers only // if (pd != null && member is MethodCore) { ii = method_param_count; while (ii-- != 0 && parameters.FixedParameters [ii].ModFlags == pd.FixedParameters [ii].ModFlags && parameters.ExtensionMethodType == pd.ExtensionMethodType); if (ii >= 0) { MethodCore mc = TypeManager.GetMethod ((MethodBase) ce.Member) as MethodCore; Report.SymbolRelatedToPreviousError (ce.Member); if ((member.ModFlags & Modifiers.PARTIAL) != 0 && (mc.ModFlags & Modifiers.PARTIAL) != 0) { if (parameters.HasParams || pd.HasParams) { Report.Error (758, member.Location, "A partial method declaration and partial method implementation cannot differ on use of `params' modifier"); } else { Report.Error (755, member.Location, "A partial method declaration and partial method implementation must be both an extension method or neither"); } } else { Report.Error (663, member.Location, "An overloaded method `{0}' cannot differ on use of parameter modifiers only", member.GetSignatureForError ()); } return false; } } } if ((ce.EntryType & EntryType.Method) != 0) { Method method_a = member as Method; Method method_b = TypeManager.GetMethod ((MethodBase) ce.Member) as Method; if (method_a != null && method_b != null && (method_a.ModFlags & method_b.ModFlags & Modifiers.PARTIAL) != 0) { const int partial_modifiers = Modifiers.STATIC | Modifiers.UNSAFE; if (method_a.IsPartialDefinition == method_b.IsPartialImplementation) { if ((method_a.ModFlags & partial_modifiers) == (method_b.ModFlags & partial_modifiers) || method_a.Parent.IsInUnsafeScope && method_b.Parent.IsInUnsafeScope) { if (method_a.IsPartialImplementation) { method_a.SetPartialDefinition (method_b); entries.RemoveAt (i); } else { method_b.SetPartialDefinition (method_a); } continue; } if ((method_a.ModFlags & Modifiers.STATIC) != (method_b.ModFlags & Modifiers.STATIC)) { Report.SymbolRelatedToPreviousError (ce.Member); Report.Error (763, member.Location, "A partial method declaration and partial method implementation must be both `static' or neither"); } Report.SymbolRelatedToPreviousError (ce.Member); Report.Error (764, member.Location, "A partial method declaration and partial method implementation must be both `unsafe' or neither"); return false; } Report.SymbolRelatedToPreviousError (ce.Member); if (method_a.IsPartialDefinition) { Report.Error (756, member.Location, "A partial method `{0}' declaration is already defined", member.GetSignatureForError ()); } Report.Error (757, member.Location, "A partial method `{0}' implementation is already defined", member.GetSignatureForError ()); return false; } Report.SymbolRelatedToPreviousError (ce.Member); IMethodData duplicate_member = TypeManager.GetMethod ((MethodBase) ce.Member); if (member is Operator && duplicate_member is Operator) { Report.Error (557, member.Location, "Duplicate user-defined conversion in type `{0}'", member.Parent.GetSignatureForError ()); return false; } bool is_reserved_a = member is AbstractPropertyEventMethod || member is Operator; bool is_reserved_b = duplicate_member is AbstractPropertyEventMethod || duplicate_member is Operator; if (is_reserved_a || is_reserved_b) { Report.Error (82, member.Location, "A member `{0}' is already reserved", is_reserved_a ? TypeManager.GetFullNameSignature (ce.Member) : member.GetSignatureForError ()); return false; } } else { Report.SymbolRelatedToPreviousError (ce.Member); } Report.Error (111, member.Location, "A member `{0}' is already defined. Rename this member or use different parameter types", member.GetSignatureForError ()); return false; } return true; } } }