// // System.Security.Cryptography.RC2CryptoServiceProvider.cs // // Authors: // Andrew Birkett (andy@nobugs.org) // Sebastien Pouliot (sebastien@ximian.com) // // Portions (C) 2002 Motus Technologies Inc. (http://www.motus.com) // Copyright (C) 2004-2005 Novell, Inc (http://www.novell.com) // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // using System.Globalization; using System.Runtime.InteropServices; using Mono.Security.Cryptography; namespace System.Security.Cryptography { // References: // a. IETF RFC2286: A Description of the RC2(r) Encryption Algorithm // http://www.ietf.org/rfc/rfc2268.txt #if NET_2_0 [ComVisible (true)] #endif public sealed class RC2CryptoServiceProvider : RC2 { private bool _useSalt; public RC2CryptoServiceProvider () { } public override int EffectiveKeySize { get { return base.EffectiveKeySize; } set { if (value != KeySizeValue) { #if NET_1_1 throw new CryptographicUnexpectedOperationException ( #else throw new CryptographicException ( #endif Locale.GetText ("Effective key size must match key size for compatibility")); } base.EffectiveKeySize = value; } } public override ICryptoTransform CreateDecryptor (byte[] rgbKey, byte[] rgbIV) { Key = rgbKey; IV = rgbIV; return new RC2Transform (this, false); } public override ICryptoTransform CreateEncryptor (byte[] rgbKey, byte[] rgbIV) { Key = rgbKey; IV = rgbIV; return new RC2Transform (this, true); } public override void GenerateIV () { IVValue = KeyBuilder.IV (BlockSizeValue >> 3); } public override void GenerateKey () { KeyValue = KeyBuilder.Key (KeySizeValue >> 3); } #if NET_2_0 [MonoTODO ("Use salt in algorithm")] [ComVisible (false)] public bool UseSalt { get { return _useSalt; } set { _useSalt = value; } } #endif } internal class RC2Transform : SymmetricTransform { private UInt16 R0, R1, R2, R3; // state private UInt16[] K; // expanded key private int j; // Key indexer public RC2Transform (RC2 rc2Algo, bool encryption) : base (rc2Algo, encryption, rc2Algo.IV) { byte[] key = rc2Algo.Key; int t1 = rc2Algo.EffectiveKeySize; // Expand key into a byte array, then convert to word // array since we always access the key in 16bit chunks. byte[] L = new byte [128]; int t = key.Length; int t8 = ((t1 + 7) >> 3); // divide by 8 int tm = 255 % (2 << (8 + t1 - (t8 << 3) - 1)); for (int i=0; i < t; i++) L [i] = key [i]; for (int i=t; i < 128; i++) L [i] = (byte) (pitable [(L [i-1] + L [i-t]) & 0xff]); L [128-t8] = pitable [L [128-t8] & tm]; for (int i=127-t8; i >= 0; i--) L [i] = pitable [L [i+1] ^ L [i+t8]]; K = new UInt16 [64]; int pos = 0; for (int i=0; i < 64; i++) K [i] = (UInt16) (L [pos++] + (L [pos++] << 8)); } protected override void ECB (byte[] input, byte[] output) { // unrolled loop, eliminated mul R0 = (UInt16) (input [0] | (input [1] << 8)); R1 = (UInt16) (input [2] | (input [3] << 8)); R2 = (UInt16) (input [4] | (input [5] << 8)); R3 = (UInt16) (input [6] | (input [7] << 8)); if (encrypt) { j = 0; // inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix(); while (j <= 16) { R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1)); R0 = (UInt16) ((R0 << 1) | (R0 >> 15)); R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2)); R1 = (UInt16) ((R1 << 2) | (R1 >> 14)); R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3)); R2 = (UInt16) ((R2 << 3) | (R2 >> 13)); R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0)); R3 = (UInt16) ((R3 << 5) | (R3 >> 11)); } // inline Mash(); j == 20 R0 += K [R3 & 63]; R1 += K [R0 & 63]; R2 += K [R1 & 63]; R3 += K [R2 & 63]; // inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix(); Mix(); while (j <= 40) { R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1)); R0 = (UInt16) ((R0 << 1) | (R0 >> 15)); R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2)); R1 = (UInt16) ((R1 << 2) | (R1 >> 14)); R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3)); R2 = (UInt16) ((R2 << 3) | (R2 >> 13)); R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0)); R3 = (UInt16) ((R3 << 5) | (R3 >> 11)); } // inline Mash(); j == 44 R0 += K [R3 & 63]; R1 += K [R0 & 63]; R2 += K [R1 & 63]; R3 += K [R2 & 63]; // inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix(); while (j < 64) { R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1)); R0 = (UInt16) ((R0 << 1) | (R0 >> 15)); R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2)); R1 = (UInt16) ((R1 << 2) | (R1 >> 14)); R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3)); R2 = (UInt16) ((R2 << 3) | (R2 >> 13)); R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0)); R3 = (UInt16) ((R3 << 5) | (R3 >> 11)); } } else { j = 63; // inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix(); while (j >= 44) { R3 = (UInt16) ((R3 >> 5) | (R3 << 11)); R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0)); R2 = (UInt16) ((R2 >> 3) | (R2 << 13)); R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3)); R1 = (UInt16) ((R1 >> 2) | (R1 << 14)); R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2)); R0 = (UInt16) ((R0 >> 1) | (R0 << 15)); R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1)); } // inline RMash(); R3 -= K [R2 & 63]; R2 -= K [R1 & 63]; R1 -= K [R0 & 63]; R0 -= K [R3 & 63]; // inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix(); RMix(); while (j >= 20) { R3 = (UInt16) ((R3 >> 5) | (R3 << 11)); R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0)); R2 = (UInt16) ((R2 >> 3) | (R2 << 13)); R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3)); R1 = (UInt16) ((R1 >> 2) | (R1 << 14)); R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2)); R0 = (UInt16) ((R0 >> 1) | (R0 << 15)); R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1)); } // inline RMash(); R3 -= K [R2 & 63]; R2 -= K [R1 & 63]; R1 -= K [R0 & 63]; R0 -= K [R3 & 63]; // inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix(); while (j >= 0) { R3 = (UInt16) ((R3 >> 5) | (R3 << 11)); R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0)); R2 = (UInt16) ((R2 >> 3) | (R2 << 13)); R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3)); R1 = (UInt16) ((R1 >> 2) | (R1 << 14)); R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2)); R0 = (UInt16) ((R0 >> 1) | (R0 << 15)); R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1)); } } // unrolled loop output[0] = (byte) R0; output[1] = (byte) (R0 >> 8); output[2] = (byte) R1; output[3] = (byte) (R1 >> 8); output[4] = (byte) R2; output[5] = (byte) (R2 >> 8); output[6] = (byte) R3; output[7] = (byte) (R3 >> 8); } static readonly byte[] pitable = { 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad }; } }