// // ecore.cs: Core of the Expression representation for the intermediate tree. // // Author: // Miguel de Icaza (miguel@ximian.com) // // (C) 2001, 2002, 2003 Ximian, Inc. // // namespace Mono.CSharp { using System; using System.Collections; using System.Diagnostics; using System.Reflection; using System.Reflection.Emit; using System.Text; /// /// The ExprClass class contains the is used to pass the /// classification of an expression (value, variable, namespace, /// type, method group, property access, event access, indexer access, /// nothing). /// public enum ExprClass : byte { Invalid, Value, Variable, Namespace, Type, MethodGroup, PropertyAccess, EventAccess, IndexerAccess, Nothing, } /// /// This is used to tell Resolve in which types of expressions we're /// interested. /// [Flags] public enum ResolveFlags { // Returns Value, Variable, PropertyAccess, EventAccess or IndexerAccess. VariableOrValue = 1, // Returns a type expression. Type = 2, // Returns a method group. MethodGroup = 4, // Allows SimpleNames to be returned. // This is used by MemberAccess to construct long names that can not be // partially resolved (namespace-qualified names for example). SimpleName = 8, // Mask of all the expression class flags. MaskExprClass = 15, // Disable control flow analysis while resolving the expression. // This is used when resolving the instance expression of a field expression. DisableFlowAnalysis = 16, // Set if this is resolving the first part of a MemberAccess. Intermediate = 32 } // // This is just as a hint to AddressOf of what will be done with the // address. [Flags] public enum AddressOp { Store = 1, Load = 2, LoadStore = 3 }; /// /// This interface is implemented by variables /// public interface IMemoryLocation { /// /// The AddressOf method should generate code that loads /// the address of the object and leaves it on the stack. /// /// The `mode' argument is used to notify the expression /// of whether this will be used to read from the address or /// write to the address. /// /// This is just a hint that can be used to provide good error /// reporting, and should have no other side effects. /// void AddressOf (EmitContext ec, AddressOp mode); } /// /// We are either a namespace or a type. /// If we're a type, `IsType' is true and we may use `Type' to get /// a TypeExpr representing that type. /// public interface IAlias { bool IsType { get; } string Name { get; } TypeExpr Type { get; } } /// /// This interface is implemented by variables /// public interface IVariable { VariableInfo VariableInfo { get; } bool VerifyFixed (bool is_expression); } /// /// This interface denotes an expression which evaluates to a member /// of a struct or a class. /// public interface IMemberExpr { /// /// The name of this member. /// string Name { get; } /// /// Whether this is an instance member. /// bool IsInstance { get; } /// /// Whether this is a static member. /// bool IsStatic { get; } /// /// The type which declares this member. /// Type DeclaringType { get; } /// /// The instance expression associated with this member, if it's a /// non-static member. /// Expression InstanceExpression { get; set; } } /// /// Base class for expressions /// public abstract class Expression { public ExprClass eclass; protected Type type; protected Location loc; public Type Type { get { return type; } set { type = value; } } public Location Location { get { return loc; } } /// /// Utility wrapper routine for Error, just to beautify the code /// public void Error (int error, string s) { if (!Location.IsNull (loc)) Report.Error (error, loc, s); else Report.Error (error, s); } /// /// Utility wrapper routine for Warning, just to beautify the code /// public void Warning (int code, string format, params object[] args) { Report.Warning (code, loc, format, args); } /// /// Tests presence of ObsoleteAttribute and report proper error /// protected void CheckObsoleteAttribute (Type type) { ObsoleteAttribute obsolete_attr = AttributeTester.GetObsoleteAttribute (type); if (obsolete_attr == null) return; AttributeTester.Report_ObsoleteMessage (obsolete_attr, type.FullName, loc); } /// /// Performs semantic analysis on the Expression /// /// /// /// The Resolve method is invoked to perform the semantic analysis /// on the node. /// /// The return value is an expression (it can be the /// same expression in some cases) or a new /// expression that better represents this node. /// /// For example, optimizations of Unary (LiteralInt) /// would return a new LiteralInt with a negated /// value. /// /// If there is an error during semantic analysis, /// then an error should be reported (using Report) /// and a null value should be returned. /// /// There are two side effects expected from calling /// Resolve(): the the field variable "eclass" should /// be set to any value of the enumeration /// `ExprClass' and the type variable should be set /// to a valid type (this is the type of the /// expression). /// public abstract Expression DoResolve (EmitContext ec); public virtual Expression DoResolveLValue (EmitContext ec, Expression right_side) { return DoResolve (ec); } // // This is used if the expression should be resolved as a type. // the default implementation fails. Use this method in // those participants in the SimpleName chain system. // public virtual Expression ResolveAsTypeStep (EmitContext ec) { return null; } // // This is used to resolve the expression as a type, a null // value will be returned if the expression is not a type // reference // public TypeExpr ResolveAsTypeTerminal (EmitContext ec, bool silent) { int errors = Report.Errors; TypeExpr te = ResolveAsTypeStep (ec) as TypeExpr; if (te == null || te.eclass != ExprClass.Type) { if (!silent && errors == Report.Errors) Report.Error (246, Location, "Cannot find type '{0}'", ToString ()); return null; } if (!te.CheckAccessLevel (ec.DeclSpace)) { Report.Error (122, Location, "'{0}' is inaccessible due to its protection level", te.Name); return null; } return te; } /// /// Resolves an expression and performs semantic analysis on it. /// /// /// /// Currently Resolve wraps DoResolve to perform sanity /// checking and assertion checking on what we expect from Resolve. /// public Expression Resolve (EmitContext ec, ResolveFlags flags) { if ((flags & ResolveFlags.MaskExprClass) == ResolveFlags.Type) return ResolveAsTypeStep (ec); bool old_do_flow_analysis = ec.DoFlowAnalysis; if ((flags & ResolveFlags.DisableFlowAnalysis) != 0) ec.DoFlowAnalysis = false; Expression e; bool intermediate = (flags & ResolveFlags.Intermediate) == ResolveFlags.Intermediate; if (this is SimpleName) e = ((SimpleName) this).DoResolveAllowStatic (ec, intermediate); else e = DoResolve (ec); ec.DoFlowAnalysis = old_do_flow_analysis; if (e == null) return null; if (e is SimpleName){ SimpleName s = (SimpleName) e; if ((flags & ResolveFlags.SimpleName) == 0) { MemberLookupFailed (ec, null, ec.ContainerType, s.Name, ec.DeclSpace.Name, loc); return null; } return s; } if ((e is TypeExpr) || (e is ComposedCast)) { if ((flags & ResolveFlags.Type) == 0) { e.Error_UnexpectedKind (flags, loc); return null; } return e; } switch (e.eclass) { case ExprClass.Type: if ((flags & ResolveFlags.VariableOrValue) == 0) { e.Error_UnexpectedKind (flags, loc); return null; } break; case ExprClass.MethodGroup: if (RootContext.Version == LanguageVersion.ISO_1){ if ((flags & ResolveFlags.MethodGroup) == 0) { ((MethodGroupExpr) e).ReportUsageError (); return null; } } break; case ExprClass.Value: case ExprClass.Variable: case ExprClass.PropertyAccess: case ExprClass.EventAccess: case ExprClass.IndexerAccess: if ((flags & ResolveFlags.VariableOrValue) == 0) { Console.WriteLine ("I got: {0} and {1}", e.GetType (), e); Console.WriteLine ("I am {0} and {1}", this.GetType (), this); FieldInfo fi = ((FieldExpr) e).FieldInfo; Console.WriteLine ("{0} and {1}", fi.DeclaringType, fi.Name); e.Error_UnexpectedKind (flags, loc); return null; } break; default: throw new Exception ("Expression " + e.GetType () + " ExprClass is Invalid after resolve"); } if (e.type == null) throw new Exception ( "Expression " + e.GetType () + " did not set its type after Resolve\n" + "called from: " + this.GetType ()); return e; } /// /// Resolves an expression and performs semantic analysis on it. /// public Expression Resolve (EmitContext ec) { return Resolve (ec, ResolveFlags.VariableOrValue); } /// /// Resolves an expression for LValue assignment /// /// /// /// Currently ResolveLValue wraps DoResolveLValue to perform sanity /// checking and assertion checking on what we expect from Resolve /// public Expression ResolveLValue (EmitContext ec, Expression right_side) { Expression e = DoResolveLValue (ec, right_side); if (e != null){ if (e is SimpleName){ SimpleName s = (SimpleName) e; MemberLookupFailed (ec, null, ec.ContainerType, s.Name, ec.DeclSpace.Name, loc); return null; } if (e.eclass == ExprClass.Invalid) throw new Exception ("Expression " + e + " ExprClass is Invalid after resolve"); if (e.eclass == ExprClass.MethodGroup) { ((MethodGroupExpr) e).ReportUsageError (); return null; } if ((e.type == null) && !(e is ConstructedType)) throw new Exception ("Expression " + e + " did not set its type after Resolve"); } return e; } /// /// Emits the code for the expression /// /// /// /// The Emit method is invoked to generate the code /// for the expression. /// public abstract void Emit (EmitContext ec); public virtual void EmitBranchable (EmitContext ec, Label target, bool onTrue) { Emit (ec); ec.ig.Emit (onTrue ? OpCodes.Brtrue : OpCodes.Brfalse, target); } /// /// Protected constructor. Only derivate types should /// be able to be created /// protected Expression () { eclass = ExprClass.Invalid; type = null; } /// /// Returns a literalized version of a literal FieldInfo /// /// /// /// The possible return values are: /// IntConstant, UIntConstant /// LongLiteral, ULongConstant /// FloatConstant, DoubleConstant /// StringConstant /// /// The value returned is already resolved. /// public static Constant Constantify (object v, Type t) { if (t == TypeManager.int32_type) return new IntConstant ((int) v); else if (t == TypeManager.uint32_type) return new UIntConstant ((uint) v); else if (t == TypeManager.int64_type) return new LongConstant ((long) v); else if (t == TypeManager.uint64_type) return new ULongConstant ((ulong) v); else if (t == TypeManager.float_type) return new FloatConstant ((float) v); else if (t == TypeManager.double_type) return new DoubleConstant ((double) v); else if (t == TypeManager.string_type) return new StringConstant ((string) v); else if (t == TypeManager.short_type) return new ShortConstant ((short)v); else if (t == TypeManager.ushort_type) return new UShortConstant ((ushort)v); else if (t == TypeManager.sbyte_type) return new SByteConstant (((sbyte)v)); else if (t == TypeManager.byte_type) return new ByteConstant ((byte)v); else if (t == TypeManager.char_type) return new CharConstant ((char)v); else if (t == TypeManager.bool_type) return new BoolConstant ((bool) v); else if (TypeManager.IsEnumType (t)){ Type real_type = TypeManager.TypeToCoreType (v.GetType ()); if (real_type == t) real_type = System.Enum.GetUnderlyingType (real_type); Constant e = Constantify (v, real_type); return new EnumConstant (e, t); } else if (v == null && !TypeManager.IsValueType (t)) return NullLiteral.Null; else throw new Exception ("Unknown type for constant (" + t + "), details: " + v); } /// /// Returns a fully formed expression after a MemberLookup /// public static Expression ExprClassFromMemberInfo (EmitContext ec, MemberInfo mi, Location loc) { if (mi is EventInfo) return new EventExpr ((EventInfo) mi, loc); else if (mi is FieldInfo) return new FieldExpr ((FieldInfo) mi, loc); else if (mi is PropertyInfo) return new PropertyExpr (ec, (PropertyInfo) mi, loc); else if (mi is Type){ return new TypeExpression ((System.Type) mi, loc); } return null; } private static ArrayList almostMatchedMembers = new ArrayList (4); // // FIXME: Probably implement a cache for (t,name,current_access_set)? // // This code could use some optimizations, but we need to do some // measurements. For example, we could use a delegate to `flag' when // something can not any longer be a method-group (because it is something // else). // // Return values: // If the return value is an Array, then it is an array of // MethodBases // // If the return value is an MemberInfo, it is anything, but a Method // // null on error. // // FIXME: When calling MemberLookup inside an `Invocation', we should pass // the arguments here and have MemberLookup return only the methods that // match the argument count/type, unlike we are doing now (we delay this // decision). // // This is so we can catch correctly attempts to invoke instance methods // from a static body (scan for error 120 in ResolveSimpleName). // // // FIXME: Potential optimization, have a static ArrayList // public static Expression MemberLookup (EmitContext ec, Type queried_type, string name, MemberTypes mt, BindingFlags bf, Location loc) { return MemberLookup (ec, ec.ContainerType, null, queried_type, name, mt, bf, loc); } // // Lookup type `queried_type' for code in class `container_type' with a qualifier of // `qualifier_type' or null to lookup members in the current class. // public static Expression MemberLookup (EmitContext ec, Type container_type, Type qualifier_type, Type queried_type, string name, MemberTypes mt, BindingFlags bf, Location loc) { almostMatchedMembers.Clear (); MemberInfo [] mi = TypeManager.MemberLookup ( container_type, qualifier_type,queried_type, mt, bf, name, almostMatchedMembers); if (mi == null) return null; int count = mi.Length; if (mi [0] is MethodBase) return new MethodGroupExpr (mi, loc); if (count > 1) return null; return ExprClassFromMemberInfo (ec, mi [0], loc); } public const MemberTypes AllMemberTypes = MemberTypes.Constructor | MemberTypes.Event | MemberTypes.Field | MemberTypes.Method | MemberTypes.NestedType | MemberTypes.Property; public const BindingFlags AllBindingFlags = BindingFlags.Public | BindingFlags.Static | BindingFlags.Instance; public static Expression MemberLookup (EmitContext ec, Type queried_type, string name, Location loc) { return MemberLookup (ec, ec.ContainerType, null, queried_type, name, AllMemberTypes, AllBindingFlags, loc); } public static Expression MemberLookup (EmitContext ec, Type qualifier_type, Type queried_type, string name, Location loc) { return MemberLookup (ec, ec.ContainerType, qualifier_type, queried_type, name, AllMemberTypes, AllBindingFlags, loc); } public static Expression MethodLookup (EmitContext ec, Type queried_type, string name, Location loc) { return MemberLookup (ec, ec.ContainerType, null, queried_type, name, MemberTypes.Method, AllBindingFlags, loc); } /// /// This is a wrapper for MemberLookup that is not used to "probe", but /// to find a final definition. If the final definition is not found, we /// look for private members and display a useful debugging message if we /// find it. /// public static Expression MemberLookupFinal (EmitContext ec, Type qualifier_type, Type queried_type, string name, Location loc) { return MemberLookupFinal (ec, qualifier_type, queried_type, name, AllMemberTypes, AllBindingFlags, loc); } public static Expression MemberLookupFinal (EmitContext ec, Type qualifier_type, Type queried_type, string name, MemberTypes mt, BindingFlags bf, Location loc) { Expression e; int errors = Report.Errors; e = MemberLookup (ec, ec.ContainerType, qualifier_type, queried_type, name, mt, bf, loc); if (e == null && errors == Report.Errors) // No errors were reported by MemberLookup, but there was an error. MemberLookupFailed (ec, qualifier_type, queried_type, name, null, loc); return e; } public static void MemberLookupFailed (EmitContext ec, Type qualifier_type, Type queried_type, string name, string class_name, Location loc) { if (almostMatchedMembers.Count != 0) { if (qualifier_type == null) { foreach (MemberInfo m in almostMatchedMembers) Report.Error (38, loc, "Cannot access non-static member `{0}' via nested type `{1}'", TypeManager.GetFullNameSignature (m), TypeManager.CSharpName (ec.ContainerType)); return; } if (qualifier_type != ec.ContainerType) { // Although a derived class can access protected members of // its base class it cannot do so through an instance of the // base class (CS1540). If the qualifier_type is a parent of the // ec.ContainerType and the lookup succeeds with the latter one, // then we are in this situation. foreach (MemberInfo m in almostMatchedMembers) Report.Error (1540, loc, "Cannot access protected member `{0}' via a qualifier of type `{1}';" + " the qualifier must be of type `{2}' (or derived from it)", TypeManager.GetFullNameSignature (m), TypeManager.CSharpName (qualifier_type), TypeManager.CSharpName (ec.ContainerType)); return; } almostMatchedMembers.Clear (); } MemberInfo[] mi = TypeManager.MemberLookup (queried_type, null, queried_type, AllMemberTypes, AllBindingFlags | BindingFlags.NonPublic, name, null); if (mi == null) { if (class_name != null) Report.Error (103, loc, "The name `" + name + "' could not be " + "found in `" + class_name + "'"); else Report.Error ( 117, loc, "`" + queried_type + "' does not contain a " + "definition for `" + name + "'"); return; } if (TypeManager.MemberLookup (queried_type, null, queried_type, AllMemberTypes, AllBindingFlags | BindingFlags.NonPublic, name, null) == null) { if ((mi.Length == 1) && (mi [0] is Type)) { Type t = (Type) mi [0]; Report.Error (305, loc, "Using the generic type `{0}' " + "requires {1} type arguments", TypeManager.GetFullName (t), TypeManager.GetNumberOfTypeArguments (t)); return; } } if (qualifier_type != null) Report.Error (122, loc, "'{0}' is inaccessible due to its protection level", TypeManager.CSharpName (qualifier_type) + "." + name); else if (name == ".ctor") { Report.Error (143, loc, String.Format ("The type {0} has no constructors defined", TypeManager.CSharpName (queried_type))); } else { Report.Error (122, loc, "'{0}' is inaccessible due to its protection level", name); } } static public MemberInfo GetFieldFromEvent (EventExpr event_expr) { EventInfo ei = event_expr.EventInfo; return TypeManager.GetPrivateFieldOfEvent (ei); } /// /// Returns an expression that can be used to invoke operator true /// on the expression if it exists. /// static public StaticCallExpr GetOperatorTrue (EmitContext ec, Expression e, Location loc) { return GetOperatorTrueOrFalse (ec, e, true, loc); } /// /// Returns an expression that can be used to invoke operator false /// on the expression if it exists. /// static public StaticCallExpr GetOperatorFalse (EmitContext ec, Expression e, Location loc) { return GetOperatorTrueOrFalse (ec, e, false, loc); } static StaticCallExpr GetOperatorTrueOrFalse (EmitContext ec, Expression e, bool is_true, Location loc) { MethodBase method; Expression operator_group; operator_group = MethodLookup (ec, e.Type, is_true ? "op_True" : "op_False", loc); if (operator_group == null) return null; ArrayList arguments = new ArrayList (); arguments.Add (new Argument (e, Argument.AType.Expression)); method = Invocation.OverloadResolve ( ec, (MethodGroupExpr) operator_group, arguments, false, loc); if (method == null) return null; return new StaticCallExpr ((MethodInfo) method, arguments, loc); } /// /// Resolves the expression `e' into a boolean expression: either through /// an implicit conversion, or through an `operator true' invocation /// public static Expression ResolveBoolean (EmitContext ec, Expression e, Location loc) { e = e.Resolve (ec); if (e == null) return null; Expression converted = e; if (e.Type != TypeManager.bool_type) converted = Convert.ImplicitConversion (ec, e, TypeManager.bool_type, new Location (-1)); // // If no implicit conversion to bool exists, try using `operator true' // if (converted == null){ Expression operator_true = Expression.GetOperatorTrue (ec, e, loc); if (operator_true == null){ Report.Error ( 31, loc, "Can not convert the expression to a boolean"); return null; } e = operator_true; } else e = converted; return e; } static string ExprClassName (ExprClass c) { switch (c){ case ExprClass.Invalid: return "Invalid"; case ExprClass.Value: return "value"; case ExprClass.Variable: return "variable"; case ExprClass.Namespace: return "namespace"; case ExprClass.Type: return "type"; case ExprClass.MethodGroup: return "method group"; case ExprClass.PropertyAccess: return "property access"; case ExprClass.EventAccess: return "event access"; case ExprClass.IndexerAccess: return "indexer access"; case ExprClass.Nothing: return "null"; } throw new Exception ("Should not happen"); } /// /// Reports that we were expecting `expr' to be of class `expected' /// public void Error_UnexpectedKind (string expected, Location loc) { string kind = "Unknown"; kind = ExprClassName (eclass); Report.Error (118, loc, "Expression denotes a `" + kind + "' where a `" + expected + "' was expected"); } public void Error_UnexpectedKind (ResolveFlags flags, Location loc) { ArrayList valid = new ArrayList (10); if ((flags & ResolveFlags.VariableOrValue) != 0) { valid.Add ("variable"); valid.Add ("value"); } if ((flags & ResolveFlags.Type) != 0) valid.Add ("type"); if ((flags & ResolveFlags.MethodGroup) != 0) valid.Add ("method group"); if ((flags & ResolveFlags.SimpleName) != 0) valid.Add ("simple name"); if (valid.Count == 0) valid.Add ("unknown"); StringBuilder sb = new StringBuilder (); for (int i = 0; i < valid.Count; i++) { if (i > 0) sb.Append (", "); else if (i == valid.Count) sb.Append (" or "); sb.Append (valid [i]); } string kind = ExprClassName (eclass); Error (119, "Expression denotes a `" + kind + "' where " + "a `" + sb.ToString () + "' was expected"); } static public void Error_ConstantValueCannotBeConverted (Location l, string val, Type t) { Report.Error (31, l, "Constant value `" + val + "' cannot be converted to " + TypeManager.CSharpName (t)); } public static void UnsafeError (Location loc) { Report.Error (214, loc, "Pointers may only be used in an unsafe context"); } /// /// Converts the IntConstant, UIntConstant, LongConstant or /// ULongConstant into the integral target_type. Notice /// that we do not return an `Expression' we do return /// a boxed integral type. /// /// FIXME: Since I added the new constants, we need to /// also support conversions from CharConstant, ByteConstant, /// SByteConstant, UShortConstant, ShortConstant /// /// This is used by the switch statement, so the domain /// of work is restricted to the literals above, and the /// targets are int32, uint32, char, byte, sbyte, ushort, /// short, uint64 and int64 /// public static object ConvertIntLiteral (Constant c, Type target_type, Location loc) { if (!Convert.ImplicitStandardConversionExists (c, target_type)){ Convert.Error_CannotImplicitConversion (loc, c.Type, target_type); return null; } string s = ""; if (c.Type == target_type) return ((Constant) c).GetValue (); // // Make into one of the literals we handle, we dont really care // about this value as we will just return a few limited types // if (c is EnumConstant) c = ((EnumConstant)c).WidenToCompilerConstant (); if (c is IntConstant){ int v = ((IntConstant) c).Value; if (target_type == TypeManager.uint32_type){ if (v >= 0) return (uint) v; } else if (target_type == TypeManager.char_type){ if (v >= Char.MinValue && v <= Char.MaxValue) return (char) v; } else if (target_type == TypeManager.byte_type){ if (v >= Byte.MinValue && v <= Byte.MaxValue) return (byte) v; } else if (target_type == TypeManager.sbyte_type){ if (v >= SByte.MinValue && v <= SByte.MaxValue) return (sbyte) v; } else if (target_type == TypeManager.short_type){ if (v >= Int16.MinValue && v <= UInt16.MaxValue) return (short) v; } else if (target_type == TypeManager.ushort_type){ if (v >= UInt16.MinValue && v <= UInt16.MaxValue) return (ushort) v; } else if (target_type == TypeManager.int64_type) return (long) v; else if (target_type == TypeManager.uint64_type){ if (v > 0) return (ulong) v; } s = v.ToString (); } else if (c is UIntConstant){ uint v = ((UIntConstant) c).Value; if (target_type == TypeManager.int32_type){ if (v <= Int32.MaxValue) return (int) v; } else if (target_type == TypeManager.char_type){ if (v >= Char.MinValue && v <= Char.MaxValue) return (char) v; } else if (target_type == TypeManager.byte_type){ if (v <= Byte.MaxValue) return (byte) v; } else if (target_type == TypeManager.sbyte_type){ if (v <= SByte.MaxValue) return (sbyte) v; } else if (target_type == TypeManager.short_type){ if (v <= UInt16.MaxValue) return (short) v; } else if (target_type == TypeManager.ushort_type){ if (v <= UInt16.MaxValue) return (ushort) v; } else if (target_type == TypeManager.int64_type) return (long) v; else if (target_type == TypeManager.uint64_type) return (ulong) v; s = v.ToString (); } else if (c is LongConstant){ long v = ((LongConstant) c).Value; if (target_type == TypeManager.int32_type){ if (v >= UInt32.MinValue && v <= UInt32.MaxValue) return (int) v; } else if (target_type == TypeManager.uint32_type){ if (v >= 0 && v <= UInt32.MaxValue) return (uint) v; } else if (target_type == TypeManager.char_type){ if (v >= Char.MinValue && v <= Char.MaxValue) return (char) v; } else if (target_type == TypeManager.byte_type){ if (v >= Byte.MinValue && v <= Byte.MaxValue) return (byte) v; } else if (target_type == TypeManager.sbyte_type){ if (v >= SByte.MinValue && v <= SByte.MaxValue) return (sbyte) v; } else if (target_type == TypeManager.short_type){ if (v >= Int16.MinValue && v <= UInt16.MaxValue) return (short) v; } else if (target_type == TypeManager.ushort_type){ if (v >= UInt16.MinValue && v <= UInt16.MaxValue) return (ushort) v; } else if (target_type == TypeManager.uint64_type){ if (v > 0) return (ulong) v; } s = v.ToString (); } else if (c is ULongConstant){ ulong v = ((ULongConstant) c).Value; if (target_type == TypeManager.int32_type){ if (v <= Int32.MaxValue) return (int) v; } else if (target_type == TypeManager.uint32_type){ if (v <= UInt32.MaxValue) return (uint) v; } else if (target_type == TypeManager.char_type){ if (v >= Char.MinValue && v <= Char.MaxValue) return (char) v; } else if (target_type == TypeManager.byte_type){ if (v >= Byte.MinValue && v <= Byte.MaxValue) return (byte) v; } else if (target_type == TypeManager.sbyte_type){ if (v <= (int) SByte.MaxValue) return (sbyte) v; } else if (target_type == TypeManager.short_type){ if (v <= UInt16.MaxValue) return (short) v; } else if (target_type == TypeManager.ushort_type){ if (v <= UInt16.MaxValue) return (ushort) v; } else if (target_type == TypeManager.int64_type){ if (v <= Int64.MaxValue) return (long) v; } s = v.ToString (); } else if (c is ByteConstant){ byte v = ((ByteConstant) c).Value; if (target_type == TypeManager.int32_type) return (int) v; else if (target_type == TypeManager.uint32_type) return (uint) v; else if (target_type == TypeManager.char_type) return (char) v; else if (target_type == TypeManager.sbyte_type){ if (v <= SByte.MaxValue) return (sbyte) v; } else if (target_type == TypeManager.short_type) return (short) v; else if (target_type == TypeManager.ushort_type) return (ushort) v; else if (target_type == TypeManager.int64_type) return (long) v; else if (target_type == TypeManager.uint64_type) return (ulong) v; s = v.ToString (); } else if (c is SByteConstant){ sbyte v = ((SByteConstant) c).Value; if (target_type == TypeManager.int32_type) return (int) v; else if (target_type == TypeManager.uint32_type){ if (v >= 0) return (uint) v; } else if (target_type == TypeManager.char_type){ if (v >= 0) return (char) v; } else if (target_type == TypeManager.byte_type){ if (v >= 0) return (byte) v; } else if (target_type == TypeManager.short_type) return (short) v; else if (target_type == TypeManager.ushort_type){ if (v >= 0) return (ushort) v; } else if (target_type == TypeManager.int64_type) return (long) v; else if (target_type == TypeManager.uint64_type){ if (v >= 0) return (ulong) v; } s = v.ToString (); } else if (c is ShortConstant){ short v = ((ShortConstant) c).Value; if (target_type == TypeManager.int32_type){ return (int) v; } else if (target_type == TypeManager.uint32_type){ if (v >= 0) return (uint) v; } else if (target_type == TypeManager.char_type){ if (v >= 0) return (char) v; } else if (target_type == TypeManager.byte_type){ if (v >= Byte.MinValue && v <= Byte.MaxValue) return (byte) v; } else if (target_type == TypeManager.sbyte_type){ if (v >= SByte.MinValue && v <= SByte.MaxValue) return (sbyte) v; } else if (target_type == TypeManager.ushort_type){ if (v >= 0) return (ushort) v; } else if (target_type == TypeManager.int64_type) return (long) v; else if (target_type == TypeManager.uint64_type) return (ulong) v; s = v.ToString (); } else if (c is UShortConstant){ ushort v = ((UShortConstant) c).Value; if (target_type == TypeManager.int32_type) return (int) v; else if (target_type == TypeManager.uint32_type) return (uint) v; else if (target_type == TypeManager.char_type){ if (v >= Char.MinValue && v <= Char.MaxValue) return (char) v; } else if (target_type == TypeManager.byte_type){ if (v >= Byte.MinValue && v <= Byte.MaxValue) return (byte) v; } else if (target_type == TypeManager.sbyte_type){ if (v <= SByte.MaxValue) return (byte) v; } else if (target_type == TypeManager.short_type){ if (v <= Int16.MaxValue) return (short) v; } else if (target_type == TypeManager.int64_type) return (long) v; else if (target_type == TypeManager.uint64_type) return (ulong) v; s = v.ToString (); } else if (c is CharConstant){ char v = ((CharConstant) c).Value; if (target_type == TypeManager.int32_type) return (int) v; else if (target_type == TypeManager.uint32_type) return (uint) v; else if (target_type == TypeManager.byte_type){ if (v >= Byte.MinValue && v <= Byte.MaxValue) return (byte) v; } else if (target_type == TypeManager.sbyte_type){ if (v <= SByte.MaxValue) return (sbyte) v; } else if (target_type == TypeManager.short_type){ if (v <= Int16.MaxValue) return (short) v; } else if (target_type == TypeManager.ushort_type) return (short) v; else if (target_type == TypeManager.int64_type) return (long) v; else if (target_type == TypeManager.uint64_type) return (ulong) v; s = v.ToString (); } Error_ConstantValueCannotBeConverted (loc, s, target_type); return null; } // // Load the object from the pointer. // public static void LoadFromPtr (ILGenerator ig, Type t) { if (t == TypeManager.int32_type) ig.Emit (OpCodes.Ldind_I4); else if (t == TypeManager.uint32_type) ig.Emit (OpCodes.Ldind_U4); else if (t == TypeManager.short_type) ig.Emit (OpCodes.Ldind_I2); else if (t == TypeManager.ushort_type) ig.Emit (OpCodes.Ldind_U2); else if (t == TypeManager.char_type) ig.Emit (OpCodes.Ldind_U2); else if (t == TypeManager.byte_type) ig.Emit (OpCodes.Ldind_U1); else if (t == TypeManager.sbyte_type) ig.Emit (OpCodes.Ldind_I1); else if (t == TypeManager.uint64_type) ig.Emit (OpCodes.Ldind_I8); else if (t == TypeManager.int64_type) ig.Emit (OpCodes.Ldind_I8); else if (t == TypeManager.float_type) ig.Emit (OpCodes.Ldind_R4); else if (t == TypeManager.double_type) ig.Emit (OpCodes.Ldind_R8); else if (t == TypeManager.bool_type) ig.Emit (OpCodes.Ldind_I1); else if (t == TypeManager.intptr_type) ig.Emit (OpCodes.Ldind_I); else if (TypeManager.IsEnumType (t)) { if (t == TypeManager.enum_type) ig.Emit (OpCodes.Ldind_Ref); else LoadFromPtr (ig, TypeManager.EnumToUnderlying (t)); } else if (t.IsValueType) ig.Emit (OpCodes.Ldobj, t); else if (t.IsPointer) ig.Emit (OpCodes.Ldind_I); else ig.Emit (OpCodes.Ldind_Ref); } // // The stack contains the pointer and the value of type `type' // public static void StoreFromPtr (ILGenerator ig, Type type) { if (TypeManager.IsEnumType (type)) type = TypeManager.EnumToUnderlying (type); if (type == TypeManager.int32_type || type == TypeManager.uint32_type) ig.Emit (OpCodes.Stind_I4); else if (type == TypeManager.int64_type || type == TypeManager.uint64_type) ig.Emit (OpCodes.Stind_I8); else if (type == TypeManager.char_type || type == TypeManager.short_type || type == TypeManager.ushort_type) ig.Emit (OpCodes.Stind_I2); else if (type == TypeManager.float_type) ig.Emit (OpCodes.Stind_R4); else if (type == TypeManager.double_type) ig.Emit (OpCodes.Stind_R8); else if (type == TypeManager.byte_type || type == TypeManager.sbyte_type || type == TypeManager.bool_type) ig.Emit (OpCodes.Stind_I1); else if (type == TypeManager.intptr_type) ig.Emit (OpCodes.Stind_I); else if (type.IsValueType) ig.Emit (OpCodes.Stobj, type); else ig.Emit (OpCodes.Stind_Ref); } // // Returns the size of type `t' if known, otherwise, 0 // public static int GetTypeSize (Type t) { t = TypeManager.TypeToCoreType (t); if (t == TypeManager.int32_type || t == TypeManager.uint32_type || t == TypeManager.float_type) return 4; else if (t == TypeManager.int64_type || t == TypeManager.uint64_type || t == TypeManager.double_type) return 8; else if (t == TypeManager.byte_type || t == TypeManager.sbyte_type || t == TypeManager.bool_type) return 1; else if (t == TypeManager.short_type || t == TypeManager.char_type || t == TypeManager.ushort_type) return 2; else if (t == TypeManager.decimal_type) return 16; else return 0; } public static void Error_NegativeArrayIndex (Location loc) { Report.Error (248, loc, "Cannot create an array with a negative size"); } // // Converts `source' to an int, uint, long or ulong. // public Expression ExpressionToArrayArgument (EmitContext ec, Expression source, Location loc) { Expression target; bool old_checked = ec.CheckState; ec.CheckState = true; target = Convert.ImplicitConversion (ec, source, TypeManager.int32_type, loc); if (target == null){ target = Convert.ImplicitConversion (ec, source, TypeManager.uint32_type, loc); if (target == null){ target = Convert.ImplicitConversion (ec, source, TypeManager.int64_type, loc); if (target == null){ target = Convert.ImplicitConversion (ec, source, TypeManager.uint64_type, loc); if (target == null) Convert.Error_CannotImplicitConversion (loc, source.Type, TypeManager.int32_type); } } } ec.CheckState = old_checked; // // Only positive constants are allowed at compile time // if (target is Constant){ if (target is IntConstant){ if (((IntConstant) target).Value < 0){ Error_NegativeArrayIndex (loc); return null; } } if (target is LongConstant){ if (((LongConstant) target).Value < 0){ Error_NegativeArrayIndex (loc); return null; } } } return target; } } /// /// This is just a base class for expressions that can /// appear on statements (invocations, object creation, /// assignments, post/pre increment and decrement). The idea /// being that they would support an extra Emition interface that /// does not leave a result on the stack. /// public abstract class ExpressionStatement : Expression { public virtual ExpressionStatement ResolveStatement (EmitContext ec) { Expression e = Resolve (ec); if (e == null) return null; ExpressionStatement es = e as ExpressionStatement; if (es == null) Error (201, "Only assignment, call, increment, decrement and new object " + "expressions can be used as a statement"); return es; } /// /// Requests the expression to be emitted in a `statement' /// context. This means that no new value is left on the /// stack after invoking this method (constrasted with /// Emit that will always leave a value on the stack). /// public abstract void EmitStatement (EmitContext ec); } /// /// This kind of cast is used to encapsulate the child /// whose type is child.Type into an expression that is /// reported to return "return_type". This is used to encapsulate /// expressions which have compatible types, but need to be dealt /// at higher levels with. /// /// For example, a "byte" expression could be encapsulated in one /// of these as an "unsigned int". The type for the expression /// would be "unsigned int". /// /// public class EmptyCast : Expression { protected Expression child; public Expression Child { get { return child; } } public EmptyCast (Expression child, Type return_type) { eclass = child.eclass; type = return_type; this.child = child; } public override Expression DoResolve (EmitContext ec) { // This should never be invoked, we are born in fully // initialized state. return this; } public override void Emit (EmitContext ec) { child.Emit (ec); } } // // We need to special case this since an empty cast of // a NullLiteral is still a Constant // public class NullCast : Constant { protected Expression child; public NullCast (Expression child, Type return_type) { eclass = child.eclass; type = return_type; this.child = child; } override public string AsString () { return "null"; } public override object GetValue () { return null; } public override Expression DoResolve (EmitContext ec) { // This should never be invoked, we are born in fully // initialized state. return this; } public override void Emit (EmitContext ec) { child.Emit (ec); } public override bool IsNegative { get { return false; } } } /// /// This class is used to wrap literals which belong inside Enums /// public class EnumConstant : Constant { public Constant Child; public EnumConstant (Constant child, Type enum_type) { eclass = child.eclass; this.Child = child; type = enum_type; } public override Expression DoResolve (EmitContext ec) { // This should never be invoked, we are born in fully // initialized state. return this; } public override void Emit (EmitContext ec) { Child.Emit (ec); } public override object GetValue () { return Child.GetValue (); } public object GetValueAsEnumType () { return System.Enum.ToObject (type, Child.GetValue ()); } // // Converts from one of the valid underlying types for an enumeration // (int32, uint32, int64, uint64, short, ushort, byte, sbyte) to // one of the internal compiler literals: Int/UInt/Long/ULong Literals. // public Constant WidenToCompilerConstant () { Type t = TypeManager.EnumToUnderlying (Child.Type); object v = ((Constant) Child).GetValue ();; if (t == TypeManager.int32_type) return new IntConstant ((int) v); if (t == TypeManager.uint32_type) return new UIntConstant ((uint) v); if (t == TypeManager.int64_type) return new LongConstant ((long) v); if (t == TypeManager.uint64_type) return new ULongConstant ((ulong) v); if (t == TypeManager.short_type) return new ShortConstant ((short) v); if (t == TypeManager.ushort_type) return new UShortConstant ((ushort) v); if (t == TypeManager.byte_type) return new ByteConstant ((byte) v); if (t == TypeManager.sbyte_type) return new SByteConstant ((sbyte) v); throw new Exception ("Invalid enumeration underlying type: " + t); } // // Extracts the value in the enumeration on its native representation // public object GetPlainValue () { Type t = TypeManager.EnumToUnderlying (Child.Type); object v = ((Constant) Child).GetValue ();; if (t == TypeManager.int32_type) return (int) v; if (t == TypeManager.uint32_type) return (uint) v; if (t == TypeManager.int64_type) return (long) v; if (t == TypeManager.uint64_type) return (ulong) v; if (t == TypeManager.short_type) return (short) v; if (t == TypeManager.ushort_type) return (ushort) v; if (t == TypeManager.byte_type) return (byte) v; if (t == TypeManager.sbyte_type) return (sbyte) v; return null; } public override string AsString () { return Child.AsString (); } public override DoubleConstant ConvertToDouble () { return Child.ConvertToDouble (); } public override FloatConstant ConvertToFloat () { return Child.ConvertToFloat (); } public override ULongConstant ConvertToULong () { return Child.ConvertToULong (); } public override LongConstant ConvertToLong () { return Child.ConvertToLong (); } public override UIntConstant ConvertToUInt () { return Child.ConvertToUInt (); } public override IntConstant ConvertToInt () { return Child.ConvertToInt (); } public override bool IsZeroInteger { get { return Child.IsZeroInteger; } } public override bool IsNegative { get { return Child.IsNegative; } } } /// /// This kind of cast is used to encapsulate Value Types in objects. /// /// The effect of it is to box the value type emitted by the previous /// operation. /// public class BoxedCast : EmptyCast { public BoxedCast (Expression expr) : base (expr, TypeManager.object_type) { eclass = ExprClass.Value; } public BoxedCast (Expression expr, Type target_type) : base (expr, target_type) { eclass = ExprClass.Value; } public override Expression DoResolve (EmitContext ec) { // This should never be invoked, we are born in fully // initialized state. return this; } public override void Emit (EmitContext ec) { base.Emit (ec); ec.ig.Emit (OpCodes.Box, child.Type); } } public class UnboxCast : EmptyCast { public UnboxCast (Expression expr, Type return_type) : base (expr, return_type) { } public override Expression DoResolve (EmitContext ec) { // This should never be invoked, we are born in fully // initialized state. return this; } public override void Emit (EmitContext ec) { Type t = type; ILGenerator ig = ec.ig; base.Emit (ec); if (t.IsGenericParameter) ig.Emit (OpCodes.Unbox_Any, t); else { ig.Emit (OpCodes.Unbox, t); LoadFromPtr (ig, t); } } } /// /// This is used to perform explicit numeric conversions. /// /// Explicit numeric conversions might trigger exceptions in a checked /// context, so they should generate the conv.ovf opcodes instead of /// conv opcodes. /// public class ConvCast : EmptyCast { public enum Mode : byte { I1_U1, I1_U2, I1_U4, I1_U8, I1_CH, U1_I1, U1_CH, I2_I1, I2_U1, I2_U2, I2_U4, I2_U8, I2_CH, U2_I1, U2_U1, U2_I2, U2_CH, I4_I1, I4_U1, I4_I2, I4_U2, I4_U4, I4_U8, I4_CH, U4_I1, U4_U1, U4_I2, U4_U2, U4_I4, U4_CH, I8_I1, I8_U1, I8_I2, I8_U2, I8_I4, I8_U4, I8_U8, I8_CH, U8_I1, U8_U1, U8_I2, U8_U2, U8_I4, U8_U4, U8_I8, U8_CH, CH_I1, CH_U1, CH_I2, R4_I1, R4_U1, R4_I2, R4_U2, R4_I4, R4_U4, R4_I8, R4_U8, R4_CH, R8_I1, R8_U1, R8_I2, R8_U2, R8_I4, R8_U4, R8_I8, R8_U8, R8_CH, R8_R4 } Mode mode; bool checked_state; public ConvCast (EmitContext ec, Expression child, Type return_type, Mode m) : base (child, return_type) { checked_state = ec.CheckState; mode = m; } public override Expression DoResolve (EmitContext ec) { // This should never be invoked, we are born in fully // initialized state. return this; } public override string ToString () { return String.Format ("ConvCast ({0}, {1})", mode, child); } public override void Emit (EmitContext ec) { ILGenerator ig = ec.ig; base.Emit (ec); if (checked_state){ switch (mode){ case Mode.I1_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break; case Mode.I1_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.I1_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break; case Mode.I1_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break; case Mode.I1_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.U1_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break; case Mode.U1_CH: /* nothing */ break; case Mode.I2_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break; case Mode.I2_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break; case Mode.I2_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.I2_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break; case Mode.I2_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break; case Mode.I2_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.U2_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break; case Mode.U2_U1: ig.Emit (OpCodes.Conv_Ovf_U1_Un); break; case Mode.U2_I2: ig.Emit (OpCodes.Conv_Ovf_I2_Un); break; case Mode.U2_CH: /* nothing */ break; case Mode.I4_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break; case Mode.I4_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break; case Mode.I4_I2: ig.Emit (OpCodes.Conv_Ovf_I2); break; case Mode.I4_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break; case Mode.I4_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.I4_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break; case Mode.I4_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.U4_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break; case Mode.U4_U1: ig.Emit (OpCodes.Conv_Ovf_U1_Un); break; case Mode.U4_I2: ig.Emit (OpCodes.Conv_Ovf_I2_Un); break; case Mode.U4_U2: ig.Emit (OpCodes.Conv_Ovf_U2_Un); break; case Mode.U4_I4: ig.Emit (OpCodes.Conv_Ovf_I4_Un); break; case Mode.U4_CH: ig.Emit (OpCodes.Conv_Ovf_U2_Un); break; case Mode.I8_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break; case Mode.I8_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break; case Mode.I8_I2: ig.Emit (OpCodes.Conv_Ovf_I2); break; case Mode.I8_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.I8_I4: ig.Emit (OpCodes.Conv_Ovf_I4); break; case Mode.I8_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break; case Mode.I8_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break; case Mode.I8_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.U8_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break; case Mode.U8_U1: ig.Emit (OpCodes.Conv_Ovf_U1_Un); break; case Mode.U8_I2: ig.Emit (OpCodes.Conv_Ovf_I2_Un); break; case Mode.U8_U2: ig.Emit (OpCodes.Conv_Ovf_U2_Un); break; case Mode.U8_I4: ig.Emit (OpCodes.Conv_Ovf_I4_Un); break; case Mode.U8_U4: ig.Emit (OpCodes.Conv_Ovf_U4_Un); break; case Mode.U8_I8: ig.Emit (OpCodes.Conv_Ovf_I8_Un); break; case Mode.U8_CH: ig.Emit (OpCodes.Conv_Ovf_U2_Un); break; case Mode.CH_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break; case Mode.CH_U1: ig.Emit (OpCodes.Conv_Ovf_U1_Un); break; case Mode.CH_I2: ig.Emit (OpCodes.Conv_Ovf_I2_Un); break; case Mode.R4_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break; case Mode.R4_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break; case Mode.R4_I2: ig.Emit (OpCodes.Conv_Ovf_I2); break; case Mode.R4_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.R4_I4: ig.Emit (OpCodes.Conv_Ovf_I4); break; case Mode.R4_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break; case Mode.R4_I8: ig.Emit (OpCodes.Conv_Ovf_I8); break; case Mode.R4_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break; case Mode.R4_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.R8_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break; case Mode.R8_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break; case Mode.R8_I2: ig.Emit (OpCodes.Conv_Ovf_I2); break; case Mode.R8_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.R8_I4: ig.Emit (OpCodes.Conv_Ovf_I4); break; case Mode.R8_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break; case Mode.R8_I8: ig.Emit (OpCodes.Conv_Ovf_I8); break; case Mode.R8_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break; case Mode.R8_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break; case Mode.R8_R4: ig.Emit (OpCodes.Conv_R4); break; } } else { switch (mode){ case Mode.I1_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.I1_U2: ig.Emit (OpCodes.Conv_U2); break; case Mode.I1_U4: ig.Emit (OpCodes.Conv_U4); break; case Mode.I1_U8: ig.Emit (OpCodes.Conv_I8); break; case Mode.I1_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.U1_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.U1_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.I2_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.I2_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.I2_U2: ig.Emit (OpCodes.Conv_U2); break; case Mode.I2_U4: ig.Emit (OpCodes.Conv_U4); break; case Mode.I2_U8: ig.Emit (OpCodes.Conv_I8); break; case Mode.I2_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.U2_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.U2_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.U2_I2: ig.Emit (OpCodes.Conv_I2); break; case Mode.U2_CH: /* nothing */ break; case Mode.I4_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.I4_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.I4_I2: ig.Emit (OpCodes.Conv_I2); break; case Mode.I4_U4: /* nothing */ break; case Mode.I4_U2: ig.Emit (OpCodes.Conv_U2); break; case Mode.I4_U8: ig.Emit (OpCodes.Conv_I8); break; case Mode.I4_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.U4_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.U4_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.U4_I2: ig.Emit (OpCodes.Conv_I2); break; case Mode.U4_U2: ig.Emit (OpCodes.Conv_U2); break; case Mode.U4_I4: /* nothing */ break; case Mode.U4_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.I8_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.I8_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.I8_I2: ig.Emit (OpCodes.Conv_I2); break; case Mode.I8_U2: ig.Emit (OpCodes.Conv_U2); break; case Mode.I8_I4: ig.Emit (OpCodes.Conv_I4); break; case Mode.I8_U4: ig.Emit (OpCodes.Conv_U4); break; case Mode.I8_U8: /* nothing */ break; case Mode.I8_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.U8_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.U8_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.U8_I2: ig.Emit (OpCodes.Conv_I2); break; case Mode.U8_U2: ig.Emit (OpCodes.Conv_U2); break; case Mode.U8_I4: ig.Emit (OpCodes.Conv_I4); break; case Mode.U8_U4: ig.Emit (OpCodes.Conv_U4); break; case Mode.U8_I8: /* nothing */ break; case Mode.U8_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.CH_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.CH_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.CH_I2: ig.Emit (OpCodes.Conv_I2); break; case Mode.R4_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.R4_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.R4_I2: ig.Emit (OpCodes.Conv_I2); break; case Mode.R4_U2: ig.Emit (OpCodes.Conv_U2); break; case Mode.R4_I4: ig.Emit (OpCodes.Conv_I4); break; case Mode.R4_U4: ig.Emit (OpCodes.Conv_U4); break; case Mode.R4_I8: ig.Emit (OpCodes.Conv_I8); break; case Mode.R4_U8: ig.Emit (OpCodes.Conv_U8); break; case Mode.R4_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.R8_I1: ig.Emit (OpCodes.Conv_I1); break; case Mode.R8_U1: ig.Emit (OpCodes.Conv_U1); break; case Mode.R8_I2: ig.Emit (OpCodes.Conv_I2); break; case Mode.R8_U2: ig.Emit (OpCodes.Conv_U2); break; case Mode.R8_I4: ig.Emit (OpCodes.Conv_I4); break; case Mode.R8_U4: ig.Emit (OpCodes.Conv_U4); break; case Mode.R8_I8: ig.Emit (OpCodes.Conv_I8); break; case Mode.R8_U8: ig.Emit (OpCodes.Conv_U8); break; case Mode.R8_CH: ig.Emit (OpCodes.Conv_U2); break; case Mode.R8_R4: ig.Emit (OpCodes.Conv_R4); break; } } } } public class OpcodeCast : EmptyCast { OpCode op, op2; bool second_valid; public OpcodeCast (Expression child, Type return_type, OpCode op) : base (child, return_type) { this.op = op; second_valid = false; } public OpcodeCast (Expression child, Type return_type, OpCode op, OpCode op2) : base (child, return_type) { this.op = op; this.op2 = op2; second_valid = true; } public override Expression DoResolve (EmitContext ec) { // This should never be invoked, we are born in fully // initialized state. return this; } public override void Emit (EmitContext ec) { base.Emit (ec); ec.ig.Emit (op); if (second_valid) ec.ig.Emit (op2); } } /// /// This kind of cast is used to encapsulate a child and cast it /// to the class requested /// public class ClassCast : EmptyCast { public ClassCast (Expression child, Type return_type) : base (child, return_type) { } public override Expression DoResolve (EmitContext ec) { // This should never be invoked, we are born in fully // initialized state. return this; } public override void Emit (EmitContext ec) { base.Emit (ec); if (child.Type.IsGenericParameter) ec.ig.Emit (OpCodes.Box, child.Type); if (type.IsGenericParameter) ec.ig.Emit (OpCodes.Unbox_Any, type); else ec.ig.Emit (OpCodes.Castclass, type); } } /// /// SimpleName expressions are initially formed of a single /// word and it only happens at the beginning of the expression. /// /// /// /// The expression will try to be bound to a Field, a Method /// group or a Property. If those fail we pass the name to our /// caller and the SimpleName is compounded to perform a type /// lookup. The idea behind this process is that we want to avoid /// creating a namespace map from the assemblies, as that requires /// the GetExportedTypes function to be called and a hashtable to /// be constructed which reduces startup time. If later we find /// that this is slower, we should create a `NamespaceExpr' expression /// that fully participates in the resolution process. /// /// For example `System.Console.WriteLine' is decomposed into /// MemberAccess (MemberAccess (SimpleName ("System"), "Console"), "WriteLine") /// /// The first SimpleName wont produce a match on its own, so it will /// be turned into: /// MemberAccess (SimpleName ("System.Console"), "WriteLine"). /// /// System.Console will produce a TypeExpr match. /// /// The downside of this is that we might be hitting `LookupType' too many /// times with this scheme. /// public class SimpleName : Expression { public string Name; public readonly TypeArguments Arguments; // // If true, then we are a simple name, not composed with a ". // bool is_base; public SimpleName (string a, string b, Location l) { Name = String.Concat (a, ".", b); loc = l; is_base = false; } public SimpleName (string name, Location l) { Name = name; loc = l; is_base = true; } public SimpleName (string name, TypeArguments args, Location l) { Name = name; Arguments = args; loc = l; is_base = true; } public static void Error_ObjectRefRequired (EmitContext ec, Location l, string name) { if (ec.IsFieldInitializer) Report.Error ( 236, l, "A field initializer cannot reference the non-static field, " + "method or property `"+name+"'"); else Report.Error ( 120, l, "An object reference is required " + "for the non-static field `"+name+"'"); } // // Checks whether we are trying to access an instance // property, method or field from a static body. // Expression MemberStaticCheck (EmitContext ec, Expression e) { if (e is IMemberExpr){ IMemberExpr member = (IMemberExpr) e; if (!member.IsStatic){ Error_ObjectRefRequired (ec, loc, Name); return null; } } return e; } public override Expression DoResolve (EmitContext ec) { return SimpleNameResolve (ec, null, false, false); } public override Expression DoResolveLValue (EmitContext ec, Expression right_side) { return SimpleNameResolve (ec, right_side, false, false); } public Expression DoResolveAllowStatic (EmitContext ec, bool intermediate) { return SimpleNameResolve (ec, null, true, intermediate); } public override Expression ResolveAsTypeStep (EmitContext ec) { DeclSpace ds = ec.DeclSpace; NamespaceEntry ns = ds.NamespaceEntry; TypeExpr t; IAlias alias_value; // // Since we are cheating: we only do the Alias lookup for // namespaces if the name does not include any dots in it // if (ns != null && is_base) alias_value = ns.LookupAlias (Name); else alias_value = null; TypeParameterExpr generic_type = ds.LookupGeneric (Name, loc); if (generic_type != null) return generic_type.ResolveAsTypeTerminal (ec, false); if (ec.ResolvingTypeTree){ int errors = Report.Errors; Type dt = ds.FindType (loc, Name); if (Report.Errors != errors) return null; if (dt != null) return new TypeExpression (dt, loc); if (alias_value != null){ if (alias_value.IsType) return alias_value.Type; if ((t = RootContext.LookupType (ds, alias_value.Name, true, loc)) != null) return t; } } if ((t = RootContext.LookupType (ds, Name, true, loc)) != null) return t; if (alias_value != null) { if (alias_value.IsType) return alias_value.Type; if ((t = RootContext.LookupType (ds, alias_value.Name, true, loc)) != null) return t; // we have alias value, but it isn't Type, so try if it's namespace return new SimpleName (alias_value.Name, loc); } // No match, maybe our parent can compose us // into something meaningful. return this; } Expression SimpleNameResolve (EmitContext ec, Expression right_side, bool allow_static, bool intermediate) { Expression e = DoSimpleNameResolve (ec, right_side, allow_static, intermediate); if (e == null) return null; Block current_block = ec.CurrentBlock; if (current_block != null){ //LocalInfo vi = current_block.GetLocalInfo (Name); if (is_base && current_block.IsVariableNameUsedInChildBlock(Name)) { Report.Error (135, Location, "'{0}' has a different meaning in a " + "child block", Name); return null; } } if (e.Type != null && e.Type.IsPointer && !ec.InUnsafe) { UnsafeError (loc); return null; } return e; } /// /// 7.5.2: Simple Names. /// /// Local Variables and Parameters are handled at /// parse time, so they never occur as SimpleNames. /// /// The `allow_static' flag is used by MemberAccess only /// and it is used to inform us that it is ok for us to /// avoid the static check, because MemberAccess might end /// up resolving the Name as a Type name and the access as /// a static type access. /// /// ie: Type Type; .... { Type.GetType (""); } /// /// Type is both an instance variable and a Type; Type.GetType /// is the static method not an instance method of type. /// Expression DoSimpleNameResolve (EmitContext ec, Expression right_side, bool allow_static, bool intermediate) { Expression e = null; // // Stage 1: Performed by the parser (binding to locals or parameters). // Block current_block = ec.CurrentBlock; if (current_block != null){ LocalInfo vi = current_block.GetLocalInfo (Name); if (vi != null){ Expression var; var = new LocalVariableReference (ec.CurrentBlock, Name, loc); if (right_side != null) return var.ResolveLValue (ec, right_side); else return var.Resolve (ec); } int idx = -1; Parameter par = null; Parameters pars = current_block.Parameters; if (pars != null) par = pars.GetParameterByName (Name, out idx); if (par != null) { ParameterReference param; param = new ParameterReference (pars, current_block, idx, Name, loc); if (right_side != null) return param.ResolveLValue (ec, right_side); else return param.Resolve (ec); } } // // Stage 2: Lookup members // DeclSpace lookup_ds = ec.DeclSpace; do { if (lookup_ds.TypeBuilder == null) break; e = MemberLookup (ec, lookup_ds.TypeBuilder, Name, loc); if (e != null) break; lookup_ds =lookup_ds.Parent; } while (lookup_ds != null); if (e == null && ec.ContainerType != null) e = MemberLookup (ec, ec.ContainerType, Name, loc); if (e == null) { // // Since we are cheating (is_base is our hint // that we are the beginning of the name): we // only do the Alias lookup for namespaces if // the name does not include any dots in it // NamespaceEntry ns = ec.DeclSpace.NamespaceEntry; if (is_base && ns != null){ IAlias alias_value = ns.LookupAlias (Name); if (alias_value != null){ if (alias_value.IsType) return alias_value.Type; Name = alias_value.Name; Type t; if ((t = TypeManager.LookupType (Name)) != null) return new TypeExpression (t, loc); // No match, maybe our parent can compose us // into something meaningful. return this; } } return ResolveAsTypeStep (ec); } if (e is TypeExpr) return e; if (e is IMemberExpr) { e = MemberAccess.ResolveMemberAccess (ec, e, null, loc, this); if (e == null) return null; IMemberExpr me = e as IMemberExpr; if (me == null) return e; if (Arguments != null) { MethodGroupExpr mg = me as MethodGroupExpr; if (mg == null) return null; return mg.ResolveGeneric (ec, Arguments); } // This fails if ResolveMemberAccess() was unable to decide whether // it's a field or a type of the same name. if (!me.IsStatic && (me.InstanceExpression == null)) return e; if (!me.IsStatic && TypeManager.IsNestedFamilyAccessible (me.InstanceExpression.Type, me.DeclaringType) && me.InstanceExpression.Type != me.DeclaringType && !TypeManager.IsFamilyAccessible (me.InstanceExpression.Type, me.DeclaringType) && (!intermediate || !MemberAccess.IdenticalNameAndTypeName (ec, this, e, loc))) { Error (38, "Cannot access nonstatic member `" + me.Name + "' of " + "outer type `" + me.DeclaringType + "' via nested type `" + me.InstanceExpression.Type + "'"); return null; } return (right_side != null) ? e.DoResolveLValue (ec, right_side) : e.DoResolve (ec); } if (ec.IsStatic || ec.IsFieldInitializer){ if (allow_static) return e; return MemberStaticCheck (ec, e); } else return e; } public override void Emit (EmitContext ec) { // // If this is ever reached, then we failed to // find the name as a namespace // Error (103, "The name `" + Name + "' does not exist in the class `" + ec.DeclSpace.Name + "'"); } public override string ToString () { return Name; } } /// /// Fully resolved expression that evaluates to a type /// public abstract class TypeExpr : Expression, IAlias { override public Expression ResolveAsTypeStep (EmitContext ec) { TypeExpr t = DoResolveAsTypeStep (ec); if (t == null) return null; eclass = ExprClass.Type; return t; } override public Expression DoResolve (EmitContext ec) { return ResolveAsTypeTerminal (ec, false); } override public void Emit (EmitContext ec) { throw new Exception ("Should never be called"); } public virtual bool CheckAccessLevel (DeclSpace ds) { return ds.CheckAccessLevel (Type); } public virtual bool AsAccessible (DeclSpace ds, int flags) { return ds.AsAccessible (Type, flags); } public virtual bool IsClass { get { return Type.IsClass; } } public virtual bool IsValueType { get { return Type.IsValueType; } } public virtual bool IsInterface { get { return Type.IsInterface; } } public virtual bool IsSealed { get { return Type.IsSealed; } } public virtual bool CanInheritFrom () { if (Type == TypeManager.enum_type || (Type == TypeManager.value_type && RootContext.StdLib) || Type == TypeManager.multicast_delegate_type || Type == TypeManager.delegate_type || Type == TypeManager.array_type) return false; return true; } public virtual bool IsAttribute { get { return Type == TypeManager.attribute_type || Type.IsSubclassOf (TypeManager.attribute_type); } } public abstract TypeExpr DoResolveAsTypeStep (EmitContext ec); public virtual Type ResolveType (EmitContext ec) { TypeExpr t = ResolveAsTypeTerminal (ec, false); if (t == null) return null; return t.Type; } public abstract string Name { get; } public override bool Equals (object obj) { TypeExpr tobj = obj as TypeExpr; if (tobj == null) return false; return Type == tobj.Type; } public override int GetHashCode () { return Type.GetHashCode (); } public override string ToString () { return Name; } bool IAlias.IsType { get { return true; } } TypeExpr IAlias.Type { get { return this; } } } public class TypeExpression : TypeExpr, IAlias { public TypeExpression (Type t, Location l) { Type = t; eclass = ExprClass.Type; loc = l; } public override TypeExpr DoResolveAsTypeStep (EmitContext ec) { return this; } public override string Name { get { return Type.ToString (); } } string IAlias.Name { get { return Type.FullName != null ? Type.FullName : Type.Name; } } } /// /// Used to create types from a fully qualified name. These are just used /// by the parser to setup the core types. A TypeLookupExpression is always /// classified as a type. /// public class TypeLookupExpression : TypeExpr { string name; public TypeLookupExpression (string name) { this.name = name; } public override TypeExpr DoResolveAsTypeStep (EmitContext ec) { if (type == null) { TypeExpr texpr = RootContext.LookupType ( ec.DeclSpace, name, false, Location.Null); if (texpr == null) return null; type = texpr.ResolveType (ec); if (type == null) return null; } return this; } public override string Name { get { return name; } } } /// /// Represents an "unbound generic type", ie. typeof (Foo<>). /// See 14.5.11. /// public class UnboundTypeExpression : TypeLookupExpression { public UnboundTypeExpression (string name) : base (name) { } } public class TypeAliasExpression : TypeExpr, IAlias { TypeExpr texpr; TypeArguments args; string name; public TypeAliasExpression (TypeExpr texpr, TypeArguments args, Location l) { this.texpr = texpr; this.args = args; loc = texpr.Location; eclass = ExprClass.Type; if (args != null) name = texpr.Name + "<" + args.ToString () + ">"; else name = texpr.Name; } public override string Name { get { return name; } } public override TypeExpr DoResolveAsTypeStep (EmitContext ec) { Type type = texpr.ResolveType (ec); if (type == null) return null; int num_args = TypeManager.GetNumberOfTypeArguments (type); if (args != null) { if (num_args == 0) { Report.Error (308, loc, "The non-generic type `{0}' cannot " + "be used with type arguments.", TypeManager.CSharpName (type)); return null; } ConstructedType ctype = new ConstructedType (type, args, loc); return ctype.ResolveAsTypeTerminal (ec, false); } else if (num_args > 0) { Report.Error (305, loc, "Using the generic type `{0}' " + "requires {1} type arguments", TypeManager.GetFullName (type), num_args); return null; } return new TypeExpression (type, loc); } public override Type ResolveType (EmitContext ec) { TypeExpr t = ResolveAsTypeTerminal (ec, false); if (t == null) return null; type = t.ResolveType (ec); return type; } public override bool CheckAccessLevel (DeclSpace ds) { return texpr.CheckAccessLevel (ds); } public override bool AsAccessible (DeclSpace ds, int flags) { return texpr.AsAccessible (ds, flags); } public override bool IsClass { get { return texpr.IsClass; } } public override bool IsValueType { get { return texpr.IsValueType; } } public override bool IsInterface { get { return texpr.IsInterface; } } public override bool IsSealed { get { return texpr.IsSealed; } } public override bool IsAttribute { get { return texpr.IsAttribute; } } } /// /// MethodGroup Expression. /// /// This is a fully resolved expression that evaluates to a type /// public class MethodGroupExpr : Expression, IMemberExpr { public MethodBase [] Methods; Expression instance_expression = null; bool is_explicit_impl = false; bool has_type_arguments = false; bool identical_type_name = false; bool is_base; public MethodGroupExpr (MemberInfo [] mi, Location l) { Methods = new MethodBase [mi.Length]; mi.CopyTo (Methods, 0); eclass = ExprClass.MethodGroup; type = TypeManager.object_type; loc = l; } public MethodGroupExpr (ArrayList list, Location l) { Methods = new MethodBase [list.Count]; try { list.CopyTo (Methods, 0); } catch { foreach (MemberInfo m in list){ if (!(m is MethodBase)){ Console.WriteLine ("Name " + m.Name); Console.WriteLine ("Found a: " + m.GetType ().FullName); } } throw; } loc = l; eclass = ExprClass.MethodGroup; type = TypeManager.object_type; } public Type DeclaringType { get { // // We assume that the top-level type is in the end // return Methods [Methods.Length - 1].DeclaringType; //return Methods [0].DeclaringType; } } // // `A method group may have associated an instance expression' // public Expression InstanceExpression { get { return instance_expression; } set { instance_expression = value; } } public bool IsExplicitImpl { get { return is_explicit_impl; } set { is_explicit_impl = value; } } public bool HasTypeArguments { get { return has_type_arguments; } set { has_type_arguments = value; } } public bool IdenticalTypeName { get { return identical_type_name; } set { identical_type_name = value; } } public bool IsBase { get { return is_base; } set { is_base = value; } } public string Name { get { //return Methods [0].Name; return Methods [Methods.Length - 1].Name; } } public bool IsInstance { get { foreach (MethodBase mb in Methods) if (!mb.IsStatic) return true; return false; } } public bool IsStatic { get { foreach (MethodBase mb in Methods) if (mb.IsStatic) return true; return false; } } override public Expression DoResolve (EmitContext ec) { if (!IsInstance) instance_expression = null; if (instance_expression != null) { instance_expression = instance_expression.DoResolve (ec); if (instance_expression == null) return null; } return this; } public void ReportUsageError () { Report.Error (654, loc, "Method `" + DeclaringType + "." + Name + "()' is referenced without parentheses"); } override public void Emit (EmitContext ec) { ReportUsageError (); } bool RemoveMethods (bool keep_static) { ArrayList smethods = new ArrayList (); foreach (MethodBase mb in Methods){ if (mb.IsStatic == keep_static) smethods.Add (mb); } if (smethods.Count == 0) return false; Methods = new MethodBase [smethods.Count]; smethods.CopyTo (Methods, 0); return true; } /// /// Removes any instance methods from the MethodGroup, returns /// false if the resulting set is empty. /// public bool RemoveInstanceMethods () { return RemoveMethods (true); } /// /// Removes any static methods from the MethodGroup, returns /// false if the resulting set is empty. /// public bool RemoveStaticMethods () { return RemoveMethods (false); } public Expression ResolveGeneric (EmitContext ec, TypeArguments args) { if (args.Resolve (ec) == false) return null; Type[] atypes = args.Arguments; int first_count = 0; MethodInfo first = null; ArrayList list = new ArrayList (); foreach (MethodBase mb in Methods) { MethodInfo mi = mb as MethodInfo; if ((mi == null) || !mi.HasGenericParameters) continue; Type[] gen_params = mi.GetGenericArguments (); if (first == null) { first = mi; first_count = gen_params.Length; } if (gen_params.Length != atypes.Length) continue; list.Add (mi.BindGenericParameters (atypes)); } if (list.Count > 0) { MethodGroupExpr new_mg = new MethodGroupExpr (list, Location); new_mg.InstanceExpression = InstanceExpression; new_mg.HasTypeArguments = true; return new_mg; } if (first != null) Report.Error ( 305, loc, "Using the generic method `{0}' " + "requires {1} type arguments", Name, first_count); else Report.Error ( 308, loc, "The non-generic method `{0}' " + "cannot be used with type arguments", Name); return null; } } /// /// Fully resolved expression that evaluates to a Field /// public class FieldExpr : Expression, IAssignMethod, IMemoryLocation, IMemberExpr, IVariable { public readonly FieldInfo FieldInfo; Expression instance_expr; VariableInfo variable_info; LocalTemporary temp; bool prepared; bool is_field_initializer; public FieldExpr (FieldInfo fi, Location l) { FieldInfo = fi; eclass = ExprClass.Variable; type = TypeManager.TypeToCoreType (fi.FieldType); loc = l; } public string Name { get { return FieldInfo.Name; } } public bool IsInstance { get { return !FieldInfo.IsStatic; } } public bool IsStatic { get { return FieldInfo.IsStatic; } } public Type DeclaringType { get { return FieldInfo.DeclaringType; } } public Expression InstanceExpression { get { return instance_expr; } set { instance_expr = value; } } public bool IsFieldInitializer { get { return is_field_initializer; } set { is_field_initializer = value; } } public VariableInfo VariableInfo { get { return variable_info; } } override public Expression DoResolve (EmitContext ec) { if (!FieldInfo.IsStatic){ if (instance_expr == null){ // // This can happen when referencing an instance field using // a fully qualified type expression: TypeName.InstanceField = xxx // SimpleName.Error_ObjectRefRequired (ec, loc, FieldInfo.Name); return null; } // Resolve the field's instance expression while flow analysis is turned // off: when accessing a field "a.b", we must check whether the field // "a.b" is initialized, not whether the whole struct "a" is initialized. instance_expr = instance_expr.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.DisableFlowAnalysis); if (instance_expr == null) return null; } ObsoleteAttribute oa; FieldBase f = TypeManager.GetField (FieldInfo); if (f != null) { oa = f.GetObsoleteAttribute (f.Parent); if (oa != null) AttributeTester.Report_ObsoleteMessage (oa, f.GetSignatureForError (), loc); // To be sure that type is external because we do not register generated fields } else if (!(FieldInfo.DeclaringType is TypeBuilder)) { oa = AttributeTester.GetMemberObsoleteAttribute (FieldInfo); if (oa != null) AttributeTester.Report_ObsoleteMessage (oa, TypeManager.GetFullNameSignature (FieldInfo), loc); } // If the instance expression is a local variable or parameter. IVariable var = instance_expr as IVariable; if ((var == null) || (var.VariableInfo == null)) return this; VariableInfo vi = var.VariableInfo; if (!vi.IsFieldAssigned (ec, FieldInfo.Name, loc)) return null; variable_info = vi.GetSubStruct (FieldInfo.Name); return this; } void Report_AssignToReadonly (bool is_instance) { string msg; if (is_instance) msg = "Readonly field can not be assigned outside " + "of constructor or variable initializer"; else msg = "A static readonly field can only be assigned in " + "a static constructor"; Report.Error (is_instance ? 191 : 198, loc, msg); } override public Expression DoResolveLValue (EmitContext ec, Expression right_side) { IVariable var = instance_expr as IVariable; if ((var != null) && (var.VariableInfo != null)) var.VariableInfo.SetFieldAssigned (ec, FieldInfo.Name); Expression e = DoResolve (ec); if (e == null) return null; if (!FieldInfo.IsStatic && (instance_expr.Type.IsValueType && !(instance_expr is IMemoryLocation))) { // FIXME: Provide better error reporting. Error (1612, "Cannot modify expression because it is not a variable."); return null; } if (!FieldInfo.IsInitOnly) return this; FieldBase fb = TypeManager.GetField (FieldInfo); if (fb != null) fb.SetAssigned (); // // InitOnly fields can only be assigned in constructors // if (ec.IsConstructor){ if (IsStatic && !ec.IsStatic) Report_AssignToReadonly (false); Type ctype; if (!is_field_initializer && (ec.TypeContainer.CurrentType != null)) ctype = ec.TypeContainer.CurrentType.ResolveType (ec); else ctype = ec.ContainerType; if (TypeManager.IsEqual (ctype, FieldInfo.DeclaringType)) return this; } Report_AssignToReadonly (!IsStatic); return null; } public bool VerifyFixed (bool is_expression) { IVariable variable = instance_expr as IVariable; if ((variable == null) || !variable.VerifyFixed (true)) return false; return true; } public void Emit (EmitContext ec, bool leave_copy) { ILGenerator ig = ec.ig; bool is_volatile = false; if (FieldInfo is FieldBuilder){ FieldBase f = TypeManager.GetField (FieldInfo); if (f != null){ if ((f.ModFlags & Modifiers.VOLATILE) != 0) is_volatile = true; f.status |= Field.Status.USED; } } if (FieldInfo.IsStatic){ if (is_volatile) ig.Emit (OpCodes.Volatile); ig.Emit (OpCodes.Ldsfld, FieldInfo); } else { if (!prepared) EmitInstance (ec); if (is_volatile) ig.Emit (OpCodes.Volatile); ig.Emit (OpCodes.Ldfld, FieldInfo); } if (leave_copy) { ec.ig.Emit (OpCodes.Dup); if (!FieldInfo.IsStatic) { temp = new LocalTemporary (ec, this.Type); temp.Store (ec); } } } public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load) { FieldAttributes fa = FieldInfo.Attributes; bool is_static = (fa & FieldAttributes.Static) != 0; bool is_readonly = (fa & FieldAttributes.InitOnly) != 0; ILGenerator ig = ec.ig; prepared = prepare_for_load; if (is_readonly && !ec.IsConstructor){ Report_AssignToReadonly (!is_static); return; } if (!is_static) { EmitInstance (ec); if (prepare_for_load) ig.Emit (OpCodes.Dup); } source.Emit (ec); if (leave_copy) { ec.ig.Emit (OpCodes.Dup); if (!FieldInfo.IsStatic) { temp = new LocalTemporary (ec, this.Type); temp.Store (ec); } } if (FieldInfo is FieldBuilder){ FieldBase f = TypeManager.GetField (FieldInfo); if (f != null){ if ((f.ModFlags & Modifiers.VOLATILE) != 0) ig.Emit (OpCodes.Volatile); f.status |= Field.Status.ASSIGNED; } } if (is_static) ig.Emit (OpCodes.Stsfld, FieldInfo); else ig.Emit (OpCodes.Stfld, FieldInfo); if (temp != null) temp.Emit (ec); } void EmitInstance (EmitContext ec) { if (instance_expr.Type.IsValueType) { if (instance_expr is IMemoryLocation) { ((IMemoryLocation) instance_expr).AddressOf (ec, AddressOp.LoadStore); } else { LocalTemporary t = new LocalTemporary (ec, instance_expr.Type); instance_expr.Emit (ec); t.Store (ec); t.AddressOf (ec, AddressOp.Store); } } else instance_expr.Emit (ec); } public override void Emit (EmitContext ec) { Emit (ec, false); } public void AddressOf (EmitContext ec, AddressOp mode) { ILGenerator ig = ec.ig; if (FieldInfo is FieldBuilder){ FieldBase f = TypeManager.GetField (FieldInfo); if (f != null){ if ((f.ModFlags & Modifiers.VOLATILE) != 0){ Error (676, "volatile variable: can not take its address, or pass as ref/out parameter"); return; } if ((mode & AddressOp.Store) != 0) f.status |= Field.Status.ASSIGNED; if ((mode & AddressOp.Load) != 0) f.status |= Field.Status.USED; } } // // Handle initonly fields specially: make a copy and then // get the address of the copy. // bool need_copy; if (FieldInfo.IsInitOnly){ need_copy = true; if (ec.IsConstructor){ if (FieldInfo.IsStatic){ if (ec.IsStatic) need_copy = false; } else need_copy = false; } } else need_copy = false; if (need_copy){ LocalBuilder local; Emit (ec); local = ig.DeclareLocal (type); ig.Emit (OpCodes.Stloc, local); ig.Emit (OpCodes.Ldloca, local); return; } if (FieldInfo.IsStatic){ ig.Emit (OpCodes.Ldsflda, FieldInfo); } else { EmitInstance (ec); ig.Emit (OpCodes.Ldflda, FieldInfo); } } } // // A FieldExpr whose address can not be taken // public class FieldExprNoAddress : FieldExpr, IMemoryLocation { public FieldExprNoAddress (FieldInfo fi, Location loc) : base (fi, loc) { } public new void AddressOf (EmitContext ec, AddressOp mode) { Report.Error (-215, "Report this: Taking the address of a remapped parameter not supported"); } } /// /// Expression that evaluates to a Property. The Assign class /// might set the `Value' expression if we are in an assignment. /// /// This is not an LValue because we need to re-write the expression, we /// can not take data from the stack and store it. /// public class PropertyExpr : ExpressionStatement, IAssignMethod, IMemberExpr { public readonly PropertyInfo PropertyInfo; // // This is set externally by the `BaseAccess' class // public bool IsBase; MethodInfo getter, setter; bool is_static; bool must_do_cs1540_check; Expression instance_expr; LocalTemporary temp; bool prepared; public PropertyExpr (EmitContext ec, PropertyInfo pi, Location l) { PropertyInfo = pi; eclass = ExprClass.PropertyAccess; is_static = false; loc = l; type = TypeManager.TypeToCoreType (pi.PropertyType); ResolveAccessors (ec); } public string Name { get { return PropertyInfo.Name; } } public bool IsInstance { get { return !is_static; } } public bool IsStatic { get { return is_static; } } public Type DeclaringType { get { return PropertyInfo.DeclaringType; } } // // The instance expression associated with this expression // public Expression InstanceExpression { set { instance_expr = value; } get { return instance_expr; } } public bool VerifyAssignable () { if (setter == null) { Report.Error (200, loc, "The property `" + PropertyInfo.Name + "' can not be assigned to, as it has not set accessor"); return false; } return true; } void FindAccessors (Type invocation_type) { BindingFlags flags = BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance | BindingFlags.DeclaredOnly; Type current = PropertyInfo.DeclaringType; for (; current != null; current = current.BaseType) { MemberInfo[] group = TypeManager.MemberLookup ( invocation_type, invocation_type, current, MemberTypes.Property, flags, PropertyInfo.Name, null); if (group == null) continue; if (group.Length != 1) // Oooops, can this ever happen ? return; PropertyInfo pi = (PropertyInfo) group [0]; if (getter == null) getter = pi.GetGetMethod (true);; if (setter == null) setter = pi.GetSetMethod (true);; MethodInfo accessor = getter != null ? getter : setter; if (!accessor.IsVirtual) return; } } bool IsAccessorAccessible (Type invocation_type, MethodInfo mi) { MethodAttributes ma = mi.Attributes & MethodAttributes.MemberAccessMask; // // If only accessible to the current class or children // if (ma == MethodAttributes.Private) { Type declaring_type = mi.DeclaringType; if (invocation_type != declaring_type) return TypeManager.IsNestedFamilyAccessible (invocation_type, declaring_type); return true; } // // FamAndAssem requires that we not only derivate, but we are on the // same assembly. // if (ma == MethodAttributes.FamANDAssem){ return (mi.DeclaringType.Assembly != invocation_type.Assembly); } // Assembly and FamORAssem succeed if we're in the same assembly. if ((ma == MethodAttributes.Assembly) || (ma == MethodAttributes.FamORAssem)){ if (mi.DeclaringType.Assembly == invocation_type.Assembly) return true; } // We already know that we aren't in the same assembly. if (ma == MethodAttributes.Assembly) return false; // Family and FamANDAssem require that we derive. if ((ma == MethodAttributes.Family) || (ma == MethodAttributes.FamANDAssem) || (ma == MethodAttributes.FamORAssem)){ if (!TypeManager.IsNestedFamilyAccessible (invocation_type, mi.DeclaringType)) return false; else { if (!TypeManager.IsNestedChildOf (invocation_type, mi.DeclaringType)) must_do_cs1540_check = true; return true; } } return true; } // // We also perform the permission checking here, as the PropertyInfo does not // hold the information for the accessibility of its setter/getter // void ResolveAccessors (EmitContext ec) { FindAccessors (ec.ContainerType); if (setter != null && !IsAccessorAccessible (ec.ContainerType, setter) || getter != null && !IsAccessorAccessible (ec.ContainerType, getter)) { Report.Error (122, loc, "'{0}' is inaccessible due to its protection level", PropertyInfo.Name); } is_static = getter != null ? getter.IsStatic : setter.IsStatic; } bool InstanceResolve (EmitContext ec) { if ((instance_expr == null) && ec.IsStatic && !is_static) { SimpleName.Error_ObjectRefRequired (ec, loc, PropertyInfo.Name); return false; } if (instance_expr != null) { instance_expr = instance_expr.DoResolve (ec); if (instance_expr == null) return false; } if (must_do_cs1540_check && (instance_expr != null)) { if ((instance_expr.Type != ec.ContainerType) && ec.ContainerType.IsSubclassOf (instance_expr.Type)) { Report.Error (1540, loc, "Cannot access protected member `" + PropertyInfo.DeclaringType + "." + PropertyInfo.Name + "' via a qualifier of type `" + TypeManager.CSharpName (instance_expr.Type) + "'; the qualifier must be of type `" + TypeManager.CSharpName (ec.ContainerType) + "' (or derived from it)"); return false; } } return true; } override public Expression DoResolve (EmitContext ec) { if (getter != null){ if (TypeManager.GetArgumentTypes (getter).Length != 0){ Report.Error ( 117, loc, "`{0}' does not contain a " + "definition for `{1}'.", getter.DeclaringType, Name); return null; } } if (getter == null){ // // The following condition happens if the PropertyExpr was // created, but is invalid (ie, the property is inaccessible), // and we did not want to embed the knowledge about this in // the caller routine. This only avoids double error reporting. // if (setter == null) return null; Report.Error (154, loc, "The property `" + PropertyInfo.Name + "' can not be used in " + "this context because it lacks a get accessor"); return null; } if (!InstanceResolve (ec)) return null; // // Only base will allow this invocation to happen. // if (IsBase && getter.IsAbstract){ Report.Error (205, loc, "Cannot call an abstract base property: " + PropertyInfo.DeclaringType + "." +PropertyInfo.Name); return null; } return this; } override public Expression DoResolveLValue (EmitContext ec, Expression right_side) { if (setter == null){ // // The following condition happens if the PropertyExpr was // created, but is invalid (ie, the property is inaccessible), // and we did not want to embed the knowledge about this in // the caller routine. This only avoids double error reporting. // if (getter == null) return null; Report.Error (154, loc, "The property `" + PropertyInfo.Name + "' can not be used in " + "this context because it lacks a set accessor"); return null; } if (TypeManager.GetArgumentTypes (setter).Length != 1){ Report.Error ( 117, loc, "`{0}' does not contain a " + "definition for `{1}'.", getter.DeclaringType, Name); return null; } if (!InstanceResolve (ec)) return null; // // Only base will allow this invocation to happen. // if (IsBase && setter.IsAbstract){ Report.Error (205, loc, "Cannot call an abstract base property: " + PropertyInfo.DeclaringType + "." +PropertyInfo.Name); return null; } // // Check that we are not making changes to a temporary memory location // if (instance_expr != null && instance_expr.Type.IsValueType && !(instance_expr is IMemoryLocation)) { // FIXME: Provide better error reporting. Error (1612, "Cannot modify expression because it is not a variable."); return null; } return this; } public override void Emit (EmitContext ec) { Emit (ec, false); } void EmitInstance (EmitContext ec) { if (is_static) return; if (instance_expr.Type.IsValueType) { if (instance_expr is IMemoryLocation) { ((IMemoryLocation) instance_expr).AddressOf (ec, AddressOp.LoadStore); } else { LocalTemporary t = new LocalTemporary (ec, instance_expr.Type); instance_expr.Emit (ec); t.Store (ec); t.AddressOf (ec, AddressOp.Store); } } else instance_expr.Emit (ec); if (prepared) ec.ig.Emit (OpCodes.Dup); } public void Emit (EmitContext ec, bool leave_copy) { if (!prepared) EmitInstance (ec); // // Special case: length of single dimension array property is turned into ldlen // if ((getter == TypeManager.system_int_array_get_length) || (getter == TypeManager.int_array_get_length)){ Type iet = instance_expr.Type; // // System.Array.Length can be called, but the Type does not // support invoking GetArrayRank, so test for that case first // if (iet != TypeManager.array_type && (iet.GetArrayRank () == 1)) { ec.ig.Emit (OpCodes.Ldlen); ec.ig.Emit (OpCodes.Conv_I4); return; } } Invocation.EmitCall (ec, IsBase, IsStatic, new EmptyAddressOf (), getter, null, loc); if (!leave_copy) return; ec.ig.Emit (OpCodes.Dup); if (!is_static) { temp = new LocalTemporary (ec, this.Type); temp.Store (ec); } } // // Implements the IAssignMethod interface for assignments // public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load) { prepared = prepare_for_load; EmitInstance (ec); source.Emit (ec); if (leave_copy) { ec.ig.Emit (OpCodes.Dup); if (!is_static) { temp = new LocalTemporary (ec, this.Type); temp.Store (ec); } } ArrayList args = new ArrayList (1); args.Add (new Argument (new EmptyAddressOf (), Argument.AType.Expression)); Invocation.EmitCall (ec, IsBase, IsStatic, new EmptyAddressOf (), setter, args, loc); if (temp != null) temp.Emit (ec); } override public void EmitStatement (EmitContext ec) { Emit (ec); ec.ig.Emit (OpCodes.Pop); } } /// /// Fully resolved expression that evaluates to an Event /// public class EventExpr : Expression, IMemberExpr { public readonly EventInfo EventInfo; Expression instance_expr; bool is_static; MethodInfo add_accessor, remove_accessor; public EventExpr (EventInfo ei, Location loc) { EventInfo = ei; this.loc = loc; eclass = ExprClass.EventAccess; add_accessor = TypeManager.GetAddMethod (ei); remove_accessor = TypeManager.GetRemoveMethod (ei); if (add_accessor.IsStatic || remove_accessor.IsStatic) is_static = true; if (EventInfo is MyEventBuilder){ MyEventBuilder eb = (MyEventBuilder) EventInfo; type = eb.EventType; eb.SetUsed (); } else type = EventInfo.EventHandlerType; } public string Name { get { return EventInfo.Name; } } public bool IsInstance { get { return !is_static; } } public bool IsStatic { get { return is_static; } } public Type DeclaringType { get { return EventInfo.DeclaringType; } } public Expression InstanceExpression { get { return instance_expr; } set { instance_expr = value; } } public override Expression DoResolve (EmitContext ec) { if (instance_expr != null) { instance_expr = instance_expr.DoResolve (ec); if (instance_expr == null) return null; } return this; } public override void Emit (EmitContext ec) { Report.Error (70, loc, "The event `" + Name + "' can only appear on the left hand side of += or -= (except on the defining type)"); } public void EmitAddOrRemove (EmitContext ec, Expression source) { BinaryDelegate source_del = (BinaryDelegate) source; Expression handler = source_del.Right; Argument arg = new Argument (handler, Argument.AType.Expression); ArrayList args = new ArrayList (); args.Add (arg); if (source_del.IsAddition) Invocation.EmitCall ( ec, false, IsStatic, instance_expr, add_accessor, args, loc); else Invocation.EmitCall ( ec, false, IsStatic, instance_expr, remove_accessor, args, loc); } } }