// // assign.cs: Assignments. // // Author: // Miguel de Icaza (miguel@ximian.com) // Martin Baulig (martin@gnome.org) // // (C) 2001, 2002, 2003 Ximian, Inc. // using System; using System.Reflection; using System.Reflection.Emit; namespace Mono.CSharp { /// /// This interface is implemented by expressions that can be assigned to. /// /// /// This interface is implemented by Expressions whose values can not /// store the result on the top of the stack. /// /// Expressions implementing this (Properties, Indexers and Arrays) would /// perform an assignment of the Expression "source" into its final /// location. /// /// No values on the top of the stack are expected to be left by /// invoking this method. /// public interface IAssignMethod { // // This method will emit the code for the actual assignment // void EmitAssign (EmitContext ec, Expression source); // // This method is invoked before any code generation takes // place, and it is a mechanism to inform that the expression // will be invoked more than once, and that the method should // use temporary values to avoid having side effects // // Example: a [ g () ] ++ // void CacheTemporaries (EmitContext ec); } /// /// An Expression to hold a temporary value. /// /// /// The LocalTemporary class is used to hold temporary values of a given /// type to "simulate" the expression semantics on property and indexer /// access whose return values are void. /// /// The local temporary is used to alter the normal flow of code generation /// basically it creates a local variable, and its emit instruction generates /// code to access this value, return its address or save its value. /// /// If `is_address' is true, then the value that we store is the address to the /// real value, and not the value itself. /// /// This is needed for a value type, because otherwise you just end up making a /// copy of the value on the stack and modifying it. You really need a pointer /// to the origional value so that you can modify it in that location. This /// Does not happen with a class because a class is a pointer -- so you always /// get the indirection. /// /// The `is_address' stuff is really just a hack. We need to come up with a better /// way to handle it. /// public class LocalTemporary : Expression, IMemoryLocation { LocalBuilder builder; bool is_address; public LocalTemporary (EmitContext ec, Type t) : this (ec, t, false) {} public LocalTemporary (EmitContext ec, Type t, bool is_address) { type = t; eclass = ExprClass.Value; loc = Location.Null; builder = ec.GetTemporaryLocal (is_address ? TypeManager.GetReferenceType (t): t); this.is_address = is_address; } public LocalTemporary (LocalBuilder b, Type t) { type = t; eclass = ExprClass.Value; loc = Location.Null; builder = b; } public void Release (EmitContext ec) { ec.FreeTemporaryLocal (builder, type); builder = null; } public override Expression DoResolve (EmitContext ec) { return this; } public override void Emit (EmitContext ec) { ILGenerator ig = ec.ig; ig.Emit (OpCodes.Ldloc, builder); // we need to copy from the pointer if (is_address) LoadFromPtr (ig, type); } // NB: if you have `is_address' on the stack there must // be a managed pointer. Otherwise, it is the type from // the ctor. public void Store (EmitContext ec) { ILGenerator ig = ec.ig; ig.Emit (OpCodes.Stloc, builder); } public void AddressOf (EmitContext ec, AddressOp mode) { // if is_address, than this is just the address anyways, // so we just return this. ILGenerator ig = ec.ig; if (is_address) ig.Emit (OpCodes.Ldloc, builder); else ig.Emit (OpCodes.Ldloca, builder); } public bool PointsToAddress { get { return is_address; } } } /// /// The Assign node takes care of assigning the value of source into /// the expression represented by target. /// public class Assign : ExpressionStatement { protected Expression target, source, real_source; protected LocalTemporary temp = null, real_temp = null; protected Assign embedded = null; protected bool is_embedded = false; protected bool must_free_temp = false; public Assign (Expression target, Expression source, Location l) { this.target = target; this.source = this.real_source = source; this.loc = l; } protected Assign (Assign embedded, Location l) : this (embedded.target, embedded.source, l) { this.is_embedded = true; } protected virtual Assign GetEmbeddedAssign (Location loc) { return new Assign (this, loc); } public Expression Target { get { return target; } set { target = value; } } public Expression Source { get { return source; } set { source = value; } } public static void error70 (EventInfo ei, Location l) { Report.Error (70, l, "The event '" + ei.Name + "' can only appear on the left-side of a += or -= (except when" + " used from within the type '" + ei.DeclaringType + "')"); } // // Will return either `this' or an instance of `New'. // public override Expression DoResolve (EmitContext ec) { // Create an embedded assignment if our source is an assignment. if (source is Assign) source = embedded = ((Assign) source).GetEmbeddedAssign (loc); real_source = source = source.Resolve (ec); if (source == null) return null; // // This is used in an embedded assignment. // As an example, consider the statement "A = X = Y = Z". // if (is_embedded && !(source is Constant)) { // If this is the innermost assignment (the "Y = Z" in our example), // create a new temporary local, otherwise inherit that variable // from our child (the "X = (Y = Z)" inherits the local from the // "Y = Z" assignment). if (embedded == null) { if (this is CompoundAssign) real_temp = temp = new LocalTemporary (ec, target.Type); else real_temp = temp = new LocalTemporary (ec, source.Type); } else temp = embedded.temp; // Set the source to the new temporary variable. // This means that the following target.ResolveLValue () will tell // the target to read it's source value from that variable. source = temp; } // If we have an embedded assignment, use the embedded assignment's temporary // local variable as source. if (embedded != null) source = (embedded.temp != null) ? embedded.temp : embedded.source; target = target.ResolveLValue (ec, source); if (target == null) return null; Type target_type = target.Type; Type source_type = real_source.Type; // If we're an embedded assignment, our parent will reuse our source as its // source, it won't read from our target. if (is_embedded) type = source_type; else type = target_type; eclass = ExprClass.Value; if (target is EventExpr) { EventInfo ei = ((EventExpr) target).EventInfo; Expression ml = MemberLookup ( ec, ec.ContainerType, ei.Name, MemberTypes.Event, AllBindingFlags | BindingFlags.DeclaredOnly, loc); if (ml == null) { // // If this is the case, then the Event does not belong // to this Type and so, according to the spec // is allowed to only appear on the left hand of // the += and -= operators // // Note that target will not appear as an EventExpr // in the case it is being referenced within the same type container; // it will appear as a FieldExpr in that case. // if (!(source is BinaryDelegate)) { error70 (ei, loc); return null; } } } if (!(target is IAssignMethod) && (target.eclass != ExprClass.EventAccess)) { Report.Error (131, loc, "Left hand of an assignment must be a variable, " + "a property or an indexer"); return null; } if (source is New && target_type.IsValueType && (target.eclass != ExprClass.IndexerAccess) && (target.eclass != ExprClass.PropertyAccess)){ New n = (New) source; if (n.SetValueTypeVariable (target)) return n; else return null; } if ((source.eclass == ExprClass.Type) && (source is TypeExpr)) { source.Error_UnexpectedKind ("variable or value"); return null; } else if (!RootContext.V2 && (source is MethodGroupExpr)){ ((MethodGroupExpr) source).ReportUsageError (); return null; } if (target_type == source_type) return this; // // If this assignemnt/operator was part of a compound binary // operator, then we allow an explicit conversion, as detailed // in the spec. // if (this is CompoundAssign){ CompoundAssign a = (CompoundAssign) this; Binary b = source as Binary; if (b != null){ // // 1. if the source is explicitly convertible to the // target_type // source = Convert.ExplicitConversion (ec, source, target_type, loc); if (source == null){ Convert.Error_CannotImplicitConversion (loc, source_type, target_type); return null; } // // 2. and the original right side is implicitly convertible to // the type of target // if (Convert.ImplicitStandardConversionExists (a.original_source, target_type)) return this; // // In the spec 2.4 they added: or if type of the target is int // and the operator is a shift operator... // if (source_type == TypeManager.int32_type && (b.Oper == Binary.Operator.LeftShift || b.Oper == Binary.Operator.RightShift)) return this; Convert.Error_CannotImplicitConversion (loc, a.original_source.Type, target_type); return null; } } source = Convert.ImplicitConversionRequired (ec, source, target_type, loc); if (source == null) return null; // If we're an embedded assignment, we need to create a new temporary variable // for the converted value. Our parent will use this new variable as its source. // The same applies when we have an embedded assignment - in this case, we need // to convert our embedded assignment's temporary local variable to the correct // type and store it in a new temporary local. if (is_embedded || embedded != null) { type = target_type; temp = new LocalTemporary (ec, type); must_free_temp = true; } return this; } Expression EmitEmbedded (EmitContext ec) { // Emit an embedded assignment. if (real_temp != null) { // If we're the innermost assignment, `real_source' is the right-hand // expression which gets assigned to all the variables left of it. // Emit this expression and store its result in real_temp. real_source.Emit (ec); real_temp.Store (ec); } if (embedded != null) embedded.EmitEmbedded (ec); // This happens when we've done a type conversion, in this case source will be // the expression which does the type conversion from real_temp. // So emit it and store the result in temp; this is the var which will be read // by our parent. if (temp != real_temp) { source.Emit (ec); temp.Store (ec); } Expression temp_source = (temp != null) ? temp : source; ((IAssignMethod) target).EmitAssign (ec, temp_source); return temp_source; } void ReleaseEmbedded (EmitContext ec) { if (embedded != null) embedded.ReleaseEmbedded (ec); if (real_temp != null) real_temp.Release (ec); if (must_free_temp) temp.Release (ec); } void Emit (EmitContext ec, bool is_statement) { if (target is EventExpr) { ((EventExpr) target).EmitAddOrRemove (ec, source); return; } bool use_temporaries = false; // // FIXME! We need a way to "probe" if the process can // just use `dup' to propagate the result // IAssignMethod am = (IAssignMethod) target; if (this is CompoundAssign) am.CacheTemporaries (ec); if (!is_statement) use_temporaries = true; Expression temp_source; if (embedded != null) { temp_source = embedded.EmitEmbedded (ec); if (temp != null) { source.Emit (ec); temp.Store (ec); temp_source = temp; } } else temp_source = source; if (use_temporaries){ // // Doing this for every path is too expensive // I wonder if we can work around this and have a less // expensive path // LocalTemporary tempo; tempo = new LocalTemporary (ec, source.Type); temp_source.Emit (ec); tempo.Store (ec); am.EmitAssign (ec, tempo); if (!is_statement) tempo.Emit (ec); tempo.Release (ec); } else { am.EmitAssign (ec, temp_source); } if (embedded != null) { if (temp != null) temp.Release (ec); embedded.ReleaseEmbedded (ec); } } public override void Emit (EmitContext ec) { Emit (ec, false); } public override void EmitStatement (EmitContext ec) { Emit (ec, true); } } // // This class is used for compound assignments. // class CompoundAssign : Assign { Binary.Operator op; public Expression original_source; public CompoundAssign (Binary.Operator op, Expression target, Expression source, Location l) : base (target, source, l) { original_source = source; this.op = op; } protected CompoundAssign (CompoundAssign embedded, Location l) : this (embedded.op, embedded.target, embedded.source, l) { this.is_embedded = true; } protected override Assign GetEmbeddedAssign (Location loc) { return new CompoundAssign (this, loc); } public Expression ResolveSource (EmitContext ec) { return original_source.Resolve (ec); } public override Expression DoResolve (EmitContext ec) { original_source = original_source.Resolve (ec); if (original_source == null) return null; target = target.Resolve (ec); if (target == null) return null; // // Only now we can decouple the original source/target // into a tree, to guarantee that we do not have side // effects. // source = new Binary (op, target, original_source, loc); return base.DoResolve (ec); } } }