// // assign.cs: Assignments. // // Author: // Miguel de Icaza (miguel@ximian.com) // Martin Baulig (martin@ximian.com) // Marek Safar (marek.safar@gmail.com) // // (C) 2001, 2002, 2003 Ximian, Inc. // (C) 2004 Novell, Inc // using System; using System.Reflection; using System.Reflection.Emit; using System.Collections; namespace Mono.CSharp { /// /// This interface is implemented by expressions that can be assigned to. /// /// /// This interface is implemented by Expressions whose values can not /// store the result on the top of the stack. /// /// Expressions implementing this (Properties, Indexers and Arrays) would /// perform an assignment of the Expression "source" into its final /// location. /// /// No values on the top of the stack are expected to be left by /// invoking this method. /// public interface IAssignMethod { // // This is an extra version of Emit. If leave_copy is `true' // A copy of the expression will be left on the stack at the // end of the code generated for EmitAssign // void Emit (EmitContext ec, bool leave_copy); // // This method does the assignment // `source' will be stored into the location specified by `this' // if `leave_copy' is true, a copy of `source' will be left on the stack // if `prepare_for_load' is true, when `source' is emitted, there will // be data on the stack that it can use to compuatate its value. This is // for expressions like a [f ()] ++, where you can't call `f ()' twice. // void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load); /* For simple assignments, this interface is very simple, EmitAssign is called with source as the source expression and leave_copy and prepare_for_load false. For compound assignments it gets complicated. EmitAssign will be called as before, however, prepare_for_load will be true. The @source expression will contain an expression which calls Emit. So, the calls look like: this.EmitAssign (ec, source, false, true) -> source.Emit (ec); -> [...] -> this.Emit (ec, false); -> end this.Emit (ec, false); -> end [...] end source.Emit (ec); end this.EmitAssign (ec, source, false, true) When prepare_for_load is true, EmitAssign emits a `token' on the stack that Emit will use for its state. Let's take FieldExpr as an example. assume we are emitting f ().y += 1; Here is the call tree again. This time, each call is annotated with the IL it produces: this.EmitAssign (ec, source, false, true) call f dup Binary.Emit () this.Emit (ec, false); ldfld y end this.Emit (ec, false); IntConstant.Emit () ldc.i4.1 end IntConstant.Emit add end Binary.Emit () stfld end this.EmitAssign (ec, source, false, true) Observe two things: 1) EmitAssign left a token on the stack. It was the result of f (). 2) This token was used by Emit leave_copy (in both EmitAssign and Emit) tells the compiler to leave a copy of the expression at that point in evaluation. This is used for pre/post inc/dec and for a = x += y. Let's do the above example with leave_copy true in EmitAssign this.EmitAssign (ec, source, true, true) call f dup Binary.Emit () this.Emit (ec, false); ldfld y end this.Emit (ec, false); IntConstant.Emit () ldc.i4.1 end IntConstant.Emit add end Binary.Emit () dup stloc temp stfld ldloc temp end this.EmitAssign (ec, source, true, true) And with it true in Emit this.EmitAssign (ec, source, false, true) call f dup Binary.Emit () this.Emit (ec, true); ldfld y dup stloc temp end this.Emit (ec, true); IntConstant.Emit () ldc.i4.1 end IntConstant.Emit add end Binary.Emit () stfld ldloc temp end this.EmitAssign (ec, source, false, true) Note that these two examples are what happens for ++x and x++, respectively. */ } /// /// An Expression to hold a temporary value. /// /// /// The LocalTemporary class is used to hold temporary values of a given /// type to "simulate" the expression semantics on property and indexer /// access whose return values are void. /// /// The local temporary is used to alter the normal flow of code generation /// basically it creates a local variable, and its emit instruction generates /// code to access this value, return its address or save its value. /// /// If `is_address' is true, then the value that we store is the address to the /// real value, and not the value itself. /// /// This is needed for a value type, because otherwise you just end up making a /// copy of the value on the stack and modifying it. You really need a pointer /// to the origional value so that you can modify it in that location. This /// Does not happen with a class because a class is a pointer -- so you always /// get the indirection. /// /// The `is_address' stuff is really just a hack. We need to come up with a better /// way to handle it. /// public class LocalTemporary : Expression, IMemoryLocation { LocalBuilder builder; bool is_address; public LocalTemporary (Type t) : this (t, false) {} public LocalTemporary (Type t, bool is_address) { type = t; eclass = ExprClass.Value; this.is_address = is_address; } public LocalTemporary (LocalBuilder b, Type t) { type = t; eclass = ExprClass.Value; loc = Location.Null; builder = b; } public void Release (EmitContext ec) { ec.FreeTemporaryLocal (builder, type); builder = null; } public override Expression DoResolve (EmitContext ec) { return this; } public override void Emit (EmitContext ec) { ILGenerator ig = ec.ig; if (builder == null) throw new InternalErrorException ("Emit without Store, or after Release"); ig.Emit (OpCodes.Ldloc, builder); // we need to copy from the pointer if (is_address) LoadFromPtr (ig, type); } // NB: if you have `is_address' on the stack there must // be a managed pointer. Otherwise, it is the type from // the ctor. public void Store (EmitContext ec) { ILGenerator ig = ec.ig; if (builder == null) builder = ec.GetTemporaryLocal (is_address ? TypeManager.GetReferenceType (type): type); ig.Emit (OpCodes.Stloc, builder); } public void AddressOf (EmitContext ec, AddressOp mode) { if (builder == null) builder = ec.GetTemporaryLocal (is_address ? TypeManager.GetReferenceType (type): type); // if is_address, than this is just the address anyways, // so we just return this. ILGenerator ig = ec.ig; if (is_address) ig.Emit (OpCodes.Ldloc, builder); else ig.Emit (OpCodes.Ldloca, builder); } public bool PointsToAddress { get { return is_address; } } } /// /// The Assign node takes care of assigning the value of source into /// the expression represented by target. /// public class Assign : ExpressionStatement { protected Expression target, source, real_source; protected LocalTemporary temp = null, real_temp = null; protected Assign embedded = null; protected bool is_embedded = false; protected bool must_free_temp = false; public Assign (Expression target, Expression source) : this (target, source, target.Location) { } public Assign (Expression target, Expression source, Location l) { this.target = target; this.source = this.real_source = source; this.loc = l; } protected Assign (Assign embedded, Location l) : this (embedded.target, embedded.source, l) { this.is_embedded = true; } public override Expression CreateExpressionTree (EmitContext ec) { Report.Error (832, loc, "An expression tree cannot contain an assignment operator"); return null; } protected virtual Assign GetEmbeddedAssign (Location loc) { return new Assign (this, loc); } public Expression Target { get { return target; } set { target = value; } } public Expression Source { get { return source; } set { source = value; } } public static void error70 (EventInfo ei, Location l) { Report.Error (70, l, "The event `" + TypeManager.CSharpSignature (ei) + "' can only appear on the left hand side of += or -= (except when" + " used from within the type `" + ei.DeclaringType + "')"); } // // Will return either `this' or an instance of `New'. // public override Expression DoResolve (EmitContext ec) { // Create an embedded assignment if our source is an assignment. if (source is Assign) source = embedded = ((Assign) source).GetEmbeddedAssign (loc); real_source = source = source.Resolve (ec); if (source == null) { // Ensure that we don't propagate the error as spurious "uninitialized variable" errors. target = target.ResolveLValue (ec, EmptyExpression.Null, Location); return null; } // // This is used in an embedded assignment. // As an example, consider the statement "A = X = Y = Z". // if (is_embedded && !(source is Constant)) { // If this is the innermost assignment (the "Y = Z" in our example), // create a new temporary local, otherwise inherit that variable // from our child (the "X = (Y = Z)" inherits the local from the // "Y = Z" assignment). if (embedded == null) { if (this is CompoundAssign) real_temp = temp = new LocalTemporary (target.Type); else real_temp = temp = new LocalTemporary (source.Type); } else temp = embedded.temp; // Set the source to the new temporary variable. // This means that the following target.ResolveLValue () will tell // the target to read it's source value from that variable. source = temp; } // If we have an embedded assignment, use the embedded assignment's temporary // local variable as source. if (embedded != null) source = (embedded.temp != null) ? embedded.temp : embedded.source; target = target.ResolveLValue (ec, source, Location); if (target == null) return null; bool same_assignment = (embedded != null) ? embedded.Target.Equals(target) : source.Equals (target); if (same_assignment) { Report.Warning (1717, 3, loc, "Assignment made to same variable; did you mean to assign something else?"); } Type target_type = target.Type; Type source_type = real_source.Type; // If we're an embedded assignment, our parent will reuse our source as its // source, it won't read from our target. if (is_embedded) type = source_type; else type = target_type; eclass = ExprClass.Value; if (target is EventExpr) { EventInfo ei = ((EventExpr) target).EventInfo; Expression ml = MemberLookup ( ec.ContainerType, ec.ContainerType, ei.Name, MemberTypes.Event, AllBindingFlags | BindingFlags.DeclaredOnly, loc); if (ml == null) { // // If this is the case, then the Event does not belong // to this Type and so, according to the spec // is allowed to only appear on the left hand of // the += and -= operators // // Note that target will not appear as an EventExpr // in the case it is being referenced within the same type container; // it will appear as a FieldExpr in that case. // if (!(source is BinaryDelegate)) { error70 (ei, loc); return null; } } } if (!(target is IAssignMethod) && (target.eclass != ExprClass.EventAccess)) { Error_ValueAssignment (loc); return null; } if ((source.eclass == ExprClass.Type) && (source is TypeExpr)) { source.Error_UnexpectedKind (ec.DeclContainer, "variable or value", loc); return null; } else if ((RootContext.Version == LanguageVersion.ISO_1) && (source is MethodGroupExpr)){ ((MethodGroupExpr) source).ReportUsageError (); return null; } if (target_type == source_type) { if (target.eclass == ExprClass.Variable) { New n = source as New; if (n == null) return this; if (n.HasInitializer) { n.SetTargetVariable (target); } else if (target_type.IsValueType) { n.SetTargetVariable (target); return n; } } return this; } // // If this assignment/operator was part of a compound binary // operator, then we allow an explicit conversion, as detailed // in the spec. // if (this is CompoundAssign){ CompoundAssign a = (CompoundAssign) this; Binary b = source as Binary; if (b != null){ // // 1. if the source is explicitly convertible to the // target_type // source = Convert.ExplicitConversion (ec, source, target_type, loc); if (source == null){ a.original_source.Error_ValueCannotBeConverted (ec, loc, target_type, true); return null; } // // 2. and the original right side is implicitly convertible to // the type of target // if (Convert.ImplicitConversionExists (ec, a.original_source, target_type)) return this; // // In the spec 2.4 they added: or if type of the target is int // and the operator is a shift operator... // if (source_type == TypeManager.int32_type && (b.Oper == Binary.Operator.LeftShift || b.Oper == Binary.Operator.RightShift)) return this; a.original_source.Error_ValueCannotBeConverted (ec, loc, target_type, false); return null; } } source = Convert.ImplicitConversionRequired (ec, source, target_type, loc); if (source == null) return null; // If we're an embedded assignment, we need to create a new temporary variable // for the converted value. Our parent will use this new variable as its source. // The same applies when we have an embedded assignment - in this case, we need // to convert our embedded assignment's temporary local variable to the correct // type and store it in a new temporary local. if (is_embedded || embedded != null) { type = target_type; temp = new LocalTemporary (type); must_free_temp = true; } return this; } Expression EmitEmbedded (EmitContext ec) { // Emit an embedded assignment. if (real_temp != null) { // If we're the innermost assignment, `real_source' is the right-hand // expression which gets assigned to all the variables left of it. // Emit this expression and store its result in real_temp. real_source.Emit (ec); real_temp.Store (ec); } if (embedded != null) embedded.EmitEmbedded (ec); // This happens when we've done a type conversion, in this case source will be // the expression which does the type conversion from real_temp. // So emit it and store the result in temp; this is the var which will be read // by our parent. if (temp != real_temp) { source.Emit (ec); temp.Store (ec); } Expression temp_source = (temp != null) ? temp : source; ((IAssignMethod) target).EmitAssign (ec, temp_source, false, false); return temp_source; } void ReleaseEmbedded (EmitContext ec) { if (embedded != null) embedded.ReleaseEmbedded (ec); if (real_temp != null) real_temp.Release (ec); if (must_free_temp) temp.Release (ec); } void Emit (EmitContext ec, bool is_statement) { if (target is EventExpr) { ((EventExpr) target).EmitAddOrRemove (ec, source); return; } IAssignMethod am = (IAssignMethod) target; Expression temp_source; if (embedded != null) { temp_source = embedded.EmitEmbedded (ec); if (temp != null) { source.Emit (ec); temp.Store (ec); temp_source = temp; } } else temp_source = source; am.EmitAssign (ec, temp_source, !is_statement, this is CompoundAssign); if (embedded != null) { if (temp != null) temp.Release (ec); embedded.ReleaseEmbedded (ec); } } public override void Emit (EmitContext ec) { Emit (ec, false); } public override void EmitStatement (EmitContext ec) { Emit (ec, true); } protected override void CloneTo (CloneContext clonectx, Expression t) { Assign _target = (Assign) t; _target.target = target.Clone (clonectx); _target.source = source.Clone (clonectx); } } // This class implements fields and events class initializers public class FieldInitializer : Assign { // // Keep resolved value because field initializers have their own rules // ExpressionStatement resolved; public FieldInitializer (FieldBuilder field, Expression expression) : base (new FieldExpr (field, expression.Location, true), expression) { if (!field.IsStatic) ((FieldExpr)target).InstanceExpression = CompilerGeneratedThis.Instance; } public override Expression DoResolve (EmitContext ec) { // Field initializer can be resolved (fail) many times if (Source == null) return null; if (resolved == null) resolved = base.DoResolve (ec) as ExpressionStatement; return resolved; } public override void EmitStatement (EmitContext ec) { if (resolved == null) return; if (resolved != this) resolved.EmitStatement (ec); else base.EmitStatement (ec); } public bool IsComplexInitializer { get { if (embedded != null) return true; return !(source is Constant); } } public bool IsDefaultInitializer { get { Constant c = source as Constant; if (c == null) return false; FieldExpr fe = (FieldExpr)target; return c.IsDefaultInitializer (fe.Type); } } } // // This class is used for compound assignments. // class CompoundAssign : Assign { Binary.Operator op; public Expression original_source; public CompoundAssign (Binary.Operator op, Expression target, Expression source) : base (target, source, target.Location) { original_source = source; this.op = op; } protected CompoundAssign (CompoundAssign embedded, Location l) : this (embedded.op, embedded.target, embedded.source) { this.is_embedded = true; } protected override Assign GetEmbeddedAssign (Location loc) { return new CompoundAssign (this, loc); } public override Expression DoResolve (EmitContext ec) { original_source = original_source.Resolve (ec); if (original_source == null) return null; using (ec.Set (EmitContext.Flags.InCompoundAssignment)) { target = target.Resolve (ec); } if (target == null) return null; if (target is MethodGroupExpr){ Error_CannotAssign (((MethodGroupExpr)target).Name, target.ExprClassName); return null; } // // Only now we can decouple the original source/target // into a tree, to guarantee that we do not have side // effects. // source = new Binary (op, target, original_source, true); return base.DoResolve (ec); } protected override void CloneTo (CloneContext clonectx, Expression t) { CompoundAssign target = (CompoundAssign) t; target.original_source = original_source.Clone (clonectx); } } }