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Chapter 1 PowerPC 750CX/CXe/CXr Overview

PowerPC 750CX/CXe/CXr is an implementation of the PowerPC architecture with enhancementsto
improve the floating point performance and the data transfer capability. This chapter provides an
overview of the PowerPC 750CX/CXe/CXr microprocessor features, including a block diagram
showing the major functional components. It also provides information about how 750CX/CXe/CXr
implementation complies with the PowerPC™ architecture definition.

1.1 750CX/CXe/CXr Microprocessor Overview

This section describes the features and general operation of 750CX/CXe/CXr and provides a block
diagram showing major functional units. The 750CX/CXe/CXr isan implementation of the PowerPC
microprocessor family of reduced instruction set computer (RISC) microprocessors with extensions
to improve the floating point performance. The 750CX/CXe/CXr implements the 32-bit portion of
the PowerPC architecture, which provides 32-hit effective addresses, integer data types of 8, 16, and
32 bits, and floating-point data types of single and double-precision. The 750CX/CXe/CXr is a
superscalar processor that can complete two instructions simultaneously. It incorporates the
following six execution units:

* Floating-point unit (FPU)

» Branch processing unit (BPU)
e System register unit (SRU)

» Load/store unit (LSU)

* Two integer units (I1Us): 1U1 executes all integer instructions. U2 executes all integer
instructions except multiply and divide instructions.

The ability to execute several instructions in parallel and the use of simple instructions with rapid
execution times yield high efficiency and throughput for 750CX/CXe/CXr-based systems. Most
integer instructions execute in one clock cycle. The FPU is pipelined, it breaks the tasks it performs
into subtasks, and then executes in three successive stages. Typically, afloating-point instruction can
occupy only one of the three stages at a time, freeing the previous stage to work on the next
floating-point instruction. Thus, three single-precision floating-point instructions can be in the FPU
execute stage at a time. Double-precision add instructions have a three-cycle latency;
double-precision multiply and multiply-add instructions have a four-cycle latency.

Figure 1-1 on page 23 shows the parallel organization of the execution units (shaded in the diagram).
The instruction unit fetches, dispatches, and predicts branch instructions. Note that this is a
conceptual model that shows basic features rather than attempting to show how features are
implemented physically.

The 750CX/CXe/CXr has independent on-chip, 32-Kbyte, eight-way set-associative, physically
addressed L1 caches for instructions and data and independent instruction and data memory
management units (MMUSs). Each MMU has a 128-entry, two-way set-associative tranglation
lookaside buffer (DTLB and I TLB) that saves recently used page address trand ations. Block address
tranglation is done through the four-entry instruction and data block address translation (IBAT and
DBAT) arrays, defined by the PowerPC architecture. During block translation, effective addresses are
compared simultaneoudly with al four BAT entries.
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For information about the L1 cache, see Chapter 3, "The 750CXr Instruction and Data Cache
Operation".

The L2 cache is implemented with an on-chip, two-way set-associative tag memory, and an on-chip
256 Kbyte SRAM with ECC for data storage. See Chapter 9, "L 2 Cache".

The 750CX/CXe/CXr has a 32-hit address bus and a 64-bit data bus. Multiple devices compete for
system resources through a central external arbiter. 750CX/CXe/CXr’s three-state cache-coherency
protocol (MEI) supports the modified, exclusive and invalid states, a compatible subset of the MES
(modified/exclusive/shared/invalid) four-state protocol, and it operates coherently in systems with
four-state caches. 750CX/CXe/CXr supports single-beat and burst data transfersfor external memory
accesses and memory-mapped 1/0 operations. The system interfaceisdescribed in Chapter 7, "Signal
Descriptions' and Chapter 8, "Bus Interface Operation”.

The 750CX/CXe/CXr hasfour software-controllable power-saving modes. Three static modes, doze,
nap, and sleep, progressively reduce power dissipation. When functional units are idle, a dynamic
power management mode causes those units to enter a low-power mode automatically without
affecting operational performance, software execution, or external hardware. The 750CX/CXe/CXr
also provides athermal assist unit (TAU) and a way to reduce the instruction fetch rate for limiting
power dissipation. Power management is described in Chapter 10, "Power and Thermal
Management".
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1.2 750CX/CXe/CXr Microprocessor Features

This section lists features of 750CX/CXe/CXr. The interrelationship of these features is shown in
Figure 1-1 on page 23.

1.2.1 Overview of 750CX/CXe/CXr Microprocessor Features
Magjor features of 750CX/CXe/CXr are as follows.
» High-performance, superscalar microprocessor.
— Asmany as four instructions can be fetched from the instruction cache per clock cycle.
— Asmany astwo instructions can be dispatched per clock.
— Asmany as six ingtructions can execute per clock (including two integer instructions).
— Single-clock-cycle execution for most instructions.
» Six independent execution units and two register files.
— BPU featuring both static and dynamic branch prediction.

— 64-entry (16-set, four-way set-associative) branch target instruction cache (BTIC), a
cache of branch instructions that have been encountered in branch/loop code
sequences. If atarget instructionisinthe BTIC, it isfetched into the instruction queue
acycle sooner than it can be made available from the instruction cache. Typically, if a
fetch access hitsthe BTIC, it provides the first two instructions in the target stream
effectively yielding a zero cycle branch.

— 512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken.

— Branchinstructionsthat do not update the count register (CTR) or link register (LR) are
removed from the instruction stream.

— Two integer units (1Us) that share thirty-two GPRs for integer operands.
— U1 can execute any integer instruction.

— U2 can execute al integer instructions except multiply and divide instructions
(multiply, divide, shift, rotate, arithmetic, and logical instructions). Most instructions
that execute in the |U2 take one cycle to execute. The U2 has a single-entry
reservation station.

— Three-stage FPU.
— Fully IEEE 754-1985-compliant FPU for both single- and double-precision operations.
— Supports non-1EEE mode for time-critical operations.
— Hardware support for denormalized numbers.
— Two-entry reservation station.
— Thirty-two 64-bit FPRs for single or double-precision operands.
— Two-stage LSU.
— Two-entry reservation station.
— Single-cycle, pipelined cache access.
— Dedicated adder performs EA calculations.
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Performs alignment and precision conversion for floating-point data

— Performs alignment and sign extension for integer data.

— Three-entry store queue.

— Supports both big and little-endian modes.

SRU handles miscellaneous instructions.

— Executes CR logical and Move to/Move from SPR instructions (mtspr and mfspr).
— Single-entry reservation station.

¢ Rename buffers.

— Six GPR rename buffers.
— Six FPR rename buffers.
— Condition register buffering supports two CR writes per clock.

* Completion unit.

The completion unit retires an instruction from the six-entry reorder buffer (completion
gueue) when all instructions ahead of it have been completed, the instruction has finished
execution, and no exceptions are pending.

Guarantees sequential programming model and a precise exception model.

Monitors all dispatched instructions and retires them in order.

Tracks unresolved branches and flushes instructions from the mispredicted branch path.
Retires as many as two instructions per clock.

»  Separate on-chip L1 instruction and data caches (Harvard architecture).

32-Kbyte, eight-way set-associative instruction and data caches.
Pseudo |east-recently-used (PLRU) replacement algorithm.
32-byte (eight-word) cache block.

Physically indexed/physical tags. (Note that the PowerPC architecture refers to physical
address space as real address space.)

Cache write-back or write-through operation programmable on a virtual-page or
BAT-block basis.

Instruction cache can provide four instructions per clock; data cache can provide two
words per clock

Caches can be disabled in software.
Caches can be locked in software.
Data cache coherency (MEI) maintained in hardware.

The critical double word is made available to the requesting unit when it is read into the
line-fill buffer. The cache is nonblocking, so it can be accessed during block reload.

*  On-chip 1:1 L2 cache.

256 Kbyte on-chip ECC SRAMs.
On-chip 2-way set-associétive tag memory.
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— ECC error correction for most single bit errors, detection of double bit errors
*  Separate memory management units (MMUS) for instructions and data.

— 52-bit virtual address; 32-bit physical address.

— Address trandation for virtual pages or variable-sized BAT blocks.

— Memory programmable as write-back/write-through, cacheable/noncacheable, and
coherency enforced/coherency not enforced on avirtual page or BAT block basis.

— Separate IBATs and DBATS (four each) arrays for instructions and data, respectively.
— Separate virtual instruction and data translation lookaside buffers (TLBs).

— Both TLBs are 128-entry, two-way set associative, and use LRU replacement
algorithm.

— TLBsare hardware-reloadable (the page table search is performed by hardware).
» Businterface features include the following.

— Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x, 4x, 4.5x ... 8x and
10x. (2x to 8x, al half-clock multipliers in-between).

— A 64-bit, split-transaction external data bus with burst transfers.

— Support for address pipelining and limited out-of-order bus transactions.
— Eight word reload buffer for L1 data cache.

— Single-entry instruction fetch queue.

— Two-entry L2 cache castout queue.

— No-DRTRY mode eliminates the DRTRY signal from the qualified bus grant. This
allowsthe forwarding of data during load operationsto the internal core one bus cycle
sooner than if the use of DRTRY is enabled.

* Multiprocessing support features include the following:
— Hardware-enforced, three-state cache coherency protocol (MEI) for data cache.

— Load/store with reservation instruction pair for atomic memory references, semaphores,
and other multiprocessor operations

* Power and thermal management
— Three static modes, doze, nap, and sleep, progressively reduce power dissipation:

— Doze—All the functiona units are disabled except for the time base/decrementer
registers and the bus snooping logic.

— Nap—The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state.

— Sleep—All internal functional units are disabled, after which external system logic
may disable the PLL and SY SCLK.

— Thermal management facility provides software-controllable therma management.
Thermal management is performed through the use of three supervisor-level registersand
an 750CX/CXe/CXr-specific thermal management exception.

— Instruction cache throttling provides control to slow instruction fetching to limit power
consumption.
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» Performance monitor can be used to help debug system designs and improve software
efficiency.

* In-system testability and debugging features through JTAG boundary-scan capability.

1.2.2 Instruction Flow

Asshown in Figure 1-1 on page 23, the 750CX/CXe/CXr instruction unit provides centralized control
of instruction flow to the execution units. The instruction unit contains a sequential fetcher, six-entry
instruction queue (1Q), dispatch unit, and BPU. It determines the address of the next instruction to be
fetched based on information from the sequentia fetcher and from the BPU.

See Chapter 6, "Instruction Timing" for more information.

The sequential fetcher loads instructions from the instruction cache into the instruction queue. The
BPU extracts branch instructions from the sequential fetcher. Branch instructions that cannot be
resolved immediately are predicted using either 750CX/CXe/CXr-specific dynamic branch
prediction or the architecture-defined static branch prediction.

Branch instructions that do not update the LR or CTR are removed from (folded out) the instruction
stream. Instruction fetching continues along the predicted path of the branch instruction.

Instructions issued to execution units beyond a predicted branch can be executed but are not retired
until the branch is resolved. If branch prediction is incorrect, the completion unit flushes al
instructions fetched on the predicted path, and instruction fetching resumes along the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit

The instruction queue (1Q), shown in Figure 1-1 on page 23, holds as many as six instructions and
loads up to four instructions from the instruction cache during a single processor clock cycle. The
instruction fetcher continuously attemptsto load as many instructions as there were vacancies created
in the 1Q in the previous clock cycle. All instructions except branches are dispatched to their
respective execution units from the bottom two positions in the instruction queue (1Q0 and 1Q1) at a
maximum rate of two instructions per cycle. Reservation stations are provided for the U1, 1U2, FPU,
LSU, and SRU for dispatched instructions. The dispatch unit checks for source and destination
register dependencies, alocates rename buffers, determines whether a position is available in the
completion queue, and inhibits subsequent instruction dispatching if these resources are not available.

Branch instructions can be detected, decoded, and predicted from anywhere in the instruction queue.
For a more detailed discussion of instruction dispatch, see Section 6.6.1, "Branch, Dispatch, and
Completion Unit Resource Requirements' on Page 235.

1.2.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the sequentia fetcher and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a zero-cycle branch
INn many cases.

Unconditional branch instructions and conditional branch instructions in which the condition is
known can be resolved immediately. For unresolved conditional branch instructions, the branch path
iIs predicted using ether the architecture-defined static branch prediction or
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750CX/CXe/CXr-specific dynamic branch prediction. Dynamic branch prediction is enabled if
HIDO[BHT] = 1.

When a prediction is made, instruction fetching, dispatching, and execution continue along the
predicted path, but instructions can not be retired and write results back to architected registers until
the prediction is determined to be correct (resolved). When a prediction is incorrect, the instructions
from the incorrect path are flushed from the processor and instruction fetching resumes along the
correct path. 750CX/CXe/CXr alows a second branch instruction to be predicted; instructions from
the second predicted branch instruction stream can be fetched but cannot be dispatched. These
instructions are held in the instruction queue.

Dynamic prediction is implemented using a 512-entry branch history table (BHT), a cache that
provides two bits per entry that together indicate four levels of prediction for a branch
instruction—not-taken, strongly not-taken, taken, strongly taken. When dynamic branch prediction
is disabled, the BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered,
750CX/CXe/lCXr executes instructions from the predicted path athough the results are not
committed to architected registers until the conditional branch is resolved. This execution can
continue until a second unresolved branch instruction is encountered.

When abranchistaken (or predicted astaken), the instructions from the untaken path must be flushed
and the target instruction stream must be fetched into the 1Q. The BTIC is a 64-entry cache that
contains the most recently used branch target instructions, typically in pairs. When an instruction
fetch hitsin the BTIC, the instructions arrive in the instruction queue in the next clock cycle, aclock
cycle sooner than they would arrive from the instruction cache. Additional instructions arrive from
the instruction cache in the next clock cycle. The BTIC reduces the number of missed opportunities
to dispatch instructions and givesthe processor a one-cycle head start on processing thetarget stream.
With the use of the BTIC the 750CX/CXe/CXr achieves a zero cycle delay for branches taken.
Coherency of the BTIC table is maintained by table reset on an icache flush invalidate, icbi or rfi
instruction execution or when an exception is taken.

The BPU contains an adder to compute branch target addresses and three user-control registers—the
link register (LR), the count register (CTR), and the CR. The BPU calculates the return pointer for
subroutine callsand savesit into the LR for certain types of branch instructions. The LR also contains
the branch target address for the Branch Conditional to Link Register (bclrx) instruction. The CTR
contains the branch target address for the Branch Conditional to Count Register (bcctrx) instruction.
Because the LR and CTR are SPRs, their contents can be copied to or from any GPR. Because the
BPU uses dedicated registers rather than GPRs or FPRS, execution of branch instructionsiis largely
independent from execution of integer and floating-point instructions.

1.2.2.3 Completion Unit

The completion unit operates closely with the dispatch unit. Instructions are fetched and dispatched
in program order. At the point of dispatch, the program order is maintained by assigning each
dispatched instruction a successive entry in the six-entry completion queue. The completion unit
tracks instructions from dispatch through execution and retires them in program order from the two
bottom entries in the completion queue (CQO and CQ1).

Instructions cannot be dispatched to an execution unit unless there is a vacancy in the completion
gueue and rename buffers are available. Branch instructions that do not update the CTR or LR are
removed from the instruction stream and do not occupy a space in the completion queue. Instructions
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that update the CTR and LR follow the same dispatch and completion procedures as non-branch
instructions, except that they are not issued to an execution unit.

Aninstruction isretired when it is removed from the completion queue and it’ s results are written to
architected registers (GPRs, FPRs, LR, and CTR) from the rename buffers. In-order completion
ensures program integrity and the correct architectural state when 750CX/CXe/CXr must recover
from amispredicted branch or any exception. Also, the rename buffer(s) assigned to it by the dispatch
unit are returned to the available rename buffer pool. These rename buffers are reused by the dispatch
unit for subsequent instructions being dispatched.

For a more detailed discussion of instruction completion, see Section 6.6.1, "Branch, Dispatch, and
Completion Unit Resource Requirements' on Page 235.

1.2.2.3.1 Independent Execution Units
In addition to the BPU, 750CX/CXe/CXr has the following five execution units.

* Two Integer Units (1Us)

* Foating-Point Unit (FPU)

* Load/Store Unit (LSU)

* System Register Unit (SRU)

Each is described in the following sections.

1.2.2.3.2 Integer Units (IUs)

The integer units 1U1 and 1U2 are shown in Figure 1-1 on page 23. The |U1 can execute any integer
instruction; the 1U2 can execute any integer instruction except multiplication and division
Instructions. Each IU has a single-entry reservation station that can receive instructions from the
dispatch unit and operands from the GPRs or the rename buffers. The output of the IU islatched in
the rename buffer assigned to the instruction by the dispatch unit.

Each IU consists of three single-cycle subunits—a fast adder/comparator, a subunit for logical
operations, and a subunit for performing rotates, shifts, and count-leading-zero operations. These
subunits handle all one-cycle arithmetic and logical integer instructions; only one subunit can execute
an instruction at atime.

The U1 hasa32-bit integer multiplier/divider aswell asthe adder, shift, and logical units of the lU2.
The multiplier supports early exit for operations that do not require full 32 x 32-bit multiplication.
Multiply and divide instructions spend several cycles in the execution stage before the results are
written to the output rename buffer.

1.2.2.3.3 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1 on page 23, is designed as a three stage pipelined processing unit,
where the first stage is for multiply, the second stage is for add and the third stage is for normalize.
A single-precision multiply-add operation is processed with one cycle through put and three cycle
latency. (a single-precision instruction spends one cycle in each stage of the FPU). A
double-precision multiply requires two cycles in the multiply stage and one cycle in each additional
stage. A double-precision multiply-add has a two cycle through put and a four cycle latency. As
instructions are dispatched to the FPU’ sreservation station, source operand data can be accessed from
the FPRs or from the FPR rename buffers. Results in turn are written to the rename buffers and are
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made available to subsequent instructions. Instructions pass through the reservation station and the
pipe line stages in program order. Stalls due to contention for FPRs are minimized by automatic
alocation of the six floating-point rename buffers. The completion unit writes the contents of the
rename buffer to the appropriate FPR when floating-point instructions are retired.

The 750CX/CXe/CXr supports all IEEE 754 floating-point data types (normalized, denormalized,
NaN, zero, and infinity) in hardware, eliminating the latency incurred by software exception routines.
(Note that “exception” isalso referred to as “interrupt” in the architecture specification.)

1.2.2.3.4 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface between the
GPRs, FPRs, and the data cache/memory subsystem. The LSU functions as a two stage pipe-lined
unit where it calculates effective addressesin thefirst stage. In second stage the addressis trandlated,
the cache is accessed and the datais aligned if necessary. Unless extensive dataalignment is required
(e.g. crossing double word boundary) the instructions complete in two cycles with a one cycle
through put. The LSU also provides sequencing for load/store string and multiple register transfer
Instructions.

Load and store instructions are translated and issued in program order; however, some memory
accesses can occur out of order. Synchronizing instructions can be used to enforce strict ordering if
necessary. When there are no data dependencies and the guard bit for the page or block is cleared, a
maximum of one out-of-order cacheable |oad operation can execute per cycle, with atwo-cycle total
latency on a cache hit. Data returned from the cache is held in a rename buffer until the completion
logic commits the value to a GPR or FPR. Stores cannot be executed out of order and are held in the
store queue until the completion logic signals that the store operation is to be completed to memory.
750CX/CXe/lCXr executes store instructions with a maximum throughput of one per cycle and a
three-cycle latency to the data cache. The time required to perform the actual load or store operation
depends on the processor/bus clock ratio and whether the operation involves the L1 cache, the L2
cache, system memory, or an 1/0O device.

1.2.2.3.5 System Register Unit (SRU)

The SRU executes various system-level instructions, as well as condition register logical operations
and move to/from special-purpose register instructions. To maintain system state, most instructions
executed by the SRU are execution-serialized with other instructions; that is, the instruction is held
for execution in the SRU until al previously issued instructions have been retired. Results from
execution-serialized instructions executed by the SRU are not available or forwarded for subsequent
instructions until the instruction completes.

1.2.3 Memory Management Units (MMUSs)

The 750CX/CXe/CXr's MMUSs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes
(232) of physical memory for instructions and data. The MMUSs also control access privileges for
these spaces on block and page granularities. Referenced and changed status is maintained by the
processor for each page to support demand-paged virtual memory systems.

The LSU with the aid of the MMU trandlates effective addresses for data loads and stores; the
effective addressis calculated on thefirst cycle and the MMU translatesit to a physical address at the
same time it is accessing the L1 cache on the second cycle. The MMU also provides the necessary
control and protection information to compl ete the access. By the end of the second cycle the data
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and control information is available if no miss conditions for trandate and cache access were
encountered. Thisyields a one cycle through put and atwo cycle latency.

The 750CX/CXe/CXr supports the following types of memory tranglation.

* Real addressing mode—In this mode, translation is disabled (control bits MSR(IR)=0 for
instructions and MSR(DR)=0 for data) and the effective addressis used as the physical
address to access memory.

» Virtual page addresstrand ation—translates from an effective addressto aphysical addresshby
using the segment registers and the TLB and access data from a 4-Kbyte virtual page. This
page is either in physical memory or on disk. If the latter a page-fault exception occurs.

» Block address trandation—trandglates the effective address into a physical address by using
the BAT registers and accesses a block (128K bytes to 256M bytes) in memory.

If trandlation is enabled, the appropriate MMU translates the higher-order bits of the effective address
into physical address bits by either BATs or page trandation method. The lower-order address bits
(that are untranslated and therefore, considered both logical and physical) are directed to the L1
caches where they form the index into the eight-way set-associative tag and data arrays. After
trandating the address, the MMU passes the higher-order physical address bits to the cache and the
cache lookup completes. For caching-inhibited accesses or accesses that miss in the cache, the
untranslated lower-order address bits are concatenated with the translated higher-order address bits;
the resulting 32-bit physical addressis used accesses the L2 cache or system memory viathe 60x bus.

If the BAT registers are enabled and the address trandlates via this method, the page trandation is
canceled and the high-order physical address bits from the BAT register are forward to the
cache/memory access system. There are four 8-byte BAT registerswhich function like an associative
memory. These registers provide cache control and protection information as well as address
trandation. Only one of the 4 BAT entries should trand ate a given effective address.

If addressrelocation is enabled and the effective address doesn' t translate viathe BAT method, virtual
page method is used. The 4 high-order bits of the effective address are used to access the 16 entry
segment register array. From this array a 24-bit segment register is accessed and used to form the
high-order bits of a 52-bit virtual address. The low-order 28-bits of the effective address are used to
form the low-order bits of the virtual address. This 52-bit virtual addressis translated into a physical
address by doing a lookup in the TLB. If the lookup is successful a physical address is formed by
using 16 low-order bits from the virtual address and 16 high-order bits from the TLB. The TLB also
provides cache control and protection information to be used by the cache/memory system.

TLBs are 128-entry, two-way set-associative caches that contain information about recently
trandated virtual addresses. When an address trangdlation is not in a TLB, the 750CX/CXe/CXr
automatically generates a page table search in memory to update the TLB. This search could find the
desired entry inthe L1 or L2 cache or in the page table in memory. The time to reload a TLB entry
depends on where it is found and could be completed in just several cycles. If memory is search a
maximum of 16 bus cycles would be needed before a page fault exception is signaled.

1.2.4 On-Chip Level 1 Instruction and Data Caches

The 750CX/CXe/CXr implements separate instruction and data caches. Each cache is 32-Kbyte and
eight-way set associative. Asdefined by the PowerPC architecture, they are physically indexed. Each
cache block contains eight contiguous words from memory that are loaded from an 8-word boundary
(that is, bits EA[27-31] are zeros); thus, a cache block never crosses a page boundary. A missin the
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L1 cache causes ablock reload from either the L2 if the block isin the L2 or from main memory. The
critical double word is accessed first and forwarded to the load/store unit and written into an 8 word
buffer. Subsequent double words are fetch from either the L2 or the system memory and written into
the buffer. Once the total block isin the buffer the line is written into the L1 cache in asingle cycle
via a 256 buffer-to-L1 bus. This minimizes write cycles into the L1 leaving more read/write cycles
available to the LSU. The L1 is non-blocking and supports hits under misses during this reload.
Misaligned accesses across a block or page boundary can incur a performance penalty.

The 750CX/CXe/CXr L1 cache organization is shown in Figure 1-2..
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Figure 1-2. Cache Organization

The data cache provides double-word accesses to the L SU each cycle. Like the instruction cache, the
data cache can beinvalidated all at once or on a per-cache-block basis. The data cache can be disabled
and invalidated by clearing HIDO[DCE] and setting HIDO[DCFI]. The data cache can be locked by
setting HIDO[DLOCK]. To ensure cache coherency, the data cache supports the three-state MEI

protocol. The data cache tags are single-ported, so a ssmultaneous load or store and a snoop access
represent aresource collision and a LSU accessis delayed for one cycle. If a snoop hit occurs and a
cast-out isrequired, the LSU isblocked internally for one cycleto allow the eight-word block of data
to be copied to the write-back buffer.

The data bus width for bus interface unit (BIU) accesses of the L1 data cache array is 64 bits on the
750 and cast out or reload of a 32-byte cache line requires four access cycles. On the
750CX/CXe/CXr, this bus has been expanded to 256 bits with access to an intermediate 32-byte
buffer. As a result, cache blocks can be read from or written to the cache array in a single cycle,
reducing cache contention between the BIU, the L1 and the load-store unit. See Figure 1-1. on Page
23.
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The instruction cache provides up to four instructions to the instruction queue in asingle cycle. The
instruction cache can be invalidated entirely or on a cache-block basis. The instruction cache can be
disabled and invalidated by clearing HIDO[ICE] and setting HIDO[ICFI]. The instruction cache can
be locked by setting HIDO[ILOCK]. The instruction cache supports only the valid/invalid states and
requires software to maintain coherency if the underlying program changes.

750CX/CXe/lCXr aso implements a 64-entry (16-set, four-way set-associative) branch target
instruction cache (BTIC). The BTIC isa cache of branch instructions that have been encountered in
branch/loop code sequences. If the target instruction isin the BTIC, it is fetched into the instruction
gueue a cycle sooner than it can be made available from the instruction cache. Typically the BTIC
contains the first two instructions in the target stream. The BTIC can be disabled and invalidated
through software.

Coherency of the BTIC is transparent to the running software and is coupled with various functions
In the750CX/CXe/CXr processor. When the BTIC is enabled and loaded with instruction pairs to
support zero cycle delay on branches taken, the table must be invalidated if the underlying program
changes. (Thisisaso truefor the I-cache.) The BTIC isreset on an icache flush invalidate, an icbi or
rfi instruction, and any exception.

For more information and timing examples showing cache hit and cache miss latencies, see Section
6.3.2, “Instruction Fetch Timings’ in this manual.

1.2.5 On-Chip Level 2 Cache Implementation

The L2 cacheisaunified cache that receives memory requests from both the L1 instruction and data
caches independently. The L2 cache is implemented with a L2 cache control register (L2CR), an
on-chip, two-way, Set-associative tag array, and with a 256-Kbyte, on-chip SRAM for data storage.
The L2 cache normally operatesin write-back mode and supports cache coherency through snooping.
The access interface to the L2 is 64 bits and requires 4 cycles to read or write a single cache block.
The L2 uses ECC on a double word and corrects most single bit errors and detects all double bit
errors. See Figure 9-1. "L 2 Cache," on Page 308.

The L2 cache is organized with 64-byte lines, which in turn are subdivided into 32-byte blocks, the
unit at which cache coherency is maintained. This reduces the size of the tag array and one tag
supportstwo cache blocks. Each 32-byte cache block hasitsown valid and modified status bits. When
acache lineis removed, both blocks and the tag are removed from the L2 cache. The cache block is
only written to system memory if the modified bit is set.

Requests from the L1 cache generally result from instruction misses, data load or store misses,
write-through operations, or cache management instructions. Misses from the L1 cache are looked up
in the L2 tags and serviced by the L2 cache if they hit; they are forwarded to the 60x bus interface if
they miss.

The L2 cache can accept multiple, simultaneous accesses, however, they are serialized and processed
one per cycle. The L1 instruction cache can request an instruction at the same time that the L1 data
cacheisrequesting one load and two store operations. The L2 cache also services snoop requestsfrom
the bus. If there are multiple pending reguests to the L2 cache, snoop requests have highest priority.
The next priority consists of load and store requests from the L 1 data cache. The next priority consists
of instruction fetch requests from the L 1 instruction cache.
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1.2.6 System Interface/Bus Interface Unit (BIU)

Asdescribed in the preface section, the PowerPC 750CX/CXe/CXr uses areduced system signal set,
which eliminates some 60X Bus optional protocol pins. The system designer needs to make note of
these differences.

The address and data buses operate independently; address and data tenures of a memory access are
decoupled to provide a more flexible control of bus traffic. The primary activity of the system
interface is transferring data and instructions between the processor and system memory. There are
two types of memory accesses:

* Single-beat transfers—These memory accesses allow transfer sizes of 8, 16, 24, 32, or 64 bits
in one bus clock cycle. Single-beat transactions are caused by uncacheable read and write
operations that access memory directly when caches are disabled, for cache-inhibited
accesses, and for stores in write-through mode. The two latter accesses are defined by control
bits provided by the MMU during address trand ation.

» Four-beat burst (32 byte) data transfers—Burst transactions, which always transfer an entire
cache block (32 bytes), are initiated when an entire cache block istransferred. If the caches
on 750CX/CXe/CXr are enabled and using write-back mode, burst-read operations are the
most common memory accesses, followed by burst-write memory operations.

The 750CX/CXe/CXr aso supports address-only operations, variants of the burst and single-beat
operations, (for example, atomic memory operations and global memory operations that are
snooped), and address retry activity (for example, when a snooped read access hits a modified block
in the cache). The broadcast of some address-only operationsis controlled through HIDO[ABE]. I/O
accesses use the same protocol as memory accesses.

Access to the system interface is granted through an externa arbitration mechanism that allows
devices to compete for bus mastership. This arbitration mechanism is flexible, alowing
750CX/CXe/CXr to be integrated into systems that implement various fairness and bus parking
procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including load/store
string and multipleinstructions, do not necessarily completein the order they begin—maximizing the
efficiency of the bus without sacrificing data coherency. 750CX/CXe/CXr alows read operations to
go ahead of store operations (except when a dependency exists, or in cases where a noncacheable
access is performed), and provides support for a write operation to go ahead of a previously queued
read data tenure (for example, letting a snoop push be envel oped between address and data tenures of
a read operation). Because 750CX/CXe/CXr can dynamicaly optimize run-time ordering of
load/store traffic, overall performance isimproved.

The system interface is specific for each PowerPC microprocessor implementation.

The 750CX/CXe/CXr signalsare grouped as shown in Figure 1-3 on page 35. Test and control signals
provide diagnostics for selected internal circuits.
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Figure 1-3. System Interface

The system interface supports address pipelining, which allows the address tenure of one transaction
to overlap the data tenure of another. The extent of the pipelining depends on external arbitration and
control circuitry. Similarly, the 750CX/CXe/CXr supports split-bus transactions for systems with
multiple potential bus masters—one device can have mastership of the address bus while another has
mastership of the data bus. Allowing multiple bus transactions to occur simultaneously increases the
available bus bandwidth for other activity.

The 750CX/CXe/CXr’ s clocking structure supports awide range of processor-to-bus clock ratios.

1.2.7 Signals
The 750CX/CXe/CXr’ s signals are grouped as follows.

Address arbitration signals—The 750CX/CXe/CXr uses these signals to arbitrate for address
bus mastership.

Address start signals—These signal sindicate that a bus master has begun atransaction on the
address bus.

Address transfer signals—These signalsinclude the address bus and are used to transfer the
address.

Transfer attribute signals—These signals provide information about the type of transfer, such
asthetransfer size and whether the transaction is bursted, write-through, or caching-inhibited.

Address termination signals—These signals are used to acknowledge the end of the address
phase of the transaction. They also indicate whether a condition exists that requires the
address phase to be repeated.

Data arbitration signals—The 750CX/CXe/CXr uses these signals to arbitrate for data bus
mastership.

Data transfer signals—These signals include the data bus and are used to transfer the data.

Data termination signals—Data termination signals are required after each data beat in adata
transfer. In a single-beat transaction, a data termination signal also indicates the end of the
tenure; in burst accesses, data termination signals apply to individual beats and indicate the
end of the tenure only after the final data beat.
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* Interrupt signals—These signalsinclude the interrupt signal, checkstop signals, and both soft
reset and hard reset signals. These signalsare used to generate interrupt exceptions and, under
various conditions, to reset the processor.

*  Processor status/control signals—These signals are used to indicate miscellaneous bus
functions.

» JTAG/COP interface signals—The common on-chip processor (COP) unit provides a serial
interface to the system for performing board-level boundary scan interconnect tests.

» Clock signals—These signals determine the system clock frequency. These signals can also
be used to synchronize multiprocessor systems.

NOTE: A bar over asignal name indicates that the signal is active low—for example, ARTRY
(addressretry) and TS (transfer start). Active-low signals are referred to as asserted
(active) when they arelow and negated when they are high. Signalsthat are not activelow,
such as A[0-31] (address bus signals) and TT[0-4] (transfer type signals) are referred to
as asserted when they are high and negated when they are low.
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1.2.8 Signal Configuration
Figure 1-4. shows 750CX/CXe/CXr’slogical pin configuration. The signals are grouped by function.
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Figure 1-4. 750CX/CXe/CXr Microprocessor Sighal Groups

Signal functionality is described in detail in Chapter 7, "Signal Descriptions'and Chapter 8, "Bus
Interface Operation”.

NOTE: The 750CX/CXe/CXr has areduced set of signals from the PowerPC 750 PID8 series of
microprocessors. The PowerPC 750CX/CXe/CXr Datasheet, should be referenced for the
complete signal pins present on the PowerPC 750CX/CXe/CXr.

1.2.9 Clocking

750CX/CXe/CXr requires a single system clock input, SY SCLK, that represents the bus interface
frequency. Internally, the processor uses a phase-locked loop (PLL) circuit to generate a master core
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clock that is frequency-multiplied and phase-locked to the SYSCLK input. This core frequency is
used to operate the internal circuitry.

The PLL is configured by the PLL_CFG[0-3] signals, which select the multiplier that the PLL uses
to multiply the SYSCLK frequency up to the internal core frequency. The feedback in the PLL
guarantees that the processor clock is phase locked to the bus clock, regardless of process variations,
temperature changes, or parasitic capacitances.

The PLL also ensures a 50% duty cycle for the processor clock.

750CX/CXe/CXr supports various processor-to-bus clock frequency ratios, although not all ratiosare
available for all frequencies. Configuration of the processor/bus clock ratios is displayed through a
750CX/CXe/CXr-specific register, HID 1. For information about supported clock frequencies, seethe
750CX/CXe/CXr Datasheet.

1.3 750CX/CXe/CXr Microprocessor: Implementation

The PowerPC architecture is derived from the POWER architecture (Performance Optimized With
Enhanced RISC architecture). The PowerPC architecture shares the benefits of the POWER
architecture optimized for single-chip implementations. The PowerPC architecture design facilitates
parallel instruction execution and is scal able to take advantage of future technological gains.

This section describes the PowerPC architecture in general, and specific details about the
implementation of 750CX/CXe/CXr as a low-power, 32-bit member of the PowerPC processor
family. The structure of this section follows the organization of the user’s manual; each subsection
provides an overview of each chapter.

* Registers and programming model—Section 1.4, " PowerPC Registers and Programming
Model,” on Page 40 describes the registers for the operating environment architecture
common among PowerPC processors and describesthe programming model. It a so describes
the registersthat are unique to 750CX/CXe/CXr. The information in this section is described
more fully in Chapter 2, "Programming Model".

* Instruction set and addressing modes—Section 1.5, " Instruction Set,” on Page 44 describes
the PowerPC instruction set and addressing modes for the PowerPC operating environment
architecture, defines the PowerPC instructions implemented in 750CX/CXe/CXr, and
describes new instruction set extensions to improve the performance of single-precision
floating-point operations and the capability of datatransfer. Theinformation in thissectionis
described more fully in Section 1, ” PowerPC 750CX/CXe/CXr Overview,” on Page 21.

» Cache implementation—Section 1.6, ” On-Chip Cache Implementation,” on Page 46
describes the cache model that is defined generally for PowerPC processors by the virtual
environment architecture. It also provides specific details about 750CX/CXe/CXr L2 cache
Implementation.

* Exception model—Section 1.7, " Exception Model,” on Page 47 describes the exception
model of the PowerPC operating environment architecture and the differencesin
750CX/CXe/CXr exception model. The information in this section is described morefully in
Chapter 4, "Exceptions”.
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* Memory management—Section 1.8, ”Memory Management,” on Page 50 describesgenerally
the conventions for memory management among the PowerPC processors. This section also
describes 750CX/CXe/CXr’simplementation of the 32-bit PowerPC memory management
specification. Theinformation in this section is described more fully in Chapter 5, "Memory
Management".

* Instruction timing—Section 1.9, " Instruction Timing,” on Page 51 provides a general
description of theinstruction timing provided by the superscalar, parallel execution supported
by the PowerPC architecture and 750CX/CXe/CXr. The information in this sectionis
described more fully in Chapter 6, "Instruction Timing".

* Power management—Section 1.10, " Power Management,” on Page 54 describes how the
power management can be used to reduce power consumption when the processor, or portions
of it, areidle. The information in this section is described more fully in Chapter 10, " Power
and Therma Management".

»  Therma management—Section 1.11, ” Thermal Management,” on Page 54 describes how the
thermal management unit and its associated registers (THRM1-THRM 3) and exception can
be used to manage system activity in away that prevents exceeding system and junction
temperature thresholds. Thisis particularly useful in high-performance portable systems,
which cannot use the same cooling mechanisms (such as fans) that control overheating in
desktop systems. The information in this section is described more fully in Chapter 10,
"Power and Thermal Management”.

» Performance monitor—Section 1.12, " Performance Monitor,” on Page 55 describes the
performance monitor facility, which system designers can use to help bring up, debug, and
optimize software performance. The information in this section is described more fully in
Chapter 11, "Performance Monitor".

The following sections summarize the features of 750CX/CXe/CXr, distinguishing those that are
defined by the architecture from those that are unique to 750CX/CXe/CXr implementation.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be described in terms of which of the following levels of the architecture is
implemented.

» PowerPC user instruction set architecture (UlSA)—Defines the base user-level instruction
set, user-level registers, data types, floating-point exception model, memory models for a
uniprocessor environment, and programming model for a uniprocessor environment.

» PowerPC virtual environment architecture (V EA)—Describes the memory model for a
multiprocessor environment, defines cache control instructions, and describes other aspects
of virtual environments. | mplementations that conform to the VEA also adhere to the UISA,
but may not necessarily adhere to the OEA.

* PowerPC operating environment architecture (OEA)—Defines the memory management
model, supervisor-level registers, synchronization requirements, and the exception model.
Implementations that conform to the OEA aso adhere to the UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and system
interface implementations. 750CX/CXe/CXr implementations support the three levels of the
architecture described above. For more information about the PowerPC architecture, see the
PowerPC Microprocessor Family: The Programming Environments manual.
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Specific features of 750CX/CXe/CXr are listed in Section 1.2, " 750CX/CXe/CXr Microprocessor
Features,” on Page 24.

1.4 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operationsfor most computational instructions.
Source operands for these instructions are accessed from the registers or are provided as immediate
values embedded in theinstruction itself. The three-register instruction formats all ow specification of
atarget register distinct from the two source operands. Only load and store instructions transfer data
between registers and memory.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically used by
the operating system) and user mode of operation (used by the application software, it is also called
problem state). The programming models incorporate 32 GPRs, 32 FPRs, special-purpose registers
(SPRs), and several miscellaneous registers. Each PowerPC microprocessor also has its own unique
set of hardware implementation-dependent (HID) registers.

While running in supervisor mode the operating system is able to execute al instructions and access
al registers defined in the PowerPC architecture. In this mode the operating system establishes all
address trandations and protection mechanisms, loads all processor state registers. and sets up all
other control mechanisms defined on the PowerPC 750CX/CXe/CXr processor. While running in
user mode (problem state) many of these registers and facilities are not accessible and any attempt to
read or write these register resultsin a program exception.

Figure 1-5 on page 41 shows all the 750CX/CXe/CXr registers available at the user and supervisor
level. The numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

For more information, see Chapter 2, "Programming Model".
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These registers are processor- specific registers. They may not be supported by other PowerPC processors.

Figure 1-5. 750CX/CXe/CXr Microprocessor Programming Model—Registers

PowerPC 750CX/CXe/CXr Overview

3/17/05 Page 41



The following tables summarize the PowerPC registers implemented in 750CX/CXe/CXr; describe
registers (excluding SPRs) defined by the architecture.

Table 1-1 Architecture-Defined Registers (Excluding SPRs)

Register Level Function

CR User The condition register (CR) consists of eight four-bit fields that reflect the results of
certain operations, such as move, integer and floating-point compare, arithmetic, and
logical instructions, and provide a mechanism for testing and branching.

FPRs User The 32 floating-point registers (FPRs) serve as the data source or destination for
floating-point instructions. These 64-hit registers can hold single- or double-precision
floating-point values.

FPSCR User The floating-point status and control register (FPSCR) contains the floating-point
exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE-754 standard.

GPRs User The 32 GPRs contain the address and data arguments addressed from source or
destination fields in integer instructions. Also floating-point load and store instructions
use GPRs for addressing memory.

MSR Supervisor The machine state register (MSR) defines the processor state. Its contents are saved
when an exception is taken and restored when exception handling completes.
750CX/CXe/CXr implements MSR[POW], (defined by the architecture as optional),
which is used to enable the power management feature. 750CX/CXe/CXr-specific
MSR[PM] bit is used to mark a process for the performance monitor.

SRO-SR15 Supervisor The sixteen 32-bit segment registers (SRs) define the 4-Ghyte space as sixteen
256-Mbyte segments. 750CX/CXe/CXr implements segment registers as two
arrays—a main array for data accesses and a shadow array for instruction accesses;
see Figure 1-1 on page 23. Loading a segment entry with the Move to Segment
Register (mtsr) instruction loads both arrays. The mfsr instruction reads the master
register, shown as part of the data MMU in Figure 1-1 on page 23.

The OEA defines numerous special-purpose registers that serve a variety of functions, such as
providing controls, indicating status, configuring the processor, and performing special operations.
During normal execution, a program can access the registers, shown in Figure 1-5 on page 41,
depending on the program’ s access privilege (supervisor or user, determined by the privilege-level
(PR) bit in the MSR). GPRs and FPRs are accessed through operands that are defined in the
instructions. Access to registers can be explicit (that is, through the use of specific instructions for
that purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-Purpose
Register (mfspr) instructions) or implicit, as the part of the execution of an instruction. Some
registers can be accessed both explicitly and implicitly.

In the 750CX/CXe/CXr, al SPRs are 32 bits wide. Table1-2, “Architecture-Defined SPRs
Implemented” on page43 describes the architecture-defined SPRs implemented by
750CX/CXe/lCXr. In the PowerPC Microprocessor Family: The Programming Environments
manual, theseregistersare described in detail, including bit descriptions. Section 2.1.1, "Register Set"
on Page 57 describes how these registers are implemented in the 750CX/CXe/CXr. In particular, this
section describes which features the PowerPC architecture defines as optional and are implemented
on the 750CX/CXe/CXr.
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Table 1-2 Architecture-Defined SPRs Implemented

Register Level Function

LR User The link register (LR) can be used to provide the branch target address and
to hold the return address after branch and link instructions.

BATs Supervisor The architecture defines 16 block address translation registers (BATS),
which operate in pairs. There are four pairs of data BATs (DBATSs) and four
pairs of instruction BATs (IBATs). BATs are used to define and configure
blocks of memory.

CTR User The count register (CTR) is decremented and tested by branch-and-count
instructions.

DABR Supervisor The optional data address breakpoint register (DABR) supports the data
address breakpoint facility.

DAR User The data address register (DAR) holds the address of an access after an
alignment or DSI exception.

DEC Supervisor The decrementer register (DEC) is a 32-bit decrementing counter that
provides a way to schedule time delayed exceptions.

DSISR User The DSISR defines the cause of data access and alignment exceptions.

EAR Supervisor The external access register (EAR) controls access to the external access

facility through the External Control In Word Indexed (eciwx) and External
Control Out Word Indexed (ecowx) instructions.

PVR Supervisor The processor version register (PVR) is a read-only register that identifies
the processor version and revision level.

SDR1 Supervisor SDR1 specifies the page table address and size used in virtual-to-physical
page address translation.

SRRO Supervisor The machine status save/restore register 0 (SRRO0) saves the address used
for restarting an interrupted program when a Return from Interrupt (rfi)
instruction executes (a.k.a. exceptions).

SRR1 Supervisor The machine status save/restore register 1 (SRR1) is used to save machine
status on exceptions and to restore machine status when an rfi instruction
is executed.

SPRGO0-SPRG3 Supervisor SPRGO0-SPRGS3 are provided for operating system use.

TB User: read The time base register (TB) is a 64-bit register that maintains the time and
Supervisor: date variable. The TB consists of two 32-bit fields—time base upper (TBU)
read/write and time base lower (TBL).

XER User The XER contains the summary overflow bit, integer carry bit, overflow bit,

and a field specifying the number of bytes to be transferred by a Load String
Word Indexed (Iswx) or Store String Word Indexed (stswx) instruction.

Table 1-3, “Implementation-Specific Registers’ on page 44 describes the SPRs in 750CX/CXe/CXr
that are not defined by the PowerPC architecture.

Section 2.1.2, "PowerPC 750CXr-Specific Registers' on Page 64 gives detailed descriptions of these
registers, including bit descriptions.
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Table 1-3 Implementation-Specific Registers

Register Level Function

HIDO Supervisor The hardware implementation-dependent register 0 (HIDO) provides
checkstop enables and other functions.

HID1 Supervisor The hardware implementation-dependent register 1 (HID1) allows software
to read the configuration of the PLL configuration signals.

IABR Supervisor The instruction address breakpoint register (IABR) supports instruction
address breakpoint exceptions. It can hold an address to compare with
instruction addresses in the 1Q. An address match causes an instruction
address breakpoint exception.

ICTC Supervisor The instruction cache-throttling control register (ICTC) has bits for
controlling the interval at which instructions are fetched into the instruction
buffer in the instruction unit. This helps control 750CX/CXe/CXr’s overall
junction temperature.

L2CR Supervisor The L2 cache control register (L2CR) is used to configure and operate the
L2 cache.
MMCRO-MMCR1 Supervisor The monitor mode control registers (MMCRO-MMCR1) are used to enable

various performance monitoring interrupt functions. UMMCRO-UMMCR1
provide user-level read access to MMCRO-MMCRL1.

PMC1-PMC4 Supervisor The performance monitor counter registers (PMC1-PMC4) are used to
count specified events. UPMC1-UPMC4 provide user-level read access to
these registers.

SIA Supervisor The sampled instruction address register (SIA) holds the EA of an
instruction executing at or around the time the processor signals the
performance monitor interrupt condition. The USIA register provides
user-level read access to the SIA.

THRM1, THRM2 Supervisor THRM1 and THRM2 provide a way to compare the junction temperature
against two user-provided thresholds. The thermal assist unit (TAU) can be
operated so that the thermal sensor output is compared to only one
threshold, selected in THRM1 or THRM2.

THRM3 Supervisor THRM3 is used to enable the TAU and to control the output sample time.

UMMCRO-UMMCR1 User The user monitor mode control registers (UMMCRO-UMMCR1) provide
user-level read access to MMCRO-MMCR1.

UPMC1-UPMC4 User The user performance monitor counter registers (UPMC1-UPMC4)

provide user-level read access to PMC1-PMCA4.

USIA User The user sampled instruction address register (USIA) provides user-level
read access to the SIA register.

1.5 Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction formats are
consistent among all instruction types (primary op-code is aways 6 bits, register operands always
specified in the same bit fields in the instruction), permitting efficient decoding to occur in parallel
with operand accesses. Thisfixed instruction length and consistent format greatly simplify instruction
pipelining.

For more information, see Chapter 2, "Programming Model".
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1.5.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories.
* Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions

» Floating-point instructions—T hese include fl oating-point computational instructions, aswell
asinstructionsthat affect the FPSCR.

— Hoating-point arithmetic instructions
— Hoating-point multiply/add instructions
— Hoating-point rounding and conversion instructions
— Hoating-point compare instructions
— Hoating-point status and control instructions
» Load/storeinstructions—These include integer and floating-point load and store instructions.
— Integer load and store instructions
— Integer load and store multiple instructions
— Hoating-point load and store
— Primitives used to construct atomic memory operations (Iwar x and stwcx. instructions)

* Flow control instructions—These include branching instructions, condition register logical
instructions, trap instructions, and other instructions that affect the instruction flow.

— Branch and trap instructions
— Condition register logical instructions (sets conditions for branches)
— System Call

* Processor control instructions—These instructions are used for synchronizing memory
accesses and management of caches, TLBs, and the segment registers.

— Move to/from SPR instructions
— Moveto/from MSR
— Synchronize (processor and memory system)
— Instruction synchronize
— Order loads and stores
* Memory control instructions—To provide control of caches, TLBs, and SRs.
— Supervisor-level cache management instructions
— User-level cacheinstructions
— Segment register manipulation instructions
— Trandlation lookaside buffer management instructions
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This grouping does not indicate the execution unit that executes a particular instruction or group of
Instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point instructions
operate on single-precision (one word) and double-precision (two words) floating-point operands.
The PowerPC architecture usesinstructions that are four byteslong and word-aligned. It providesfor
integer byte, half-word, and word operand loads and stores between memory and a set of 32 GPRs.
It also provides for single and double-precision loads and stores between memory and a set of 32
floating-point registers (FPRS).

Computational instructions do not access memory. To use a memory operand in a computation and
then modify the same or another memory location, the memory contents must be loaded into a
register, modified, and then written back to the target location using three or more instructions.

PowerPC processors follow the program flow when they arein the normal execution state; however,
the flow of instructions can be interrupted directly by the execution of an instruction or by an
asynchronous event. Either type of exception will cause the associated exception handler to be
invoked.

Effective address computations for both data and instruction accesses use 32-bit signed two’'s
complement binary arithmetic. A carry from bit O and overflow are ignored.

1.5.2 750CX/CXe/CXr Microprocessor Instruction Set
750CX/CXe/CXr instruction set is defined as follows.
*  750CX/CXelCXr provides hardware support for all PowerPC instructions.

e 750CX/CXe/CXr implements the following instructions optional to the PowerPC
architecture.

— External Control In Word Indexed (eciwx).

— External Control Out Word Indexed (ecowx).

— Hoating Select (fsdl).

— Hoating Reciprocal Estimate Single-Precision (fres). *
— Hoating Reciprocal Square Root Estimate (frsgrte). *

— Store Floating-Point as Integer Word (stfiw).
* (fresand frsgrte have aresolution of <1/4000)

1.6 On-Chip Cache Implementation

The following subsections describe the PowerPC architecture’ s treatment of cache in general, and
750CX/CXe/CXr-specific implementation, respectively. A detailed description of 750CX/CXe/CXr
L1 cache implementation is provided in Chapter 3, "The 750CXr Instruction and Data Cache Opera-
tion".
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1.6.1 PowerPC Cache Model

The PowerPC architecture does not define hardware aspects of cache implementations. For exam-
ple, PowerPC processors can have unified caches, separate instruction and data caches (Harvard
architecture), or no cache at all. PowerPC microprocessors control the following memory access
modes on avirtual page or block (BAT) basis

» Write-back/write-through mode
» Caching-inhibited mode
» Memory coherency

The caches are physically addressed, and the data cache can operate in either write-back or
write-through mode, as specified by the PowerPC architecture.

The PowerPC architecture defines the term ‘ cache block’ as the cacheable unit. The VEA and OEA
define cache management instructions that a programmer can use to affect cache contents.

1.6.2 750CX/CXe/CXr Microprocessor Cache Implementation

750CX/CXe/CXr cache implementation is described in Section 1.2.4, ”On-Chip Level 1 Instruction
and Data Caches,” on Page 31 and Section 1.2.5, "On-Chip Level 2 Cache Implementation,” on
Page 33. The BPU also contains a 64-entry BTIC that provides immediate access to an instruction
pair for taken branches. For more information, see Section 1.2.2.2, " Branch Processing Unit
(BPU),” on Page 27.

1.7 Exception Model

The following sections describe the PowerPC exception model and 750CX/CXe/CXr implementa-
tion. A detailed description of 750CX/CXe/CXr exception model is provided in Chapter 4, "Excep-
tions" in this manual.

1.7.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to interrupt the instruction flow to handle
certain situations caused by external signals, errors, or unusual conditions arising from the instruc-
tion execution. When exceptions occur, information about the state of the processor is saved to cer-
tain registers, and the processor begins execution at an address (exception vector) predetermined for
each exception. System software must complete the saving of the processor state prior to servicing
the exception. Exception processing proceeds in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more specific
condition may be determined by examining a register associated with the exception—for example,
the MSR, DSISR and the FPSCR contain status bits which farther identify the exception condition.
Additionally, some exception conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in specific priority and program order;
therefore, although a particular implementation may recogni ze exception conditions out of order, they
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are handled in program order. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that are undispatched, are
required to complete before the exception is taken, and any exceptions those instructions cause must
also be handled firgt; likewise, asynchronous, precise exceptions are recognized when they occur but
are not handled until the instructions currently in the completion queue successfully retire or generate
an exception, and the completion queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one exception
ishandled at atime. For example, if one instruction encounters multiple exception conditions, those
conditions are handled sequentially in priority order. After the exception handler completes, the
instruction processing continues until the next exception condition is encountered. Recognizing and
handling exception conditions sequentially guarantees system integrity.

When an exception is taken, information about the processor state before the exception wastaken is
saved in SRRO and SRR1. Exception handlers must save the information stored in SRRO and SRR1
early to prevent the program state from being lost due to a system reset and machine check exception
or due to an ingtruction-caused exception in the exception handler, and before re-enabling external
interrupts. The exception handler must also save and restore any GPR registers used by the handler.

The PowerPC architecture supports four types of exceptions.

» Synchronous, precise—These are caused by instructions. All instruction-caused exceptions
are handled precisely; that is, the machine state at the time the exception occursis known and
can be completely restored. This means that (excluding the trap and system call exceptions)
the address of the faulting instruction is provided to the exception handler and that neither the
faulting instruction nor subsequent instructions in the code stream will complete execution
before the exception is taken. Once the exception is processed, execution resumes at the
address of the faulting instruction (or at an alternate address provided by the exception
handler). When an exception is taken due to atrap or system call instruction, execution
resumes at an address provided by the handler.

»  Synchronous, imprecise—The PowerPC architecture defines two imprecise floating-point
exception modes, recoverable and nonrecoverable. Even though 750CX/CXe/CXr providesa
means to enable the imprecise modes, it implements these modes identically to the precise
mode (that is, enabled floating-point exceptions are always precise).

» Asynchronous, maskable—The PowerPC architecture defines external and decrementer
interrupts as maskabl e, asynchronous exceptions. When these exceptions occur, their
handling is postponed until the next instruction, and any exceptions associated with that
Instruction, completes execution. If no instructions are in the execution units, the exceptionis
taken immediately upon determination of the correct restart address (for loading SRRO0). As
shown in the Table “ 750CX/CXe/CXr Microprocessor Exception Classifications,” the
750CX/CXe/CXr implements additional asynchronous, maskable exceptions.

»  Asynchronous, nonmaskable—T here are two nonmaskable asynchronous exceptions: system
reset and the machine check exception. These exceptions may not be recoverable, or may
provide alimited degree of recoverability. Exceptions report recoverability through the
MSR[RI] bit.
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1.7.2 750CX/CXe/CXr Microprocessor Exception Implementation

The 750CX/CXe/CXr exception classes described above are shown in the Table 1-4 on Page 49
Although exceptions have other characteristics, such as priority and recoverability, Table 1-4
describes categories of exceptions 750CX/CXe/CXr handles uniquely. Table 1-4 includes no
synchronous imprecise exceptions; although the PowerPC architecture supports imprecise handling
of floating-point exceptions, 750CX/CXe/CXr implements these exception modes precisely.

Table 1-4 750CX/CXe/CXr Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/lmprecise Exception Type
Asynchronous, nonmaskable Imprecise Machine check, system reset
Asynchronous, maskable Precise External, decrementer, system management, performance

monitor, and thermal management interrupts

Synchronous Precise Instruction-caused exceptions

Table 1-5 lists the 750CX/CXe/CXr exceptions and conditions that cause them. Exceptions specific
to 750CX/CXe/CXr are indicated.

Table 1-5 Exceptions and Conditions

Exception Type Vector Offset Causing Conditions
(hex)

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, an
address, data or L2 double bit error. MSR[ME] must be set.

DSl 00300 As specified in the PowerPC architecture. (e.g., page fault occurs)

ISI 00400 As defined by the PowerPC architecture. (e.g., page fault occurs)

External interrupt 00500 MSR[EE] = 1 and INT is asserted.

Alignment 00600 *A floating-point load/store, stmw, stwcx, Imw, lwarx, eciwx or ecowx
instruction operand is not word-aligned.
A multiple/string load/store operation is attempted in little-endian mode.
*The operand of dcbz is in memory that is write-through-required or
caching-inhibited or the cache is disabled

Program 00700 As defined by the PowerPC architecture.

Floating-point 00800 As defined by the PowerPC architecture.

unavailable

Decrementer 00900 As defined by the PowerPC architecture, when the most significant bit of
the DEC register changes from 0 to 1 and MSR[EE] = 1.

Reserved 00A00-00BFF —

1. 750CX/CXe/CXr-specific
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Table 1-5 Exceptions and Conditions (Continued)

Exception Type

Vector Offset

Causing Conditions

breakpoint®

(hex)

System call 00CO00 Execution of the System Call (sc) instruction.

Trace 00D00 MSRJ[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike
the architecture definition, isync does not cause a trace exception

Reserved 00EO00 750CX/CXe/CXr does not generate an exception to this vector. Other
PowerPC processors may use this vector for floating-point assist
exceptions.

Reserved OOE10-00EFF —

Performance 00F00 The limit specified in a PMC register is reached and MMCRO[ENINT] = 1

monitor?

Instruction address 01300 IABR[0-29] matches EA[0—29] of the next instruction to complete,

IABR[TE] matches MSRJ[IR], and

IABR[BE] = 1.
Reserved 01400-016FF —
Thermal 01700 Thermal management is enabled, the junction temperature exceeds the
management threshold specified in THRM1 or THRM2, and MSR[EE] = 1.
interrupt?
Reserved 01800-02FFF —

1. 750CX/CXe/CXr-specific

1.8 Memory Management

The following subsections describe the memory management features of the PowerPC architecture,
and the 750CX/CXe/CXr implementation, respectively. A detailed description of the
750CX/CXe/CXr MMU implementation is provided in Chapter 5, "Memory Management".

1.8.1 PowerPC Memory Management Model

The primary functions of the MMU areto trandate logical (effective) addressesto physical addresses
for memory accesses and to provide access protection on blocks and pages of memory. There are two
types of accesses generated by the 750CX/CXe/CXr that require address trandlation—instruction
fetches, and data accesses to memory generated by load, store, and cache control instructions.

The PowerPC architecture defines different resources for 32 and 64-bit processors; 750CX/CXe/CXr
implements the 32-bit memory management model. The memory-management unit provides two
types of memory access models: Block Address Translate (BAT) model and avirtual address model.
The BAT block sizes range from 128K byte to 256M byte and are sel ectable from high order effective
address bits and have priority over the virtual model. The virtual model employs a 52-bit virtual
address space made up by a 24-bit segment address space and a 28-bit effective address space. The
virtual model utilizes a demand paging method with a 4Kbyte page size. In both models address
trang ation is done completely by hardware, in parallel with cache accesses, with no additional cycles
incurred.

Page 50 Version 1.3 IBM PowerPC 750CX/CXe/CXr RISC Microprocessor User’'s Manual



The 750CX/CXe/lCXr MMU provides independent four-entry BAT arrays for instructions and data
that maintain address transations for blocks of memory. These entries define blocks that can vary
from 128K bytes to 256Mbytes. The BAT arrays are maintained by system software. Instructions and
data share the same virtual address model but could operate in separate segment spaces.

The PowerPC 750CX/CXe/CXr MMU and exception model support demand-paged virtual memory.
Virtual memory management permits execution of programslarger than the size of physical memory;
demand-paged implies that individual pages for data and instructions are loaded into physical
memory from system disk only when they are required by an executing program. Infrequently used
pages in memory are returned to disk or discarded if they have not been modified.

The hashed page table is a fixed-sized data structure (size should be determined by the amount of
physical memory available to the system) that contains 8-byte entries (PTES) that define the mapping
between virtual pages and physical pages. The pagetable sizeisapower of 2 and isboundary aligned
in memory based on the size of the table. The page table contains anumber of page table entry groups
(PTEGS). A PTEG contains eight page table entries (PTES) of eight bytes each; therefore, each PTEG
is64 byteslong. PTEG addresses are entry pointsfor table search operations. A given pagetranglation
can be found in one of two possible PTEGs. The size and location in memory of the page table is
defined in the SDR1 register.

Setting MSR[IR] enables ingtruction address trandations and MSR[DR] enables data address
tranglations. If the bit is cleared, the respective effective address is used as the physical address.

1.8.2 750CX/CXe/CXr Microprocessor Memory Management
Implementation

The 750CX/CXe/CXr implements separate MM Us for instructions and data. It implements a copy of
the segment registersin the instruction MMU; however, read and write accesses (mfsr and mtsr) are
handled through the segment registers implemented as part of the data MMU. 750CX/CXe&/CXr
MMU is described in Section 1.2.3, "Memory Management Units (MMUSs),” on Page 30.

The R (referenced) bit is set in the PTE in memory during a page table search due to a TLB miss.
Updates to the changed (C) bit are treated like TLB misses. Again the page table is searched to find
the correct PTE to update when the C bit changes from O to 1.

1.9 Instruction Timing

The 750CX/CXe/CXr is a pipelined, superscalar processor. A pipelined processor is one in which
instruction processing is divided into discrete stages, alowing work to be done on multiple
instructions in each stage. For example, after an instruction compl etes one stage, it can pass on to the
next stage leaving the previous stage available to a subsequent instruction. This improves overall
instruction throughput.

A superscalar processor is one that issues multiple independent instructions to separate execution
unitsin asingle cycle, allowing multiple instructionsto execute in parallel. The 750CX/CXe/CXr has
six independent execution units, two for integer instructions, and one each for floating-point
instructions, branch instructions, load and store instructions, and system register instructions. Having
separate GPRs and FPRs allows integer, floating-point calculations, and load and store operations to
occur simultaneously without interference. Additionally, rename buffers are provided to alow
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operations to post completed results to be use by subsequent instructions without committing them to
the architected FPR and GPR register files.

As shown in Figure 1-6 on page 52, the common pipeline of the 750CX/CXe/CXr has four stages
through which all instructions must pass—fetch, decode/dispatch, execute, and complete/write back.
Instructions flow sequentially through each stage. However, at dispatch a position is made available
in the compl etion queue at the sametime it enters the execution stage. This simplifies the completion
operation when instructions are retired in program order. Both the load/store and floating-point units
have multiple stages to execute their instructions. An instruction occupies only one stage at atimein
all execution units. At each stage an instruction may proceed without delay or may stall. Stalls are
caused by the requirement of additional processing or other events. For example divide instructions
require multiple cycles to complete the operation, load and store instructions may stall waiting for
address trandation (TLB reload, page fault, etc.).

Maximum four-instruction fetch

’—> Fetch per clock cycle

BPU

Y
) Maximum three-instruction  dis-
Dispatch

patch per clock cycle (includes one
branch instruction)

Y Execute Stage

Y

FPU1 Y
Y FPU2 ] Y LSuU1
SRU FPU3 U1 U2 LSu2

Maximum two-instruction com-

Complete (Write-Back) pletion per clock cycle

Figure 1-6. Pipeline Diagram

NOTE: Figure 1-6 does not show features, such as reservation stations and rename buffers that
reduce stalls and improve instruction throughput.

The instruction pipeline in the 750CX/CXe/CXr has four major pipeline stages, they are fetch,
dispatch, execute, and complete and are described as follows.

» Thefetch pipeline stage primarily involvesfetching instructions from the memory system and
keeping the instruction queue full. The BPU decodes branches after they are fetched and
removes (folds out) those that do not update CTR or LR from the instruction stream. If the
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branch istaken or predicted astaken thefetch unit isinformed of the new address and fetching
resumes along the taken patch. For branches not taken or predicted as not taken sequential
fetching continues.

» Thedispatch unit is responsible for taking instructions from the bottom two locations of the
instruction queue and delivering them to an execution unit for farther processing. Dispatchis
responsible for decoding the instructions and determining which instructions can be
dispatched. To qualify for dispatch, areservation station, arename buffer and apositioninthe
completion queue all must be available. A branch instruction could be processed by the BPU
on the same clock cycle for amaximum of three-instruction dispatch per cycle.

* Thedispatch stage accesses operands, assigns arename buffer for an operand(s) that updates
an architected register(s) (GPR, FPR, CR, etc.) and deliversthe instruction to the reservation
registers of the respective execution units. If a source operand is not available (a previous
instruction is updating the item via a rename buffer) dispatch provides atag that indicates
which rename buffer will supply the operand when it becomes available. At the end of the
dispatch stage, the instructions are removed from the instructions queue, latched into
reservation stations at the appropriate execution unit and assigned positionsin the completion
buffersin sequential program order.

» The execution units process instructions from their reservations stations using the operands
provided from dispatch and notifies the completion stage when the instruction has finished
execution. With the exception of multiply and divide integer instructions complete execution
inasingle cycle.

* FPU hasthree stages for processing floating-point arithmetic. The FPU stages are multiply,
add, and normalize. All single precision arithmetic (add, subtract, multiply and multiply/add)
instructions are processed without stalls at each stage. They have a one cycle through put and
athree cycle latency. Three different arithmetic instructions can be in execution at one time
with one instruction compl eting execution each cycle. Double-precision arithmetic multiply
requires two cyclesin the multiply stage and one cyclein add, and one in normalize yielding
atwo cycle through put and a4 cycle latency. All divide instructions require multiple cycles
in the first stage for processing.

» Theload/store unit hastwo reservation registers and two pipeline stages. Thefirst stageisfor
effective address cal culation and the second stage is for MMU translation and accessing the
L1 data cache. Load instructions have a one cycle through put and atwo cycle latency.

* Inthecaseof aninternal exception, the execution unit reports the exception to the completion
pipeline stage and (except for the FPU) discontinuesinstruction execution until the exception
ishandled. The exception is not signaled until it is determined that all previous instruction
have completed to a point where they will not signal an exception.

*  Thecompletion unit retiresinstruction from the bottom two positions of the completion queue
In program order. This maintains the correct architectural machine state and transfers
execution results from the rename buffers to the GPRs and FPRs (and CTR and LR, for some
instructions) as instructions are retired. If completion logic detects an instruction causing an
exception, all following instructions are cancelled, their execution results in rename buffers
are discarded, and instructions are fetched from the appropriate exception vector.

Because the PowerPC architecture can be applied to such a wide variety of implementations,
instruction timing varies among PowerPC processors.
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For a detailed discussion of instruction timing with examples and a table of latencies for each
execution unit, see Chapter 6, "Instruction Timing".

1.10 Power Management

750CX/CXe/CXr provides four power modes, selectable by setting the appropriate control bitsin the
MSR and HIDO registers. The four power modes are as follows.

Full-power—This is the default power state of the 750CX/CXe/CXr. The 750CX/CXe/CXr
isfully powered and the internal functional units are operating at the full processor clock
speed. If the dynamic power management mode is enabled, functional unitsthat areidle will
automatically enter alow-power state without affecting performance, software execution, or
externa hardware.

Doze—All the functional units of the 750CX/CXe/CXr are disabled except for the time
base/decrementer registers and the bus snooping logic. When the processor isin doze mode,
an external asynchronousinterrupt, a system management interrupt, adecrementer exception,
ahard or soft reset, or machine check brings 750CX/CXe/CXr into the full-power state. The
750CX/CXe/CXr in doze mode maintainsthe PLL in afully powered state and locked to the
system external clock input (SY SCLK) so atransition to the full-power state takes only afew
processor clock cycles.

Nap—The nap mode further reduces power consumption by disabling bus snooping, leaving
only the time base register and the PLL in a powered state. The 750CX/CXe/CXr returnsto
the full-power state upon receipt of an external asynchronousinterrupt, asystem management
interrupt, a decrementer exception, a hard or soft reset, or amachine check input (MCP). A

return to full-power state from a nap state takes only afew processor clock cycles. When the
processor isin nap mode, if QACK is negated, the processor is put in doze mode to support

snooping.

Sleep—Sleep mode minimizes power consumption by disabling all internal functional units,
after which external system logic may disable the PLL and SY SCLK. Returning the
750CX/CXe/CXr to the full-power state requires the enabling of the PLL and SY SCLK,
followed by the assertion of an external asynchronous interrupt, a system management
interrupt, a hard or soft reset, or a machine check input (MCP) signal after the time required
torelock the PLL.

Chapter 10, "Power and Thermal Management” provides information about power saving and ther-
mal management modes for the 750CX/CXe/CXr.

1.11 Thermal Management

The 750CX/CXe/CXr’s thermal assist unit (TAU) provides a way to control heat dissipation. This
ability is particularly useful in portable computers, which, due to power consumption and size
limitations, cannot use desktop cooling solutions such as fans. Therefore, better heat sink designs
coupled with intelligent thermal management is of critical importance for high performance portable
systems.

Primarily, the thermal management system monitors and regulates the system’s operating
temperature. For example, if the temperature is about to exceed a set limit, the system can be made
to slow down or even suspend operations temporarily in order to lower the temperature.
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The therma management facility also ensures that the processor’s junction temperature does not
exceed the operating specification. To avoid the inaccuracies that arise from measuring junction
temperature with an external thermal sensor, 750CX/CXe/CXr’s on-chip thermal sensor and logic
tightly couples the thermal management implementation.

The TAU consists of athermal sensor, digital-to-analog convertor, comparator, control logic, and the
dedicated SPRs described in Section 1.4, ” PowerPC Registers and Programming Model,” on Page 40.
The TAU does the following.

» Compares the junction temperature against user-programmable thresholds.
* Generates atherma management interrupt if the temperature crosses the threshold.

» Enablesthe user to estimate the junction temperature by way of a software successive
approximation routine.

The TAU is controlled through the privileged mtspr/mfspr instructions to the three SPRs provided
for configuring and controlling the sensor control logic, which function as follows.

* THRM1 and THRMZ2 provide the ability to compare the junction temperature against two
user-provided thresholds. Having dual thresholds gives the thermal management software
finer control of the junction temperature. In single threshold mode, the thermal sensor output
is compared to only one threshold in either THRM1 or THRM2.

« THRM3 isused to enable the TAU and to control the comparator output sample time. The
thermal management logic manages the therma management interrupt generation and time
multiplexed comparisons in the dual threshold mode as well as other control functions.

Instruction cache throttling provides control of the 750CX/CXe/CXr’s overall junction temperature
by determining the interval at which instructions are fetched. This feature is accessed through the
ICTC register.

Chapter 10, "Power and Therma Management” provides information about power saving and
thermal management modes for the 750CX/CXe/CXr.

1.12 Performance Monitor

The 750CX/CXe/CXr incorporates a performance monitor facility that system designers can use to
help bring up, debug, and optimize software performance. The performance monitor counts events
during execution of code, relating to dispatch, execution, completion, and memory accesses.

The performance monitor incorporates several registers that can be read and written to by
supervisor-level software. User-level versions of these registers provide read-only access for
user-level applications. These registers are described in Section 1.4, "PowerPC Registers and
Programming Model,” on Page 40. Performance monitor control registers, MMCRO or MMCR1, can
be used to specify which events are to be counted and the conditions for which a performance
monitoring interrupt is taken. Additionally, the sampled instruction address register, SIA (USIA),
holds the address of the first instruction to complete after the counter overflowed.

Attempting to write to a user-read-only performance monitor register causes a program exception,
regardless of the MSR[PR] setting.

When a performance monitoring interrupt occurs, program execution continues from vector offset
0x00FQO.
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Chapter 11, "Performance Monitor" describes the operation of the performance monitor diagnostic
tool incorporated in 750CX/CXe/CXr.
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Chapter 2 Programming Model

This chapter describes the 750CX/CXe/CXr programming model, emphasizing those features
specific to the 750CX/CXe/CXr processor and summarizing those that are common to PowerPC
processors. It consists of three major sections, which describe the following topics.

* Registersimplemented in the 750CX/CXe/CXr
*  Operand conventions
*  The 750CX/CXe/CXr instruction set

For detailed information about architecture-defined features, see the PowerPC Microprocessor
Family: The Programming Environments manual.

2.1 The PowerPC 750CX/CXe/CXr Processor Register Set

This section describes the registers implemented in the 750CX/CXe/CXr. It includes an overview of
registers defined by the PowerPC architecture, highlighting differences in how these registers are
implemented in the 750CX/CXe/CXr, and a detailed description of 750CX/CXe/CXr-specific
registers. Full descriptions of the architecture-defined register set are provided in Chapter 2,
“PowerPC Register Set" in the PowerPC Microprocessor Family: The Programming Environments
manual.

Registers are defined at all three level s of the PowerPC architecture—user instruction set architecture
(UISA), virtual environment architecture (V EA), and operating environment architecture (OEA). The
PowerPC architecture defines register-to-register operations for all computational instructions.
Source data for these instructions are accessed from the on-chip registers or are provided as
immediate values embedded in the opcode. The three-register instruction format allows specification
of atarget register distinct from the two source registers, thus preserving the original datafor use by
other instructions and reducing the number of instructions required for certain operations. Data is
transferred between memory and registers with explicit load and store instructions only.

2.1.1 Register Set

Theregistersimplemented on the 750CX/CXe/CXr are shown in Figure 2-1 on page 58. The number
to the right of the special-purpose registers (SPRs) indicates the number that is used in the syntax of
the instruction operands to access the register (for example, the number used to access the integer
exception register (XER) is SPR 1). These registers can be accessed using the mtspr and mfspr
instructions.
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These registers are processor-specific registers. They may not be supported by other PowerPC processors.

Figure 2-1. Programming Model—PowerPC 750CX/CXe/CXr Microprocessor
Registers
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The PowerPC UISA registers are user-level. General-purpose registers (GPRs) and floating-point
registers (FPRs) are accessed through instruction operands. Access to registers can be explicit (by
using instructionsfor that purpose such as Move to Special-Purpose Register (mtspr) and Movefrom
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction.
Some registers are accessed both explicitly and implicitly.

Implementation Note—The 750CX/CXe/CXr fully decodes the SPR field of the instruction. If the
SPR specified is undefined, the illegal instruction program exception occurs. The PowerPC's
user-level registers are described as follows.

User-level registers (UISA)—The user-level registers can be accessed by all software with
either user or supervisor privileges. They include the following registers.

— Genera-purpose registers (GPRs). The thirty-two GPRs (GPRO-GPR31) serve as data

source or destination registers for integer instructions and provide data for generating
addresses. See “ General Purpose Registers (GPRs)" in Chapter 2, “ PowerPC Register
Set” of the PowerPC Microprocessor Family: The Programming Environments manual
for more information.

Floating-point registers (FPRs). The thirty-two FPRs (FPRO-FPR31) serve as the data
source or destination for all floating-point instructions. See * Floating-Point Registers
(FPRs)" in Chapter 2, “PowerPC Register Set” of the Power PC Microprocessor Family:
The Programming Environments manual.

Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CRO—CR?7, that
reflect results of certain arithmetic operations and provide a mechanism for testing and
branching. See “Condition Register (CR)" in Chapter 2, “ PowerPC Register Set” of the
Power PC Microprocessor Family: The Programming Environments manual .

Floating-point status and control register (FPSCR). The FPSCR containsall floating-point
exception signal bits, exception summary bits, exception enablebits, and rounding control
bits needed for compliance with the |EEE 754 standard. See “Floating-Point Status and
Control Register (FPSCR)" in Chapter 2, “PowerPC Register Set" of the PowerPC
Microprocessor Family: The Programming Environments manual.

The remaining user-level registers are SPRs. Note that the PowerPC architecture provides a
separate mechanism for accessing SPRs (the mtspr and mfspr instructions). These
instructions are commonly used to explicitly access certain registers, while other SPRs may
be more typically accessed as the side effect of executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for integer

operations. See “ XER Register (XER)" in Chapter 2, “ PowerPC Register Set" of the
Power PC Microprocessor Family: The Programming Environments manual for more
information.

Implementation Note—To allow emulation of the Iscbx instruction defined by the
POWER architecture, XER[16-23] isimplemented so that they can be read with
mfspr[XER] and written with mtxer [XER] instructions.

Link register (LR). The LR providesthe branch target address for the Branch Conditional
to Link Register (bclrx) instruction, and can be used to hold the logical address of the
instruction that follows a branch and link instruction, typically used for linking to
subroutines. See “Link Register (LR)" in Chapter 2, “PowerPC Register Set" of the
Power PC Microprocessor Family: The Programming Environments manual .
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— Count register (CTR). The CTR holds aloop count that can be decremented during
execution of appropriately coded branch instructions. The CTR can also provide
the branch target address for the Branch Conditional to Count Register (bcctrx)
instruction. See “Count Register (CTR)" in Chapter 2, “PowerPC Register Set" of
the Power PC Microprocessor Family: The Programming Environments manual .

User-level registers (VEA)—The PowerPC VEA defines the time base facility (TB), which
consists of two 32-bit registers—time base upper (TBU) and time baselower (TBL). Thetime
base registers can be written to only by supervisor-level instructions but can be read by both
user- and supervisor-level software. For more information, see “PowerPC VEA Register
Set—Time Base" in Chapter 2, “PowerPC Register Set" of the Power PC Microprocessor
Family: The Programming Environments manual.

Supervisor -level registers (OEA)—The OEA defines the registers an operating system uses
for memory management, configuration, exception handling, and other operating system
functions. The OEA defines the following supervisor-level registers for 32-bit
implementations:

— Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor. The MSR
can be modified by the Moveto Machine State Register (mtmsr), System Call (sc), and
Return from Exception (rfi) instructions. It can be read by the Move from Machine
State Register (mfmsr) instruction. When an exception is taken, the contents of the
M SR are saved to the machine status save/restoreregister 1 (SRR1), whichisdescribed
below. See* Machine State Register (MSR)" in Chapter 2, “PowerPC Register Set" of
the Power PC Microprocessor Family: The Programming Environments manual for
more information.

Implementation Note—Table 2-1 describes M SR bhits the 750CX/CXe/CXr
implements that are not required by the PowerPC architecture.

Table 2-1. Additional MSR Bits
Bit Name Description
13 | POW Power management enable. Optional to the PowerPC architecture.

0 Power management is disabled.

1 Power management is enabled. The processor can enter a power-saving mode when additional
conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in
the hardware implementation-dependent register 0 (HIDO), described in Table 2-4 on Page 65.

29 | PM Performance monitor marked mode. This bit is specific to 750CX/CXe/CXr, and is defined as
reserved by the PowerPC architecture. See Chapter 11, "Performance Monitor".
0 Process is not a marked process.
1 Process is a marked process.
NOTE:  Setting MSR[EE] masks not only the architecture-defined external interrupt and

decrementer exceptions but also the 750CX/CXe/CXr-specific system management,
performance monitor, and thermal management exceptions.
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— Processor versionregister (PVR). Thisregister isaread-only register that identifiesthe
version (model) and revision level of the PowerPC processor. For more information,
see “ Processor Version Register (PVR)" in Chapter 2, “PowerPC Register Set" of the
Power PC Microprocessor Family: The Programming Environments manual.

I mplementation Note—The processor version number for the 750CX/CXe/CXr:
DD2.1, 8S0 “0008 2201"
DD2.2, 8SE “0008 2212"
DD2.3, 8S0 “0008 2203"
— Memory management registers

— Block-address trandation (BAT) registers. The PowerPC OEA includes an array of
block addresstrand ation registersthat can be used to specify four blocks of instruction
space and four blocks of dataspace. The BAT registersareimplemented in pairs—four
pairsof instruction BATs (IBATOU-IBAT3U and IBATOL— BAT3L) and four pairs of
dataBATs(DBATOU-DBAT3U and DBATOL-DBAT3L). Figure 2-1. on Page 58 lists
the SPR numbersfor the BAT registers. For more information, see “BAT Registers' in
Chapter 2, “PowerPC Register Set” of the Power PC Microprocessor Family: The
Programming Environments manual. Because BAT upper and lower words are loaded
separately, software must ensure that BAT translations are correct during the time that
both BAT entries are being |oaded.

The 750CX/CXe/CXr implementsthe G bitinthe IBAT registers; however, attempting
to execute code from an IBAT areawith G = 1 causes an ISl exception. Thiscomplies
with therevision of the architecture described in the Power PC Microprocessor Family:
The Programming Environments manual.

— SDRL. The SDR1 register specifies the page table size and base address used in
virtual-to-physical address tranglation. See “SDR1" in Chapter 2, “ PowerPC Register
Set” of the PowerPC Microprocessor Family: The Programming Environments
manual.”

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment registers
(SRO-SR15). Note that the SRs are implemented on 32-bit implementations only. The
fields in the segment register are interpreted differently depending on the value of bit
0. See “ Segment Registers' in Chapter 2, “PowerPC Register Set” of the PowerPC
Microprocessor Family: The Programming Environments manual for more
information.

Note that the 750CX/CXe/CXr implements separate memory management units
(MMUs) for instruction and data. It associates the architecture-defined SRs with the
dataMMU (DMMU). It reflects the values of the SRsin separate, so-called ‘ shadow’
segment registersin the instruction MMU (IMMU).

— Exception-handling registers

— Dataaddressregister (DAR). After aDSl or an alignment exception, DAR is set to the
effective address (EA) generated by the faulting instruction. See “Data Address
Register (DAR)" in Chapter 2, “PowerPC Register Set” of the PowerPC
Microprocessor Family: The Programming Environments manual for more
information.

— SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating system use.
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See “ SPRGO-SPRG3" in Chapter 2, “ PowerPC Register Set” of the Power PC
Microprocessor Family: The Programming Environments manual for more
information.

DSISR. The DSISR register defines the cause of DSI and alignment exceptions. See
“DSISR" in Chapter 2, “PowerPC Register Set" of the Power PC Microprocessor
Family: The Programming Environments manual for more information.

Machine status save/restore register 0 (SRR0). The SRRO register is used to save the
address of the instruction at which execution continues when rfi executes at the end of
an exception handler routine. See “Machine Status Save/Restore Register 0 (SRR0)"
in Chapter 2, “PowerPC Register Set" of the PowerPC Microprocessor Family: The
Programming Environments manual for more information.

Machine status save/restore register 1 (SRR1). The SRR1 register is used to save
machine status on exceptions and to restore machine status when rfi executes. See
“Machine Status Save/Restore Register 1 (SRR1)" in Chapter 2, “ PowerPC Register
Set" of the Power PC Microprocessor Family: The Programming Environments
manual for more information.

Implementation Note—When a machine check exception occurs, the
750CX/CXe/CXr sets one or more error bitsin SRR1. Table 2-2 describes SRR1 bits
the 750CX/CXe/CXr implements that are not required by the PowerPC architecture.

Table 2-2. Additional SRR1 Bits

Bit

Name

Description

11

L2DP

Set by a double bit ECC error in the L2.

12

MCPIN

Set by the assertion of MCP

13

TEA

Set by a TEA assertion on the 60x bus

14

DP

Set by a data parity error on the 60x bus

15

AP

Set by an address parity error on the 60x bus

— Miscellaneous registers
— Timebase (TB). The TB isa64-bit structure provided for maintaining the time of day

and operating interval timers. The TB consists of two 32-bit regi sters—time base upper
(TBU) and time base lower (TBL). The time base registers can be written to only by
supervisor-level software, but can be read by both user- and supervisor-level software.
See “Time Base Facility (TB)—OEA" in Chapter 2, “PowerPC Register Set" of the
Power PC Microprocessor Family: The Programming Environments manual for more
information.

Decrementer register (DEC). Thisregister is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a programmable
delay; thefrequency isasubdivision of the processor clock. See“ Decrementer Register
(DEC)" in Chapter 2, “PowerPC Register Set" of the Power PC Microprocessor
Family: The Programming Environments manual for more information.
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Implementation Note—In the 750CX/CXe/CXr, the decrementer register is
decremented and the time base isincremented at a speed that is one-fourth the speed of
the bus clock.

— Data address breakpoint register (DABR)—This optional register is used to cause a
breakpoint exception if a specified data address is encountered. See “ Data Address
Breakpoint Register (DABR)" in Chapter 2, “PowerPC Register Set" of the PowerPC
Microprocessor Family: The Programming Environments manual.”

— External accessregister (EAR). This optional register is used in conjunction with
eciwx and ecowx. Note that the EAR register and the eciwx and ecowx instructions are
optional in the PowerPC architecture and may not be supported in all PowerPC
processors that implement the OEA. See “External Access Register (EAR)" in
Chapter 2, “PowerPC Register Set" of the PowerPC Microprocessor Family: The
Programming Environments manual for more information.

e 750CX/CXelCXr-specific register s—The PowerPC architecture allows implementation-
specific SPRs. Thoseincorporated in the 750CX/CXe/CXr are described asfollows. Notethat
in the 750CX/CXe/CXr, these registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to cause a
breakpoint exception if a specified instruction addressis encountered.

— Hardware implementation-dependent register O (HIDO)—This register controls various
functions, such as enabling checkstop conditions, and locking, enabling, and invalidating
the instruction and data caches.

— Hardwareimplementation-dependent register 1 (HID1)—Thisregister reflectsthe state of
PLL_CFG[0-3] clock signals.

— The L2 cache control register (L2CR) is used to configure and operate the L2 cache.

— Performance monitor registers. The following registers are used to define and count
events for use by the performance monitor:

— The performance monitor counter registers (PMC1-PMC4) are used to record the
number of times a certain event has occurred. UPM C1-UPMCA4 provide user-level
read access to these registers.

— The monitor mode control registers (MMCRO-MMCRL) are used to enable various
performance monitor interrupt functions. UMM CRO-UMMCRL1 provide user-level
read access to these registers.

— The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the performance
monitor interrupt condition. USIA provides user-level read access to the SIA.

— The 750CX/CXe/CXr does not implement the sampled data address register (SDA) or
the user-level, read-only USDA registers. However, for compatibility with processors
that do, those registers can be written to by boot code without causing an exception.
SDA is SPR 959; USDA is SPR 943.

— Theinstruction cache throttling control register (ICTC) has bits for enabling the
instruction cache throttling feature and for controlling the interval at which instructions
are forwarded to the instruction buffer in the fetch unit. This provides control over the
processor’ s overal junction temperature.

— Thermal management registers (THRM1, THRM2, and THRM3). Used to enable and set
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thresholds for the thermal management facility.

— THRM1 and THRM2 provide the ability to compare the junction temperature against
two user-provided thresholds. The dua thresholds alow the thermal management
softwarediffering degrees of actionin lowering the junction temperature. The TAU can
be also operated in a single threshold mode in which the thermal sensor output is
compared to only one threshold in either THRM1 or THRM2.

— THRM3isused to enable the thermal management assist unit (TAU) and to control the
comparator output sample time.

Note that while it is not guaranteed that the implementation of 750CX/CXe/CXr-specific registersis
consistent among PowerPC processors, other processors may implement similar or identical registers.

2.1.2 PowerPC 750CX/CXe/CXr-Specific Registers

This section describes registers that are defined for the 750CX/CXe/CXr but are not included in the
PowerPC architecture.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The address breakpoint register (IABR), shown in Figure 2-2, supports the instruction address
breakpoint exception. When this exception is enabled, instruction fetch addresses are compared with
an effective address stored in the IABR. If the word specified in the IABR isfetched, the instruction
breakpoint handler isinvoked. Theinstruction that triggers the breakpoint does not execute before the
handler is invoked. For more information, see Section 4.5.14, "Instruction Address Breakpoint
Exception (0x01300)" on Page 172. The IABR can be accessed with mtspr and mfspr using the
SPR1010.

Address BE | TE

0 29 30 31
Figure 2-2. Instruction Address Breakpoint Register

ThelABR bits are described in Table 2-3.

Table 2-3. Instruction Address Breakpoint Register Bit Settings

Bits | Name Description

0-29 | Address | Word address to be compared

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 TE Translation enabled. An IABR match is signaled if this bit matches MSR][IR].

2.1.2.2 Hardware Implementation-Dependent Register O

The hardware implementation-dependent register 0 (HIDO) controls the state of several functions
within the 750CX/CXe/CXr. The HIDO register is shown in Figure 2-3.
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DLOCK I:| Reserved

EMCP BCLK ECLK DOZE SLEEP ILOCK NOOPTI
DBP|EBA EBD 0 PAR NAP DPM| 0 0 0 [NHR|ICEDCE ICFI|DCHI SPD‘IFEM SGE|DCFABTIC| 0 [ABEBHT| 0
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-3. Hardware Implementation-Dependent Register 0 (HIDO)
The HIDO bits are described in Table 2-4.

Table 2-4. HIDO Bit Functions

Bit Name Function
0 EMCP | Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused
by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.

1 Asserting MCP causes checkstop if MSR[ME] = 0 or a machine check exception if ME = 1.

1 DBP Disable 60x bus address and data parity generation.

0 Parity generation is enabled.

1 Disable parity generation. If the system does not use address or data parity and the respective
parity checking is disabled (HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are
disabled, require no pull-up resistors, and thus should be left unconnected. If all parity generation
is disabled, all parity checking should also be disabled and parity signals need not be connected.

2 EBA Enable/disable 60x bus address parity checking

0 Prevents address parity checking.

1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD Enable 60x bus data parity checking

0 Parity checking is disabled.

1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

4 BCLK CKSTP_OUT enable. Used in conjunction with HIDO[ECLK] and the HRESET signal to configure

CKSTP_OUT. See Table 2-5". HIDO[BCLK] and HIDO[ECLK] CKSTP_OQUT Configuration,” on Page

68.

5 — Not used. Defined as EICE on some earlier processors.

6 ECLK CKSTP_OUT enable. Used in conjunction with HIDO[BCLK] and the HRESET signal to configure
CKSTP_OUT. See Table 2-5". HIDO[BCLK] and HIDO[ECLK] CKSTP_OUT Configuration," on Page
68.

7 PAR Disable precharge of ARTRY.

0 Precharge of ARTRY enabled

1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated)
state. If this is done, the system must restore the signals to the high state.

8 DOZE Doze mode enable. Operates in conjunction with MSR[POW].

0 Doze mode disabled.

1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze
mode, the PLL, time base, and snooping remain active.
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Table 2-4. HIDO Bit Functions (Continued)

Bit Name Function
9 NAP Nap mode enable. Operates in conjunction with MSR[POW].

0 Nap mode disabled.

1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap mode,
the PLL and the time base remain active.

10 SLEEP [ Sleep mode enable. Operates in conjunction with MSR[POW].

0 Sleep mode disabled.

1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. QREQ is
asserted to indicate that the processor is ready to enter sleep mode. If the system logic determines
that the processor may enter sleep mode, the quiesce acknowledge signal, QACK, is asserted
back to the processor. Once QACK assertion is detected, the processor enters sleep mode after
several processor clocks. At this point, the system logic may turn off the PLL by first configuring
PLL_CFG[0-3] to PLL bypass mode, then disabling SYSCLK.

11 DPM Dynamic power management enable.

0 Dynamic power management is disabled.

1 Functional units may enter a low-power mode automatically if the unit is idle. This does not affect
operational performance and is transparent to software or any external hardware.

12-14 | — Not used
15 NHR Not hard reset (software-use only)—Helps software distinguish a hard reset from a soft reset.

0 A hard reset occurred if software had previously set this bit.

1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs and
this bit remains set, software can tell it was a soft reset.

16 ICE Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were
marked cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, Cl reflects the original state determined by address translation
regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

17 DCE Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, Cl reflects the original state determined by address translation
regardless of cache disabled status. DCE is zero at power-up.

1 The data cache is enabled.

18 ILOCK [Instruction cache lock

0 Normal operation

1 Instruction cache is locked. A locked cache supplies data normally on a hit, but are treated as a
cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

Page 66

Version 1.3 IBM PowerPC 750CX/CXe/CXr RISC Microprocessor User’s Manual




Table 2-4. HIDO Bit Functions (Continued)

Bit

Name

Function

19

DLOCK

Data cache lock.

0 Normal operation

1 Data cache is locked. A locked cache supplies data normally on a hit but is treated as a
cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status. A snoop hit to a locked L1 data cache performs as
if the cache were not locked. A cache block invalidated by a snoop remains invalid until the cache
is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

20

ICFI

Instruction cache flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation begins
(usually the next cycle after the write operation to the register). The instruction cache must be
enabled for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each instruction cache block as invalid
without writing back modified cache blocks to memory. Cache access is blocked during this time.
Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting ICFI
clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once the L1
flash invalidate bits are set through a mtspr operations, hardware automatically resets these bits
in the next cycle (provided that the corresponding cache enable bits are set in HIDO).

Note, in the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits

was to set them and clear them in two consecutive mtspr operations. Software that already has this

sequence of operations does not need to be changed to run on 750CX/CXe/CXr.

21

DCFI

Data cache flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins
(usually the next cycle after the write operation to the register). The data cache must be enabled
for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each data cache block as invalid without
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI clears
all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once the L1 flash
invalidate bits are set through a mtspr operations, hardware automatically resets these bits in the
next cycle (provided that the corresponding cache enable bits are set in HIDO).

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set.

Note, In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits

was to set them and clear them in two consecutive mtspr operations. Software that already has this

sequence of operations does not need to be changed to run on the 750CX/CXe/CXr.

22

SPD

Speculative cache access disable

0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and data caches
is enabled

1 Speculative bus accesses to nonguarded space in both caches is disabled

23

IFEM

Enable M bit on bus for instruction fetches.
0 M bit disabled. Instruction fetches are treated as nonglobal on the bus
1 Instruction fetches reflect the M bit from the WIM settings.

24

SGE

Store gathering enable

0 Store gathering is disabled

1 Integer store gathering is performed for write-through to nonguarded space or for cache-inhibited
stores to nonguarded space for 4-byte, word-aligned stores. The LSU combines stores to form a
double word that is sent out on the 60x bus as a single-beat operation. Stores are gathered only if
successive, eligible stores, are queued and pending. Store gathering is performed regardless of
address order or endian mode.
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Table 2-4. HIDO Bit Functions (Continued)

Bit Name Function

25 DCFA Data cache flush assist. (Force data cache to ignore invalid sets on miss replacement selection.)

0 The data cache flush assist facility is disabled.

1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence
defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz instructions
to eight per set. The bit should be set just before beginning a cache flush routine and should be
cleared when the series of instructions is complete.

26 BTIC Branch Target Instruction Cache enable— enables the 64-entry branch instruction cache.

0 The BTIC is disabled, the contents are invalidated, and the BTIC behaves as if it was empty. New
entries cannot be added until the BTIC is enabled.

1 The BTIC is enabled, and new entries can be added.

27 — Not used. Defined as FBIOB on earlier 603-type processors.

28 ABE Address broadcast enable—controls whether certain address-only operations (such as cache

operations, eieio, and sync) are broadcast on the 60x bus.

0 Address-only operations affect only local L1 and L2 caches and are not broadcast.

1 Address-only operations are broadcast on the 60x bus.Affected instructions are eieio, sync, dchi,
dcbf, and dcbst. A sync instruction completes only after a successful broadcast. Execution of
eieio causes a broadcast that may be used to prevent any external devices, such as a bus bridge
chip, from store gathering.

Note that dcbz (with M = 1, coherency required) always broadcasts on the 60x bus regardless of the

setting of this bit. An icbi is never broadcast. No cache operations, except dcbhz, are snooped by the

750CX/CXe/CXr regardless of whether the ABE is set. Bus activity caused by these instructions
results directly from performing the operation on the 750CX/CXe/CXr cache.

29 BHT Branch history table enable.

0 BHT disabled. The 750CX/CXe/CXr uses static branch prediction as defined by the PowerPC
architecture (UISA) for those branch instructions the BHT would have otherwise used to predict
(that is, those that use the CR as the only mechanism to determine direction). For more
information on static branch prediction, see “Conditional Branch Control,” in Chapter 4 of the
PowerPC Microprocessor Family: The Programming Environments manual.

1 Allows the use of the 512-entry branch history table (BHT).

The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.

30 — Not used.

31 NOOPTI [ No-op the data cache touch instructions.
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

Table 2-5 shows how HIDO[BCLK], HIDO[ECLK], and HRESET are used to configure
CKSTP_OUT. See Section 7.2.9.4, "Checkstop Output (CKSTP_OUT)—Output" on Page 261 for
more information.

Table 2-5. HIDO[BCLK] and HIDO[ECLK] CKSTP_OUT Configuration

HRESET HIDO[ECLK] HIDO[BCLK] CKSTP_OUT
Asserted X X Not Applicable

Negated 0 0 CKSTP_OUT

Negated 0 1 SYSCLK/ 2

Negated 1 0 Processor Core
Negated 1 1 SYSCLK
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HIDO can be accessed with mtspr and mfspr using SPR1008.

2.1.2.3 Hardware Implementation-Dependent Register 1

The hardware implementation-dependent register 1 (HID1) reflects the state of the PLL_CFG[0—3]
signals. The HID1 bits are shown in Figure 2-4.

I:] Reserved
PCO|PCL|PC2PC3j0 0 0 0 0 0 0 0 0 0 O 0 O 0 0 O 0 O O O O O O O O O O O
01 2 3 4 31

Figure 2-4. Hardware Implementation-Dependent Register 1 (HID1)
The HID1 bits are described in Table 2-6.

Table 2-6. HID1 Bit Functions

Bit(s) Name Description
0 PCO PLL configuration bit 0 (read-only)
1 PC1 PLL configuration bit 1 (read-only)
2 PC2 PLL configuration bit 2 (read-only)
3 PC3 PLL configuration bit 3 (read-only)
4-31 — Reserved

Note: The clock configuration bits reflect the state of the PLL_CFG[0-3] signals.
HID1 can be accessed with mtspr and mfspr using SPR 1009.

2.1.2.4 Performance Monitor Registers

This section describes the registers used by the performance monitor, which is described in
Chapter 11, "Performance Monitor".

2.1.2.4.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO), shown in Figure 2-5, is a 32-bit SPR provided to
specify events to be counted and recorded. The MM CRO can be accessed only in supervisor mode.
User-level software can read the contents of MM CRO by issuing an mfspr instruction to UMM CRO,
described in the next section.

INTONBITTRANS
RTCSELECT
DISCOUNT PMC2INTCONTROL
ENINT T PMCI1INTCONTROL T r PMCTRIGGER
DIS | DP | DU [DMS|DMR THRESHOLD PMCI1SELECT PMC2SELECT
01 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

Figure 2-5. Monitor Mode Control Register 0 (MMCRO)
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Thisregister must be cleared at power up. Reading this register does not change its contents. The bits
of the MM CRO register are described in Table 2-7.

Table 2-7. MMCRO Bit Settings

Bit Name Description
0 DIS Disables counting unconditionally.
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.
1 DP Disables counting while in supervisor mode.
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not
changed by hardware.
2 DU Disables counting while in user mode.
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not
changed by hardware.
3 DMS Disables counting while MSR[PM] is set.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.
4 DMR Disables counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.
5 ENINT Enables performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
Cleared by hardware when a performance monitor interrupt is signaled. To re-enable
these interrupt signals, software must set this bit after handling the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.
6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is,
((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an
enabled time base transition with (INTONBITTRANS =1) & (ENINT = 1)).
0 Signaling a performance monitor interrupt does not affect counting status of PMCn.
1 The signaling of a performance monitor interrupt prevents changing of PMC1
counter. The PMCn counter do not change if PMC2COUNTCTL = 0.
Because a time base signal could have occurred along with an enabled counter
overflow condition, software should always reset INTONBITTRANS to zero, if the value
in INTONBITTRANS was a one.
7-8 RTCSELECT 64-bit time base, bit selection enable.
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11  Pick bit 47 to count
9 INTONBITTRANS Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.
10-15 | THRESHOLD Threshold value. 750CX/CXe/CXr supports all 6 bits, allowing threshold values from
0-63. The intent of the THRESHOLD support is to characterize L1 data cache misses.
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Table 2-7. MMCRO Bit Settings (Continued)

Bit

Name

Description

16

PMCI1INTCONTROL

Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow

17

PMCINTCONTROL

Enable interrupt signaling due to any PMC2-PMC4 counter overflow. Overrides the
setting of DISCOUNT.

0 Disable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow.
1 Enable PMC2-PMC4 interrupt signaling due to PMC2—-PMC4 counter overflow.

18

PMCTRIGGER

Can be used to trigger counting of PMC2—-PMC4 after PMC1 has overflowed or after a

performance monitor interrupt is signaled.

0 Enable PMC2-PMC4 counting.

1 Disable PMC2-PMC4 counting until either PMC1[0] = 1 or a performance monitor
interrupt is signaled.

19-25

PMC1SELECT

PMC1 input selector, 128 events selectable. See Table 2-9 ". PMCn Bits," on Page 72.

26-31

PMC2SELECT

PMC?2 input selector, 64 events selectable. See Table 2-9 ". PMCn Bits," on Page 72.

MMCRO can be accessed with mtspr and mfspr using SPR 952.

2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCRO)

The contents of MMCRO are reflected to UMMCRO, which can be read by user-level software.
MMCRO can be accessed with mfspr using SPR 936.

2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for performance
monitor counter registers 3 and 4 (PMC3 and PMC4). The MM CRL register is shown in Figure 2-6.

| |Reserved
PMC3SELECT PMCASELECT |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
0 4 5 9 10 31

Figure 2-6. Monitor Mode Control Register 1 (MMCRL1)

Bitsfor MM CR1 are shown in Table 2-8; the corresponding events are described in Section 2.1.2.4.5,
"Performance Monitor Counter Registers (PMC1-PMC4)" below.

Table 2-8. MMCR1 Bits

Bits Name Description
04 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 2-9 ". PMCn Bits," on Page 72
for defined selections.
5-9 PMCA4SELECT PMC4 input selector. 32 events selectable. See Table 2-9 ". PMCn Bits," on Page 72
for defined selections.
10-31 — Reserved.
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MMCR1 can be accessed with mtspr and mfspr using SPR 956. User-level software can read the
contents of MMCRL1 by issuing an mfspr instruction to UMMCRL, described in the following
section.

2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCRL1)

The contents of MMCRL1 are reflected to UMMCR1, which can be read by user-level software.
MMCRL1 can be accessed with mfspr using SPR 940.

2.1.2.4.5 Performance Monitor Counter Registers (PMC1-PMC4)

PMC1-PMC4, shown in Figure 2-7, are 32-bit counters that can be programmed to generate interrupt
signals when they overflow.

ov Counter Value

Figure 2-7. Performance Monitor Counter Registers (PMC1-PMC4)
The bits contained in the PMCn registers are described in Table 2-9.

Table 2-9. PMCn Bits

Bits Name Description

0 ov Overflow. When this bit is set it indicates that this counter has reached its maximum value.

1-31 | Counter value | Indicates the number of occurrences of the specified event.

Counters are considered to overflow when the high-order bit (the sign bit) becomes set; that is, they
reach the value 2147483648 (0x8000_0000). However, an interrupt is not signaled unless both
PMCn[INTCONTROL] and MMCRO[ENINT] are also set.

Notethat theinterrupts can be masked by clearing M SR[EE]; theinterrupt signal condition may occur
with MSR[EE] cleared, but the exception is not taken until EE is set. Setting MM CRO[DISCOUNT]
forces counters to stop counting when a counter interrupt occurs.

Software is expected to use mtspr to set PMC explicitly to nonoverflow values. If software sets an
overflow value, an erroneous exception may occur. For example, if both PMCN[INTCONTROL] and
MMCRO[ENINT] are set and mtspr loads an overflow value, an interrupt signal may be generated
without any event counting having taken place.

The event to be monitored by PMC1 can be chosen by setting MMCROQO[19-25]. The event to be
monitored by PMC2 can be chosen by setting MM CRO0[26-31]. The event to be monitored by PMC3
can be chosen by setting MM CR1[0-4]. The event to be monitored by PM C4 can be chosen by setting
MMCR1[5-9]. The selected events are counted beginning when MMCRO is set until either MMCRO
isreset or a performance monitor interrupt is generated.

Table 11-5. "PMC1 Events—MMCRO0[19-25] Select Encodings,” on Page 333, Table 11-6. "PMC2
Events—MMCRO0[26-31] Select Encodings,” on Page 333, Tablell-7. "PMC3
Events—MMCR1[04] Select Encodings,” on Page 335 and Tablel1l1-8. "PMC4
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Events—MMCR1[5-9] Select Encodings,” on Page 336 list the selectable events and their
encodings.

The PMC registers can be accessed with mtspr and mfspr using following SPR numbers:

* PMClisSPR953
* PMC2isSPR 954
* PMC3isSPR 957
* PMC4isSPR 958

2.1.2.4.6 User Performance Monitor Counter Registers (UPMC1-UPMC4)

The contents of the PM C1-PMC4 are reflected to UPM C1-UPM C4, which can be read by user-level
software. The UPMC registers can be read with mfspr using the following SPR numbers:

« UPMC1isSPR 937
« UPMC2isSPR 938
« UPMC3isSPR 941
* UPMC4isSPR 942

2.1.2.4.7 Sampled Instruction Address Register (SIA)

The sampled instruction addressregister (SIA) isasupervisor-level register that containsthe effective
address of an instruction executing at or around the time that the processor signals the performance
monitor interrupt condition. The SIA is shown in Figure 2-8.

Instruction Address

Figure 2-8. Sampled Instruction Address Registers (SIA)

If the performance monitor interrupt is triggered by a threshold event, the SIA contains the exact
instruction (called the sampled instruction) that caused the counter to overflow.

If the performance monitor interrupt was caused by something besides a threshold event, the SIA
contains the address of the last instruction completed during that cycle. SIA can be accessed with the
mtspr and mfspr instructions using SPR 955.

2.1.2.4.8 User Sampled Instruction Address Register (USIA)

The contents of SIA are reflected to USIA, which can be read by user-level software. USIA can be
accessed with the mfspr instructions using SPR 939.

2.1.2.4.9 Sampled Data Address Register (SDA) and User Sampled Data
Address Register (USDA)

The 750CX/CXe/CXr does not implement the sampled data address register (SDA) or the user-level,

read-only USDA registers. However, for compatibility with processorsthat do, those registers can be

written to by boot code without causing an exception. SDA is SPR 959; USDA is SPR 943.
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2.1.3 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the complexity and
overhead of dynamic clock control. System software can control instruction forwarding by writing a
nonzero value to the ICTC register, a supervisor-level register shown in Figure 2-9. The overall
junction temperature reduction comes from the dynamic power management of each functional unit
when the 750CX/CXe/CXr isidle in between instruction fetches. PLL (phase-locked loop) and DLL
(delay-locked loop) configurations are unchanged.

D Reserved
o6 0 0o00o0O0OO0OOOTOOCOTOOTOTOCOOTOTUOTUOCTOOO0O O FI E
0 22 23 30 31

Figure 2-9. Instruction Cache Throttling Control Register (ICTC)
Table 2-10 describes the bit fields for the ICTC register.

Table 2-10. ICTC Bit Settings

Bits Name Description
0-22 — Reserved
23-30 | FI Instruction forwarding interval expressed in processor clocks.

0x00 O clock cycle.
0x01 1 clock cycle

OxFF 255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction forwarding
interval into ICTC[FI]. Enabling, disabling, and changing the instruction forwarding interval affect
instruction forwarding immediately.

The ICTC register can be accessed with the mtspr and mfspr instructions using SPR 1019.

2.1.4 Thermal Management Registers (THRM1-THRM3)
The on-chip thermal management assist unit provides the following functions:

» Compares the junction temperature against user programmed thresholds

» Generates atherma management interrupt if the temperature crosses the threshold

* Provides away for a successive approximation routine to estimate junction temperature
Control and access to the thermal management assist unit is through the privileged mtspr/mfspr

instructions to the three THRM registers. THRM1 and THRM?2, shown in Figure 2-10, provide the
ability to compare the junction temperature against two user-provided thresholds. Having dua
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thresholds allows therma management software differing degrees of action in reducing junction
temperature. Thermal management can use a single-threshold mode in which the thermal sensor
output is compared to only one threshold in either THRM1 or THRM 2.

I:I Reserved
TIN|TIV THRESHOLD o 0o 0o o 000 0O 0 O0OOTOOCTOOUOUOO O O|TIDTE|V
0 1 2 8 9 28 29 30 31

Figure 2-10. Thermal Management Registers 1-2 (THRM1-THRM2)
Thebitsin THRM1 and THRM?2 are described in Table 2-11.

Table 2-11. THRM1-THRM2 Bit Settings

Bits Field Description

0 TIN Thermal management interrupt bit. Read-only. This bit is set if the thermal sensor output crosses
the threshold specified in the SPR. The state of TIN is valid only if TIV is set. The interpretation of
TIN is controlled by TID. See Table 2-12.

1 TIV Thermal management interrupt valid. Read-only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid. See Table 2-12 on Page 76.

2-8 | Threshold [ Threshold that the thermal sensor output is compared to. The range is 0°—127°C, and each bit
represents 1°C. Note that this is not the resolution of the thermal sensor.

9-28 | — Reserved. System software should clear these bits when writing to the THRMn SPRs.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature comparison to
set TIN and to assert a thermal management interrupt if TIE is set. If TID is cleared, TIN is set and
an interrupt occurs if the junction temperature exceeds the threshold. If TID is set, TIN is set and
an interrupt is indicated if the junction temperature is below the threshold. See Table 2-12 on Page
76.

30 TIE Thermal management interrupt enable. The thermal management interrupt is maskable by the
MSR[EE] bit. If TIE is cleared and THRMn is valid, the TIN bit records the status of the junction
temperature vs. threshold comparison without causing an exception. This lets system software
successively approximate the junction temperature. See Table 2-12 on Page 76.

31 \% SPR valid bit. Setting this bit indicates the SPR contains a valid threshold, TID and TIE controls
bits. THRM1/2[V] = 1 and THRM3J[E] = 1 enables the thermal sensor operation. See Table 2-12 on
Page 76.

If an mtspr affects a THRM register that contains operating parameters for an ongoing comparison
during operation of the thermal assist unit, the respective TIV bits are cleared and the comparison is
restarted. Changing THRM3 forces the TIV bits of both THRM1 and THRM2 to O, and restarts the
comparison if THRM3[E] is set.

Examples of valid THRM1Z/THRM?2 bit settings are shown in Table 2-12.
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Table 2-12. Valid THRM1/THRM2 Bit Settings

TN | TvVE | TD [ TIE | v Description
X X X X 0 | Invalid entry. The threshold in the SPR is not used for comparison.
X X X 0 1 | Disable thermal management interrupt assertion.
X X 0 X 1 | Set TIN and assert thermal management interrupt if TIE = 1 and the junction

temperature exceeds the threshold.

X X 1 X 1 | Set TIN and assert thermal management interrupt if TIE = 1 and the junction
temperature is less than the threshold.

X 0 X X 1 | The state of the TIN bit is not valid.

0 1 0 X 1 | The junction temperature is less than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 0 X 1 | The junction temperature is greater than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

0 1 1 X 1 | The junction temperature is greater than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 1 X 1 | The junction temperature is less than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

Note:
1TIN and TIV are read-only status bits.

The THRM3 register, shown in Figure 2-11, is used to enable the thermal assist unit and to control
the comparator output sample time. The thermal assist logic manages the therma management
interrupt generation and time-multiplexed comparisons in dual-threshold mode as well as other
control functions.

I:I Reserved
0o 0o 0o 00 OO O OO OTUOT OOTUOTOTO O Sampled Interval Timer Value E
0 17 18 30 31

Figure 2-11. Thermal Management Register 3 (THRM3)
The bitsin THRM3 are described in Table 2-13.
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Table 2-13. THRM3 Bit Settings

Bits Name Description

0-17 — Reserved for future use. System software should clear these bits when writing to the THRM3.

18-30 | SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to allow
a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set.

The THRM registers can be accessed with the mtspr and mfspr instructions using the following SPR
numbers:

» THRM1isSPR 1020
» THRM2isSPR 1021
» THRM3isSPR 1022

2.1.5 L2 Cache Control Register (L2CR)

The L2 cache control register, shown in Figure 2-12, is a supervisor-level, implementation-specific
SPR used to configure and operate the L2 cache. It is cleared by a hard reset or power-on reset.

L2WT EI Reserved

L2CE L2D0 L2TS L2IP
L2E 00 0 0 0O OO L2l| o o 0o 0 0O 0O O O 0 O0OOU OO OO0 O

0 1 2 8 9 10 11 12 13 14 30 31

Figure 2-12. L2 Cache Control Register (L2CR)
The L2 cache interface is described in Chapter 9, "L2 Cache".

The L2CR bits are described in Table 2-14 on Page 78.
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Table 2-14. L2CR Bit Settings

Bit

Name

Function

L2E

L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the L2
cache unit receives. Before enabling the L2 cache, all other L2CR bits must be set appropriately. The
L2 cache may need to be invalidated globally.

L2CE

L2 Checkstop enable.
0 ECC double bit error does not cause a Machine Check.
1 ECC double bhit error causes a machine check exception.

Reserved.

L2DO

L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation, only
transactions from the L1 data cache can be cached in the L2 cache, which treats all transactions from
the L1 instruction cache as cache-inhibited (bypass L2 cache, no L2 checking done). This bit is
provided for L2 testing only.

10

L2

L2 global invalidate. Setting L2l invalidates the L2 cache globally by clearing the L2 bits including
status bits. This bit must not be set while the L2 cache is enabled.

11

Reserved.

12

L2WT

L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back mode)
so all writes to the L2 cache also write through to the 60x bus. For these writes, the L2 cache entry is
always marked as clean (valid unmodified) rather than dirty (valid modified). This bit must never be
asserted after the L2 cache has been enabled as previously-modified lines can get remarked as
clean during normal operation.

13

L2TS

L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result from
dcbf and dcbst instructions to be written only into the L2 cache and marked valid, rather than being
written only to the 60x bus and marked invalid in the L2 cache in case of hit. This bit allows a
dcbz/dcbf instruction sequence to be used with the L1 cache enabled to easily initialize the L2 cache
with any address and data information. This bit also keeps dchz instructions from being broadcast on
the 60x and single-beat cacheable store misses in the L2 from being written to the 60x bus.

14-30

Reserved.

31

L2IP

L2 global invalidate in progress (read only). This read-only bit indicates whether an L2 global
invalidate is occurring. It should be monitored after an L2 global invalidate has been initiated by the
L2l bit to determine when it has completed.

The L2CR register can be accessed with the mtspr and mfspr instructions using SPR 1017.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the PowerPC
architecture—UISA and VEA. Detailed descriptions of conventions used for storing values in
registers and memory, accessing PowerPC registers, and representation of datain these registers can
be found in Chapter 3, “Operand Conventions' in the PowerPC Microprocessor Family: The
Programming Environments manual.
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2.2.1 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the
corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple
and load/store string instructions, a sequence of bytes or words. The address of a memory operand is
the address of itsfirst byte (that is, of its lowest-numbered byte). Operand length isimplicit for each
instruction.

2.2.2 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary equal to its
length. An operand's address is misaligned if it is not a multiple of its width. Operands for
single-register memory access instructions have the characteristics shown in Table 2-15. Although
not permitted as memory operands, quad words are shown because quad-word alignment isdesirable
for certain memory operands.

Table 2-15. Memory Operands

Operand Length 'ﬁ?%féi:dll
Byte 8 hits XXXX
Half word 2 bytes Xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quad word 16 bytes 0000

Note: An “X” in an address bit position indicates that the bit can
be 0 or 1 independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte
dataitem is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, alignment
may affect performance. For single-register memory access instructions, the best performance is
obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

The 750CX/CXe/CXr does not provide hardware support for floating-point memory that is not
word-aligned. If afloating-point operand is not aligned, the 750CX/CXe/CXr invokes an alignment
exception, and it is left up to software to break up the offending storage access operation
appropriately. In addition, some non-double-word—aligned memory accesses suffer performance
degradation as compared to an aligned access of the same type.

In general, floating-point word accesses should aways be word-aligned and floating-point
double-word accesses should always be double-word—aligned. Frequent use of misaligned accesses
is discouraged since they can degrade overall performance.
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2.2.3 Floating-Point Operand and Execution Models—UISA

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double-precision
operands, but states that single-precision arithmetic instructions should not accept double-precision
operands.

The PowerPC UISA follows these guidelines:

* Double-precision arithmetic instructions may have single-precision operands but always
produce double-precision results.

* Single-precision arithmeticinstructionsrequire all operandsto be single-precision and always
produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done explicitly by
software, while conversion from single- to double-precision is done implicitly by the processor.

All PowerPC implementations provide the equivalent of the execution models described in Section
3.3 of the PowerPC Microprocessor Family: The Programming Environments manual to ensure that
identical results are obtained. The definition of the arithmetic instructionsfor infinities, denormalized
numbers, and NaNs follow conventions described in that section.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two
additional bit positionsto avoid potential transient overflow conditions. An extrabit isrequired when
denormalized double-precision numbers are prenormalized. A second bit is required to permit
computation of the adjusted exponent value in the following examples when the corresponding
exception enable bit is one:

* Underflow during multiplication using a denormalized operand
» Overflow during division using a denormalized divisor

The 750CX/CXe/CXr provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture provides for
hardware to implement a floating-point system as defined in ANSI/IEEE standard 754-1985, |EEE
Sandard for Binary Floating Point Arithmetic. Detailed information about the floating-point
execution model can befound in Chapter 3, “ Operand Conventions' in the Power PC Microprocessor
Family: The Programming Environments manual.

The 750CX/CXe/CXr supports non-IEEE mode whenever FPSCR[29] is set. In this mode,
denormalized numbers, NaNs, and some |IEEE invalid operations are treated in a non-lEEE
conforming manner. Thisis accomplished by delivering results that approximate the values required
by the |EEE standard.
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Table 2-16. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI'=0)

Non-IEEE Mode
(NI = 1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three

Zero all three

Single denormalized Single denormalized Normalized or zero Normalize A and B Zero A and B
Double denormalized Double denormalized
Normalized or zero Single denormalized Single denormalized Normalize B and C ZeroBand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Single denormalized Normalize A and C ZeroAand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized Normalize C Zero C
Double denormalized
Single QNaN Don't care Don'’t care OQNaN? OQNaN?
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNaN? QNaN?
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNaN? QNaN?
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

1 prioritize according to Chapter 3, “Operand Conventions,” in the PowerPC Microprocessor Family:

Environments manual.
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Table 2-17 summarizes the mode behavior for results.

Table 2-17. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-lIEEE Mode (NI = 1)
Single Denormalized Return single-precision denormalized number Return zero.
with trailing zeros.
Single Normalized, Return the result. Return the result.
infinity, zero
Single QNaN, SNaN Return QNaN. Return QNaN.
Single INT Place integer into low word of FPR. If (Invalid Operation)
then
Place (0x8000) into FPR[32—63]
else

Place integer into FPR[32—63].

Double Denormalized Return double-precision denormalized number. | Return zero.
Double Normalized, Return the result. Return the result.
infinity, zero
Double QNaN, SNaN Return QNaN. Return QNaN.
Double INT Not supported by 750CX/CXe/CXr Not supported by 750CX/CXe/CXr

2.3 Instruction Set Summary

This chapter describes instructions and addressing modes defined for the 750CX/CXe/CXr. These
instructions are divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, "Integer Instructions" on Page 88.

* Floating-point instructions—These include floating-point arithmetic instructions
(single-precision and double-precision), as well asinstructions that affect the floating-point
status and control register (FPSCR). For more information, see Section 2.3.4.2,
"Floating-Point Instructions’ on Page 92.

* Load and store instructions—These include integer and floating-point (including quantized)
load and store instructions. For more information, see Section 2.3.4.3, "Load and Store
Instructions” on Page 96.

* Flow control instructions—These include branching instructions, condition register logical
Instructions, trap instructions, and other instructions that affect the instruction flow. For more
information, see Section 2.3.4.4, "Branch and Flow Control Instructions" on Page 105.

* Processor control instructions—These instructions are used for synchronizing memory
accesses and managing caches, TLBs, and segment registers. For more information, see
Section 2.3.4.6, "Processor Control Instructions—UISA" on Page 107, Section 2.3.5.1,
"Processor Control Instructions—VEA" on Page 112, and Section 2.3.6.2, "' Processor Control
Instructions—OEA" on Page 117.
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* Memory synchronization instructions—These instructions are used for memory
synchronizing. For more information, see Section 2.3.4.7, "Memory Synchronization
Instructions—UISA" on Page 110 and Section 2.3.5.2, "Memory Synchronization
Instructions—VEA" on Page 112.

» Memory control instructions—These instructions provide control of caches, TLBs, and
segment registers. For more information, see Section 2.3.5.3, "Memory Control
Instructions—VEA" on Page 113 and Section 2.3.6.3, "Memory Control Instructions—OEA"
on Page 117.

» External control instructions—These include instructions for use with special input/output
devices. For more information, see Section 2.3.5.4, "Optional External Control Instructions®
on Page 115.

NOTE: Thisgrouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. That information, whichis
useful for scheduling instructions most effectively, is provided in Chapter 6, "Instruction
Timing".

Integer instructions operate on word operands. Floating-point instructions operate on single-precision
and double-precision floating-point operands. The PowerPC architecture uses instructions that are
four byteslong and word-aligned. It providesfor byte, half-word, and word operand |oads and stores
between memory and a set of 32 general-purpose registers (GPRs). It provides for word and
double-word operand loads and stores between memory and a set of 32 floating-point registers
(FPRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory
location in a computation and then modify the same or another memory location, the memory
contents must be loaded into a register, modified, and then written to the target location using load
and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To
simplify assembly language programming, a set of simplified mnemonics and symbols is provided
for some of the frequently-used instructions; see Appendix F, “Simplified Mnemonics,” in the
Power PC Microprocessor Family: The Programming Environments manual for a complete list of
simplified mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblersfor the PowerPC
architecture should not assume the existence of mnemonics not described in that document.

2.3.1 Classes of Instructions
The 750CX/CXe/CXr ingtructions belong to one of the following three classes.
» Defined
e lllega
* Reserved
Note that while the definitions of these terms are consistent among the PowerPC processors, the

assignment of these classifications is not. For example, PowerPC instructions defined for 64-bit
implementations are treated as illegal by 32-bit implementations such as the 750CX/CXe/CXr.
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The class is determined by examining the primary opcode and the extended opcode, if any. If the
opcode, or combination of opcode and extended opcode, is not that of a defined instruction or of a
reserved instruction, theinstruction isillegal.

Instruction encodings that are now illegal may become assigned to instructions in the architecture or
may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bitsin reserved fields, the results on execution can be
said to be boundedly undefined. If a user-level program executes the incorrectly coded instruction,
the resulting undefined results are bounded in that a spurious change from user to supervisor state is
not allowed, and the level of privilege exercised by the program in relation to memory access and
other system resources cannot be exceeded. Boundedly-undefined results for agiven instruction may
vary between implementations, and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in al PowerPC implementations, except as stated
In the instruction descriptions in Chapter 12, "Instruction Set". The 750CX/CXe/CXr provides
hardware support for all instructions defined for 32-bit implementations.

It does not support the optional fsgrt, fsgrts, and tibia instructions.

A PowerPC processor invokes the illegal instruction error handler (part of the program exception)
when the unimplemented PowerPC instructions are encountered so they may be emulated in software,
asrequired. Note that the architecture specification refersto exceptions as interrupts.

A defined instruction can have invalid forms. The 750CX/CXe/CXr provides limited support for
instructions represented in an invalid form.

2.3.1.3 lllegal Instruction Class
[llegal instructions can be grouped into the following categories:

* Instructions not defined in the PowerPC architecture.The following primary opcodes are
defined asillegal but may be used in future extensions to the architecture:
1,4,5,6,9, 22, 56, 60, 61

Future versions of the PowerPC architecture may define any of these instructions to perform
new functions.

» Instructions defined in the PowerPC architecture but not implemented in a specific PowerPC
Implementation. For example, instructions that can be executed on 64-bit PowerPC
processors are considered illegal by 32-bit processors such as the 750CX/CXe/CXr.

Thefollowing primary opcodes are defined for 64-bit implementationsonly and areillegal on
the 750CX/CXe/CXr: 2, 30, 58, 62

* All unused extended opcodes are illegal. The unused extended opcodes can be determined
from information in Section A.1, "Instructions Sorted by Opcode" on Page 547 and Section
2.3.1.4, "Reserved Instruction Class' on Page 85. Notice that extended opcodes for
instructions defined only for 64-bit implementationsareillegal in 32-bit implementations, and
vice versa
The following primary opcodes have unused extended opcodes.
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17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for al 32-bit implementations, but
as 64-bit opcodes they have some unused extended opcodes.)

* Aninstruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory invokes the
system illegal instruction error handler (a program exception). Note that if only the primary
opcode consists of all zeros, the instruction is considered areserved instruction, as described
in Section 2.3.1.4, "Reserved Instruction Class' on Page 85.

The 750CX/CXe/CXr invokes the system illegal instruction error handler (a program exception)
when it detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, "Program Exception (0x00700)" on Page 169 for additional information about
illegal and invalid instruction exceptions. Except for an instruction consisting of binary zeros, illegal
instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are all ocated to specific implementati on-dependent purposes not defined by the
PowerPC architecture. Attempting to execute an unimplemented reserved instruction invokes the
illegal instruction error handler (a program exception). See Section 4.5.7, "Program Exception
(0x00700)" on Page 169 for information about illegal and invalid instruction exceptions.

The PowerPC architecture defines four types of reserved instructions:

* Instructionsin the POWER architecture not part of the PowerPC UISA. For details on
POWER architecture incompatibilities and how they are handled by PowerPC processors, see
Appendix B, “POWER Architecture Cross Reference” in the Power PC Microprocessor
Family: The Programming Environments manual.

* Implementation-specific instructions required for the processor to conform to the PowerPC
architecture (none of these are implemented in the 750CX/CXe&/CXr)

» All other implementation-specific instructions
» Architecturally-allowed extended opcodes

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for calculating
effective addresses as defined by the PowerPC architecture for 32-bit implementations. For more
detailed information, see “Conventions’ in Chapter 4, “Addressing Modes and Instruction Set
Summary" of the Power PC Microprocessor Family: The Programming Environments manual.

2.3.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the processor when
it executes a memory access or branch instruction or when it fetches the next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the
corresponding byte.
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2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple
and load/store string instructions, a sequence of bytes or words. The address of a memory operand is
the address of itsfirst byte (that is, of its lowest-numbered byte). Operand length isimplicit for each
instruction. The PowerPC architecture supports both big-endian and little-endian byte ordering. The
default byte and bit ordering is big-endian. See “Byte Ordering” in Chapter 3, “Operand
Conventions” of the Power PC Microprocessor Family: The Programming Environments manual for
more information about big- and little-endian byte ordering.

The operand of a single-register memory access instruction has a natural alignment boundary equal
to the operand length. In other words, the “natural” address of an operand is an integral multiple of
the operand length. A memory operand is said to be aligned if it is aligned at its natural boundary;
otherwise it is misaligned.

For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions’ of the
PowerPC Microprocessor Family: The Programming Environments manual.

2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a memory access
or branch instruction or when fetching the next sequential instruction. For a memory access
instruction, if the sum of the effective address and the operand length exceeds the maximum effective
address, the memory operand is considered to wrap around from the maximum effective address
through effective address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit signed 2's
complement binary arithmetic. A carry from bit O and overflow are ignored.
L oad and store operations have the following modes of effective address generation:

*  EA =(rA|0) + offset (including offset = 0) (register indirect with immediate index)

« EA =(rAl|0) + rB (register indirect with index)
Refer to Section 2.3.4.3.2, "Integer Load and Store Address Generation” on Page 97 for a detailed
description of effective address generation for load and store operations.
Branch instructions have three categories of effective address generation:

* Immediate

* Link register indirect

* Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refersto the state of the processor that is performing the
synchronization.

2.3.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (r fi) instructions perform context synchronization by
allowing previoudy issued instructionsto complete before performing achangein context. Execution
of one of these instructions ensures the following:
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* No higher priority exception exists (sc).
» All previousinstructions have completed to a point where they can no longer cause an

exception. If aprior memory access instruction causes direct-store error exceptions, the
results are guaranteed to be determined before this instruction is executed.

» Previous instructions complete execution in the context (privilege, protection, and address
trandation) under which they were issued.

» Theinstructionsfollowing the sc or rfi instruction execute in the context established by these
instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if al previoudly initiated instructions appear to have
completed before the instruction isinitiated or, in the case of sync and isync, before the instruction
completes. For example, the Move to Machine State Register (mtmsr) instruction is execution
synchronizing. It ensures that all preceding instructions have completed execution and cannot cause
an exception before the instruction executes, but does not ensure subsequent instructions execute in
the newly established environment. For example, if the mtmsr setsthe MSR[PR] bit, unlessanisync
immediately follows the mtmsr instruction, a privileged instruction could be executed or privileged
access could be performed without causing an exception even though the M SR[PR] bit indicates user
mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptionsin 750CX/CXe/CXr—those caused directly by the execution of an
instruction and those caused by an asynchronous event (or interrupts). Either may cause components
of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* Anattempt to execute anillegal instruction causestheillegal instruction (program exception)
handler to be invoked. An attempt by a user-level program to execute the supervisor-level
instructions listed below causes the privileged instruction (program exception) handler to be
invoked. The 750CX/CXe/CXr provides the following supervisor-level instructions: dcbi,
mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi, tibie, and tIbsync. Note that
the privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

* Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) field causes an illegal
type program exception. Likewise, aprogram exception istaken if user-level softwaretriesto
accessasupervisor-level SPR. Anmtspr instruction executing in supervisor mode (MSR[PR]
= 0) with the SPR field specifying HID1 or PVR (read-only registers) executes as a no-op.

» Anattempt to access memory that is not available (pagefault) causesthelSl or DSI exception
handler to be invoked.

» Theexecution of an sc instruction invokes the system call exception handler that permits a
program to request the system to perform a service.

» Theexecution of atrap instruction invokes the program exception trap handler.
» Theexecution of an instruction that causes a floating-point exception while exceptions are
enabled in the M SR invokes the program exception handler.

A detailed description of exception conditionsis provided in Chapter 4, "Exceptions’.
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2.3.3 Instruction Set Overview

This section provides abrief overview of the PowerPC instructionsimplemented in 750CX/CXe/CXr
and highlights any special information with respect to how 750CX/CXe/CXr implements a particular
instruction. Note that the categories used in this section correspond to those used in Chapter 4,
“Addressing Modes and Instruction Set Summary” in the PowerPC Microprocessor Family: The
Programming Environments manual. These categorizations are somewhat arbitrary and are provided
for the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

* CR Update—Thedot (.) suffix on the mnemonic enables the update of the CR.

* Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level cache
control, synchronization, and time base instructions), user-level registers, programming model, data
types, and addressing modes. This section discusses the instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:
» Integer arithmetic instructions
* Integer compare instructions
* Integer logical instructions
* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place resultsinto GPRs, into
the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-18 lists the integer arithmetic instructions for the PowerPC processors.
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Table 2-18. Integer Arithmetic Instructions

Name Mnemonic Syntax
Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA B
Subtract From subf (subf. subfo subfo.) rD,rA B
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rArB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA B
Add Extended adde (adde. addeo addeo.) rD,rA B
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA B
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA
Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rDrA
Negate neg (neg. nego nego.) rDrA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low mullw  (mullw. mullwo mullwo.) rD,rArB
Multiply High Word mulhw  (mulhw.) rD,rArB
Multiply High Word Unsigned mulhwu  (mulhwu.) rD,rArB
Divide Word divw (divw. divwo divwo.) rD,rA B
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA B

Although there is no Subtract Immediate instruction, its effect can be achieved by using an addi
instruction with theimmediate operand negated. Simplified mnemonics are provided that include this
negation. The subf instructions subtract the second operand (rA) from the third operand (rB).
Simplified mnemonicsare provided in which the third operand is subtracted from the second operand.
See Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor Family: The
Programming Environments manual for examples.

The UISA states that an implementation that executes instructions that set the overflow enable bit
(OE) or the carry bit (CA) may either execute these instructions slowly or prevent execution of the
subsequent instruction until the operation completes. Chapter 6, "Instruction Timing" describes how
the 750CX/CXe/CXr handles CR dependencies. The summary overflow bit (SO) and overflow bit
(OV) in the integer exception register are set to reflect an overflow condition of a 32-bit result. This
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can happen only when OE = 1.

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register r A with
either the zero-extended value of the UIMM operand, the sign-extended val ue of the SIMM operand,
or the contents of register rB. The comparison is signed for the cmpi and cmp instructions, and
unsigned for the cmpli and cmpl instructions.

Table 2-19 summarizes the integer compare instructions.

Table 2-19. Integer Compare Instructions

Name Mnemonic Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO. Otherwise
the target CR field must be specified in crfD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix F,
“Simplified Mnemonics,” in the Power PC Microprocessor Family: The Programming Environments
manual .

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table2-20 perform bit-parallel operations on the specified
operands. Logical instructions with the CR updating enabled (uses dot suffix) and instructions andi.
and andis. set CR field CRO to characterize the result of the logical operation. Logical instructions
do not affect XER[SO], XER[OV], or XER[CA].

See Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor Family: The
Programming Environments manual for simplified mnemonic examples for integer logical
operations.

Table 2-20. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes
AND Immediate andi. rArS,UIMM | —
AND Immediate Shifted andis. rArS,UIMM | —
OR Immediate ori rArS,UIMM [ The PowerPC architecture defines ori r0,r0,0 as the

preferred form for the no-op instruction. The dispatcher
discards this instruction (except for pending trace or
breakpoint exceptions).

OR Immediate Shifted oris rArS,UIMM | —

XOR Immediate xori rArS,UIMM | —
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Table 2-20. Integer Logical Instructions (Continued)

Name Mnemonic Syntax Implementation Notes
XOR Immediate Shifted Xoris rArS,UIMM |[—
AND and (and.) rArS,rB —
OR or (or.) rArSrB —
XOR xor (xor.) rArS,rB —
NAND nand (nand.) rArS,rB —
NOR nor (nor.) rArS,rB —
Equivalent eqv (eqv.) rArS,rB —
AND with Complement andc (andc.) rArSrB —
OR with Complement orc (orc.) rArSrB —
Extend Sign Byte extsb (extsb.) |rArS —
Extend Sign Half Word extsh (extsh.) |rArS —
Count Leading Zeros Word | cntlzw  (cntlzw.) | rArS —

2.3.4.1.4 Integer Rotate Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is
returned to a GPR. See Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor
Family: The Programming Environments manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost bits of a
register, left justifying or right justifying an arbitrary field, and simple rotates and shifts.

Integer rotate instructions rotate the contents of aregister. The result of the rotation is either inserted
into the target register under control of amask (if amask bit is 1 the associated bit of the rotated data
Is placed into the target register, and if the mask bit is O the associated bit in the target register is
unchanged), or ANDed with a mask before being placed into the target register.

The integer rotate instructions are summarized in Table 2-21.

Table 2-21. Integer Rotate Instructions

Name Mnemonic Syntax

Rotate Left Word Immediate then AND with Mask

rlwinm (rlwinm.)

rArS,SH,MB,ME

Rotate Left Word then AND with Mask

riwnm (rlwnm.)

rArS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert

riwimi (rlwimi.)

rArS,SH,MB,ME
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2.3.4.1.5 Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift
operations are obtained by specifying masksand shift valuesfor certain rotate instructions. Simplified
mnemonics (shown in Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor
Family: The Programming Environments manual) are provided to make coding of such shiftssimpler
and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision Shifts"
in the Power PC Microprocessor Family: The Programming Environments manual. The integer shift
instructions are summarized in Table 2-22.

Table 2-22. Integer Shift Instructions

Name Mnemonic Syntax
Shift Left Word slw  (slw.) rArS,rB
Shift Right Word srw  (srw.) rArS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rArS,SH
Shift Right Algebraic Word sraw (sraw.) rArS,B

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:
» Floating-point arithmetic instructions
» Floating-point multiply-add instructions
» Floating-point rounding and conversion instructions
» Floating-point compare instructions
» Floating-point status and control register instructions
* Floating-point move instructions

See Section 2.3.4.3, "Load and Store Instructions' on Page 96 for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the |EEE 754 standard, but
requires software support to conform with that standard. All floating-point operations conform to the
|EEE 754 standard, except if software sets the non-1EEE mode FPSCR[NI].
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2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-23.

Table 2-23. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frAfrB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul  (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frAfrC
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frAfrB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Reciprocal Estimate Single 1 fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate 1 frsqrte (frsqrte.) frD,frB
Floating Select * fsel (fsel.) frD,frAfrC,frB

Note: IThe fres, frsqrte and fsel instructions are optional in the PowerPC architecture.

Double-precision arithmetic instructions, except those involving multiplication (fmul, fmadd,
fmsub, fnmadd, fnrmsub) execute with the same latency as their single-precision equivalents. For
additional details on floating-point performance, refer to Chapter 6, "Instruction Timing".
2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation.
The floating-point multiply-add instructions are summarized in Table 2-24.

Table 2-24. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frAfrC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frAfrC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frAfrC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frAfrC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frAfrC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frAfrC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frAfrC,frB
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2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-point
convert instructions convert a 64-bit double-precision floating-point number to a 32-bit signed
integer number.

Examples of uses of these instructions to perform various conversions can be found in Appendix D,
“Floating-Point Models,” in the Power PC Microprocessor Family: The Programming Environments
manual .

Table 2-25. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fctiw  (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers. The
comparison ignores the sign of zero (that is +0 = -0).

The floating-point compare instructions are summarized in Table 2-26.

Table 2-26. Floating-Point Compare Instructions

Name Mnemonic Syntax
Floating Compare Unordered fcmpu crfD,frA,frB
Floating Compare Ordered fcmpo crfD,frA,frB

The PowerPC architecture alows an fcmpu or fcmpo instruction with the Rc bit set to produce a
boundedly-undefined result, which may include an illegal instruction program exception. In the
750CX/CXe/CXr, crfD should be treated as undefined

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appearsto synchronize the effects of all floating-point instructions executed
by a given processor. Executing an FPSCR instruction ensures that all floating-point instructions
previoudly initiated by the given processor appear to have completed before the FPSCR instructionis
initiated and that no subsequent floating-point instructions appear to be initiated by the given
processor until the FPSCR instruction has compl eted.

The FPSCR instructions are summarized in Table 2-27.
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Table 2-27. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD
Move to FPSCR Bit 1 mtfsbl (mtfsbl.) crbD

I mplementation Note—The PowerPC architecture states that in some implementations, the Moveto
FPSCR Fields (mtfsf) instruction may perform more slowly when only some of thefields are updated
as opposed to al of the fields. In the 750CX/CXe/CXr, there is no degradation of performance.

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point move
instructions do not modify the FPSCR. The CR update option in these instructions controls the
placing of result statusinto CR1.

Table 2-28 summarizes the floating-point move instructions.

Table 2-28. Floating-Point Move Instructions

Name Mnemonic Syntax
Floating Move Register fmr  (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB
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2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the accesses can
occur out of order. Synchronizing instructions are provided to enforce strict ordering. This section
describes the load and store instructions, which consist of the following:

* Integer load instructions
* Integer store instructions
* Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions
* Floating-point load instructions, including quantized loads
* Floating-point store instructions, including quantized stores
e Memory synchronization instructions
I mplementation Notes—The following describes how the 750CX/CXe/CXr handles misalignment:

The 750CX/CXe/CXr provides hardware support for misaligned memory accesses. It performs those
accesseswithin asingle cycleif the operand lies within adouble-word boundary. Misaligned memory
accesses that cross a double-word boundary degrade performance.

For string operations, the hardware makes no attempt to combine register valuesto reduce the number
of discrete accesses. Combining stores enhances performance if store gathering is enabled and the
accesses meet the criteriadescribed in Section 6.4.7, "Integer Store Gathering” on Page 232. Note that
the PowerPC architecture requires load/store multiple instruction accesses to be aigned. At a
minimum, additional cache access cycles are required.

Although many unaligned memory accesses are supported in hardware, the frequent use of them is
discouraged since they can compromise the overall performance of the processor.

Accessesthat cross atranglation boundary may be restarted. That is, amisaligned access that crosses
a page boundary is completely restarted if the second portion of the access causes a page fault. This
may cause the first access to be repeated.

On some processors, such as the 603, a TLB reload would cause an instruction restart. On the
750CX/CXe/CXr, TLB reloads are done transparently and only a page fault causes a restart.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction cache,
software must ensure that memory updates are visible to the instruction fetching mechanism. Thiscan
be achieved by the following instruction sequence:

dcbst I update memory

sync I wait for update

icbi I remove (invalidate) copy in instruction cache
isync I remove copy in own instruction buffer

These operations are required because the data cache isawrite-back cache. Since instruction fetching
bypasses the data cache, changes to items in the data cache may not be reflected in memory until the
fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining cache
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coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model and Memory
Coherency" in the PowerPC Microprocessor Family: The Programming Environments manual.
Because the 750CX/CXe/CXr does not broadcast the M bit for instruction fetches, external caches
are subject to coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with immediate
index mode, register indirect with index mode, or register indirect mode. See Section 2.3.2.3,
"Effective Address Calculation” on Page 86 for information about calculating effective addresses.
Note that in some implementations, operations that are not naturally aligned may suffer performance
degradation. Refer to Section 4.5.6, "Alignment Exception (0x00600)" on Page 169 for additional
information about load and store address alignment exceptions.

2.3.4.3.3 Integer Load Instructions

For integer load instructions, the byte, half word, or word addressed by the EA (effective address) is
loaded into r D. Many integer load instructions have an update form, inwhich r A is updated with the
generated effective address. For these forms, if rA = 0 and rA = rD (otherwise invalid), the EA is
placed intor A and the memory element (byte, half word, or word) addressed by the EA isloaded into
rD. Note that the PowerPC architecture defines |oad with update instructions with operand rA =0 or
rA =rD asinvalid forms.

Table 2-29 summarizes the integer load instructions.

Table 2-29. Integer Load Instructions

Name Mnemonic Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rDrA B
Load Byte and Zero with Update Ilbzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rArB
Load Half Word and Zero Ihz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rArB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed | lhzux rDrA B
Load Half Word Algebraic Iha rD,d(rA)
Load Half Word Algebraic Indexed Ilhax rD,rArB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed | lhaux rDrA B
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed Iwzx rD,rArB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rArB
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Implementation Notes—The following notes describe the 750CX/CXe/CXr implementation of
integer load instructions:

* The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the load half algebraic (Iha, Ihax) instructions with greater latency
than other types of load instructions. Thisis not the case for the 750CX/CXe/CXr; these
Instructions operate with the same latency as other load instructions.

* The PowerPC architecture cautions programmers that some implementations of the
architecture may run the load/store byte-reverse (Ihbrx, Ibrx, sthbrx, stwbrx) instructions
with greater latency than other types of load/store instructions. Thisis not the case for the
750CX/CXe/CXr. These instructions operate with the same latency as the other load/store
Instructions.

* The PowerPC architecture describes some preferred instruction forms for load and store
multiple instructions and integer move assist instructions that may perform better than other
formsin someimplementations. None of these preferred forms affect instruction performance
on the 750CX/CXe/CXr.

» The PowerPC architecture defines the lwar x and stwcx. as away to update memory
atomically. In the 750CX/CXe/CXr, reservations are made on behalf of aligned 32-byte
sections of the memory address space. Executing Iwar x and stwcx. to a page marked
write-through does not cause a DSI exception if the W bit is set, but as with other memory
accesses, DSI exceptions can result for other reasons such as protection violations or page
faults.

* Ingeneral, because stwcx. always causes an external bus transaction it has dlightly worse
performance characteristics than normal store operations.

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents of r S are stored into the byte, half word or word in memory
addressed by the EA (effective address). Many store instructions have an update form, in which rA
Is updated with the EA. For these forms, the following rules apply.

* IfrA #0, the effective addressis placed into rA.

* IfrS=rA, the contents of register r S are copied to the target memory element, then the
generated EA isplacedintorA (rS).

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid form. In
addition, it defines integer store instructions with the CR update option enabled (Rc field, bit 31, in
the instruction encoding = 1) to be an invalid form.

Table 2-30 summarizes the integer store instructions.

Table 2-30. Integer Store Instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rSrArB
Store Byte with Update stbu rsS,d(rA)
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Table 2-30. Integer Store Instructions (Continued)

Name Mnemonic Syntax
Store Byte with Update Indexed stbux rSrArB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rSrArB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rArB
Store Word stw rS,d(rA)
Store Word Indexed stwx rSrArB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rSrArB

2.3.4.3.5 Integer Store Gathering

The 750CX/CXe/CXr performs store gathering for write-through accesses to nonguarded space or to
cache-inhibited stores to nonguarded space if the stores are 4 bytes and they are word-aligned. These
stores are combined in the load/store unit (LSU) to form a double word and are sent out on the 60x
bus as asingle-beat operation. However, stores can be gathered only if the successive stores that meet
the criteria are queued and pending. Store gathering takes place regardless of the address order of the
stores. The store gathering feature is enabled by setting HIDO[SGE]. Store gathering is done for both
big- and little-endian modes.

Store gathering is not done for the following.
» Cacheable stores
» Storesto guarded cache-inhibited or write-through space
* Bytereverse store
* stwex. and ecowx accesses
* Foating-point stores
» Store operations attempted during a hardware table search

If store gathering is enabled and the stores do not fall under the above categories, an eieio or sync
instruction must be used to prevent two stores from being gathered.

2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions

Table 2-31 describes integer |oad and store with byte-reverse instructions. When used in a PowerPC
system operating with the default big-endian byte order, these instructions have the effect of loading
and storing data in little-endian order. Likewise, when used in a PowerPC system operating with
little-endian byte order, these instructions have the effect of loading and storing data in big-endian
order. For more information about big-endian and little-endian byte ordering, see “Byte Ordering” in
Chapter 3, “Operand Conventions' in the PowerPC Microprocessor Family: The Programming
Environments manual.
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Table 2-31. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax
Load Half Word Byte-Reverse Indexed Ihbrx rD,rArB
Load Word Byte-Reverse Indexed Iwbrx rD,rArB
Store Half Word Byte-Reverse Indexed sthbrx rSrArB
Store Word Byte-Reverse Indexed stwbrx rSrArB

2.3.4.3.7 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of datato and from the GPRs. The load
multiple and store multiple instructions may have operands that require memory accesses crossing a
4-Kbyte page boundary. As a result, these instructions may be interrupted by a DSI exception
associated with the address trand ation of the second page.

Implementation Notes—The following describes the 750CX/CXe/CXr implementation of the
load/store multiple instruction.

» For load/store string operations, the hardware does not combine register values to reduce the
number of discrete accesses. However, if store gathering isenabled and the accessesfall under
the criteria for store gathering the stores may be combined to enhance performance. At a
minimum, additional cache access cycles are required.

* The 750CX/CXe/CXr supports misaligned, single-register load and store accessesin
little-endian mode without causing an alignment exception. However, execution of
misaligned |oad/store multiple/string operations causes an alignment exception.

The PowerPC architecture defines the load multiple word (Imw) instruction with r A in the range of
registersto be loaded as an invalid form.

Table 2-32. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)

2.3.4.3.8 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or
from registers to memory without concern for alignment. These instructions can be used for a short
move between arbitrary memory locations or to initiate a long move between misaligned memory
fields. However, in some implementations, these instructions are likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store instructions
that produce the same resullts.

Table2-31 summarizes the integer load and store string instructions. In other PowerPC
implementations operating with little-endian byte order, execution of a load or string instruction
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invokes the alignment error handler; see “Byte Ordering” in the PowerPC Microprocessor Family:
The Programming Environments manual for more information.

Table 2-33. Integer Load and Store String Instructions

Name Mnemonic Syntax
Load String Word Immediate | Iswi rD,rANB
Load String Word Indexed Iswx rD,rArB
Store String Word Immediate | stswi rS,rA,NB
Store String Word Indexed stswx rSrArB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, "Alignment Exception (0x00600)" on Page 169, a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.

A non—word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned string
operation that crosses a 256-Mbyte boundary always causes an alignment exception. A
non-word-aligned string operation that crosses a double-word boundary is aso slower than a
word-aligned string operation.

Implementation Note—The following describes the 750CX/CXe/CXr implementation of |oad/store
string instructions:

» For load/store string operations, the hardware does not combine register values to reduce the
number of discrete accesses. However, if store gathering isenabled and the accessesfall under
the criteriafor store gathering the stores may be combined to enhance performance. At a
minimum, additional cache access cycles are required.

* The 750CX/CXe/CXr supports misaligned, single-register load and store accessesin
little-endian mode without causing an alignment exception. However, execution of
misaligned |oad/store multiple/string operations cause an alignment exception.

2.3.4.3.9 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with
immediate index addressing mode and register indirect with index addressing mode. Floating-point
loads and stores are not supported for direct-store accesses. The use of floating-point loads and stores
for direct-store access results in an alignment exception.

Implementation Notes—The 750CX/CXe/CXr treats exceptions as follows.

» TheFPU can be run in two different modes—ignore exceptions mode (M SR[FEQ] =
MSR[FE1] = 0) and precise mode (any other settings for MSR[FEO,FE1]). For the
750CX/CXe/CXr, ignore exceptions mode allows floating-point instructions to compl ete
earlier and thus may provide better performance than precise mode.

» Thefloating-point load and store indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux,
stfdx, stfdux) are invalid when the Rc bit is one. In the 750CX/CXe/CXr, executing one of
these invalid instruction forms causes CRO to be set to an undefined value.
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2.3.4.3.10 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-precision.
The behavior of double-precision floating-point load instructions, and the behavior of
single-precision floating-point load instructions are described here.

Single-precision floating-point load instructions convert single-precision data to double-precision
format before loading an operand into an FPR.

The PowerPC architecture defines aload with update instruction with rA = 0 asan invalid form.

Table 2-34 summarizes the single- and double-precision floating-point load instructions.

Table 2-34. Floating-Point Load Instructions

Name Mnemonic Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frDrArB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frDrArB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frDrArB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frDrArB

2.3.4.3.11 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the store
instruction—single-precision, double-precision, and integer. The integer form is supported by the
optional stfiwx instruction. The behavior of double-precision floating-point store instructions, and
the behavior of single-precision floating-point store instructions are described here. Single-precision
floating-point store instructions convert double-precision data to single-precision format before
storing the operands.

Programmersnote: After Power-on-reset never store datafrom the floating-point register file asthe
file contains unset data and may have invalid formatted floating-point data. Always initialize the
floating-point register file with valid floating-point data before continuing after a power-on-reset,.

Table 2-35 summarizes the single and doubl e-precision floating-point store and stfiwx instructions.
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Table 2-35. Floating-Point Store Instructions

Name Mnemonic Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frSrB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frSrB
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frSrB
Store Floating-Point as Integer Word Indexed 1 stfiwx frS,rB

Note: The stfiwx instruction is optional to the PowerPC architecture.

Some floating-point store instructions require conversionsin the LSU.

Table 2-36 shows conversions the LSU makes when executing a Store Floating-Point Single
Instruction.

Table 2-36. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized If(exp 0< 896)
then Denormalize and Store
else
Store
Double Denormalized Store zero
Double Zero, infinity, QNaN Store
Double SNaN Store

NOTE: TheFPRsarenotinitialized by HRESET, and they must be initialized with some valid
value after POR HRESET and before being stored.
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Table 2-37 shows the conversions made when performing a Store Floating-Point Double instruction.
Most entries in the table indicate that the floating-point value is simply stored. Only in afew cases
are any other actions taken.

Table 2-37. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero, infinity, QNaN Store
Double SNaN Store

Architecturally, all single and double-precision floating-point numbers are represented in
double-precision format within the 750CX/CXe/CXr. Execution of astore floating-point single (stfs,
stfsu, stfsx, stfsux) instruction requires conversion from double to single-precision format. If the
exponent is not greater than 896, this conversion requires denormalization. The 750CX/CXe/CXr
supportsthis denormalization by shifting the mantissaone bit at atime. Anywhere from 1 to 23 clock
cycles are required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers areimplemented in the 750CX/CXe/CXr, thereis also acase
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can require
internal shifting of the mantissa. This case occurs when the operand of a store floating-point double
instruction is a denormalized single-precision value. The value could be the result of a load
floating-point single instruction, a single-precison arithmetic instruction, or a floating round to
single-precision instruction. In these cases, shifting the mantissa takes from 1 to 23 clock cycles,
depending upon the value to be stored. These cycles are incurred during the store.
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2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the value of bits
in the CR. When the processor encounters one of these instructions, it scans the execution pipelines
to determine whether an instruction in progress may affect the particular CR bit. If no interlock is
found, the branch can be resolved immediately by checking the bit in the CR and taking the action
defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses are always
assumed to be word aligned; the PowerPC processors ignore the two low-order bits of the generated
branch target address. Branch instructions compute the EA of the next instruction address using the
following addressing modes.

* Branchrelative

» Branch conditional to relative address
» Branch to absolute address

» Branch conditional to absolute address
» Branch conditional to link register

» Branch conditional to count register

Note that in 750CX/CXe/CXr, al branch instructions (b, ba, bl, bla, bc, bca, bcl, bela, bclr, bclrl,
bcctr, bectrl) and condition register logical instructions (crand, cror, cr xor, crnand, crnor, crandc,
creqv, crorc, and merf) are executed by the BPU. Some of these instructions can redirect instruction
execution conditionally based on the value of bits in the CR. Whenever the CR bits resolve, the
branch direction is either marked as correct or mispredicted. Correcting a mispredicted branch
requires that the 750CX/CXe/CXr flush speculatively executed instructions and restore the machine
state to immediately after the branch. This correction can be done immediately upon resolution of the
condition registers bits.

2.3.4.4.2 Branch Instructions

Table 2-38 lists the branch instructions provided by the PowerPC processors. To simplify assembly
language programming, a set of smplified mnemonics and symbols is provided for the most
frequently used forms of branch conditional, compare, trap, rotate and shift, and certain other
instructions.

See Appendix F, “Simplified Mnemonics' in the PowerPC Microprocessor Family: The
Programming Environments manual for alist of simplified mnemonic examples.

Table 2-38. Branch Instructions

Name Mnemonic Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bcl bcla) BO,Bl,target_addr
Branch Conditional to Link Register belr  (bclrl) BO,BI
Branch Conditional to Count Register bcetr (bectrl) BO,BI
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2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions and the Move Condition Register Field (mcrf) instruction are
also defined as flow control instructions.

Table 2-39 shows these instructions.

Table 2-39. Condition Register Logical Instructions

Name Mnemonic Syntax
Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA, crbB
Condition Register AND with Complement crandc crbD,crbA, crbB
Condition Register OR with Complement crorc crbD,crbA, crbB
Move Condition Register Field mcrf crfD,crfS

NOTE: If theLR update option isenabled for any of these instructions, the PowerPC architecture

defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions

Thetrap instructions shown in Table 2-40 are provided to test for a specified set of conditions. If any
of the conditionstested by atrap instruction are met, the system trap type program exception is taken.
For more information, see Section 4.5.7, "Program Exception (0x00700)" on Page 169. If the tested
conditions are not met, instruction execution continues normally.

Table 2-40. Trap Instructions

Name Mnemonic Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rAB

See Appendix F, “Simplified Mnemonics' in the PowerPC Microprocessor Family: The
Programming Environments manual for acomplete set of simplified mnemonics.
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2.3.4.5 System Linkage Instruction—UISA

The System Call (sc) instruction permits a program to call on the system to perform a service; see
Table2-41. See adso Section 2.3.6.1, "System Linkage Instructions—OEA" on Page 116 for
additional information.

Table 2-41. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —

Executing this instruction causes the system call exception handler to be evoked. For more
information, see Section 4.5.10, "System Call Exception (0x00C00)" on Page 170.

2.3.4.6 Processor Control Instructions—UISA
Processor control instructions are used to read from and write to the condition register (CR), machine
state register (MSR), and special-purpose registers (SPRs).

See Section 2.3.5.1, "Processor Control Instructions—VEA" on Page 112 for the mftb instruction and
Section 2.3.6.2, "Processor Control Instructions—OEA" on Page 117 for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-42 summarizes the instructions for reading from or writing to the condition register.

Table 2-42. Move to/from Condition Register Instructions

Name Mnemonic Syntax
Move to Condition Register Fields mtcrf CRMS
Move to Condition Register from XER | mcrxr crfD
Move from Condition Register mfcr rD

I mplementation Note—The PowerPC architecture indicates that in some implementationsthe Move
to Condition Register Fields (mtcrf) instruction may perform more slowly when only a portion of the
fields are updated as opposed to all of the fields. The condition register access latency for
750CX/CXe/CXr isthe same in both cases.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-43 lists the mtspr and mfspr instructions.

Table 2-43. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPRrS
Move from Special-Purpose Register mfspr rD,SPR
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Table 2-44. lists the SPR numbers for both user and supervisor-level accesses.

Table 2-44. PowerPC Encodings

SPR"
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
CTR 9 00000 01001 User (UISA) Both
DABR 1013 11111 10101 Supervisor (OEA) Both
DAR 19 00000 10011 Supervisor (OEA) Both
DBATOL 537 10000 11001 Supervisor (OEA) Both
DBATOU 536 10000 11000 Supervisor (OEA) | Both
DBATI1L 539 10000 11011 Supervisor (OEA) Both
DBAT1U 538 10000 11010 Supervisor (OEA) Both
DBAT2L 541 10000 11101 Supervisor (OEA) Both
DBAT2U 540 10000 11100 Supervisor (OEA) Both
DBAT3L 543 10000 11111 Supervisor (OEA) Both
DBAT3U 542 10000 11110 Supervisor (OEA) Both
DEC 22 00000 10110 Supervisor (OEA) Both
DSISR 18 00000 10010 Supervisor (OEA) | Both
EAR 282 01000 11010 Supervisor (OEA) Both
IBATOL 529 10000 10001 Supervisor (OEA) Both
IBATOU 528 10000 10000 Supervisor (OEA) Both
IBAT1L 531 10000 10011 Supervisor (OEA) Both
IBAT1U 530 10000 10010 Supervisor (OEA) | Both
IBAT2L 533 10000 10101 Supervisor (OEA) Both
IBAT2U 532 10000 10100 Supervisor (OEA) Both
IBAT3L 535 10000 10111 Supervisor (OEA) Both
IBAT3U 534 10000 10110 Supervisor (OEA) Both
LR 8 00000 01000 User (UISA) Both
PVR 287 01000 11111 Supervisor (OEA) mfspr
SDR1 25 00000 11001 Supervisor (OEA) Both
SPRGO 272 01000 10000 Supervisor (OEA) Both
SPRG1 273 01000 10001 Supervisor (OEA) Both
SPRG2 274 01000 10010 Supervisor (OEA) Both
SPRG3 275 01000 10011 Supervisor (OEA) Both
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Table 2-44. PowerPC Encodings (Continued)

SPR"
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
SRRO 26 00000 11010 Supervisor (OEA) Both
SRR1 27 00000 11011 Supervisor (OEA) Both
TBL2 268 01000 01100 User (VEA) mfspr
284 01000 11100 Supervisor (OEA) mtspr
TBU ? 269 01000 01101 User (VEA) mfspr
285 01000 11101 Supervisor (OEA) mtspr
XER 1 00000 00001 User (UISA) Both

Notes:

1 The order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding. For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the instruction. The number
coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five
bits appearing in bits 16—20 of the instruction and the low-order five bits in bits 11-15.

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the
mtspr instruction in supervisor mode and the TBR numbers here. The TB registers can be read

in user mode using either the mftb or mfspr instruction and specifying TBR 268 for TBL and
SPR 269 for TBU.

Encodings for the 750CX/CXe/CXr-specific SPRs are listed in Table 2-45..
Table 2-45. SPR Encodings for 750CX/CXe/CXr-Defined Registers (mfspr)

1
Register SPR
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
DABR 1013 11111 10101 User Both
HIDO 1008 11111 10000 Supervisor Both
HID1 1009 11111 10001 Supervisor Both
IABR 1010 11111 10010 Supervisor Both
ICTC 1019 11111 11011 Supervisor Both
L2CR 1017 11111 11001 Supervisor Both
MMCRO 952 11101 11000 Supervisor Both
MMCR1 956 11101 11100 Supervisor Both
PMC1 953 11101 11001 Supervisor Both
PMC2 954 11101 11010 Supervisor Both
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Table 2-45. SPR Encodings for 750CX/CXe/CXr-Defined Registers (mfspr) (Contin-

1
Register SPR
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]

PMC3 957 11101 11101 Supervisor Both
PMC4 958 11101 11110 Supervisor Both
SIA 955 11101 11011 Supervisor Both
THRM1 1020 11111 11100 Supervisor Both
THRM2 1021 11111 11101 Supervisor Both
THRM3 1022 11111 11110 Supervisor Both
UMMCRO 936 11101 01000 User mfspr
UMMCRL1 940 11101 01100 User mfspr
UPMC1 937 11101 01001 User mfspr
UPMC2 938 11101 01010 User mfspr
UPMC3 941 11101 01101 User mfspr
UPMC4 942 11101 01110 User mfspr
USIA 939 11101 01011 User mfspr

Note:

INote that the order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly
as a 10-hit binary number in the instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order 5 bits appearing in bits 16—20 of the instruction and the
low-order 5 bits in bits 11-15.

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed
with respect to asynchronous events, and the order in which memory operations are seen by other
processors or memory access mechanisms. See Chapter 3, "The 750CXr Instruction and Data Cache
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Operation” for additional information about these instructions and about related aspects of memory
synchronization. See Table 2-46 for a summary.

Table 2-46. Memory Synchronization Instructions—UISA

Name

Mnemonic

Syntax

Implementation Notes

Load Word
and Reserve
Indexed

lwarx

rD,rArB

Store Word

stwcx.

Programmers can use lwarx with stwcx. to emulate common semaphore
operations such as test and set, compare and swap, exchange memory, and fetch
and add. Both instructions must use the same EA. Reservation granularity is
implementation-dependent. 750CX/CXe/CXr makes reservations on behalf of

rS,rATB | aligned 32-byte sections of the memory address space. If the W bit is set,

executing lwarx and stwcx. to a page marked write-through does not cause a
DSI exception, but DSI exceptions can result for other reasons. If the location is
not word-aligned, an alignment exception occurs.

The stwcx. instruction is the only load/store instruction with a valid form if Rc is
set. If Rc is zero, executing stwcx. sets CRO to an undefined value. In general,
stwcx. always causes a transaction on the external bus and thus operates with
slightly worse performance characteristics than normal store operations.

Conditional
Indexed

Because it delays subsequent instructions until all previous instructions complete
to where they cannot cause an exception, sync is a barrier against store
gathering. Additionally, all load/store cache/bus activities initiated by prior
instructions are completed. Touch load operations (dcbt, dcbtst) must complete
address translation, but need not complete on the bus. If HIDO[ABE] = 1, sync
completes after a successful broadcast.

The latency of sync depends on the processor state when it is dispatched and on
various system-level situations. Therefore, frequent use of sync may degrade
performance.

Synchronize sync

System designs with an L2 cache should take special care to recognize the hardware signaling caused
by a SYNC bus operation and perform the appropriate actions to guarantee that memory references
that may be queued internally to the L2 cache have been performed globally.

Section 2.3.5.2, "Memory Synchronization Instructions—VEA" on Page 112 for details about
additional memory synchronization (eieio and isync) instructions.

In the PowerPC architecture, the Rc bit must be zero for most load and store instructions. If Rcis set,
the instruction form is invalid for sync and Iwar x instructions. If the 750CX/CXe/CXr encounters
one of these invalid instruction forms, it sets CRO to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory model
that can be assumed by software processes, and includes descriptions of the cache model, cache
control instructions, address aliasing, and other related issues. |mplementations that conform to the
VEA also adhere to the UISA, but may not necessarily adhere to the OEA.

This section describes additional instructions that are provided by the VEA.
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2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA defines
the mftb instruction (user-level instruction) for reading the contents of the time base register; see
Chapter 3, "The 750CXr Instruction and Data Cache Operation” for more information.

Table 2-47 shows the mftb instruction.

Table 2-47. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for the mftb instruction so it can be coded with the TBR name
as part of the mnemonic rather than requiring it to be coded as an operand. See Appendix F,
“Simplified Mnemonics' in the Power PC Microprocessor Family: The Programming Environments
manual for simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb instruction rather
than of mfspr. The mftb instruction serves as both a basic and ssmplified mnemonic. Assemblers
recognize an mftb mnemonic with two operands as the basic form, and an mftb mnemonic with one
operand as the smplified form. Note that 750CX/CXe/CXr ignores the extended opcode differences
between mftb and mfspr by ignoring bit 25 and treating both instructions identically.

Implementation Notes—The following information is useful with respect to using the time base
implementation in the 750CX/CXe/CXr:

* The 750CX/CXe/CXr alows user-mode read access to the time base counter through the use
of the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. Asa 32-bit PowerPC implementation, the 750CX/CXe/CXr can access TBU and
TBL only separately, whereas 64-bit implementations can access the entire TB register at
once.

* Thetime base counter is clocked at afrequency that is one-fourth that of the bus clock.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are completed
with respect to asynchronous events, and the order in which memory operations are seen by other
processors or memory access mechanisms. See Chapter 3, "The 750CXr Instruction and Data Cache
Operation" for more information about these instructions and about related aspects of memory
synchronization.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In-Order
Execution of 1/0O (eieio) and Instruction Synchronize (isync) instructions. The number of cycles
required to complete an eieio instruction depends on system parameters and on the processor's state
when the instruction isissued. As aresult, frequent use of thisinstruction may degrade performance
dightly.
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Table 2-48 describes the memory synchronization instructions defined by the VEA.

Table 2-48. Memory Synchronization Instructions—VEA

Name Mnemonic | Syntax Implementation Notes
Enforce eieio — | The eieio instruction is dispatched to the LSU and executes after all previous
In-Order cache-inhibited or write-through accesses are performed; all subsequent
Execution of instructions that generate such accesses execute after eieio. If HIDO[ABE] = 1 an
I/10 EIEIO operation is broadcast on the external bus to enforce ordering in the

external memory system. The eieio operation bypasses the L2 cache and is
forwarded to the bus unit. If HIDO[ABE] = 0, the operation is not broadcast.
Because the 750CX/CXe/CXr does not reorder noncacheable accesses, eieio is
not needed to force ordering. However, if store gathering is enabled and an eieio
is detected in a store queue, stores are not gathered. If HIDO[ABE] = 1,
broadcasting eieio prevents external devices, such as a bus bridge chip, from
gathering stores. .

Instruction [isync — | Theisync instruction is refetch serializing; that is, it causes the 750CX/CXe/CXr
Synchronize to purge its instruction queue and wait for all prior instructions to complete before
refetching the next instruction, which is not executed until all previous instructions
complete to the point where they cannot cause an exception. The isync
instruction does not wait for all pending stores in the store queue to complete.
Any instruction after an isync sees all effects of prior instructions.

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions can be classified as follows:

» Cache management instructions (user-level and supervisor-level)
*  Segment register manipulation instructions (OEA)
» Trangdlation lookaside buffer management instructions (OEA)

This section describesthe user-level cache management instructions defined by the VEA. See Section
2.3.6.3, "Memory Control Instructions—OEA" on Page 117 for information about supervisor-level
cache, segment register manipulation, and tranglation lookaside buffer management instructions.

2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section help user-level programs manage on-chip cachesif they
are implemented. See Chapter 3, "The 750CXr Instruction and Data Cache Operation” for more
information about cache topics. The following sections describe how these operations are treated with
respect to the 750CX/CXe/CXr’s cache.

Aswith other memory-related instructions, the effects of cache management instructions on memory
are weakly-ordered. If the programmer must ensure that cache or other instructions have been
performed with respect to all other processors and system mechanisms, a sync instruction must be
placed after those instructions.

Note that the 750CX/CXe/CXr interprets cache control instructions (icbi, dcbi, dcbf, dcbz, and
dcbst) asif they pertain only to thelocal L1 and L2 cache. A dcbz (with M set) is aways broadcast
on the 60x bus. The dcbi, dcbf, and dcbst operations are broadcast if HIDO[ABE] is set.
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The 750CX/CXe/CXr never broadcasts an ichi. Of the broadcast cache operations, the
750CX/CXe/CXr snoops only dcbz, regardless of the HIDO[ABE] setting. Any bus activity caused
by other cache instructions results directly from performing the operation on the 750CX/CXe/CXr
cache. All cache control instructionsto T = 1 space are no-ops. For information on how cache control
instructions affect the L2, see Chapter 9, "L 2 Cache".

Table 2-49 summarizes the cache instructions defined by the VEA. Note that these instructions are
accessible to user-level programs.

Table 2-49. User-Level Cache Instructions

Name Mnemonic | Syntax Implementation Notes
Data Cache Block [dcbt rArB | The VEA defines this instruction to allow for potential system performance
Touch ® enhancements through the use of software-initiated prefetch hints.

Implementations are not required to take any action based on execution of
this instruction, but they may prefetch the cache block corresponding to
the EA into their cache. When dcbt executes, the 750CX/CXe/CXr checks
for protection violations (as for a load instruction). This instruction is
treated as a no-op for the following cases:

« Avalid translation is not found either in BAT or TLB

* The access causes a protection violation.

« The page is mapped cache-inhibited, G = 1 (guarded), or T = 1.

* The cache is locked or disabled

* HIDO[NOOPTI] =1

Otherwise, if no data is in the cache location, the 750CX/CXe/CXr
requests a cache line fill (with intent to modify). Data brought into the
cache is validated as if it were a load instruction. The memory reference of
a dcbt sets the reference bit.

Data Cache Block [dcbtst rArB | This instruction behaves like dcbt.

Touch for Store 1

Data Cache Block [dcbz rArB | The EA is computed, translated, and checked for protection violations. For
Set to Zero cache hits, four beats of zeros are written to the cache block and the tag is

marked M. For cache misses with the replacement block marked E, the
zero line fill is performed and the cache block is marked M. However, if the
replacement block is marked M, the contents are written back to memory
first. The instruction executes regardless of whether the cache is locked; if
the cache is disabled, an alignment exception occurs. If M = 1 (coherency
enforced), the address is broadcast to the bus before the zero line fill.
The exception priorities (from highest to lowest) are as follows:

1  Cache disabled—Alignment exception

2 Page marked write-through or cache Inhibited—Alignment exception
3 BAT protection violation—DSI exception

4 TLB protection violation—DSI exception

dcbz is the only cache instruction that broadcasts even if HIDO[ABE] = 0.
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Table 2-49. User-Level Cache Instructions (Continued)

Name Mnemonic | Syntax Implementation Notes
Data Cache Block |dcbst rArB | The EA is computed, translated, and checked for protection violations.
Store » For cache hits with the tag marked E, no further action is taken.

» For cache hits with the tag marked M, the cache block is written back
to memory and marked E.

A dcbst is not broadcast unless HIDO[ABE] = 1 regardless of WIMG

settings. The instruction acts like a load with respect to address

translation and memory protection. It executes regardless of whether the

cache is disabled or locked.

The exception priorities (from highest to lowest) for dcbst are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception.

Data Cache Block [dcbf rArB | The EA is computed, translated, and checked for protection violations.

Flush » For cache hits with the tag marked M, the cache block is written back
to memory and the cache entry is invalidated.

« For cache hits with the tag marked E, the entry is invalidated.

» For cache misses, no further action is taken.

A dcbf is not broadcast unless HIDO[ABE] = 1 regardless of WIMG

settings. The instruction acts like a load with respect to address

translation and memory protection. It executes regardless of whether the

cache is disabled or locked.

The exception priorities (from highest to lowest) for dcbf are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception.

Instruction Cache |[icbi rArB | This instruction performs a virtual lookup into the instruction cache (index
Block Invalidate only). The address is not translated, so it cannot cause an exception. All
ways of a selected set are invalidated regardless of whether the cache is
disabled or locked. The 750CX/CXe/CXr never broadcasts icbi onto the
60x bus.

Note:

1A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve
performance, HIDO[NOOPTI] may be set, which causes dcbt and dchtst to be no-oped at the cache. They
do not cause bus activity and cause only a 1-clock execution latency. The default state of this bit is zero
which enables the use of these instructions.

2.3.5.4 Optional External Control Instructions

The PowerPC architecture defines an optional external control feature that, if implemented, is
supported by the two external control instructions, eciwx and ecowx. These instructions allow a
user-level program to communicate with a special-purpose device. These instructions are provided
and are summarized in Table 2-50.
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Table 2-50. External Control Instructions

Name Mnemonic | Syntax Implementation Notes
External eciwx rD,rArB | A transfer size of 4 bytes is implied; the TBST and TSIZ[0-2] signals are
Control In redefined to specify the Resource ID (RID), copied from bits EAR[28-31]. For
Word Indexed these operations, TBST carries the EAR[28] data. Misaligned operands for

these instructions cause an alignment exception. Addressing a location

External ecowx rSIAIB [\where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0 a programming
Control Out error occurs and the physical address on the bus is undefined.
Word Indexed Note: These instructions are optional to the PowerPC architecture.

The eciwx/ecowx instructions let a system designer map specia devicesin an aternative way. The
MMU trandation of the EA is not used to select the special device, asit is used in most instructions
such asloads and stores. Rather, it is used as an address operand that is passed to the device over the
address bus. Four other signals (the burst and size signals on the 60x bus) are used to select the device;
these four signals output the 4-bit resource ID (RID) field located in the EAR. The eciwx instruction
also loads a word from the data bus that is output by the special device. For more information about
the relationship between these instructions and the system interface, refer to Chapter 7, "Signa
Descriptions”.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the memory
management model, supervisor-level registers, and the exception model. Implementations that
conform to the OEA also adhere to the UISA and the VEA. This section describes the instructions
provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-51). The user-level scinstruction
lets a user program call on the system to perform a service and causes the processor to take a system
call exception. The supervisor-level rfi instruction is used for returning from an exception handler.

Table 2-51. System Linkage Instructions—OEA

Name Mnemonic | Syntax Implementation Notes
System Call sc — The sc instruction is context-synchronizing.
Return from rfi — The rfi instruction is context-synchronizing. For the 750CX/CXe/CXr, this
Interrupt means the rfi instruction works its way to the final stage of the execution
pipeline, updates architected registers, and redirects the instruction flow.
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2.3.6.2 Processor Control Instructions—OEA
This section describes the processor control instructions used to access the MSR and the SPRs.

Table 2-52 lists instructions for accessing the MSR.

Table 2-52. Move to/from Machine State Register Instructions

Name Mnemonic Syntax
Move to Machine State Register mtmsr rs
Move from Machine State Register mfmsr rD

The OEA defines encodings of mtspr and mfspr to provide access to supervisor-level registers. The

instructions are listed in Table 2-53.

Table 2-53. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,S
Move from Special-Purpose Register mfspr rD,SPR

Encodingsfor the architecture-defined SPRs arelisted in Table 2-44. "PowerPC Encodings,” on Page
108. Encodings for 750CX/CXe/CXr-specific, supervisor-level SPRs are listed in Table 2-45. "SPR
Encodingsfor 750CX/CXe/CXr-Defined Registers (mfspr),” on Page 109. Simplified mnemonicsare
provided for mtspr and mfspr in Appendix F, “Simplified Mnemonics' in the PowerPC
Microprocessor Family: The Programming Environments manual.

For a discussion of context synchronization requirements when altering certain SPRs, refer to
Appendix E, “Synchronization Programming Examples' in the PowerPC Microprocessor Family:
The Programming Environments manual.

2.3.6.3 Memory Control Instructions—OEA

Memory control instructions include the following.
» Cache management instructions (supervisor-level and user-level).
*  Segment register manipulation instructions.
» Trangdlation lookaside buffer management instructions.

This section describes supervisor-level memory control instructions. Section 2.3.5.3, "Memory
Control Instructions—VEA" on Page 113 describes user-level memory control instructions.
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2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-54 lists the only supervisor-level cache management instruction.

Table 2-54. Supervisor-Level Cache Management Instruction

Name | Mnemonic | Syntax Implementation Notes
Data dcbi rArB | The EA is computed, translated, and checked for protection violations. For cache
Cache hits, the cache block is marked | regardless of whether it was marked E or M. A
Block dchi is not broadcast unless HIDO[ABE] = 1, regardless of WIMG settings. The
Invalidate instruction acts like a store with respect to address translation and memory

protection. It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dchi are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception.

See Section 2.3.5.3.1, "User-Level Cache Instructions—VEA" on Page 113 for cache instructions
that provide user-level programs the ability to manage the on-chip caches. If the effective address

references a direct-store segment, the instruction is treated as a no-op.

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

The instructions listed in Table2-55 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to “Synchronization Requirements for Special Registers and for

Lookaside Buffers' in Chapter 2, “PowerPC Register Set" of the Power PC Microprocessor Family:

The Programming Environments manual for serialization requirements and other recommended
precautions to observe when manipulating the segment registers. Be sure to execute an isync after

execution of amtsr instruction.

Table 2-55. Segment Register Manipulation Instructions

Name Mnemonic | Syntax Implementation Notes
Move to Segment Register mtsr SRS |—execute isync after mtsr
Move to Segment Register Indirect [ mtsrin rSrB | —execute isync after mtsrin
Move from Segment Register mfsr rD,SR | The shadow SRs in the instruction MMU can be read

by setting HIDO[RISEG] before executing mfsr.

Move from Segment Register Indirect | mfsrin

rD,rB
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2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)

The address trandation mechanism is defined in terms of the segment descriptors and page table
entries (PTEs) PowerPC processors use to locate the logical-to-physical address mapping for a
particular access. These segment descriptors and PTES reside in segment registers and page tablesin
memory, respectively.

See Chapter 7, "Signal Descriptions’ for more information about TLB operations.
Table 2-56 summarizes the operation of the TLB instructions in the 750CX/CXe/CXr.

Table 2-56. Translation Lookaside Buffer Management Instruction

Name Mnemonic | Syntax Implementation Notes
TLB tibie rB Invalidates both ways in both instruction and data TLB entries at the index provided
Invalidate by EA[14-19]. It executes regardless of the MSR[DR] and MSR][IR] settings.To
Entry invalidate all entries in both TLBs, the programmer should issue 64 tlbie
instructions that each successively increment this field.
TLB tibsync — On the 750CX/CXe/CXr, the only function tlbsync serves is to wait for the
Synchronize TLBISYNC signal to go inactive.

Implementation Note—The tlbia instruction is optional for an implementation if its effects can be
achieved through some other mechanism. Therefore, it is not implemented on the 750CX/CXe/CXr.
As described above, tlbie can be used to invalidate a particular index of the TLB based on
EA[14-19]—a sequence of 64 tlbie instructions followed by atlbsync instruction invalidates all the
TLB structures (for EA[14-19] = 0, 1, 2,...,, 63). Attempting to execute tlbia causes an illegal
instruction program exception.

The presence and exact semantics of the TLB management instructions depend on implementation.
To minimize compatibility problems, system software should incorporate uses of these instructions
into subroutines.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of aternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portabl e across the various assemblersfor the PowerPC
architecture should not assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics' in the
Power PC Microprocessor Family: The Programming Environments manual.
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Chapter 3 The 750CX/CXe/CXr Instruction and Data
Cache Operation

The 750CX/CXe/CXr microprocessor contains separate 32-Kbyte, eight-way set associative
instruction and data caches to allow the execution units and registers rapid access to instructions and
data. This chapter describes the organization of the on-chip instruction and data caches, the MEI
cache coherency protocol, cache control instructions, various cache operations, and the interaction
between the caches, the load/store unit (L SU), the instruction unit, and the bus interface unit (BIU).

Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintaining cache
coherency. These multiprocessor devices could be actual processors or other devices that can access
system memory, maintain their own caches, and function as bus masters requiring cache coherency.
If the L2 cacheis enabled, read Chapter 9, "L2 Cache" before reading this chapter.
The 750CX/CXe/CXr L1 cache implementation has the following characteristics.

» There are two separate 32-Kbyte instruction and data caches (Harvard architecture).

» Bothinstruction and data caches are eight-way set associative.

» The cachesimplement a pseudo |east-recently-used (PLRU) replacement algorithm within
each set.

» Thecachedirectoriesare physically addressed. The physical (real) addresstag is stored inthe
cache directory.

* Boththeinstruction and data caches have 32-byte cache blocks. A cache block isthe block of
memory that a coherency state describes, also referred to as a cache line.

» Two coherency state bits for each data cache block allow encoding for three states:
— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Invalid (1)

» A single coherency state bit for each instruction cache block allows encoding for two possible
states:

— Invalid (INV)
— Valid (VAL)
» Each cache can beinvalidated or locked by setting the appropriate bits in the hardware

implementation-dependent register 0 (HIDO), a specia-purpose register (SPR) specific to the
750CX/CXe/CXr.

The 750CX/CXe/CXr supports a fully-coherent 4-Gbyte physical memory address space. Bus
snooping is used to drive the MEI three-state cache coherency protocol that ensures the coherency of
global memory with respect to the processor’ s data cache. The MEI protocol is described in Section
3.3.2, "MEI Protocol" on Page 127.

On acache miss, the 750CX/CXe/CXr’ s cache blocks arefilled in four beats of 64 bits each. The burst
fill is performed as a critical-double-word-first operation; the critical double word is simultaneously
written to the cache and forwarded to the requesting unit, thus minimizing stalls due to cache fill
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latency. The data cachelineisfirst loaded into a 32-bytere-load buffer and whenitisfull, itiswritten
Into the data cache in one cycle. This minimizes the contention between |oad-store unit and the line
reload function. See Figure 3-1.

The instruction and data caches are integrated into the 750CX/CXe/CXr as shown in Figure 3-1.

Load/Store Unit
Instruction Unit (LSU)
A A
Instructions (0-127) EA (20-26) Data (0-63)
Y Y Y
< Cache Tags Cache Tags >
I-Cache D-Cache
32-Kbyte y PAQO-19) | :; 32-Kbyte
8-Way Set Associative 8-Way Set Associative
- Cache Logic Cache Logic >
] A A A
Instructions (0-63) PA (0-31) Data (0-63)
,,,,,,,,,,,,,, Y Y

MMU/L2/60x BIU
EA: Effective Address

PA: Physical Address

Figure 3-1. Cache Integration

Both caches are tightly coupled into the 750CX/CXe/CXr’s bus interface unit to alow efficient
access to the system memory controller and other bus masters. The bus interface unit receives
requests for bus operations from the instruction and data caches, and executes the operations per the
60x bus protocol. The BIU provides address queues, prioritizing logic, and bus control logic. The BIU
captures snoop addresses for data cache, address queue, and memory reservation (Iwarx and stwcx.
instruction) operations. In the 750CX/CXe/CXr a L1 cache miss first accesses the L2 cache to find
the desired cache block before accessing the BIU.

The data cache provides buffers for load and store bus operations. All the data for the corresponding
address queues (load and store data queues) is located in the data cache. The data queues are
considered temporary storage for the cache and not part of the BIU. The data cache also provides
storage for the cache tags required for memory coherency and performs the cache block replacement
PLRU function. The data cache is supported by two cache block re-load/write-back buffers. This
allows a cache block to be loaded or unloaded from the cache in asingle cycle. See Figure 3-1.

The data cache supplies data to the GPRs and FPRs by means of the load/store unit. The
750CX/CXe/CXr'sLSU isdirectly coupled to the data cache to allow efficient movement of datato
and from the general-purpose and floating-point registers. The load/store unit provides all logic
required to calculate effective addresses, handles data alignment to and from the data cache, and
provides sequencing for load and store string and multiple operations. Write operations to the data
cache can be performed on a byte, half-word, word, or double-word basis.

The instruction cache provides a 128-bit interface to the instruction unit, so four instructions can be
made available to the instruction unit in a single clock cycle. The instruction unit accesses the
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instruction cache frequently in order to sustain the high throughput provided by the six-entry
instruction queue.

3.1 Data Cache Organization

The data cache is organized as 128 sets of eight ways as shown in Figure 3-2. Each way consists of
32 bytes, two state bits, and an address tag. Note that in the PowerPC architecture, the term ‘cache
block,” or simply ‘block,” when used in the context of cache implementations, refers to the unit of
memory at which coherency is maintained. For the 750CX/CXe/CXr, thisisthe eight-word (32 byte)
cache line. This value may be different for other PowerPC implementations.

Each cache block contains eight contiguous words from memory that are loaded from an eight-word
boundary (that is, bits A[27-31] of the logical (effective) addresses are zero); asaresult, cache blocks
are aligned with page boundaries. Note that address bits A[20—26] provide the index to select acache
set. Bits A[27-31] select a byte within a block. The two state bits implement a three-state MEI
(modified/exclusive/invalid) protocol, a coherent subset of the standard four-state MESI
(modified/exclusive/shared/invalid) protocol. The MEI protocol is described in Section 3.3.2, "MEI
Protocol” on Page 127. The tags consist of bits PA[0-19]. Address tranglation occursin parallel with
set selection (from A[20-26]), and the higher-order address bits (the tag bits in the cache) are
physical.

The 750CX/CXe/CXr’ s on-chip data cache tags are single-ported, and load or store operations must
be arbitrated with snoop accesses to the data cache tags. Load or store operations can be performed
to the cache on the clock cycleimmediately following a snoop access if the snoop misses; snoop hits
may block the data cache for two or more cycles, depending on whether a copy-back to main memory
isrequired.

128 Sets hd | | i | | | |
Y I I o I I I I
L] L]
PI I [ [ ‘

I I I T T T I

Way 0 Address Tag0 | | | State Words [0-7] L]
| | | | | | |
I I I I I I I

Way 1 AddressTagl [ | | State Words [0-7] L]
| | | | | | |
I I I [ [ [ I

Way 2 AddressTag2 [ | [ State Words [0-7] L]
| | | | | | |
I I I [ [ [ I

Way 3 AddressTag3 [ [ |— State Words [0-7] L]
| | | | | | |
| | | I I I |

Way 4 AddressTag4 | | | State Words [0-7] L]
| | | | | | |
I I I [ [ [ I

Way 5 Address Tag5 | | — State Words [0-7] L[]
| | | | | | |
I I I [ [ [ I

Way 6 Address Tag 6 L] State Words [0-7] L
| | | | | | |
I I I [ [ [ I

Way 7 AddressTag7 |1 State Words [0-7] L

| | |
<8 Words/Block———————————»|

Figure 3-2. Data Cache Organization
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3.2 Instruction Cache Organization

The instruction cache aso consists of 128 sets of eight ways, as shown in Figure 3-3 on Page 125.
Each way consists of 32 bytes, a single state bit, and an address tag. As with the data cache, each
instruction cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A[27-31] of the logical (effective) addresses are zero); as aresullt,
cache blocks are aligned with page boundaries. Also, address bits A[20-26] provide the index to
select a set, and bits A[27-29] select aword within a block.

The tags consist of bits PA[0-19]. Address trandation occurs in paralel with set selection (from
A[20-26]), and the higher order address bits (the tag bitsin the cache) are physical.

The instruction cache differs from the data cache in that it does not implement MEI cache coherency
protocol, and a single state bit is implemented that indicates only whether a cache block is valid or
invalid. Theinstruction cacheis not snooped, so if a processor modifies a memory location that may
be contained in the instruction cache, software must ensure that such memory updates are visible to
the instruction fetching mechanism. This can be achieved with the following instruction sequence:

dcbst # update memory

sync # wait for update

ichi # remove (invalidate) copy in instruction cache
sync # wait for |CBI operation to be globally performed
isync # remove copy in own instruction buffer

These operations are necessary because the processor does not maintain instruction memory coherent
with data memory. Software is responsible for enforcing coherency of instruction caches and data
memory.

Since instruction fetching may bypass the data cache, changes made to items in the data cache may
not be reflected in memory until after the instruction fetch compl etes.
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Figure 3-3. Instruction Cache Organization

3.3 Memory and Cache Coherency

The primary objective of a coherent memory system is to provide the same image of memory to all
devicesusing the system. Coherency allows synchronization and cooperative use of shared resources.
Otherwise, multiple copies of a memory location, some containing stale values, could exist in a
system resulting in errors when the stale values are used. Each potential bus master must follow rules
for managing the state of its cache. This section describes the coherency mechanisms of the PowerPC
architecture and the three-state cache coherency protocol of the 750CX/CXe/CXr’ s data cache.

Note that unless specifically noted, the discussion of coherency in this section applies to the
750CX/CXe/CXr's data cache only. The instruction cache is not snooped. Instruction cache
coherency must be maintained by software. However, the 750CX/CXe/CXr does support a fast
instruction cache invalidate capability as described in Section 3.4.1.4, "Instruction Cache Flash
Invalidation" on Page 133.
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3.3.1 Memory/Cache Access Attributes (WIMG Bits)

Some memory characteristics can be set on either a block or page basis by using the WIMG bitsin
the BAT registersor pagetable entry (PTE), respectively. The WIMG attributes control the following
functionality.

*  Write-through (W bit)

» Caching-inhibited (I bit)

* Memory coherency (M bit)
*  Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations.

The WIMG attributes are programmed by the operating system for each page and block. The W and
| attributes control how the processor performing an access uses its own cache. The M attribute
ensures that coherency ismaintained for all copies of the addressed memory location. The G attribute
prevents out-of-order loading and prefetching from the addressed memory location.

The WIMG attributes occupy four bits in the BAT registers for block address trandation and in the
PTEsfor page address tranglation. The WIMG bits are programmed as follows.

» The operating system uses the mtspr instruction to program the WIMG bitsin the BAT
registers for block address tranglation. The IBAT register pairs do not have a G bit and all
accesses that use the IBAT register pairs are considered not guarded.

» The operating system writes the WIMG bits for each page into the PTES in system memory
asit sets up the page tables.

When an access requires coherency, the processor performing the access must inform the coherency
mechanisms throughout the system that the access requires memory coherency. The M attribute
determines the kind of access performed on the bus (global or local).

Software must exercise care with respect to the use of these bits if coherent memory support is
desired. Careless specification of these bits may create situations that present coherency paradoxesto
the processor. In particular, this can happen when the state of these bits is changed without
appropriate precautions (such as flushing the pages that correspond to the changed bits from the
caches of al processors in the system) or when the address tranglations of aliased real addresses
specify different values for any of the WIMG bits. These coherency paradoxes can occur within a
single processor or across several processors. It isimportant to note that in the presence of a paradox,
the operating system software is responsible for correctness.

For real addressing mode (that is, for accesses performed with address trandlation
disabled—MSR[IR] = 0 or MSR[DR] = 0 for instruction or data access, respectively), the WIMG bits
are automatically generated as Ob0011 (the dataiswrite-back, caching is enabled, memory coherency
Is enforced, and memory is guarded).

Page 126 Version 1.3 IBM PowerPC 750CX/CXe/CXr RISC Microprocessor User’'s Manual



3.3.2 MEI Protocol

The 750CX/CXe/CXr data cache coherency protocol is a coherent subset of the standard MESI
four-state cache protocol that omitsthe shared state. The 750CX/CXe/CXr’ s data cache characterizes
each 32-byte block it contains as being in one of three MEI states. Addresses presented to the cache
areindexed into the cache directory with bits A[20-26], and the upper-order 20 bits from the physical
address trandation (PA[0-19]) are compared against the indexed cache directory tags. If neither of
the indexed tags matches, the result is a cache miss. If atag matches, a cache hit occurred and the
directory indicates the state of the cache block through two state bits kept with the tag. The three
possible states for a cache block in the cache are the modified state (M), the exclusive state (E), and
theinvalid state (). The three MEI states are defined in Table 3-1.

Table 3-1. MEI State Definitions

MEI State Definition

Modified (M) | The addressed cache block is present in the cache, and is modified with respect to system
memory—that is, the modified data in the cache block has not been written back to memory. The
cache block may be present in 750CX/CXe/CXr’s L2 cache, but it is not present in any other coherent
cache.

Exclusive (E) | The addressed cache block is present in the cache, and this cache has exclusive ownership of the
addressed block. The addressed block may be present in 750CX/CXe/CXr's L2 cache, but it is not
present in any other processor’s cache. The data in this cache block is consistent with system
memory.

Invalid (1) This state indicates that the address block does not contain valid data or that the addressed cache
block is not resident in the cache.

The 750CX/CXe/CXr provides dedicated hardware to provide memory coherency by snooping bus
transactions. Figure 3-4 on Page 128 shows the MEI cache coherency protocol, as enforced by the
750CX/CXe/CXr. The information in this figure assumes that the WIM bits for the page or block are
set to 001; that is, write-back, caching-not-inhibited, and memory coherency enforced.

Since data cannot be shared, the 750CX/CXe/CXr signals all cache block fills as if they were write
misses (read-with-intent-to-modify), which flushes the corresponding copies of the datain all caches
external to the 750CX/CXe/CXr prior to the cache-block-fill operation. Following the cache block
load, the 750CX/CXe/CXr is the exclusive owner of the data and may write to it without a bus
broadcast transaction.

To maintain the three-state coherency, all global reads observed on the bus by the 750CX/CXe/CXr
are snooped as if they were writes, causing the 750CX/CXe/CXr to flush the cache block (write the
cache block back to memory and invalidate the cache block if it ismodified, or smply invalidate the
cache block if it is unmodified). The exception to this rule occurs when a snooped transaction is a
caching-inhibited read (either burst or single-beat, where TT[04] = X1010; see Table 7-1". Transfer
Type Encodingsfor PowerPC 750CXr Bus Master," on Page 250 for clarification), in which case the
750CX/CXe/CXr does not invalidate the snooped cache block. If the cache block is modified, the
block is written back to memory, and the cache block is marked exclusive. If the cache block is
marked exclusive, no bus action is taken, and the cache block remains in the exclusive state.

This treatment of caching-inhibited reads decreases the possibility of data thrashing by alowing
noncaching devices to read data without invalidating the entry from the 750CX/CXe/CXr’s data
cache.
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Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

Section 3.7, "MEI State Transactions' on Page 149 provides a detailed list of MEI transitions for
various operations and WIM bit settings.

3.3.2.1 MEI Hardware Considerations

While the 750CX/CXe/CXr provides the hardware required to monitor bus traffic for coherency, the
750CX/CXe/CXr’ sdata cache tags are single-ported, and a simultaneous | oad/store and snoop access
represents a resource conflict. In general, the snoop access has highest priority and is given first
access to the tags. The load or store access will then occur on the clock following the snoop. The
Snoop is not given priority into the tags when the snoop coincides with a tag write (for example,
validation after a cache block load). In these situations, the snoop is retried and must re-arbitrate
before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if the cache
is busy with a burst read or write when the snoop operation takes place.

Notethat it ispossible for a snoop to hit amodified cache block that isalready in the process of being
written to the copy-back buffer for replacement purposes. If this happens, the 750CX/CXe/CXr
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retries the snoop, and raises the priority of the castout operation to allow it to go to the bus before the
cache block fill.

Another consideration is page table aliasing. If a store hits to a modified cache block but the page
table entry ismarked write-through (WIMG = 1xxx), then the page has probably been aliased through
another page table entry which is marked write-back (WIMG = Oxxx). If this occurs, the
750CX/CXe/CXr ignores the modified bit in the cache tag. The cache block is updated during the
write-through operation and the block remains in the modified state.

The global (GBL) signal, asserted as part of the address attribute field during a bus transaction,
enables the snooping hardware of the 750CX/CXe/CXr. Address bus masters assert GBL to indicate
that the current transaction is a global access (that is, an access to memory shared by more than one
device). If GBL is not asserted for the transaction, that transaction is not snooped by the
750CX/CXe/CXr. Note that the GBL signal is not asserted for instruction fetches, and that GBL is
asserted for al data read or write operations when using real addressing mode (that is, address
trandation is disabled).

Normally, GBL reflects the M-bit value specified for the memory reference in the corresponding
trandation descriptor(s). Care should be taken to minimize the number of pages marked as global,
because the retry protocol enforces coherency and can use considerable bus bandwidth if much data
is shared. Therefore, available bus bandwidth decreases as more memory is marked as global.

The 750CX/CXe/CXr snoops a transaction if the transfer start (TS) and GBL signals are asserted
together in the same bus clock (this is a qualified snooping condition). No snoop update to the
750CX/CXe/CXr cache occurs if the snooped transaction is not marked global. Also, because cache
block castouts and snoop pushes do not require snooping, the GBL signal is not asserted for these
operations.

When the 750CX/CXe/CXr detects a qualified snoop condition, the address associated with the TS
signal iscompared with the cache tags. Snooping finishesif no hitisdetected. If, however, the address
hits in the cache, the 750CX/CXe&/CXr reacts according to the MEI protocol shown in Figure 3-4 on

Page 128.

3.3.3 Coherency Precautions in Single Processor Systems
The following coherency paradoxes can be encountered within a single-processor system.

* Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occurs.

The 750CX/CXe/CXr ignores any hits to a cache block in amemory space marked
caching-inhibited (WIMG = x1xx). The access is performed on the external bus asif there
were no hit. The datain the cache is not pushed, and the cache block is not invalidated.

» Storeto apage marked write-through (WIMG = 1xxx) and a cache hit occurs to a modified
cache block.

The 750CX/CXe/CXr ignores the modified bit in the cache tag. The cache block is updated
during the write-through operation but the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it is critical that the cache
contents reflect the new WIM bit settings. For example, if ablock or page that had allowed caching
becomes caching-inhibited, software should ensure that the appropriate cache blocks are flushed to
memory and invalidated.
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3.3.4 Coherency Precautions in Multiprocessor Systems

The 750CX/CXe/CXr’'s three-state coherency protocol permits no data sharing between the
750CX/CXe/CXr and other caches. All burst reads initiated by the 750CX/CXe/CXr are performed
asread with intent to modify. Burst snoops are interpreted as read with intent to modify or read with
no intent to cache. This effectively places all caches in the system into a three-state coherency
scheme. Four-state caches may share data amongst themselves but not with the 750CX/CXe/CXr.

3.3.5 PowerPC 750CX/CXe/CXr-Initiated Load/Store Operations

L oad and store operations are assumed to be weakly ordered on the 750CX/CXe/CXr. The load/store
unit (L SU) can perform load operationsthat occur later in the program ahead of store operations, even
when the data cacheis disabled (see Section 3.3.5.2, "Sequential Consistency of Memory Accesses’).
However, strongly ordered load and store operations can be enforced through the setting of the | bit
(of the page WIMG hits) when address trandation is enabled. Note that when address translation is
disabled (real addressing mode), the default WIMG bits cause the | bit to be cleared (accesses are
assumed to be cacheable), and thus the accesses are weakly ordered. Refer to Section 5.2, "Red
Addressing Mode" on Page 192 for a description of the WIMG bits when address translation is
disabled.

The 750CX/CXe/CXr does not provide support for direct-store segments. Operations attempting to
access a direct-store segment will invoke a DSI exception. For additional information about DS
exceptions, refer to Section 4.5.3, "DSI Exception (0x00300)" on Page 168.

3.3.5.1 Performed Loads and Stores

The PowerPC architecture defines a performed load operation as one that has the addressed memory
location bound to the target register of theload instruction. The architecture defines a performed store
operation as one where the stored value is the value that any other processor will receive when
executing a load operation (that is of course, until it is changed again). With respect to the
750CX/CXe/CXr, caching-allowed (WIMG = x0xx) loads and caching-allowed, write-back (WIMG
= 00xx) stores are performed when they have arbitrated to address the cache block. Note that in the
event of a cache miss, these storage operations may place a memory request into the processor’s
memory queue, but such operations are considered an extension to the state of the cache with respect
to snooping bus operations. Caching-inhibited (WIMG = x1xx) loads, caching-inhibited (WIMG =
x1Ixx) stores, and write-through (WIMG = 1xxx) stores are performed when they have been
successfully presented to the external 60x bus.

3.3.5.2 Sequential Consistency of Memory Accesses

The PowerPC architecture requires that al memory operations executed by a single processor be
sequentially consistent with respect to that processor. This means that all memory accesses appear to
be executed in program order with respect to exceptions and data dependencies.

The 750CX/CXe/CXr achieves sequential consistency by operating a single pipeline to the
cache/MMU. All memory accesses are presented to the MMU in exact program order and therefore
exceptions are determined in order. Loads are allowed to bypass stores once exception checking has
been performed for the store, but data dependency checking is handled in the load/store unit so that
aload will not bypass a store with an address match. Note that although memory accesses that miss
inthe cache are forwarded to the memory queuefor future arbitration for the external bus, all potential
synchronous exceptions have been resolved before the cache. In addition, although subsequent
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memory accesses can address the cache, full coherency checking between the cache and the memory
gueue is provided to avoid dependency conflicts.

3.3.5.3 Atomic Memory References

The PowerPC architecture defines the Load Word and Reserve Indexed (Iwar x) and the Store Word
Conditional Indexed (stwcx.) instructions to provide an atomic update function for asingle, aligned
word of memory. These instructions can be used to develop a rich set of multiprocessor
synchronization primitives.

NOTE: Atomic memory references constructed using lwar x/stwcex. instructions depend on the
presence of a coherent memory system for correct operation. These instructions should
not be expected to provide atomic access to noncoherent memory. For detailed
information on these instructions, refer to Chapter 2, "Programming Model" and
Chapter 12, "Instruction Set" in this book.

The Iwar x instruction performs aload word from memory operation and creates areservation for the
32-byte section of memory that contains the accessed word. The reservation granularity is 32 bytes.
The Iwar x instruction makes a nonspecific reservation with respect to the executing processor and a
specific reservation with respect to other masters. This means that any subsequent stwcx. executed
by the same processor, regardless of address, will cancel the reservation. Also, any bus write or
invalidate operation from another processor to an address that matches the reservation address will
cancel the reservation.

The stwex. instruction does not check the reservation for a matching address. The stwcex. instruction
Is only required to determine whether a reservation exists. The stwcx. instruction performs a store
word operation only if thereservation exists. If the reservation has been cancelled for any reason, then
the stwcex. instruction fails and clears the CRO[EQ)] bit in the condition register. The architectural
intent is to follow the Iwarx/stwcex. instruction pair with a conditional branch which checks to see
whether the stwcx. instruction failed.

If the page table entry is marked caching-allowed (WIMG = x0xx), and an lwar X access missesin the
cache, then the 750CX/CXe/CXr performs a cache block fill. If the page is marked caching-inhibited
(WIMG = x1xx) or the cacheislocked, and the access misses, then the war x instruction appears on
the bus as asingle-beat load. All bus operations that are a direct result of either an lwar x instruction
or an stwcx. instruction are placed on the bus with a special encoding. Note that this does not force
all lwarx instructions to generate bus transactions, but rather provides a means for identifying when
an Ilwarx instruction does generate a bus transaction. If an implementation requires that all Iwarx
instructions generate bus transactions, then the associated pages should be marked as
caching-inhibited.

The 750CX/CXe/CXr’s data cache treats all stwcx. operations as write-through independent of the
WIMG settings. However, if the stwex. operation hits in the 750CX/CXe/CXr's L2 cache, then the
operation completes with the reservation intact in the L2 cache. See Chapter 9, "L 2 Cache" for more
information. Otherwise, the stwcx. operation continuesto the businterface unit for completion. When
the write-through operation completes successfully, either in the L2 cache or on the 60x bus, then the
data cache entry is updated (assuming it hits), and CRO[EQ)] is modified to reflect the success of the
operation. If the reservation is not intact, the stwex. completes in the bus interface unit without
performing a bus transaction, and without modifying either of the caches.
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3.4 Cache Control

The 750CX/CXe/CXr's L1 caches are controlled by programming specific bits in the HIDO
special-purpose register and by issuing dedicated cache control instructions. Section 3.4.1, "Cache
Control Parametersin HIDO" on Page 132 describes the HIDO cache control bits, and Section 3.4.2,
"Cache Controal Instructions" on Page 134 describes the cache control instructions.

3.4.1 Cache Control Parameters in HIDO

The HIDO specia-purpose register contains several bits that invalidate, disable, and lock the
instruction and data caches. The following sections describe these facilities.

3.4.1.1 Data Cache Flash Invalidation

The data cache is automatically invalidated when the 750CX/CXe/CXr is powered up and during a
hard reset. However, a soft reset does not automatically invalidate the data cache. Software must use
the HIDO data cache flash invalidate bit (HIDO[DCFI]) if data cache invalidation is desired after a
soft reset. Once HIDO[DCFI] is set through an mtspr operation, the 750CX/CXe/CXr automatically
clearsthis bit in the next clock cycle (provided that the data cache is enabled in the HIDO register).

Note that some PowerPC microprocessors accomplish data cache flash invalidation by setting and
clearing HIDO[DCFI] with two consecutive mtspr instructions (that is, the bit is not automatically
cleared by the microprocessor). Software that has this sequence of operations does not need to be
changed to run on the 750CX/CXe/CXr.

3.4.1.2 Data Cache Enabling/Disabling

The data cache may be enabled or disabled by using the data cache enable bit, HIDO[DCE].
HIDO[DCE] is cleared on power-up, disabling the data cache.

When the data cache isin the disabled state (HIDO[DCE] = 0), the cache tag state bits are ignored,
and all accesses are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the
Cl (cache inhibit) signal always reflects the state of the caching-inhibited memory/cache access
attribute (the | bit) independent of the state of HIDO[DCE]. Also note that disabling the data cache
does not affect the tranglation logic; trandation for data accesses is controlled by MSR[DR].

The setting of the DCE bit must be preceded by a sync instruction to prevent the cache from being
enabled or disabled in the middle of a data access. In addition, the cache must be globally flushed
beforeit isdisabled to prevent coherency problemswhen it is re-enabled.

Snooping is not performed when the data cache is disabled.

The dcbz instruction will cause an alignment exception when the data cache is disabled. The touch
load (dcbt and dcbtst) instructions are no-ops when the data cache is disabled. Other cache
operations (caused by the dcbf, dcbst, and dcbi instructions) are not affected by disabling the cache.
This can potentially cause coherency errors. For example, a dcbf instruction that hits a modified
cache block in the disabled cache will cause a copyback to memory of potentially stale data.

3.4.1.3 Data Cache Locking

The contents of the data cache can be locked by setting the data cache lock bit, HIDO[DLOCK]. A
data access that hitsin alocked data cache is serviced by the cache. However, all accesses that miss
in the locked cache are propagated to the L2 cache or 60x bus as single-beat transactions. Note that
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the CI signal always reflects the state of the caching-inhibited memory/cache access attribute (the |
bit) independent of the state of HIDO[DLOCK].

The 750CX/CXe/CXr treats snoop hitsto a locked data cache the same as snoop hits to an unlocked
data cache. However, any cache block invalidated by a snoop hit remains invalid until the cache is
unlocked.

The setting of the DLOCK hit must be preceded by a sync instruction to prevent the data cache from
being locked during a data access.

3.4.1.4 Instruction Cache Flash Invalidation

The instruction cache is automatically invalidated when the 750CX/CXe/CXr is powered up and
during a hard reset. However, a soft reset does not automatically invalidate the instruction cache.
Software must use the HIDO instruction cache flash invalidate bit (HIDO[ICFI]) if instruction cache
invalidation is desired after a soft reset. Once HIDO[ICFI] is set through an mtspr operation, the
750CX/CXe/CXr automatically clears this bit in the next clock cycle (provided that the instruction
cache is enabled in the HIDO register).

NOTE: Some PowerPC microprocessors accomplish instruction cache flash invalidation by
setting and clearing HIDO[I CFI] with two consecutive mtspr instructions (that is, the bit
is not automatically cleared by the microprocessor). Software that has this sequence of
operations does not need to be changed to run on the 750CX/CXe/CXr.

3.4.1.5 Instruction Cache Enabling/Disabling

The ingtruction cache may be enabled or disabled through the use of the instruction cache enable bit,
HIDO[ICE]. HIDO[ICE] is cleared on power-up, disabling the instruction cache.

When theinstruction cacheisin the disabled state (HID[ICE] = 0), the cache tag state bitsare ignored,
and al instruction fetches are propagated to the L2 cache or 60x bus as single-beat transactions. Note
that the Cl signal alwaysreflectsthe state of the caching-inhibited memory/cache access attribute (the
| bit) independent of the state of HIDO[ICE]. Also note that disabling the instruction cache does not
affect the trandation logic; trandation for instruction accessesis controlled by MSR[IR].

The setting of the ICE bit must be preceded by an isync instruction to prevent the cache from being
enabled or disabled in the middle of an instruction fetch. In addition, the cache must be globally
flushed beforeit is disabled to prevent coherency problemswhen it isre-enabled. Theicbi instruction
is not affected by disabling the instruction cache.

3.4.1.6 Instruction Cache Locking

The contents of the instruction cache can be locked by setting the instruction cache lock bit,
HIDO[ILOCK]. An instruction fetch that hits in alocked instruction cache is serviced by the cache.
However, all accesses that miss in the locked cache are propagated to the L2 cache or 60x bus as
single-beat transactions. Note that the CI signal always reflects the state of the caching-inhibited
memory/cache access attribute (the | bit) independent of the state of HIDO[IL OCK].

The setting of the ILOCK bit must be preceded by an isyncinstruction to prevent theinstruction cache
from being locked during an instruction fetch.

The 750CX/CXe/CXr Instruction and Data Cache Operation 3/17/05 Page 133



3.4.2 Cache Control Instructions

The PowerPC architecture defines instructions for controlling both the instruction and data caches
(when they exist). The cache control instructions, dcbt, dcbtst, dcbz, dcbst, dcbf, debi, andichi, are
intended for the management of the local L1 and L2 caches. The 750CX/CXe/CXr interprets the
cache control instructions as if they pertain only to its own L1 or L2 caches. These instructions are
not intended for managing other caches in the system (except to the extent necessary to maintain
coherency).

The 750CX/CXe/CXr does not snoop cache control instruction broadcasts, except for dcbz when M
= 1. Thedcbz instruction is the only cache control instruction that causes a broadcast on the 60x bus
(when M = 1) to maintain coherency. All other data cache control instructions (dcbi, dcbf, dcbst and
dcbz) are not broadcast, unless broadcast is enabled through the HIDO[ABE] configuration bit. Note
that dcbi, dcbf, dcbst and dcbz do broadcast to the 750CX/CXe/CXr's L2 cache, regardless of
HIDO[ABE]. Theichi instruction is never broadcast.

3.4.2.1 Data Cache Block Touch (dcbt) and Data Cache Block Touch
for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) instructions
provide potential system performance improvement through the use of software-initiated prefetch
hints. The 750CX/CXe/CXr treats these instructions identically (that is, a dcbtst instruction behaves
exactly the same asadcbt instruction on the 750CX/CXe/CXr). Note that PowerPC implementations
are not required to take any action based on the execution of these instructions, but they may choose
to prefetch the cache block corresponding to the effective address into their cache.

The 750CX/CXe/CXr loads the data into the cache when the address hitsin the TLB or the BAT, is
permitted load access from the addressed page, is not directed to a direct-store segment, and is
directed at acacheable page. Otherwise, the 750CX/CXe/CXr treats these instructions as no-ops. The
data brought into the cache as aresult of thisinstruction is validated in the same manner that a load
instruction would be (that is, it is marked as exclusive). The memory reference of adcbt (or dcbtst)
instruction causes the reference bit to be set. Note also that the successful execution of the dcbt (or
dcbtst) instruction affectsthe state of the TLB and cache L RU bits as defined by the PLRU algorithm.

3.4.2.2 Data Cache Block Zero (dchbz)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC architecture. The dcbz instruction istreated as a store to the addressed byte with respect to
address trandlation and protection.

If the block containing the byte addressed by the EA isin the data cache, all bytes are cleared, and
the tag is marked as modified (M). If the block containing the byte addressed by the EA isnot in the
data cache and the corresponding page is caching-allowed, the block is established in the data cache
without fetching the block from main memory, and all bytes of the block are cleared, and the tag is
marked as modified (M).

If the contents of the cache block are from a page marked memory coherence required (M = 1), an
address-only bus transaction is run prior to clearing the cache block. The dcbz instruction is the only
cache control instruction that causes a broadcast on the 60x bus (when M = 1) to maintain coherency.
The other cache control instructions are not broadcast unless broadcasting is specifically enabled
through the HIDO[ABE] configuration bit. The dcbz instruction executes regardless of whether the
cache is locked, but if the cache is disabled, an alignment exception is generated. If the page
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containing the byte addressed by the EA is caching-inhibited or write-through, then the system
alignment exception handler isinvoked. BAT and TL B protection violations generate DSI exceptions.

Note: If the target address of a dcbz instruction hits in the L1 cache, the 750CX/CXe&/CXr requires
four internal clock cyclesto rewrite the cache block to zeros. On thefirst clock, the block is remarked
as valid-unmodified, and on the last clock the block is marked as valid-modified. If a snoop request
to that addressis received during the middle two clocks of the dcbz operation, the 750CX/CXe/CXr
does not properly react to the snoop operation or generate an addressretry (by an ARTRY assertion)
to the other master. The other bus master continues reading the data from system memory, and both
the 750CX/CXe/CXr and the other bus master end up with different copies of the data. In addition, if
the other bus master has a cache, the cache block is marked valid in both caches, which is not allowed
in the 750CX/CXe/CXr’ s three-state cache environment.

For this reason, avoid using dcbz for data that is shared in real time and that is not protected during
writing through higher-level software synchronization protocols (such as semaphores). Use of dcbz
must be avoided for managing semaphores themselves. An aternative solution could be to prevent
dcbz from hitting in the L1 cache by performing a dcbf to that address beforehand.

3.4.2.3 Data Cache Block Store (dcbst)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC architecture. This instruction is treated as a load with respect to address translation and
memory protection.

If the address hits in the cache and the cache block isin the exclusive (E) state, no action is taken. If
the address hits in the cache and the cache block is in the modified (M) state, the modified block is
written back to memory and the cache block is placed in the exclusive (E) state.

The execution of a dcbst instruction does not broadcast on the 60x bus unless broadcast is enabled
through the HIDO[ABE] bit. The function of thisinstruction isindependent of the WIMG bit settings
of the block containing the effective address. The dcbst instruction executes regardless of whether
the cache is disabled or locked; however, a BAT or TLB protection violation generates a DS
exception.

3.4.2.4 Data Cache Block Flush (dcbf)

The effective addressis computed, translated, and checked for protection violations as defined in the
PowerPC architecture. This instruction is treated as a load with respect to address translation and
memory protection.

If the address hitsin the cache, and the block isin the modified (M) state, the modified block iswritten
back to memory and the cache block is placed in theinvalid (1) state. If the address hitsin the cache,
and the cache block isin the exclusive (E) state, the cache block is placed in the invalid (1) state. If
the address misses in the cache, no action is taken.

The execution of dcbf does not broadcast on the 60x bus unless broadcast is enabled through the
HIDO[ABE] bit. The function of thisinstruction isindependent of the WIMG bit settings of the block
containing the effective address. The dcbf instruction executes regardless of whether the cache is
disabled or locked; however, a BAT or TLB protection violation generates a DSI exception.
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3.4.2.5 Data Cache Block Invalidate (dcbi)

The effective addressis computed, translated, and checked for protection violations as defined in the
PowerPC architecture. This instruction is treated as a store with respect to address trandation and
memory protection.

If the address hitsin the cache, the cache block isplaced in theinvalid (1) state, regardless of whether
the data is modified. Because this instruction may effectively destroy modified data, it is privileged
(that is, dcbi isavailable to programs at the supervisor privilege level, MSR[PR] = 0). The execution
of dcbi does not broadcast on the 60x bus unless broadcast is enabled through the HIDO[ABE] bit.
The function of thisinstruction isindependent of the WIMG hit settings of the block containing the
effective address. The dcbi instruction executes regardless of whether the cacheis disabled or locked;
however, aBAT or TLB protection violation generatesa DSl exception.

3.4.2.6 Instruction Cache Block Invalidate (icbi)

For the icbi instruction, the effective address is not computed or translated, so it cannot generate a
protection violation or exception. Thisinstruction performsavirtual lookup into the instruction cache
(index only). All ways of the selected instruction cache set are invalidated.

Theichi instruction is not broadcast on the 60x bus. Theichi instruction invalidates the cache blocks
independent of whether the cache is disabled or locked.

3.5 Cache Operations
This section describes the 750CX/CXe/CXr’ s cache operations.

3.5.1 Cache Block Replacement/Castout Operations

Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement algorithm
when a new block needs to be placed in the cache. When the data to be replaced is in the modified
(M) state, that dataiswritten into a castout buffer while the missed datais being accessed on the bus.
When the load compl etes, the 750CX/CX e/CXr then pushesthe replaced cache block from the castout
buffer to the L2 cache (if L2 is enabled) or to main memory (if L2 is disabled).

The replacement logic first checks to see if there are any invalid blocks in the set and chooses the
lowest-order, invalid block (L[0-7]) asthe replacement target. If all eight blocksin the set are valid,
the PLRU algorithm is used to determine which block should be replaced. The PLRU algorithm is
shown in Figure 3-5 on Page 137.

Each cache is organized as eight blocks per set by 128 sets. Thereis avalid bit for each block in the
cache, L[0-7]. When all eight blocks in the set are valid, the PLRU algorithm is used to select the
replacement target. There are seven PLRU bits, B[0—6] for each set in the cache. For every hit in the
cache, the PLRU bits are updated using the rules specified in Table 3-2 on Page 3-138.
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Figure 3-5. PLRU Replacement Algorithm
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Table 3-2. PLRU Bit Update Rules

If the Then the PLRU bits are Changed to:1
Current
ACCTe;:S Is BO B1 B2 B3 B4 B5 B6
LO 1 1 X 1 X X X
L1 1 1 X 0 X X X
L2 1 0 X X 1 X X
L3 1 0 X X 0 X X
L4 0 X 1 X X 1 X
L5 0 X 1 X X 0 X
L6 0 X 0 X X X 1
L7 0 X 0 X X X 0

Note: 1x = Does not change

If all eight blocks are valid, then a block is selected for replacement according to the PLRU bit
encodings shown in Table 3-3.

Table 3-3. PLRU Replacement Block Selection

Then the
Block
If the PLRU Bits Are: Selected for
Replacement
Is:
0 0 0 LO
B3
0 0 1 L1
0 B 1 0 L2
B4
0 1 1 L3
BO
1 0 0 L4
B5
1 0 1 L5
1 =2 1 0 L6
B6
1 1 1 L7

During power-up or hard reset, al the valid bits of the blocks are cleared and the PLRU bits cleared
to point to block LO of each set. Note that this is aso the state of the data or instruction cache after
setting their respective flash invalidate bit (HIDO[DCFI] or HIDO[ICFI]).
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3.5.2 Cache Flush Operations

The instruction cache can be invalidated by executing a series of icbi instructions or by setting
HIDO[ICFI]. The datacache can beinvalidated by executing a series of dcbi instructions or by setting
HIDO[DCFI].

Any modified entries in the data cache can be copied back to memory (flushed) by using the dcbf
instruction or by executing a series of 12 uniquely addressed load or dcbz instructions to each of the
128 sets. The address space should not be shared with any other process to prevent snoop hit
invalidations during the flushing routine. Exceptions should be disabled during this time so that the
PLRU algorithm does not get disturbed.

The data cache flush assist bit, HIDO[DCFA], simplifies the software flushing process. When set,
HIDO[DCFA] forces the PLRU replacement algorithm to ignore the invalid entries and follow the
replacement sequence defined by the PLRU bits. This reduces the series of uniquely addressed load
or dcbz instructions to eight per set. HIDO[DCFA] should be set just prior to the beginning of the
cache flush routine and cleared after the series of instructions is compl ete.

3.5.3 Data Cache-Block-Fill Operations

The 750CX/CXe/CXr’s data cache blocks are filled in four beats of 64 bits each, with the critical
double word loaded first. The data cache isnot blocked to internal accesseswhile the load (caused by
a cache miss) completes. This functionality is sometimes referred to as ‘hits under misses,” because
the cache can service a hit while a cache miss fill is waiting to complete. The critical-double-word
read from memory is simultaneously written to the data cache and forwarded to the requesting unit,
thus minimizing stalls due to cache fill latency.

A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs in the
cache. The cache block that corresponds to the missed address is updated by a burst transfer of the
data from the L2 or system memory. Note that if a read miss occurs in a system with multiple bus
masters, and the data is modified in another cache, the modified data is first written to external
memory before the cache fill occurs.

3.5.4 Instruction Cache-Block-Fill Operations

The 750CX/CXe/CXr’s instruction cache blocks are loaded in four beats of 64 bits each, with the
critical double word loaded first. The instruction cache is not blocked to internal accesses while the
fetch (caused by a cache miss) completes. On a cache miss, the critical and following double words
read from memory are simultaneously written to the instruction cache and forwarded to the
instruction queue, thus minimizing stalls due to cache fill latency. There is no snooping of the
instruction cache.

3.5.5 Data Cache-Block-Push Operation

When a cache block in the 750CX/CXe/CXr is snooped and hit by another bus master and the datais
modified, the cache block must be written to memory and made available to the snooping device. The
cache block is said to be pushed out onto the 60x bus.
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3.6 L1 Caches and 60x Bus Transactions

The 750CX/CXe/CXr transfers data to and from the cache in single-beat transactions of two words,
or in four-beat transactions of eight words which fill a cache block. Single-beat bus transactions can
transfer from one to eight bytes to or from the 750CX/CXe/CXr, and can be misaligned. Single-beat
transactions can be caused by cache write-through accesses, caching-inhibited accesses (WIMG =
x1xx), accesses when the cache is disabled (HIDO[DCE] bit is cleared), or accesses when the cache
islocked (HIDO[DLOCK] hit is cleared).

Burst transactions on the 750CX/CXe/CXr always transfer eight words of data at a time, and are
aligned to a double-word boundary. The 750CX/CXe/CXr transfer burst (TBST) output signal
indicates to the system whether the current transaction is a single-beat transaction or four-beat burst
transfer. Burst transactions have an assumed address order. For cacheabl e read operations, instruction
fetches, or cacheable, non-write-through write operations that miss the cache, the 750CX/CXe/CXr
presents the double-word-aligned address associated with the load/store instruction or instruction
fetch that initiated the transaction.

Asshown in Figure 3-6, the first quad word contains the address of the load/store or instruction fetch
that missed the cache. This minimizes latency by allowing the critical code or data to be forwarded
to the processor before therest of the block isfilled. For all other burst operations, however, theentire
block istransferred in order (oct-word-aligned). Critical-double-word-first fetching on a cache miss
applies to both the data and instruction cache.

Figure 3-6. 750CX/CXe/CXr Cache Addresses

750CX/CXe/CXr Cache

Bits (27... 28)
00 01 10 1
A B C D

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and
the four data beats are ordered in the following manner:

Beat
1 2 3

A B C D

If the address requested is in double-word C, the address placed on the bus will be that of double-word
C, and the four data beats are ordered in the following manner:

Beat
1 2 3

C D A B

3.6.1 Read Operations and the MEI Protocol

The MEI coherency protocol affects how the 750CX/CXe/CXr data cache performs read operations
on the 60x bus. All reads (except for caching-inhibited reads) are encoded on the bus as
read-with-intent-to-modify (RWITM) to force flushing of the addressed cache block from other
cachesin the system.
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The MEI coherency protocol aso affects how the 750CX/CXe/CXr snoops read operations on the
60x bus. All reads snooped from the 60x bus (except for caching-inhibited reads) are interpreted as
RWITM to cause flushing from the 750CX/CXe/CXr’ s cache. Single-beat reads (TBST negated) are
interpreted by the 750CX/CXe/CXr as caching inhibited.

These actions for read operations allow the 750CX/CXe/CXr to operate successfully (coherently) on
the bus with other bus masters that implement either the three-state MEI or afour-state MESI cache
coherency protocol.

3.6.2 Bus Operations Caused by Cache Control Instructions

The cache control, TLB management, and synchronization instructions supported by the
750CX/CXe/lCXr may affect or be affected by the operation of the 60x bus. The operation of the
instructions may also indirectly cause bus transactions to be performed, or their completion may be
linked to the bus.

The dcbz instruction is the only cache control instruction that causes an address-only broadcast on
the 60x bus. All other data cache control instructions (dcbi, dcbf, dcbst, and dcbz) are not broadcast
unless specifically enabled through the HIDO[ABE] configuration bit. Note that dcbi, dcbf, dcbst,
and dcbz do broadcast to the 750CX/CXe/CXr’s L2 cache, regardless of HIDO[ABE]. HIDO[ABE]
also controls the broadcast of the sync and eieio instructions.

The ichi instruction is never broadcast. No broadcasts by other masters are snooped by the
750CX/CXe/CXr (except for dcbz kill block transactions). For detailed information on the cache
control instructions, refer to Chapter 2, "Programming Model" and Chapter 12, "Instruction Set” in
this book.

Table 3-4 providesan overview of the busoperationsinitiated by cache control instructions. Note that
the information in this table assumes that the WIM bits are set to 001; that is, the cache is operating
in write-back mode, caching is permitted and coherency is enforced.

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Instruction Current Next Cache State Bus Operation Comment
Cache State

sync Don't care No change sync Waits for memory queues
(if enabled in to complete bus activity
HIDO[ABE])

tibie — — None —

tlbsync — — None Waits for the negation of

the TLBSYNC input signal
to complete

eieio Don't care No change eieio Address-only bus
(if enabled in operation
HIDO[ABE])

ichi Don't care I None —

dcbi Don't care | Kill block Address-only bus
(if enabled in operation
HIDO[ABE])

dcbf I, E | Flush block Address-only bus
(if enabled in operation
HIDO[ABE])
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Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001) (Continued)

Instruction Current Next Cache State Bus Operation Comment
Cache State
dcbf M I Write with Kill Block is pushed
dcbst I, E No change Clean block Address-only bus
(if enabled in operation
HIDO[ABE])
dcbst M E Write with Kill Block is pushed
dcbz I M Write with kill —
dcbz E,M M Kill block Writes over modified data
dcbt I E Read-with-intent-t | Fetched cache block is
o-modify stored in the cache
dchbt E, M No change None —
dcbtst I E Read-with-intent-t | Fetched cache block is
o-modify stored in the cache
dcbtst E.M No change None —

For additional details about the specific bus operations performed by the 750CX/CXe/CXr, see
Chapter 8, "Bus Interface Operation” in this manual.

3.6.3 Snooping

The 750CX/CXe/CXr maintains data cache coherency in hardware by coordinating activity between
the data cache, the bus interface logic, the L2 cache, and the memory system. The 750CX/CXe/CXr
has a copy-back cache which relies on bus snooping to maintain cache coherency with other caches
in the system. For the 750CX/CXe/CXr, the coherency size of the busisthe size of a cache block, 32
bytes. This means that any bus transactions that cross an aligned 32-byte boundary must present a
new address onto the bus at that boundary for proper snoop operation by the 750CX/CXe/CXr, or
they must operate noncoherently with respect to the 750CX/CXe/CXr.

As bus operations are performed on the bus by other bus masters, the 750CX/CXe/CXr’s bus
snooping logic monitors the addresses and transfer attributes that are referenced. The
750CX/CXe/CXr snoops the bus transactions during the cycle that TS is asserted for any of the
following qualified snoop conditions:

» Theglobal signa (GBL) is asserted indicating that coherency enforcement is required.

* Areservationiscurrently activein the 750CX/CXe/CXr astheresult of an lwarx instruction,
and thetransfer type attributes (TT[0-4]) indicate awrite or kill operation. These transactions
are snooped regardless of whether GBL is asserted to support reservations in the MEI cache
protocol.

All transactions snooped by the 750CX/CXe/CXr are checked for correct address bus parity. Every
assertion of TS detected by the 750CX/CXe/CXr (whether snooped or not) must be followed by an
accompanying assertion of AACK.

Once a qualified snoop condition is detected on the bus, the snooped address associated with TS is
compared against the data cache tags, memory queues, and/or other storage elements as appropriate.
The L1 data cache tags and L 2 cache tags are snooped for standard data cache coherency support. No
snooping is donein the instruction cache for coherency.

Page 142 Version 1.3 IBM PowerPC 750CX/CXe/CXr RISC Microprocessor User’'s Manual



The memory gqueues are snooped for pipeline collisions and memory coherency collisions. A pipeline
collison is detected when another bus master addresses any portion of a line that this
750CX/CXe/CXr's data cache is currently in the process of loading (L1 loading from L2, or L1/L2
loading from memory). A memory coherency collision occurs when another bus master addresses any
portion of a line that the 750CX/CXe/CXr has currently queued to write to memory from the data
cache (castout or copy-back), but has not yet been granted bus access to perform.

If a snooped transaction results in a cache hit or pipeline collision or memory queue collision, the
750CX/CXe/CXr asserts ARTRY on the 60x bus. The current bus master, detecting the assertion of
the ARTRY signal, should abort the transaction and retry it at a later time, so that the
750CX/CXe/CXr can first perform a write operation back to memory from its cache or memory
gueues. The 750CX/CXe/CXr may also retry abustransaction if it is unable to snoop the transaction
on that cycle due to internal resource conflicts. Additional snoop action may be forwarded to the
cache as a result of a snoop hit in some cases (a cache push of modified data, or a cache block
invalidation). There is no immediate way for another CPU bus agent to determine the cause of the
750CX/CXe/CXr ARTRY.

Implementation Note: Snooping of the memory queues for pipeline collisions, as described above,
is performed for burst read operations in progress only. In this case, the read address has completed
on the bus, however, the data tenure may be either in-progress or not yet started by the processor.
During this time the 750CX/CXe/CXr will retry any other global access to that line by another bus
master until all data hasbeen received init’s L1 cache. Pipeline collisions, however, do not apply for
burst write operationsin progress. If the 750CX/CXe/CXr has compl eted an address tenure for aburst
write, and is currently waiting for a data bus grant or is currently transferring data to memory, it will
not generate an address retry to another bus master that addresses the line. It is the responsibility of
the memory system to handle this collision (usually by keeping the data transactions to memory in
order). Note also that all burst writes by the 750CX/CXe/CXr are performed as non-global, and hence
do not normally enable snooping, even for address collision purposes. (Snooping may still occur for
reservation cancelling purposes.)

3.6.4 Snoop Response to 60x Bus Transactions

There are several bus transaction types defined for the 60x bus. The transactions in Table 3-5
correspond to the transfer type signals TT[0-4], which are described in Section 7.2.4.1, "Transfer
Type (TT[04])" on Page 250.

The 750CX/CXe/CXr never retries a transaction in which GBL is not asserted, even if the tags are
busy or there is atag hit. Reservations are snooped regardless of the state of GBL.

Table 3-5. Response to Snooped Bus Transactions

Snooped Transaction TT[0-4] 750CX/CXe/CXr Response
Clean block 00000 No action is taken.
Flush block 00100 No action is taken.
SYNC 01000 No action is taken.
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Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0-4] 750CX/CXe/CXr Response

Kill block 01100 The kill block operation is an address-only bus transaction initiated
when a dcbz or dcbi instruction is executed
« If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (1) state.

« If the addressed cache block is in the modified (M) state, the
750CX/CXe/CXr asserts ARTRY and initiates a push of the
modified block out of the cache and the cache block is placed in the
invalid (1) state.

« If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

EIEIO 10000 No action is taken.

External control word 10100 No action is taken.

write

TLB invalidate 11000 No action is taken.

External control word 11100 No action is taken.

read

Iwarx reservation set 00001 No action is taken.

Reserved 00101 —

TLBSYNC 01001 No action is taken.

ICBI 01101 No action is taken.

Reserved 1XX01 —

Write-with-flush 00010 A write-with-flush operation is a single-beat or burst transaction
initiated when a caching-inhibited or write-through store instruction is
executed.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (1) state.

« If the addressed cache block is in the modified (M) state, the
750CX/CXe/CXr asserts ARTRY and initiates a push of the
modified block out of the cache and the cache block is placed in the
invalid (1) state.

« If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

Write-with-kill 00110 A write-with-kill operation is a burst transaction initiated due to a

castout, caching-allowed push, or snoop copy -back.

« If the address hits in the cache, the cache block is placed in the
invalid (1) state (killing modified data that may have been in the
block).

« If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

Page 144 Version 1.3

IBM PowerPC 750CX/CXe/CXr RISC Microprocessor User’s Manual




Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction

TT[0-4]

750CX/CXe/CXr Response

Read

01010

A read operation is used by most single-beat and burst load

transactions on the bus.

For single-beat, caching-inhibited read transaction:

« If the addressed cache block is in the exclusive (E) state, the cache
block remains in the exclusive (E) state.

« If the addressed cache block is in the modified (M) state, the
750CX/CXe/CXr asserts ARTRY and initiates a push of the
modified block out of the cache and the cache block is placed in the
exclusive (E) state.

« If the address misses in the cache, no action is taken.

For burst read transactions:

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (1) state.

« If the addressed cache block is in the modified (M) state, the
750CX/CXe/CXr asserts ARTRY and initiates a push of the
modified block out of the cache and the cache block is placed in the
invalid (1) state.

« If the address misses in the cache, no action is taken.

Read-with-intent-to-mo
dify (RWITM)

01110

A RWITM operation is issued to acquire exclusive use of a memory

location for the purpose of modifying it.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (1) state.

« If the addressed cache block is in the modified (M) state, the
750CX/CXe/CXr asserts ARTRY and initiates a push of the
modified block out of the cache and the cache block is placed in the
invalid (1) state.

« If the address misses in the cache, no action is taken.

Write-with-flush-atomic

10010

Write-with-flush-atomic operations occur after the processor issues

an stwcx. instruction.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (1) state.

« If the addressed cache block is in the modified (M) state, the
750CX/CXe/CXr asserts ARTRY and initiates a push of the
modified block out of the cache and the cache block is placed in the
invalid (1) state.

« If the address misses in the cache, no action is taken.

Any reservation is canceled, regardless of the address.

Reserved

10110

Read-atomic

11010

Read atomic operations appear on the bus in response to Iwarx
instructions and generate the same snooping responses as read
operations.

Read-with-intent-to-mo
dify-atomic

11110

The RWITM atomic operations appear on the bus in response to
stwcx. instructions and generate the same snooping responses as
RWITM operations.

Reserved

00011

Reserved

00111
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Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0-4] 750CX/CXe/CXr Response
Read-with-no-intent-to- | 01011 A RWNITC operation is issued to acquire exclusive use of a memory
cache (RWNITC) location with no intention of modifying the location.

« If the addressed cache block is in the exclusive (E) state, the cache
block remains in the exclusive (E) state.

« If the addressed cache block is in the modified (M) state, the
750CX/CXe/CXr asserts ARTRY and initiates a push of the
modified block out of the cache and the cache block is placed in the
exclusive (E) state.

« If the address misses in the cache, no action is taken.

Reserved 01111 —

Reserved 1XX11 —
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3.6.5 Transfer Attributes

In addition to the address and transfer type signals, the 750CX/CXe&/CXr supports the transfer
attribute signals TBST, TSIZ[0-2], WT, CI, and GBL. The TBST and TSIZ[0-2] signalsindicate the
datatransfer size for the bus transaction.

The WT signal reflects the write-through status (the complement of the W bit) for the transaction as
determined by the MMU address trandation during write operations. WT is asserted for burst writes
due to dcbf (flush) and dcbst (clean) instructions, and for snoop pushes, WT is negated for ecowx
transactions. Since the write-through statusis not meaningful for reads, the 750CX/CXe/CXr usesthe
WT signal during read transactions to indicate that the transaction is an instruction fetch (WT
negated), or not an instruction fetch (WT asserted).

The CI signal reflects the caching-inhibited/allowed status (the complement of the | bit) of the
transaction as determined by the MMU address trandation even if the L1 caches are disabled or
locked. Cl is always asserted for eciwx/ecowx bus transactions independent of the address
tranglation.

The GBL signal reflects the memory coherency requirements (the complement of the M bit) of the
transaction as determined by the MMU address trandlation. Castout and snoop copy-back operations
(TT[0-4] = 00110) are generally marked as nonglobal (GBL negated) and are not snooped (except
for reservation monitoring). Other masters, however, may perform DMA write operations with this
encoding but marked global (GBL asserted) and thus must be snooped.

Table 3-6 summarizes the address and transfer attribute information presented on the bus by the
750CX/CXe/CXr for various master or snoop-related transactions.
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Table 3-6. Address/Transfer Attribute Summary

Bus Transaction A[0-31] TT[0-4] | TBST | TSIZ[0-2] | GBL WT Cl
Instruction fetch operations:
Burst (caching-allowed) PA[0-28] || 0b000 01110 0 010 =M 1 1*
Single-beat read PA[0-28] || 0b000 01010 1 000 =M 1 =
(caching-inhibited or cache
disabled)
Data cache operations:
Cache block fill (due to load or PA[0-28] || Ob000 Al1110 0 010 =M 0 1*
store miss)
Castout CA[0-26] || Ob00000 | 00110 0 010 1 1 1*
(normal replacement)
Push (cache block push due to PA[0-26] || Ob00000 [ 00110 0 010 1 0 1*
dcbf/dcbst)
Snoop copyback CA[0-26] || Ob00000 | 00110 0 010 1 0 1*
Data cache bypass operations:
Single-beat read PA[0-31] A1010 1 SSS -M 0 =
(caching-inhibited or cache
disabled)
Single-beat write PA[0-31] 00010 1 SSS - M W =l
(caching-inhibited, write-through,
or cache disabled)
Special instructions:
dcbz (addr-only) PA[0-28] || 0b000 01100 0 010 o* 0 1*
dcbi (if HIDO[ABE] = 1, PA[0-26] || Ob00000 [ 01100 0 010 =M 0 1*
addr-only)
dcbf (if HIDO[ABE] = 1, PA[0-26] || Ob00000 [ 00100 0 010 =M 0 1*
addr-only)
dcbst (if HIDO[ABE] = 1, PA[0-26] || Ob00000 [ 00000 0 010 =M 0 1*
addr-only)
sync (if HIDO[ABE] = 1, 0x0000_0000 01000 0 010 0 0 0
addr-only)
eieio (if HIDO[ABE] = 1, 0x0000_0000 10000 0 010 0 0 0
addr-only)
stwcx. (always single-beat write) | PA[0-29] || Ob00 10010 1 100 - M - W =l
eciwx PA[0-29] || Ob0O 11100 EAR[28-31] 1 0 0
ecowx PA[0-29] || Ob0O 10100 EAR[28-31] 1 1 0
Notes:

PA = Physical address, CA = Cache address.
W,I,M = WIM state from address translation; - = complement; 0*or 1* = WIM state implied by transaction type in table
For instruction fetches, reflection of the M bit must be enabled through HIDO[IFEM].
A = Atomic; high if Iwarx, low otherwise

S = Transfer size

Special instructions listed may not generate bus transactions depending on cache state.
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3.7 MEI State Transactions

Table 3-7 shows MEI state transitions for various operations. Bus operations are described in
Table 3-4". Bus Operations Caused by Cache Control Instructions (WIM = 001)," on Page 141.

Table 3-7. MEI State Transitions

Cache BUS Current Next BuS
Operation Operation | svnc WIM Cache Cache Cache Actions Operation
P y State State P
Load Read No X0x | Same 1 Cast out of modified Write-with-kill
(T=0) block (as required)
2 Pass four-beat read Read
to memory queue
Load Read No X0x E,.M Same Read data from cache —
(T=0)
Load (T =0) Read No X1x | Same Pass single-beatreadto | Read
memory queue
Load (T =0) Read No x1x E CRTRY read —
Load (T =0) Read No x1x M CRTRY read (push Write-with-kill
sector to write queue)
Iwarx Read Acts like other reads but bus operation uses special encoding
Store Write No 00x | Same | Cast out of modified Write-with-kill
(T=0) block (if necessary)
Pass RWITM to RWITM
memory queue
Store Write No 00x E,.M M Write data to cache —
(T=0)
Store | stwcx. Write No 10x | Same | Pass single-beat write Write-with-flus
(T=0) to memory queue h
Store | stwcx. Write No 10x E Same | Write data to cache —
(T=0) ) . ..
Pass single-beat write Write-with-flus
to memory queue h
Store | stwcx. Write No 10x M Same CRTRY write —
(T=0)
Push block to write Write-with-kill
queue
Store (T =0) Write No x1x | Same Pass single-beat write Write-with-flus
or stwcx. to memory queue h
(WIM = 10x)
Store (T =0) Write No X1x E CRTRY write —
or stwcx.
(WIM = 10x)
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Table 3-7. MEI State Transitions (Continued)

Cache BuS Current Next BUS
Operation Operation | svnc WIM Cache Cache Cache Actions Operation
P y State State P
Store (T =0) Write No x1x M I CRTRY write —
or stwcx. ) . o
(WIM = 10x) Push block to write Write-with-kill
queue
stwcx. Conditional | If the reserved bit is set, this operation is like other writes except the bus operation
write uses a special encoding.
dcbf Datacache | No XXX ILE Same | CRTRY dcbf —
block flush
Pass flush Flush
Same I State change only —
dcbf Datacache | No XXX M I Push block to write Write-with-kill
block flush queue
dcbst Datacache | No XXX ILE Same | CRTRY dcbst —
block store
Pass clean Clean
Same Same No action —
dcbst Datacache | No XXX M E Push block to write Write-with-kill
block store queue
dchz Datacache | No X1x X X Alignment trap —
block set to
zero
dchz Datacache | No 10x X X Alignment trap —
block set to
zero
dcbz Datacache | Yes 00x | Same | CRTRY dcbz —
block set to — - ——
zero Cast out of modified Write-with-kill
block
Pass kill Kill
Same Clear block —
dcbz Datacache | No 00x E,.M M Clear block —
block set to
zero
dcbt Datacache | No x1x | Same Pass single-beatreadto | Read
block touch memory queue
dcbt Datacache | No x1x E CRTRY read —
block touch
dcbt Datacache | No x1x M CRTRY read —
block touch ) ) .
Push block to write Write-with-kill
queue
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Table 3-7. MEI State Transitions (Continued)

Cache BuS Current Next BUS
Operation Operation | svnc WIM Cache Cache Cache Actions Operation
P y State State P
dchbt Datacache | No X0x | Same | Cast out of modified Write-with-kill
block touch block (as required)
Pass four-beat read to Read
memory queue
dcbt Datacache | No X0x E.M Same No action —
block touch
Single-beat Reload No XXX | Same | Forward data_in —
read dump 1
Four-beat read | Reload No XXX | E Write data_in to cache —
(double-word-al | dump
igned)
Four-beat write | Reload No XXX | M Write data_in to cache —
(double-word-al | dump
igned)
E—I Snoop No XXX E State change only —
write or Kill (committed)
M—> Snoop No XXX M State change only —
kill (committed)
Push Snoop No XXX M Conditionally push Write-with-Kkill
M—I flush
Push Snoop No XXX M E Conditionally push Write-with-Kkill
M—E clean
tibie TLB No XXX X X CRTRY TLBI —
invalidate
Pass TLBI —
No action —
sync Synchroni- | No XXX X X CRTRY sync —
zation
Pass sync —
No action —
NOTE: Single-beat writes are not snooped in the write queue.
The 750CX/CXe/CXr Instruction and Data Cache Operation 3/17/05 Page 151




Page 152 Version 1.3 IBM PowerPC 750CX/CXe/CXr RISC Microprocessor User’'s Manual



Chapter 4 Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC processors
implement exceptions (referred to as interrupts in the architecture specification). Exception
conditions may be defined at other levels of the architecture. For example, the UISA defines
conditions that may cause floating-point exceptions; the OEA defines the mechanism by which the
exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of
unusual conditions arising in the execution of instructions and from external signals, bus errors, or
various internal conditions. When exceptions occur, information about the state of the processor is
saved to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more specific
condition may be determined by examining a register associated with the exception—for example,
the DSI SR and the floating-point status and control register (FPSCR). The high order bits of the MSR
are also set for some exceptions. Also, software can explicitly enable or disable some exception
conditions.

The PowerPC architecture requires that exceptions be taken in program order; therefore, although a
particular implementation may recognize exception conditions out of order, they are handled strictly
in order with respect to the instruction stream. When an instruction-caused exception is recognized,
any unexecuted instructions that appear earlier in the instruction stream, including any that have not
yet entered the execute state, are required to complete before the exception is taken. For example, if
asingleinstruction encounters multiple exception conditions, those exceptions are taken and handled
based on the priority of the exception. Likewise, exceptions that are asynchronous and precise are
recognized when they occur, but are not handled until all instructions currently in the execute stage
successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored in the
machine status save/restore registers, SRRO and SRR1, soon after the exception is taken to prevent
thisinformation from being lost due to another exception being taken. Because exceptions can occur
while an exception handler routine is executing, multiple exceptions can become nested. It is up to
the exception handler to save the necessary state information if control is to return to the excepting
program.

In many cases, after the exception handler returns, there is an attempt to execute the instruction that
caused the exception (e.g., page fault). Instruction execution continues until the next exception
condition is encountered. Recognizing and handling exception conditions sequentially guarantees
that the machine state is recoverable and processing can resume without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing.

Recognition Exception recognition occurs when the condition that can cause an exception
isidentified by the processor.
Taken An exception is said to be taken when control of instruction execution is

passed to the exception handler; that is, the context is saved and the
instruction at the appropriate vector offset is fetched and the exception
handler routine is begun in supervisor mode.

Exceptions 3/17/05 Page 151



Handling Exception handling is performed by the software linked to the appropriate
vector offset. Exception handling isbegun in supervisor mode (referred to as
privileged state in the architecture specification).

NOTE: ThePowerPC architecture documentation refersto exceptions as interrupts. In this book,
theterm ‘interrupt’ isreserved to refer to asynchronous exceptions and sometimes to the
event that causesthe exception. Also, the PowerPC architecture usesthe word ‘ exception’
to refer to IEEE-defined floating-point exception conditions that may cause a program
exception to be taken; see Section 4.5.7, "Program Exception (0x00700)" on Page 169.
The occurrence of these | EEE exceptions may not cause an exception to be taken.
| EEE-defined exceptions are referred to as | EEE floating-point exceptions or
floating-point exceptions.

4.1 PowerPC 750CX/CXe/CXr Microprocessor Exceptions

As specified by the PowerPC architecture, exceptions can be either precise or imprecise and either

synchronous or asynchronous. Asynchronous exceptions are caused by events external to the

processor’ s execution; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 4-1.

NOTE: All exceptions except for the thermal management, and performance monitor exception
are defined, at least to some extent, by the PowerPC architecture.

Table 4-1. PowerPC 750CX/CXe/CXr Microprocessor Exception Classifications

Synchronous/Asynchronous | Precise/lmprecise Exception Types
Asynchronous, nonmaskable | Imprecise Machine check, system reset
Asynchronous, maskable Precise External interrupt, decrementer, performance monitor interrupt,

thermal management interrupt

Synchronous Precise Instruction-caused exceptions

These classifications are discussed in greater detail in Section 4.2, “Exception Recognition and
Priorities" on Page 154.

For a better understanding of how the 750CX/CXe/CXr implements precise exceptions, see Chapter
6, “Exceptions’ of the PowerPC Microprocessor Family: The Programming Environments manual .
Exceptionsimplemented in 750CX/CXe/CXr, and conditions that cause them, arelisted in Table 4-2.
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Table 4-2. Exceptions and Conditions

Exception Type

Vector Offset

Causing Conditions

(hex)

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset.

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, an address,
data or L2 double bit error, MSR[ME] must be set.

DSl 00300 As specified in the PowerPC architecture. If a page fault occurs.

ISI 00400 As defined by the PowerPC architecture. If a page fault occurs.

External interrupt 00500 MSR[EE] = 1 and INT is asserted.

Alignment 00600 * Afloating-point load/store, stmw, stwcx., Imw, lwarx, eciwx, or ecowx

instruction operand is not word-aligned.

« A multiple/string load/store operation is attempted in little-endian mode

« Anoperand of a dcbz instruction is on a page that is write-through or
cache-inhibited for a virtual mode access.

e An attempt to execute a dcbz instruction occurs when the cache is
disabled.

Program 00700 As defined by the PowerPC architecture. e.g. instruction opcode error.

Floating-point 00800 As defined by the PowerPC architecture. MSR[FP] =0 and a floating-point

unavailable instruction is executed.

Decrementer 00900 As defined by the PowerPC architecture, when the most-significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1.

Reserved 00AO00-00BFF | —

System call 00CO00 Execution of the System Call (sc) instruction.

Trace 00D00 MSRJ[SE] =1 or a branch instruction is completing and MSR[BE] =1. The
750CX/CXe/CXr differs from the OEA by not taking this exception on an
isync.

Reserved 00EOO The 750CX/CXe/CXr does not generate an exception to this vector. Other
PowerPC processors may use this vector for floating-point assist exceptions.

Reserved OOE10-00EFF | —

Performance monitor | 00FO0 The limit specified in PMCn is met and MMCRO[ENINT] = 1
(750CX/CXel/CXr-specific).

Instruction address 01300 IABR[0—29] matches EA[0-29] of the next instruction to complete, IABR[TE]

breakpoint matches MSRJ[IR], and IABR[BE] = 1 (750CX/CXe/CXr-specific).
Reserved 01400-016FF |[—
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Table 4-2. Exceptions and Conditions (Continued)

Exception Type

Vector Offset
(hex)

Causing Conditions

Thermal management
interrupt

01700

Thermal management is enabled, junction temperature exceeds the threshold
specified in THRM1 or THRM2, and MSR[EE] = 1 (750CX/CXe/CXr-specific).

Reserved

01800-02FFF

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows.

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—system reset
and machine check exceptions (although the machine check exception condition can be
disabled so the condition causes the processor to go directly into the checkstop state). These
exceptions cannot be delayed and do not wait for completion of any precise exception

handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict program

order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are caused by
instructions and they are delayed until higher priority exceptions are taken. Note that the
750CX/CXe/CXr does not implement an exception of thistype.

4. Maskable asynchronous exceptions (external, decrementer, thermal management,
performance monitor, and interrupt exceptions) are delayed if higher priority exceptions are

taken.

Thefollowing list of exception categories describes how the 750CX/CXe/CXr handles exceptions up
to the point of signaling the appropriate interrupt to occur. Note that a recoverable state is reached if
the completed store queue is empty (drained, not cancelled) and any instruction that is next in
program order and has been signaed to complete has completed. If MSR[RI] =0, the
750CX/CXe/CXr isin anonrecoverable state. Also, instruction completion is defined as updating all
architectural registers associated with that instruction, and then removing that instruction from the

completion buffer.

» Exceptions caused by asynchronous events (interrupts). These exceptions are further
distinguished by whether they are maskable and recoverable.

— Asynchronous, nonmaskable, nonrecoverable

System reset for assertion of HRESET—Has highest priority and istaken immediately
regardless of other pending exceptions or recoverability. (Includes power-on reset)

— Asynchronous, maskable, nonrecoverable
Machine check exception—Has priority over any other pending exception except system
reset for assertion of HRESET. Taken immediately regardless of recoverability.

— Asynchronous, nonmaskable, recoverable

System reset for SRESET—Has priority over any other pending exception except system
reset for HRESET (or power-on reset), or machine check. Taken immediately when a

recoverable state is reached.
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— Asynchronous, maskable, recoverable

Performance monitor, therma management, external, and decrementer
interrupts—Before handling this type of exception, the next instruction in program order
must complete. If that instruction causes another type of exception, that exception istaken
and the asynchronous, maskabl e recoverable exception remains pending, until the
instruction completes. Further instruction completion is halted. The asynchronous,
maskabl e recoverable exception is taken when arecoverable state is reached.

Instruction-related exceptions. These exceptions are further organized into the point in
instruction processing in which they generate an exception.

— Instruction fetch

NOTE:

ISl exceptions—Once thistype of exception is detected, dispatching stops and the current
instruction stream is allowed to drain out of the machine. If completing any of the
instructionsin this stream causes an exception, that exception istaken and the instruction
fetch exception is discarded (but may be encountered again when instruction processing
resumes). Otherwise, once all pending instructions have executed and arecoverable state
isreached, the ISl exception is taken.

Instruction dispatch/execution

Program, DSI, alignment, floating-point unavailable, system call, and instruction address
breakpoint—This type of exception is determined during dispatch or execution of an
instruction. The exception remains pending until all instructions before the
exception-causing instruction in program order complete. The exception is then taken
without compl eting the exception-causing instruction. If completing these previous
Instructions causes an exception, that exception takes priority over the pending instruction
dispatch/execution exception, which is then discarded (but may be encountered again
when instruction processing resumes).

Post-instruction execution

Trace—Trace exceptions are generated following execution and completion of an
instruction while trace mode is enabled. If executing the instruction produces conditions
for another type of exception, that exception istaken and the post-instruction exceptionis
forgotten for that instruction.

These exception classifications correspond to how exceptions are prioritized, asdescribed
in Table 4-3.

Table 4-3. PowerPC 750CX/CXe/CXr Exception Priorities

Priority Exception Cause
Asynchronous Exceptions (Interrupts)
0 System reset Power on reset, assertion of HRESET and TRST (hard reset).

Machine check

Any enabled machine check condition (address or data parity error (optional on
750CX/CXe/CXr), L2 data double bit error, assertion of TEA or MCP).

System reset

Assertion of SRESET (soft reset).

External interrupt

Assertion of INT.

Performance monitor

Any programmer-specified performance monitor condition.

Exceptions
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Table 4-3. PowerPC 750CX/CXe/CXr Exception Priorities (Continued)

Priority Exception Cause

5 Decrementer Decrementer passes through zero.

6 Thermal management | Any programmer-specified thermal management condition.

Instruction Fetch Exceptions

0 ISI Any ISI exception condition.

Instruction Dispatch/Execution Exceptions

0 Instruction address Any instruction address breakpoint exception condition.
breakpoint
1 Program Occurrence of an illegal instruction, privileged instruction, or trap exception condition.

Note that floating-point enabled program exceptions have lower priority.

2 System call System Call (sc) instruction.
3 Floating-point Any floating-point unavailable exception condition.
unavailable

4 Program A floating-point enabled exception condition (lowest-priority program exception).

5 DSl DSI exception due to eciwx, ecowx with EAR[E] = 0 (DSISR[11]). Lower priority DSI
exception conditions are shown below.

6 Alignment Any alignment exception condition, prioritized as follows:
1 Floating-point access not word-aligned.
2 Imw, stmw, Iwarx, stwcx. not word-aligned.
3 eciwx or ecowx not word-aligned.
4 Multiple or string access with MSR[LE] set.
5 dcbz to write-through or cache-inhibited page or cache is disabled.

7 DSl BAT page protection violation.

8 DSl Any access except cache operations to a segment where SR[T] = 1 (DSISR[5]) or an

access crosses from a T = 0 segment to one where T = 1 (DSISR[5]).

9 DSl TLB page protection violation or page fault.

10 DSI DABR address match.

Post-Instruction Execution Exceptions

11 Trace MSRI[SE] = 1 (or MSR[BE] = 1 for branches).

System reset and machine check exceptions may occur at any time and are not delayed even if an
exception is being handled. As a result, state information for an interrupted exception may be lost;
therefore, these exceptions are typically nonrecoverable. An exception may not be taken immediately
when it is recogni zed.
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4.3 Exception Processing

When an exception is taken, the processor uses SRRO and SRR to save the contents of the MSR for
the current context and to identify where instruction execution should resume after the exception is
handled.

When an exception occurs, the address saved in SRRO determines where instruction processing
should resume when the exception handler returns control to the interrupted process. Depending on
the exception, this may be the address in SRRO or at the next address in the program flow. All
instructionsin the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that caused the
exception or the next one (asin the case of asystem call, trace, or trap exception). The SRRO register
Isshown in Figure 4-1.

SRRO (Holds EA for Instruction in Interrupted Program Flow)

Figure 4-1. Machine Status Save/Restore Register 0 (SRRO)

SRR1 is used to save machine status (selected M SR bits and possibly other status bits as well) on
exceptions and to restore those values when an rfi instruction is executed. SRR1 is shown in Figure
4-2.

Exception-Specific Information and MSR Bit Values

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

For most exceptions, bits 2—4 and 10-12 of SRR1 areloaded with exception-specific information and
MSR[5-9, 16-31] are placed into the corresponding bit positions of SRR1.

The 750CX/CXe/CXr's MSR is shown in Figure 4-3.

EI Reserved

0 0 0 0 0O OO O O O O O O|POW O]|ILE EE|PR|FP|ME|FEO|SE|BE|FEL| O |IP|IR|DR| O |PM|RI |LE

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-4.
Table 4-4. MSR Bit Settings

Bit(s) | Name Description
0 — Reserved. Full function.!
1-4 — Reserved. Partial function.!
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Table 4-4. MSR Bit Settings (Continued)

Bit(s)

Name

Description

5-9

Reserved. Full function.!

10-12

Reserved. Partial function.!

13

POW

Power management enable

0 Power management disabled (normal operation mode).

1 Power management enabled (reduced power mode).

Power management functions are implementation-dependent. See Chapter 10, "Power and Thermal
Management".

14

Reserved. Implementation-specific

15

ILE

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select
the endian mode for the context established by the exception.

16

EE

External interrupt enable
0  The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17

PR

Privilege level
0  The processor can execute both user- and supervisor-level instructions.
1  The processor can only execute user-level instructions.

18

FP

Floating-point available

0  The processor prevents dispatch of floating-point instructions, including floating-point loads,
stores, and moves.

1 The processor can execute floating-point instructions and can take floating-point enabled
program exceptions.

19

ME

Machine check enable
0  Machine check exceptions are disabled. If one occurs system enters checkstop.
1  Machine check exceptions are enabled.

20

FEO

IEEE floating-point exception mode 0 (see Table 4-5. "IEEE Floating-Point Exception Mode Bits," on
Page 159).

21

SE

Single-step trace enable

0  The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of every
instruction except rfi, isync, and sc. Successful execution means that the instruction caused
no other exception.

22

BE

Branch trace enable

0  The processor executes branch instructions normally.

1 The processor generates a branch type trace exception when a branch instruction executes
successfully.

23

FE1

IEEE floating-point exception mode 1 (see Table 4-5. "IEEE Floating-Point Exception Mode Bits," on
Page 159).

24

Reserved. This bit corresponds to the AL bit of the POWER architecture.

25

Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception.

0 Exceptions are vectored to the physical address 0x000n_nnnn.

1  Exceptions are vectored to the physical address OxFFFn_nnnn.
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Table 4-4. MSR Bit Settings (Continued)

Bit(s)

Name

Description

26

IR

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, "Memory Management".

27

DR

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, "Memory Management".

28

Reserved. Full function®

29

PM

Performance monitor marked mode

0  Process is not a marked process.

1 Process is a marked process.

750CX/CXe/CXr—specific; defined as reserved by the PowerPC architecture. For more information
about the performance monitor, see Section 4.5.13, “Performance Monitor Interrupt (OxOOF00)" on
Page 171.

30

RI

Indicates whether system reset or machine check exception is recoverable.

0  Exception is not recoverable.

1  Exception is recoverable.

The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.Exceptions handlers must look at SRR1[RI] for determination.

31

LE

Little-endian mode enable
0  The processor runs in big-endian mode.
1  The processor runs in little-endian mode.

Note: Full function reserved bits are saved in SRR1 when an exception occurs; partial function reserved bits
are not saved.

The |EEE floating-point exception mode bits (FEO and FE1) together define whether floating-point
exceptions are handled precisely, imprecisely, or whether they are taken at al. If either FEO or FE1
are set, the 750CX/CXe/CXr treats exceptions as precise, as shown in Table4-5. MSR bits are
guaranteed to be written to SRR1 when the first instruction of the exception handler is encountered.
For further details, see Chapter 6, “Exceptions’ of the PowerPC Microprocessor Family: The
Programming Environments manual.

Table 4-5. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 Floating-point exceptions disabled
0 Imprecise nonrecoverable. For this setting, the 750CX/CXe/CXr operates in floating-point precise mode.
1 Imprecise recoverable. For this setting, the 750CX/CXe/CXr operates in floating-point precise mode.
1 Floating-point precise mode
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4.3.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether
the exception is enabled for that condition.

| EEE floating-point enabled exceptions (atype of program exception) are ignored when both
MSR[FEO] and MSR[FEL1] are cleared. If either bit is set, all |EEE enabled floating-point
exceptions are taken and cause a program exception.

Asynchronous, maskable exceptions (such as the external and decrementer interrupts) are
enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of these exception conditions
isdelayed. MSR[EE] iscleared automatically when an exception istaken to delay recognition
of conditions causing those exceptions.

A machine check exception can occur only if the machine check enable bit, MSR[ME], is set.
If MSR[ME] is cleared, the processor goes directly into checkstop state when a machine
check exception condition occurs. Individual machine check exceptions can be enabled and
disabled through bits in the HIDO register, which is described in Table 4-9. "HIDO Machine
Check Enable Bits," on Page 166.

System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-caused
exceptions occurring earlier in the instruction stream have been handled, and by confirming that the
exception is enabled for the exception condition), the processor does the following:

1

SRRO isloaded with an instruction address that depends on the type of exception. Normally,
thisisthe instruction that would have completed next had the exception not been taken. See
the individual exception description for details about how this register is used for specific
exceptions.

SRR1[1-4, 10-15] are loaded with information specific to the exception type.

SRR1[5-9, 16-31] areloaded with a copy of the corresponding M SR bits. Depending on the
implementation, reserved bits may not be copied.

The MSR is set asdescribed in Table 4-4. "M SR Bit Settings,” on Page 157. The new values
take effect as the first instruction of the exception-handler routine is fetched.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore, address
tranglation is disabled for both instruction fetches and data accesses beginning with the first
instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new MSR value, at alocation specific to
the exception type. The location is determined by adding the exception's vector (see

Table 4-2. "Exceptions and Conditions,” on Page 153) to the base address determined by
MSR[IP]. If IPiscleared, exceptions are vectored to the physical address 0x000n_nnnn. If P
is set, exceptions are vectored to the physical address OxFFFn_nnnn. For a machine check
exception that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions).
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4.3.3 Setting MSR[RI]

The RI bit in the MSR was designed to indicate to the exception handler whether the exception is
recoverable. When an exception occurs the RI bit is copied from the M SR to SRR1 and cleared in the
MSR. All interrupts are disabled except machine check. If a machine check exception occurs while
MSR[RI] isclear, a0 value is found in SRR1[RI] to indicate that the machine state is definitely not
recoverable. When this bit is a one the exception is recoverable as far as the current state of the
machine and al programs are concerned including non critical machine checks. An operating system
may handle MSR[RI] asfollows:

* Inall exceptions—If SRR1[RI] iscleared, the machine state isnot recoverable. If it is set, the
exception is recoverable with respect to the processor and all programs.

* Usethe SPRGO-SPRG3 registersto aid in saving the machine state. Suggestions. Have
SPRGO pointing to astack-save areain memory, save three GRPsin SPRG1-3. Move SPRGO
into one of the GRPsthat was saved. This GPR now pointsto the save areain memory. Move
the GPRs, SRR0, SRR1, SPRG1-3 and other registersto be used by the exception routine into
the stack save area. Update SPGRO to point to a new save area. Set MSR[RI] to indicate that
machine state has been saved. Also set MSR[EE] if you wish to re-enable external interrupts.

*  When exception processing is complete, clear MSR[EE] and MSR[RI]. Adjust SPRGO to
point to the stack saved area, restore the GPRs, SRRO and SRR1 and any other register that
you may have saved, execute rfi. This returns the processor to the interrupted program.

4.3.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by alowing
previously-issued instructions to complete before returning to the interrupted process. In general,
execution of the rfi instruction ensures the following:

» All previousinstructions have completed to a point where they can no longer cause an
exception. If apreviousinstruction causes a direct-store interface error exception, the results
must be determined before this instruction is executed.

* Previous instructions complete execution in the context (privilege, protection, and address
trandation) under which they were issued.

» Therfi instruction copies SRR1 bits back into the MSR.
» Instructionsfetched after thisinstruction executein the context established by thisinstruction.
» Program execution resumes at the instruction indicated by SRRO

For a complete description of context synchronization, refer to Chapter 6, “Exceptions’ of the
PowerPC Microprocessor Family: The Programming Environments manual.

4.4 Process Switching
The following instructions are useful for restoring proper context during process switching:

» Thesyncinstruction orders the effects of instruction execution. All instructions previously
initiated appear to have completed before the sync instruction completes, and no subsequent
instructions appear to be initiated until the sync instruction completes. For an example
showing use of sync, see Chapter 2, “ PowerPC Register Set” of the Power PC Microprocessor
Family: The Programming Environments manual.
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* Theisyncinstruction waits for all previous instructions to complete and then discards any

fetched instructions, causing subsequent instructions to be fetched (or refetched) from

memory and to execute in the context (privilege, trandlation, and protection) established by
the previous instructions.

» Thestwcx. instruction clears any outstanding reservations, ensuring that an lwar x instruction

in an old processis not paired with an stwcx. instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.3, " Setting MSR[RI]" on Page

161.

4.5 Exception Definitions

All the types of exceptions that can occur with the 750CX/CXe/CXr and MSR settings when the
processor goes into supervisor mode due to an exception are shown in Table 4-6. Depending on the

exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-6. MSR Setting Due to Exception

MSR Bit?
Exception Type

POW |ILE|EE|PR|FP|ME|FEO|SE|BE|FE1|IP |IR|DR|PM|RI| LE
System reset 0 — 0 0 0| — 0 0 0 O|—]0]O0 0 | O0|ILE
Machine check 0 — 1|10 O[O0 O 0 of|o oOo|—]0] O 0 | 0|ILE
DSl 0 —]J]0]JO0O|JO]|—]O 0] o0 O |—|[O0O]O0O|O]O]|ILE
ISI 0 —]l]0]JO0O|JO]|—]0O 0] o0 0O |—|[O0O]JO0O|O]O]|ILE
External interrupt 0 — 0 0 0| — 0 0 0 0O |—]0]O0 0 | O |ILE
Alignment 0 — 10 00| — 0 0 0 0O|—]0] O 0 | 0 |ILE
Program 0 — 0 0 0| — 0 0 0 O|—]0]O0 0 | O0]|ILE
Floating-point unavailable 0 — 10 00| — 0 0 0 0O|—]0] O 0 | 0|ILE
Decrementer interrupt 0 — 10 0 0| — 0 0 0 0O |—]0]O0 0 | O |ILE
System calll 0 —]l]0]JO0O|O]|—1]O 0] o0 0O |—|[O0O]O0O|O]O0]|ILE
Trace exception 0 — 0 0 0| — 0 0 0 0O |—]0]O0 0 | O |ILE
Performance monitor 0 — 1|0 ofo|l—| O of|o oOo|—]0] O 0 | 0|ILE
Thermal management 0 — 10 00| — 0 0 0 0O|—]0] O 0 | 0|ILE

Note:
1. OBitiscleared.

ILEBIt is copied from the MSR[ILE].

— Bitisnot altered
Reserved bits are read as if written as 0.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the bit is

cleared, exceptions are vectored to the physical address 0x000n_nnnn (where nnnnn is the vector

offset); if IPis set, exceptions are vectored to physical address OxFFFn_nnnn. Table 4-2. "Exceptions
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and Conditions,” on Page 153 shows the exception vector offset of the first instruction of the
exception handler routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The 750CX/CXe/CXr implements the system reset exception as defined in the PowerPC architecture
(OEA). The system reset exception is a nonmaskable, asynchronous exception signaled to the
processor through the assertion of system-defined signals. In the 750CX/CXe/CXr, the exception is
signaled by the assertion of either the soft reset (SRESET) or hard reset (HRESET) inputs, described
more fully in Chapter 7, "Signal Descriptions’.

The 750CX/CXe/CXr implements HIDO[NHR], which helps software distinguish a hard reset from
a soft reset. Because this bit is cleared by a hard reset, but not by a soft reset, software can set this bit
after ahard reset and tell whether a subsequent reset is a hard or soft reset by examining whether this
bit is still set.

The first bus operation following the negation of HRESET or the assertion of SRESET will be a
single-beat instruction fetch (caching will be inhibited) to x00100.

Register settings when a system reset exception istaken are listed in Table 4-7.

Table 4-7. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits

1-4 Cleared

5-9 Loaded with equivalent MSR bits

10-15 Cleared

16-31 Loaded with equivalent MSR bits

Note that if the processor state is corrupted to the extent that execution cannot resume reliably,
MSRI[RI] (SRR1[30]) is cleared.

MSR POW 0 FP O BE O DR O
ILE — ME — FE1 O PM 0
EE O FEO O IP — RI 0
PR O SE O IR 0 LE Set to value of ILE

4.5.1.1 Soft Reset

If SRESET is asserted, the processor is first put in a recoverable state. To do this, the
750CX/CXe/CXr alows any instruction at the point of completion to either complete or take an
exception, blocks completion of any following instructions, and allowsthe completion queueto drain.
The state before the exception occurred is then saved as specified in the PowerPC architecture and
instruction fetching begins at the system reset interrupt vector offset, 0x00100. The vector addresson
a soft reset depends on the setting of MSR[1P] (either 0x0000_0100 or OXFFFO_0100). Soft resets are
third in priority, after hard reset and machine check. This exception is recoverable provided attaining
arecoverable state does not generate a machine check.

SRESET is an effectively edge-sensitive signal that can be asserted and deasserted asynchronously,
provided the minimum pulse width specified in the hardware specifications is met. Asserting
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SRESET causes the 750CX/CXe/CXr to take a system reset exception. This exception modifies the
MSR, SRRO, and SRR1, as described in the PowerPC Microprocessor Family: The Programming
Environments manual. Unlike hard reset, soft reset does not directly affect the states of output signals.
Attempts to use SRESET during a hard reset sequence or while the JTAG logic is non-idle cause
unpredictable results (see Section 7.2.9.5.2, “ Soft Reset (SRESET)—Input" on Page 262 for more
information on soft reset).

SRESET can be asserted during HRESET assertion (see Figure 4-4). In al three cases shown in
Figure 4-4, the SRESET assertion and deassertion have no effect on the operation or state of the
machine. SRESET asserted coincident to, or after the assertion of, HRESET will also have no effect
on the operation or state of the machine.

_______
HRESET E— ____ OK
SRESET /
HRESET / ____ OK
SRESET /

JREEE
HRESET OK

Figure 4-4. SRESET Asserted During HRESET

4.5.1.2 Hard Reset

A hard reset isinitiated by asserting HRESET. Hard reset isused primarily for power-on reset (POR)
(inwhich case TRST must also be asserted), but it can also be used to restart arunning processor. The
HRESET signal must be asserted during power up and must remain asserted for a period that alows
the PLL to achieve lock and the internal logic to be reset. This period is specified in the hardware
specifications. The 750CX/CXe/CXr tri-statesall 10 driverswithinfive clocksof HRESET assertion.
The 750CX/CXe/CXr’'s internal state after the hard reset interval is defined in Table 4-8. "Settings
Caused by Hard Reset," on Page 165. If HRESET is asserted for less than this amount of time, the
results are not predictable. If HRESET is asserted during normal operation, all operations cease, and
the machine state is lost (see Section 7.2.9.5.1, “Hard Reset (HRESET)—Input" on Page 262 for
more information on a hard reset).

The hard reset exception is anonrecoverable, nonmaskabl e asynchronous exception. When HRESET
Is asserted or at power-on reset (POR), the 750CX/CXe/CXr immediately branches to OxFFFO_0100
without attempting to reach arecoverable state. A hard reset has the highest priority of any exception.
It isalways nonrecoverable. Table 4-8. " Settings Caused by Hard Reset,” on Page 165 showsthe state
of the machine just beforeit fetches thefirst instruction of the system reset handler after a hard reset.
In Table 4-8. on Page 4-165, the term “ Unknown” means that the content may have been disordered.
These facilities must be properly initialized before use. The FPRs, BATSs, and TLBs may have been
disordered. To initialize the BATS, first set them all to zero, then to the correct values before any
address translation occurs. FPR registers also should be initialized before processing continues.
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Table 4-8. Settings Caused by Hard Reset

Register Setting Register Setting

GPRs Unknown PVR see the PowerPC
750CX/CXe/CXr Microprocessor
Data Sheet

FPRs Unknown HIDO 00000000

FPSCR 00000000 HID1 00000000

CR All Os IABR All Os (break point disabled)

SRs Unknown GQRnN 00000000

MSR 00000040 (only IP set) WPAR 00000000

XER 00000000

TBU 00000000 DSISR 00000000

TBL 00000000 DAR 00000000

LR 00000000 DEC FFFFFFFF

CTR 00000000 DMAU 00000000

SDR1 00000000 DMAL 00000000

SRRO 00000000 TLBs Unknown

SRR1 00000000 Reservation Unknown (reservation flag

Address -cleared)
SPRGs 00000000 BATs Unknown

Tag directory,

All entries are marked invalid,

Cache, Icache,

All blocks are unchanged from

Icache, and all LRU bits are set to 0, and and Dcache before HRESET.

Dcache caches are disabled.

DABR Breakpoint is disabled.
Address is unknown.

L2CR 00000000

MMCRnN 00000000

THRMn 00000000

UMMCRnN 00000000

UPMCn 00000000

USIA 00000000

XER 00000000

PMCn Unknown

ICTC 00000000
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Thefollowing is aso true after a hard reset operation:

External checkstops are enabled.
The on-chip test interface has given control of the I/Os to the rest of the chip for functional

use.

Since the reset exception has data and instruction translation disabled (MSR[DR] and
MSRJ[IR] both cleared), the chip operatesin direct address translation mode (referred to asthe
real addressing mode in the architecture specification).

Time from HRESET deassertion until the 750CX/CXe/CXr asserts the first TS (bus parked
on the 750CX/CXe/CXr) or BG is8 to 12 bus clocks (SY SCLK).

4.5.2 Machine Check Exception (0x00200)

The 750CX/CXe/CXr implements the machine check exception as defined in the PowerPC
architecture (OEA). It conditionally initiates a machine check exception after an address or data
parity error occurred on the bus or in either the L1 or L2 cache, after receiving a qualified transfer
error acknowledge (TEA) indication on the 750CX/CXe/CXr bus, or after the machine check
interrupt (MCP) signal had been asserted. As defined in the OEA, the exception is not taken if
MSR[ME] iscleared, in which case the processor enters checkstop state.

Certain machine check conditions can be enabled and disabled using HIDO bits, as described in

Table 4-9.
Table 4-9. HIDO Machine Check Enable Bits
Bit | Name Function
0 EMCP | Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused
by assertion of MCP, similar to how MSR[EE] can mask external interrupts.
0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1.
1 DBP Enable/disable 60x bus address and data parity generation. (parity is optional on 750CX/CXe/CXr)
0 |If address or data parity is not used by the system and the respective parity checking is disabled
(HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are disabled, do not require pull-up
resistors, and therefore should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.
1 Parity generation is enabled.
2 EBA Enable/disable 60x bus address parity checking.
0 Prevents address parity checking.
1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.
3 EBD Enable 60x bus data parity checking (parity is optional on 750CX/CXe/CXr)
0 Parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.
15 [NHR |Not hard reset (software use only)
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.
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A TEA indication on the bus can result from any load or store operation initiated by the processor. In
general, TEA isexpected to be used by amemory controller to indicate that a memory parity error or
an uncorrectable memory ECC error has occurred. Note that the resulting machine check exception
isimprecise and unordered with respect to the instruction that originated the bus operation.

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and handled;
otherwise, the processor generates an internal checkstop condition. When the exception is
recognized, all incomplete stores are discarded. The bus protocol operates normally.

A machine check exception may result from referencing a nonexistent physical address, either
directly (with MSR[DR] = 0) or through an invalid trandation. If a dcbz instruction introduces a
block into the cache associated with a nonexistent physical address, a machine check exception can
be delayed until an attempt is made to store that block to main memory. Not al PowerPC processors
provide the same level of error checking. Checkstop sources are implementati on-dependent.

Machine check exceptions are enabled when MSR[ME] = 1; thisis described in the next section. If
MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state.

Checkstop state is described in Section 4.5.2.2, “ Checkstop State (MSR[ME] = 0)" on Page 168.

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)

Machine check exceptions are enabled when MSR[ME] = 1. When a machine check exception is
taken, registers are updated as shown in Table 4-10..

Table 4-10. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis the 750CX/CXe/CXr can set this to an EA of some instruction that was executing or
about to be executing when the machine check condition occurred.

SRR1 0-10 Cleared.

11 Set when an L2 data cache double bit error is detected, otherwise zero.
12 Set when MCP signal is asserted, otherwise zero.

13 Set when TEA signal is asserted, otherwise zero.

14 Set when a data bus parity error is detected, otherwise zero.

15 Set when an address bus parity error is detected, otherwise zero.
16-31 MSR[16-31].

MSR POW 0 FP O BE O DR O
ILE — ME O FE1 O PM O
EE O FEO O IP — RI 0
PR O SE O IR 0 LE Set to value of ILE

To handle another machine check exception, the exception handler should set MSR[ME] as soon
asitispractical after amachine check exception is taken. Otherwise, subsequent machine check
exceptions cause the processor to enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot resume in
the context that existed before the exception (see Section 4.3.3, "Setting MSR[RI]" on Page 161). If
the condition that caused the machine check does not otherwise prevent continued execution,
MSR[ME] is set to allow the processor to continue execution at the machine check exception vector
address and prevent the processor from entering checkstop state if another machine check occurs.
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Typically, earlier processes cannot resume; however, operating systems can use the machine check
exception handler to try to identify and log the cause of the machine check condition.

When a machine check exception is taken, instruction fetching resumes at offset 0x00200 from the
physical base address indicated by MSR[IP].

4.5.2.2 Checkstop State (MSR[ME] = 0)

If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state. The
750CX/CXe/CXr processor can aso be forced into the checkstop state by the assertion of the
CKSTP_IN primary input signal.

When a processor is in checkstop state, instruction processing is suspended and generally cannot
resume without the processor being reset. The contents of al latches are frozen within two cycles
upon entering checkstop state.

4.5.3 DSI Exception (0x00300)

A DS exception occurs when no higher priority exception exists and an error condition related to a
data memory access occurs. The DSI exception is implemented as it is defined in the PowerPC
architecture (OEA). In case of a TLB miss for a load, store, or cache operation, a DSI exception is
taken if the resulting hardware table search causes a page fault.

On the 750CX/CXe/CXr, aDSI exception istaken when aload or storeis attempted to a direct-store
segment

(SR[T] = 1). In the 750CX/CXe/CXr, afloating-point load or store to a direct-store segment causes
a DSl exception rather than an alignment exception, as specified by the PowerPC architecture.

The 750CX/CXe/CXr aso implements the data address breakpoint facility, which is defined as
optional in the PowerPC architecture and is supported by the optional data address breakpoint register
(DABR). Although the architecture does not strictly prescribe how thisfacility must be implemented,
the 750CX/CXe/CXr follows the recommendations provided by the architecture and described in the
Chapter 2, "Programming Modéd" in this manual and Chapter 6 “Exceptions’ in the PowerPC
Microprocessor Family: The Programming Environments manual.

4.5.4 1S| Exception (0x00400)

An ISl exception occurs when no higher priority exception exists and an attempt to fetch the next
instruction fails. This exception isimplemented as it is defined by the PowerPC architecture (OEA),
and is taken for the following conditions:

* The effective address cannot be translated.

» Thefetch accessisto a no-execute segment (SR[N] = 1).
* Thefetch accessisto guarded storage and MSRJ[IR] = 1.
* Thefetch accessisto asegment for which SR[T] is set.
* Thefetch access violates memory protection.

When an |SI exception istaken, instruction fetching resumes at offset 0x00400 from the physical base
address indicated by MSR[IP].
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4.5.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt signal
(INT). The INT signa is expected to remain asserted until the 750CX/CXe/CXr takes the external
interrupt exception. If INT is negated early, recognition of the interrupt request is not guaranteed.
After the 750CX/CXe/CXr begins execution of the external interrupt handler, the system can safely
negate the INT. When the 750CX/CXe/CXr detects assertion of INT, it stops dispatching and waits
for al pending instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the external interrupt is taken. After all instructions have vacated the
completion buffer, the 750CX/CXe/CXr takes the external interrupt exception as defined in the
PowerPC architecture (OEA).

An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is cleared
when the exception occurs. Register settings for this exception are described in Chapter 6,
“Exceptions’ in the Power PC Microprocessor Family: The Programming Environments manual.

When an external interrupt exception is taken, instruction fetching resumes at offset 0x00500 from
the physical base address indicated by MSR[1P].

4.5.6 Alignment Exception (0x00600)

The 750CX/CXe/CXr implements the alignment exception as defined by the PowerPC architecture
(OEA). An aignment exception isinitiated when any of the following occurs:

» The operand of afloating-point load or store is not word-aligned.
» The operand of Imw, stmw, Iwarx, or stwcx. is not word-aligned.
» The operand of dcbzisin apage which iswrite-through or cache-inhibited.
* An attempt is made to execute dcbz when the data cache is disabled.
* Aneciwx or ecowx is not word-aligned.
e A multiple or string access is attempted with MSR[LE] set.
NOTE: Inthe 750CX/CXe/CXr, afloating-point load or store to a direct-store segment causes a

DSI exception rather than an alignment exception, as specified by the PowerPC
architecture. For more information, see Section 4.5.3, “DSI Exception (0x00300)" on

Page 168.

4.5.7 Program Exception (0x00700)

The 750CX/CXe/CXr implementsthe program exception asit is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or more of the
exception conditions defined in the OEA occur.

The 750CX/CXe/CXr invokes the system illegal instruction program exception when it detects any
instruction from theillegal instruction class. The 750CX/CXe/CXr fully decodesthe SPR field of the
instruction. If an undefined SPR is specified, a program exception is taken.

The UISA defines mtspr and mfspr with the record bit (Rc) set as causing a program exception or
giving aboundedly-undefined result. In the 750CX/CXe/CXr, the appropriate condition register (CR)
should be treated as undefined. Likewise, the PowerPC architecture states that the Floating Compared
Unordered (fcmpu) or Floating Compared Ordered (fcmpo) instruction with the record bit set can
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either cause a program exception or provide a boundedly-undefined result. In the 750CX/CXe/CXr,
an the BF field in an instruction encoding for these cases is considered undefined.

The 750CX/CXe/CXr does not support either of the two floating-point imprecise modes defined by
the PowerPC architecture. Unless exceptions are disabled (MSR[FEO] = MSR[FE1] = 0), all
floating-point exceptions are treated as precise.

When a program exception is taken, instruction fetching resumes at offset 0x00700 from the physical
base address indicated by MSR[IP]. Chapter 6, “Exceptions’ in the PowerPC Microprocessor
Family: The Programming Environments manual describes register settings for this exception.

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC architecture. A
floating-point unavailable exception occurs when no higher priority exception exists, an attempt is
made to execute a floating-point instruction (including floating-point load, store, or move
instructions), and the floating-point available bit in the MSR is disabled, (MSR[FP] = 0). Register
settings for this exception are described in Chapter 6, “Exceptions’ in the Power PC Microprocessor
Family: The Programming Environments manual.

When afloating-point unavailable exception is taken, instruction fetching resumes at offset 0x00800
from the physical base address indicated by MSRJ[IPF].

4.5.9 Decrementer Exception (0x00900)

The decrementer exception isimplemented in the 750CX/CXe/CXr as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has completed
decrementing), and MSR[EE] = 1. In the 750CX/CXe&/CXr, the decrementer register is decremented
at one fourth the bus clock rate. Register settings for this exception are described in Chapter 6,
“Exceptions’ in the Power PC Microprocessor Family: The Programming Environments manual.

When a decrementer exception is taken, instruction fetching resumes at offset 0x00900 from the
physical base address indicated by MSR[IP].

4.5.10 System Call Exception (0x00CO00)

A system call exception occurs when a System Call (sc) instruction is executed. In the
750CX/CXe/CXr, the system call exception is implemented as it is defined in the PowerPC
architecture. Register settings for this exception are described in Chapter 6, “Exceptions’ in the
PowerPC Microprocessor Family: The Programming Environments manual.

When a system call exception is taken, instruction fetching resumes at offset 0x00COO0 from the
physical base address indicated by MSR[IP].

4.5.11 Trace Exception (0x00DO00)

The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently completing
instruction is a branch. Each instruction considered during trace mode completes before a trace
exception is taken.
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I mplementation Note—The 750CX/CXe/CXr processor diverges from the PowerPC architecturein
that it does not take trace exceptions on the isync instruction.

When a trace exception is taken, instruction fetching resumes as offset 0x0OODOO from the base
address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (OxOOEQO)

The optional floating-point assist exception defined by the PowerPC architecture is not implemented
in the 750CX/CXe/CXr.

4.5.13 Performance Monitor Interrupt (OXO0F00)

The 750CX/CXe/CXr microprocessor provides a performance monitor facility to monitor and count
predefined events such as processor clocks, misses in either the instruction cache or the data cache,
instructions dispatched to a particular execution unit, mispredicted branches, and other occurrences.
The count of such events can be used to trigger the performance monitor exception. The performance
monitor facility is not defined by the PowerPC architecture.

The performance monitor can be used for the following situations.

» Toincrease system performance with efficient software, especially in a multiprocessing
system. Memory hierarchy behavior must be monitored and studied to develop agorithms
that schedule tasks (and perhaps partition them) and that structure and distribute data
optimally.

* To help system devel opers bring up and debug their systems.

The performance monitor uses the following SPRs.

* The performance monitor counter registers (PMC1-PMC4) are used to record the number of
times a certain event has occurred. UPM C1-UPMC4 provide user-level read accessto these
registers.

e The monitor mode control registers (MM CRO-MMCRL1) are used to enable various
performance monitor interrupt functions. UMM CRO-UMMCR1 provide user-level read
access to these registers.

» Thesampledinstruction addressregister (SIA) containsthe effective address of an instruction
executing at or around the time that the processor signals the performance monitor interrupt
condition. The USIA register provides user-level read accessto the SIA.

Table 4-11. lists register settings when a performance monitor interrupt exception is taken.
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Table 4-11. Performance Monitor Interrupt Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.
SRR1 0 Loaded with equivalent MSR bits.
1-4  Cleared.
5-9 Loaded with equivalent MSR bhits.
10-15 Cleared.
16-31 Loaded with equivalent MSR bits.
MSR POW 0 FP 0 BE O DR O
ILE — ME — FE1 O PM 0
EE O FEO O IP — RI 0
PR O SE O IR 0 LE  Setto value of ILE

As with other PowerPC exceptions, the performance monitor interrupt follows the normal PowerPC
exception model with a defined exception vector offset (0OxO0F00). The priority of the performance
monitor interrupt lies between the external interrupt and the decrementer interrupt (see Table 4-3.
"PowerPC 750CX/CXe/CXr Exception Priorities," on Page 155). The contents of the SIA are
described in 2.1.2.4. The performance monitor is described in Chapter 11, "Performance Monitor".

4.5.14 Instruction Address Breakpoint Exception (0x01300)
An instruction address breakpoint interrupt occurs when the following conditions are met:

» Theinstruction breakpoint address |ABR[0-29] matches EA[0-29] of the next instruction to
complete in program order. The instruction that triggers the instruction address breakpoint
exception is not executed before the exception handler isinvoked.

» Thetrandation enable bit (IABR[TE]) matches MSRJ[IR].

» The breakpoint enable bit (IABR[BE]) is set. The address match is aso reported to the
JTAG/COP block, which may subsequently generate a soft or hard reset. The instruction
tagged with the match does not complete before the breakpoint exception is taken.

Table 4-12. lists register settings when an instruction address breakpoint exception is taken.
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Table 4-12. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits.
1-4  Cleared.
5-9 Loaded with equivalent MSR bits.
10-15 Cleared.
16-31 Loaded with equivalent MSR bits.

MSR POW 0 FP O BE O DR O
ILE — ME — FE1 O PM 0
EE O FEO O IP — RI 0
PR O SE O IR 0 LE Set to value of ILE

The 750CX/CXe/CXr requires that an mtspr to the IABR be followed by a context-synchronizing
instruction. The 750CX/CXe/CXr cannot generate a breakpoint response for that
context-synchronizing instruction if the breakpoint is enabled by the mtspr(IABR) immediately
preceding it. The 750CX/CXe/CXr also cannot block a breakpoint response on the
context-synchronizing instruction if the breakpoint was disabled by the mtspr (IABR) instruction
immediately preceding it. The format of the IABR register is shown in Section 2.1.2.1, “Instruction
Address Breakpoint Register (IABR)" on Page 64.

When an instruction address breakpoint exception is taken, instruction fetching resumes as offset
0x01300 from the base address indicated by MSR[IP].

4.5.15 Thermal Management Interrupt Exception (0x01700)

A thermal management interrupt is generated when the junction temperature crosses a threshold
programmed in either THRM 1 or THRM2. The exception isenabled by the TIE bit of either THRM 1
or THRM2, and can be masked by setting MSR[EE].

Table 4-13. lists register settings when athermal management interrupt exception is taken.
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Table 4-13. Thermal Management Interrupt Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.
SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9 Loaded with equivalent MSR hits
10-15 Cleared
16-31 Loaded with equivalent MSR bits
MSR POW 0 FP O BE O DR O
ILE — ME — FE1 O PM O
EE O FEO O IP — RI 0
PR O SE O IR 0 LE  Setto value of ILE
The thermal management interrupt is similar to the external interrupt. The 750CX/CXe/CXr requires

the next instruction in program order to complete or take an exception, blocks completion of any
following instructions, and allows the completed store queue to drain. Any exceptions encountered
in this process are taken first and the thermal management interrupt exception is delayed until a
recoverable halt is achieved, at which point the 750CX/CXe/CXr saves the machine state, as shown
in Table4-13.. When a thermal management interrupt exception is taken, instruction fetching
resumes as offset 0x01700 from the base address indicated by MSR[IP].

Chapter 10, "Power and Thermal Management” gives the details about thermal management.
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Chapter 5 Memory Management

This chapter describes the 750CX/CXe/CXr microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment architecture (OEA)
for PowerPC processors. The primary function of the MMU in a PowerPC processor isthe translation
of logical (effective) addressesto physical addresses (referred to as real addressesin the architecture
specification) for memory accesses and /O accesses (/O accesses are assumed to be
memory-mapped). In addition, the MMU provides access protection on a segment, block, or page
basis. This chapter describes the specific hardware used to implement the MM U model of the OEA
in the 750CX/CXe/CXr. Refer to Chapter 7, “Memory Management,” in the PowerPC
Microprocessor Family: The Programming Environments manual for a complete description of the
conceptual model. Note that the 750CX/CXe/CXr does not implement the optional direct-store
facility and it isnot likely to be supported in future devices.

Two general types of memory accesses generated by PowerPC processors require address
tranglation—instruction accesses and data accesses generated by load and store instructions.
Generally, the address trand ation mechanism is defined in terms of the segment descriptors and page
tables PowerPC processors use to locate the effective-to-physical address mapping for memory
accesses. The segment information trand ates the effective address to an interim virtual address, and
the page table information translates the interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as on-chip segment
registers on 32-bit implementations (such as the 750CX/CXe/CXr). In addition, two translation
lookaside buffers (TLBs) are implemented on the 750CX/CXe/CXr to keep recently-used page
address tranglations on-chip. Although the PowerPC OEA describes one MMU (conceptually), the
750CX/CXe/CXr hardware maintains separate TLBs and table search resources for instruction and
data accesses that can be performed independently (and simultaneously). Therefore, the
750CX/CXe/CXr is described as having two MMUSs, one for instruction accesses (IMMU) and one
for data accesses (DMMU).

The block address trandation (BAT) mechanism is a software-controlled array that stores the
available block address trandations on-chip. BAT array entries are implemented as pairs of BAT
registers that are accessible as supervisor special-purpose registers (SPRs). There are separate
instruction and data BAT mechanisms, and in the 750CX/CXe/CXr, they reside in the instruction and
data MMUSs, respectively.

The MMUSs, together with the exception processing mechanism, provide the necessary support for the
operating system to implement a paged virtual memory environment and for enforcing protection of
designated memory areas.

Exception processing is described in Chapter 4, "Exceptions'. Specifically, Section 4.3, "Exception
Processing” on Page 157 describes the MSR, which controls some of the critical functionality of the
MMUs.

5.1 MMU Overview

The 750CX/CXe/CXr implements the memory management specification of the PowerPC OEA for
32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to supervisor
and user programs, with a4-Kbyte page size and 256-Mbyte segment size. In addition, the MM Us of
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32-bit PowerPC processors use an interim virtual address (52 bits) and hashed page tables in the
generation of 32-bit physical addresses. PowerPC processors also have a BAT mechanism for
mapping large blocks of memory. Block sizes range from 128 Kbyte to 256 Mbyte and are
software-programmable.

Basic features of the 750CX/CXe&/CXr MMU implementation defined by the OEA are asfollows:

»  Support for real addressing mode—Effective-to-physical address translation can be disabled
separately for data and instruction accesses.

» Block address translation—Each of the BAT array entries (four IBAT entriesand four DBAT
entries) provides a mechanism for tranglating blocks as large as 256 Mbytes from the 32-hit
effective address spaceinto the physical memory space. This can be used for trandating large
address ranges whose mappings do not change frequently.

*  Segmented address tranglation—The 32-bit effective address is extended to a 52-bit virtual
address by substituting 24 bits of upper address bits from the segment register, for the 4 upper
bits of the EA, which are used as an index into the segment register file. This 52-bit virtua
address space is divided into 4-K byte pages, each of which can be mapped to aphysical page.

The 750CX/CXe/CXr aso provides the following features that are not required by the PowerPC
architecture:

» Separate trandation lookaside buffers (TLBs)—The 128-entry, two-way set-associative
ITLBs and DTLBs keep recently-used page address transl ations on-chip.

» Tablesearch operations performed in hardware—The 52-bit virtual addressisformed and the
MMU attempts to fetch the PTE, which contains the physical address, from the appropriate
TLB on-chip. If thetrandationisnot foundinaTLB (thatis, a TLB missoccurs), the hardware
performs a table search operation (using a hashing function) to search for the PTE.

e TLB invaidation— The 750CX/CXe/CXr implements the optional TLB Invalidate Entry
(tIbie) and TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB
entries. For more information on thetlbie and tIbsync instructions, see Section 5.4.3.2, "TLB
Invalidation" on Page 200.

Table 5-1. summarizesthe 750CX/CXe/CXr MMU features, including those defined by the PowerPC
architecture (OEA) for 32-bit processors and those specific to the 750CX/CXe/CXr.

Table 5-1. MMU Feature Summary

Architecturally Defined/

Feature Category 750CX/CXe/CXr-Specifi Feature
c
Address ranges Architecturally defined 232 pytes of effective address
252 pytes of virtual address
232 bytes of physical address
Page size Architecturally defined 4 Kbytes
Segment size Architecturally defined 256 Mbytes
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Table 5-1. MMU Feature Summary (Continued)

Architecturally Defined/

Feature Category 750CX/CXe/CXr-Specifi Feature
c
Block address Architecturally defined Range of 128 Kbyte—256 Mbyte sizes
translation

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history Architecturally defined Referenced and changed bits defined and maintained
Page address Architecturally defined Translations stored as PTEs in hashed page tables in memory
translation

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync
instructions in the 750CX/CXe/CXr)

750CX/CXel/CXr-specific | 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors | Architecturally defined Stored as segment registers on-chip (two identical copies
maintained)

Page table search 750CX/CXelCXr-specific | The 750CX/CXe/CXr performs the table search operation in
support hardware.

5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when
it executes a load, store, branch, or cache instruction, and when it fetches the next instruction. The
effective address is translated to a physical address according to the procedures described in
Chapter 7, “Memory Management” in the PowerPC Microprocessor Family: The Programming
Environments manual, augmented with information in this chapter. The memory subsystem uses the
physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, "Effective Address
Calculation" on Page 86.

5.1.2 MMU Organization

Figure 5-1. "MMU Conceptual Block Diagram,” on Page 179 shows the conceptual organization of
aPowerPC MMU in a32-bit implementation; note that it does not describe the specific hardware used
to implement the memory management function for aparticular processor. Processors may optionally
implement on-chip TLBs, hardware support for the automatic search of the page tablesfor PTES, and
other hardware features (invisible to the system software) not shown.

The 750CX/CXe/CXr maintains two on-chip TLBs with the following characteristics:
e 128 entries, two-way set associative (64 x 2), LRU replacement
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» DataTLB supports the DMMU; instruction TLB supports the IMMU
* Hardware TLB update
» Hardware update of referenced (R) and changed (C) bitsin the tranglation table

In the event of aTL B miss, the hardware attemptsto load the TL B based on the results of atransation
table search operation.

Figure 5-2. "PowerPC 750CX/CXe/CXr Microprocessor IMMU Block Diagram,” on Page 180 and
Figure 5-3. "The 750CX/CXe/CXr Microprocessor DMMU Block Diagram,” on Page 181 show the
conceptual organization of the 750CX/CXe/CXr’s instruction and data MMUS, respectively. The
instruction addresses shown in Figure 5-2. on Page 180 are generated by the processor for sequential
instruction fetches and addresses that correspond to achange of program flow. Data addresses shown
in Figure 5-3. on Page 181 are generated by load, store, and cache instructions.

As shown in the figures, after an address is generated, the high-order bits of the effective address,
EA[0-19] (or a smaller set of address bits, EA[0], in the cases of blocks), are trandated into
physical address bits PA[0-19]. The low-order address bits, A[20-31], are untrandated and are
therefore identical for both effective and physical addresses. After trandlating the address, the MM Us
pass the resulting 32-bit physical address to the memory subsystem. The MMUSs record whether the
trandation is for an instruction or data access, whether the processor is in user or supervisor mode
and, for data accesses, whether the accessis aload or a store operation.

The MMUs use this information to appropriately direct the address trandlation and to enforce the
protection hierarchy programmed by the operating system. Section 4.3, "Exception Processing” on
Page 157 describes the MSR, which controls some of the critical functionality of the MMUSs.

The figures show how address bits A[20-26] index into the on-chip instruction and data caches to
select a cache set. The remaining physical address bits are then compared with the tag fields
(comprised of bits PA[0-19]) of the eight selected cache blocks to determine if a cache hit has
occurred. In the case of a cache miss on the 750CX/CXe/CXr, the instruction or data access is then
forwarded to the L2 tags to check for an L2 cache hit. In case of amissthe accessisforwarded to the
bus interface unit which initiates an external memory access.
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5.1.3 Address Translation Mechanisms
PowerPC processors support the following three types of address trandlation:
» Page address trand ation—trandlates the page frame address for a 4-Kbyte page size

» Block address trandation—trandlates the block number for blocks that range in size from
128K bytes to 256Mbytes.

* Rea addressing mode address trand ation—when address trandl ation is disabled, the physical
addressisidentical to the effective address.

Figure5-4. "Address Trandation Types,” on Page 183 shows the three address trandation
mechanisms provided by the MMUSs. The segment descriptors shown in the figure control the page
address tranglation mechanism. When an access uses page address trandation, the appropriate
segment descriptor is required. In 32-bit implementations, the appropriate segment descriptor is
selected from the 16 on-chip segment registers by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to memory
(memory-mapped) or to the direct-store interface space. Note that the direct-store interface was
present in the architecture only for compatibility with existing 1/0 devices that used this interface.
However, it is being removed from the architecture, and the 750CX/CXe/CXr does not support it.
When an access is determined to be to the direct-store interface space, the 750CX/CXe/CXr takes a
DSI exceptioniif it is adata access (see Section 4.5.3, "DS| Exception (0x00300)" on Page 168), and
takes an I1SI exception if it is an instruction access (see Section 4.5.4, "1S|I Exception (0x00400)" on

Page 168).

For memory accesses translated by a segment descriptor, the interim virtual address is generated
using the information in the segment descriptor. Page address translation corresponds to the
conversion of thisvirtual address into the 32-hit physical address used by the memory subsystem. In
most cases, the physical address for the page resides in an on-chip TLB and is available for quick
access. However, if the page address tranglation missesin the on-chip TLB, the MMU causes a search
of the page tables in memory (using the virtual address information and a hashing function) to locate
the required physical address.

Because blocks are larger than pages, there are fewer upper-order effective address bits to be
tranglated into physical address bits (morelow-order addressbits (at least 17) are untranslated to form
the offset into a block) for block address trand ation. Also, instead of segment descriptorsand a TLB,
block address trandations use the on-chip BAT registers as a BAT array. If an effective address
matches the corresponding field of a BAT register, the information in the BAT register is used to
generate the physical address; in this case, the results of the page trandation (occurring in parallel)
are ignored.
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Figure 5-4. Address Translation Types

When the processor generates an access, and the corresponding address translation enable bitin MSR
IS cleared, the resulting physical address isidentical to the effective address and al other translation

mechanisms are ignored. Instruction address tranglation and data address trandation are enabled by
setting MSR[IR] and MSR[DR], respectively.
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5.1.4 Memory Protection Facilities

In addition to the trandlation of effective addresses to physical addresses, the MMUSs provide access
protection of supervisor areas from user access and can designate areas of memory as read-only as
well as no-execute or guarded. Table 5-2 shows the protection options supported by the MMUs for

Table 5-2. Access Protection Options for Pages

User Read Supervisor Read .
User Supervisor

I-Fetch Data Write I-Fetch Data Write

Option

Supervisor-only — — — b b

Supervisor-only-no-execute —

Supervisor-write-only b — b

Supervisor-write-only-no-execute —

Both (user/supervisor) b

(VE VA BUE BUE Bl R}

Both (user-/supervisor) no-execute —

Both (user-/supervisor) read-only b

(VA RVEBUE BUEBUR R}
V]
(VA BUVEBUE BN BUNBUNBv)

Both (user/supervisor) —
read-only-no-execute

b Access permitted
— Protection violation

The no-execute option provided in the segment register lets the operating system program determine
whether instructions can be fetched from an area of memory. The remaining options are enforced
based on a combination of information in the segment descriptor and the page table entry. Thus, the
supervisor-only option alows only read and write operations generated while the processor is
operating in supervisor mode (MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception.

Finally, afacility inthe VEA and OEA allows pages or blocksto be designated as guarded, preventing
out-of-order accesses that may cause undesired side effects. For example, areas of the memory map
used to control 1/0 devices can be marked as guarded so accesses do not occur unless they are
explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in Chapter 7,
“Memory Management,” in the Power PC Microprocessor Family: The Programming Environments
manual.
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5.1.5 Page History Information

The MMUs of PowerPC processors aso define referenced (R) and changed (C) bits in the page
address trandation mechanism that can be used as history information relevant to the page. The
operating system can use these bits to determine which areas of memory to write back to disk when
new pages must be alocated in main memory. While these bits are initially programmed by the
operating system into the page table, the architecture specifies that they can be maintained either by
the processor hardware (automatically) or by some software-assist mechanism.

Implementation Note—When loading the TLB, the 750CX/CXe/CXr checks the state of the
changed and referenced bits for the matched PTE. If the referenced bit is not set and the table search
operation is initially caused by a load operation or by an instruction fetch, the 750CX/CXe/CXr
automatically setsthe referenced bit in the trangdlation table. Similarly, if the table search operationis
caused by a store operation and either the referenced bit or the changed bit is not set, the hardware
automatically sets both bitsin the tranglation table. In addition, when the address trand ation of astore
operation hitsin the DTLB, the 750CX/CXe/CXr checks the state of the changed bit. If the bit is not
already set, the hardware automatically updates the DTLB and the trandlation table in memory to set
the changed bit. For more information, see Section 5.4.1, "Page History Recording” on Page 194.

5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate effective
addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data translation
isdisabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used (physical address equals
effective address) and the access continues to the memory subsystem as described in Section 5.2,
"Real Addressing Mode" on Page 192.

Figure 5-5. on Page 186 shows the flow the MMUSs use in determining whether to select real
addressing mode, block address trandation, or the segment descriptor to select page address
tranglation.
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Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

NOTE: If the BAT array search resultsin ahit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (either 1S|
or DSl) is generated.

5.1.6.2 Page Address Translation Selection

If address trandation is enabled and the effective address information does not match a BAT array
entry, the segment descriptor must be located. When the segment descriptor is located, the T bit in
the segment descriptor selects whether the trandation is to a page or to a direct-store segment as
shown in Figure 5-6 on page 5-188.

For 32-bit implementations, the segment descriptor for an access is contained in one of 16 on-chip
segment registers; effective address bits EA[0-3] select one of the 16 segment registers.

Note that the 750CX/CXe/CXr does not implement the direct-store interface, and accesses to these
segments cause a DSI or 1SI exception. In addition, Figure 5-6. on Page 188 also shows the way in
which the no-execute protection isenforced; if the N bit in the segment descriptor isset and the access
isan instruction fetch, the access isfaulted as described in Chapter 7, “Memory Management,” in the
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PowerPC Microprocessor Family: The Programming Environments manual. Note that the figure
shows the flow for these cases as described by the PowerPC OEA, and so the TLB references are
shown as optional . Because the 750CX/CX e/CXr implements TL Bs, these branches are valid and are

described in more detail throughout this chapter.
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Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

If SR[T] = 0, page address trandlation is selected. The information in the segment descriptor is then
used to generate the 52-bit virtual address. The virtual address is then used to identify the page
address trand ation information (stored as page table entries (PTES) in a page table in memory). For

Page 188 Version 1.3 IBM PowerPC 750CX/CXe/CXr RISC Microprocessor User’'s Manual



increased performance, the 750CX/CXe/CXr has two on-chip TLBs to cache recently-used
trang ations on-chip.

If an access hits in the appropriate TLB, page trandlation succeeds and the physical address bits are
forwarded to the memory subsystem. If the required translation is not resident, the MMU performs a
search of the pagetable. If therequired PTE isfound, aTLB entry isallocated and the page trandlation
isattempted again. Thistime, the TLB isguaranteed to hit. When the trandation islocated, the access
is qualified with the appropriate protection bits. If the access causes a protection violation, either an
ISl or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an ISl or DS
exception occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary

To complete any memory access, the effective address must be translated to a physical address. As
specified by the architecture, an MMU exception condition occurs if this trandation fails for one of

the following reasons:

» Pagefault—thereisno valid entry in the page table for the page specified by the effective

address (and segment descriptor) and there is no valid BAT trandation.
* Anaddresstrandation is found but the access is not allowed by the memory protection

mechanism.

The trand ation exception conditions defined by the OEA for 32-bit implementations cause either the

ISl or the DSI exception to be taken as shown in Table 5-3.

Table 5-3. Translation Exception Conditions

Condition

Description

Exception

Page fault (no PTE found)

No matching PTE found in page tables (and no
matching BAT array entry)

| access: ISI exception
SRR1[1]=1

D access: DSI exception
DSISR[1] =1

Block protection violation

Conditions described for block in “Block Memory
Protection” in Chapter 7, “Memory
Management,” in the PowerPC Microprocessor
Family: The Programming Environments
manual.”

| access: IS| exception
SRR1[4] =1

D access: DSI exception
DSISR[4] =1

Page protection violation

Conditions described for page in “Page Memory
Protection” in Chapter 7, “Memory
Management,” in the PowerPC Microprocessor
Family: The Programming Environments

| access: ISI exception
SRR1[4]=1

D access: DSI exception

manual. DSISR[4] =1
No-execute protection violation Attempt to fetch instruction when SR[N] =1 ISI exception
SRR1[3]=1
Instruction fetch from direct-store | Attempt to fetch instruction when SR[T] =1 ISI exception
segment SRR1[3] =1
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Table 5-3. Translation Exception Conditions (Continued)

Condition

Description

Exception

Data access to direct-store

Attempt to perform load or store (including FP

DSI exception

matching BAT entry and PTE[G] = 1

segment (including floating-point | load or store) when SR[T] =1 DSISR[5] =1
accesses)

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] = 1 ISI exception
memory and either matching XxBAT[G] = 1, or no SRR1[3] =1

The state saved by the processor for each of these exceptions contains information that identifies the
address of thefailing instruction. Refer to Chapter 4, "Exceptions’ in thismanual for amore detailed

description of exception processing.

In addition to the trandlation exceptions, there are other MMU-related conditions (some of them
defined as implementation-specific, and therefore not required by the architecture) that can cause an

exception to occur.

These exception conditions map to processor exceptions as shown in Table 5-4. The only MMU
exception conditions that occur when MSR[DR] = 0 are those that cause an alignment exception for
data accesses. For more detailed information about the conditions that cause an alignment exception
(in particular for string/multiple instructions), see Section 4.5.6, "Alignment Exception (0x00600)"

on Page 169.
NOTE:

write-though (W = 1) or cache-inhibited (I = 1).

Some exception conditions depend upon whether the memory areais set up as

These bits are described fully in “Memory/Cache Access Attributes,” in Chapter 5,
“Cache Model and Memory Coherency,” of the Power PC Microprocessor Family: The
Programming Environments manual.

Also refer to Chapter 4, "Exceptions' in this manual and to Chapter 6, “Exceptions,” in
the Power PC Microprocessor Family: The Programming Environments manual for a
compl ete description of the SRR1 and DSISR bit settings for these exceptions.

Table 5-4. Other MMU Exception Conditions for the 750CX/CXe/CXr Processor

Condition

Description

Exception

dcbzwithW=1orl=1

dcbz instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

Iwarx, stwcx., eciwx, or eCowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSI exception
DSISR[5] =1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1

See data access to
direct-store segment in
Table 5-3 on Page 189.

Load or store that results in a
direct-store error

Does not occur in the 750CX/CXe/CXr

Does not apply
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Table 5-4. Other MMU Exception Conditions for the 750CX/CXe/CXr Processor (Con-

Condition Description

Exception

eciwx or ecowx attempted when eciwx or ecowx attempted with EAR[E] =0
external control facility disabled

DSI exception
DSISR[11] = 1

Imw, stmw, Iswi, Iswx, stswi, or Imw, stmw, Iswi, Iswx, stswi, or stswx
stswx instruction attempted in instruction attempted while MSR[LE] = 1
little-endian mode

Alignment exception

Operand misalignment Translation enabled and a floating-point

load/store, stmw, stwcx., Imw, lwarx, eciwx,
or ecowx instruction operand is not
word-aligned

Alignment exception (some
of these cases are
implementation-specific)

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers allow the operating system to set up the block addresstrand ation
areas and the page tables in memory.

NOTE: Becausethe implementation of TLBsis optional, the instructions that refer to these
structuresare also optional. However, asthese structures serve as caches of the pagetable,
the architecture specifies a software protocol for maintaining coherency between these
caches and the tables in memory whenever the tablesin memory are modified. When the
tablesin memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Also note that the 750CX/CXe/CXr implementsall TL B-related instructions except tlbia,
which istreated as an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended that the
software that uses these instructions and registers be encapsulated into subroutines to minimize the
impact of migrating across the family of implementations.

Table 5-5 summarizes the 750CX/CXe/CXr’s instructions that specifically control the MMU. For
more detailed information about the instructions, refer to Chapter 2, "Programming Model" in this
manual and Chapter 8, “Instruction Set,” in the Power PC Microprocessor Family: The Programming
Environments manual.

Table 5-5. 750CX/CXe/CXr Microprocessor Instruction Summary—Control MMUs

Instruction Description
mtsr SR,IS Move to Segment Register
SR[SR#]¢—rS
mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0-3]]¢—rS
mfsr rD,SR Move from Segment Register
rD<—SR[SR#]

Memory Management

3/17/05 Page 191



Table 5-5. 750CX/CXe/CXr Microprocessor Instruction Summary—Control MMUs

Instruction Description

mfsrin rD,rB Move from Segment Register Indirect
rD<—SR[rB[0-3]]

tibie rB* TLB Invalidate Entry

For effective address specified by rB, TLB[V]<—0

The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds to
bits 14-19 of the EA.

Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync* TLB Synchronize

Synchronizes the execution of all other tlbie instructions in the system. In the 750CX/CXe/CXr,
when the TLBISYNC signal is negated, instruction execution may continue or resume after the
completion of a tlbsync instruction. When the TLBISYNC signal is asserted, instruction
execution stops after the completion of a tibsync instruction.

*These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system usesto program the 750CX/CXe/CXr’s
MMUSs. These registers are accessible to supervisor-level software only.

These registers are described in Chapter 2, "Programming Model" in this manual.

Table 5-6. 750CX/CXe/CXr Microprocessor MMU Registers

Register Description
Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SRO-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit 0. The segment registers are accessed by
the mtsr, mtsrin, mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU—-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined as
DBATOU-DBAT3U, and 32-bit registers in 32-bit implementations. These are special-purpose registers that
DBATOL-DBAT3L) are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in

memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

5.2 Real Addressing Mode

If addresstranglationisdisabled (MSR[IR] = 0 or MSR[DR] = 0) for aparticular access, the effective
addressistreated asthe physical address and is passed directly to the memory subsystem as described
in Chapter 7, “Memory Management,” in the Power PC Microprocessor Family: The Programming
Environments manual.

Note that the default WIM G bits (0b0011) cause data accesses to be considered cacheable (1 = 0) and
thus load and store accesses are weakly ordered. Thisisthe case even if the data cache is disabled in
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the HIDO register (asit isout of hard reset). If 1/0 devices require load and store accesses to occur in
strict program order (strongly ordered), translation must be enabled so that the corresponding | bit can
be set. Note also, that the G bit must be set to ensure that the accesses are strongly ordered. For
instruction accesses, the default memory access mode bits (WIMG) are also 0b0011. That is,
instruction accesses are considered cacheable (I = 0), and the memory is guarded. Again, instruction
accesses are considered cacheable even if theinstruction cache is disabled in the HIDO register (asit
isout of hard reset). The W and M bits have no effect on the instruction cache.

For information on the synchronization requirements for changes to MSR[IR] and MSR[DR], refer
to Section 2.3.2.4, "Synchronization" on Page 86 in this manual and the section “ Synchronization
Requirements for Special Registers and for Lookaside Buffers’ in Chapter 2 of the PowerPC
Microprocessor Family: The Programming Environments manual.

5.3 Block Address Translation

The block address tranglation (BAT) mechanism in the OEA provides a way to map ranges of
effective addresses larger than a single page into contiguous areas of physical memory. Such areas
can be used for data that is not subject to normal virtual memory handling (paging), such as a
memory-mapped display buffer or an extremely large array of numerical data

Block addresstransation in the 750CX/CXe/CXr isdescribed in Chapter 7, “Memory Management,”
in the PowerPC Microprocessor Family: The Programming Environments manual for 32-bit
implementations.

Implementation Note— The 750CX/CXe/CXr’s BAT registers are not initialized by the hardware
after the power-up or reset sequence. Consequently, all valid bits in both instruction and data BATs
must be cleared before setting any BAT for the first time. Thisis true regardless of whether address
trandation is enabled. Also, software must avoid overlapping blocks while updating a BAT or areas.
Even if trandation is disabled, multiple BAT hitsaretreated as programming errorsand can
corrupt the BAT registers and produce unpredictable results. Always re-zero during the reset
ISR. After zeroing all BATS, set them (in order) to the desired values. HRESET disordersthe
BATs. SRESET doesnot.

5.4 Memory Segment Model

The 750CX/CXe/CXr adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in the Power PC Microprocessor Family: The Programming Environments manual for
32-bit implementations. Memory in the PowerPC OEA is divided into 256-Mbyte segments. This
segmented memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address trandation), while providing the programming flexibility
afforded by alarge virtual address space (52 bits).

The segment/page address transl ation mechanism may be superseded by the block addresstrand ation
(BAT) mechanism described Section 5.3, "Block Address Trandation” on Page 193. If not, the
trandation proceeds in the following two steps.

1. From effective address to the virtual address (which never exists as a specific entity but can
be considered to be the concatenation of the virtual page number and the byte offset within a

page), and
2. From virtual address to physical address.
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This section highlights those areas of the memory segment model defined by the OEA that are
specific to the 750CX/CXe/CXr.

5.4.1 Page History Recording

Referenced (R) and changed (C) bitsin each PTE keep history information about the page. They are
maintained by a combination of the 750CX/CXe/CXr’s table search hardware and the system
software. The operating system uses this information to determine which areas of memory to write
back to disk when new pages must be allocated in main memory. Referenced and changed recording
Is performed only for accesses made with page address trangl ation and not for translations made with
the BAT mechanism or for accesses that correspond to direct-store (T = 1) segments. Furthermore, R
and C bits are maintained only for accesses made while address trandation is enabled (MSR[IR] = 1
or MSR[DR] = 1).

In the 750CX/CXe/CXr, the referenced and changed bits are updated as follows.
» For TLB hits, the C bit is updated according to Table 5-7.
» For TLB misses, when atable search operation isin progressto locate a PTE. The Rand C
bits are updated (set, if required) to reflect the status of the page based on this access.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

R and C bitsin TLB .
Processor Action
Entry

00 Combination doesn’t occur

01 Combination doesn’t occur

10 Read: No special action

Write: 750CX/CXe/CXr initiates a table search operation to update C.

11 No special action for read or write

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is what causes
the processor to update the C bit in the PTE (the R bit is assumed to be set in the page tables if there
isaTLB hit). Therefore, when software clears the R and C bits in the page tablesin memory, it must
invalidate the TL B entries associated with the pages whose referenced and changed bits were cleared.

The dcbt and dcbtst instructions can execute if there isa TLB/BAT hit or if the processor isin red
addressing mode. In case of aTLB or BAT miss, these instructions are treated as no-ops; they do not
initiate a table search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if address
tranglation were disabled (real addressing mode). If these update accesses hit in the data cache, they
are not seen on the external bus. If they missin the data cache, they are performed as typical cache
line fill accesses on bus (assuming the data cache is enabled).

5.4.1.1 Referenced Bit

The referenced (R) bit of a page is located in the PTE in the page table. Every time a page is
referenced (with aread or write access) and the R bit is zero, the 750CX/CXe/CXr setsthe R hit in
the page table. The OEA specifies that the referenced bit may be set immediately, or the setting may
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be delayed until the memory access is determined to be successful. Because the reference to a page
Is what causes a PTE to be loaded into the TLB, the referenced bit in all TLB entries is effectively
always set. The processor never automatically clears the referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At times, the
referenced bit may be set although the access was not logically required by the program or even if the
access was prevented by memory protection. Examples of this in PowerPC systems include the
following.

» Fetching of instructions not subsequently executed.
* A memory reference caused by a speculatively executed instruction that is mispredicted.
»  Accesses generated by an Iswx or stswx instruction with a zero length.

» Accessesgenerated by an stwex. instruction when no storeis performed because areservation
does not exist.

» Accesses that cause exceptions and are not completed.

5.4.1.2 Changed Bit

The changed bit of a page is located both in the PTE in the page table and in the copy of the PTE
loaded into the TLB (if a TLB is implemented, as in the 750CX/CXe/CXr). Whenever a data store
instruction is executed successfully, if the TLB search (for page address trandation) resultsin a hit,
the changed bit in the matching TLB entry is checked. If it isalready set, it is not updated. If the TLB
changed bit is 0, the 750CX/CXe/CXr initiates the table search operation to set the C bit in the
corresponding PTE in the page table. The 750CX/CXe/CXr then reloadsthe TLB (with the C bit set).

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store operation
is alowed by the page memory protection mechanism and the store is guaranteed to be in the
execution path (unless an exception, other than those caused by the sc, rfi, or trap instructions,
occurs). Furthermore, the following conditions may cause the C bit to be set:

* Theexecution of an stwcx. instruction is allowed by the memory protection mechanism but a
store operation is not performed.

* Theexecution of an stswx instruction is allowed by the memory protection mechanism but a
store operation is not performed because the specified length is zero.

» The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the R bit to be
set, they never cause the C hit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by PowerPC
processorsfor maintaining the referenced and changed bits. In some scenarios, the bits are guaranteed
to be set by the processor, in some scenarios, the architecture alows that the bits may be set (not
absolutely required), and in some scenarios, the bits are guaranteed to not be set. Note that when the
750CX/CXe/CXr updates the R and C bitsin memory, the accesses are performed asif MSR[DR] =0
and G = 0 (that is, as nonguarded cacheable operations in which coherency is required).
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Table 5-8 definesaprioritized list of the R and C bit settingsfor all scenarios. The entriesin the table
are prioritized from top to bottom, such that a matching scenario occurring closer to the top of the
table takes precedence over a matching scenario closer to the bottom of the table. For example, if an
stwex. instruction causes a protection violation and there is no reservation, the C bit is not atered, as
shown for the protection violation case. Note that in the table, |oad operationsinclude those generated
by load instructions, by the eciwx instruction, and by the cache management instructions that are
treated as a load with respect to address trandation. Similarly, store operations include those
operations generated by store instructions, by the ecowx instruction, and by the cache management
instructions that are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings

Causes Setting of R Bit | Causes Setting of C Bit
Priority Scenario oga | 780CxICX OEA 750CX/C
e/CXr XelCXr

1 No-execute protection violation No No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
4 Out-of-order store operation. Would be required Maybe1 No No No

by the sequential execution model in the absence

of system-caused or imprecise exceptions, or of

floating-point assist exception for instructions that

would cause no other kind of precise exception.
5 All other out-of-order store operations Maybel No Maybel No
6 Zero-length load (Iswx) Maybe No No No
7 Zero-length store (stswx) Maybel No Maybe?l No
8 Store conditional (stwcx.) that does not store Maybe1 Yes Maybe1 Yes
9 In-order instruction fetch Yes Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx, or dcbz instruction Yes Yes Yes Yes
12 icbi, dcbt, or dcbtst instruction Maybe No No No
13 dcbst or dcbf instruction Maybe Yes No No
14 dcbi instruction Maybe? Yes Maybel Yes

Notes:

LifCisset, Ris guaranteed to be set also.

For more information, see “Page History Recording” in Chapter 7, “Memory Management,” of the
Power PC Microprocessor Family: The Programming Environments manual.
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5.4.2 Page Memory Protection

The 750CX/CXe/CXr implements page memory protection as it is defined in Chapter 7, “Memory
Management,” in the Power PC Microprocessor Family: The Programming Environments manual.

5.4.3 TLB Description

The 750CX/CXe/CXr implements separate 128-entry data and instruction TLBs to maximize
performance. This section describes the hardware resources provided in the 750CX/CXe/CXr to
facilitate page address trandation. Note that the hardware implementation of the MMU is not
specified by the architecture, and while this description applies to the 750CX/CXe/CXr, it does not
necessarily apply to other PowerPC processors.

5.4.3.1 TLB Organization

Because the 750CX/CXe/CXr hastwo MMUs (IMMU and DMMU) that operate in parallel, some of
the MMU resources are shared, and some are actually duplicated (shadowed) in each MMU to
maximize performance. For example, athough the architecture defines a single set of segment
registers for the MMU, the 750CX/CXe/CXr maintains two identical sets of segment registers, one
for the IMMU and one for the DMMU; when an instruction that updates the segment register
executes, the 750CX/CXe/CXr automatically updates both sets.

Each TLB contains 128 entries organized as atwo-way set-associative array with 64 setsasshownin
Figure 5-7. on Page 198 for the DTLB (the ITLB organization is the same). When an addressisbeing
trandated, a set of two TLB entriesisindexed in parallel with the access to a segment register. If the
address in one of the two TLB entriesis valid and matches the 40-bit virtual page number, that TLB
entry contains the trandlation. I1f no match isfound, a TLB miss occurs.
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Figure 5-7. Segment Register and DTLB Organization
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Unless the access is the result of an out-of-order access, a hardware table search operation begins if
thereis a TLB miss. If the access is out of order, the table search operation is postponed until the
access is required, at which point the access is no longer out of order. When the matching PTE is
found in memory, it is loaded into the TLB entry selected by the least-recently-used (LRU)
replacement algorithm, and the tranglation process begins again, this time with a TLB hit.

To uniquely identify a TLB entry as the required PTE, the TLB entry also contains four more bits of
the page index, EA[10-13] (in addition to the API bitsin of the PTE).

Software cannot access the TLB arrays directly, except to invalidate an entry with the tlbie
instruction.

Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated any time either
entry is used, even if the accessis speculative. Invalid entries are always the first to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and TLBs can
be accessed in the same clock), only one exception condition can be reported at atime. ITLB miss
exception conditions are reported when there are no more instructions to be dispatched or retired (the
pipeline is empty), and DTLB miss exception conditions are reported when the load or store
instruction is ready to be retired. Refer to Chapter 6, "Instruction Timing" in this manual for more
detailed information about the internal pipelines and the reporting of exceptions.

When an instruction or data access occurs, the effective address is routed to the appropriate MMU.
EAO-EA3 select one of the 16 segment registers and the remaining effective address bits and the
VSID field from the segment register is passed to the TLB. EA[14-19] then select two entriesin the
TLB; the valid bits are checked and the 40-hit virtual page number (24-bit VSID and EA[4-19]) must
match the VSID, EAPI, and API fields of the TLB entries. If one of the entries hits, the PP bits are
checked for a protection violation. If these bits don’t cause an exception, the C bit is checked and a
table search operationisinitiated if C must be updated. If C does not require updating, the RPN value
Is passed to the memory subsystem and the WIMG bits are then used as attributes for the access.

Although address trandation is disabled on a reset condition, the valid bits of TLB entries are not
automatically cleared. Thus, TLB entries must be explicitly cleared by the system software (with the
tibieinstruction) before the valid entries are loaded and address trandlation is enabled. Also, note that
the segment registers do not have avalid bit, and so they should also be initialized before trand ation
is enabled.
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5.4.3.2 TLB Invalidation

The 750CX/CXe/CXr implements the optional tlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of the tlbie instruction always invalidates four entries—both
the ITLB and DTLB entriesindexed by EA[14-19].

The architecture alowstlbie to optionally enable a TL B invalidate signaling mechanism in hardware
so that other processors also invalidate their resident copies of the matching PTE. The
750CX/CXe/CXr does not signal the TLB invalidation to other processors nor does it perform any
action when a TLB invalidation is performed by another processor.

The tlbsync instruction causes instruction execution to stop if the TLBISYNC signal is asserted. If
TLBISYNC is negated, instruction execution may continue or resume after the completion of a
tlbsync instruction. Section 8.9.2, "TLBISYNC Input (Optional on the 750CXr)" on Page 305
describes the TLB synchronization mechanism in further detail.

The tlbia instruction is not implemented on the 750CX/CXe/CXr and when its opcode is
encountered, an illegal instruction program exception is generated. To invalidate al entries of both
TLBs, 64 tlbie instructions must be executed, incrementing the value in EA14-EA19 by one each
time.

(See Chapter 8, "Instruction Set" in the the PowerPC Microprocessor Family: The Programming
Environments manual for detailed information about this instruction.)

Software must ensure that instruction fetches or memory references to the virtual pages specified by
the tIbie have been completed prior to executing the tlbie instruction.

Other than the possible TL B miss on the next instruction prefetch, the tlbie instruction does not affect
the instruction fetch operation—that is, the prefetch buffer is not purged and does not cause these
instructions to be refetched.

5.4.4 Page Address Translation Summary
Figure 5-8. on Page 201 provides the detailed flow for the page address trand ation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands on the ‘ TLB
Hit' branch of Figure 5-6. "General Flow of Page and Direct-Store Interface Address Trandation,”
on Page 188.

The detailed flow for the‘ TLB Miss branch of Figure 5-6. on Page 188 is described in Section 5.4.5,
"Page Table Search Operation” on Page 202.

NOTE: Asinthe case of block address trandation, if an attempt is made to execute a dcbz
instruction to apage marked either write-through or caching-inhibited (W =1or | = 1), an
alignment exception is generated. The checking of memory protection violation
conditions is described in Chapter 7, “Memory Management” in the Power PC
Microprocessor Family: The Programming Environments manual.
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5.4.5 Page Table Search Operation

If the translation is not found in the TLBs (a TLB miss), the 750CX/CXe/CXr initiates a table search
operation which isdescribed in this section. Formats for the PTE are givenin “ PTE Format for 32-Bit
Implementations,” in Chapter 7, “Memory Management” of the PowerPC Microprocessor Family:
The Programming Environments manual.

The following is a summary of the page table search process performed by the 750CX/CXe/CXr.

1. The 32-bit physical address of the primary PTEG is generated as described in “ Page Table
Addresses’ in Chapter 7, “Memory Management” of the PowerPC Microprocessor Family:
The Programming Environments manual.

2. Thefirst PTE (PTEOQ) in the primary PTEG is read from memory. PTE reads occur with an
implied WIM memory/cache mode control bit setting of Ob001. Therefore, they are
considered cacheable and read (burst) from memory and placed in the cache.

3. The PTE inthe selected PTEG is tested for a match with the virtual page number (VPN) of
theaccess. The VPN isthe V SID concatenated with the pageindex field of thevirtual address.
For amatch to occur, the following must be true:

— PTE[H] =0

— PTE[V] =1

— PTE[VSID] = VA[0-23]
— PTE[API] = VA[24-29]

4. If amatchisnot found, step 3 isrepeated for each of the other seven PTEs in the primary
PTEG. If amatchisfound, the table search process continues as described in step 8. If amatch

is not found within the 8 PTEs of the primary PTEG, the address of the secondary PTEG is
generated.

5. Thefirst PTE (PTEOQ) inthe secondary PTEG isread from memory. Again, because PTE reads
have a WIM bit combination of 0b001, an entire cache line is read into the on-chip cache.

6. The PTE in the selected secondary PTEG istested for a match with the virtual page number
(VPN) of the access. For a match to occur, the following must be true:

— PTE[H] =1
— PTE[V] =1
— PTE[VSID] = VA[0-23]
— PTE[API] = VA[24-29]

7. 1f amatch isnot found, step 6 is repeated for each of the other seven PTES in the secondary
PTEG. If it isnever found, an exception is taken (step 9).

8. If amatch isfound, the PTE iswritten into the on-chip TLB and the R bit is updated in the
PTE in memory (if necessary). If there is no memory protection violation, the C bit isalso
updated in memory (if the accessis awrite operation) and the table search is complete.

9. If amatch is not found within the eight PTEs of the secondary PTEG, the search fails, and a
page fault exception condition occurs (either an ISl exception or a DSI exception).
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Figure 5-9. on Page 204 and Figure 5-10. on Page 205 show how the conceptual model for the
primary and secondary page table search operations, described in the PowerPC Microprocessor
Family: The Programming Environments manual, are realized in the 750CX/CXe/CXr.

Figure 5-9. on Page 204 shows the case of adcbz instruction that is executed withW =1or | =1, and
that the R bit may be updated in memory (if required) before the operation is performed or the
alignment exception occurs. The R bit may also be updated if memory protection is violated.
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Figure 5-10. Secondary Page Table Search Flow

The LSU initiates out-of -order accesses without knowledge of whether itislegal to do so. Therefore,
the MMU does not perform hardware table search due to TLB misses until the request is required by
the program flow. In these out-of-order cases, the MMU does detect protection violations and
whether a dcbz instruction specifies a page marked as write-through or cache-inhibited. The MMU
al so detects alignment exceptions caused by the dcbz instruction and prevents the changed bit in the
PTE from being updated erroneously in these cases.

If an MMU register is being accessed by an instruction in the instruction stream, the IMMU stallsfor
one trandation cycle to perform that operation. The sequencer serializes instructions to ensure the
data correctness. For updating the IBATs and SRs, the sequencer classifies those operations as fetch
serializing. After such an instruction isdispatched, the instruction buffer isflushed and the fetch stalls
until the instruction completes. However, for reading from the IBATS, the operation is classified as
execution serializing. As long as the LSU ensures that all previous instructions can be executed,
subsequent instructions can be fetched and dispatched.
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5.4.6 Page Table Updates

When TLBs are implemented (as in the 750CX/CXe/CXr) they are defined as noncoherent caches of
the page tables. TLB entries must be flushed explicitly with the TLB invalidate entry instruction
(tIbie) whenever the corresponding PTE is modified. As the 750CX/CXe/CXr isintended primarily
for uniprocessor environments, it does not provide coherency of TLBs between multiple processors.
If the 750CX/CXe/CXr is used in a multiprocessor environment where TLB coherency is required,
all synchronization must be implemented in software.

Processors may write referenced and changed bitswith unsynchronized, atomic byte store operations.
Note that the V, R, and C bits each reside in a distinct byte of a PTE. Therefore, extreme care must
be taken to use byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering PTES, or
certain system registers, may havethe side effect of changing the effective or physical addressesfrom
which the current instruction stream is being fetched. Thiskind of side effect is defined as an implicit
branch. Implicit branches are not supported and an attempt to perform one causes
boundedly-undefined results. Therefore, PTES must not be changed in a manner that causes an
implicit branch.

Chapter 2, “PowerPC Register Set” in the PowerPC Microprocessor Family: The Programming
Environments manual, lists the possible implicit branch conditions that can occur when system
registers and M SR bits are changed.

5.4.7 Segment Register Updates

Synchronization requirements for using the move to segment register instructions are described in
“Synchronization Requirements for Special Registers and for Lookaside Buffers’ in Chapter 2,
“PowerPC Register Set” in the PowerPC Microprocessor Family: The Programming Environments
manual.
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Chapter 6 Instruction Timing

This chapter describes how the PowerPC 750CX/CXe/CXr microprocessor fetches, dispatches, and
executes instructions and how it reports the results of instruction execution. It gives detailed
descriptions of how the 750CX/CXe/CXr’ s execution units work, and how those units interact with
other parts of the processor, such as the instruction fetching mechanism, register files, and caches. It
gives examples of instruction sequences, showing potential bottlenecks and how to minimize their
effects. Finaly, it includes tables that identify the unit that executes each instruction implemented on
the 750CX/CXe/CXr, the latency for each instruction, and other information that is useful for the
assembly language programmer.

6.1 Terminology and Conventions

This section provides an alphabetical glossary of terms used in this chapter. These definitions are
provided as areview of commonly used terms and as away to point out specific waysthesetermsare
used in this chapter.

» Branch prediction—The process of guessing whether abranch will or will not be taken. Such
predictions can be correct or incorrect; the term ‘predicted’ asit is used here does not imply
that the prediction is correct (successful). Instructions along the predicted path are fetch and
dispatched to their respective execution units conditionally and can reach the completion unit.
However, these instructions must first be validated by the branch resolution process before
they can beretired.

The PowerPC architecture defines a means for static branch prediction as part of the
instruction encoding. The 750CX/CXe/CXr processor implements two types of dynamic
branch prediction. See Section 6.4.1.2, "Branch Instructions and Completion” on Page 226.

» Branch resolution—The determination of the path that a branch instruction must take. If a
branch prediction and branch resolution occur on the same cycle, it's ano-brainer, the
processor simply fetches instructions on the correct path as determined by the branch
instruction. For predicted branches, branch resolution must determine if the prediction was
correct. If the prediction was correct all speculatively fetched instructions that have been
passed to their execution units are validated. If the prediction was wrong, the speculatively
fetched instructions must be invalidated (flushed) and instruction fetching must resume along
the other path for the branch instruction.

»  Completion—Compl etion occurs when an instruction hasfinished executing and it resultsare
stored in arename register that had been allocated to it by the dispatch unit. These resultsare
available to subsequent instructions or previoudly predicted branches.

» Dispatch—the process of moving an instruction from the instruction queue to an execution
unit. In the 750CX/CXe/CXr processor, the dispatch unit can process up to three instruction
inasingle cycleif one of the three is a branch. For the non-branch type instructions the
dispatch must do a partial decode to determine the type of instruction inorder to passit to it
respective execution unit. Also, arename register and a place in the completion queue must
bereserved, otherwiseastall occurs. If abranch updateseither LR or CTR register it also must
be allocated to a completion queue entry.

» Fall-through —A not-taken branch.

» Fetch—The process of bringing instructions from the system memory (such as a cache or the
main memory) into the instruction queue.
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* Folding (branch folding)— On the 750CX/CXe/CXr, abranch is expunged from (folded out)
theinstruction queue viathe dispatch mechanism, without either being passed to an execution
unit and or given aposition in the completion queue. Subsequent instructionsarefetched from
the target address cal culated by the branch instruction, for branches taken or sequential
instructions following the branch for a branch-not-taken, placed into areservation register to
which the instruction is dispatched.

» Finish—Finishing occursin the last cycle of execution. (This could also be the first cycle of
execution for instruction that only require one cycle for execution) In this cycle, the output
rename register and the completion queue entry are updated to indicate that theinstruction has
finished executing.

» Latency— The number of clock cycles necessary to execute an instruction and make ready
the results of that execution for a subsequent instruction.

» Pipeline—Inthe context of instruction timing, theterm ‘ pipeline’ refersto theinterconnection
of the stages. The events necessary to process an instruction are broken into several
cycle-length tasks to allow work to be performed on severa instructions
simultaneously—anal ogousto an assembly line. Asan instruction is processed, it passesfrom
one stage to the next. When it does, the stage becomes available for the next instruction.

* Although an individual instruction may take many cyclesto complete (the number of cycles
Iscalled instruction latency), pipelining makesit possible to overlap the processing so that the
throughput (number of instructions completed per cycle) isgreater than if pipelining were not
implemented.

» Program order—The order of instructions in an executing program. More specificaly, this
term is used to refer to the original order in which program instructions are fetched into the
instruction queue from the system memory.

* Rename register—Temporary buffers used to hold either source or destination values for
instructions that are in a stage of execution. This simplifies the passing of data outside of the
general purpose register file (GPR) between instructions during execution.

* Reservation station—A buffer between the dispatch and execute units where instructions
await execution.

» Retirement—Removal of acompleted instruction from the completion queue. At thistime any
output from the completed instruction is written to the appropriate architected destination
register. Thismay be a GPR, FPR, or aCR field.

e Stage—The processing of instructions in the 750CX/CXe/CXr is done in stages. They are:
fetch, decode/dispatch, execute, complete and retirement. The fetch unit brings instructions
from the memory system into theinstruction queue. Oncein theinstruction queue the dispatch
unit must do a partial decode on the instruction to determineit’ stype. If the instruction is an
integer it is passed to theinteger execution unit, if it isafloating-point type, it is passed to the
floating-point execution unit, if it isabranch it is processed immediately by branch folding
and branch prediction functions. Instructions spend one or more cyclesin each stage as they
are being processed by the 750CX/CXe/CXr processor.

» Stall—An occurrence when aninstruction cannot proceed to the next stage. An instruction can
spend multiple cyclesin one stage. An integer multiply, for example, takes multiple cyclesin
the execute stage. When this occurs, subsequent instructions may stall.
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» Superscalar—A superscalar processor is one that has multiple execution units. The
750CX/CXe/CXr processor has onefloating-point unit, two integer units, one load/store unit,
and a system unit for miscellaneous instructions. PowerPC instructions are processed in
parallel by these execution units.

*  Throughput—A measure of the total number of instructions that are processed by all
execution units per unit of time.

»  Write-back—Write-back (in the context of instruction handling) occurs when aresult is
written into the architectural registers (typically the GPRsand FPRs). Results are written back
at retirement time from renameregistersfor most instructions. Theinstructionisalso removed
from the completion queue at thistime.

6.2 Instruction Timing Overview

The 750CX/CXe/CXr design minimizes average instruction execution latency, the number of clock
cyclesit takes to fetch, decode, dispatch, and execute instructions and make the results available for
a subsequent instruction. Some instructions, such as loads and stores, access memory and require
additional clock cycles between the execute phase and the write-back phase. These latencies vary
depending on whether the access is to cacheable or noncacheable memory, whether it hitsinthe L1
or L2 cache, whether the cache access generates a write-back to memory, whether the access causes
a snoop hit from another device that generates additional activity, and other conditions that affect
MemOory accesses.

The 750CX/CXe/CXr implements many features to improve throughput, such as pipelining,
superscalar instruction issue, branch folding, two-level speculative branch handling, two types of
branch prediction and multiple execution units that operate independently and in parall€l.

As an instruction passes from stage to stage in a pipelined system, multiple instruction are in various
stages of execution at any given time. Also, with multiple execution units operating in parallel, more
then one instruction can be completed in asingle cycle.

The 750CX/CXe/CXr contains the following execution units that operate independently and in
parallel:

» Branch processing unit (BPU)

* Integer unit 1 (IlU1)—executes all integer instructions

* Integer unit 2 (IU2)—executes all integer instructions except multiplies and divides

*  64-hit floating-point unit (FPU)

» Load/store unit (LSU)

e System register unit (SRU)
Figure 6-1. on Page 210 represents a generic pipelined execution unit.
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I Stage 1 I Stage 2 I Stage 3 I
| | | |
Clock 0 | Instruction A | — | — |
| /4\ | |
| ) | ) | |
Clock 1 | Instruction B | Instruction A | — |
Clock2 | Instruction C | Instruction B | Instruction A |
| | | |
| 21N 2N |
Clock 3 | Instruction D | Instruction C | Instruction B |
| | |

Figure 6-1. Pipelined Execution Unit

The 750CX/CXe/CXr can retire two instructions on every clock cycle. In genera, the
750CX/CXe/CXr processes instructions in four stages—fetch, decode/dispatch, execute, and
complete as shown in Figure 6-2. Note that the example of a pipelined execution unitin Figure 6-1is
similar to the three-stage FPU pipelinein Figure 6-2.

Maximum four-instruction fetch

|—> Fetch per clock cycle

BPU

\
i Maximum three-instruction  dis-
\—> Decode/Dispatch

patch per clock cycle (includes one
branch instruction)

\ Execute Stage

FPUL Y
Y FPU2 Y LSu1
SRU FPU3 U1 U2 LSU2

Maximum two -instruction com-
pletion per clock cycle

Figure 6-2. Superscalar/Pipeline Diagram

Complete (Write-back)

The instruction pipeline stages are described as follows.

» Theinstruction fetch stage includesthe clock cycles necessary to request instructionsfrom the
memory system and the time the memory system takes to respond to the request. Instruction
fetch timing depends on many variables, such aswhether theinstruction isin the branch target
instruction cache, the L1 instruction cache, or the L2 cache. Those factorsincreasewhenitis
necessary to fetch instructions from system memory, and include the processor-to-bus clock
ratio, the amount of bus traffic, and whether any cache coherency operations are required.
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Because there are so many variables, unless otherwise specified, the instruction timing
examples below assume optimal performance, that the instructions are available in the
instruction queue in the same clock cycle that they are requested. The fetch stage ends when
the instruction is dispatched.

» Thedecode/dispatch stage consists of thetime it takes to decode the instruction and dispatch
it from the instruction queue to the appropriate execution unit. Instruction dispatch requires
the following:

— Instructions can be dispatched only from the two lowest instruction queue entries, | Q0 and
1Q1.

— A maximum of two instructions can be dispatched per clock cycle and one additional
branch instruction can be handled by the BPU.

— Only oneinstruction can be dispatched to each execution unit per clock cycle.
— There must be a vacancy in the specified execution unit reservation station.

— A rename register must be available for each destination operand specified by the
instruction.

— For aninstruction to dispatch, the appropriate execution unit reservation station must be
available and there must be an open position in the completion queue. If no entry is
available, the instruction remainsin the 1Q.

» The execute stage consists of the time between dispatch to the execution unit (or reservation
station) and the point at which the instruction vacates the execution unit.

Most integer instructions have aone-cycle latency; results of these instructions can beusedin
the clock cycle after an instruction enters the execution unit. However, integer multiply and
divide instructions take multiple clock cyclesto complete. The IU1 can process all integer
instructions; the IU2 can process all integer instructions except multiply and divide
instructions.

The LSU and FPU are pipelined (as shown in Figure 6-2. on Page 210).

* The complete (complete/write-back) pipeline stage maintains the correct architectural
machine state and commitsit to the architectural registersat the proper time. If the completion
logic detects an instruction containing an exception status, al following instructions are
cancelled, their execution resultsin rename registers are discarded, and the correct instruction
stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be retired per
cycle. Instructions are retired only from the two lowest compl etion queue entries, CQO and
CQ1.

The notation conventions used in the instruction timing examples are as follows.

g Fetch—The fetch stage includes the time between when an instruction is requested and
when it Is brought into the instruction queue. This latency can vary, depending upon whether the
instruction isin the BTIC, the L1 instruction cache, the L2 cache, or system memory (in which case
latency can be affected by bus speed and traffic on the system bus, and address trandlation issues).
Therefore, in the examplesin this chapters, the fetch stage is usualy idealized, that is, an instruction
is usually shown to be in the fetch stage when it is avalid instruction in the instruction queue. The
instruction queue has six entries, 1Q0- Q5.
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% In digpatch entry (1Q0/1Q1)—Instructions can be dispatched from 1Q0 and 1Q1.
Because dispatch isinstantaneous, it is perhaps more useful to describe it as an event that marks the

point in time between the last cycle in the fetch stage and the first cycle in the execute stage.

Execute—The operations specified by an instruction are being performed by the
appropriate execution unit. The black stripe isareminder that the instruction occupies an entry in the
completion queue, described in Figure 6-3. on Page 213.

F Complete—The instruction isin the completion queue. In the final stage, the results of
the executed instruction are written back and the instruction is retired. The completion queue has six
entries, CQO—CQ5.

ﬁ In retirement entry—Completed instructions can be retired from CQO and CQ1. Like
Ipatch, retirement is an event that in this case occurs at the end of the final cycle of the complete
stage.

Figure 6-3. on Page 213 shows the stages of the 750CX/CXe&/CXr’ s execution units.

6.3 Timing Considerations

The 750CX/CXe/CXr is a superscalar processor; as many as three instructions can be issued to the
execution units (one branch instruction to the branch processing unit, and two instructions issued
from the dispatch queue to the other execution units) during each clock cycle. Only one instruction
can be dispatched to each execution unit.

Although instructions appear to the programmer to execute in program order, the 750CX/CXe/CXr
improves performance by executing multiple instructions at a time, using hardware to manage
dependencies. When aninstruction is dispatched, the register file or arenameregister from a previous
instruction provides the source data to the execution unit. The register files and rename register have
sufficient bandwidth to allow dispatch of two instructions per clock under most conditions.
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IU1/IU2/SRU Instructions

Fetch In Dispatch Execute!  Complete/Retire
Entry

| e ——

LSU Instructions

Execute

Fetch In Dispatch  EA Cache Align  Complete/Retire
Entry Calculation

| e  a———

FPU Instructions

Execute

Fetch In Dispatch i Round/  Complete/Retire
Entry Muliply Add Normalize

| I—H

BPU Instructions

Fetch Fetch In Dispatch  In Completion Complete/Retire?
Predict Entry Queuez

| | e —|

1 Several integer instructions, such as multiply and divide instructions, require multiple cycles in
the execute stage.

2 Only those branch instructions that update the LR or CTR take an entry in the completion queue.

Figure 6-3. PowerPC 750CX/CXe/CXr Microprocessor Pipeline Stages
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The 750CX/CXe/CXr’'s BPU decodes and executes branches immediately after they are fetched.
When a conditional branch cannot be resolved due to a CR data (or any) dependency, the branch
direction is predicted and execution continues on the predicted path. If the predictionisincorrect, the
following steps are taken:

1. Theinstruction queue is purged and fetching continues from the correct path.

2. Any instructions behind (in program order) the predicted branch in the completion queue are
allowed to complete.

3. Instructions fetched on the mispredicted path of the branch are purged.
4. Fetching resumes along the correct (other) path.

After an execution unit finishes executing an instruction, it places resulting data into the appropriate
GPR or FPR rename register. The results are then stored into the correct GPR or FPR during the
write-back stage (retirement). If a subsequent instruction needs the result as a source operand, it is
made available simultaneously to the appropriate execution unit, which alows a data-dependent
instruction to be decoded and dispatched without waiting to read the data from the register file.
Branch instructions that update either the LR or CTR write back their resultsin a similar fashion.

The following section describes this process in greater detail.

6.3.1 General Instruction Flow

As many as four instructions can be fetched into the instruction queue (1Q) in a single clock cycle.
Instructions enter the 1Q and are issued to the various execution units from the dispatch queue. The
750CX/CXe/CXr triesto keep the 1 Q full at al times, unless instruction cache throttling is operating.

The number of instructions requested in a clock cycle is determined by the number of vacant spaces
inthe 1Q during the previous clock cycle. Thisis shown in the examplesin this chapter. Although the
instruction queue can accept as many as four new instructionsin asingle clock cycle, if only one I1Q
entry is vacant, only one instruction is fetched. Typicaly instructions are fetched from the L1
instruction cache, but they may also be fetched from the branch target instruction cache (BTIC) if a
branch istaken. If the branch taken instruction request hitsinthe BTIC, it can usually present the first
two instructions of the new instruction stream in the next clock cycle, giving enough timefor the next
pair of instructions to be fetched from the instruction L1 cache resulting in no idle cycles in the
instruction stream (a.k.a., zero cycle branch). If instructions are not in the BTIC or the L1 instruction
cache, they are fetched from the L2 cache or from system memory.

The 750CX/CXe/CXr’ s instruction cache throttling feature, managed through the instruction cache
throttling control (ICTC) register, can lower the processor’ s overall junction temperature by slowing
the instruction fetch rate. See Chapter 10, "Power and Therma Management" for more information.

Branch instructions are identified by the fetcher, and forwarded to the BPU directly, bypassing the
dispatch queue. If the branch is unconditional or if the specified conditions are already known, the
branch can be resolved immediately. That is, the branch direction is known and instruction fetching
can continue along the correct path. Otherwise, the branch direction must be predicted. The
750CX/CXe/CXr offers severa resources to aid in quick resolution of branch instructions and for
improving the accuracy of branch predictions. These include the following.
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» Branch target instruction cache—The 64-entry (four-way-associative) branch target
instruction cache (BTIC) holds branch target instructions so when a branch is encountered in
arepeated loop, usually the first two instructions in the target stream can be fetched into the
instruction queue on the next clock cycle. The BTIC can be disabled and invalidated through
bitsin HIDO. Coherency of the BTIC table is maintained by table reset on an icache flush
invalidate, icbi or rfi instruction execution or when an exception is taken.

*  Dynamic branch prediction—The 512-entry branch history table (BHT) isimplemented with
two bits per entry for four degrees of prediction—not-taken, strongly not-taken, taken,
strongly taken. Whether a branch instruction is taken or not-taken can change the strength of
the next prediction. This dynamic branch prediction is not defined by the PowerPC
architecture.

To reduce aliasing, only predicted branches update the BHT entries. Dynamic branch
prediction is enabled by setting HIDO[BHT]; otherwise, static branch prediction is used.

»  Static branch prediction—Static branch prediction isdefined by the PowerPC architecture and
involves encoding the branch instructions. See Section 6.4.1.3.1, " Static Branch Prediction”
on Page 228.

Branch instructions that do not update the LR or CTR are removed from the instruction stream by
branch folding, as described in Section 6.4.1.1, "Branch Folding" on Page 224. Branch instructions
that update the LR or CTR are treated as if they require dispatch (even through they are not issued to
an execution unit in the process). They are assigned a position in the completion queue to ensure that
the CTR and LR are updated in correct program order.

All other instructions are issued from the 1Q0 and 1Q1. The dispatch rate depends upon the
availability of resources such as the execution units, rename registers, and completion queue entries,
and upon the serializing behavior of some instructions. Instructions are dispatched in program order;
an instruction in 1Q1 cannot be dispatched ahead of onein 1QO.

6.3.2 Instruction Fetch Timing

Instruction fetch latency depends on whether the fetch hitsthe BTIC, the L 1 instruction cache, or the
L2 cache. If no cache hit occurs, a memory transaction is required in which case fetch latency is
affected by bus traffic, bus clock speed, and memory trandation. These issues are discussed further
in the following sections.

6.3.2.1 Cache Arbitration

When theinstruction fetcher requestsinstructions from the instruction cache, two things may happen.
If theinstruction cacheisidle and the requested instructions are present, they are provided on the next
clock cycle. However, if the instruction cache is busy due to a cache-line-reload operation,
instructions cannot be fetched until that operation completes.

6.3.2.2 Cache Hit

If the instruction fetch hits the instruction cache, it takes only one clock cycle after the request for as
many as four instructionsto enter the instruction queue. Note that the cache is not blocked to internal
accesses during a cache reload completes (hits under misses). The critical double word is written
simultaneously to the cache and forwarded to the requesting unit, minimizing stalls due to load
delays.
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Figure 6-4 shows the paths taken by instructions.
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Figure 6-4. Instruction Flow Diagram
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Figure 6-5. on Page 218 shows asimple exampl e of instruction fetching that hitsinthe L1 cache. This
example uses a series of integer add and doubl e-precision floating-point add instructions to show how
the number of instructions to be fetched is determined, how program order is maintained by the
instruction and completion queues, how instructions are dispatched and retired in pairs (maximum),
and how the FPU, 1U1, and 1U2 pipelines function. The following instruction sequence is examined.

add
fadd
add
fadd
br 6
fsub
fadd
fadd
add
add
add
add
fadd
add
fadd

W JO0 Uk WNhREO

FRRRPRERRPRREPO
JoOUh W RO
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Figure 6-5. Instruction Timing—Cache Hit
The instruction timing for this example is described cycle-by-cycle as follows.
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1. IncycleO, instructions 0-3 are fetched from the instruction cache. Instructions 0 and 1 are
placed in the two entries in the instruction queue from which they can be dispatched on the
next clock cycle.

2. Incyclel, instructions 0 and 1 are dispatched to the 1U2 and FPU, respectively. Notice that
for instructions to be dispatched they must be assigned positions in the completion queue. In
this case, since the completion queue was empty, instructions 0 and 1 take the two lowest
entries in the completion queue. Instructions 2 and 3 drop into the two dispatch positionsin
the instruction queue. Because there were two positions available in the instruction queue in
clock cycle O, two instructions (4 and 5) are fetched into the instruction queue. Instruction 4
Isabranch unconditional instruction, which resolves immediately as taken. Because the
branch is taken, it can therefore be folded from the instruction queue.

3. Incycle2, assumeaBTIC hit occurs and target instructions 6 and 7 are fetched into the
instruction queue, replacing the folded b instruction (4) and instruction 5. Instruction O
completes, writes back its results and vacates the completion queue by the end of the clock
cycle. Instruction 1 enters the second FPU execute stage, instruction 2 is dispatched to the
IU2, and instruction 3isdispatched into thefirst FPU execute stage. Because the taken branch
instruction (4) does not update either CTR or LR, it does not require a position in the
completion queue and can be folded.

4. Incycle 3, target instructions (6 and 7) are fetched, replacing instructions 4 and 5 in 1Q0 and
Q1. Thisreplacement on taken branchesis called branch folding. Instruction 1 proceeds
through the last of the three FPU execute stages. Instruction 2 has executed but must remain
in the completion queue until instruction 1 completes. Instruction 3 replaces instruction 1 in
the second stage of the FPU, and instruction 6 replaces instruction 3 in the first stage.

Because there were four vacancies in the instruction queue in the previous clock cycle,
instructions 8-11 are fetched in this clock cycle.

5. Instruction 1 completesin cycle 4, allowing instruction 2 to complete. Instructions 3 and 6
continue through the FPU pipeline. Because there were two openingsin the completion queue
in the previous cycle, instructions 7 and 8 are dispatched to the FPU and 1U2, respectively,
filling the completion queue. Similarly, because there was one opening in the instruction
gueuein clock cycle 3, oneinstruction is fetched.

6. Incycle5, instruction 3 completes, and instructions 13 and 14 are fetched. Instructions 6 and
7 continue through the FPU pipeline. No instructions are dispatched in this clock cycle
because there were no vacant CQ entriesin cycle 4.

7. Incycle®6, instruction 6 completes, instruction 7 isin stage 3 of the FPU execute stage, and
although instruction 8 has executed, it must wait for instruction 7 to complete. Thetwo integer
instructions, 9 and 10, are dispatched to the lU2 and 1U1, respectively. No instructions are
fetched because the instruction queue was full on the previous cycle.

8. Incycle7, ingtruction 7 completes, allowing instruction 8 to complete aswell. Instructions 9
and 10 remain in the completion stage, since at most two instructions can completeinacycle.
Because there was one opening in the completion queue in cycle 6, instructions 11 is
dispatched to the IU2. Two more instructions (15 and 16, which are shown only in the
instruction queue) are fetched.
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9. Incycle8, instructions 9-11 are through executing. Instructions 9 and 10 complete, write
back, and vacate the completion queue. Instruction 11 must wait to complete on the following
cycle. Because the completion queue had one opening in the previous cycle, instruction 12
can be dispatched to the FPU. Similarly, theinstruction queue had one opening in the previous
cycle, so one additional instruction, 17, can be fetched.

10. Incycle 9, instruction 11 completes, instruction 12 continues through the FPU pipeline, and
instructions 13 and 14 are dispatched. One new instruction, 18, can be fetched on this cycle
because the instruction queue had one opening on the previous clock cycle.

6.3.2.3 Cache Miss

Figure 6-6. on Page 221 shows an instruction fetch that misses both the L1 cache and L2 cache. A
processor/bus clock ratio is 1:2 is used. The same instruction sequence is used asin Section 6.3.2.2,
"Cache Hit" on Page 215, however in this example, the branch target instruction is not in either the
L1 or L2 cache.

A cache miss, extends the latency of the fetch stage, so in this example, the fetch stage shown
represents not only the time the instruction spendsin the 1Q, but the time required for the instruction
to be loaded from system memory, beginning in clock cycle 2.

During clock cycle 3, the target instruction for the b instruction is not in the BTIC, the instruction
cache or the L2 cache; therefore, a memory access must occur. During clock cycle 5, the address of
the block of instructionsis sent to the system bus. During clock cycle 7, two instructions (64 bits) are
returned from memory on the first beat and are forwarded both to the cache and the instruction
fetcher.
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6.3.2.4 L2 Cache Access Timing Considerations

If an instruction fetch misses both the BTIC and the L1 instruction cache, the 750CX/CXe/CXr next
looks in the L2 cache. If the requested instructions are there, they are burst into the 750CX/CXe&/CXr
in much the same way as shown in Figure 6-6. on Page 221. The formulafor the L2 cache latency for
instruction accessesis as follows.

1 processor clock + 3 L2 clocks + 1 processor clock
Therefore, sincethe L2 isoperating in 1:1 mode, the instruction fetch takes 5 processor clock cycles.

6.3.2.5 Instruction Dispatch and Completion Considerations

Several factors affect the 750CX/CXe/CXr’ s ahility to dispatch instructions at a peak rate of two per
cycle—the availability of the execution unit, destination rename registers, and completion queue, as
well as the handling of completion-serialized instructions. Several of these limiting factors are
illustrated in the previous instruction timing examples.

To reduce dispatch unit stalls due to instruction data dependencies, the 750CX/CXe/CXr provides a
single-entry reservation station for the FPU, SRU, and each 1U, and a two-entry reservation station
for the LSU. If a data dependency keeps an instruction from starting execution, that instruction is
dispatched to the reservation station associated with its execution unit (and the rename registers are
assigned), thereby freeing the positions in the instruction queue so instructions can be dispatched to
other execution units. Execution begins during the same clock cycle that the rename buffer is updated
with the data the instruction is dependent on.

If both instructionsin Q0 and Q1 require the same execution unit they must be executed sequentially
where Q1 follows 1QO0 through the execution unit. If these instructions require different execution
units, they can be dispatched on the same cycle, execute in parallel on separate execution units and
could complete together and be retired together on the same cycle.

The completion unit maintains program order after instructions are dispatched from the instruction
gueue, guaranteeing in-order completion and a precise exception model. Completing an instruction
implies committing execution results to the architected destination registers. In-order completion
ensures the correct architectural state when the 750CX/CXe/CXr must recover from a mispredicted
branch or an exception.

Instruction state and al information required for completion is kept in the six-entry, first-in/first-out
completion queue. A completion queue entry is allocated for each instruction when it is dispatched
to an execute unit; if no entry isavailable, the dispatch unit stalls. A maximum of two instructions per
cycle may be completed and retired from the compl etion queue, and the flow of instructions can stall
when a longer-latency instruction reaches the last position in the completion queue. Subsequent
instructions cannot be completed and retired until that longer-latency instruction completes and
retires. Examples of this are shown in Section 6.3.2.2, "Cache Hit" on Page 215 and Section 6.3.2.3,
"Cache Miss' on Page 220.

The 750CX/CXe/CXr can execute instructions out-of-order, but in-order completion by the
completion unit ensures a precise exception mechanism. Program-related exceptions are signaled
when the instruction causing the exception reaches the last position in the completion queue. By this
time previous instructions are retired.
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6.3.2.6 Rename Register Operation

To avoid contention for a given register file location in the course of out-of-order execution, the
750CX/CXe/CXr provides rename registers for holding instruction results before the completion
commits them to the architected register. There are six GPR rename registers, six FPR rename
registers, and one each for the CR, LR, and CTR.

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename register
(or registers) for the results of that instruction. If an instruction is dispatched to a reservation station
associated with an execution unit due to a data dependency, the dispatcher also provides atag to the
execution unit identifying the rename register that forwards the required data at completion. When
the source data reaches the rename register, execution can begin.

Instruction results are transferred from the rename registers to the architected registers by the
completion unit when an instruction is retired from the completion queue, providing no exceptions
proceed it and also any predicted branch conditions have been resolved correctly. If a branch
prediction was incorrect, the instructions fetched along the predicted path are flushed from the
completion queue, and any results of those instructions are flushed from the rename registers.

6.3.2.7 Instruction Serialization

Although the 750CX/CXe/CXr can dispatch and complete two instructions per cycle, so-caled
serializing instructions limit dispatch and completion to one instruction per cycle. There are three
types of instruction serialization:

» Execution serialization—Execution-serialized instructions are dispatched, held in the
functional unit and do not execute until all prior instructions have completed. A functional
unit holding an execution-serialized instruction will not accept further instructions from the
dispatcher. For example, execution serialization is used for instructions that modify
nonrenamed resources. Results from these instructions are generally not available or
forwarded to subsequent instructions until the instruction completes (using mtspr to write to
LR or CTR does provide forwarding to branch instructions).

» Completion serialization (also referred to as post-dispatch or tail
serialization)—Compl etion-serialized instructions inhibit dispatching of subsequent
instructions until the serialized instruction completes. Completion serialization is used for
Instructions that bypass the normal rename mechanism.

* Refetch serialization (flush serialization)—Refetch-serialized instructions inhibit dispatch of
subsequent instructions and force refetching of subsequent instructions after completion.
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6.4 Execution Unit Timings

The following sections describe instruction timing considerations within each of the respective
execution units in the 750CX/CXe/CXr.

6.4.1 Branch Processing Unit Execution Timing

Flow control operations (conditional branches, unconditional branches, and traps) are typically
expensive to execute in most machines because they disrupt normal flow in the instruction stream.
When a change in program flow occurs, the 1Q must be reloaded with the target instruction stream.
Previously issued instructions will continue to execute while the new instruction stream makes its
way into the 1Q, but depending on whether the target instruction isin the BTIC, instruction L1 cache,
L2 cache, or in system memory, some opportunities may be missed to execute instructions, as the
examplein Section 6.3.2.3, "Cache Miss" on Page 220 shows.

Performance features such as the branch folding, BTIC, dynamic branch prediction (implemented in
the BHT), two-level branch prediction, and the implementation of nonblocking caches minimize the
penalties associated with flow control operations on the 750CX/CXe/CXr. The timing for branch
instruction execution is determined by many factors including the following:

¢ Whether the branch is taken

*  Whether instructions in the target stream, typically the first two instructionsin the target
stream, are in the branch target instruction cache (BTIC)

*  Whether the target instruction stream isin the L1 cache
*  Whether the branch is predicted
*  Whether the prediction is correct

6.4.1.1 Branch Folding

When a branch instruction is encountered by the fetcher, the BPU immediately begins to decode it
and triesto resolve it. Branch folding is the removal of branches from the instruction stream. Thisis
independent of whether the branch is taken or not taken. However, if the branch instruction updates
either the LR or CTR it can not be removed and must be allocated a position in the completion queue.
If abranch cannot beresolved, immediately, it is predicted and instruction fetching resumes along the
predicted path and those instructions are conditionally fed into the instruction queue. Later, if the
prediction is finally resolved correct, the fetched instructions are validated and allowed to complete
and be retired. If the prediction is resolved incorrect, instructions fetched are invalidated and
instruction fetching resumes along the other path of the branch.

Figure 6-7. on Page 225 shows branch folding. Here abr instruction is encountered in a series of add
instructions. The branch is resolved as taken. What happens on the next clock cycle depends on
whether the target instruction stream isin the BTIC, theinstruction L1 cache, or if it must be fetched
from the L2 cache or from system memory.

Figure 6-7. on Page 225 shows cases where there isaBTIC hit, and when thereisaBTIC miss (and
instruction cache hit).

If there isa BTIC hit on the next clock cycle the b instruction is replaced by the target instruction,
and1, that was found in the BTIC; the second and instruction is also fetched from the BTIC. On the
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next clock cycle, the next four and instructionsfrom the target stream are fetched from the instruction
cache.

If thetarget instructionisnot inthe BTIC, thereisanidle cycle while the fetcher attemptsto fetch the
first four instructions from the instruction cache (on the next clock cycle). In the example in Figure
6-7, the first four target instruction are fetched on the next clock.

If it missesinthe BTIC or L1 caches, an L2 cache or memory accessisrequired, the latency of which
Is dependent on several factors, such as processor/bus clock ratios. In most cases, new instructions
arrive in the 1Q before the execution units becomeidle.

Branch Folding Branch Folding
(Taken Branch/BTIC Hit) (Taken Branch/BTIC Miss)
Clock0  Clock1  Clock 2 Clock0  Clockl  Clock 2

IQ5 | add5 IQ5 | add5
IQ4 | add4 1Q4 | add4
IQ3 | add3 and6 IQ3 | add3 and4
Q2 | b and5 Q2 | b and3
IQ1 |add2 and? and4 IQ1 |add2 and?2
IQO | addl and1 and3 IQ0 | addl and1

Figure 6-7. Branch Taken

Figure 6-8 shows the removal of fall-through branch instructions, which occurs when a branch is not
taken or is predicted as not taken.

Branch Fall-Through

(Not-Taken Branch)
Clock0  Clockl  Clock 2

1Q5 | add5 add8 etc.

1Q4 | add4 add7 add9
1Q3 | add3 add6 add8
1Q2 b add5 add7
IQ1 |add2 add4 add6
1Q0 |add1l add3 add5

Figure 6-8. Removal of Fall-Through Branch Instruction

When a branch instruction is detected before it reaches a dispatch position, and if the branch is
correctly predicted as taken, folding the branch instruction (and any instructions from the incorrect
path) reduces the latency required for flow control to zero; instruction execution proceeds as though
the branch was never there.

The advantage of removing the fall-through branch instructions at dispatch is only marginally less
than that of branch folding. Because the branch is not taken, only the branch instruction needs to be
discarded. The only cost of expelling the branch instruction from one of the dispatch entries rather
than folding it is missing a chance to dispatch an executable instruction from that position.
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6.4.1.2 Branch Instructions and Completion

Asdescribed in the previous section, instructions that do not update either the LR or CTR areremoved
from the instruction stream before they reach the completion queue, either for branch taken or by
removing fall-through branch instructions at dispatch. However, branch instructions that update the
architected LR and CTR must do so in program order and therefore must perform write-back in the
completion stage, like the instructions that update the FPRs and GPRs.

Branch instructions that update the CTR or LR pass through the instruction queue like nonbranch
instructions. At the point of dispatch, however, they are not sent to an execution unit, but rather are
assigned a slot in the completion queue, as shown in Figure 6-9.

Branch Completion

(LR/CTR Write-Back)
Clock 0 Clock 1 Clock 2 Clock 3

1Q5 | add5

1Q4 | add4

IQ3 | add3 add5 add7 add9
1Q2 | bc add4 add6 add8
IQ1 |add2 add3 add5 add7
1Q0 |addil bc add4 add6
CQ5

CQ4

CQ3

CQ2

CQ1 add2 add3 add5
CQo addl bc add4

Figure 6-9. Branch Completion

In this example, the bc instruction is encoded to decrement the CTR. It is predicted as not-taken in
clock cycleO. Inclock cycle 2, bc and add3 are both dispatched. In clock cycle 3, the architected CTR
Is updated and the bc instruction is retired from the completion queue.

6.4.1.3 Branch Prediction and Resolution
The 750CX/CXe/CXr supports the following two types of branch prediction.

» Static branch prediction—Thisisdefined by the PowerPC architecture as part of the encoding
of branch instructions.

» Dynamic branch prediction—Thisis a processor-specific mechanism implemented in
hardware (in particular the branch history table, or BHT) that monitors branch instruction
behavior and maintains a record from which the next occurrence of the branch instruction is
predicted.

When a conditional branch cannot be resolved due to a CR data dependency, the BPU predicts
whether it will be taken, and instruction fetching proceeds down the predicted path. If the branch
prediction resolves as incorrect, the instruction queue and all subsequently executed instructions are
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purged, instructions executed prior to the predicted branch are allowed to complete, and instruction
fetching resumes down the correct path.

The 750CX/CXe/CXr executes through two levels of prediction. Instructions from the first
unresolved branch can execute, but they cannot be retired until the branch is resolved. If a second
branch instruction is encountered in the predicted instruction stream, it can be predicted and
instructions can be fetched, but not executed, from the second branch. No action can be taken for a
third branch instruction until at least one of the two previous branch instructionsis resolved.

The number of instructions that can be executed after the issue of a predicted branch instruction is
limited by the fact that no instruction executed after a predicted branch may actually update (be
retired) the register files or memory until the branch isresolved. That is, instructions may be issued
and executed, but cannot be retired from the completion unit. When an instruction following a
predicted branch completes execution, it does not write back its results to the architected registers,
instead, it stallsin the completion queue. Of course, when the completion queueisfull, no additional
instructions can be dispatched, even if an execution unitisidle.

In the case of amisprediction, the 750CX/CXe/CXr can easily redirect the instruction stream because
the programming model has not been updated. When a branch is mispredicted, all instructions that
were dispatched after the predicted branch instruction are flushed from the compl etion queue and any
results are flushed from the rename registers.

The BTIC is a cache of two recently used instructions at the target (branch to address) of branch
instructions. If ataken-branch hitsin the BTIC, two instructions are fed into the instruction queue on
the next cycle. If a taken-branch misses in the BTIC instruction fetching is done from the L1
instruction cache. Coherency of the BTIC table is maintained by table reset on an icache flush
invalidate, ichbi or rfi instruction execution or when an exception is taken.

In some situations, an instruction sequence creates dependencies that keep a branch instruction from
being predicted because the addressfor the target of the branch isnot available. Thisdelays execution
of the subsequent instruction stream. The instruction sequences and the resulting action of the branch
instruction are described as follows.

* Anmtspr(LK) followed by a bclr—Fetching stops and the branch waits for the mtspr to
execute.

* Anmtspr(CTR) followed by a bcctr—Fetching stops and the branch waits for the mtspr to
execute.

* Anmtspr(CTR) followed by abc (CTR decrement)—Fetching stops and the branch waitsfor
the mtspr to execute.

* A third bc(based-on-CR) is encountered while there are two unresolved bc(based-on-CR).
The third bc(based-on-CR) is not executed and fetching stops until one of the previous
bc(based-on-CR) is resolved. (Note that branch conditions can be afunction of the CTR and
the CR; if the CTR condition is sufficient to resolve the branch, then a CR-dependency is
ignored.)
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6.4.1.3.1 Static Branch Prediction

The PowerPC architecture provides afield in branch instructions (the BO field) to allow software to
speculate (hint) whether a branch is likely to be taken. Rather than delaying instruction processing
until the condition is known, the 750CX/CXe/CXr uses the instruction encoding to predict whether
the branch is likely to be taken and begins fetching and executing along that path. When the branch
condition isknown, the prediction is evaluated. If the prediction was correct, program flow continues
aong that path; otherwise, the processor flushes any instructions and their results from the
mispredicted path, and program flow resumes along the correct path.

Static branch prediction is used when HIDO[BHT] iscleared. That is, the branch history table, which
isused for dynamic branch prediction, is disabled.

For information about static branch prediction, see “Conditional Branch Control,” in Chapter 4,
“Addressing Modes and Instruction Set Summary” in the PowerPC Microprocessor Family: The
Programming Environments manual.

6.4.1.3.2 Predicted Branch Timing Examples

Figure 6-10. on Page 229 shows cases where branch instructions are predicted. It shows how both
taken and not-taken branches are handled and how the 750CX/CXe/CXr handles both correct and
incorrect predictions. The example shows the timing for the following instruction sequence:

0 add

1 add

2 bc

3 mulhw

4 bc TO

5 fadd

6 and
add

T7 add

T8 add

T9 add

T10 add

T1l1l or
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1. During clock cycle 0, instructions 0 and 1 are dispatched to their respective execution units.
Instruction 2 isabranch instruction that updatesthe CTR. It is predicted as not taken in clock
cycle 0. Instruction 3 isa mulhw instruction on which instruction 4 depends.

2. Inclock cycle 1, instructions 2 and 3 enter the dispatch entriesin the 1Q. Instruction 4 (a
second bc instruction) and 5 are fetched. The second bc instruction is predicted as taken. It
can be folded, but it cannot be resolved until instruction 3 writes back.

3. Inclock cycle 2, instruction 4 has been folded and instruction 5 has been flushed from the | Q.
Thetwo target instructions, TO and T1, are both inthe BTIC, so they arefetched in thiscycle.
Note that even though the first bc instruction may not have resolved by this point (we can
assume it has), the 750CX/CXe/CXr alows fetching from a second predicted branch stream.
However, these instructions could not be dispatched until the previous branch has resolved.

4. Inclock cycle 3, target instructions T2—T5 are fetched as TO and T1 are dispatched.

In clock cycle 4, instruction 3, on which the second branch instruction depended, writes back
and the branch prediction is proven incorrect. Even though TOisin CQ1, from whichit could
be written back, it is not written back because the branch prediction was incorrect. All target
instructions are flushed from their positions in the pipeline at the end of this clock cycle, as
are any resultsin the rename registers.

After one clock cycle required to refetch the original instruction stream, instruction 5, the same
instruction that was fetched in clock cycle 1, is brought back into the IQ from the instruction cache,
along with three others (not all of which are shown).

6.4.2 Integer Unit Execution Timing

The 750CX/CXe/CXr hastwo integer units. The lU1 can execute all integer instructions; and the lU2
can execute al integer instructions except multiply and divide instructions. As shown in Figure 6-2.
" Superscalar/Pipeline Diagram,” on Page 210, each integer unit has one execute pipeline stage, thus
when amulticycle (e.g., divide) integer instruction is being executed, no additional integer instruction
can begin to execute in that unit. However, the other unit U2 can continue to execute integer
instructions. Table 6-6. "Integer Instructions,” on Page 239 lists integer instruction latencies.

Most integer instructions have an execution latency of one clock cycle.

6.4.3 Floating-Point Unit Execution Timing

Thefloating-point unit on the 750CX/CXe/CXr executes al floating-point instructions. Execution of
most floating-point instructions is pipelined within the FPU, allowing up to three instructions to be
executing in the FPU concurrently. While most floating-point instructions execute with three- or
four-cycle latency, and one- or two-cycle throughput, two instructions (fdivs and fdiv) execute with
latencies of 11 to 33 cycles. The fdivs, fdiv, mtfsb0, mtfsbl, mtfsfi, mffs, and mtfsf instructions
block the floating-point unit pipeline until they complete execution, and thereby inhibit the dispatch
of additional floating-point instructions. See Table 6-7. "Floating-Point Instructions,” on Page 241
for floating-point instruction execution timing.

6.4.4 Effect of Floating-Point Exceptions on Performance

For the fastest and most predictable floating-point performance, all exceptions should be disabled in
the FPSCR and MSR.
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6.4.5 Load/Store Unit Execution Timing

The execution of most load and store instructionsis pipelined. The LSU hastwo pipeline stages. The
first isfor effective address calculation and MMU tranglation and the second is for accessing datain
the cache. Load and store instructions have a two-cycle latency and one-cycle throughput. For
instructions that store FPR values (stfd, stfs, and their variations), the data to be stored is prefetched
from the source register during the first pipeline stage. In cases where this register is updated that
same cycle, the instruction will stall to get the correct data, resulting in one additional cycle of
latency.

If operands are misaligned, additional latency may be required either for an alignment exception to
be taken or for additional bus accesses. Load instructions that miss in the cache, block subsequent
cache accesses during the cache line refill. Table 6-8. "Load and Store Instructions,” on Page 242
gives load and store instruction execution latencies.

6.4.6 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in memory may
affect the relative performance of memory accesses, and in some cases affect it significantly. The
effects memory operand placement has on performance are shown in Table 6-1.

The best performance is guaranteed if memory operands are aligned on natural boundaries. For the
best performance across the widest range of implementations, the programmer should assume the
performance model described in Chapter 3, “ Operand Conventions’ in the Power PC Microprocessor
Family: The Programming Environments manual.

The effect of misalignment on memory accesslatency isthe samefor big- and little-endian addressing
modes except for multiple and string operations that cause an alignment exception in little-endian
mode.

Table 6-1. Performance Effects of Memory Operand Placement

Operand Boundary Crossing
Size Byte Alignment None 8 Byte Cache Block Protection Boundary
Integer

4 byte 4 Optimalt — — —

<4 Optimal Good Good Good
2 byte 2 Optimal — — —

<2 Optimal Good Good Good
1 byte 1 Optimal — — —
Imw, 4 Good 2 Good Good Good
stmw?

<4 Poor 4 Poor Poor Poor
String 2 — Good Good Good Good

Floating-Point
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Table 6-1. Performance Effects of Memory Operand Placement (Continued)

Operand Boundary Crossing
Size Byte Alignment None 8 Byte Cache Block Protection Boundary
8 byte 8 Optimal — — —
4 — Good Good Good
<4 — Poor Poor Poor
4 byte 4 Optimal — — _
<4 Poor Poor Poor Poor

Notes:
1 Optimal means one EA calculation occurs.
2 Not supported in little-endian mode, causes an alignment exception.
3 Good means multiple EA calculations occur that may cause additional bus activities with multiple bus transfers.
4 Poor means that an alignment exception occurs.

6.4.7 Integer Store Gathering

The 750CX/CXe/CXr performs store gathering for write-through operations to nonguarded space. It
performs cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. These storesare
combined in the LSU to form adouble word and are sent out on the 60x bus as asingle-beat operation.
However, stores are gathered only if the successive stores meet the criteria and are queued and
pending. Store gathering occurs regardless of the address order of the stores. Store gathering is
enabled by setting HIDO[SGE]. Stores can be gathered in both endian modes.

Store gathering is not done for the following:
» Cacheable store operations
» Storesto guarded cache-inhibited or write-through space
» Bytereverse store operations
* stwcex. instructions
* ecowx instructions
* A storethat occurs during atable search operation
* Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, an eieio or sync
instruction must be used to prevent two stores from being gathered.

6.4.8 System Register Unit Execution Timing

Most instructions executed by the SRU either directly access renamed registers or access or modify
nonrenamed registers. They generally execute in a serial manner. Results from these instructions are
not available to subsequent instructions until the instruction completes and is retired. See Section
6.3.2.7, "Instruction Serialization” on Page 223 for more information on serializing instructions
executed by the SRU, and refer to Table 6-4. "System Register Instructions,” on Page 237 and
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Table 6-5. "Condition Register Logical Instructions,” on Page 238 for SRU instruction execution
timings.

6.5 Memory Performance Considerations

Because the 750CX/CXe/CXr can have a maximum instruction throughput of three instructions per
clock cycle, lack of memory bandwidth can affect performance. For the 750CX/CXe/CXr to
maximize performance, it must be ableto read and write data efficiently. If a system has multiple bus
devices, one of them may experience long memory latencies while another bus master (for example,
adirect-memory access controller) is using the external bus.

6.5.1 Caching and Memory Coherency

To minimize the effect of bus contention, the PowerPC architecture defines WIM bits that are used
to configure memory regions as caching-enforced or caching-inhibited. Accesses to such memory
locations never update the L1 cache. If a cache-inhibited access hits the L1 cache, the cache block is
invalidated. If the cache block is marked modified, it is copied back to memory before being
invalidated. Where caching is permitted, memory is configured as either write-back or write-through,
which are described as follows:

*  Write-back— Configuring amemory region aswrite-back lets a processor modify datain the
cache without updating system memory. For such locations, memory updates occur only on
modified cache block replacements, cache flushes, or when one processor needs data that is
modified in another’ scache. Therefore, configuring memory aswrite-back can help when bus
traffic could cause bottlenecks, especially for multiprocessor systemsand for regionsinwhich
data, such aslocal variables, is used often and is coupled closely to a processor.

If multiple devices use datain a memory region marked write-through, snooping must be
enabled to allow the copy-back and cache invalidation operations necessary to ensure cache
coherency. The 750CX/CXe/CXr’ s snooping hardware keeps other devices from accessing
invalid data. For example, when snooping is enabled, the 750CX/CXe/CXr monitors
transactions of other bus devices. For example, if another device needs data that is modified
on the 750CX/CXe/CXr’s cache, the access is delayed so the 750CX/CXe/CXr can copy the
modified data to memory.

*  Write-through—Store operations to memory marked write-through always update both
system memory and the L1 cache on cache hits. Because valid cache contents always match
system memory marked write-through, cache hits from other devices do not cause modified
data to be copied back as they do for locations marked write-back. However, al write
operations are passed to the bus, which can limit performance. Load operations that missthe
L1 cache must wait for the external store operation.

Write-through configuration is useful when cached datamust agree with external memory (for
example, video memory), when shared (global) data may be needed often, or when it is
undesirable to allocate a cache block on a cache miss.

Chapter 3, "The 750CXr Instruction and Data Cache Operation” describes the caches, memory
configuration, and snooping in detail.
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6.5.2 Effect of TLB Miss

If apage address translation isnot in a TLB, the 750CX/CXe/CXr hardware searches the page tables
and updates the TLB when a trandation is found. Table 6-2. shows the estimated latency for the
hardware TLB load for different cache configurations and conditions.

Table 6-2. TLB Miss Latencies

L1 Qondition L2 Condition Processor/Systgm Bus | Estimated Latency
(Instruction and Data) Clock Ratio (Cycles)
100% cache hit — — 7
100% cache miss 100% cache hit — 13
100% cache miss 100% cache miss 2.5:1 (6:3:3:3 memory) 62
100% cache miss 100% cache miss 4:1 (5:2:2:2 memory) 77

The PTE table search assumes a hit in the first entry of the primary PTEG.

6.6 Instruction Scheduling Guidelines

The performance of the 750CX/CXe/CXr can be improved by avoiding resource conflicts and
scheduling instructions to take fullest advantage of the paralel execution units. Instruction
scheduling on the 750CX/CXe/CXr can be improved by observing the following guidelines.

* To reduce mispredictions, separate the instruction that sets CR bits from the branch
instruction that evaluates them. Because there can be no more than 12 instructionsin the
processor (with the instruction that sets CR in CQO and the dependent branch instruction in
1Q5), there is no advantage to having more than 10 instructions between them.

» Likewise, when branching to alocation specified by the CTR or LR, separate the mtspr
instruction that initializesthe CTR or LR from the dependent branch instruction. Thisensures
the register values are available sooner to the branch instruction.

» Schedule instructions such that two can be dispatched at atime.
» Schedule instructions to minimize stalls due to execution units being busy.

» Avoid scheduling high-latency instructions close together. Interspersing single-cycle latency
integer instructions between longer-latency instructions minimizes the effect that instructions
such asinteger divide and multiply can have on throughput.

* Avoid using serializing instructions.

» Scheduleinstructions to avoid dispatch stalls.

— Six instructions can be tracked in the completion queue; therefore, only six instructions
can be in the execute stages at any one time.

— There are six GPR rename registers; therefore only six GPRs can be specified as
destination operands at any time. If no rename registers are available, instructions cannot
enter the execute stage and remain in the reservation station or instruction queue until they
become available.

NOTE: Load with update address instructions use two rename registers.
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— Similarly, thereare six FPR rename registers, so only six FPR destination operands
can be in the execute and complete stages at any time.

6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements

This section describes the specific resources required to avoid stalls during branch resolution,
instruction dispatching, and instruction completion.

6.6.1.1 Branch Resolution Resource Requirements

Thefollowingisalist of branch instructions and the resources required to avoid stalling the fetch unit
in the course of branch resolution:

The bclr instruction requires LR availability.
The bectr instruction requires CTR availability.
Branch and link instructions require shadow LR availability.

The *branch conditional on counter decrement and the CR” condition requires CTR
availability or the CR condition must be false, and the 750CX/CXe/CXr cannot execute
instructions after an unresolved predicted branch when the BPU encounters a branch.

A branch conditional on CR condition cannot be executed following an unresolved predicted
branch instruction.

6.6.1.2 Dispatch Unit Resource Requirements

The following is alist of resources required to avoid stalls in the dispatch unit. 1Q[0] and 1Q[1] are
the two dispatch entries in the instruction queue:

Requirements for dispatching from 1Q[0] are as follows.

— Needed execution unit available

— Needed GPR rename registers available

— Needed FPR rename registers available

— Completion queue is not full.

— A completion-serialized instruction is not being executed.

Requirements for dispatching from 1Q[1] are as follows.

— Instruction in 1Q[0] must dispatch.

— Instruction dispatched by 1Q[0] is not completion- or refetch-serialized.
— Needed execution unit is available (after dispatch from 1Q[0]).

— Needed GPR rename registers are available (after dispatch from 1Q[0]).
— Needed FPR rename register is available (after dispatch from 1Q[Q]).
— Completion queue is not full (after dispatch from 1Q[Q]).
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6.6.1.3 Completion Unit Resource Requirements

The following is alist of resources required to avoid stalls in the completion unit; note that the two
completion entries are described as CQ[0] and CQ[1], where CQIQ] is the completion queue located
at the end of the completion queue (see Figure 6-4. "Instruction Flow Diagram," on Page 216).

* Requirements for completing an instruction from CQJ[0] are asfollows:
— Instruction in CQ[0] must be finished.
— Instruction in CQ[0] must not follow an unresolved predicted branch.
— Instruction in CQ[0] must not cause an exception.
* Requirements for completing an instruction from CQJ[ 1] are asfollows:
— Instruction in CQ[0] must complete in same cycle.
— Instruction in CQ[ 1] must be finished.
— Instruction in CQ[ 1] must not follow an unresolved predicted branch.
— Instruction in CQ[ 1] must not cause an exception.
— Instruction in CQ[ 1] must be an integer or load instruction.
— Number of CR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of GPR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of FPR updates from both CQ[0] and CQ[1] must not exceed two.
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6.7 Instruction Latency Summary

Table 6-3. through Table 6-8. on Page 242 list the |atencies associated with instructions executed by
each execution unit. Table 6-3. describes branch instruction latencies.

Table 6-3. Branch Instructions

Mnemonic | Primary | Extended Latency

b[l][a] 18 — Unless these instructions update either the CTR or the LR, branch

boll 16 operations are folded if they are either taken or predicted as taken. They fall
cllal — through if they are not taken or predicted as not taken.

beetr[l] 19 528

belr[l] 19 16

Table 6-4. lists system register instruction latencies.

Table 6-4. System Register Instructions

Mnemonic Primary Extended Unit Cycles Serialization
eieio 31 854 SRU 1 —
isync 19 150 SRU 2 Completion, refetch
mfmsr 31 83 SRU 1 —
mfspr (DBATS) 31 339 SRU 3 Execution
mfspr (IBATS) 31 339 SRU 3 —
mfspr (not I/DBATS) 31 339 SRU 1 Execution
mfsr 31 595 SRU 3 —
mfsrin 31 659 SRU 3 Execution
mftb 31 371 SRU 1 —
mtmsr 31 146 SRU 1 Execution
mtspr (DBATS) 31 467 SRU 2 Execution
mtspr (IBATS) 31 467 SRU 2 Execution
mtspr (not I/DBATS) 31 467 SRU 2 Execution
mtsr 31 210 SRU 2 Execution
mtsrin 31 242 SRU 2 Execution
mttb 31 467 SRU 1 Execution
rfi 19 50 SRU 2 Completion, refetch
sc 17 --1 SRU 2 Completion, refetch
sync 31 598 SRU 3! —
tibsync 2 31 566 — —
Notes:

L This assumes no pending stores in the store queue. If there are, the sync completes after they complete to memory.
If broadcast is enabled on the 60x bus, sync completes only after a successful broadcast.
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2tIbsync is dispatched only to the completion buffer (not to any execution unit) and is marked finished as it is
dispatched. Upon retirement, it waits for an external TLBISYNC signal to be asserted. In most systems TLBISYNC
is always asserted so the instruction is a no-op.

Condition register logical instruction latencies are listed in Table 6-5.

Table 6-5. Condition Register Logical Instructions

Mnemonic Primary Extended Unit Cycles Serialization
crand 19 257 SRU 1 Execution
crandc 19 129 SRU 1 Execution
creqv 19 289 SRU 1 Execution
crnand 19 225 SRU 1 Execution
crnor 19 33 SRU 1 Execution
cror 19 449 SRU 1 Execution
crorc 19 417 SRU 1 Execution
crxor 19 193 SRU 1 Execution
mcrf 19 0 SRU 1 Execution
mcrxr 31 512 SRU 1 Execution
mfcr 31 19 SRU 1 Execution
mtcrf 31 144 SRU 1 Execution

Table 6-6. on Page 239 shows integer instruction latencies. Note that the 1U1 executes all integer
arithmetic instructions—multiply, divide, shift, rotate, add, subtract, and compare. The U2 executes
all integer instructions except multiply and divide (that is, shift, rotate, add, subtract, and compare).
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Table 6-6. Integer Instructions

Mnemonic Primary Extended Unit Cycles Serialization
addc[o][] 31 10 U1/1U2 1 —
adde[o][.] 31 138 IU1/1U2 1 Execution
addi 14 — IU1/1u2 1 —
addic 12 — IU1/1u2 1 —
addic. 13 — IU1/1U2 1 —
addis 15 — IU1/1U2 1 —
addmelo][.] 31 234 IU1/1U2 1 Execution
addze[o][.] 31 202 IU1/1U2 1 Execution
add[o][.] 31 266 IU1/1u2 1 —
andcl[.] 31 60 IU1/1U2 1 —
andi. 28 — IU1/1u2 1 —
andis. 29 — IU1/1U2 1 —
and[] 31 28 lu1/1U2 1 —
cmp 31 0 IU1/1U2 1 —
cmpi 11 — IU1/1u2 1 —
cmpl 31 32 IU1/1U2 1 —
cmpli 10 — IU1/1U2 1 —
cntlzw[] 31 26 lu1/1U2 1 —
divwu[o][.] 31 459 U1 19 —
divw[o][.] 31 491 U1 19 —
eqv[] 31 284 lu1/1U2 1 —
extsb[] 31 954 lu1/1U2 1 —
extsh[.] 31 922 U1/1U2 1 —
mulhwul.] 31 11 U1 2,3,4,5,6 —
mulhw[ ] 31 75 U1 2,345 —
mulli 7 — U1 2,3 —
mullw[o][.] 31 235 U1 2,3,4,5 —
nand[.] 31 476 lu1/1U2 1 —
neg[o][.] 31 104 U1/1U2 1 —
nor[.] 31 124 lU1/1U2 1 —
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Table 6-6. Integer Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
orc[] 31 412 lu1/1U2 —
ori 24 — IU1/1u2 —
oris 25 — IU1/1u2 —
or[] 31 444 lU1/1U2 —
riwimi[.] 20 — IU1/1U2 —
riwinmi[.] 21 — IU1/1U2 —
rlwnm[.] 23 — IU1/1U2 —
siw[] 31 24 lu1/1U2 —
srawil.] 31 824 IU1/1U2 —
sraw[ ] 31 792 U1/1U2 —
srw[.] 31 536 Iu1/1U2 —
subfc[o][] 31 8 IU1/1U2 —
subfe[o][.] 31 136 IU1/1U2 Execution
subfic 8 — IU1/1u2 —
subfme[o][.] 31 232 IU1/1U2 Execution
subfze[o][.] 31 200 IU1/1u2 Execution
subf[] 31 40 U1/1U2 —
tw 31 4 IU1/1U2 —
twi 3 — IU1/1u2 —
Xori 26 — IU1/1u2 —
Xoris 27 — IU1/1u2 —
xor[.] 31 316 IU1/1U2 —

Table6-7. on Page 241 shows latencies for floating-point instructions. Pipelined floating-point
instructions are shown with number of clocks in each pipeline stage separated by dashes.
Floating-point instructions with a single entry in the cycles column are not pipelined; when the FPU
executes these nonpipelined instructions, it remains busy for the full duration of the instruction

execution and is not available for subsequent instructions.
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Table 6-7. Floating-Point Instructions

Mnemonic Primary Extended Unit Cycles Serialization
fabsl[.] 63 264 FPU 1-1-1 —
fadds[.] 59 21 FPU 1-1-1 —
fadd[.] 63 21 FPU 1-1-1 —
fcmpo 63 32 FPU 1-1-1 —
fcmpu 63 0 FPU 1-1-1 —
fctiwz[.] 63 15 FPU 1-1-1 —
fotiw(] 63 14 FPU 1-1-1 —
fdivs[] 59 18 FPU 17 —
fdiv[.] 63 18 FPU 31 —
fmaddsl.] 59 29 FPU 1-1-1 —
fmadd[.] 63 29 FPU 2-1-1 —
fmr[] 63 72 FPU 1-1-1 —
fmsubsl.] 59 28 FPU 1-1-1 —
fmsub[.] 63 28 FPU 2-1-1 —
fmuls[] 59 25 FPU 1-1-1 —
fmul[] 63 25 FPU 2-1-1 —
fnabsl.] 63 136 FPU 1-1-1 —
fnegl[.] 63 40 FPU 1-1-1 —
fnmadds|.] 59 31 FPU 1-1-1 —
fnmadd][.] 63 31 FPU 2-1-1 —
fnmsubs].] 59 30 FPU 1-1-1 —
fnmsubl[.] 63 30 FPU 2-1-1 —
fres[] 59 24 FPU 2-1-1 —
frsp[] 63 12 FPU 1-1-1 —
frsqrtel.] 63 26 FPU 2-1-1 —
fsell] 63 23 FPU 1-1-1 —
fsubs[.] 59 20 FPU 1-1-1 —
fsub[.] 63 20 FPU 1-1-1 —
mcrfs 63 64 FPU 1-1-1 Execution
mffs[.] 63 583 FPU 1-1-1 Execution
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Table 6-7. Floating-Point Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
mtfsbO[.] 63 70 FPU 3 —
mtfsbi[] 63 38 FPU 3 —
mtfsfil.] 63 134 FPU 3 —
mtfsf[] 63 711 FPU 3 —

Load and store instruction latencies are shown in Table 6-8. Pipelined load/store instructions are

shown with cycles of total latency and throughput cycles separated by a colon.

Table 6-8. Load and Store Instructions

Mnemonic Primary Extended Unit Cycles Serialization
dcbf 31 86 LSU 3:51 Execution
dcbi 31 470 LSU 3:3! Execution
dcbst 31 54 LSU 35t Execution
dcbt 31 278 LSU 2:1 —
dcbtst 31 246 LSuU 2:1 —
dcbz 31 1014 LSU 3612 Execution
eciwx 31 310 LSU 2:1 —
ecowx 31 438 LSU 2:1 —
icbi 31 982 LSU 3:41 Execution
bz 34 — LSU 2:1 —

Ibzu 35 — LSU 2:1 —
Ibzux 31 119 LSU 2:1 —
Ibzx 31 87 LSU 2:1 —
Ifd 50 — LSU 2:1 —
Ifdu 51 — LSU 2:1 —
Ifdux 31 631 LSU 2:1 —
Ifdx 31 599 LSU 2:1 —
Ifs 48 — LSU 2:1 —
Ifsu 49 — LSU 2:1 —
Ifsux 31 567 LSU 2:1 —
Ifsx 31 535 LSU 2:1 —
lha 42 — LSU 2:1 —
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Table 6-8. Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

lhau 43 — LSuU 2:1 —

Ihaux 31 375 LSuU 2:1 —

Ihax 31 343 LSuU 2:1 —

lhbrx 31 790 LSU 2:1 —

lhz 40 — LSU 2:1 —

lhzu 41 — LSU 2:1 —

Ihzux 31 311 LSuU 2:1 —

lhzx 31 279 LSuU 2:1 —

Imw 46 — LSU 2+n?3 Completion, execution
Iswi 31 597 LSU 2+n3 Completion, execution
Iswx 31 533 LSU 2+n3 Completion, execution
Iwarx 31 20 LSU 31 Execution

Iwbrx 31 534 LSuU 2:1 —

lwz 32 — LSuU 2:1 —

lwzu 33 — LSuU 2:1 —

lwzux 31 55 LSU 2:1 —

lwzx 31 23 LSU 2:1 —

stb 38 — LSU 2:1 —

stbu 39 — LSuU 2:1 —

stbux 31 247 LSuU 2:1 —

stbx 31 215 LSU 2:1 —

stfd 54 — LSU 2:1 —

stfdu 55 — LSuU 2:1 —

stfdux 31 759 LSuU 2:1 —

stfdx 31 727 LSU 2:1 —

stfiwx 31 983 LSuU 2:1 —

stfs 52 — LSU 2:1 —

stfsu 53 — LSuU 2:1 —

stfsux 31 695 LSuU 2:1 —

stfsx 31 663 LSu 2:1 —

sth 44 — LSU 2:1 —

Instruction Timing 3/17/05 Page 243




Table 6-8. Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

sthbrx 31 918 LSuU 2:1 —

sthu 45 — LSuU 2:1 —

sthux 31 439 LSuU 2:1 —

sthx 31 407 LSU 2:1 —

stmw 47 — LSU 2+n3 Execution
stswi 31 725 LSU 2+n3 Execution
stswx 31 661 LSU 2+n3 Execution
stw 36 — LSU 2:1 —
stwbrx 31 662 LSuU 2:1 —

stwcx. 31 150 LSU 8:8 Execution
stwu 37 — LSU 2:1 —

stwux 31 183 LSU 2:1 —

stwx 31 151 LSU 2:1 —

tlbie 31 306 LSU 3:41 Execution
Notes:

1 For cache-ops, the first number indicates the latency in finishing a single instruction; the second indicates the
throughput for back-to-back cache-ops. Throughput may be larger than the initial latency as more cycles may be
needed to complete the instruction to the cache, which stays busy keeping subsequent cache-ops from executing.

2 The throughput number of 6 cycles for dchz assumes it is to nonglobal (M = 0) address space. For global address
space, throughput is at least 11 cycles

3 Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of
cycles, where n is the number of words accessed by the instruction.
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Chapter 7 Signal Descriptions

This chapter describes the 750CX/CXe/CXr microprocessor’ s external signals. It contains a concise
description of individual signals, showing behavior when the signal is asserted and negated and when
the signal is an input and an output.

NOTE

A bar over a signal name indicates that the signal is active low—for
example, ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
A[0-31] (address bus signals) and TT[0-4] (transfer type signals) are
referred to as asserted when they are high and negated when they are
low.

The 750CX/CXe/CXr’ s signals are grouped as follows:
* Address arbitration— The 750CX/CXe/CXr uses these signals to arbitrate for address bus

mastership.

* Addresstransfer start—These signalsindicate that abus master has begun atransaction on the
address bus.

* Addresstransfer—These signals include the address bus. They are used to transfer the
address.

» Transfer attribute—These signals provide information about the type of transfer, such asthe
transfer size and whether the transaction is bursted, write-through, or cache-inhibited.

* Addresstransfer termination—These signals are used to acknowledge the end of the address
phase of the transaction. They also indicate whether a condition exists that requires the
address phase to be repeated.

» Dataarbitration— The 750CX/CXe/CXr uses these signals to arbitrate for data bus
mastership.

» Datatransfer—These signals, which consist of the data bus are used to transfer the data.

» Datatransfer termination—Datatermination signalsare required after each databeat in adata
transfer. In asingle-beat transaction, the data termination signals also indicate the end of the
tenure; while in burst accesses, the data termination signals apply to individual beats and
indicate the end of the tenure only after the final data beat. They also indicate whether a
condition exists that requires the data phase to be repeated.

* Interrupts/resets—These signals include the external interrupt signal, checkstop signals, and
both soft reset and hard reset signals. They are used to interrupt and, under various conditions,
to reset the processor.

* Processor status and control—These signals are used to set the reservation coherency bit,
enable the time base, and other functions. They are also used in conjunction with such
resources as secondary caches and the time base facility.

» Clock control—These signals determine the system clock frequency. They can also be used
to synchronize multiprocessor systems.
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* Testinterface—The JTAG (IEEE 1149.1a-1993) interface and the common on-chip processor
(COP) unit provide aserial interface to the system for performing board-level boundary-scan
Interconnect tests.

7.1 Signal Configuration

Figure 7-1. illustrates the 750CX/CXe/CXr’s signal configuration, showing how the signals are
grouped. A pinout showing pin numbersisincluded in the 750CX/CXe/CXr hardware specifications.
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1 —
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B —
. T T
-———————————
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Figure 7-1. PowerPC 750CX/CXe/CXr Signal Groups

7.2 Signal Descriptions
This section describes individual signals on the 750CX/CXe/CXr, grouped according to Figure 7-1.
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NOTE: These sections summarize signal functions; Chapter 8, "Bus Interface Operation”
describes many of these signalsin greater detail, both with respect to how individual
signals function and to how the groups of signals interact.
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7.2.1 Address Bus Arbitration Signals

The address arbitration signals are the input and output signals the 750CX/CXe/CXr uses to request
the address bus, recognize when the request is granted, and indicate to other devices when mastership
is granted.

For a detailed description of how these signalsinteract, see Section 8.3.1, “Address Bus Arbitration”
on Page 276.

7.2.1.1 Bus Request (ﬁ)—Output
Following are the state meaning and timing comments for the BR output signal.

State Meaning Asserted—Indicates that the 750CX/CXe/CXr is requesting mastership of
the address bus. Note that BR may be asserted for one or more cycles, and
then de-asserted due to an internal cancellation of the bus request (for
example, due to aload hit in the touch load buffer). See Section 8.3.1,
“Address Bus Arbitration™ on Page 276.

Negated—Indicates that the 750CX/CXe/CXr is not requesting the address
bus. The 750CX/CXe/CXr may have no bus operation pending, it may be
parked, or the ARTRY input was asserted on the previous bus clock cycle.

Timing Comments  Assertion—Occurs when the 750CX/CXe/CXr is not parked and a bus
transaction is needed. This may occur even if the two possible pipeline
accesses have occurred. BR will also be asserted for one cycle during the
execution of adcbz instruction, and during the execution of aload instruction
which hitsin the touch load buffer.

Negation—Occurs for at least one bus clock cycle after an accepted,
qualified busgrant (see BG), even if another transaction is pending. It isalso
negated for at least one bus clock cycle when the assertion of ARTRY is
detected on the bus.

7.2.1.2 Bus Grant (BG)—Input
Following are the state meaning and timing comments for the BG input signal.

State Meaning Asserted—I ndicates that the 750CX/CXe/CXr may, with proper
qualification, assume mastership of the address bus. A qualified bus grant
occurs when BG is asserted and ARTRY is not asserted the bus cycle
following the assertion of AACK. The ARTRY signal isdriven by the
750CX/CXe/CXr or other busmasters. If the 750CX/CXe/CXrisparked, BR
need not be asserted for the qualified bus grant. See Section 8.3.1, “Address
Bus Arbitration™ on Page 276.

Negated—I ndicates that the 750CX/CXe/CXr is not the next potential
address bus master.

Timing Comments  Assertion—May occur at any time to indicate the 750CX/CXe/CXr can use
the address bus. After the 750CX/CXe/CXr assumes bus mastership, it does
not check for a qualified bus grant again until the cycle during which the
address bus tenure compl etes (assuming it has another transaction to run).
The 750CX/CXe&/CXr does not accept a BG in the cycles between the
assertion of any TSand AACK.
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Negation—May occur at any time to indicate the 750CX/CXe/CXr cannot

use the bus. The 750CX/CXe/CXr may still assume bus mastership on the
bus clock cycle of the negation of BG because during the previous cycle BG
indicated to the 750CX/CXe/CXr that it could take mastership (if qualified).

7.2.2 Address Transfer Start Signals

Addresstransfer start signals are input and output signal s that indicate that an address bus transfer has
begun. The transfer start (TS) signal identifies the operation as a memory transaction.

For detailed information about how TS interacts with other signals, refer to Section 8.3.2, “Address
Transfer" on Page 279.

7.2.2.1 Transfer Start (E)
The TS signal is both an input and an output signal on the 750CX/CXe/CXr.

7.2.2.1.1 Transfer Start (E)—Output

Following are the state meaning and timing comments for the TS output signal.

State Meaning Asserted—Indicates that the 750CX/CXe/CXr has begun a memory bus
transaction and that the address bus and transfer attribute signals are valid.

When asserted with the appropriate TT[0-4] signalsitisalso animplied data
bus request for amemory transaction (unlessit is an address-only operation).

Negated—Indicates that no bus transaction is occurring during normal
operation.

Timing Comments  Assertion—May occur in a bus cycle following a qualified bus grant.
Negation—Occurs one bus clock cycle after TS is asserted.
High Impedance—Occurs the bus cycle following AACK.
7.2.2.1.2 Transfer Start (E)—Input

Following are the state meaning and timing comments for the TS input signal.

State Meaning Asserted—I ndicates that another master has begun a bus transaction and that
the address bus and transfer attribute signals are valid for snooping (see
GBL).

Negated—Indicates that no bus transaction is occurring.

Timing Comments  Assertion—May occur in abus cycle following a qualified bus grant.
Negation—Must occur one bus clock cycle after TS is asserted.

7.2.3 Address Transfer Signals

The address transfer signals are used to transmit the address and to generate and monitor parity for
the address transfer. For a detailed description of how these signals interact, refer to Section 8.3.2,
“Address Transfer" on Page 279. Address parity is optional on the 750CX/CXe/CXr.

7.2.3.1 Address Bus (A[0-31])
The address bus (A[0-31]) consists of 32 signals that are both input and output signals.
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7.2.3.1.1 Address Bus (A[0-31])—Output
Following are the state meaning and timing comments for the A[0—31] output signals.

State Meaning Asserted/Negated—Represents the physical address (real addressin the
architecture specification) of the datato betransferred. On burst transfers, the
address bus presents the double-word-aligned address containing the critical
code/data that missed the cache on aread operation, or the first double word
of the cache line on awrite operation. Note that the address output during
burst operations is not incremented. See Section 8.3.2, “ Address Transfer"
on Page 279.

Timing Comments  Assertion/Negation—Occurs on the bus clock cycle after aqualified bus
grant (coincides with assertion of TS).

High Impedance—Occurs one bus clock cycle after AACK is asserted.

7.2.3.1.2 Address Bus (A[0-31])—Input
Following are the state meaning and timing comments for the A[0-31] input signals.

State Meaning Asserted/Negated—Represents the physical address of a snoop operation.

Timing Comments  Assertion/Negation—Must occur on the same bus clock cycle asthe
assertion of TS; is sampled by the 750CX/CXe/CXr only on this cycle.

7.2.3.2 Address Bus Parity (AP[0-3]) (Optional on 750CX/CXe/CXr)

The address bus parity (AP[0-3]) signals are both input and output signals reflecting one bit of
odd-byte parity for each of the 4 bytes of address when a valid address is on the bus. Address Bus
Parity (AP[0-3])—Output

Following are the state meaning and timing comments for the AP[0-3] output signals.

State M eaningAsserted/Negated—Represents odd parity for each of the 4 bytes of the physical
address for a transaction. Odd parity means that an odd number of bits, including the parity bit, are
driven high. The signal assignments correspond to the following:

AP0 A[0-7]
AP1  A[8-15]
AP2  A[16-23]
AP3  A[24-31]

Timing Comments  Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.3.2.1 Address Bus Parity (AP[0-3])—Input (Optional on 750CX/CXe/CXr)
Following are the state meaning and timing comments for the AP[0-3] input signal.

State M eaning Asserted/Negated—Represents odd parity for each of the 4 bytes of the
physical address for snooping operations. Detected even parity causes the
processor to take a machine check exception or enter the checkstop state if
address parity checking is enabled in the HIDO register; see Section 2.1.2.2,
“Hardware Implementation-Dependent Register 0" on Page 64.

Timing Comments  Assertion/Negation—The same as A[0-31].
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7.2.4 Address Transfer Attribute Signals

Thetransfer attribute signals are a set of signalsthat further characterize the transfer—such asthe size
of the transfer, whether it isaread or write operation, and whether it isaburst or single-beat transfer.
For adetailed description of how these signalsinteract, see Section 8.3.2, “ Address Transfer" on Page
279.

NOTE: Some signal functions vary depending on whether the transaction isamemory access or

an /O access.

7.2.4.1 Transfer Type (TT[0-4])

The transfer type (TT[0-4]) signals consist of five input/output signals on the 750CX/CXe/CXr. For
a complete description of TT[0-4] signals and for transfer type encodings, see Table 7-1.
7.2.4.1.1 Transfer Type (TT[0-4])—Output

Following are the state meaning and timing comments for the TT[0—4] output signals on the
750CX/CXe/CXr.

State Meaning
Timing Comments

Asserted/Negated—I ndicates the type of transfer in progress.
Assertion/Negation/High Impedance—The same as A[0-31].

7.2.4.1.2 Transfer Type (TT[0-4])—Input

Following are the state meaning and timing comments for the TT[0—4] input signals on the
750CX/CXe/CXr.

State M eaning Asserted/Negated—I ndicates the type of transfer in progress (see Table 7-2

". PowerPC 750CX/CXe/CXr Snoop Hit Response,” on Page 253).
Timing Comments  Assertion/Negation—The same as A[0-31].
Table 7-1 describes the transfer encodings for an the 750CX/CXe/CXr bus master.

Table 7-1. Transfer Type Encodings for PowerPC 750CX/CXe/CXr Bus Master

750CX/CXe/C Transaction 60x Bus Specification

Xr Bus Master TTO | TT1 | TT2 | TT3 | TT4 P Transaction
: Source Command

Transaction
Address only! dcbst 0 0 0 0 0 Clean block Address only
Address only! dcbf 0 0 1 0 0 Flush block Address only
Address only! sync 0 1 0 0 0 sync Address only
Address only! dcbz or dcbi 0 1 1 0 0 Kill block Address only
Address only! eieio 1 0 0 0 0 eieio Address only
Single-beat ecowx 1 0 1 0 0 External control word Single-beat
write (nonGBL) write write
N/A N/A 1 1 0 0 0 TLB invalidate Address only
Single-beat eciwx 1 1 1 0 0 External control word Single-beat
read (nonGBL) read read
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Table 7-1. Transfer Type Encodings for PowerPC 750CX/CXe/CXr Bus Master (Contin-

750CX/CXe/C

Transaction

60x Bus Specification

Xr Bus Master TTO | TT1 | TT2 | TT3 | TT4 Transaction
: Source Command
Transaction
N/A N/A 0 0 0 0 1 Iwarx Address only
reservation set
N/A N/A 0 0 1 0 1 Reserved —
N/A N/A 0 1 0 0 1 tibsync Address only
N/A N/A 0 1 1 0 1 icbi Address only
N/A N/A 1 X X 0 1 Reserved —
Single-beat Caching-inhibited 0 0 0 1 0 Write-with-flush Single-beat
write or write-through write or burst
store
Burst Cast-out, or 0 0 1 1 0 Write-with-kill Burst
(nonGBL) snoop copyback
Single-beat Caching-inhibited 0 1 0 1 0 Read Single-beat
read load or instruction read or burst
fetch
Burst Load miss, store 0 1 1 1 0 Read-with-intent-to-mo | Burst
miss, or dify
instruction fetch
Single-beat stwcx. 1 0 0 1 0 Write-with-flush-atomic | Single-beat
write write
N/A N/A 1 0 1 1 0 Reserved N/A
Single-beat lwarx 1 1 0 1 0 Read-atomic Single-beat
read (caching-inhibited read or burst
load)
Burst lwarx 1 1 1 1 0 Read-with-intent-to-mo | Burst
(load miss) dify-atomic
N/A N/A 0 0 0 1 1 Reserved —
N/A N/A 0 0 1 1 1 Reserved —
N/A DMA 0 1 0 1 1 Read-with-no-intent-to- | Single-beat
cache read or burst
N/A N/A 0 1 1 1 1 Reserved —
N/A N/A 1 X X 1 1 Reserved —

Note: 'Address-only transaction occurs if enabled by setting HIDO[ABE] bit to 1.
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Table 7-2 describes the 60x bus specification transfer encodings and the 750CX/CXe/CXr bus snoop

response on an address hit.

Table 7-2. PowerPC 750CX/CXe/CXr Snoop Hit Response

PowerPC
60x Bus Specification Transaction 1o |l Tl T2 | 713 | 714 7SOCX/CXe/C>§r
Command Bus Snooper;
Action on Hit

Clean block Address only 0 0 0 0 0 N/A

Flush block Address only 0 0 1 0 0 N/A

sync Address only 0 1 0 0 0 N/A

Kill block Address only 0 1 1 0 0 Flush, cancel
reservation

eieio Address only 1 0 0 0 0 N/A

External control word write Single-beat write 1 0 1 0 0 N/A

TLB Invalidate Address only 1 1 0 0 0 N/A

External control word read Single-beat read 1 1 1 0 0 N/A

Iwarx Address only 0 0 0 0 1 N/A

reservation set

Reserved — 0 0 1 0 1 N/A

tlbsync Address only 0 1 0 0 1 N/A

icbi Address only 0 1 1 0 1 N/A

Reserved — 1 X X 0 1 N/A

Write-with-flush Single-beat write or burst 0 0 0 1 0 Flush, cancel
reservation

Write-with-kill Single-beat write or burst 0 0 1 1 0 Kill, cancel
reservation

Read Single-beat read or burst 0 1 0 1 0 Clean or flush

Read-with-intent-to-modify Burst 0 1 1 1 0 Flush

Write-with-flush-atomic Single-beat write 1 0 0 1 0 Flush, cancel
reservation

Reserved N/A 1 0 1 1 0 N/A

Read-atomic Single-beat read or burst 1 1 0 1 0 Clean or flush

Read-with-intent-to Burst 1 1 1 1 0 Flush

modify-atomic

Reserved — 0 0 0 1 1 N/A

Reserved — 0 0 1 1 1 N/A

Read-with-no-intent-to-cache | Single-beat read or burst 0 1 0 1 1 Clean
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Table 7-2. PowerPC 750CX/CXe/CXr Snoop Hit Response (Continued)

PowerPC
60x Bus Specification Transaction 1o | Tl 72 | 713 | 7714 750CX/CXel/CXr
Command Bus Snooper;
Action on Hit
Reserved — 0 1 1 1 1 N/A
Reserved — 1 X X 1 1 N/A

7.2.4.2 Transfer Size (TSIZ[0-2])—Output

Following are the state meaning and timing comments for the transfer size (TSI Z[0—2]) output signals

on the 750CX/CXe/CXr.

State Meaning

Asserted/Negated—For memory accesses, these signals along with TBST,
indicate the data transfer size for the current bus operation, as shown in

Table 7-3.

Table 8-6". Aligned Data Transfers (32-Bit BusMode)," on Page 302 shows

how the transfer size signals are used with the address signals for aligned

transfers.

Table 8-4". Misaligned Data Transfers (Four-Byte Examples)," on Page 283
shows how the transfer size signals are used with the address signals for

misaligned transfers.

NOTE: The 750CX/CXe/CXr does not generate all possible TSIZ[0-2] encodings.

Timing Comments

For external control instructions (eciwx and ecowx), TSIZ[0-2] are used to
output bits 29-31 of the external accessregister (EAR), which are used to
form the resource ID (TBST|[TSIZ0-TSIZ2).

Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

Table 7-3. Data Transfer Size

TBST TSIZ[0-2] Transfer Size
Asserted 010 Burst (32 bytes)
Negated 000 8 bytes
Negated 001 1 byte
Negated 010 2 bytes
Negated 011 3 bytes
Negated 100 4 bytes
Negated 101 5 bytes!
Negated 110 6 bytes!
Negated 111 7 bytes?
Note: INot generated by the 750CX/CXe/CXr.
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7.2.4.3 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on the 750CX/CXe/CXr.

7.2.4.3.1 Transfer Burst (TBST)—Output

Following are the state meaning and timing comments for the TBST output signal.

State Meaning Asserted—Indicates that a burst transfer isin progress.
Negated—Indicates that a burst transfer is not in progress.

For external control instructions (eciwx and ecowx), TBST is used to output
bit 28 of the EAR, which isused to form the resource ID
(TBST||TSIZO-TSIZ2).

Timing Comments  Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].
7.2.4.3.2 Transfer Burst (TBST)—Input
Following are the state meaning and timing comments for the TBST input signal.

State Meaning Asserted/Negated—Used when snooping for single-besat reads (read with no
intent to cache).

Timing Comments  Assertion/Negation—The same as A[0-31].

7.2.4.4 Cache Inhibit (Cl)—Output

The cache inhibit (CI) signal is an output signal on the 750CX/CXe/CXr. Following are the state
meaning and timing comments for the CI signal.

State Meaning Asserted—Indicates that a single-beat transfer will not be cached, reflecting
the setting of the | bit for the block or page that contains the address of the
current transaction.

Negated—Indicates that a burst transfer will allocate an the
750CX/CXe/CXr data cache block.

Timing Comments  Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.4.5 Write-Through (m)—Output

The write-through (WT) signal is an output signal on the 750CX/CXe/CXr. Following are the state
meaning and timing comments for the WT signal.

State Meaning Asserted—Indicates that a single-beat write transaction is write-through,
reflecting the value of the W bit for the block or page that contains the
addressof the current transaction. Assertion during aread operation indicates
instruction fetching.

Negated—Indicates that a write transaction is not write-through; during a
read operation negation indicates a data load.

Timing Comments  Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].
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7.2.4.6 Global (GBL)
The global (GBL) signal is an input/output signal on the 750CX/CXe/CXr.

7.2.4.6.1 Global (GBL)—Output
Following are the state meaning and timing comments for the GBL output signal.

State Meaning Asserted—Indicates that a transaction is global, reflecting the setting of the
M bit for the block or page that containsthe address of the current transaction
(except inthe case of copy-back operationsand instruction fetches, which are
nonglobal .)

Negated—Indicates that a transaction is not global.
Timing Comments  Assertion/Negation—The same as A[0-31].

High Impedance—The same as A[0-31].
7.2.4.6.2 Global (GBL)—Input
Following are the state meaning and timing comments for the GBL input signal.

State Meaning Asserted—Indicates that a transaction must be snooped by the
750CX/CXe/CXr.

Negated—Indicates that a transaction is not snooped by the
750CX/CXe/CXr.

Timing Comments  Assertion/Negation—The same as A[0-31].

7.2.5 Address Transfer Termination Signals

The address transfer termination signals are used to indicate either that the address phase of the
transaction has completed successfully or must be repeated, and when it should be terminated. For
detailed information about how these signals interact, see Chapter 8, "Bus Interface Operation”.

7.2.5.1 Address Acknowledge (AACK)—Input

The address acknowledge (AACK) signal isan input-only signal on the 750CX/CXe/CXr. Following
are the state meaning and timing comments for the AACK signal.

State Meaning Asserted—Indicates that the address phase of atransaction is complete. The
address bus will go to a high-impedance state on the next bus clock cycle.
The 750CX/CXe/CXr samples ARTRY on the bus clock cycle following the
assertion of AACK.

Negated—(During address bus tenure) indicates that the address bus and the
transfer attributes must remain driven.

Timing Comments  Assertion—May occur as early as the bus clock cycle after TSis asserted;
assertion can be delayed to allow adequate address access time for slow
devices. For example, if an implementation supports slow snooping devices,
an external arbiter can postpone the assertion of AACK.

Negation—Must occur one bus clock cycle after the assertion of AACK.
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7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY) signal is both an input and output signal on 750CX/CXe/CXr.

7.2.5.2.1 Address Retry (ARTRY)—Output
Following are the state meaning and timing comments for the ARTRY output signal.

State M eaning Asserted—I ndicatesthat the 750CX/CXe/CXr detectsaconditioninwhich a
snooped address tenure must be retried. If the 750CX/CXe/CXr needsto
update memory as aresult of the snoop that caused the retry, the
750CX/CXe/CXr asserts BR the second cycle after AACK if ARTRY is
asserted.

High Impedance—Indicates that the 750CX/CXe/CXr does not need the
snooped address tenure to be retried.

Timing Comments  Assertion—Asserted the third bus cycle following the assertion of TSif a
retry isrequired.

Negation—Occurs the second bus cycle after the assertion of AACK. Since
thissignal may be simultaneously driven by multiple devices, it negatesin a
unique fashion. First the buffer goes to high impedance for a minimum of
one-half processor cycle (dependent on the clock mode), then it isdriven
negated for one-half bus cycle before returning to high impedance.

Thisspecial method of negation may be disabled by setting precharge disable
in HIDO.

7.2.5.2.2 Address Retry (ARTRY)—Input
Following are the state meaning and timing comments for the ARTRY input signal.

State Meaning Asserted—If the 750CX/CXe/CXr isthe address bus master, ARTRY
indicates that the 750CX/CXe/CXr must retry the preceding address tenure
and immediately negate BR (if asserted). If the associated data tenure has
already started, the 750CX/CXe/CXr aso aborts the data tenure
immediately, even if the burst data has been received. If the
750CX/CXe/CXr is not the address bus master, this input indicates that the
750CX/CXe/CXr should immediately negate BR to allow an opportunity for
acopy-back operation to main memory after a snooping bus master asserts
ARTRY . Note that the subsequent address presented on the address bus may
not be the same one associated with the assertion of the ARTRY signal.

Negated/High Impedance—Indicates that the 750CX/CXe/CXr does not
need to retry the last address tenure.

Timing Comments  Assertion—May occur asearly asthe second cyclefollowing the assertion of
TS, and must occur by the bus clock cycle immediately following the
assertion of AACK if an addressretry isrequired.

Negation—Must occur two bus clock cycles after the assertion of AACK.

7.2.6 Data Bus Arbitration Signals

Like the address bus arbitration signals, data bus arbitration signals maintain an orderly process for
determining data bus mastership. Note that there is no data bus arbitration signal equivalent to the
address bus arbitration signal BR (bus request), because, except for address-only transactions, TS
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implies data bus requests. For a detailed description on how these signals interact, see Section 8.4.1,
“Data Bus Arbitration” on Page 286.

7.2.6.1 Data Bus Grant (DBG)—Input
The data bus grant (DBG) signal is an input-only signal on the 750CX/CXe/CXr. Following are the
state meaning and timing comments for the DBG signal.

State Meaning Asserted—Indicates that the 750CX/CXe/CXr may, with the proper
qualification, assume mastership of the data bus. The 750CX/CXe/CXr
derives a qualified data bus grant when DBG is asserted and ARTRY is
negated; that is, there is no outstanding attempt to perform an ARTRY of the
associated address tenure.

Negated—I ndicates that the 750CX/CXe/CXr must hold off its data tenures.

Timing Comments  Assertion—May occur any time to indicate the 750CX/CXe/CXr isfreeto
take data bus mastership. It is not sampled until TSis asserted.

Negation—May occur at any time to indicate the 750CX/CXe/CXr cannot
assume data bus mastership.

7.2.7 Data Transfer Signals

Like the address transfer signals, the data transfer signals are used to transmit data and to generate
and monitor parity for the data transfer. For a detailed description of how the data transfer signals
interact, see Chapter 8, "Bus Interface Operation”. Data parity is optional on the 750CX/CXe/CXr.

7.2.7.1 Data Bus (DH[0-31], DL[0-31])

The data bus (DH[0-3]1 and DL[0-31]) consists of 64 signalsthat are both inputs and outputs on the
750CX/CXe/CXr. Following are the state meaning and timing comments for the DH and DL signals.

State Meaning The databus hastwo halves—databus high (DH) and databuslow (DL ). See
Table 7-4 for the data bus lane assignments.

Timing Comments  The data busis driven once for noncached transactions and four times for
cache transactions (bursts).

Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane
DH[0-7] 0
DH[8-15] 1
DH[16-23] 2
DH[24-31] 3
DL[0-7] 4
DL[8-15] 5
DL[16-23] 6
DL[24-31] 7
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7.2.7.1.1 Data Bus (DH[0-31], DL[0-31])—Output
Following are the state meaning and timing comments for the DH and DL output signals.

State Meaning

Timing Comments

Asserted/Negated—Represents the state of data during a data write. Byte
lanes not selected for data transfer will not supply valid data.

Assertion/Negation—Initial beat coincides with the bus cycle following a
qualified DBG and, for bursts, transitions on the bus clock cycle following
each assertion of TA.

High Impedance—Occurs on the bus clock cycle after the final assertion of
TA, following the assertion of TEA, or in certain ARTRY cases.

7.2.7.1.2 Data Bus (DH[0-31], DL[0-31])—Input
Following are the state meaning and timing comments for the DH and DL input signals.

State M eaning

Timing Comments

Asserted/Negated—Represents the state of data during a data read
transaction.

Assertion/Negation—Datamust be valid on the same bus clock cyclethat TA
IS asserted.

7.2.7.2 Data Bus Parity (DP[0-7]) (Optional on 750CX/CXe/CXr)
The eight data bus parity (DP[0-7]) signals are both output and input signals.

7.2.7.2.1 Data Bus Parity (DP[0-7])—Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning

Timing Comments

Asserted/Negated—Represents odd parity for each of the 8 bytes of data
write transactions. Odd parity means that an odd number of bits, including
the parity bit, are driven high. The generation of parity is enabled through
HIDO. The signal assignments are listed in Table 7-5.

Assertion/Negation—The same as DL[0-31].
High Impedance—The same as DL[0-31].

Table 7-5. DP[0-7] Signal Assignments

Signal Name Signal Assignments

DPO DH[0-7]

DP1 DH[8-15]

DP2 DH[16-23]
DP3 DH[24-31]
DP4 DL[0-7]

DP5 DL[8-15]

DP6 DL[16-23]
DP7 DL[24-31]
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7.2.7.2.2 Data Bus Parity (DP[0-7])—Input
Following are the state meaning and timing comments for the DP input signals.

State Meaning Asserted/Negated—Represents odd parity for each byte of read data. Parity
is checked on all data byte lanes, regardless of the size of the transfer.
Detected even parity causes a checkstop if data parity errors are enabled in
the HIDO register.

Timing Comments  Assertion/Negation—The same as DL[0-31].

7.2.8 Data Transfer Termination Signals

Datatermination signals are required after each data beat in adata transfer. Note that in a single-beat
transaction, the data termination signals also indicate the end of the tenure, while in burst accesses,
the data termination signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

For a detailed description of how these signals interact, see Chapter 8, "Bus Interface Operation”.

7.2.8.1 Transfer Acknowledge (ﬁ)—lnput
Following are the state meaning and timing comments for the TA signal.

State M eaning Asserted— Indicates that a single-beat data transfer completed successfully
or that a data beat in aburst transfer completed successfully. Note that TA
must be asserted for each data beat in a burst transaction. For more
information, see Chapter 8, "Bus Interface Operation”.

Negated—If the 750CX/CXe/CXr is the data bus master, then the
750CX/CXe/CXr must continueto drive the datafor the current write or must
wait to sample the data for reads until TA is asserted.

Timing Comments  Assertion—Must not occur before AACK for the current transaction (if the
addressretry mechanismisto be used to prevent invalid datafrom being used
by the processor); otherwise, assertion may occur at any time the
750CX/CXe/CXr while the 750CX/CXe&/CXr is the data bus master. The
system can withhold assertion of TA to indicate that the 750CX/CXe/CXr
should insert wait states to extend the duration of the data beat.

Negation—Must occur after the bus clock cycle of the final (or only) data
beat of the transfer. For aburst transfer, the system can assert TA for one bus
clock cycle and then negate it to advance the burst transfer to the next beat
and insert wait states during the next beat.

7.2.8.2 Data Retry (DRTRY)—Input (Optional on 750CX/CXe/CXr)

Following are the state meaning and timing comments for the DRTRY signal.

State Meaning Asserted—Indicates that the 750CX/CXe/CXr must invalidate the datafrom
the previous read operation.

Negated—Indicates that data presented with TA on the previous read
operation isvalid. Note that DRTRY isignored for write transactions.

Timing Comments  Assertion—Must occur during the bus clock cycle immediately after TA is
asserted if aretry isrequired. The DRTRY signal may be held asserted for
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multiple bus clock cycles. When DRTRY is negated, data must have been
valid on the previous clock with TA asserted.

Negation—Must occur during the bus clock cycle after avalid databeat. This
may occur several cycles effectively extending the data bus tenure.

Start-up—The DRTRY signal is sampled at the negation of HRESET; if

DRTRY isasserted, no-DRTRY modeis selected. If DRTRY is negated at
start-up, DRTRY is enabled.

7.2.8.3 Transfer Error Acknowledge (TEA)—Input
Following are the state meaning and timing comments for the TEA signal.

State Meaning

Timing Comments

Asserted—Indicates that a bus error occurred. Causes a machine check
exception (and possibly causes the processor to enter checkstop state if
machine check enablebit iscleared (MSR[ME] = 0)). For more information,
see Section 4.5.2.2, “Checkstop State (MSR[ME] = 0)" on Page 168.
Assertion terminates the current transaction; that is, assertion of TA is
ignored. The assertion of TEA causes data bus tenure to be dropped.
However, data entering the GPR or the cache are not invalidated. (Note that
the term *exception’ isalso referred to as ‘interrupt’ in the architecture
Specification.)

Negated—Indicates that no bus error was detected.

Assertion—May be asserted while the 750CX/CXe/CXr is the data bus
master, and the cycle after TA during aread operation. TEA should be
asserted for one cycle only.

Negation—TEA must be negated no later than the end of the data bustenure.

7.2.9 System Status Signals

Most system status signals are input signals that indicate when exceptions are received, when
checkstop conditions have occurred, and when the 750CX/CXe/CXr must be reset.

7.2.9.1 Interrupt (INT)— Input
Following are the state meaning and timing comments for the INT signal.

State M eaning

Timing Comments

Asserted— The 750CX/CXe/CXr initiates an interrupt if MSR[EE] is Set;
otherwise, the 750CX/CXe&/CXr ignores the interrupt. To guarantee that the
750CX/CXe/CXr will take the external interrupt, INT must be held active
until the 750CX/CXe/CXr takes the interrupt; otherwise, whether the
750CX/CXe/CXr takes an external interrupt depends on whether the
MSR[EE] bit was set whilethe INT signal was held active.

Negated—Indicates that normal operation should proceed. See Chapter 8,
"Bus Interface Operation”.

Assertion—May occur at any time and may be asserted asynchronously to
the input clocks. The INT input is level-sensitive.
Negation—Should not occur until interrupt is taken.

Signal Descriptions

3/17/05 Page 261



7.2.9.2 Machine Check Interrupt (MCP)—Input
Following are the state meaning and timing comments for the MCP signal .

State Meaning Asserted—The 750CX/CXe/CXr initiates a machine check interrupt
operationif MSR[ME] and HIDO[EMCP) are set; if MSR[ME] iscleared and
HIDO[EMCP] is set, the 750CX/CXe/CXr must terminate operation by
internally gating off all clocks, and releasing all outputsto the
high-impedance state. If HIDO[EMCP] is cleared, the 750CX/CXe/CXr
ignores the interrupt condition. The MCP signal must be held asserted for
two bus clock cycles.

Negated—I ndicatesthat normal operation should proceed. See Section 8.8.1,
“External Interrupts' on Page 303.

Timing Comments  Assertion—May occur at any time and may be asserted asynchronoudly to
the input clocks. The MCP input is negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

7.2.9.3 Checkstop Input (CKSTP_IN)—Input

Following are the state meaning and timing comments for the CKSTP_IN signal.

State Meaning Asserted—Indicates that the 750CX/CXe/CXr must terminate operation by
internally gating off all clocks, and release all outputsto the high-impedance

state. Once CKSTP_IN has been asserted it must remain asserted until the
system has been reset.

Negated—I ndicates that normal operation should proceed. See Chapter 8,
"Bus Interface Operation”.

Timing Comments  Assertion—May occur at any time and may be asserted asynchronoudly to
the input clocks.

Negation—May occur any time after the system reset.

7.2.9.4 Checkstop Output (CKSTP_OUT)—Output

Note that the CKSTP_OUT signal is an open-drain type output, and requires an externa pull-up
resistor (for example, 10 k% to Vyq) to assure proper de-assertion of the CKSTP_OUT signal.
Following are the state meaning and timing comments for the CKSTP_OUT signal.

State Meaning Asserted—Indicates that a checkstop condition has been detected and the
processor has ceased operation.

Negated—I ndicates that the processor is operating normally.
See Chapter 8, "Bus Interface Operation”.

Timing Comments  Assertion—May occur at any time and may be asserted asynchronoudly to
Input clocks.

Negation—Is negated upon assertion of HRESET.
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7.2.9.5 Reset Signals

There aretwo reset signals on the 750CX/CXe/CXr—hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.5.1 Hard Reset (HRESET)—Input

The hard reset (HRESET) signal must be used at power-on in conjunction with the TRST signal to
properly reset the processor. Following are the state meaning and timing comments for the HRESET

signal.
State Meaning

Timing Comments

Asserted—I nitiates a complete hard reset operation when this input
transitions from asserted to negated. Causes areset exception asdescribed in
Section 4.5.1, “ System Reset Exception (0x00100)" on Page 163. Output
drivers are released to high impedance within five clocks after the assertion
of HRESET.

Negated—I ndicatesthat normal operation should proceed. See Section 8.8.3,
“Reset Inputs’ on Page 304.

Assertion—May occur at any time and may be asserted asynchronously to
the 750CX/CXe/CXr input clock; must be held asserted for a minimum of
255 clock cycles after the PLL lock time has been met. Refer to the
750CX/CXe/CXr hardware specifications for further timing comments.

Negation—May occur any time after the minimum reset pulse width has
been met.

Thisinput has additional functionality in certain test modes.

7.2.9.5.2 Soft Reset (SRESET)—Input
Following are the state meaning and timing comments for the SRESET signal.

State Meaning

Timing Comments

Asserted— Initiates processing for areset exception as described in
Section 4.5.1, “ System Reset Exception (0x00100)" on Page 163.

Negated—I ndicatesthat normal operation should proceed. See Section 8.8.3,
“Reset Inputs’ on Page 304.

Assertion—May occur at any time and may be asserted asynchronously to
the 750CX/CXe/CXr input clock. The SRESET input is negative
edge-sensitive.

Negation—May be negated two bus cycles after assertion.

Thisinput has additional functionality in certain test modes.

Signal Descriptions
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7.2.9.6 Processor Status Signals

Processor status signalsindicate the state of the processor. This includes the machine quiesce control
signals, and TLBISYNC signal. The latter is optional on the 750CX/CXe/CXr.

7.2.9.6.1 Quiescent Request (QREQ)—Output

Following are the state meaning and timing comments for QREQ.

State Meaning Asserted—Indicates that the 750CX/CXe/CXr isrequesting all bus activity
normally required to be snooped to terminate or to pause so 750CX/CXe/CXr

may enter a quiescent (low power) state. When the 750CX/CXe/CXr has
entered a quiescent state, it no longer snoops bus activity.

Negated—Indicates that the 750CX/CXe/CXr is not making a request to
enter the quiescent state.

Timing Comments  Assertion/Negation—May occur on any cycle. QREQ will remain asserted
for the duration of the quiescent state.

7.2.9.6.2 Quiescent Acknowledge (QACK)—Input
Following are the state meaning and timing comments for the QACK signal.

State Meaning Asserted—Indicates that all bus activity that requires snooping has
terminated or paused, and that the 750CX/CXe/CXr may enter the quiescent
(or low power) state.

Negated—Indicates that the 750CX/CXe/CXr may not enter a quiescent
state, and must continue snooping the bus.

Timing Comments  Assertion/Negation—May occur on any cycle following the assertion of
QREQ, and must be held asserted for at least one bus clock cycle.

Start-Up—QACK issampled at the negation of HRESET to select 32-bit bus
mode; if QACK is de-asserted at start-up, 32-bit bus mode is selected.
7.2.9.6.3 TLBI Sync (TLBISYNC)—Input (Optional on 750CX/CXe/CXr)

The TLBI Sync (TLBISYNC) signal is an input-only signal. Following are the state meaning and
timing comments for the TLBISYNC signal.

State M eaning Asserted—Indicates that instruction execution stops after execution of a
tlbsync instruction.

Negated—Indicates that the instruction execution may continue or resume
after the completion of atlbsync instruction.

Timing Comments  Assertion/Negation—May occur on any cycle. The TLBISYNC signal must
be held negated during HRESET.

Start-Up—TLBISYNC is sampled at the negation of HRESET to select
32-bit data bus mode; if TLBISY NC is negated at start-up, 32-bit modeis
disabled, and the default 64-bit mode is selected.

Timing Comments  Assertion/Negation—Refer to the hardware specifications for timing
comments.
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7.2.10 IEEE 1149.1a-1993 Interface Description

The 750CX/CXe/CXr hasfive dedicated JTAG signalswhich aredescribed in Table 7-6. Thetest data
input (TDI) and test data output (TDO) scan ports are used to scan instructions as well as data into
the various scan registers for JTAG operations. The scan operation is controlled by the

test access port (TAP) controller which in turn is controlled by the test mode select (TMS) input

sequence. The scan datais latched in at the rising edge of test clock (TCK).

Table 7-6. IEEE Interface Pin Descriptions

Signal Name Input/Output WS?(L(VT(;J;LUD IEEE 1149.1a Function
TDI Input Yes Serial scan input signal
TDO Output No Serial scan output signal
T™MS Input Yes TAP controller mode signal
TCK Input Yes Scan clock
TRST Input Yes TAP controller reset

Test reset (TRST) isaJTAG optional signal which isused to reset the TAP controller asynchronously.
The TRST signal assuresthat the JTAG logic does not interfere with the normal operation of the chip,
and must be asserted and deasserted coincident with the assertion of the HRESET signal.

7.2.11 Clock Signals

The 750CX/CXe/CXr clock signal inputs determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the system
clock frequency.

Refer to the 750CX/CXe/CXr hardware specifications for exact timing relationships of the clock
signals.

7.2.11.1 System Clock (SYSCLK)—Input

The 750CX/CXe/CXr requires asingle system clock (SY SCLK) input. Thisinput sets the frequency
of operation for the bus interface. Internally, the 750CX/CXe/CXr uses a phase-locked loop (PLL)
circuit to generate a master clock for all of the CPU circuitry (including the bus interface circuitry)
whichis phase-locked to the SY SCLK input. The master clock may be set to an integer or half-integer
multiple (2:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1 or 10:1) of the SYSCLK
frequency allowing the CPU core to operate at an equal or greater frequency than the bus interface.

Asserted/Negated—The SY SCLK input is the primary clock input for the
750CX/CXe/CXr, and represents the bus clock frequency for the
750CX/CXe/CXr bus operation. Internally, the 750CX/CXe/CXr may be
operating at an integer or half-integer multiple of the bus clock frequency.

Duty cycle—Refer to the 750CX/CXe/CXr hardware specifications for
timing comments.

Note: SY SCLK isused asthe frequency referencefor theinternal PLL clock
generator, and must not be suspended or varied during normal operation to

State Meaning

Timing Comments
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ensure proper PLL operation.

7.2.11.2 Clock Out (CLK_OUT)—Output (N/A on the 750CX/CXe/CXr)

The clock out (CLK_OUT) signal is an output signal (output-only). Following are the state meaning
and timing comments for the CLK_OUT signal.

State Meaning

Timing Comments

Asserted/Negated—~Provides PLL clock output for PLL testing and
monitoring. The configuration of the HIDO[ SBCLK] and HIDO[ECLK] bits
determines whether the CLK_OUT signal clocks at either the processor
clock frequency, the bus clock frequency, or half of the bus clock frequency.
See Table 2-6 ". HID1 Bit Functions,” on Page 69 for HIDO register
configuration of the CLK_OUT signal.

The CLK_OUT signal defaults to a high-impedance state following the
assertion of HRESET. The CLK_OUT signal is provided for testing only.

Assertion/Negation—Refer to the 750CX/CXe/CXr hardware specifications
for timing comments.

7.2.11.3 PLL Configuration (PLL_CFG[0-3])—Input

The PLL (phase-locked loop) is configured by the PLL_CFG[0-3] signals. For a given SYSCLK
(bus) frequency, the PLL configuration signals set the internal CPU frequency of operation. Refer to
the 750CX/CXe/CXr hardware specifications for PLL configuration.

Following are the state meaning and timing comments for the PLL_ CFG[0-3] signals.

State M eaning

Timing Comments

Asserted/Negated— Configures the operation of the PLL and the internal
processor clock frequency. Settings are based on the desired bus and internal
frequency of operation.

Assertion/Negation—Must remain stable during operation; should only be
changed during the assertion of HRESET or during sleep mode. These bits
may be read through the PC[0-3] bitsin the HID1 register.

7.2.12 Power and Ground Signals
The 750CX/CXe/CXr provides the following connections for power and ground:
*  Vpp—TheVpp signals provide the supply voltage connection for the processor core.

* OVpp—TheOVpp signals provide the supply voltage connection for the system interface

drivers.

* AVpp—The AVpp power signal provides power to the clock generation phase-locked |oop.
See the 750CX/CXe/CXr hardware specifications for information on how to use this signal.
* GND and OGND—The GND and OGND signals provide the connection for grounding the

750CX/CXe/CXr. On the 750CX/CXe/CXr, thereis no electrical distinction between the
GND and OGND signals.
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Chapter 8 Bus Interface Operation

This chapter describes the 750CX/CXe/CXr microprocessor bus interface and its operation. It shows
how the 750CX/CXe/CXr signals, defined in Chapter 7, "Signal Descriptions” interact to perform
address and data transfers.

The bus interface buffers bus requests from the instruction and data caches, and executes the requests
per the 60x bus protocol. It includes address register queues, prioritizing logic, and bus control logic.
It captures snoop addresses for snooping in the cache and in the address register queues. It also snoops
for reservations and holds the touch load address for the cache. All data storage for the address
register buffers (load and store data buffers) are located in the cache section. The data buffers are
considered temporary storage for the cache and not part of the bus interface.
The general functions and features of the bus interface are as follows:
» Seven address register buffers that include the following:
— Instruction cache |oad address buffer
— Data cache load address buffer
— Two data cache castout/store address buffers
— Datacache snoop copy-back address buffer (associated data block buffer located in cache)
— Reservation address buffer for snoop monitoring
» Pipeline collision detection for data cache buffers
* Reservation address snooping for Iwar x/stwcex. instructions
* One-level address pipelining
» Load ahead of store capability
A conceptual block diagram of the bus int