// SplitOrderedList.cs // // Copyright (c) 2010 Jérémie "Garuma" Laval // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // #if NET_4_0 || INSIDE_SYSTEM_WEB || MOBILE using System; using System.Threading; using System.Collections; using System.Collections.Generic; using System.Runtime.Serialization; namespace System.Collections.Concurrent { internal class SplitOrderedList { class Node { public bool Marked; public ulong Key; public TKey SubKey; public T Data; public Node Next; public Node Init (ulong key, TKey subKey, T data) { this.Key = key; this.SubKey = subKey; this.Data = data; this.Marked = false; this.Next = null; return this; } // Used to create dummy node public Node Init (ulong key) { this.Key = key; this.Data = default (T); this.Next = null; this.Marked = false; this.SubKey = default (TKey); return this; } // Used to create marked node public Node Init (Node wrapped) { this.Marked = true; this.Next = wrapped; this.Key = 0; this.Data = default (T); this.SubKey = default (TKey); return this; } } class NodeObjectPool : ObjectPool { protected override Node Creator () { return new Node (); } } static readonly NodeObjectPool pool = new NodeObjectPool (); const int MaxLoad = 5; const uint BucketSize = 512; Node head; Node tail; Node[] buckets = new Node [BucketSize]; int count; int size = 2; SimpleRwLock slim = new SimpleRwLock (); readonly IEqualityComparer comparer; public SplitOrderedList (IEqualityComparer comparer) { this.comparer = comparer; head = new Node ().Init (0); tail = new Node ().Init (ulong.MaxValue); head.Next = tail; SetBucket (0, head); } public int Count { get { return count; } } public T InsertOrUpdate (uint key, TKey subKey, Func addGetter, Func updateGetter) { Node current; bool result = InsertInternal (key, subKey, default (T), addGetter, out current); if (result) return current.Data; // FIXME: this should have a CAS-like behavior return current.Data = updateGetter (current.Data); } public T InsertOrUpdate (uint key, TKey subKey, T addValue, T updateValue) { Node current; if (InsertInternal (key, subKey, addValue, null, out current)) return current.Data; // FIXME: this should have a CAS-like behavior return current.Data = updateValue; } public bool Insert (uint key, TKey subKey, T data) { Node current; return InsertInternal (key, subKey, data, null, out current); } public T InsertOrGet (uint key, TKey subKey, T data, Func dataCreator) { Node current; InsertInternal (key, subKey, data, dataCreator, out current); return current.Data; } bool InsertInternal (uint key, TKey subKey, T data, Func dataCreator, out Node current) { Node node = pool.Take ().Init (ComputeRegularKey (key), subKey, data); uint b = key % (uint)size; Node bucket; if ((bucket = GetBucket (b)) == null) bucket = InitializeBucket (b); if (!ListInsert (node, bucket, out current, dataCreator)) return false; int csize = size; if (Interlocked.Increment (ref count) / csize > MaxLoad && (csize & 0x40000000) == 0) Interlocked.CompareExchange (ref size, 2 * csize, csize); current = node; return true; } public bool Find (uint key, TKey subKey, out T data) { Node node; uint b = key % (uint)size; data = default (T); Node bucket; if ((bucket = GetBucket (b)) == null) bucket = InitializeBucket (b); if (!ListFind (ComputeRegularKey (key), subKey, bucket, out node)) return false; data = node.Data; return !node.Marked; } public bool CompareExchange (uint key, TKey subKey, T data, Func check) { Node node; uint b = key % (uint)size; Node bucket; if ((bucket = GetBucket (b)) == null) bucket = InitializeBucket (b); if (!ListFind (ComputeRegularKey (key), subKey, bucket, out node)) return false; if (!check (node.Data)) return false; node.Data = data; return true; } public bool Delete (uint key, TKey subKey, out T data) { uint b = key % (uint)size; Node bucket; if ((bucket = GetBucket (b)) == null) bucket = InitializeBucket (b); if (!ListDelete (bucket, ComputeRegularKey (key), subKey, out data)) return false; Interlocked.Decrement (ref count); return true; } public IEnumerator GetEnumerator () { Node node = head.Next; while (node != tail) { while (node.Marked || (node.Key & 1) == 0) { node = node.Next; if (node == tail) yield break; } yield return node.Data; node = node.Next; } } Node InitializeBucket (uint b) { Node current; uint parent = GetParent (b); Node bucket; if ((bucket = GetBucket (parent)) == null) bucket = InitializeBucket (parent); Node dummy = pool.Take ().Init (ComputeDummyKey (b)); if (!ListInsert (dummy, bucket, out current, null)) return current; return SetBucket (b, dummy); } // Turn v's MSB off static uint GetParent (uint v) { uint t, tt; // Find MSB position in v var pos = (tt = v >> 16) > 0 ? (t = tt >> 8) > 0 ? 24 + logTable[t] : 16 + logTable[tt] : (t = v >> 8) > 0 ? 8 + logTable[t] : logTable[v]; return (uint)(v & ~(1 << pos)); } // Reverse integer bits and make sure LSB is set static ulong ComputeRegularKey (uint key) { return ComputeDummyKey (key) | 1; } // Reverse integer bits static ulong ComputeDummyKey (uint key) { return ((ulong)(((uint)reverseTable[key & 0xff] << 24) | ((uint)reverseTable[(key >> 8) & 0xff] << 16) | ((uint)reverseTable[(key >> 16) & 0xff] << 8) | ((uint)reverseTable[(key >> 24) & 0xff]))) << 1; } // Bucket storage is abstracted in a simple two-layer tree to avoid too much memory resize Node GetBucket (uint index) { if (index >= buckets.Length) return null; return buckets[index]; } Node SetBucket (uint index, Node node) { try { slim.EnterReadLock (); CheckSegment (index, true); Interlocked.CompareExchange (ref buckets[index], node, null); return buckets[index]; } finally { slim.ExitReadLock (); } } // When we run out of space for bucket storage, we use a lock-based array resize void CheckSegment (uint segment, bool readLockTaken) { if (segment < buckets.Length) return; if (readLockTaken) slim.ExitReadLock (); try { slim.EnterWriteLock (); while (segment >= buckets.Length) Array.Resize (ref buckets, buckets.Length * 2); } finally { slim.ExitWriteLock (); } if (readLockTaken) slim.EnterReadLock (); } Node ListSearch (ulong key, TKey subKey, ref Node left, Node h) { Node leftNodeNext = null, rightNode = null; do { Node t = h; Node tNext = t.Next; do { if (!tNext.Marked) { left = t; leftNodeNext = tNext; } t = tNext.Marked ? tNext.Next : tNext; if (t == tail) break; tNext = t.Next; } while (tNext.Marked || t.Key < key || (tNext.Key == key && !comparer.Equals (subKey, t.SubKey))); rightNode = t; if (leftNodeNext == rightNode) { if (rightNode != tail && rightNode.Next.Marked) continue; else return rightNode; } if (Interlocked.CompareExchange (ref left.Next, rightNode, leftNodeNext) == leftNodeNext) { pool.Release (leftNodeNext); if (rightNode != tail && rightNode.Next.Marked) continue; else return rightNode; } } while (true); } bool ListDelete (Node startPoint, ulong key, TKey subKey, out T data) { Node rightNode = null, rightNodeNext = null, leftNode = null; data = default (T); Node markedNode = null; do { rightNode = ListSearch (key, subKey, ref leftNode, startPoint); if (rightNode == tail || rightNode.Key != key || !comparer.Equals (subKey, rightNode.SubKey)) return false; data = rightNode.Data; rightNodeNext = rightNode.Next; if (!rightNodeNext.Marked) { if (markedNode == null) markedNode = pool.Take (); markedNode.Init (rightNodeNext); if (Interlocked.CompareExchange (ref rightNode.Next, markedNode, rightNodeNext) == rightNodeNext) break; } } while (true); if (Interlocked.CompareExchange (ref leftNode.Next, rightNodeNext, rightNode) != rightNode) ListSearch (rightNode.Key, subKey, ref leftNode, startPoint); else pool.Release (rightNode); return true; } bool ListInsert (Node newNode, Node startPoint, out Node current, Func dataCreator) { ulong key = newNode.Key; Node rightNode = null, leftNode = null; do { rightNode = current = ListSearch (key, newNode.SubKey, ref leftNode, startPoint); if (rightNode != tail && rightNode.Key == key && comparer.Equals (newNode.SubKey, rightNode.SubKey)) return false; newNode.Next = rightNode; if (dataCreator != null) newNode.Data = dataCreator (); if (Interlocked.CompareExchange (ref leftNode.Next, newNode, rightNode) == rightNode) return true; } while (true); } bool ListFind (ulong key, TKey subKey, Node startPoint, out Node data) { Node rightNode = null, leftNode = null; data = null; rightNode = ListSearch (key, subKey, ref leftNode, startPoint); data = rightNode; return rightNode != tail && rightNode.Key == key && comparer.Equals (subKey, rightNode.SubKey); } static readonly byte[] reverseTable = { 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255 }; static readonly byte[] logTable = { 0xFF, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; struct SimpleRwLock { const int RwWait = 1; const int RwWrite = 2; const int RwRead = 4; int rwlock; public void EnterReadLock () { SpinWait sw = new SpinWait (); do { while ((rwlock & (RwWrite | RwWait)) > 0) sw.SpinOnce (); if ((Interlocked.Add (ref rwlock, RwRead) & (RwWait | RwWait)) == 0) return; Interlocked.Add (ref rwlock, -RwRead); } while (true); } public void ExitReadLock () { Interlocked.Add (ref rwlock, -RwRead); } public void EnterWriteLock () { SpinWait sw = new SpinWait (); do { int state = rwlock; if (state < RwWrite) { if (Interlocked.CompareExchange (ref rwlock, RwWrite, state) == state) return; state = rwlock; } // We register our interest in taking the Write lock (if upgradeable it's already done) while ((state & RwWait) == 0 && Interlocked.CompareExchange (ref rwlock, state | RwWait, state) != state) state = rwlock; // Before falling to sleep while (rwlock > RwWait) sw.SpinOnce (); } while (true); } public void ExitWriteLock () { Interlocked.Add (ref rwlock, -RwWrite); } } } #if INSIDE_SYSTEM_WEB && !NET_4_0 internal struct SpinWait { // The number of step until SpinOnce yield on multicore machine const int step = 10; const int maxTime = 200; static readonly bool isSingleCpu = (Environment.ProcessorCount == 1); int ntime; public void SpinOnce () { ntime += 1; if (isSingleCpu) { // On a single-CPU system, spinning does no good Thread.Sleep (0); } else { if (ntime % step == 0) Thread.Sleep (0); else // Multi-CPU system might be hyper-threaded, let other thread run Thread.SpinWait (Math.Min (ntime, maxTime) << 1); } } } #endif } #endif