// // MACAlgorithm.cs: Handles MAC with any symmetric algorithm // // Author: // Sebastien Pouliot (spouliot@motus.com) // // (C) 2002, 2003 Motus Technologies Inc. (http://www.motus.com) // Copyright (C) 2004 Novell, Inc (http://www.novell.com) // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Security.Cryptography; namespace Mono.Security.Cryptography { // References: // a. FIPS PUB 81: DES MODES OF OPERATION // MAC: Appendix F (MACDES not MACTripleDES but close enough ;-) // http://www.itl.nist.gov/fipspubs/fip81.htm // Generic MAC mechanims - most of the work is done in here // It should work with any symmetric algorithm function e.g. DES for MACDES (fips81) internal class MACAlgorithm { private SymmetricAlgorithm algo; private ICryptoTransform enc; private byte[] block; private int blockSize; private int blockCount; public MACAlgorithm (SymmetricAlgorithm algorithm) { algo = (SymmetricAlgorithm) algorithm; algo.Mode = CipherMode.CBC; blockSize = (algo.BlockSize >> 3); // in bytes algo.IV = new byte [blockSize]; block = new byte [blockSize]; } public void Initialize (byte[] key) { algo.Key = key; // note: the encryptor transform may be reusable - see Final if (enc == null) { enc = algo.CreateEncryptor (); } Array.Clear (block, 0, blockSize); blockCount = 0; } public void Core (byte[] rgb, int ib, int cb) { // 1. fill the rest of the "block" int n = System.Math.Min (blockSize - blockCount, cb); Array.Copy (rgb, ib, block, blockCount, n); blockCount += n; // 2. if block is full then transform it if (blockCount == blockSize) { enc.TransformBlock (block, 0, blockSize, block, 0); // 3. transform any other full block in specified buffer int b = (int) ((cb - n) / blockSize); for (int i=0; i < b; i++) { enc.TransformBlock (rgb, n, blockSize, block, 0); n += blockSize; } // 4. if data is still present fill the "block" with the remainder blockCount = cb - n; if (blockCount > 0) Array.Copy (rgb, n, block, 0, blockCount); } } public byte[] Final () { byte[] result; if ((blockCount > 0) || ((algo.Padding != PaddingMode.Zeros) && (algo.Padding != PaddingMode.None))) { result = enc.TransformFinalBlock (block, 0, blockCount); } else { #if NET_1_0 // add an empty (zeros) block for MAC padding byte[] emptyBlock = new byte [blockSize]; result = enc.TransformFinalBlock (emptyBlock, 0, blockSize); #else result = (byte[]) block.Clone (); #endif } if (!enc.CanReuseTransform) { enc.Dispose (); enc = null; } return result; } } }