// // typemanager.cs: C# type manager // // Author: Miguel de Icaza (miguel@gnu.org) // Ravi Pratap (ravi@ximian.com) // Marek Safar (marek.safar@seznam.cz) // // Licensed under the terms of the GNU GPL // // (C) 2001 Ximian, Inc (http://www.ximian.com) // // // // We will eventually remove the SIMPLE_SPEEDUP, and should never change // the behavior of the compilation. This can be removed if we rework // the code to get a list of namespaces available. // #define SIMPLE_SPEEDUP using System; using System.IO; using System.Globalization; using System.Collections; using System.Reflection; using System.Reflection.Emit; using System.Text; using System.Text.RegularExpressions; using System.Runtime.CompilerServices; using System.Diagnostics; namespace Mono.CSharp { public partial class TypeManager { // // A list of core types that the compiler requires or uses // static public Type object_type; static public Type value_type; static public Type string_type; static public Type int32_type; static public Type uint32_type; static public Type int64_type; static public Type uint64_type; static public Type float_type; static public Type double_type; static public Type char_type; static public Type char_ptr_type; static public Type short_type; static public Type decimal_type; static public Type bool_type; static public Type sbyte_type; static public Type byte_type; static public Type ushort_type; static public Type enum_type; static public Type delegate_type; static public Type multicast_delegate_type; static public Type void_type; static public Type null_type; static public Type enumeration_type; static public Type array_type; static public Type runtime_handle_type; static public Type icloneable_type; static public Type type_type; static public Type ienumerator_type; static public Type ienumerable_type; static public Type idisposable_type; static public Type iconvertible_type; static public Type default_member_type; static public Type iasyncresult_type; static public Type asynccallback_type; static public Type intptr_type; static public Type monitor_type; static public Type runtime_field_handle_type; static public Type runtime_argument_handle_type; static public Type attribute_type; static public Type attribute_usage_type; static public Type decimal_constant_attribute_type; static public Type dllimport_type; static public Type unverifiable_code_type; static public Type methodimpl_attr_type; static public Type marshal_as_attr_type; static public Type param_array_type; static public Type void_ptr_type; static public Type indexer_name_type; static public Type exception_type; static public Type invalid_operation_exception_type; static public Type not_supported_exception_type; static public Type obsolete_attribute_type; static public Type conditional_attribute_type; static public Type in_attribute_type; static public Type out_attribute_type; static public Type anonymous_method_type; static public Type cls_compliant_attribute_type; static public Type typed_reference_type; static public Type arg_iterator_type; static public Type mbr_type; static public Type struct_layout_attribute_type; static public Type field_offset_attribute_type; static public Type security_attr_type; static public Type required_attr_type; static public Type guid_attr_type; static public Type assembly_culture_attribute_type; static public Type coclass_attr_type; static public Type comimport_attr_type; /// /// .NET 2.0 /// static internal Type runtime_compatibility_attr_type; static internal Type compiler_generated_attr_type; static internal Type fixed_buffer_attr_type; static internal Type default_charset_type; static internal Type internals_visible_attr_type; // // Expressions representing the internal types. Used during declaration // definition. // static public TypeExpr system_object_expr, system_string_expr; static public TypeExpr system_boolean_expr, system_decimal_expr; static public TypeExpr system_single_expr, system_double_expr; static public TypeExpr system_sbyte_expr, system_byte_expr; static public TypeExpr system_int16_expr, system_uint16_expr; static public TypeExpr system_int32_expr, system_uint32_expr; static public TypeExpr system_int64_expr, system_uint64_expr; static public TypeExpr system_char_expr, system_void_expr; static public TypeExpr system_asynccallback_expr; static public TypeExpr system_iasyncresult_expr; static public TypeExpr system_valuetype_expr; static public TypeExpr system_intptr_expr; // // This is only used when compiling corlib // static public Type system_int32_type; static public Type system_array_type; static public Type system_type_type; static public Type system_assemblybuilder_type; static public MethodInfo system_int_array_get_length; static public MethodInfo system_int_array_get_rank; static public MethodInfo system_object_array_clone; static public MethodInfo system_int_array_get_length_int; static public MethodInfo system_int_array_get_lower_bound_int; static public MethodInfo system_int_array_get_upper_bound_int; static public MethodInfo system_void_array_copyto_array_int; // // Internal, not really used outside // static Type runtime_helpers_type; // // These methods are called by code generated by the compiler // static public MethodInfo string_concat_string_string; static public MethodInfo string_concat_string_string_string; static public MethodInfo string_concat_string_string_string_string; static public MethodInfo string_concat_string_dot_dot_dot; static public MethodInfo string_concat_object_object; static public MethodInfo string_concat_object_object_object; static public MethodInfo string_concat_object_dot_dot_dot; static public MethodInfo string_isinterneted_string; static public MethodInfo system_type_get_type_from_handle; static public MethodInfo bool_movenext_void; static public MethodInfo ienumerable_getenumerator_void; static public MethodInfo void_reset_void; static public MethodInfo void_dispose_void; static public MethodInfo void_monitor_enter_object; static public MethodInfo void_monitor_exit_object; static public MethodInfo void_initializearray_array_fieldhandle; static public MethodInfo int_getlength_int; static public MethodInfo delegate_combine_delegate_delegate; static public MethodInfo delegate_remove_delegate_delegate; static public MethodInfo int_get_offset_to_string_data; static public MethodInfo int_array_get_length; static public MethodInfo int_array_get_rank; static public MethodInfo object_array_clone; static public MethodInfo int_array_get_length_int; static public MethodInfo int_array_get_lower_bound_int; static public MethodInfo int_array_get_upper_bound_int; static public MethodInfo void_array_copyto_array_int; static public PropertyInfo ienumerator_getcurrent; // // The attribute constructors. // static public ConstructorInfo object_ctor; static private ConstructorInfo cons_param_array_attribute; static public ConstructorInfo void_decimal_ctor_five_args; static public ConstructorInfo void_decimal_ctor_int_arg; static public ConstructorInfo unverifiable_code_ctor; static public ConstructorInfo default_member_ctor; static public ConstructorInfo decimal_constant_attribute_ctor; static internal ConstructorInfo struct_layout_attribute_ctor; static public ConstructorInfo field_offset_attribute_ctor; /// /// A new in C# 2.0 /// static internal CustomAttributeBuilder compiler_generated_attr; static internal ConstructorInfo fixed_buffer_attr_ctor; static PtrHashtable builder_to_declspace; static PtrHashtable builder_to_member_cache; // // Tracks the interfaces implemented by typebuilders. We only // enter those who do implement or or more interfaces // static PtrHashtable builder_to_ifaces; // // Maps PropertyBuilder to a Type array that contains // the arguments to the indexer // static Hashtable indexer_arguments; // // Maps a MethodBase to its ParameterData (either InternalParameters or ReflectionParameters) // static Hashtable method_params; // // A hash table from override methods to their base virtual method. // static Hashtable method_overrides; // // Keeps track of methods // static Hashtable builder_to_method; // // Contains all public types from referenced assemblies. // This member is used only if CLS Compliance verification is required. // public static Hashtable AllClsTopLevelTypes; static Hashtable fieldbuilders_to_fields; static Hashtable fields; static PtrHashtable assembly_internals_vis_attrs; struct Signature { public string name; public Type [] args; } public static void CleanUp () { // Lets get everything clean so that we can collect before generating code builder_to_declspace = null; builder_to_member_cache = null; builder_to_ifaces = null; indexer_arguments = null; method_params = null; builder_to_method = null; fields = null; fieldbuilders_to_fields = null; events = null; priv_fields_events = null; type_hash = null; assembly_internals_vis_attrs = null; CleanUpGenerics (); TypeHandle.CleanUp (); } /// /// A filter for Findmembers that uses the Signature object to /// extract objects /// static bool SignatureFilter (MemberInfo mi, object criteria) { Signature sig = (Signature) criteria; if (!(mi is MethodBase)) return false; if (mi.Name != sig.name) return false; int count = sig.args.Length; if (mi is MethodBuilder || mi is ConstructorBuilder){ Type [] candidate_args = GetParameterData ((MethodBase) mi).Types; if (candidate_args.Length != count) return false; for (int i = 0; i < count; i++) if (candidate_args [i] != sig.args [i]) return false; return true; } else { ParameterInfo [] pars = ((MethodBase) mi).GetParameters (); if (pars.Length != count) return false; for (int i = 0; i < count; i++) if (pars [i].ParameterType != sig.args [i]) return false; return true; } } // A delegate that points to the filter above. static MemberFilter signature_filter; // // These are expressions that represent some of the internal data types, used // elsewhere // static void InitExpressionTypes () { system_object_expr = new TypeLookupExpression ("System.Object"); system_string_expr = new TypeLookupExpression ("System.String"); system_boolean_expr = new TypeLookupExpression ("System.Boolean"); system_decimal_expr = new TypeLookupExpression ("System.Decimal"); system_single_expr = new TypeLookupExpression ("System.Single"); system_double_expr = new TypeLookupExpression ("System.Double"); system_sbyte_expr = new TypeLookupExpression ("System.SByte"); system_byte_expr = new TypeLookupExpression ("System.Byte"); system_int16_expr = new TypeLookupExpression ("System.Int16"); system_uint16_expr = new TypeLookupExpression ("System.UInt16"); system_int32_expr = new TypeLookupExpression ("System.Int32"); system_uint32_expr = new TypeLookupExpression ("System.UInt32"); system_int64_expr = new TypeLookupExpression ("System.Int64"); system_uint64_expr = new TypeLookupExpression ("System.UInt64"); system_char_expr = new TypeLookupExpression ("System.Char"); system_void_expr = new TypeLookupExpression ("System.Void"); system_asynccallback_expr = new TypeLookupExpression ("System.AsyncCallback"); system_iasyncresult_expr = new TypeLookupExpression ("System.IAsyncResult"); system_valuetype_expr = new TypeLookupExpression ("System.ValueType"); system_intptr_expr = new TypeLookupExpression ("System.IntPtr"); } static TypeManager () { Reset (); signature_filter = new MemberFilter (SignatureFilter); InitExpressionTypes (); } static public void Reset () { builder_to_declspace = new PtrHashtable (); builder_to_member_cache = new PtrHashtable (); builder_to_method = new PtrHashtable (); method_params = new PtrHashtable (); method_overrides = new PtrHashtable (); indexer_arguments = new PtrHashtable (); builder_to_ifaces = new PtrHashtable (); fieldbuilders_to_fields = new Hashtable (); fields = new Hashtable (); type_hash = new DoubleHash (); assembly_internals_vis_attrs = new PtrHashtable (); InitGenerics (); // to uncover regressions cons_param_array_attribute = null; } public static void AddUserType (DeclSpace ds) { builder_to_declspace.Add (ds.TypeBuilder, ds); } // // This entry point is used by types that we define under the covers // public static void RegisterBuilder (Type tb, Type [] ifaces) { if (ifaces != null) builder_to_ifaces [tb] = ifaces; } public static void AddMethod (MethodBase builder, IMethodData method) { builder_to_method.Add (builder, method); method_params.Add (builder, method.ParameterInfo); } public static IMethodData GetMethod (MethodBase builder) { return (IMethodData) builder_to_method [builder]; } /// /// Returns the DeclSpace whose Type is `t' or null if there is no /// DeclSpace for `t' (ie, the Type comes from a library) /// public static DeclSpace LookupDeclSpace (Type t) { return builder_to_declspace [t] as DeclSpace; } /// /// Returns the TypeContainer whose Type is `t' or null if there is no /// TypeContainer for `t' (ie, the Type comes from a library) /// public static TypeContainer LookupTypeContainer (Type t) { return builder_to_declspace [t] as TypeContainer; } public static MemberCache LookupMemberCache (Type t) { if (t is TypeBuilder) { IMemberContainer container = builder_to_declspace [t] as IMemberContainer; if (container != null) return container.MemberCache; } if (t is GenericTypeParameterBuilder) { IMemberContainer container = builder_to_type_param [t] as IMemberContainer; if (container != null) return container.MemberCache; } return TypeHandle.GetMemberCache (t); } public static MemberCache LookupBaseInterfacesCache (Type t) { Type [] ifaces = GetInterfaces (t); if (ifaces != null && ifaces.Length == 1) return LookupMemberCache (ifaces [0]); // TODO: the builder_to_member_cache should be indexed by 'ifaces', not 't' MemberCache cache = builder_to_member_cache [t] as MemberCache; if (cache != null) return cache; cache = new MemberCache (ifaces); builder_to_member_cache.Add (t, cache); return cache; } public static TypeContainer LookupInterface (Type t) { TypeContainer tc = (TypeContainer) builder_to_declspace [t]; if ((tc == null) || (tc.Kind != Kind.Interface)) return null; return tc; } public static Delegate LookupDelegate (Type t) { return builder_to_declspace [t] as Delegate; } public static Class LookupClass (Type t) { return (Class) builder_to_declspace [t]; } // // We use this hash for multiple kinds of constructed types: // // (T, "&") Given T, get T & // (T, "*") Given T, get T * // (T, "[]") Given T and a array dimension, get T [] // (T, X) Given a type T and a simple name X, get the type T+X // // Accessibility tests, if necessary, should be done by the user // static DoubleHash type_hash = new DoubleHash (); // // Gets the reference to T version of the Type (T&) // public static Type GetReferenceType (Type t) { return t.MakeByRefType (); } // // Gets the pointer to T version of the Type (T*) // public static Type GetPointerType (Type t) { return GetConstructedType (t, "*"); } public static Type GetConstructedType (Type t, string dim) { object ret = null; if (type_hash.Lookup (t, dim, out ret)) return (Type) ret; ret = t.Module.GetType (t.ToString () + dim); if (ret != null) { type_hash.Insert (t, dim, ret); return (Type) ret; } if (dim == "&") { ret = GetReferenceType (t); type_hash.Insert (t, dim, ret); return (Type) ret; } if (t.IsGenericParameter || t.IsGenericType) { int pos = 0; Type result = t; while ((pos < dim.Length) && (dim [pos] == '[')) { pos++; if (dim [pos] == ']') { result = result.MakeArrayType (); pos++; if (pos < dim.Length) continue; type_hash.Insert (t, dim, result); return result; } int rank = 0; while (dim [pos] == ',') { pos++; rank++; } if ((dim [pos] != ']') || (pos != dim.Length-1)) break; result = result.MakeArrayType (rank + 1); type_hash.Insert (t, dim, result); return result; } } type_hash.Insert (t, dim, null); return null; } public static Type GetNestedType (Type t, string name) { object ret = null; if (!type_hash.Lookup (t, name, out ret)) { ret = t.GetNestedType (name, BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.DeclaredOnly); type_hash.Insert (t, name, ret); } return (Type) ret; } /// /// Fills static table with exported types from all referenced assemblies. /// This information is required for CLS Compliance tests. /// public static void LoadAllImportedTypes () { AllClsTopLevelTypes = new Hashtable (1500); foreach (Assembly a in RootNamespace.Global.Assemblies) { foreach (Type t in a.GetExportedTypes ()) { AllClsTopLevelTypes [t.FullName.ToLower (System.Globalization.CultureInfo.InvariantCulture)] = null; } } } public static bool NamespaceClash (string name, Location loc) { if (! RootNamespace.Global.IsNamespace (name)) return false; Report.Error (519, loc, String.Format ("`{0}' clashes with a predefined namespace", name)); return true; } /// /// Returns the C# name of a type if possible, or the full type name otherwise /// static public string CSharpName (Type t) { if (IsNullableType (t) && !t.IsGenericTypeDefinition) { t = GetTypeArguments (t) [0]; return CSharpName (t) + "?"; } string name = GetFullName (t); return Regex.Replace (name, @"^System\." + @"(Int32|UInt32|Int16|UInt16|Int64|UInt64|" + @"Single|Double|Char|Decimal|Byte|SByte|Object|" + @"Boolean|String|Void|Null)" + @"(\W+|\b)", new MatchEvaluator (CSharpNameMatch)).Replace ('+', '.'); } static public string CSharpName (Type[] types) { StringBuilder sb = new StringBuilder (); foreach (Type t in types) { sb.Append (CSharpName (t)); sb.Append (','); } sb.Remove (sb.Length - 1, 1); return sb.ToString (); } static String CSharpNameMatch (Match match) { string s = match.Groups [1].Captures [0].Value; return s.ToLower (). Replace ("int32", "int"). Replace ("uint32", "uint"). Replace ("int16", "short"). Replace ("uint16", "ushort"). Replace ("int64", "long"). Replace ("uint64", "ulong"). Replace ("single", "float"). Replace ("boolean", "bool") + match.Groups [2].Captures [0].Value; } /// /// Returns the signature of the method with full namespace classification /// static public string GetFullNameSignature (MemberInfo mi) { PropertyInfo pi = mi as PropertyInfo; if (pi != null) { MethodBase pmi = pi.GetGetMethod (); if (pmi == null) pmi = pi.GetSetMethod (); if (GetParameterData (pmi).Count > 0) mi = pmi; } return (mi is MethodBase) ? CSharpSignature (mi as MethodBase) : CSharpName (mi.DeclaringType) + '.' + mi.Name; } private static int GetFullName (Type t, StringBuilder sb) { int pos = 0; if (!t.IsGenericType) { sb.Append (t.FullName); return 0; } if (t.DeclaringType != null) { pos = GetFullName (t.DeclaringType, sb); sb.Append ('.'); sb.Append (RemoveGenericArity (t.Name)); } else { sb.Append (RemoveGenericArity (t.FullName)); } Type[] this_args = GetTypeArguments (t); if (this_args.Length < pos) throw new InternalErrorException ( "Enclosing class " + t.DeclaringType + " has more type arguments than " + t); if (this_args.Length == pos) return pos; sb.Append ('<'); for (;;) { sb.Append (CSharpName (this_args [pos++])); if (pos == this_args.Length) break; sb.Append (','); } sb.Append ('>'); return pos; } public static string GetFullName (Type t) { if (t.IsGenericParameter) return t.Name; if (!t.IsGenericType) return t.FullName; StringBuilder sb = new StringBuilder (); int pos = GetFullName (t, sb); if (pos <= 0) throw new InternalErrorException ("Generic Type " + t + " doesn't have type arguments"); return sb.ToString (); } static string RemoveGenericArity (string from) { int i = from.IndexOf ('`'); if (i > 0) return from.Substring (0, i); return from; } /// /// When we need to report accessors as well /// static public string CSharpSignature (MethodBase mb) { return CSharpSignature (mb, false); } /// /// Returns the signature of the method /// static public string CSharpSignature (MethodBase mb, bool show_accessor) { StringBuilder sig = new StringBuilder (CSharpName (mb.DeclaringType)); sig.Append ('.'); ParameterData iparams = GetParameterData (mb); string parameters = iparams.GetSignatureForError (); string accessor = ""; // Is property if (mb.IsSpecialName) { Operator.OpType ot = Operator.GetOperatorType (mb.Name); if (ot != Operator.OpType.TOP) { sig.Append ("operator "); sig.Append (Operator.GetName (ot)); sig.Append (parameters); return sig.ToString (); } if (mb.Name.StartsWith ("get_") || mb.Name.StartsWith ("set_")) { accessor = mb.Name.Substring (0, 3); } } // Is indexer if (mb.IsSpecialName && !mb.IsConstructor) { if (iparams.Count > (mb.Name.StartsWith ("get_") ? 0 : 1)) { sig.Append ("this["); if (show_accessor) { sig.Append (parameters.Substring (1, parameters.Length - 2)); } else { int before_ret_val = parameters.LastIndexOf (','); if (before_ret_val < 0) sig.Append (parameters.Substring (1, parameters.Length - 2)); else sig.Append (parameters.Substring (1, before_ret_val - 1)); } sig.Append (']'); } else { sig.Append (mb.Name.Substring (4)); } } else { if (mb.Name == ".ctor") sig.Append (mb.DeclaringType.Name); else { sig.Append (mb.Name); if (TypeManager.IsGenericMethod (mb)) { Type[] args = mb.GetGenericArguments (); sig.Append ('<'); for (int i = 0; i < args.Length; i++) { if (i > 0) sig.Append (','); sig.Append (args [i].Name); } sig.Append ('>'); } } sig.Append (parameters); } if (show_accessor && accessor.Length > 0) { sig.Append ('.'); sig.Append (accessor); } return sig.ToString (); } public static string GetMethodName (MethodInfo m) { if (!IsGenericMethodDefinition (m) && !IsGenericMethod (m)) return m.Name; return MemberName.MakeName (m.Name, m.GetGenericArguments ().Length); } static public string CSharpSignature (EventInfo ei) { return CSharpName (ei.DeclaringType) + '.' + ei.Name; } /// /// Looks up a type, and aborts if it is not found. This is used /// by types required by the compiler /// static Type CoreLookupType (string ns_name, string name) { Namespace ns = RootNamespace.Global.GetNamespace (ns_name, true); FullNamedExpression fne = ns.Lookup (RootContext.Tree.Types, name, Location.Null); Type t = fne == null ? null : fne.Type; if (t == null) Report.Error (518, "The predefined type `" + name + "' is not defined or imported"); return t; } /// /// Returns the MethodInfo for a method named `name' defined /// in type `t' which takes arguments of types `args' /// static MethodInfo GetMethod (Type t, string name, Type [] args, bool is_private, bool report_errors) { MemberList list; Signature sig; BindingFlags flags = instance_and_static | BindingFlags.Public; sig.name = name; sig.args = args; if (is_private) flags |= BindingFlags.NonPublic; list = FindMembers (t, MemberTypes.Method, flags, signature_filter, sig); if (list.Count == 0) { if (report_errors) Report.Error (-19, "Can not find the core function `" + name + "'"); return null; } MethodInfo mi = list [0] as MethodInfo; if (mi == null) { if (report_errors) Report.Error (-19, "Can not find the core function `" + name + "'"); return null; } return mi; } static MethodInfo GetMethod (Type t, string name, Type [] args, bool report_errors) { return GetMethod (t, name, args, false, report_errors); } static MethodInfo GetMethod (Type t, string name, Type [] args) { return GetMethod (t, name, args, true); } /// /// Returns the PropertyInfo for a property named `name' defined /// in type `t' /// public static PropertyInfo GetProperty (Type t, string name) { MemberList list = FindMembers (t, MemberTypes.Property, BindingFlags.Public | BindingFlags.Instance, Type.FilterName, name); if (list.Count == 0) { Report.Error (-19, "Can not find the core property `" + name + "'"); return null; } PropertyInfo pi = list [0] as PropertyInfo; if (pi == null) { Report.Error (-19, "Can not find the core function `" + name + "'"); return null; } return pi; } /// /// Returns the ConstructorInfo for "args" /// public static ConstructorInfo GetConstructor (Type t, Type [] args) { MemberList list; Signature sig; sig.name = ".ctor"; sig.args = args; if (t == null) throw new InternalErrorException ("Core types haven't been initialized yet?"); list = FindMembers (t, MemberTypes.Constructor, instance_and_static | BindingFlags.Public | BindingFlags.DeclaredOnly, signature_filter, sig); if (list.Count == 0){ Report.Error (-19, "Can not find the core constructor for type `" + t.Name + "'"); return null; } ConstructorInfo ci = list [0] as ConstructorInfo; if (ci == null){ Report.Error (-19, "Can not find the core constructor for type `" + t.Name + "'"); return null; } return ci; } public static void InitEnumUnderlyingTypes () { int32_type = CoreLookupType ("System", "Int32"); int64_type = CoreLookupType ("System", "Int64"); uint32_type = CoreLookupType ("System", "UInt32"); uint64_type = CoreLookupType ("System", "UInt64"); byte_type = CoreLookupType ("System", "Byte"); sbyte_type = CoreLookupType ("System", "SByte"); short_type = CoreLookupType ("System", "Int16"); ushort_type = CoreLookupType ("System", "UInt16"); } /// /// The types have to be initialized after the initial /// population of the type has happened (for example, to /// bootstrap the corlib.dll /// public static void InitCoreTypes () { object_type = CoreLookupType ("System", "Object"); value_type = CoreLookupType ("System", "ValueType"); InitEnumUnderlyingTypes (); char_type = CoreLookupType ("System", "Char"); string_type = CoreLookupType ("System", "String"); float_type = CoreLookupType ("System", "Single"); double_type = CoreLookupType ("System", "Double"); char_ptr_type = GetPointerType (char_type); decimal_type = CoreLookupType ("System", "Decimal"); bool_type = CoreLookupType ("System", "Boolean"); enum_type = CoreLookupType ("System", "Enum"); multicast_delegate_type = CoreLookupType ("System", "MulticastDelegate"); delegate_type = CoreLookupType ("System", "Delegate"); array_type = CoreLookupType ("System", "Array"); void_type = CoreLookupType ("System", "Void"); type_type = CoreLookupType ("System", "Type"); runtime_field_handle_type = CoreLookupType ("System", "RuntimeFieldHandle"); runtime_argument_handle_type = CoreLookupType ("System", "RuntimeArgumentHandle"); runtime_helpers_type = CoreLookupType ("System.Runtime.CompilerServices", "RuntimeHelpers"); default_member_type = CoreLookupType ("System.Reflection", "DefaultMemberAttribute"); runtime_handle_type = CoreLookupType ("System", "RuntimeTypeHandle"); asynccallback_type = CoreLookupType ("System", "AsyncCallback"); iasyncresult_type = CoreLookupType ("System", "IAsyncResult"); ienumerator_type = CoreLookupType ("System.Collections", "IEnumerator"); ienumerable_type = CoreLookupType ("System.Collections", "IEnumerable"); idisposable_type = CoreLookupType ("System", "IDisposable"); icloneable_type = CoreLookupType ("System", "ICloneable"); iconvertible_type = CoreLookupType ("System", "IConvertible"); monitor_type = CoreLookupType ("System.Threading", "Monitor"); intptr_type = CoreLookupType ("System", "IntPtr"); attribute_type = CoreLookupType ("System", "Attribute"); attribute_usage_type = CoreLookupType ("System", "AttributeUsageAttribute"); dllimport_type = CoreLookupType ("System.Runtime.InteropServices", "DllImportAttribute"); methodimpl_attr_type = CoreLookupType ("System.Runtime.CompilerServices", "MethodImplAttribute"); marshal_as_attr_type = CoreLookupType ("System.Runtime.InteropServices", "MarshalAsAttribute"); param_array_type = CoreLookupType ("System", "ParamArrayAttribute"); in_attribute_type = CoreLookupType ("System.Runtime.InteropServices", "InAttribute"); out_attribute_type = CoreLookupType ("System.Runtime.InteropServices", "OutAttribute"); typed_reference_type = CoreLookupType ("System", "TypedReference"); arg_iterator_type = CoreLookupType ("System", "ArgIterator"); mbr_type = CoreLookupType ("System", "MarshalByRefObject"); decimal_constant_attribute_type = CoreLookupType ("System.Runtime.CompilerServices", "DecimalConstantAttribute"); unverifiable_code_type= CoreLookupType ("System.Security", "UnverifiableCodeAttribute"); void_ptr_type = GetPointerType (void_type); indexer_name_type = CoreLookupType ("System.Runtime.CompilerServices", "IndexerNameAttribute"); exception_type = CoreLookupType ("System", "Exception"); invalid_operation_exception_type = CoreLookupType ("System", "InvalidOperationException"); not_supported_exception_type = CoreLookupType ("System", "NotSupportedException"); // // Attribute types // obsolete_attribute_type = CoreLookupType ("System", "ObsoleteAttribute"); conditional_attribute_type = CoreLookupType ("System.Diagnostics", "ConditionalAttribute"); cls_compliant_attribute_type = CoreLookupType ("System", "CLSCompliantAttribute"); struct_layout_attribute_type = CoreLookupType ("System.Runtime.InteropServices", "StructLayoutAttribute"); field_offset_attribute_type = CoreLookupType ("System.Runtime.InteropServices", "FieldOffsetAttribute"); security_attr_type = CoreLookupType ("System.Security.Permissions", "SecurityAttribute"); required_attr_type = CoreLookupType ("System.Runtime.CompilerServices", "RequiredAttributeAttribute"); guid_attr_type = CoreLookupType ("System.Runtime.InteropServices", "GuidAttribute"); assembly_culture_attribute_type = CoreLookupType ("System.Reflection", "AssemblyCultureAttribute"); comimport_attr_type = CoreLookupType ("System.Runtime.InteropServices", "ComImportAttribute"); coclass_attr_type = CoreLookupType ("System.Runtime.InteropServices", "CoClassAttribute"); InitGenericCoreTypes (); // // .NET 2.0 // compiler_generated_attr_type = CoreLookupType ("System.Runtime.CompilerServices", "CompilerGeneratedAttribute"); fixed_buffer_attr_type = CoreLookupType ("System.Runtime.CompilerServices", "FixedBufferAttribute"); default_charset_type = CoreLookupType ("System.Runtime.InteropServices", "DefaultCharSetAttribute"); internals_visible_attr_type = CoreLookupType ("System.Runtime.CompilerServices", "InternalsVisibleToAttribute"); runtime_compatibility_attr_type = CoreLookupType ("System.Runtime.CompilerServices", "RuntimeCompatibilityAttribute"); // // When compiling corlib, store the "real" types here. // if (!RootContext.StdLib) { system_int32_type = typeof (System.Int32); system_array_type = typeof (System.Array); system_type_type = typeof (System.Type); system_assemblybuilder_type = typeof (System.Reflection.Emit.AssemblyBuilder); system_int_array_get_length = GetMethod ( system_array_type, "get_Length", Type.EmptyTypes); system_int_array_get_rank = GetMethod ( system_array_type, "get_Rank", Type.EmptyTypes); system_object_array_clone = GetMethod ( system_array_type, "Clone", Type.EmptyTypes); Type [] system_int_arg = { system_int32_type }; system_int_array_get_length_int = GetMethod ( system_array_type, "GetLength", system_int_arg); system_int_array_get_upper_bound_int = GetMethod ( system_array_type, "GetUpperBound", system_int_arg); system_int_array_get_lower_bound_int = GetMethod ( system_array_type, "GetLowerBound", system_int_arg); Type [] system_array_int_arg = { system_array_type, system_int32_type }; system_void_array_copyto_array_int = GetMethod ( system_array_type, "CopyTo", system_array_int_arg); Type [] system_3_type_arg = { system_type_type, system_type_type, system_type_type }; Type [] system_4_type_arg = { system_type_type, system_type_type, system_type_type, system_type_type }; MethodInfo set_corlib_type_builders = GetMethod ( system_assemblybuilder_type, "SetCorlibTypeBuilders", system_4_type_arg, true, false); if (set_corlib_type_builders != null) { object[] args = new object [4]; args [0] = object_type; args [1] = value_type; args [2] = enum_type; args [3] = void_type; set_corlib_type_builders.Invoke (CodeGen.Assembly.Builder, args); } else { // Compatibility for an older version of the class libs. set_corlib_type_builders = GetMethod ( system_assemblybuilder_type, "SetCorlibTypeBuilders", system_3_type_arg, true, true); if (set_corlib_type_builders == null) { Report.Error (-26, "Corlib compilation is not supported in Microsoft.NET due to bugs in it"); return; } object[] args = new object [3]; args [0] = object_type; args [1] = value_type; args [2] = enum_type; set_corlib_type_builders.Invoke (CodeGen.Assembly.Builder, args); } } system_object_expr.Type = object_type; system_string_expr.Type = string_type; system_boolean_expr.Type = bool_type; system_decimal_expr.Type = decimal_type; system_single_expr.Type = float_type; system_double_expr.Type = double_type; system_sbyte_expr.Type = sbyte_type; system_byte_expr.Type = byte_type; system_int16_expr.Type = short_type; system_uint16_expr.Type = ushort_type; system_int32_expr.Type = int32_type; system_uint32_expr.Type = uint32_type; system_int64_expr.Type = int64_type; system_uint64_expr.Type = uint64_type; system_char_expr.Type = char_type; system_void_expr.Type = void_type; system_asynccallback_expr.Type = asynccallback_type; system_iasyncresult_expr.Type = iasyncresult_type; system_valuetype_expr.Type = value_type; // // These are only used for compare purposes // anonymous_method_type = typeof (AnonymousMethod); null_type = typeof (NullType); } // // The helper methods that are used by the compiler // public static void InitCodeHelpers () { // // Now load the default methods that we use. // Type [] string_string = { string_type, string_type }; string_concat_string_string = GetMethod ( string_type, "Concat", string_string); Type [] string_string_string = { string_type, string_type, string_type }; string_concat_string_string_string = GetMethod ( string_type, "Concat", string_string_string); Type [] string_string_string_string = { string_type, string_type, string_type, string_type }; string_concat_string_string_string_string = GetMethod ( string_type, "Concat", string_string_string_string); Type[] params_string = { GetConstructedType (string_type, "[]") }; string_concat_string_dot_dot_dot = GetMethod ( string_type, "Concat", params_string); Type [] object_object = { object_type, object_type }; string_concat_object_object = GetMethod ( string_type, "Concat", object_object); Type [] object_object_object = { object_type, object_type, object_type }; string_concat_object_object_object = GetMethod ( string_type, "Concat", object_object_object); Type[] params_object = { GetConstructedType (object_type, "[]") }; string_concat_object_dot_dot_dot = GetMethod ( string_type, "Concat", params_object); Type [] string_ = { string_type }; string_isinterneted_string = GetMethod ( string_type, "IsInterned", string_); Type [] runtime_type_handle = { runtime_handle_type }; system_type_get_type_from_handle = GetMethod ( type_type, "GetTypeFromHandle", runtime_type_handle); Type [] delegate_delegate = { delegate_type, delegate_type }; delegate_combine_delegate_delegate = GetMethod ( delegate_type, "Combine", delegate_delegate); delegate_remove_delegate_delegate = GetMethod ( delegate_type, "Remove", delegate_delegate); // // Void arguments // ienumerator_getcurrent = GetProperty ( ienumerator_type, "Current"); bool_movenext_void = GetMethod ( ienumerator_type, "MoveNext", Type.EmptyTypes); void_reset_void = GetMethod ( ienumerator_type, "Reset", Type.EmptyTypes); void_dispose_void = GetMethod ( idisposable_type, "Dispose", Type.EmptyTypes); int_get_offset_to_string_data = GetMethod ( runtime_helpers_type, "get_OffsetToStringData", Type.EmptyTypes); int_array_get_length = GetMethod ( array_type, "get_Length", Type.EmptyTypes); int_array_get_rank = GetMethod ( array_type, "get_Rank", Type.EmptyTypes); ienumerable_getenumerator_void = GetMethod ( ienumerable_type, "GetEnumerator", Type.EmptyTypes); // // Int32 arguments // Type [] int_arg = { int32_type }; int_array_get_length_int = GetMethod ( array_type, "GetLength", int_arg); int_array_get_upper_bound_int = GetMethod ( array_type, "GetUpperBound", int_arg); int_array_get_lower_bound_int = GetMethod ( array_type, "GetLowerBound", int_arg); // // System.Array methods // object_array_clone = GetMethod ( array_type, "Clone", Type.EmptyTypes); Type [] array_int_arg = { array_type, int32_type }; void_array_copyto_array_int = GetMethod ( array_type, "CopyTo", array_int_arg); // // object arguments // Type [] object_arg = { object_type }; void_monitor_enter_object = GetMethod ( monitor_type, "Enter", object_arg); void_monitor_exit_object = GetMethod ( monitor_type, "Exit", object_arg); Type [] array_field_handle_arg = { array_type, runtime_field_handle_type }; void_initializearray_array_fieldhandle = GetMethod ( runtime_helpers_type, "InitializeArray", array_field_handle_arg); // // Array functions // int_getlength_int = GetMethod ( array_type, "GetLength", int_arg); // // Decimal constructors // Type [] dec_arg = { int32_type, int32_type, int32_type, bool_type, byte_type }; void_decimal_ctor_five_args = GetConstructor ( decimal_type, dec_arg); void_decimal_ctor_int_arg = GetConstructor (decimal_type, int_arg); // // Attributes // unverifiable_code_ctor = GetConstructor (unverifiable_code_type, Type.EmptyTypes); default_member_ctor = GetConstructor (default_member_type, string_); Type[] short_arg = { short_type }; struct_layout_attribute_ctor = GetConstructor (struct_layout_attribute_type, short_arg); decimal_constant_attribute_ctor = GetConstructor (decimal_constant_attribute_type, new Type [] { byte_type, byte_type, uint32_type, uint32_type, uint32_type } ); field_offset_attribute_ctor = GetConstructor (field_offset_attribute_type, new Type [] { int32_type }); // // .NET 2.0 types // compiler_generated_attr = new CustomAttributeBuilder ( GetConstructor (compiler_generated_attr_type, Type.EmptyTypes), new object[0]); Type[] type_int_arg = { type_type, int32_type }; fixed_buffer_attr_ctor = GetConstructor (fixed_buffer_attr_type, type_int_arg); // Object object_ctor = GetConstructor (object_type, Type.EmptyTypes); InitGenericCodeHelpers (); } static public ConstructorInfo ConsParamArrayAttribute { get { if (cons_param_array_attribute == null) cons_param_array_attribute = GetConstructor (param_array_type, Type.EmptyTypes); return cons_param_array_attribute; } } const BindingFlags instance_and_static = BindingFlags.Static | BindingFlags.Instance; /// /// This is the "old", non-cache based FindMembers() function. We cannot use /// the cache here because there is no member name argument. /// public static MemberList FindMembers (Type t, MemberTypes mt, BindingFlags bf, MemberFilter filter, object criteria) { DeclSpace decl = (DeclSpace) builder_to_declspace [t]; // // `builder_to_declspace' contains all dynamic types. // if (decl != null) { MemberList list; Timer.StartTimer (TimerType.FindMembers); list = decl.FindMembers (mt, bf, filter, criteria); Timer.StopTimer (TimerType.FindMembers); return list; } // // We have to take care of arrays specially, because GetType on // a TypeBuilder array will return a Type, not a TypeBuilder, // and we can not call FindMembers on this type. // if (t.IsSubclassOf (TypeManager.array_type)) return new MemberList (TypeManager.array_type.FindMembers (mt, bf, filter, criteria)); if (t is GenericTypeParameterBuilder) { TypeParameter tparam = (TypeParameter) builder_to_type_param [t]; Timer.StartTimer (TimerType.FindMembers); MemberList list = tparam.FindMembers ( mt, bf | BindingFlags.DeclaredOnly, filter, criteria); Timer.StopTimer (TimerType.FindMembers); return list; } // // Since FindMembers will not lookup both static and instance // members, we emulate this behaviour here. // if ((bf & instance_and_static) == instance_and_static){ MemberInfo [] i_members = t.FindMembers ( mt, bf & ~BindingFlags.Static, filter, criteria); int i_len = i_members.Length; if (i_len == 1){ MemberInfo one = i_members [0]; // // If any of these are present, we are done! // if ((one is Type) || (one is EventInfo) || (one is FieldInfo)) return new MemberList (i_members); } MemberInfo [] s_members = t.FindMembers ( mt, bf & ~BindingFlags.Instance, filter, criteria); int s_len = s_members.Length; if (i_len > 0 || s_len > 0) return new MemberList (i_members, s_members); else { if (i_len > 0) return new MemberList (i_members); else return new MemberList (s_members); } } return new MemberList (t.FindMembers (mt, bf, filter, criteria)); } /// /// This method is only called from within MemberLookup. It tries to use the member /// cache if possible and falls back to the normal FindMembers if not. The `used_cache' /// flag tells the caller whether we used the cache or not. If we used the cache, then /// our return value will already contain all inherited members and the caller don't need /// to check base classes and interfaces anymore. /// private static MemberInfo [] MemberLookup_FindMembers (Type t, MemberTypes mt, BindingFlags bf, string name, out bool used_cache) { MemberCache cache; // // If this is a dynamic type, it's always in the `builder_to_declspace' hash table // and we can ask the DeclSpace for the MemberCache. // if (t is TypeBuilder) { DeclSpace decl = (DeclSpace) builder_to_declspace [t]; cache = decl.MemberCache; // // If this DeclSpace has a MemberCache, use it. // if (cache != null) { used_cache = true; return cache.FindMembers ( mt, bf, name, FilterWithClosure_delegate, null); } // If there is no MemberCache, we need to use the "normal" FindMembers. // Note, this is a VERY uncommon route! MemberList list; Timer.StartTimer (TimerType.FindMembers); list = decl.FindMembers (mt, bf | BindingFlags.DeclaredOnly, FilterWithClosure_delegate, name); Timer.StopTimer (TimerType.FindMembers); used_cache = false; return (MemberInfo []) list; } // // We have to take care of arrays specially, because GetType on // a TypeBuilder array will return a Type, not a TypeBuilder, // and we can not call FindMembers on this type. // if (t == TypeManager.array_type || t.IsSubclassOf (TypeManager.array_type)) { used_cache = true; return TypeHandle.ArrayType.MemberCache.FindMembers ( mt, bf, name, FilterWithClosure_delegate, null); } if (t is GenericTypeParameterBuilder) { TypeParameter tparam = (TypeParameter) builder_to_type_param [t]; MemberList list; Timer.StartTimer (TimerType.FindMembers); list = tparam.FindMembers (mt, bf | BindingFlags.DeclaredOnly, FilterWithClosure_delegate, name); Timer.StopTimer (TimerType.FindMembers); used_cache = false; return (MemberInfo []) list; } if (t.IsGenericType && (mt == MemberTypes.NestedType)) { // // This happens if we're resolving a class'es base class and interfaces // in TypeContainer.DefineType(). At this time, the types aren't // populated yet, so we can't use the cache. // MemberInfo[] info = t.FindMembers (mt, bf | BindingFlags.DeclaredOnly, FilterWithClosure_delegate, name); used_cache = false; return info; } // // This call will always succeed. There is exactly one TypeHandle instance per // type, TypeHandle.GetMemberCache() will, if necessary, create a new one, and return // the corresponding MemberCache. // cache = TypeHandle.GetMemberCache (t); used_cache = true; return cache.FindMembers (mt, bf, name, FilterWithClosure_delegate, null); } public static bool IsBuiltinType (Type t) { t = TypeToCoreType (t); if (t == object_type || t == string_type || t == int32_type || t == uint32_type || t == int64_type || t == uint64_type || t == float_type || t == double_type || t == char_type || t == short_type || t == decimal_type || t == bool_type || t == sbyte_type || t == byte_type || t == ushort_type || t == void_type) return true; else return false; } public static bool IsBuiltinType (TypeContainer tc) { return IsBuiltinType (tc.TypeBuilder); } // // This is like IsBuiltinType, but lacks decimal_type, we should also clean up // the pieces in the code where we use IsBuiltinType and special case decimal_type. // public static bool IsPrimitiveType (Type t) { return (t == int32_type || t == uint32_type || t == int64_type || t == uint64_type || t == float_type || t == double_type || t == char_type || t == short_type || t == bool_type || t == sbyte_type || t == byte_type || t == ushort_type); } public static bool IsDelegateType (Type t) { t = DropGenericTypeArguments (t); if (t.IsSubclassOf (TypeManager.delegate_type)) return true; else return false; } public static bool IsEnumType (Type t) { if (builder_to_declspace [t] is Enum) return true; return t.IsEnum; } public static bool IsBuiltinOrEnum (Type t) { if (IsBuiltinType (t)) return true; if (IsEnumType (t)) return true; return false; } public static bool IsNullType (Type t) { return t == null_type; } public static bool IsAttributeType (Type t) { return t == attribute_type && t.BaseType != null || IsSubclassOf (t, attribute_type); } static Stack unmanaged_enclosing_types = new Stack (4); // // Whether a type is unmanaged. This is used by the unsafe code (25.2) // public static bool IsUnmanagedType (Type t) { // Avoid infloops in the case of: unsafe struct Foo { Foo *x; } if (unmanaged_enclosing_types.Contains (t)) return true; // builtins that are not unmanaged types if (t == TypeManager.object_type || t == TypeManager.string_type) return false; if (IsBuiltinOrEnum (t)) return true; // Someone did the work of checking if the ElementType of t is unmanaged. Let's not repeat it. if (t.IsPointer) return true; // Arrays are disallowed, even if we mark them with [MarshalAs(UnmanagedType.ByValArray, ...)] if (t.IsArray) return false; if (!IsValueType (t)) return false; for (Type p = t.DeclaringType; p != null; p = p.DeclaringType) { if (p.IsGenericTypeDefinition) return false; } unmanaged_enclosing_types.Push (t); bool retval = true; if (t is TypeBuilder) { TypeContainer tc = LookupTypeContainer (t); if (tc.Fields != null){ foreach (FieldMember f in tc.Fields){ // Avoid using f.FieldBuilder: f.Define () may not yet have been invoked. if ((f.ModFlags & Modifiers.STATIC) != 0) continue; if (f.MemberType == null) continue; if (!IsUnmanagedType (f.MemberType)){ Report.SymbolRelatedToPreviousError (f.Location, CSharpName (t) + "." + f.Name); retval = false; } } } } else { FieldInfo [] fields = t.GetFields (BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance); foreach (FieldInfo f in fields){ if (!IsUnmanagedType (f.FieldType)){ Report.SymbolRelatedToPreviousError (f); retval = false; } } } unmanaged_enclosing_types.Pop (); return retval; } public static bool IsValueType (Type t) { return t.IsGenericParameter || t.IsValueType; } public static bool IsInterfaceType (Type t) { TypeContainer tc = (TypeContainer) builder_to_declspace [t]; if (tc == null) return false; return tc.Kind == Kind.Interface; } public static bool IsSubclassOf (Type type, Type base_type) { TypeParameter tparam = LookupTypeParameter (type); TypeParameter pparam = LookupTypeParameter (base_type); if ((tparam != null) && (pparam != null)) { if (tparam == pparam) return true; return tparam.IsSubclassOf (base_type); } do { if (IsEqual (type, base_type)) return true; type = type.BaseType; } while (type != null); return false; } public static bool IsPrivateAccessible (Type type, Type parent) { if (type.Equals (parent)) return true; return DropGenericTypeArguments (type) == DropGenericTypeArguments (parent); } public static bool IsFamilyAccessible (Type type, Type parent) { TypeParameter tparam = LookupTypeParameter (type); TypeParameter pparam = LookupTypeParameter (parent); if ((tparam != null) && (pparam != null)) { if (tparam == pparam) return true; return tparam.IsSubclassOf (parent); } do { if (IsInstantiationOfSameGenericType (type, parent)) return true; type = type.BaseType; } while (type != null); return false; } // // Checks whether `type' is a subclass or nested child of `base_type'. // public static bool IsNestedFamilyAccessible (Type type, Type base_type) { do { if (IsFamilyAccessible (type, base_type)) return true; // Handle nested types. type = type.DeclaringType; } while (type != null); return false; } // // Checks whether `type' is a nested child of `parent'. // public static bool IsNestedChildOf (Type type, Type parent) { if (IsEqual (type, parent)) return false; type = type.DeclaringType; while (type != null) { if (IsEqual (type, parent)) return true; type = type.DeclaringType; } return false; } // // Checks whether `extern_type' is friend of the output assembly // public static bool IsFriendAssembly (Assembly assembly) { if (assembly_internals_vis_attrs.Contains (assembly)) return (bool)(assembly_internals_vis_attrs [assembly]); object [] attrs = assembly.GetCustomAttributes (internals_visible_attr_type, false); if (attrs.Length == 0) { assembly_internals_vis_attrs.Add (assembly, false); return false; } AssemblyName this_name = CodeGen.Assembly.Name; byte [] this_token = this_name.GetPublicKeyToken (); bool is_friend = false; foreach (InternalsVisibleToAttribute attr in attrs) { if (attr.AssemblyName == null || attr.AssemblyName.Length == 0) continue; AssemblyName aname = null; try { aname = new AssemblyName (attr.AssemblyName); } catch (FileLoadException) { } catch (ArgumentException) { } if (aname == null || aname.Name != this_name.Name) continue; byte [] key_token = aname.GetPublicKeyToken (); if (key_token != null) { if (this_token == null) { // Same name, but key token is null Error_FriendAccessNameNotMatching (aname.FullName); break; } if (!CompareKeyTokens (this_token, key_token)) continue; } is_friend = true; break; } assembly_internals_vis_attrs.Add (assembly, is_friend); return is_friend; } static bool CompareKeyTokens (byte [] token1, byte [] token2) { for (int i = 0; i < token1.Length; i++) if (token1 [i] != token2 [i]) return false; return true; } static void Error_FriendAccessNameNotMatching (string other_name) { Report.Error (281, "Friend access was granted to `" + other_name + "', but the output assembly is named `" + CodeGen.Assembly.Name.FullName + "'. Try adding a reference to `" + other_name + "' or change the output assembly name to match it"); } // // Do the right thing when returning the element type of an // array type based on whether we are compiling corlib or not // public static Type GetElementType (Type t) { if (RootContext.StdLib) return t.GetElementType (); else return TypeToCoreType (t.GetElementType ()); } /// /// This method is not implemented by MS runtime for dynamic types /// public static bool HasElementType (Type t) { return t.IsArray || t.IsPointer || t.IsByRef; } /// /// Gigantic work around for missing features in System.Reflection.Emit follows. /// /// /// /// Since System.Reflection.Emit can not return MethodBase.GetParameters /// for anything which is dynamic, and we need this in a number of places, /// we register this information here, and use it afterwards. /// static public void RegisterMethod (MethodBase mb, Parameters ip) { method_params.Add (mb, ip); } static public ParameterData GetParameterData (MethodBase mb) { ParameterData pd = (ParameterData)method_params [mb]; if (pd == null) { if (mb is MethodBuilder || mb is ConstructorBuilder) throw new InternalErrorException ("Argument for Method not registered" + mb); pd = new ReflectionParameters (mb); method_params.Add (mb, pd); } return pd; } static public void RegisterOverride (MethodBase override_method, MethodBase base_method) { if (!method_overrides.Contains (override_method)) method_overrides [override_method] = base_method; if (method_overrides [override_method] != base_method) throw new InternalErrorException ("Override mismatch: " + override_method); } static public bool IsOverride (MethodBase m) { m = DropGenericMethodArguments (m); return m.IsVirtual && (m.Attributes & MethodAttributes.NewSlot) == 0 && (m is MethodBuilder || method_overrides.Contains (m)); } static public MethodBase TryGetBaseDefinition (MethodBase m) { return (MethodBase) method_overrides [m]; } /// /// Returns the argument types for an indexer based on its PropertyInfo /// /// For dynamic indexers, we use the compiler provided types, for /// indexers from existing assemblies we load them from GetParameters, /// and insert them into the cache /// static public Type [] GetArgumentTypes (PropertyInfo indexer) { if (indexer_arguments.Contains (indexer)) return (Type []) indexer_arguments [indexer]; else if (indexer is PropertyBuilder) // If we're a PropertyBuilder and not in the // `indexer_arguments' hash, then we're a property and // not an indexer. return Type.EmptyTypes; else { ParameterInfo [] pi = indexer.GetIndexParameters (); // Property, not an indexer. if (pi == null) return Type.EmptyTypes; int c = pi.Length; Type [] types = new Type [c]; for (int i = 0; i < c; i++) types [i] = pi [i].ParameterType; indexer_arguments.Add (indexer, types); return types; } } public static void RegisterConstant (FieldInfo fb, IConstant ic) { fields.Add (fb, ic); } public static IConstant GetConstant (FieldInfo fb) { if (fb == null) return null; return (IConstant)fields [fb]; } static public bool RegisterFieldBase (FieldBuilder fb, FieldBase f) { if (fieldbuilders_to_fields.Contains (fb)) return false; fieldbuilders_to_fields.Add (fb, f); return true; } // // The return value can be null; This will be the case for // auxiliary FieldBuilders created by the compiler that have no // real field being declared on the source code // static public FieldBase GetField (FieldInfo fb) { if (fb.DeclaringType.IsGenericType) fb = fb.Mono_GetGenericFieldDefinition (); return (FieldBase) fieldbuilders_to_fields [fb]; } static Hashtable events; static public void RegisterEvent (MyEventBuilder eb, MethodBase add, MethodBase remove) { if (events == null) events = new Hashtable (); if (!events.Contains (eb)) { events.Add (eb, new Pair (add, remove)); } } static public MethodInfo GetAddMethod (EventInfo ei) { if (ei is MyEventBuilder) { Pair pair = (Pair) events [ei]; return (MethodInfo) pair.First; } return ei.GetAddMethod (true); } static public MethodInfo GetRemoveMethod (EventInfo ei) { if (ei is MyEventBuilder) { Pair pair = (Pair) events [ei]; return (MethodInfo) pair.Second; } return ei.GetRemoveMethod (true); } static Hashtable priv_fields_events; static public bool RegisterPrivateFieldOfEvent (EventInfo einfo, FieldBuilder builder) { if (priv_fields_events == null) priv_fields_events = new Hashtable (); if (priv_fields_events.Contains (einfo)) return false; priv_fields_events.Add (einfo, builder); return true; } static public MemberInfo GetPrivateFieldOfEvent (EventInfo ei) { if (priv_fields_events == null) return null; else return (MemberInfo) priv_fields_events [ei]; } static public bool RegisterIndexer (PropertyBuilder pb, MethodBase get, MethodBase set, Type[] args) { indexer_arguments.Add (pb, args); return true; } public static bool CheckStructCycles (TypeContainer tc, Hashtable seen) { Hashtable hash = new Hashtable (); return CheckStructCycles (tc, seen, hash); } public static bool CheckStructCycles (TypeContainer tc, Hashtable seen, Hashtable hash) { if ((tc.Kind != Kind.Struct) || IsBuiltinType (tc)) return true; // // `seen' contains all types we've already visited. // if (seen.Contains (tc)) return true; seen.Add (tc, null); if (tc.Fields == null) return true; foreach (FieldMember field in tc.Fields) { if (field.FieldBuilder == null || field.FieldBuilder.IsStatic) continue; Type ftype = field.FieldBuilder.FieldType; TypeContainer ftc = LookupTypeContainer (ftype); if (ftc == null) continue; if (hash.Contains (ftc)) { Report.Error (523, tc.Location, "Struct member `{0}.{1}' of type `{2}' " + "causes a cycle in the struct layout", tc.Name, field.Name, ftc.Name); return false; } // // `hash' contains all types in the current path. // hash.Add (tc, null); bool ok = CheckStructCycles (ftc, seen, hash); hash.Remove (tc); if (!ok) return false; if (!seen.Contains (ftc)) seen.Add (ftc, null); } return true; } /// /// Given an array of interface types, expand and eliminate repeated ocurrences /// of an interface. /// /// /// /// This expands in context like: IA; IB : IA; IC : IA, IB; the interface "IC" to /// be IA, IB, IC. /// public static Type[] ExpandInterfaces (EmitContext ec, TypeExpr [] base_interfaces) { ArrayList new_ifaces = new ArrayList (); foreach (TypeExpr iface in base_interfaces){ TypeExpr texpr = iface.ResolveAsTypeTerminal (ec); if (texpr == null) return null; Type itype = texpr.ResolveType (ec); if (new_ifaces.Contains (itype)) continue; new_ifaces.Add (itype); Type [] implementing = GetInterfaces (itype); foreach (Type imp in implementing){ if (!new_ifaces.Contains (imp)) new_ifaces.Add (imp); } } Type [] ret = new Type [new_ifaces.Count]; new_ifaces.CopyTo (ret, 0); return ret; } public static Type[] ExpandInterfaces (Type [] base_interfaces) { ArrayList new_ifaces = new ArrayList (); foreach (Type itype in base_interfaces){ if (new_ifaces.Contains (itype)) continue; new_ifaces.Add (itype); Type [] implementing = GetInterfaces (itype); foreach (Type imp in implementing){ if (!new_ifaces.Contains (imp)) new_ifaces.Add (imp); } } Type [] ret = new Type [new_ifaces.Count]; new_ifaces.CopyTo (ret, 0); return ret; } static PtrHashtable iface_cache = new PtrHashtable (); /// /// This function returns the interfaces in the type `t'. Works with /// both types and TypeBuilders. /// public static Type [] GetInterfaces (Type t) { Type [] cached = iface_cache [t] as Type []; if (cached != null) return cached; // // The reason for catching the Array case is that Reflection.Emit // will not return a TypeBuilder for Array types of TypeBuilder types, // but will still throw an exception if we try to call GetInterfaces // on the type. // // Since the array interfaces are always constant, we return those for // the System.Array // if (t.IsArray) t = TypeManager.array_type; if ((t is TypeBuilder) || t.IsGenericType) { Type [] base_ifaces; if (t.BaseType == null) base_ifaces = Type.EmptyTypes; else base_ifaces = GetInterfaces (t.BaseType); Type[] type_ifaces; if (t.IsGenericType) type_ifaces = t.GetInterfaces (); else type_ifaces = (Type []) builder_to_ifaces [t]; if (type_ifaces == null) type_ifaces = Type.EmptyTypes; int base_count = base_ifaces.Length; Type [] result = new Type [base_count + type_ifaces.Length]; base_ifaces.CopyTo (result, 0); type_ifaces.CopyTo (result, base_count); iface_cache [t] = result; return result; } else if (t is GenericTypeParameterBuilder){ Type[] type_ifaces = (Type []) builder_to_ifaces [t]; if (type_ifaces == null) type_ifaces = Type.EmptyTypes; iface_cache [t] = type_ifaces; return type_ifaces; } else { Type[] ifaces = t.GetInterfaces (); iface_cache [t] = ifaces; return ifaces; } } // // gets the interfaces that are declared explicitly on t // public static Type [] GetExplicitInterfaces (TypeBuilder t) { return (Type []) builder_to_ifaces [t]; } /// /// The following is used to check if a given type implements an interface. /// The cache helps us reduce the expense of hitting Type.GetInterfaces everytime. /// public static bool ImplementsInterface (Type t, Type iface) { Type [] interfaces; // // FIXME OPTIMIZATION: // as soon as we hit a non-TypeBuiler in the interface // chain, we could return, as the `Type.GetInterfaces' // will return all the interfaces implement by the type // or its bases. // do { interfaces = GetInterfaces (t); if (interfaces != null){ foreach (Type i in interfaces){ if (i == iface) return true; } } t = t.BaseType; } while (t != null); return false; } static NumberFormatInfo nf_provider = CultureInfo.CurrentCulture.NumberFormat; // This is a custom version of Convert.ChangeType() which works // with the TypeBuilder defined types when compiling corlib. public static object ChangeType (object value, Type conversionType, out bool error) { IConvertible convert_value = value as IConvertible; if (convert_value == null){ error = true; return null; } // // We must use Type.Equals() here since `conversionType' is // the TypeBuilder created version of a system type and not // the system type itself. You cannot use Type.GetTypeCode() // on such a type - it'd always return TypeCode.Object. // error = false; try { if (conversionType.Equals (typeof (Boolean))) return (object)(convert_value.ToBoolean (nf_provider)); else if (conversionType.Equals (typeof (Byte))) return (object)(convert_value.ToByte (nf_provider)); else if (conversionType.Equals (typeof (Char))) return (object)(convert_value.ToChar (nf_provider)); else if (conversionType.Equals (typeof (DateTime))) return (object)(convert_value.ToDateTime (nf_provider)); else if (conversionType.Equals (TypeManager.decimal_type)) // typeof (Decimal))) return (object)(convert_value.ToDecimal (nf_provider)); else if (conversionType.Equals (typeof (Double))) return (object)(convert_value.ToDouble (nf_provider)); else if (conversionType.Equals (typeof (Int16))) return (object)(convert_value.ToInt16 (nf_provider)); else if (conversionType.Equals (typeof (Int32))) return (object)(convert_value.ToInt32 (nf_provider)); else if (conversionType.Equals (typeof (Int64))) return (object)(convert_value.ToInt64 (nf_provider)); else if (conversionType.Equals (typeof (SByte))) return (object)(convert_value.ToSByte (nf_provider)); else if (conversionType.Equals (typeof (Single))) return (object)(convert_value.ToSingle (nf_provider)); else if (conversionType.Equals (typeof (String))) return (object)(convert_value.ToString (nf_provider)); else if (conversionType.Equals (typeof (UInt16))) return (object)(convert_value.ToUInt16 (nf_provider)); else if (conversionType.Equals (typeof (UInt32))) return (object)(convert_value.ToUInt32 (nf_provider)); else if (conversionType.Equals (typeof (UInt64))) return (object)(convert_value.ToUInt64 (nf_provider)); else if (conversionType.Equals (typeof (Object))) return (object)(value); else error = true; } catch { error = true; } return null; } // // This is needed, because enumerations from assemblies // do not report their underlyingtype, but they report // themselves // public static Type EnumToUnderlying (Type t) { if (t == TypeManager.enum_type) return t; t = t.UnderlyingSystemType; if (!TypeManager.IsEnumType (t)) return t; if (t is TypeBuilder) { // slow path needed to compile corlib if (t == TypeManager.bool_type || t == TypeManager.byte_type || t == TypeManager.sbyte_type || t == TypeManager.char_type || t == TypeManager.short_type || t == TypeManager.ushort_type || t == TypeManager.int32_type || t == TypeManager.uint32_type || t == TypeManager.int64_type || t == TypeManager.uint64_type) return t; } TypeCode tc = Type.GetTypeCode (t); switch (tc){ case TypeCode.Boolean: return TypeManager.bool_type; case TypeCode.Byte: return TypeManager.byte_type; case TypeCode.SByte: return TypeManager.sbyte_type; case TypeCode.Char: return TypeManager.char_type; case TypeCode.Int16: return TypeManager.short_type; case TypeCode.UInt16: return TypeManager.ushort_type; case TypeCode.Int32: return TypeManager.int32_type; case TypeCode.UInt32: return TypeManager.uint32_type; case TypeCode.Int64: return TypeManager.int64_type; case TypeCode.UInt64: return TypeManager.uint64_type; } throw new Exception ("Unhandled typecode in enum " + tc + " from " + t.AssemblyQualifiedName); } // // When compiling corlib and called with one of the core types, return // the corresponding typebuilder for that type. // public static Type TypeToCoreType (Type t) { if (RootContext.StdLib || (t is TypeBuilder)) return t; TypeCode tc = Type.GetTypeCode (t); switch (tc){ case TypeCode.Boolean: return TypeManager.bool_type; case TypeCode.Byte: return TypeManager.byte_type; case TypeCode.SByte: return TypeManager.sbyte_type; case TypeCode.Char: return TypeManager.char_type; case TypeCode.Int16: return TypeManager.short_type; case TypeCode.UInt16: return TypeManager.ushort_type; case TypeCode.Int32: return TypeManager.int32_type; case TypeCode.UInt32: return TypeManager.uint32_type; case TypeCode.Int64: return TypeManager.int64_type; case TypeCode.UInt64: return TypeManager.uint64_type; case TypeCode.Single: return TypeManager.float_type; case TypeCode.Double: return TypeManager.double_type; case TypeCode.String: return TypeManager.string_type; case TypeCode.Decimal: return TypeManager.decimal_type; default: if (t == typeof (void)) return TypeManager.void_type; if (t == typeof (object)) return TypeManager.object_type; if (t == typeof (System.Type)) return TypeManager.type_type; if (t == typeof (System.IntPtr)) return TypeManager.intptr_type; return t; } } /// /// Utility function that can be used to probe whether a type /// is managed or not. /// public static bool VerifyUnManaged (Type t, Location loc) { if (IsUnmanagedType (t)) return true; Report.Error (208, loc, "Cannot take the address of, get the size of, or declare a pointer to a managed type `{0}'", CSharpName (t)); return false; } /// /// Returns the name of the indexer in a given type. /// /// /// The default is not always `Item'. The user can change this behaviour by /// using the IndexerNameAttribute in the container. /// /// For example, the String class indexer is named `Chars' not `Item' /// public static string IndexerPropertyName (Type t) { t = DropGenericTypeArguments (t); if (t is TypeBuilder) { TypeContainer tc = t.IsInterface ? LookupInterface (t) : LookupTypeContainer (t); return tc == null ? TypeContainer.DefaultIndexerName : tc.IndexerName; } System.Attribute attr = System.Attribute.GetCustomAttribute ( t, TypeManager.default_member_type); if (attr != null){ DefaultMemberAttribute dma = (DefaultMemberAttribute) attr; return dma.MemberName; } return TypeContainer.DefaultIndexerName; } static MethodInfo declare_local_method = null; public static LocalBuilder DeclareLocalPinned (ILGenerator ig, Type t) { if (declare_local_method == null){ declare_local_method = typeof (ILGenerator).GetMethod ( "DeclareLocal", BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic, null, new Type [] { typeof (Type), typeof (bool)}, null); if (declare_local_method == null){ Report.RuntimeMissingSupport (Location.Null, "pinned local variables"); return ig.DeclareLocal (t); } } return (LocalBuilder) declare_local_method.Invoke (ig, new object [] { t, true }); } // // Returns whether the array of memberinfos contains the given method // public static bool ArrayContainsMethod (MemberInfo [] array, MethodBase new_method) { Type [] new_args = TypeManager.GetParameterData (new_method).Types; foreach (MethodBase method in array) { if (method.Name != new_method.Name) continue; if (method is MethodInfo && new_method is MethodInfo) if (((MethodInfo) method).ReturnType != ((MethodInfo) new_method).ReturnType) continue; Type [] old_args = TypeManager.GetParameterData (method).Types; int old_count = old_args.Length; int i; if (new_args.Length != old_count) continue; for (i = 0; i < old_count; i++){ if (old_args [i] != new_args [i]) break; } if (i != old_count) continue; return true; } return false; } // // We copy methods from `new_members' into `target_list' if the signature // for the method from in the new list does not exist in the target_list // // The name is assumed to be the same. // public static ArrayList CopyNewMethods (ArrayList target_list, IList new_members) { if (target_list == null){ target_list = new ArrayList (); foreach (MemberInfo mi in new_members){ if (mi is MethodBase) target_list.Add (mi); } return target_list; } MemberInfo [] target_array = new MemberInfo [target_list.Count]; target_list.CopyTo (target_array, 0); foreach (MemberInfo mi in new_members){ MethodBase new_method = (MethodBase) mi; if (!ArrayContainsMethod (target_array, new_method)) target_list.Add (new_method); } return target_list; } // This method always return false for non-generic compiler, // while Type.IsGenericParameter is returned if it is supported. public static bool IsGenericParameter (Type type) { return type.IsGenericParameter; } public static int GenericParameterPosition (Type type) { return type.GenericParameterPosition; } #region MemberLookup implementation // // Whether we allow private members in the result (since FindMembers // uses NonPublic for both protected and private), we need to distinguish. // static internal bool FilterNone (MemberInfo m, object filter_criteria) { return true; } internal class Closure { internal bool private_ok; // Who is invoking us and which type is being queried currently. internal Type invocation_type; internal Type qualifier_type; // The assembly that defines the type is that is calling us internal Assembly invocation_assembly; internal IList almost_match; private bool CheckValidFamilyAccess (bool is_static, MemberInfo m) { if (invocation_type == null) return false; if (is_static && qualifier_type == null) // It resolved from a simple name, so it should be visible. return true; // A nested class has access to all the protected members visible to its parent. if (qualifier_type != null && TypeManager.IsNestedChildOf (invocation_type, qualifier_type)) return true; if (IsNestedFamilyAccessible (invocation_type, m.DeclaringType)) { // Although a derived class can access protected members of its base class // it cannot do so through an instance of the base class (CS1540). // => Ancestry should be: declaring_type ->* invocation_type ->* qualified_type if (is_static || qualifier_type == null || IsInstantiationOfSameGenericType (invocation_type, qualifier_type) || !IsFamilyAccessible (invocation_type, qualifier_type) || IsNestedChildOf (invocation_type, qualifier_type)) return true; } if (almost_match != null) almost_match.Add (m); return false; } // // This filter filters by name + whether it is ok to include private // members in the search // internal bool Filter (MemberInfo m, object filter_criteria) { // // Hack: we know that the filter criteria will always be in the // `closure' // fields. // if ((filter_criteria != null) && (m.Name != (string) filter_criteria)) return false; if (((qualifier_type == null) || (qualifier_type == invocation_type)) && (invocation_type != null) && IsPrivateAccessible (m.DeclaringType, invocation_type)) return true; // // Ugly: we need to find out the type of `m', and depending // on this, tell whether we accept or not // if (m is MethodBase){ MethodBase mb = (MethodBase) m; MethodAttributes ma = mb.Attributes & MethodAttributes.MemberAccessMask; if (ma == MethodAttributes.Public) return true; if (ma == MethodAttributes.Private) return private_ok || IsPrivateAccessible (invocation_type, m.DeclaringType) || IsNestedChildOf (invocation_type, m.DeclaringType); if (invocation_assembly == mb.DeclaringType.Assembly || TypeManager.IsFriendAssembly (mb.DeclaringType.Assembly)) { if (ma == MethodAttributes.Assembly || ma == MethodAttributes.FamORAssem) return true; } else { if (ma == MethodAttributes.Assembly || ma == MethodAttributes.FamANDAssem) return false; } // Family, FamORAssem or FamANDAssem return CheckValidFamilyAccess (mb.IsStatic, m); } if (m is FieldInfo){ FieldInfo fi = (FieldInfo) m; FieldAttributes fa = fi.Attributes & FieldAttributes.FieldAccessMask; if (fa == FieldAttributes.Public) return true; if (fa == FieldAttributes.Private) return private_ok || IsPrivateAccessible (invocation_type, m.DeclaringType) || IsNestedChildOf (invocation_type, m.DeclaringType); if (invocation_assembly == fi.DeclaringType.Assembly || TypeManager.IsFriendAssembly (fi.DeclaringType.Assembly)) { if (fa == FieldAttributes.Assembly || fa == FieldAttributes.FamORAssem) return true; } else { if (fa == FieldAttributes.Assembly || fa == FieldAttributes.FamANDAssem) return false; } // Family, FamORAssem or FamANDAssem return CheckValidFamilyAccess (fi.IsStatic, m); } // // EventInfos and PropertyInfos, return true because they lack // permission information, so we need to check later on the methods. // return true; } } static Closure closure = new Closure (); static MemberFilter FilterWithClosure_delegate = new MemberFilter (closure.Filter); // // Looks up a member called `name' in the `queried_type'. This lookup // is done by code that is contained in the definition for `invocation_type' // through a qualifier of type `qualifier_type' (or null if there is no qualifier). // // `invocation_type' is used to check whether we're allowed to access the requested // member wrt its protection level. // // When called from MemberAccess, `qualifier_type' is the type which is used to access // the requested member (`class B { A a = new A (); a.foo = 5; }'; here invocation_type // is B and qualifier_type is A). This is used to do the CS1540 check. // // When resolving a SimpleName, `qualifier_type' is null. // // The `qualifier_type' is used for the CS1540 check; it's normally either null or // the same than `queried_type' - except when we're being called from BaseAccess; // in this case, `invocation_type' is the current type and `queried_type' the base // type, so this'd normally trigger a CS1540. // // The binding flags are `bf' and the kind of members being looked up are `mt' // // The return value always includes private members which code in `invocation_type' // is allowed to access (using the specified `qualifier_type' if given); only use // BindingFlags.NonPublic to bypass the permission check. // // The 'almost_match' argument is used for reporting error CS1540. // // Returns an array of a single element for everything but Methods/Constructors // that might return multiple matches. // public static MemberInfo [] MemberLookup (Type invocation_type, Type qualifier_type, Type queried_type, MemberTypes mt, BindingFlags original_bf, string name, IList almost_match) { Timer.StartTimer (TimerType.MemberLookup); MemberInfo[] retval = RealMemberLookup (invocation_type, qualifier_type, queried_type, mt, original_bf, name, almost_match); Timer.StopTimer (TimerType.MemberLookup); return retval; } static MemberInfo [] RealMemberLookup (Type invocation_type, Type qualifier_type, Type queried_type, MemberTypes mt, BindingFlags original_bf, string name, IList almost_match) { BindingFlags bf = original_bf; ArrayList method_list = null; Type current_type = queried_type; bool searching = (original_bf & BindingFlags.DeclaredOnly) == 0; bool skip_iface_check = true, used_cache = false; bool always_ok_flag = invocation_type != null && IsNestedChildOf (invocation_type, queried_type); closure.invocation_type = invocation_type; closure.invocation_assembly = invocation_type != null ? invocation_type.Assembly : null; closure.qualifier_type = qualifier_type; closure.almost_match = almost_match; // This is from the first time we find a method // in most cases, we do not actually find a method in the base class // so we can just ignore it, and save the arraylist allocation MemberInfo [] first_members_list = null; bool use_first_members_list = false; do { MemberInfo [] list; // // `NonPublic' is lame, because it includes both protected and // private methods, so we need to control this behavior by // explicitly tracking if a private method is ok or not. // // The possible cases are: // public, private and protected (internal does not come into the // equation) // if ((invocation_type != null) && ((invocation_type == current_type) || IsNestedChildOf (invocation_type, current_type)) || always_ok_flag) bf = original_bf | BindingFlags.NonPublic; else bf = original_bf; closure.private_ok = (original_bf & BindingFlags.NonPublic) != 0; Timer.StopTimer (TimerType.MemberLookup); list = MemberLookup_FindMembers ( current_type, mt, bf, name, out used_cache); Timer.StartTimer (TimerType.MemberLookup); // // When queried for an interface type, the cache will automatically check all // inherited members, so we don't need to do this here. However, this only // works if we already used the cache in the first iteration of this loop. // // If we used the cache in any further iteration, we can still terminate the // loop since the cache always looks in all base classes. // if (used_cache) searching = false; else skip_iface_check = false; if (current_type == TypeManager.object_type) searching = false; else { current_type = current_type.BaseType; // // This happens with interfaces, they have a null // basetype. Look members up in the Object class. // if (current_type == null) { current_type = TypeManager.object_type; searching = true; } } if (list.Length == 0) continue; // // Events and types are returned by both `static' and `instance' // searches, which means that our above FindMembers will // return two copies of the same. // if (list.Length == 1 && !(list [0] is MethodBase)){ return list; } // // Multiple properties: we query those just to find out the indexer // name // if (list [0] is PropertyInfo) return list; // // We found an event: the cache lookup returns both the event and // its private field. // if (list [0] is EventInfo) { if ((list.Length == 2) && (list [1] is FieldInfo)) return new MemberInfo [] { list [0] }; // Oooops return null; } // // We found methods, turn the search into "method scan" // mode. // if (first_members_list != null) { if (use_first_members_list) { method_list = CopyNewMethods (method_list, first_members_list); use_first_members_list = false; } method_list = CopyNewMethods (method_list, list); } else { first_members_list = list; use_first_members_list = true; mt &= (MemberTypes.Method | MemberTypes.Constructor); } } while (searching); if (use_first_members_list) { foreach (MemberInfo mi in first_members_list) { if (! (mi is MethodBase)) { method_list = CopyNewMethods (method_list, first_members_list); return (MemberInfo []) method_list.ToArray (typeof (MemberInfo)); } } return (MemberInfo []) first_members_list; } if (method_list != null && method_list.Count > 0) { return (MemberInfo []) method_list.ToArray (typeof (MemberInfo)); } // // This happens if we already used the cache in the first iteration, in this case // the cache already looked in all interfaces. // if (skip_iface_check) return null; // // Interfaces do not list members they inherit, so we have to // scan those. // if (!queried_type.IsInterface) return null; if (queried_type.IsArray) queried_type = TypeManager.array_type; Type [] ifaces = GetInterfaces (queried_type); if (ifaces == null) return null; foreach (Type itype in ifaces){ MemberInfo [] x; x = MemberLookup (null, null, itype, mt, bf, name, null); if (x != null) return x; } return null; } // Tests whether external method is really special public static bool IsSpecialMethod (MethodBase mb) { string name = mb.Name; if (name.StartsWith ("get_") || name.StartsWith ("set_")) return mb.DeclaringType.GetProperty (name.Substring (4)) != null; if (name.StartsWith ("add_")) return mb.DeclaringType.GetEvent (name.Substring (4)) != null; if (name.StartsWith ("remove_")) return mb.DeclaringType.GetEvent (name.Substring (7)) != null; if (name.StartsWith ("op_")){ foreach (string oname in Unary.oper_names) { if (oname == name) return true; } foreach (string oname in Binary.oper_names) { if (oname == name) return true; } } return false; } #endregion } /// /// There is exactly one instance of this class per type. /// public sealed class TypeHandle : IMemberContainer { public readonly IMemberContainer BaseType; readonly int id = ++next_id; static int next_id = 0; static TypeHandle () { Reset (); } /// /// Lookup a TypeHandle instance for the given type. If the type doesn't have /// a TypeHandle yet, a new instance of it is created. This static method /// ensures that we'll only have one TypeHandle instance per type. /// private static TypeHandle GetTypeHandle (Type t) { TypeHandle handle = (TypeHandle) type_hash [t]; if (handle != null) return handle; handle = new TypeHandle (t); type_hash.Add (t, handle); return handle; } public static MemberCache GetMemberCache (Type t) { return GetTypeHandle (t).MemberCache; } public static void CleanUp () { type_hash = null; } public static void Reset () { type_hash = new PtrHashtable (); } /// /// Returns the TypeHandle for TypeManager.object_type. /// public static IMemberContainer ObjectType { get { if (object_type != null) return object_type; object_type = GetTypeHandle (TypeManager.object_type); return object_type; } } /// /// Returns the TypeHandle for TypeManager.array_type. /// public static IMemberContainer ArrayType { get { if (array_type != null) return array_type; array_type = GetTypeHandle (TypeManager.array_type); return array_type; } } private static PtrHashtable type_hash; private static TypeHandle object_type = null; private static TypeHandle array_type = null; private Type type; private string full_name; private bool is_interface; private MemberCache member_cache; private MemberCache base_cache; private TypeHandle (Type type) { this.type = type; full_name = type.FullName != null ? type.FullName : type.Name; if (type.BaseType != null) { base_cache = TypeManager.LookupMemberCache (type.BaseType); BaseType = base_cache.Container; } else if (type.IsInterface) base_cache = TypeManager.LookupBaseInterfacesCache (type); this.is_interface = type.IsInterface || type.IsGenericParameter; this.member_cache = new MemberCache (this); } // IMemberContainer methods public string Name { get { return full_name; } } public Type Type { get { return type; } } public MemberCache BaseCache { get { return base_cache; } } public bool IsInterface { get { return is_interface; } } public MemberList GetMembers (MemberTypes mt, BindingFlags bf) { MemberInfo [] members; if (type is GenericTypeParameterBuilder) return MemberList.Empty; if (mt == MemberTypes.Event) members = type.GetEvents (bf | BindingFlags.DeclaredOnly); else members = type.FindMembers (mt, bf | BindingFlags.DeclaredOnly, null, null); Array.Reverse (members); return new MemberList (members); } // IMemberFinder methods public MemberList FindMembers (MemberTypes mt, BindingFlags bf, string name, MemberFilter filter, object criteria) { return new MemberList (member_cache.FindMembers (mt, bf, name, filter, criteria)); } public MemberCache MemberCache { get { return member_cache; } } public override string ToString () { if (BaseType != null) return "TypeHandle (" + id + "," + Name + " : " + BaseType + ")"; else return "TypeHandle (" + id + "," + Name + ")"; } } }