// // DiffieHellmanManaged.cs: Implements the Diffie-Hellman key agreement algorithm // // Author: // Pieter Philippaerts (Pieter@mentalis.org) // // (C) 2003 The Mentalis.org Team (http://www.mentalis.org/) // // References: // - PKCS#3 [http://www.rsasecurity.com/rsalabs/pkcs/pkcs-3/] // using System; using System.Security.Cryptography; using Mono.Math; namespace Mono.Security.Cryptography { /// /// Implements the Diffie-Hellman algorithm. /// public sealed class DiffieHellmanManaged : DiffieHellman { /// /// Initializes a new instance. /// /// The default length of the shared secret is 1024 bits. public DiffieHellmanManaged() : this(1024, 160, DHKeyGeneration.Static) {} /// /// Initializes a new instance. /// /// The length, in bits, of the public P parameter. /// The length, in bits, of the secret value X. This parameter can be set to 0 to use the default size. /// One of the values. /// The larger the bit length, the more secure the algorithm is. The default is 1024 bits. The minimum bit length is 128 bits.
The size of the private value will be one fourth of the bit length specified.
/// The specified bit length is invalid. public DiffieHellmanManaged(int bitlen, int l, DHKeyGeneration keygen) { if (bitlen < 256 || l < 0) throw new ArgumentException(); BigInteger p, g; GenerateKey(bitlen, keygen, out p, out g); Initialize(p, g, null, l, false); } /// /// Initializes a new instance. /// /// The P parameter of the Diffie-Hellman algorithm. This is a public parameter. /// The G parameter of the Diffie-Hellman algorithm. This is a public parameter. /// The X parameter of the Diffie-Hellman algorithm. This is a private parameter. If this parameters is a null reference (Nothing in Visual Basic), a secret value of the default size will be generated. /// or is a null reference (Nothing in Visual Basic). /// or is invalid. public DiffieHellmanManaged(byte[] p, byte[] g, byte[] x) { if (p == null || g == null) throw new ArgumentNullException(); if (x == null) Initialize(new BigInteger(p), new BigInteger(g), null, 0, true); else Initialize(new BigInteger(p), new BigInteger(g), new BigInteger(x), 0, true); } /// /// Initializes a new instance. /// /// The P parameter of the Diffie-Hellman algorithm. /// The G parameter of the Diffie-Hellman algorithm. /// The length, in bits, of the private value. If 0 is specified, the default value will be used. /// or is a null reference (Nothing in Visual Basic). /// is invalid. /// or is invalid. public DiffieHellmanManaged(byte[] p, byte[] g, int l) { if (p == null || g == null) throw new ArgumentNullException(); if (l < 0) throw new ArgumentException(); Initialize(new BigInteger(p), new BigInteger(g), null, l, true); } // initializes the private variables (throws CryptographicException) private void Initialize(BigInteger p, BigInteger g, BigInteger x, int secretLen, bool checkInput) { if (checkInput) { if (!p.isProbablePrime() || g <= 0 || g >= p || (x != null && (x <= 0 || x > p - 2))) throw new CryptographicException(); } // default is to generate a number as large as the prime this // is usually overkill, but it's the most secure thing we can // do if the user doesn't specify a desired secret length ... if (secretLen == 0) secretLen = p.bitCount(); m_P = p; m_G = g; if (x == null) { BigInteger pm1 = m_P - 1; for(m_X = BigInteger.genRandom(secretLen); m_X >= pm1 || m_X == 0; m_X = BigInteger.genRandom(secretLen)) {} } else { m_X = x; } } /// /// Creates the key exchange data. /// /// The key exchange data to be sent to the intended recipient. public override byte[] CreateKeyExchange() { BigInteger y = m_G.modPow(m_X, m_P); byte[] ret = y.getBytes(); y.Clear(); return ret; } /// /// Extracts secret information from the key exchange data. /// /// The key exchange data within which the shared key is hidden. /// The shared key derived from the key exchange data. public override byte[] DecryptKeyExchange(byte[] keyEx) { BigInteger pvr = new BigInteger(keyEx); BigInteger z = pvr.modPow(m_X, m_P); byte[] ret = z.getBytes(); z.Clear(); return ret; } /// /// Gets the name of the key exchange algorithm. /// /// The name of the key exchange algorithm. public override string KeyExchangeAlgorithm { get { return "1.2.840.113549.1.3"; // PKCS#3 OID } } /// /// Gets the name of the signature algorithm. /// /// The name of the signature algorithm. public override string SignatureAlgorithm { get { return null; } } // clear keys protected override void Dispose(bool disposing) { if (!m_Disposed) { m_P.Clear(); m_G.Clear(); m_X.Clear(); } m_Disposed = true; } /// /// Exports the . /// /// true to include private parameters; otherwise, false. /// The parameters for . public override DHParameters ExportParameters(bool includePrivateParameters) { DHParameters ret = new DHParameters(); ret.P = m_P.getBytes(); ret.G = m_G.getBytes(); if (includePrivateParameters) { ret.X = m_X.getBytes(); } return ret; } /// /// Imports the specified . /// /// The parameters for . /// or is a null reference (Nothing in Visual Basic) -or- is not a prime number. public override void ImportParameters(DHParameters parameters) { if (parameters.P == null) throw new CryptographicException("Missing P value."); if (parameters.G == null) throw new CryptographicException("Missing G value."); BigInteger p = new BigInteger(parameters.P), g = new BigInteger(parameters.G), x = null; if (parameters.X != null) { x = new BigInteger(parameters.X); } Initialize(p, g, x, 0, true); } ~DiffieHellmanManaged() { Dispose(false); } //TODO: implement DH key generation methods private void GenerateKey(int bitlen, DHKeyGeneration keygen, out BigInteger p, out BigInteger g) { if (keygen == DHKeyGeneration.Static) { if (bitlen == 768) p = new BigInteger(m_OAKLEY768); else if (bitlen == 1024) p = new BigInteger(m_OAKLEY1024); else if (bitlen == 1536) p = new BigInteger(m_OAKLEY1536); else throw new ArgumentException("Invalid bit size."); g = new BigInteger(22); // all OAKLEY keys use 22 as generator //} else if (keygen == DHKeyGeneration.SophieGermain) { // throw new NotSupportedException(); //TODO //} else if (keygen == DHKeyGeneration.DSA) { // 1. Let j = (p - 1)/q. // 2. Set h = any integer, where 1 < h < p - 1 // 3. Set g = h^j mod p // 4. If g = 1 go to step 2 // BigInteger j = (p - 1) / q; } else { // random p = BigInteger.genPseudoPrime(bitlen); g = new BigInteger(3); // always use 3 as a generator } } private BigInteger m_P; private BigInteger m_G; private BigInteger m_X; private bool m_Disposed; private static byte[] m_OAKLEY768 = new byte[] { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x3A, 0x36, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; private static byte[] m_OAKLEY1024 = new byte[] { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; private static byte[] m_OAKLEY1536 = new byte[] { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x23, 0x73, 0x27, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; } }