intel)

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Volume 2A:
Instruction Set Reference, A-M

NOTE: The Intel 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 253669. Refer to all five volumes when evaluating your
design needs.

Order Number: 253666-033US
December 2009

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUA-
TION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology re%uires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an Intel™ HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.ntm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel™ Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo,
Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

*QOther names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's website at http://www.intel.com

Copyright © 1997-2009 Intel Corporation

i Vol.2A

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 IA-32 PROCESSORS COVERED IN THISMANUAL ... vi it 1-1
1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION SET REFERENCE 1-3
13 NOTATIONAL CONVENTIONS ..ottt 1-4
1.3.1 Bit and Byte Order.v ittt e 1-4
1.3.2 Reserved Bits and Software Compatibility..............cooviiiiiiii i, 1-5
133 INSTrUCTION OPEIaNdS . . o\ttt vttt ettt e e 1-6
134 Hexadecimal and Binary NUMDErS.vii e 1-6
135 Segmented AddresSiNg. . ..o ovit i e e 1-6
136 EXCBPTIONS L\ttt ittt e e e 1-7
137 A New Syntax for CPUID, CR,and MSR Valuescooviiiiiiiiiiiiiinenenns, 1-7
14 RELATED LITERATURE . ..ottt 1-8
CHAPTER 2
INSTRUCTION FORMAT
2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND

VIRTUAL-8086 MODE 2-1

2.1.1 INStrUCHION PrefiXes . ..ot 2-1
2.1.2 8] Tlo T [T 2-3
213 MOAR/M and SIB BYteS ..o v ittt 2-4
214 Displacement and Immediate Bytescoooiiiiii i 2-4
215 Addressing-Mode Encoding of ModR/MandSIBBytes..............covevvivennn... 2-4
2.2 JA-32E MODE ..\ttt e 2-9
2.2.1 REX P iXES ottt 2-9
2.2.1.1 ENCOING vttt 2-10
2.2.1.2 More on REX Prefix Fieldso v 2-10
2213 DiSPIatEMENt . e e 2-13
2214 Direct Memory-0Offset MOVS.ot e 2-13
2215 IMMEdIateS . e 2-14
22.1.6 RIP-Relative AddresSing. .. v.ve vt e ettt et 2-14
2217 Default 64-Bit Operand Size.o.vviiii i e 2-15
2.2.2 Additional Encodings for Control and Debug Registerscccvvvvivnnnn.. 2-15
CHAPTER 3
INSTRUCTION SET REFERENCE, A-M
3.1 INTERPRETING THE INSTRUCTION REFERENCEPAGES ..o 3-1
3.1.1 INStIUCHION FOMMIat . . oot 3-1
3.1.1.1 Opcode Column in the Instruction Summary Tablecooviats. 3-2
3.1.1.2 Instruction Column in the Opcode Summary Tablecovvvivviiinnns,. 3-3
3.1.1.3 64-bit Mode Column in the Instruction Summary Table......................... 3-7
3.1.1.4 Compatibility/Legacy Mode Column in the Instruction Summary Table........... 3-7
3.1.1.5 Description Column in the Instruction Summary Table..................... ..., 3-7
3.1.1.6 DesCription SECHiON ... vt e 3-7

Vol. 2A i

CONTENTS

PAGE
3.1.1.7 OPEration SECHION. ...\ttt e 3-7
3.1.1.8 Intel® C/C++ Compiler Intrinsics Equivalents Section.............coovviiiininnn 3-11
3.1.19 Flags Affected SECtioN 3-14
3.1.1.10 FPU Flags Affected Section.ovvii i e 3-14
3.1.1.11 Protected Mode EXceptions Section.ccovviiiii i 3-15
3.1.1.12 Real-Address Mode Exceptions Sectionccviiiiiiiiiiii i 3-16
3.1.1.13 Virtual-8086 Mode Exceptions Section.vvveviiiiii it 3-16
3.1.1.14 Floating-Point Exceptions Section.ot 3-16
3.1.1.15 SIMD Floating-Point Exceptions Sectioncovv i 3-17
3.1.1.16 Compatibility Mode Exceptions SECtioN.ovvvi i 3-17
3.1.1.17 64-Bit Mode EXceptions Sectionot 3-17
3.1.2 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM.
3-18
3.1.2.1 General DeSCIiPtiON . .. v vt 3-18
3.1.2.2 Source Data Format.ov e e 3-19
3.1.23 Aggregation OPerationvuerii e e 3-20
3.1.24 POy, o 3-21
3.1.25 OUTPUL SBIBCTION. .ot e e 3-22
3.1.26 Valid/Invalid Override of COMPariSONS.vvvt vt ittt enneanans 3-22
3.1.27 Summary of Im8 Control byte.coovvi i 3-23
3.1.28 Diagram Comparison and Aggregation Process.c..ovvviviiiiiiinnnnnnns 3-25
3.2 INSTRUCTIONS (A-M) . ettt et e e 3-25
AAA—ASCII Adjust After Additionovv i 3-26
AAD—ASCII Adjust AX Before Division.ooviiiiii i i 3-28
AAM—ASCII Adjust AX After MUtiply. . ..o 3-30
AAS—ASCII Adjust AL After Subtraction...... ..ot 3-32
ADC—Add WIth Carmy . . o v et 3-34
ADD A . . et e 3-37
ADDPD—Add Packed Double-Precision Floating-Point Values 3-40
ADDPS—Add Packed Single-Precision Floating-Point Values 3-43
ADDSD—Add Scalar Double-Precision Floating-Point Values 3-46
ADDSS—Add Scalar Single-Precision Floating-Point Values 3-49
ADDSUBPD—Packed Double-FP Add/Subtractccooiiiiiiiiiiininnn, 3-52
ADDSUBPS—Packed Single-FP Add/Subtract............coviiiiiiiiiii 3-56
AND—LOGICAl AND ..\ttt e e 3-60

iv Vol. 2A

ANDPD—BiItwise Logical AND of Packed Double-Precision Floating-Point Values. .. 3-63
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values.... 3-65
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values. .

3-67
ANDNPS—BItwise Logical AND NOT of Packed Single-Precision Floating-Point Values. 3-
69
ARPL—Adjust RPL Field of Segment Selector.............c.ovviiiiiiiiiinnn.. 3-71
BLENDPD — Blend Packed Double Precision Floating-Point Values 3-73
BLENDPS — Blend Packed Single Precision Floating-Point Values 3-75
BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values 3-78
BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values 3-81
BOUND—Check Array Index AgainstBounds..............cooviviiiiiiiiiiiinnnn, 3-84

CONTENTS

PAGE
BSF—Bit SCan FOrWardvv ettt 3-87
BSR—BIt SCAN REVEISE ..ttt e 3-89
BS W AP —BY 1 SWaD .. ottt e 3-91
BT Bt TSt &ttt ettt e 3-93
BTC—Bit Testand Complement ...ttt e 3-96
BTR—Bit Testand ReSet.c.irii i e ieieaes 3-99
BTS—Bit Testand Set ... vvvitiit i 3-102
CALL—Call ProCedUIe . . .ottt et e e eens 3-105
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Dou-
bleword to QUadwordc.vvuii i e 3-124
CLC—Clear Carmy Flagottt e e e e 3-125
CLD—Clear Direction FIagoovvr i i 3-126
CLFLUSH—FIush Cache Line.o vt 3-127
CLI— Clear INnterrupt Flago v e 3-129
CLTS—Clear Task-Switched FIaginCRO.oviiiii s 3-132
CMC—Complement Carmy FIagoovi i 3-134
CMOVec—Conditional MOVE . ..o ve e 3-135
CMP—Compare TWO Operandsuvuiriiti ittt eiii it i eieiens 3-142
CMPPD—Compare Packed Double-Precision Floating-Point Values............... 3-145
CMPPS—Compare Packed Single-Precision Floating-Point Values................ 3-150
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands............... 3-155
CMPSD—Compare Scalar Double-Precision Floating-Point Values 3-161
CMPSS—Compare Scalar Single-Precision Floating-Point Values 3-165
CMPXCHG—Compare and EXCRaNge.ovvii it eaes 3-169
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes 3-172
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set
B AGS . . 3-175
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set
o 3-178
CPUID—CPU Identification.v.vv et 3-181
CRC32 — Accumulate CRC32 Value. . ..o 3-215
CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values . 3-
219
CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values .. 3-
221
CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers . 3-
224
CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers .. 3-
227
CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP
ValUBS . . e 3-230
CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values .. 3-
233
CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values ... 3-
236
CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers .. 3-
239

Vol.2A v

CONTENTS

vi Vol.2A

PAGE
CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP
ValUBS e 3-242
CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers....3-
245
CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer 3-248
CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Val-
LU= 3-251
CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value 3-254
CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value. 3-257
CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Val-
L= 3-260
CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer........... 3-263
CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed
DWOTd MEEGEIS . ot vttt e e 3-266
CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed
DWOTd INtEQETS . . .ot e 3-269
CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed
D170 i N) (= T= 3-272
CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed
DWOTd MEEGEIS . v vttt 3-275
CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Inte-
6= 3-278
CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer
3-281
CwD/CDQ/CQO0—Convert Word to Doubleword/Convert Doubleword to Quadword3-284
DAA—Decimal Adjust AL after Addition.coov i 3-286
DAS—Decimal Adjust AL after Subtraction.............cccoviiiviiiiiiiiii s 3-288
DEC—Decrement by 1 ... e e 3-290
DIV—URSIgned Divideoiiiii i e e e 3-293
DIVPD—Divide Packed Double-Precision Floating-Point Values................... 3-297
DIVPS—Divide Packed Single-Precision Floating-Point Values.................... 3-300
DIVSD—Divide Scalar Double-Precision Floating-Point Values.................... 3-303
DIVSS—Divide Scalar Single-Precision Floating-Point Values 3-306
DPPD — Dot Product of Packed Double Precision Floating-Point Values 3-309
DPPS — Dot Product of Packed Single Precision Floating-Point Values 3-312
EMMS—Empty MMX Technology State ... e 3-316
ENTER—Make Stack Frame for Procedure Parameterscoovvvvivvnnn.. 3-318
EXTRACTPS — Extract Packed Single Precision Floating-Point Value............. 3-322
F2XMT—C0mMPULE 2X=T ittt 3-325
FABS—ADSOIUTE ValUE 3-327
FADD/FADDP/FIADD—AAA. . .. et e e e 3-329
FBLD—Load Binary Coded Decimaloviiiiii it i e 3-333
FBSTP—Store BCD Integer and Pop oo 3-335
FCHS—CNange Sign . ov vttt e 3-338
FCLEX/FNCLEX—Clear EXCEPLIONS. ..\ vvvv vttt i 3-340
FCMOVcc—Floating-Point Conditional Move.coii it 3-342

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS. . 3-

CONTENTS

PAGE
348

FCOS—C0SINE ettt ettt ettt e 3-351
FDECSTP—Decrement Stack-Top POINtervvvvv e 3-353
FDIV/EDIVP/FIDIV=DiIVIde.ottt 3-355
FDIVR/FDIVRP/FIDIVR—Reverse Divide.ovvvvvvii i 3-359
FFREE—Free Floating-Point Register ..ot 3-363
FICOM/FICOMP—Compare INteger .. .v vt aaes 3-364
FILD—L0ad INTEGET .« v vttt ettt et e e e 3-367
FINCSTP—Increment Stack-Top Pointer. ... 3-369
FINIT/FNINIT—Initialize Floating-Point Unit. ..o 3-371
FIST/FISTP—Store INteger ..ottt i et aaas 3-373
FISTTP—Store Integer with Truncation. ... 3-377
FLD—Load Floating Point Valueoviiii i 3-380
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLGZ/FLDLNZ/FLDZ—Load Constant........... 3-383
FLDCW—Load x87 FPU Control Wordcovvivvii i 3-385
FLDENV—Load x87 FPU ENVIroNmMEeNntvvvii i e 3-387
FMUL/FMULP/FIMUL—MURIPIY .« v e 3-390
FNOP—NO Operationcvitiiii ittt e et 3-394
FPATAN—Partial Arctangent.oovuiiiiii i e 3-395
FPREM—Partial Remainder.o.vuiii e 3-398
FPREM1—Partial Remainderc.ooiiiiiiiii e 3-401
FPTAN—Partial Tangentovriiri i 3-404
FRNDINT—ROUNA 10 INtgEr. ..ot ti ettt e aaas 3-407
FRSTOR—Restore Xx87 FPUState ... v 3-409
FSAVE/FNSAVE—Store x87 FPUState ..o 3-412
FSCALE—SCAlE .ttt 3-416
FSIN SN ettt e 3-418
FSINCOS—SINE aNd COSINE .. vttt ettt et et enaas 3-420
FSQRT—SQUare ROOT . ..\t v ettt e 3-423
FST/FSTP—Store Floating PointValue. ... 3-425
FSTCW/FNSTCW—Store x87 FPU ControlWordcovviviiiiiniininnns 3-428
FSTENV/FENSTENV—Store x87 FPU Environmentcovviivivnvinnnnnn. 3-431
FSTSW/FNSTSW—Store x87 FPU StatusWordcooiviiiiiininns 3-434
FSUB/FSUBP/FISUB—SUDTIACt . ..ot vttt 3-437
FSUBR/FSUBRP/FISUBR—Reverse Subtract..........ovvvvuviviiiniinnininnns 3-441
F ST TS T ettt e e 3-445
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values......... 3-447
FXAM—EXamine MOAR/Mo 3-450
FXCH—Exchange Register ContentS........vvviiiiiiii i 3-452
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State.................... 3-454
FXSAVE—Save x87 FPU, MMX Technology, and SSEState...................... 3-457
FXTRACT—Extract Exponent and Significandcoiiiiint, 3-468
FYL2X—CompUte ¥ * 10G2X .\ttt ittt et et aes 3-470
FYL2ZXPT—Compute v ¥ 10g2(X +71) v evvrieiie i 3-472
HADDPD—Packed Double-FP Horizontal Addcovvieiiiii e 3-474
HADDPS—Packed Single-FP Horizontal Add 3-478
HUT—Halt . oo 3-482

Vol. 2A Vi

CONTENTS

viii Vol. 2A

PAGE
HSUBPD—Packed Double-FP Horizontal Subtract ..o, 3-484
HSUBPS—Packed Single-FP Horizontal Subtractccoviiiiiinininns. 3-488
IDIV=SIgned DiVideouvii e 3-492
IMUL—SIigned MUIDIY . .. oo e 3-496
IN—=INPUL from POrt e 3-501
INC—INCrement DY T ..o i e e e 3-503
INS/INSB/INSW/INSD—Input from Port to Stringcooviiiiiiiinnenns. 3-506
INSERTPS — Insert Packed Single Precision Floating-Point Value 3-510
INT n/INTO/INT 3—Call to Interrupt Procedure. ..o, 3-513
INVD—Invalidate Internal Caches.ovviii e 3-528
INVLPG—Invalidate TLB ENTrY .. .vvviii it i e e 3-530
IRET/IRETD—INterrupt RETUMNo e 3-532
Jec—Jump if Condition IS Met.ot 3-543
J P UMD e 3-550
LAHF—Load Status Flags into AHRegistercoovvviviiiiiiii i 3-560
LAR—Load Access Rights Byte. ..o 3-562
LDDQU—Load Unaligned Integer 128 BitS........covviiiiiiiii e 3-566
LDMXCSR—L0ad MXCSR REGISTOr . .\ vt e vttt e et 3-569
LDS/LES/LFS/LGS/LSS—Load Far POINter.vvvve e 3-571
LEA—Load Effective Addressovvviii e 3-577
LEAVE—High Level Procedure EXit.........oviiiiiii i 3-580
LFENCE—LOAd FBNC. ..ttt ittt e 3-582
LGDT/UIDT—Load Global/Interrupt Descriptor Table Register.................... 3-583
LLDT—Load Local Descriptor Table Register..........cccvviiiiiiiiiiiiiannns, 3-586
LMSW—Load Machine Status Word.vvviieii e 3-589
LOCK—Assert LOCK# Signal PrefiX.ovviii it 3-591
LODS/LODSB/LODSW/LODSD/LODSQ—L0oad String.vvvvvveiieneinininenn 3-593
LOOP/LOOPcc—Loop According to ECX Counter.ovvvvviii i 3-597
LSL—Load Segment Limit.ot i e i e e 3-600
LTR—Load Task RegISTero\ ittt e e e eas 3-604
MASKMOVDQU—Store Selected Bytes of Double Quadword..................... 3-607
MASKMOVQ—Store Selected Bytes of Quadword............covvvviiiiiinnns, 3-610
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values....... 3-613
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values 3-616
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value 3-619
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value 3-622
MEENCE—MEMOrY FEMCE .. ittt e e e e 3-625
MINPD—Return Minimum Packed Double-Precision Floating-Point Values......... 3-626
MINPS—Return Minimum Packed Single-Precision Floating-Point Values.......... 3-629
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value........... 3-632
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value............ 3-635
MONITOR—Set Up Monitor Addressviii it it ae 3-638
MOV MOV Lttt 3-641
MOV—Move to/from Control Registers........coovvvviiiiiii i 3-647
MOV—Move to/from Debug Registers........cooviiviiiiiiiiiii it iiinean 3-650
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values.......... 3-652
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values 3-655

CONTENTS

PAGE
MOVBE—Move Data After SwappingBytes ..ot 3-658
MOVD/MOVQ—Move Doubleword/Move Quadword.coovviiinvnninnnn. 3-661
MOVDDUP—Move One Double-FP and Duplicate...........cooovviiiiinininnnns 3-665
MOVDQA—Move Aligned Double Quadwordooviiiiiiiiiiiiiannn. 3-668
MOVDQU—Move Unaligned Double Quadword.covviiviiniiinninnnn. 3-670
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register........... 3-673
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low ... 3-675
MOVHPD—Move High Packed Double-Precision Floating-Point Value 3-677
MOVHPS—Move High Packed Single-Precision Floating-Point Values 3-680
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High. ... 3-683
MOVLPD—Move Low Packed Double-Precision Floating-Point Value............. 3-685
MOVLPS—Move Low Packed Single-Precision Floating-Point Values 3-687
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask.......... 3-690
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask. 3-692
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint.............. 3-694
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint 3-697
MOVNTI—Store Doubleword Using Non-Temporal Hint 3-700
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal
T 3-702
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal
Himt o 3-705
MOVNTQ—Store of Quadword Using Non-Temporal Hint........................ 3-708
MOVQ—Move QUadWOI. . ..o vttt ettt et 3-711
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register........... 3-714
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String. 3-716
MOVSD—Move Scalar Double-Precision Floating-Point Value.................... 3-721
MOVSHDUP—Move Packed Single-FP High and Duplicate 3-724
MOVSLDUP—Move Packed Single-FP Low and Duplicate 3-727
MOVSS—Move Scalar Single-Precision Floating-Point Values 3-730
MOVSX/MOVSXD—Move with Sign-Extension............ccoveiiiiiiiiiiinnnn 3-733
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values 3-735
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values 3-738
MOVZX—Move with Zero-Extend.c.coovviiiiiii i 3-741
MPSADBW — Compute Multiple Packed Sums of Absolute Difference............ 3-743
MUL—Unsigned MUILIPIY e e e 3-747
MULPD—Multiply Packed Double-Precision Floating-Point Values................ 3-750
MULPS—Multiply Packed Single-Precision Floating-Point Values................. 3-753
MULSD—Multiply Scalar Double-Precision Floating-Point Values................. 3-756
MULSS—Multiply Scalar Single-Precision Floating-Point Values 3-759
MWAIT—MONItor Wait. . ..o s 3-762
CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z
4.1 INSTRUCTIONS (N=Z). + et ee ettt e et et e e et e e e e et et e e 4-1
NEG—Two's Complement Negationvvviiiii i 4-2
NOP—NO OPBration. . .o\ttt vttt e e e 4-5
NOT—One's Complement Negationvvrviiiiii e 4-7

Vol. 2A ix

CONTENTS

X Vol.2A

PAGE
OR—Logical INCIUSIVE OR ...ttt e e et 4-9
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values 4-12
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values 4-14
OUT—0UPUL tO POt ..ot 4-16
OUTS/OUTSB/OUTSW/OUTSD—Output StringtoPort..........oocovvvviinnnnn, 4-18
PABSB/PABSW/PABSD — Packed Absolute Valuecovvvvviiiiiininnnnns 4-23
PACKSSWB/PACKSSDW—Pack with Signed Saturationcocoint 4-27
PACKUSDW — Pack with Unsigned Saturationccoviiiiiviiiiiiiinnnn, 4-32
PACKUSWB—Pack with Unsigned Saturationcooviiiiiiiiniiiininns 4-35
PADDB/PADDW/PADDD—Add Packed Integers.covvvviiiiiiiiiiiaenn 4-39
PADDQ—Add Packed Quadword INtegers.vvvvv vttt cini s 4-43
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation.......... 4-46
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation .. 4-50
PALIGNR — Packed Align Rightot i 4-54
PAND—LOGICAI AND ...ttt e e 4-57
PANDN—LOGICAl AND NOT ...ttt e e e 4-60
PAUSE—SpPIn Loop HiNt. . ..o e e e 4-63
PAVGB/PAVGW—Average Packed Integers. ... 4-64
PBLENDVB — Variable Blend Packed Bytes............coovviiiiiiiiiiiiiiieianns 4-68
PBLENDW — Blend Packed Words.vvvitiiiii i 4-72
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal................ 4-75
PCMPEQQ — Compare Packed Qword Data for Equalcovvvvinnnn. 4-79
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index............. 4-81
PCMPESTRM — Packed Compare Explicit Length Strings, ReturnMask 4-84
PCMPISTRI — Packed Compare Implicit Length Strings, Return Index 4-87
PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask 4-90
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than .4-

93

PCMPGTQ — Compare Packed Data for Greater Than.............ooovvviiiiinnn, 4-98
PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword. 4-100
PEXTRW—EXTract Wordoui e 4-103
PHADDW/PHADDD — Packed Horizontal Addcooiviiii i 4-107
PHADDSW — Packed Horizontal Addand Saturatecooovviiiiienn. 4-110
PHMINPOSUW — Packed Horizontal Word Minimumcocovviiieiinnnnn. 4-113
PHSUBW/PHSUBD — Packed Horizontal Subtractcoovvvvivinnns, 4-116
PHSUBSW — Packed Horizontal Subtract and Saturate....................ovts 4-119
PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qwordcovvvvvnnn... 4-122
PINSRW—INSErt WOrdot 4-125
PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes............ 4-128
PMADDWD—Multiply and Add Packed Integers............c.oooviiiiiiiininnn. 4-131
PMAXSB — Maximum of Packed Signed Byte Integers...................cccuett. 4-135
PMAXSD — Maximum of Packed Signed Dword Integers......................... 4-138
PMAXSW—Maximum of Packed Signed Word Integerscccovvent. 4-141
PMAXUB—Maximum of Packed Unsigned Byte Integers...............cccovvnnn. 4-144
PMAXUD — Maximum of Packed Unsigned Dword Integers...................... 4-147
PMAXUW — Maximum of Packed Word Integerscccovviiiiiininnn. 4-150
PMINSB — Minimum of Packed Signed Byte Integers.............cooovvviininnnn 4-153

CONTENTS

PAGE
PMINSD — Minimum of Packed Dword Integers............coovviiiiiinnnnnnnnns 4-156
PMINSW—Minimum of Packed Signed Word Integers.............covvviivvinnn. 4-159
PMINUB—Minimum of Packed Unsigned Byte Integers..............cccovvvvnnne. 4-162
PMINUD — Minimum of Packed Dword Integersc..covviiiiiniinninnn. 4-165
PMINUW — Minimum of Packed Word Integersccoviviiiiiennnnnn.. 4-168
PMOVMSKB—Move Byte Maskc.oiiiiiiiii it 4-171
PMOVSX — Packed Move with SignExtend ...t 4-174
PMOVZX — Packed Move with Zero Extend.ovvviiiiiiiiininnns, 4-178
PMULDQ — Multiply Packed Signed Dword Integerscccovivivivininnnns 4-182
PMULHRSW — Packed Multiply High with Round and Scale 4-184
PMULHUW—Multiply Packed Unsigned Integers and Store High Result........... 4-187
PMULHW—Multiply Packed Signed Integers and Store HighResult 4-191
PMULLD — Multiply Packed Signed Dword Integers and Store Low Result 4-194
PMULLW—Multiply Packed Signed Integers and Store Low Result............... 4-196
PMULUDQ—Multiply Packed Unsigned Doubleword Integers 4-200
POP—Pop a Value fromtheStack ... 4-203
POPA/POPAD—Pop All General-Purpose Registerscoviiiviiiiiinnnns 4-210
POPCNT — Return the Count of Number of BitsSetto 1................covvvtt 4-212
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register.........coovvvvvvvninn.n. 4-214
POR—Bitwise Logical OR.ottt e 4-218
PREFETCHh—Prefetch DatalntoCaches..........ccoovviiiiiiiii e 4-221
PSADBW—Compute Sum of Absolute Differencescovvvviiiiininnnnn. 4-223
PSHUFB — Packed Shuffle Bytes.......c.vvviiiii it 4-227
PSHUFD—Shuffle Packed Doublewords.c.oooviiviiiiiiiii i 4-231
PSHUFHW—Shuffle Packed HighWords. ..o 4-234
PSHUFLW—Shuffle Packed Low Wordscovviviiiiiiiniiiiiiieens 4-237
PSHUFW—Shuffle Packed Wordsooviiii e 4-240
PSIGNB/PSIGNW/PSIGND — Packed SIGNvv i 4-242
PSLLDQ—Shift Double Quadword Left Logical............covvviiiiiiiinnnnnn 4-247
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logicalcocvvvinnnn. 4-249
PSRAW/PSRAD—Shift Packed Data Right Arithmetic 4-254
PSRLDQ—Shift Double Quadword Right Logicalcoovviiiiiinnns, 4-259
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical 4-261
PSUBB/PSUBW/PSUBD—Subtract Packed Integersc.oovvvnninnen. 4-266
PSUBQ—Subtract Packed Quadword INntegers.........o.vvvviivieniinninninnn, 4-270

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation. 4-273

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation. 4-
277

PTEST- LoGical ComPare .. v vttt ettt ettt e 4-281

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data. ... 4-284

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—

Unpack Low Data. ..o e 4-290
PUSH—Push Word, Doubleword or Quadword Onto the Stack................... 4-295
PUSHA/PUSHAD—Push All General-Purpose Registers..........c..ovvvivinininn, 4-300
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack................cooeut 4-303
PXOR—Logical EXClusive OR.ot 4-306
RCL/RCR/ROL/ROR-—ROTAtE . . ot vttt ettt 4-309

Vol. 2A Xi

CONTENTS

xii Vol. 2A

PAGE

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values. ..4-316
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values4-319

RDMSR—Read from Model Specific Register............cocoviiiiiiiiiii s, 4-322
RDPMC—Read Performance-Monitoring Counters.oovviiiiiniininnnn 4-324
RDTSC—Read Time-Stamp Countercoovitii i 4-329
RDTSCP—Read Time-Stamp Counter and ProcessorIDcovvvvvinnnt. 4-331
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix................ 4-333
RET—Return from Procedure.vvevi e 4-338
ROUNDPD — Round Packed Double Precision Floating-Point Values.............. 4-349
ROUNDPS — Round Packed Single Precision Floating-Point Values............... 4-353
ROUNDSD — Round Scalar Double Precision Floating-Point Values............... 4-356
ROUNDSS — Round Scalar Single Precision Floating-Point Values................ 4-359
RSM—Resume from System ManagementModeoviviiiiiinnnt. 4-362
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
POINTVAlUBS . . . e e 4-364
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
ValUE o e 4-367
SAHF—Store AHINTO FIagso i e e e 4-370
SAL/SAR/SHU/SHR—=ShIft. . oo i 4-372
SBB—Integer Subtraction With BOrmOwcovviiiiii i 4-379
SCAS/SCASB/SCASW/SCASD—SCan StriNG .. .o v 4-383
SETcc—Set Byte on Conditionovvveiii e 4-388
SEENCE—STOrE FONCE . ittt i 4-393
SGDT—Store Global Descriptor Table Register.........c.covviiiiiiiiiiinnnns. 4-394
SHLD—Double Precision Shift Leftcooiii s 4-397
SHRD—Double Precision Shift Right..............cooi i i 4-400
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values................ 4-403
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values................. 4-406
SIDT—Store Interrupt Descriptor Table Register..............oooiiiiiiiiinns, 4-409
SLDT—Store Local Descriptor Table Registercccovviiiiiiiiiinnnnns. 4-412
SMSW—Store Machine Status Wordovvi i 4-414
SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values ..4-
420

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value .4-423
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value . .4-426

STC—Set Carmy FlIag. ..ottt e e e e 4-429
STD—Set Direction FIagovvviii i e 4-430
STI—=Set INTerrUPt Flag . .. oot 4-431
STMXCSR—Store MXCSR Register Stateovviiiiiiiiii i 4-434
STOS/STOSB/STOSW/STOSD/STOSQ—Store String .. .vvvvvvvveiiiiieniennanns 4-436
STR—Store Task Registero e e 4-440
SUB—SUDTraCt . . ottt e 4-442
SUBPD—Subtract Packed Double-Precision Floating-Point Values................ 4-445
SUBPS—Subtract Packed Single-Precision Floating-Point Values................. 4-448
SUBSD—Subtract Scalar Double-Precision Floating-Point Values................. 4-451
SUBSS—Subtract Scalar Single-Precision Floating-Point Values 4-454
SWAPGS—Swap GS Base Registerovvvuiiiiii s 4-457

CONTENTS

PAGE
SYSCALL—Fast System Callcovviii e 4-459
SYSENTER—Fast System Call.ov i e 4-461
SYSEXIT—Fast Return from Fast System Callc.covviiiiiiiiiinnn. 4-465
SYSRET—Return From Fast System Call ... 4-469
TEST—L0GICal COmMPare . ..t vttt e e it 4-471
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
LA G S . .t 4-474
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
LGS . . 4-477
UD2—Undefined INSTruCtion.o vuvtt e 4-480
UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values
4-481
UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values
4-484
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values
4-487
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values
4-490
VERR/VERW—Verify a Segment for Reading or Writing......................... 4-493
WAIT/FWAIT—WaIT . e i 4-496
WBINVD—Write Back and Invalidate Cache...........cooiiiiii i 4-498
WRMSR—Write to Model Specific Registercoiiiiiiiiiiiii. 4-500
XADD—Exchange and Add ...ttt e 4-502
XCHG—Exchange Register/Memory with Register...................cooiiiat 4-505
XGETBV—Get Value of Extended Control Registercccovvviiinnnns. 4-508
XLAT/XLATB—Table Look-up Translation.cccovviviiiiiiiiiiinnnnnns 4-510
XOR—Logical EXclusive OR.o 4-512
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values......... 4-515
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values 4-517
XRSTOR—Restore Processor Extended States........oovvviiiiiiiiinnnnnnnns 4-519
XSAVE—Save Processor Extended Statesc.oovviiiiiiiiiiiinnnenes 4-524
XSETBV—Set Extended Control Registerooovviiiiiiiiiiii i 4-528
CHAPTER 5
VMX INSTRUCTION REFERENCE
5.1 OV RV B W ottt e e e e 5-1
5.2 CONVENTIONS ettt e e e e e e e e e 5-2
53 VMX INSTRUCTIONS . . oottt 5-3
INVEPT— Invalidate Translations Derived from EPTcccoviiiiiinininnes, 5-4
INVVPID— Invalidate Translations Based on VPIDccovvviiiiiinninnnnnn. 5-7
VMCALL—Call t0 VM MONITOr . v v et 5-11
VMCLEAR—Clear Virtual-Machine Control Structurecooviviiiiiennns, 5-13
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine 5-16
VMPTRLD—Load Pointer to Virtual-Machine Control Structure 5-19
VMPTRST—Store Pointer to Virtual-Machine Control Structure 5-22
VMREAD—Read Field from Virtual-Machine Control Structure..................... 5-24
VMRESUME—Resume Virtual Machineoooviiiiii e 5-26

Vol. 2A xiii

CONTENTS

PAGE
VMWRITE—Write Field to Virtual-Machine Control Structure...................... 5-27
VMXOFF—Leave VMX Operation.ouvuvririiniii it iii i eenanes 5-29
VMXON—ENter VMX Operationvuvr ettt ii i eeaenes 5-31
54 VM INSTRUCTION ERRORNUMBERS ...\ttt 5-34
CHAPTER 6
SAFER MODE EXTENSIONS REFERENCE
6.1 OV ERVIE W, . .ttt 6-1
6.2 SMX FUNCTIONALITY ottt e e e 6-1
6.2.1 Detectingand ENabling SMXo i 6-2
6.2.2 SMX INSTrUCTION SUMMAIY . ..ottt eee s 6-3
6.2.2.1 GETSECICAPABILITIES] . ot vttt ettt e 6-3
6.2.2.2 GETSECIENTERACCS] .+ttt ettt ey 6-4
6.2.2.3 O] Y = 0 = 172 O S 6-4
6.2.24 GETSECISENTER] ..ottt s 6-4
6.2.2.5] Y =0 Y = I P 6-5
6.2.2.6 GETSEC PARAMETERS . .t ittt ettt et s 6-5
6.2.2.7 O] Y = [1 6-5
6.2.2.8 GETSEC W AKEUP . . ettt e 6-6
6.2.3 Measured Environment and SMX. 6-6
6.3 GETSEC LEAF FUNCTIONS ..ttt e e eens 6-7
GETSEC[CAPABILITIES] - Report the SMX Capabilitiescocovvviiinnin.n. 6-9
GETSEC[ENTERACCS] - Execute Authenticated ChipsetCodeovvvnnt 6-12
GETSEC[EXITAC]—Exit Authenticated Code ExecutionMode...................... 6-23
GETSEC[SENTER]—Enter a Measured Environment............cooviiiiiiiinn.t. 6-27
GETSEC[SEXIT]—Exit Measured Environment.coovvvviiiiiiiieennnnns 6-39
GETSEC[PARAMETERS]—Report the SMX Parameters.c.ovvvviininnnnnnns 6-43
GETSEC[SMCTRL]—SMX Mode CoNtrol.ovvvviviiiiii it ii e 6-48
GETSEC[WAKEUP]—Wake up sleeping processors in measured environment....... 6-51
APPENDIX A
OPCODE MAP
A USING OPCODE TABLES ...ttt ettt et A-1
A2 KEY TO ABBREVIATIONS . ..ottt et A-2
A2.1 Codes for Addressing Method.c.ovii i i A-2
A2.2 Codes TOr Operand TYPe. ... v vttt e A-3
A23 REGISTEr COdES. ..o\ttt e e e A-4
A24 Opcode Look-up Examples for One, Two,
and Three-Byte OpcodesA-4
A24.1 One-Byte Opcode INStrUCTIONS . .. v v vt A-4
A24.2 Two-Byte Opcode INStruCtionS. vv vt A-5
A243 Three-Byte Opcode INSTrucCtionSo v e A-6
A25 Superscripts Utilized in Opcode Tablescoviiii i A-7
A3 ONE, TWO, AND THREE-BYTE OPCODE MAPS ...\ttt A-8
A4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES..............cv.es A-20
A4 Opcode Look-up Examples Using Opcode EXTeNSIONS.o vvvrveviniieieennns A-20
A4.2 Opcode EXtension Tables. .. uvvu vt A-21

Xiv Vol. 2A

CONTENTS

PAGE
A5 ESCAPE OPCODE INSTRUCTIONS ..ottt ettt et e ie e enns A-23
A5.1 Opcode Look-up Examples for Escape Instruction Opcodes............cvvvnvnnnn A-23
A5.2 Escape Opcode Instruction Tablesvv i e A-23
A5.2.1 Escape Opcodes with DB as First Byte.vvvvviiiiii i A-24
A5.2.2 Escape Opcodes withD9 as First Byte. ...t A-25
A523 Escape Opcodes with DA as First Byte. ... A-26
A5.24 Escape Opcodes with DB as First Byte........ovvviiiiiiiiiii e A-27
A5.25 Escape Opcodes with DCas First Byteovvvvvvii i A-28
A5.2.6 Escape Opcodes with DD as First Byte.vvvvvvvii it A-29
A5.2.7 Escape Opcodes with DEas First Bytevvvivii i A-30
A5.28 Escape Opcodes With DF As First Byte. ...t A-31
APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1 MACHINE INSTRUCTION FORMAT . .ottt B-1
B.1.1 LEgaCY PrefiXeS . ittt e B-2
B.1.2 REX P IXES . ottt ettt e e B-2
B.1.3 OPCOde Flelds ..ot e B-2
B.1.4 SpeCial Flelds. . ..ot B-2
B.1.4.1 Reg Field (reg) for Non-64-BitModes...........coviiiiii i B-3
B.14.2 Reg Field (reg) for 64-Bit Mode.o e B-4
B.1.4.3 Encoding of Operand Size (W) Bit.......cccoviiiii B-5
B.144 SIgN-EXtENd (S) Bit ..\ 'vvt it e B-5
B.1.4.5 Segment Register (sreg) Field. B-6
B.1.4.6 Special-Purpose Register (eee) Field ... B-6
B.1.4.7 Condition Test (tttn) Field. ..o e e B-7
B.148 Direction (d) Bito B-8
B.1.5 Ot NOTES. .. oottt e e e B-9
B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-64-BIT MODES B-

9

B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode. B-24
B3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS.. B-53
B4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONS. B-54
B.S5 MMX INSTRUCTION FORMATS AND ENCODINGSo B-55
B.5.1 Granularity Field (Gg) ..o .vvee e B-55
B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg). B-55
B5.3 MMX Instruction Formats and Encodings Table. ...t B-55
B6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS............ B-59
B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS ..o B-59
B8 SSE INSTRUCTION FORMATS AND ENCODINGS ... oo B-60
B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS. oo B-69
B.9.1 Granularity FIield (Gg) ..o v rvr e e B-69
B.10 SSE3 FORMATS AND ENCODINGS TABLE. .. .ot e vttt B-86
B.11 SSSE3 FORMATS AND ENCODING TABLE. .. .ot e vt B-88
B.12 SPECIAL ENCODINGS FOR B4-BITMODE.ot e vt it B-92
B.13 SSE4.1 FORMATS AND ENCODING TABLE ..o e vt B-96
B.14 SSE4.2 FORMATS AND ENCODING TABLE ..ot vv e B-104

Vol. 2A Xv

CONTENTS

PAGE
B.15 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGSovvvvviieenne B-106
B.16 VMX INSTRUCTIONS ..ot et e eenes B-112
B.17 SMX INSTRUCTIONS. . .ottt i B-114
APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C1 SIMPLE INTRINSICS. . ottt e e e e C-2
C2 COMPOSITE INTRINSICS .ottt e e C-16
FIGURES
Figure 1-1. Bitand Byte Order. ..ot e e e e 1-5
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation................ccoovvvvninns. 1-8
Figure 2-1. Intel 64 and IA-32 Architectures Instruction Formatcovvvvvvnne 2-1
Figure 2-2. Table Interpretation of ModR/MByte (CBH)cooviviiii i 2-5
Figure 2-3. Prefix Orderingin 64-bitMode. ... 2-9
Figure 2-4. Memory Addressing Without an SIB Byte; REXX NotUsed 2-11
Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X NotUsed 2-11
Figure 2-6. Memory AddressingWithaSIBBYtecoviiiiiii i 2-12
Figure 2-7. Register Operand Coded in Opcode Byte; REXX & REXR NotUsed 2-12
Figure 3-1. Bit Offset for BIT[RAX, 21 vttt 3-10
Figure 3-2. Memory Bit INdeXing ..ot 3-11
Figure 3-3. Operation of PCMPSTRx and PCMPESTRXvvvii i 3-25
Figure 3-4. ADDSUBPD—Packed Double-FP Add/Subtract ..., 3-52
Figure 3-5. ADDSUBPS—Packed Single-FP Add/Subtractcccoviiiiiinininnnn. 3-56
Figure 3-6. Version Information Returned by CPUIDIN EAX. ... 3-192
Figure 3-7. Feature Information Returned in the ECX Register.............covovvvvninnn. 3-194
Figure 3-8. Feature Information Returned in the EDX Registercovvnte. 3-197
Figure 3-9. Determination of Support for the Processor Brand String.................... 3-207
Figure 3-10. Algorithm for Extracting Maximum Processor Frequency..................... 3-209
Figure 3-11. HADDPD—Packed Double-FP Horizontal Addccoviiiivininnnt, 3-474
Figure 3-12. HADDPS—Packed Single-FP Horizontal Add.ccoiiiiiiiiiiinn, 3-478
Figure 3-13. HSUBPD—Packed Double-FP Horizontal Subtract..............cocovvvvnininn, 3-484
Figure 3-14. HSUBPS—Packed Single-FP Horizontal Subtractcoviiintt, 3-489
Figure 3-15. MOVDDUP—Move One Double-FP and Duplicatecoviiiivinnn, 3-665
Figure 3-16. MOVSHDUP—Move Packed Single-FP High and Duplicate..................... 3-724
Figure 3-17. MOVSLDUP—Move Packed Single-FP Low and Duplicate 3-727
Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands 4-27
Figure 4-2. PMADDWD Execution Model Using 64-bit Operands.cocvvvvvnnn, 4-132
Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands........ 4-187
Figure 4-4. PMULLU Instruction Operation Using 64-bitOperands 4-196
Figure 4-5. PSADBW Instruction Operation Using 64-bitOperands....................... 4-224
Figure 4-6. PSHUB with 64-Bit Operands.oviiiiiiiiii ittt iieiieiennns 4-228
Figure 4-7. PSHUFD Instruction Operation...........ovuvuvriiiiiiiiiiiiiiiiinieenn, 4-231
Figure 4-8. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand 4-250
Figure 4-9. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand 4-255

Figure 4-10. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand. 4-262

XVi Vol. 2A

Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.

Figure 5-1.
Figure 5-2.
Figure A-1.
Figure B-1.

TABLES

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-5.
Table 3-4.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.
Table 3-17.
Table 3-18.
Table 3-19.
Table 3-20.
Table 3-21.
Table 3-22.
Table 3-23.
Table 3-24.

CONTENTS

PAGE
PUNPCKHBW Instruction Operation Using 64-bit Operands 4-285
PUNPCKLBW Instruction Operation Using 64-bit Operands................... 4-290
Bit Control Fields of Immediate Byte for ROUNDxx Instruction............... 4-349
SHUFPD Shuffle Operation.ovviii s 4-403
SHUFPS Shuffle Operation.ccoiiii e 4-406
UNPCKHPD Instruction High Unpack and Interleave Operation 4-481
UNPCKHPS Instruction High Unpack and Interleave Operation 4-484
UNPCKLPD Instruction Low Unpack and Interleave Operation................ 4-487
UNPCKLPS Instruction Low Unpack and Interleave Operation................ 4-490
INVEPT DESCriPIOr. . vttt ettt e 5-4
INV VY PID DS PO . v vt ittt e e ettt e 5-8
ModR/M Byte nnn Field (Bits 5,4,and 3)..........coiiiiiii e A-20
General Machine Instruction Formatovvviinii s B-1
16-Bit Addressing Forms with the ModR/MByte ..ot 2-6
32-Bit Addressing Forms with the ModR/MByte..........coovviviiiiiiiinnn, 2-7
32-Bit Addressing Forms with the SIBByte..........cccovviiiiiiiiiiiii i 2-8
REX Prefix Fields [BITS: OTOOWRXB] vv v 2-11
Special Cases 0f REX ENCOAINGS vvvvviv e 2-13
Direct Memory Offset Formof MOV ...t 2-14
RIP-Relative Addressingviir it e 2-15
Register Codes Associated With +rb, +rw, +rd, +ro...................cocoiiin, 3-2
Range of Bit Positions Specified by Bit Offset Operands....................... 3-11
Intel 64 and IA-32 General EXCePLioNS. .. vvvvvv e 3-15
SIMD Floating-Point EXCEPLioNSoviiii i 3-17
x87 FPU Floating-Point EXCEPLiIONS. ..o e 3-17
Source Data FOrmMato e 3-19
Aggregation Operationc.vuiriirr e 3-20
Aggregation Operationv i e 3-21
POy L vt 3-22
OUPUL SEIBCHION . vt 3-22
OUTPUL SBIBCTION et e e e 3-22
Comparison Result for Each Element Pair BoolRes[ij].........cccvvvvvninnn... 3-23
Summary of ImMm8 Control Byteoviiiii i e 3-23
Decision Table for CLIRESUISvvvve i 3-129
Comparison Predicate for CMPPD and CMPPS Instructions 3-145
Pseudo-Op and CMPPD Implementation.cocoviiiiiiiiiiiienennes 3-146
Pseudo-Ops and CMPPS. i e 3-151
Pseudo-0ps and CMPSD.o e e 3-161
Pseudo-0ps and CMPSS. ... 3-166
Information Returned by CPUID Instructioncovvviviviiniinnnnn, 3-182
Highest CPUID Source Operand for Intel 64 and IA-32 Processors............ 3-191
Processor Type Field 3-192
Feature Information Returned in the ECX Register..................ocovent 3-195
More on Feature Information Returned in the EDX Register 3-198

Vol. 2A xvii

CONTENTS

Table 3-25.
Table 3-26.
Table 3-27.

Table 3-28.
Table 3-29.
Table 3-30.
Table 3-31.
Table 3-32.
Table 3-33.
Table 3-34.
Table 3-35.
Table 3-36.
Table 3-37.
Table 3-38.
Table 3-39.
Table 3-40.
Table 3-41.
Table 3-42.
Table 3-43.
Table 3-44.
Table 3-45.
Table 3-46.
Table 3-47.
Table 3-48.
Table 3-49.
Table 3-50.
Table 3-51.
Table 3-52.
Table 3-53.
Table 3-54.
Table 3-55.
Table 3-56.

Table 3-57.
Table 3-58.
Table 3-59.

Table 3-60.

Table 3-61.
Table 3-62.
Table 3-63.
Table 3-64.
Table 3-65.
Table 3-66.
Table 3-67.

xviii Vol. 2A

PAGE
Encoding of CPUID Leaf 2 DesCriptors.vvvvii i ci i ieieeeens 3-201
Processor Brand String Returned with Pentium 4 Processor.................. 3-208
Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings3-210
DIV A ON . st 3-294
Results Obtained from F2XMTt 3-325
Results Obtained from FABS.t 3-327
FADD/FADDP/FIADD RESUIES. . .o vttt 3-330
FBSTP RESUIS . ..ottt 3-335
FCHS RESURS .« vttt e 3-338
FCOM/FCOMP/FCOMPP RESUIS . ..ot 3-344
FCOMI/FCOMIP/ FUCOMI/FUCOMIP RESUIS. ..o v vvv e eie i 3-348
FCOS RESUIS .« vttt ettt 3-351
FDIV/FDIVP/FIDIV RESUILS . . .o v ettt 3-356
FDIVR/FDIVRP/FIDIVR RESUIESo v et 3-360
FICOM/FICOMP RESUIS . . v vttt e ettt et e 3-364
FIST/FISTP RESURS. . . v ottt e 3-373
FIST TP RESUIS vttt e e 3-377
FMUL/FMULP/FIMUL RESUIES ..o v e 3-391
FPATAN RESUIS . v ettt ettt 3-396
FPREM RESUIS. . .ottt e 3-398
FPREMT RESUHS ..\ttt e 3-401
FPTAN RESURS. ..ttt e 3-404
FSCALE RESURS . . vttt 3-416
FSIN RESURS . . vt e 3-418
FSINCOS RESURS . . v ettt e 3-420
FSQRT RESUIS. ..ottt e 3-423
FSUB/FSUBP/FISUB RESUIS . ..ottt 3-438
FSUBR/FSUBRP/FISUBR RESUIS . . vt ve et 3-442
FT ST RESURS .ttt e 3-445
FUCOM/FUCOMP/FUCOMPP RESUIS. . .\ v e 3-447
FXAM RESURS. vttt e 3-450
Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region3-457
Field Definitionsov vt e 3-459
Recreating FSAVE Format.o e 3-461
Layout of the 64-bit-mode FXSAVE Map
with Promoted OperandSize3-462
Layout of the 64-bit-mode FXSAVE Map with
Default OperandSize3-463
FY L2 RESURS . . vttt ettt 3-470
FYL2XPT RESUIS v ettt ettt 3-472
IDIV RESUITS .t e 3-493
DeCiSION Table ... 3-514
Segment and Gate TYPES. . vttt e 3-563
Non-64-bit Mode LEA Operation with Address and Operand Size Attributes...3-577
64-bit Mode LEA Operation with Address and Operand Size Attributes........ 3-578

Table 3-68.
Table 3-69.
Table 3-70.
Table 3-71.
Table 4-1.
Table 4-2.

Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 5-1.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 6-9.
Table 6-10.
Table 6-11.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-9.
Table A-10.
Table A-11.
Table A-12.
Table A-13.
Table A-14.
Table A-15.
Table A-16.
Table A-17.
Table A-18.

CONTENTS

PAGE
Segment and Gate DesCriptor TYPES. ... vvvv vttt eeaens 3-601
MUL RESUIS. . . et s 3-747
MWAIT Extension Register (ECX)vvvririiiii it 3-763
MWAIT Hints Register (EAX) .. .vvviiii ettt 3-764
Recommended Multi-Byte Sequence of NOP Instruction........................ 4-5

Valid General and Special Purpose Performance Counter Index Range for RDPMC. 4-
325

REPEAT PrefiXeS . .ottt 4-336
Rounding Modes and Encoding of Rounding Control (RC) Field................ 4-350
Decision Table for STIRESUIS.vuv v e 4-431
SWAPGS Operation Parameterscoovviiiii i it 4-457
MSRs Used By the SYSENTER and SYSEXIT Instructions..................... 4-461
General Layout of XSAVE/XRSTOR Save Area.........covvvvivevininnnnnanns 4-519
XSAVEHEADER LayouT. .. v vttt 4-520
Processor Supplied Init Values XRSTORMay Useovviviiiiiiininnnnn 4-520
Reserved Bit Checkingand XRSTORooviiii s 4-521
XSAVE Save Area Layout for x87 FPUand SSEState....................... 4-525
VM-Instruction Error NUMDETS. . ..o 5-34
Layout of IA32_FEATURE_CONTROL vvvvvi et eas 6-2
GETSEC Leaf FUNCHIONS .ottt 6-3
Getsec Capability Result Encoding (EBX=0)covvviiiiiiiiiii i 6-9
Register State Initialization after GETSEC[ENTERACCS]..........ccovvvvvvnentn 6-15
IA32_MISC_ENALBES MSR Initialization by ENTERACCS and SENTER 6-17
Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP] 6-31
SMX Reporting Parameters FOrmat.ovviiiiiiiii i, 6-43
External Memory Types Using Parameter 3..........cccoviiiiiiiiiniiiinnnnn, 6-45
Default Parameter Valuesovuiiiii e 6-46
Supported Actions for GETSEC[SMCTRL(O)] ..o vvvvveiiiiei e 6-49
RLP MVMM JOIN Data Structureo it i e e 6-51
Superscripts Utilized inOpcode Tables. ...t A-7
One-byte Opcode Map: (O0H — F7H) * ..o e A-10
Two-byte Opcode Map: 00H — 77H (First Byteis OFH) *....................... A-12
Three-byte Opcode Map: 00H — F7H (First Two Bytes are OF 38H) *........... A-16
Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *........... A-18
Opcode Extensions for One- and Two-byte Opcodes by Group Number * A-21
D8 Opcode Map When ModR/M Byte is Within OOHto BFH* A-24
D8 Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-24
D9 Opcode Map When ModR/M Byte is WithinOOHtoBFH * A-25
D9 Opcode Map When ModR/M Byte is Outside OOHtoBFH *.................. A-25
DA Opcode Map When ModR/M Byte is Within OOHto BFH™* A-26
DA Opcode Map When ModR/M Byte is Outside OOHtoBFH *.................. A-26
DB Opcode Map When ModR/M Byte is Within OOHtoBFH* A-27
DB Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-27
DC Opcode Map When ModR/M Byte is Within OOHto BFH™*.................... A-28
DC Opcode Map When ModR/M Byte is Outside OOHto BFH* A-28
DD Opcode Map When ModR/M Byte is Within OOHto BFH™* A-29
DD Opcode Map When ModR/M Byte is Outside OOHtoBFH*.................. A-29

Vol. 2A Xix

CONTENTS

Table A-19.
Table A-20.
Table A-21.
Table A-22.

Table B-1.
Table B-2.
Table B-4.
Table B-3.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.

Table B-11.
Table B-10.
Table B-12.
Table B-13.

Table B-14.
Table B-15.

Table B-16.

Table B-17.
Table B-18.
Table B-19.
Table B-20.
Table B-21.
Table B-22.
Table B-23.
Table B-24.
Table B-25.
Table B-26.
Table B-27.
Table B-28.
Table B-29.
Table B-30.
Table B-31.
Table B-32.
Table B-33.
Table B-34.
Table B-35.
Table B-36.
Table B-37.
Table B-38.
Table B-39.

Table C-1.

XX Vol. 2A

PAGE
DE Opcode Map When ModR/M Byte is Within OOHto BFH*................... A-30
DE Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-30
DF Opcode Map When ModR/M Byte is Within OOHto BFH*................... A-31
DF Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-31
Special Fields Within Instruction Encodings ..o B-3
Encoding of reg Field When w Field is Not Present in Instruction................ B-3
Encoding of reg Field When w Field is Not Present in Instruction................ B-4
Encoding of reg Field When w Field is Present in Instruction.................... B-4
Encoding of reg Field When w Field is Present in Instruction.................... B-5
Encoding of Operand Size (W) Bit ..o B-5
Encoding of Sign-Extend (S) Bitcoovvviiiii B-6
Encoding of the Segment Register (sreg) Field.............coovviiiiiiinnnnn. B-6
Encoding of Special-Purpose Register (eee) Fieldccocovviiiiin. B-7
Encoding of Operation Direction (d) Bit...........coovviiiiiiiiiii i B-8
Encoding of Conditional Test (tttn) Field. ..o B-8
Notes on Instruction ENCOdiNgovvivi e B-9

General Purpose Instruction Formats and Encodings
for Non-64-Bit ModesB-9

Special SYMDOIS. . ..o e B-24
General Purpose Instruction Formats and Encodings

for 64-Bit ModeB-24

Pentium Processor Family Instruction Formats and Encodings,

Non-64-Bit ModesB-53

Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode. ... B-54
Encoding of Granularity of Data Field (gg) vvvvvvvei i B-55
MMX Instruction Formats and ENCOdiNgSvvvvvii i B-55
Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions..... B-59
Formats and Encodings of P6 Family Instructions..................covvinnes. B-59
Formats and Encodings of SSE Floating-Point Instructions..................... B-61
Formats and Encodings of SSE Integer Instructionsocit B-67
Format and Encoding of SSE Cacheability & Memory Ordering Instructions B-68
Encoding of Granularity of Data Field (gg)ovvv i B-69
Formats and Encodings of SSE2 Floating-Point Instructions B-70
Formats and Encodings of SSE2 Integer Instructions B-78
Format and Encoding of SSE2 Cacheability Instructions B-85
Formats and Encodings of SSE3 Floating-Point Instructions B-86
Formats and Encodings for SSE3 Event Management Instructions B-87
Formats and Encodings for SSE3 Integer and Move Instructions B-87
Formats and Encodings for SSSE3 INStructionscovvviviviiiiininann, B-88
Special Case Instructions Promoted USingREXW ...t B-92
Encodings of SSE4.T INSTruCtionsooiiiii i e B-96
Encodings of SSE4.2 INSTruCtionsc.oovviiiiiiii it B-104
General Floating-Point Instruction Formats...........coovviiiiii i, B-106
Floating-Point Instruction Formats and Encodingsoovvvvivinnnn, B-107
Encodings for VMX INSTructions.ovvv it B-112
Encodings for SMX INSTrUCtiONS o v e B-114
SIMPIE INTFINSICS .« e C-3

CONTENTS

PAGE
Table C-2. ComPOSITe INTFINSICS ..o\ttt e C-16

Vol. 2A XXi

CONTENTS

PAGE

xXii Vol. 2A

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes

2A & 2B: Instruction Set Reference (order numbers 253666 and 253667) are part of
a set that describes the architecture and programming environment of all Intel 64
and 1A-32 architecture processors. Other volumes in this set are:

® The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture (Order Number 253665).

® The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes
3A & 3B: System Programming Guide (order numbers 253668 and 253669).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and 1A-32
processors. The Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
write operating systems or executives. The Intel® 64 and I1A-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of Intel 64 and I1A-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.

1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and 1A-32 processors, which include:

* pentium® processors

® P6 family processors

* pentium® 4 processors

* pentium® M processors

* Intel® Xeon® processors

* pentium®D processors

® pentium® processor Extreme Editions
® 64-bit Intel® Xeon® processors

®* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

® Dual-Core Intel® Xeon® processor LV

Vol.2A 1-1

ABOUT THIS MANUAL

* Intel® Core™2 Duo processor

® Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

® Intel® Core™2 Extreme processor X7000 and X6800 series
® Intel® Core™2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Xeon® processor 5200, 5400, 7400 series

® Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

® Intel® Core™2 Duo processor EB000, T9000 series

* Intel® Atom™ processor family

® Intel® Core™i7 processor

* Intel® Core™i5 processor

P6 family processors are 1A-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® I1, Pentium® Ill, and Pentium® Ill Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor
Q9000 series, and Intel® Core™2 Extreme processors QX9000, X9000 series, Intel®
Core™2 processor E8000 series are based on Enhanced Intel® Core™ microarchitec-
ture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture
and supports Intel 64 architecture.

The Intel® Core™i7 processor and the Intel® Core™i5 processor are based on the
Intel® microarchitecture (Nehalem) and support Intel 64 architecture.

1-2 Vol. 2A

ABOUT THIS MANUAL

Processors based on the Next Generation Intel Processor, codenamed Westmere,
support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support 1A-32 architecture. The Intel® Atom™ processor Z5xx series
support 1A-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100,
7200, 7300, 7400 series, Intel® Core™2 Duo, Intel® Core™2 Extreme, Intel®
Core™2 Quad processors, Pentium® D processors, Pentium® Dual-Core processor,
newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64
architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible
with the 1A-32 architecture.

1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION
SET REFERENCE

A description of Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel® manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format
used for all IA-32 instructions and gives the allowable encodings of prefixes, the
operand-identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB
byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-M. Describes Intel 64 and 1A-32
instructions in detail, including an algorithmic description of operations, the effect on
flags, the effect of operand- and address-size attributes, and the exceptions that
may be generated. The instructions are arranged in alphabetical order. General-
purpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, and system instructions are included.

Chapter 4 — Instruction Set Reference, N-Z. Continues the description of Intel
64 and IA-32 instructions started in Chapter 3. It provides the balance of the alpha-
betized list of instructions and starts Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 2B.

Vol.2A 1-3

ABOUT THIS MANUAL

Chapter 5 — VMX Instruction Reference. Describes the virtual-machine exten-
sions (VMX). VMX is intended for a system executive to support virtualization of
processor hardware and a system software layer acting as a host to multiple guest
software environments.

Chapter 6— Safer Mode Extensions Reference. Describes the safer mode exten-
sions (SMX). SMX is intended for a system executive to support launching a
measured environment in a platform where the identity of the software controlling
the platform hardware can be measured for the purpose of making trust decisions.

Appendix A — Opcode Map. Gives an opcode map for the 1A-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of
each form of each 1A-32 instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents.
Lists the Intel® C/C++ compiler intrinsics and their assembly code equivalents for
each of the 1A-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. 1A-32 processors are “little endian” machines; this means the
bytes of a word are numbered starting from the least significant byte. Figure 1-1
illustrates these conventions.

1-4 Vol. 2A

ABOUT THIS MANUAL

Highest Data Structure

Address 31 24 23 16 15 8 7 0 =« Bit offset
28

24

20

16

12

8

4

Byte3 | Byte2 | Bytel | ByteO | O ,I&%gsss‘fs

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a
register.

® Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

NOTE

Avoid any software dependence upon the state of reserved bits in
IA-32 registers. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which
the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

Vol.2A 1-5

ABOUT THIS MANUAL

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the 1A-32 assembly
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3
where:
® Alabel is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have
the same function.

® The operands argumentl, argument2, and argument3 are optional. There may
be from zero to three operands, depending on the opcode. When present, they
take the form of either literals or identifiers for data items. Operand identifiers
are either reserved names of registers or are assumed to be assigned to data
items declared in another part of the program (which may not be shown in the
example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,and k.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes in memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.

1-6 Vol. 2A

ABOUT THIS MANUAL

For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:ElP

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a new syntax to represent this information. See Figure 1-2.

Vol.2A 1-7

ABOUT THIS MANUAL

CPUID Input and Output
CPUID.01H:ECX.SSE [bit 25] = 1

Some inputs require values in EAX and ECX.

This is represented as CPUID.(EAX=n, ECX=n).
If only one value is present, EAX is implied.

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values
CR4.0SFXSR[bit 9] = 1

Example CR name i
Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values
IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)
Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.4 RELATED LITERATURE

Literature related to Intel 64 and 1A-32 processors is listed on-line at:
http://developer.intel.com/products/processor/manuals/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following

1-8 Vol. 2A

http://developer.intel.com/products/processor/manuals/index.htm

ABOUT THIS MANUAL

literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
® The data sheet for a particular Intel 64 or 1A-32 processor
® The specification update for a particular Intel 64 or 1A-32 processor

* Intel® C++ Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® Fortran Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® VTune™ Performance Analyzer documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® 64 and 1A-32 Architectures Software Developer’s Manual (in five volumes)
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® 64 and 1A-32 Architectures Optimization Reference Manual
http://developer.intel.com/products/processor/manuals/index.htm

® Intel® Processor Identification with the CPUID Instruction, AP-485
http://www.intel.com/support/processors/sb/cs-009861.htm

® Intel 64 Architecture x2APIC Specification:
http://developer.intel.com/products/processor/manuals/index.htm

® Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

¢ Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide, http://www.intel.com/technology/security/index.htm

® Intel® SSE4 Programming Reference,
http://developer.intel.com/products/processor/manuals/index.htm

® Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534 _developing_multithreaded_applications.pdf

® Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:

® Software network link:
http://softwarecommunity.intel.com/isn/home/

® Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

® Processor support general link:
http://www.intel.com/support/processors/

Vol.2A 1-9

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://developer.intel.com/products/processor/manuals/index.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm

ABOUT THIS MANUAL

Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

Intel 64 and 1A-32 processor manuals (printed or PDF downloads):

http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Multi-Core Technology:
http://developer.intel.com/multi-core/index.htm

* Intel® Hyper-Threading Technology (Intel® HT Technology):

http://developer.intel.com/technology/hyperthread/

1-10 Vol.2A

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/multi-core/index.htm
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and 1A-32 processors.
The instruction format for protected mode, real-address mode and virtual-8086
mode is described in Section 2.1. Increments provided for 1A-32e mode and its sub-
modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE,

REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE

The Intel 64 and 1A-32 architectures instruction encodings are subsets of the format
shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any
order), primary opcode bytes (up to three bytes), an addressing-form specifier (if
required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

InPsrter]LCJig:(teign Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,0r4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 6 5 32 0 7 65 32 0
Mod ODRS%E R/M Scale | Index Base

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

2.1.1 Instruction Prefixes

Instruction prefixes are divided into four groups, each with a set of allowable prefix
codes. For each instruction, it is only useful to include up to one prefix code from
each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 may be placed in any
order relative to each other.

® Groupl

Lock and repeat prefixes:

Vol.2A 2-1

INSTRUCTION FORMAT

® LOCK prefix is encoded using FOH

* REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix
applies only to string and input/output instructions. (F2H is also used as a
mandatory prefix for some instructions)

®* REP or REPE/REPZ is encoded using F3H. Repeat prefix applies only to
string and input/output instructions.(F3H is also used as a mandatory
prefix for some instructions)

® Group 2
— Segment override prefixes:
® 2EH—CS segment override (use with any branch instruction is reserved)

* 36H—SS segment override prefix (use with any branch instruction is
reserved)

* 3EH—DS segment override prefix (use with any branch instruction is
reserved)

* 26H—ES segment override prefix (use with any branch instruction is
reserved)

* 64H—FS segment override prefix (use with any branch instruction is
reserved)

®* 65H—GS segment override prefix (use with any branch instruction is
reserved)

— Branch hints:
® 2EH—Branch not taken (used only with Jcc instructions)
¢ 3EH—Branch taken (used only with Jcc instructions)
® Group 3

® Operand-size override prefix is encoded using 66H (66H is also used as a
mandatory prefix for some instructions).

® Group4
® 67H—Address-size override prefix

The LOCK prefix (FOH) forces an operation that ensures exclusive use of shared
memory in a multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix”
in Chapter 3, “Instruction Set Reference, A-M,” for a description of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a
string. Use these prefixes only with string and 1/0 instructions (MOVS, CMPS, SCAS,
LODS, STOS, INS, and OUTS). Use of repeat prefixes and/or undefined opcodes with
other Intel 64 or 1A-32 instructions is reserved; such use may cause unpredictable
behavior.

Some instructions may use F2H,F3H as a mandatory prefix to express distinct func-
tionality. A mandatory prefix generally should be placed after other optional prefixes
(exception to this is discussed in Section 2.2.1, “REX Prefixes™)

2-2 Vol.2A

INSTRUCTION FORMAT

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about
the most likely code path for a branch. Use these prefixes only with conditional
branch instructions (Jcc). Other use of branch hint prefixes and/or other undefined
opcodes with Intel 64 or 1A-32 instructions is reserved; such use may cause unpre-
dictable behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit
operand sizes. Either size can be the default; use of the prefix selects the non-default
size.

Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte
sequence of primary opcode bytes may use 66H as a mandatory prefix to express
distinct functionality. A mandatory prefix generally should be placed after other
optional prefixes (exception to this is discussed in Section 2.2.1, “REX Prefixes”)

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and
32-bit addressing. Either size can be the default; the prefix selects the non-default
size. Using this prefix and/or other undefined opcodes when operands for the instruc-
tion do not reside in memory is reserved; such use may cause unpredictable
behavior.

2.1.2 Opcodes

A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is
sometimes encoded in the ModR/M byte. Smaller fields can be defined within the
primary opcode. Such fields define the direction of operation, size of displacements,
register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of:
® An escape opcode byte OFH as the primary opcode and a second opcode byte, or

® A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second
opcode byte (same as previous bullet)

For example, CVTDQ2PD consists of the following sequence: F3 OF E6. The first byte
is a mandatory prefix (it is not considered as a repeat prefix).

Three-byte opcode formats for general-purpose and SIMD instructions consist of:

® An escape opcode byte OFH as the primary opcode, plus two additional opcode
bytes, or

® A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two
additional opcode bytes (same as previous bullet)

For example, PHADDW for XMM registers consists of the following sequence: 66 OF
38 01. The first byte is the mandatory prefix.

Valid opcode expressions are defined in Appendix A and Appendix B.

Vol.2A 2-3

INSTRUCTION FORMAT

2.1.3 ModR/M and SIB Bytes

Many instructions that refer to an operand in memory have an addressing-form spec-
ifier byte (called the ModR/M byte) following the primary opcode. The ModR/M byte
contains three fields of information:

® The mod field combines with the r/m field to form 32 possible values: eight
registers and 24 addressing modes.

® The reg/opcode field specifies either a register number or three more bits of
opcode information. The purpose of the reg/opcode field is specified in the
primary opcode.

® The r/m field can specify a register as an operand or it can be combined with the
mod field to encode an addressing mode. Sometimes, certain combinations of
the mod field and the r/m field is used to express opcode information for some
instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB
byte). The base-plus-index and scale-plus-index forms of 32-bit addressing require
the SIB byte. The SIB byte includes the following fields:

® The scale field specifies the scale factor.
® The index field specifies the register number of the index register.
® The base field specifies the register number of the base register.

See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.14 Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following the ModR/M
byte (or the SIB byte if one is present). If a displacement is required; it be 1, 2, or 4
bytes.

If an instruction specifies an immediate operand, the operand always follows any
displacement bytes. An immediate operand can be 1, 2 or 4 bytes.

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

The values and corresponding addressing forms of the ModR/M and SIB bytes are
shown in Table 2-1 through Table 2-3: 16-bit addressing forms specified by the
ModR/M byte are in Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3
shows 32-bit addressing forms specified by the SIB byte. In cases where the
reg/opcode field in the ModR/M byte represents an extended opcode, valid encodings
are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses
that can be assigned to the first operand of an instruction by using the Mod and R/M
fields of the ModR/M byte. The first 24 options provide ways of specifying a memory

2-4 \Vol.2A

INSTRUCTION FORMAT

location; the last eight (Mod = 11B) provide ways of specifying general-purpose,
MMX technology and XMM registers.

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the
Mod and R/M fields required to obtain the effective address listed in the first column.
For example: see the row indicated by Mod = 11B, R/M = 000B. The row identifies
the general-purpose registers EAX, AX or AL; MMX technology register MMO; or XMM
register XMMO. The register used is determined by the opcode byte and the operand-
size attribute.

Now look at the seventh row in either table (labeled “REG ="). This row specifies the
use of the 3-bit Reg/Opcode field when the field is used to give the location of a
second operand. The second operand must be a general-purpose, MMX technology,
or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along
with the operand-size attribute.

If the instruction does not require a second operand, then the Reg/Opcode field may
be used as an opcode extension. This use is represented by the sixth row in the
tables (labeled “/digit (Opcode)”). Note that values in row six are represented in
decimal form.

The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexa-
decimal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M
byte (in hexadecimal). Bits 3, 4 and 5 are specified by the column of the table in
which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure
below demonstrates interpretation of one table value.

Mod 11

RM 000
/digit (Opcode); REG= 001

C8H 11001000

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

Vol.2A 2-5

INSTRUCTION FORMAT

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL L DL BL AH CH DH BH
r16(/r) AX X DX BX SP BP1 S| DI
r32(/r) EAX ECX |EDX |EBX |ESP |€BP |ESI €Dl
mm(/r) MMO |MM1 |[MM2 |MM3 |MM4 |[MM5 |MMe | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 | 011 100 | 101 170 |1
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
BX+SI] 00 000 |00 08 10 18 20 28 30 38
BX+DI] 001 |01 09 11 19 21 29 31 39
BP+SlI] 010 |02 0A 12 1A 22 2A 32 3A
BP+DI] 011 |03 0B 13 1B 23 2B 33 3B
SI] 100 |04 0C 14 1C 24 2C 34 3C
DI 101 |05 oD 15 1D 25 2D 35 3D
disp162 110 |06 0€E 16 1€ 26 2E 36 3€
[BX] 111 |07 OF 17 1F 27 2F 37 3F
BX+SI]+disp83 01 000 |40 48 50 58 60 68 70 78
BX-+DI]+disp8 001 |41 49 51 59 61 69 71 79
BP+SI]+disp8 010 |42 4A 52 5A 62 6A 72 7A
BP+DI]+disp8 011 |43 4B 53 5B 63 6B 73 7B
Sl]+disp8 100 |44 4C 54 5C 64 6C 74 7C
DI]+disp8 101 |45 4D 55 5D 65 6D 75 7D
BP]+disp8 110 |46 4€ 56 5€ 66 6€ 76 7€
BX]+disp8 111 |47 4F 57 5F 67 6F 77 7F
BX+SI]+disp16 10 000 |80 88 90 98 AO A8 BO B8
BX+DI]+disp16 001 |81 89 91 99 Al A9 B1 B9
BP+SI]+disp16 010 |82 8A 92 9A A2 AA | B2 BA
BP+DI]+disp16 011 |83 8B 93 9B A3 AB B3 BB
SI]+disp16 100 |84 8C 94 9C A4 AC B4 BC
DI]+disp16 101 |85 8D 95 9D A5 AD B5 BD
BP]+disp16 110 |86 8€E 96 9€ A6 AE B6 BE
BX]+disp16 111 |87 8F 97 9F A7 AF B7 BF
EAX/AX/AL/MMO/XMMO | 11 000 |Co c8 DO D8 €0 €8 FO F8
ECX/CX/CL/IMM1/XMM1 001 | C1 C9 D1 D9 €EQ €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 | C2 CA D2 DA €2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 | C3 CB D3 DB €3 EB F3 FB
ESP/SP/AHMM4/XMM4 100 |C4 CC D4 DC €4 €C F4 FC
€BP/BP/CH/MM5/XMM5 101 | C5 CD D5 DD €5 €D F5 FD
€SI/SI/DH/MM6/XMM6 110 | C6 CE D6 DE €6 EE F6 FE
€DI/DI/BH/MM7/XMM7 11 | C7 CF D7 DF €7 EF F7 FF
NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other
effective addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is
added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is
sign-extended and added to the index.

2-6 Vol.2A

Table 2-2. 32-Bit Addressin

INSTRUCTION FORMAT

g Forms with the ModR/M Byte

r8(/r) AL cL DL BL AH CH DH BH
r16(/r) AX X DX BX SP BP S| DI
r32(/r) EAX | ECX |EDX |EBX |ESP |EBP | ESI epl
mm(/r) MMO |MM1 |MM2 |MM3 |MM4 |MM5 |MM6 | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 |001 |010 |011 |100 |7101 |110 |111
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
EAX] 00 |000 |oo |08 10 18 |20 |28 30 38
ECX] 001 |01 09 11 19 |21 29 31 39
€DX] 010 |02 OA |12 1A |22 2A |32 3A
EBX] 011 |03 0B 13 1B |23 2B |33 3B
11 100 |04 |OC 14 1C 24 | 2C 34 |3C
disp322 101 |05 oD 15 1D |25 2D |35 3D
[ESN] 110 |06 |OE 16 1€ 26 | 2E 36 3E
[EDI] 111 |07 OF 17 1F 27 2F 37 3F
EAX]+disp83 01 |000 |40 (48 |50 58 |60 |68 |70 |78
ECX]+disp8 001 |41 (49 |2} 59 |61 |69 |71 |79
EDX]+disp8 010 |42 |4A |53 5A |62 6A |72 7A
EBX]+disp8 011 |43 |4B |54 5B |63 6B |73 7B
--][--]+disp8 100 |44 |4C gg 5C 64 |6C 74 | 7C
EBP]+disp8 101 |45 (4D |37 50 |65 6D |75 7D
€SI]+disp8 110 |46 |4E 5€ 66 | 6E 76 | 7€
EDI]+disp8 111 |47 | 4F 5F 67 6F 77 7F
EAX]+disp32 10 |[000 |80 |88 |90 |98 |A0O |A8 |BO |B8
ECX]+disp32 001 |81 89 |91 99 | Al A9 |B1 B9
EDX]+disp32 010 |82 |BA |92 9A |A2 |AA |B2 BA
EBX]+disp32 011 |83 (8B |93 9B |A3 |AB |B3 BB
--][--]+disp32 100 |84 |8C 94 | 9C A4 | AC B4 |BC
EBP]+disp32 101 |85 |8D |95 9D |A5 |AD |B5 |BD
ESI]+disp32 110 |86 |8E 96 |9€ A6 | AE B6 |BE
EDI]+disp32 111 |87 |8F 97 9F A7 | AF B7 |BF
EAX/AX/AL/MMO/XMMO | 11 | 000 |CO 8 DO |D8 |EO €8 FO F8
ECX/CX/CL/MM/XMM1 001 |C1 9 D1 D9 |E1 €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 |cC2 CA |D2 |DA |E2 EA |F2 FA
EBX/BX/BL/MM3/XMM3 011 |C3 CB D3 |DB |E3 €B F3 FB
ESP/SP/AH/MM4/XMM4 100 |C4 cC D4 | DC €4 €C F4 FC
€BP/BP/CH/MM5/XMM5 101 | C5 CD D5 |DD |E5 €D F5 FD
ESI/SI/DH/MM6/XMM6 110 |C6 CE D6 | DE €6 EE F6 FE
€DI/DI/BH/MM7/XMM7 11 | C7 CF D7 |DF €7 EF F7 FF
NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
General purpose registers used as a base are indicated across the top of the table,
along with corresponding values for the SIB byte’s base field. Table rows in the body

Vol.2A 2-7

INSTRUCTION FORMAT

of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the
scaling factor (determined by SIB byte bits 6 and 7).

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

r32 EAX ECX EDX EBX €SP] €sl]
(In decimal) Base = 0 1 2 3 4 5 6 7
(In binary) Base = 000 001 010 011 100 101 110 111
Scaled Index SS | Index Value of SIB Byte (in Hexadecimal)
EAX] 00 000 |00 01 02 03 04 05 06 07
ECX] 001 |08 09 0A 0B 0C oD 0] OF
EDX] 010 |10 11 12 13 14 15 16 17
EBX] 011 |18 19 1A 1B 1C 1D 1€ 1F
none 100 |20 21 22 23 24 25 26 27
EBP] 101 |28 29 2A 2B 2C 2D 2€ 2F
ESI] 110 |30 31 32 33 34 35 36 37
EDI] 111 |38 39 3A 3B 3C 3D 3€ 3F
EAX*2] 01 000 |40 41 42 43 44 45 46 47
ECX*2] 001 |48 49 4A 4B 4C 4D 4€ 4F
EDX*2] 010 |50 51 52 53 54 55 56 57
EBX*2] 011 |58 59 5A 5B 5C 5D 5€ 5F
none 100 |60 61 62 63 64 65 66 67
EBP*2] 101 |68 69 6A 6B 6C 6D 6€ 6F
ESI*2] 110 |70 71 72 73 74 75 76 77
EDI*2] 111 |78 79 7A 7B 7C 7D 7€ 7F
EAX*4] 10 000 |80 81 82 83 84 85 86 87
ECX*4] 001 |88 89 8A 8B 8C 8D 8E 8F
EDX*4] 010 |90 91 92 93 94 95 96 97
EBX*4] 011 |98 89 9A 9B 9C D 9€ 9F
none 100 | AO Al A2 A3 A4 A5 A6 A7
EBP*4] 101 | A8 A9 AA AB AC AD AE AF
ESI*4] 110 |BO B1 B2 B3 B4 B5 B6 B7
EDI*4] 111 | B8 B9 BA BB BC BD BE BF
EAX*8] 11 000 |cCO C1 c2 c3 C4 c5 C6 c7
ECX*8] 001 |(C8 9 CA (B CC CD CE CF
EDX*8] 010 |DO D1 D2 D3 D4 D5 D6 D7
EBX*8] 011 |D8 D9 DA DB DC DD DE DF
none 100 |EO E1 €2 €3 €4) €6 €7
EBP*8] 101 | €8 €9 EA €B €C €D EE EF
ESI*8] 110 |FO F1 F2 F3 F4 F5 F6 F7
EDI*8] 111 |F8 F9 FA FB FC FD FE FF

NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP]. This provides the following address modes:

MOD bits _ Effective Address

00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

2-8 Vol.2A

INSTRUCTION FORMAT

2.2 IA-32€ MODE

IA-32e mode has two sub-modes. These are:

® Compatibility Mode. Enables a 64-bit operating system to run most legacy
protected mode software unmodified.

® 64-Bit Mode. Enables a 64-bit operating system to run applications written to
access 64-bit address space.

2.2.1 REX Prefixes

REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
® Specify GPRs and SSE registers.

® Specify 64-bit operand size.

® Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if
an instruction references one of the extended registers or uses a 64-bit operand. If a
REX prefix is used when it has no meaning, it is ignored.

Only one REX prefix is allowed per instruction. If used, the REX prefix byte must
immediately precede the opcode byte or the escape opcode byte (OFH). When a REX
prefix is used in conjunction with an instruction containing a mandatory prefix, the
mandatory prefix must come before the REX so the REX prefix can be immediately
preceding the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix
should have REX placed between F3 and OF E6. Other placements are ignored. The
instruction-size limit of 15 bytes still applies to instructions with a REX prefix. See
Figure 2-3.

lgsgf?%s P?gzi(x Opcode ModR/M SIB Displacement Immediate
Grp 1,Grp (optional) 1-,2-,0r 1 byte 1 byte Address Immediate data
2,Grp3, 3-byte (if required) (ifrequired) displacementof of 1,2 0r4
Grp 4 opcode 1,2,0r4bytes bytes or none

(optional)

Figure 2-3. Prefix Ordering in 64-bit Mode

Vol.2A 2-9

INSTRUCTION FORMAT

2.2.1.1 Encoding

Intel 64 and 1A-32 instruction formats specify up to three registers by using 3-bit
fields in the encoding, depending on the format:

® ModR/M: the reg and r/m fields of the ModR/M byte

® ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of
the SIB (scale, index, base) byte

® Instructions without ModR/M: the reg field of the opcode

In 64-bit mode, these formats do not change. Bits needed to define fields in the
64-bit context are provided by the addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields

REX prefixes are a set of 16 opcodes that span one row of the opcode map and
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC)
in 1A-32 operating modes and in compatibility mode. In 64-bit mode, the same
opcodes represent the instruction prefix REX and are not treated as individual
instructions.

The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode.
INC/DEC functionality is still available using ModR/M forms of the same instructions
(opcodes FF/0 and FF/1).

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7
show examples of REX prefix fields in use. Some combinations of REX prefix fields are
invalid. In such cases, the prefix is ignored. Some additional information follows:

® Setting REX.W can be used to determine the operand size but does not solely
determine operand width. Like the 66H size prefix, 64-bit operand size override
has no effect on byte-specific operations.

® For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is
ignored.

® If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

¢ REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control
or debug register. REX.R is ignored when ModR/M specifies other registers or
defines an extended opcode.

® REX.X bit modifies the SIB index field.

® REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it
modifies the opcode reg field used for accessing GPRs.

2-10 Vol. 2A

INSTRUCTION FORMAT

Table 2-4. REX Prefix Fields [BITS: 0100WRXB]

Field Name Bit Position Definition
- 7:4 0100
W 3 0 = Operand size determined by CS.D
1 = 64 Bit Operand Size
R 2 Extension of the ModR/M reg field
1 Extension of the SIB index field
B 0 Extension of the ModR/M r/m field, SIB base field, or
Opcode reg field
ModRM Byte
REX PREFIX Opcode mod reg r/m
O100WROEE #11 rer I‘ol‘)b‘
*]
&Vr‘;‘r' Bbbb
OM17xfig1-3

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

ModRM Byte
REX PREFIX Opcode mod reg r/m
0100WRO0B 11 rrr bbb
| [
‘ H J
i‘"ﬂ! J
Rrrr Bbbb
OM17Xfig1-4

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used

Vol.2A 2-11

INSTRUCTION FORMAT

ModRM Byte SIB Byte
REX PREFIX Opcode mod | reg r/m scale | index | base
0100WRXB #11 rer 100 Ss XXX bbb
I [
L]
LVVV Yy l
Rrrr Xxxx Bbbb
OM17Xfig1-5

Figure 2-6. Memory Addressing With a SIB Byte

REX PREFIX

0100W00B
|

Opcode

reg

bbb
|

|

Bbbb

OM17Xfig1-6

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

In the 1A-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are
encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as regis-
ters O through 7. REX prefixes provide an additional addressing capability for byte-
registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special
meaning for register encodings. For some combinations, fields expanded by the REX

prefix are not decoded. Table 2-5 describes how each case behaves.

2-12 Vol. 2A

INSTRUCTION FORMAT

Table 2-5. Special Cases of REX Encodings

ModR/M or | Sub-field Compatibility Compatibility

SIB Encodings Mode Operation |Mode Implications | Additional Implications

ModR/M Byte |mod = 11 SIB byte present. |SIB byte required |REX prefix adds a fourth
/m == for ESP-based bit (b) which is not
b*100(ESP) addressing. decoded (don't care).

SIB byte also required for
R12-based addressing.

ModR/M Byte | mod == Base register not | EBP without a REX prefix adds a fourth
/m == used. displacement must | bit (b) which is not
b*101(EBP) be done using decoded (don't care).

mod = 01 with Using RBP or R13 without
displacement of 0. | displacement must be
done using mod = 01 with
a displacement of 0.

SIB Byte index == Index register not | ESP cannot be used | REX prefix adds a fourth
0100(ESP) used. as an index bit (b) which is decoded.
register. There are no additional

implications. The
expanded index field
allows distinguishing RSP
from R12, therefore R12
can be used as an index.

SIB Byte base == Base register is Base register REX prefix adds a fourth
0101(EBP) unused if depends on mod bit (b) which is not
mod = 0. encoding. decoded.

This requires explicit
displacement to be used
with EBP/RBP or R13.

NOTES:
* Don't care about value of REX.B

2.2.13 Displacement

Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The
ModR/M and SIB displacement sizes do not change. They remain 8 bits or 32 bits and
are sign-extended to 64 bits.

2.2.1.4 Direct Memory-Offset MOVs

In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to
specify a 64-bit immediate absolute address. This address is called a moffset. No
prefix is needed to specify this 64-bit memory offset. For these MOV instructions, the

Vol.2A 2-13

INSTRUCTION FORMAT

size of the memory offset follows the address-size default (64 bits in 64-bit mode).
See Table 2-6.

Table 2-6. Direct Memory Offset Form of MOV

Opcode Instruction

AO MOV AL, moffset
Al MOV EAX, moffset
A2 MOV moffset, AL
A3 MOV moffset, EAX

2.2.1.5 Immediates

In 64-bit mode, the typical size of immediate operands remains 32 bits. When the
operand size is 64 bits, the processor sign-extends all immediates to 64 bits prior to
their use.

Support for 64-bit immediate operands is accomplished by expanding the semantics
of the existing move (MOV reg, imm16/32) instructions. These instructions (opcodes
B8H — BFH) move 16-bits or 32-bits of immediate data (depending on the effective
operand size) into a GPR. When the effective operand size is 64 bits, these instruc-
tions can be used to load an immediate into a GPR. A REX prefix is needed to override
the 32-bit default operand size to a 64-bit operand size.

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6 RIP-Relative Addressing

A new addressing form, RIP-relative (relative instruction-pointer) addressing, is
implemented in 64-bit mode. An effective address is formed by adding displacement
to the 64-bit RIP of the next instruction.

In 1A-32 architecture and compatibility mode, addressing relative to the instruction
pointer is available only with control-transfer instructions. In 64-bit mode, instruc-
tions that use ModR/M addressing can use RIP-relative addressing. Without RIP-rela-
tive addressing, all ModR/M instruction modes address memory relative to zero.

RIP-relative addressing allows specific ModR/M modes to address memory relative to
the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of
+2GB from the RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative
addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB
encodings. RIP-relative addressing is encoded using a redundant form.

In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to
be RIP+Disp32 rather than displacement-only. See Table 2-7.

2-14 Vol. 2A

INSTRUCTION FORMAT

Table 2-7. RIP-Relative Addressing

ModR/M and SIB Sub-field Compatibility 64-bit Mode | Additional Implications
Encodings Mode Operation | Operation in 64-bit mode
ModR/M mod == 00 Disp32 RIP + Disp32 | Must use SIB form with
Byte normal (zero-based)

r/m == 101 (none) displacement addressing

SIB Byte base == 101 (none) | if mod = 00, Same as None
index == 100 Disp32 legacy
(none)
scale=0,1,2,4

The ModR/M encoding for RIP-relative addressing does not depend on using prefix.
Specifically, the r/m bit field encoding of 101B (used to select RIP-relative
addressing) is not affected by the REX prefix. For example, selecting R13 (REX.B=1,
r/m = 101B) with mod = 0O0B still results in RIP-relative addressing. The 4-bit r/m
field of REX.B combined with ModR/M is not fully decoded. In order to address R13
with no displacement, software must encode R13 + 0 using a 1-byte displacement of
zero.

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The
use of the address-size prefix does not disable RIP-relative addressing. The effect of
the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size

In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do
not need a REX prefix for this operand size). These are:

® Near branches

® All instructions, except far branches, that implicitly reference the RSP

2.2.2 Additional Encodings for Control and Debug Registers

In 64-bit mode, more encodings for control and debug registers are available. The
REX.R bit is used to modify the ModR/M reg field when that field encodes a control or
debug register (see Table 2-4). These encodings enable the processor to address
CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit
mode. CR8 becomes the Task Priority Register (TPR).

In the first implementation of 1A-32e mode, CR9-CR15 and DR8-DR15 are not imple-
mented. Any attempt to access unimplemented registers results in an invalid-opcode
exception (#UD).

Vol.2A 2-15

INSTRUCTION FORMAT

2-16 Vol. 2A

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M

This chapter describes the instruction set for the Intel 64 and 1A-32 architectures
(A-M) in 1A-32e, protected, Virtual-8086, and real modes of operation. The set
includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3/SSE4, and system
instructions. See also Chapter 4, “Instruction Set Reference, N-Z,” in the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 2B.

For each instruction, each operand combination is described. A description of the
instruction and its operand, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of exceptions that
can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE
PAGES

This section describes the format of information contained in the instruction refer-
ence pages in this chapter. It explains notational conventions and abbreviations used
in these sections.

3.1.1 Instruction Format

The following is an example of the format used for each instruction description in this
chapter. The heading below introduces the example. The table below provides an
example summary table.

CMC—Complement Carry Flag [this is an example]

Opcode Instruction Op/En 64-bit Compat/ Description
Mode Leg Mode

F5 CcMC A Valid Valid Complement carry flag.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

A NA NA NA NA

Vol.2A 3-1

INSTRUCTION SET REFERENCE, A-M

3.1.1.1 Opcode Column in the Instruction Summary Table

The “Opcode” column in the table above shows the object code produced for each
form of the instruction. When possible, codes are given as hexadecimal bytes in the
same order in which they appear in memory. Definitions of entries other than hexa-
decimal bytes are as follows:

REX.W — Indicates the use of a REX prefix that affects operand size or
instruction semantics. The ordering of the REX prefix and other
optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed
explicitly in the opcode column.

/digit — A digit between 0 and 7 indicates that the ModR/M byte of the
instruction uses only the r/m (register or memory) operand. The reg field
contains the digit that provides an extension to the instruction's opcode.

/r — Indicates that the ModR/M byte of the instruction contains a register
operand and an r/m operand.

cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp),
8-byte (co) or 10-byte (ct) value following the opcode. This value is used to
specify a code offset and possibly a new value for the code segment register.

ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (i0) immediate
operand to the instruction that follows the opcode, ModR/M bytes or scale-
indexing bytes. The opcode determines if the operand is a signed value. All
words, doublewords and quadwords are given with the low-order byte first.

+rb, +rw, +rd, +ro — A register code, from O through 7, added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.
See Table 3-1 for the codes. The +ro columns in the table are applicable only in
64-bit mode.

+i — A number used in floating-point instructions when one of the operands is
ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is
added to the hexadecimal byte given at the left of the plus sign to form a single
opcode byte.

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)
[© [© [© [©
o oQ o |2 oQ o |2 oQ o 2 o o
et B BB OB BB OB OB B OBOE
(=] (=] (=] o
g = g &~ @& = & | [~ |2
AL None 0 AX None 0 EAX None 0 RAX None 0
CL None 1 X None 1 ECX None 1 RCX None 1
DL None 2 DX None 2 EDX None 2 RDX None 2
3-2 Vol.2A

INSTRUCTION SET REFERENCE, A-M

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register
(64-Bit Mode only)
S | 3 |8 @ 3 |8 @ 3 g @ S
& K 5 B B & B 5 B B %
g = g e = g @@ = g | [|
BL None 3 BX None 3 EBX None 3 RBX None 3
AH Not 4 SP None | 4 ESP None | 4 N/A N/A N/A
encod
able
(N.E)
CH N.E. 5 BP None | 5 EBP None 5 N/A N/A N/A
DH N.E. 6 S| None | 6 sl None | 6 N/A N/A N/A
BH N.E. 7 DI None | 7 EDI None 7 N/A N/A N/A
SPL Yes 4 SP None 4 ESP None 4 RSP None 4
BPL Yes 5 BP None 5 EBP None 5 RBP None 5
SIL Yes 6 SI None 6 €SI None 6 RSI None 6
DIL Yes 7 DI None 7 EDI None 7 RDI None 7
Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0
ROL Yes 1 ROW Yes 1 RSD Yes 1 R9 Yes 1
R10L | Yes 2 R10W | Yes 2 R10D Yes 2 R10 Yes 2
R11L | Yes 3 R11W | Yes 3 R11D Yes 3 R11 Yes 3
R12L | Yes 4 R12W | Yes 4 R12D Yes 4 R12 Yes 4
R13L | Yes 5 R13W | Yes 5 R13D Yes 5 R13 Yes 5
R14L | Yes 6 R14W | Yes 6 R14D Yes 6 R14 Yes 6
R15L | Yes 7 R15W | Yes 7 R15D Yes 7 R15 Yes 7

3.1.1.2 Instruction Column in the Opcode Summary Table

The “Instruction” column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to repre-
sent operands in the instruction statements:

® rel8 — A relative address in the range from 128 bytes before the end of the
instruction to 127 bytes after the end of the instruction.

® rell6, rel32, rel64 — A relative address within the same code segment as the
instruction assembled. The rel16 symbol applies to instructions with an operand-
size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits; the rel64 symbol applies to instructions with an
operand-size attribute of 64 bits.

Vol.2A 3-3

INSTRUCTION SET REFERENCE, A-M

® ptrl6:16, ptrl6:32 and ptrl6:64 — A far pointer, typically to a code segment
different from that of the instruction. The notation 16:16 indicates that the value
of the pointer has two parts. The value to the left of the colon is a 16-bit selector
or value destined for the code segment register. The value to the right
corresponds to the offset within the destination segment. The ptrl16:16 symbol is
used when the instruction’'s operand-size attribute is 16 bits; the ptr16:32
symbol is used when the operand-size attribute is 32 bits; the ptr16:64 symbol is
used when the operand-size attribute is 64 bits.

® r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH,
BPL, SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when
using REX.R and 64-bit mode.

® r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SlI, DI;
or one of the word registers (R8-R15) available when using REX.R and 64-bit
mode.

® 32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available
when using REX.R in 64-bit mode.

® r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, R8—R15. These are available when using REX.R and 64-bit
mode.

® imm8 — An immediate byte value. The imm8 symbol is a signed number
between —128 and +127 inclusive. For instructions in which imm8 is combined
with a word or doubleword operand, the immediate value is sign-extended to
form a word or doubleword. The upper byte of the word is filled with the topmost
bit of the immediate value.

® imm16 — An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between —32,768 and +32,767 inclusive.

®* imm32 — An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and —2,147,483,648 inclusive.

® imm64 — An immediate quadword value used for instructions whose
operand-size attribute is 64 bits. The value allows the use of a number
between +9,223,372,036,854,775,807 and —9,223,372,036,854,775,808
inclusive.

® r/m8 — A byte operand that is either the contents of a byte general-purpose
register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from
memory. Byte registers R8L - R15L are available using REX.R in 64-bit mode.

® r/m16 — A word general-purpose register or memory operand used for instruc-
tions whose operand-size attribute is 16 bits. The word general-purpose registers
are: AX, CX, DX, BX, SP, BP, SlI, DI. The contents of memory are found at the
address provided by the effective address computation. Word registers R8W -
R15W are available using REX.R in 64-bit mode.

3-4 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

r/m32 — A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword general-
purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of
memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit
mode.

r/m64 — A quadword general-purpose register or memory operand used for
instructions whose operand-size attribute is 64 bits when using REX.W.
Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP,
RSP, R8—R15; these are available only in 64-bit mode. The contents of memory
are found at the address provided by the effective address computation.

m — A 16-, 32- or 64-bit operand in memory.

m8 — A byte operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed
to by the RSI or RDI registers.

m16 — A word operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.

m32 — A doubleword operand in memory, usually expressed as a variable or
array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomen-
clature is used only with the string instructions.

m64 — A memory quadword operand in memory.
m128 — A memory double quadword operand in memory.

ml1l6:16, m16:32 & m16:64 — A memory operand containing a far pointer
composed of two numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its offset.

m1l6&32, m16&16, m32&32, m16&64 — A memory operand consisting of
data item pairs whose sizes are indicated on the left and the right side of the
ampersand. All memory addressing modes are allowed. The m16&16 and
m32&32 operands are used by the BOUND instruction to provide an operand
containing an upper and lower bounds for array indices. The m16&32 operand is
used by LIDT and LGDT to provide a word with which to load the limit field, and a
doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to
provide a word with which to load the limit field, and a quadword with which to
load the base field of the corresponding GDTR and IDTR registers.

moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory
offset) of type byte, word, or doubleword used by some variants of the MOV
instruction. The actual address is given by a simple offset relative to the segment
base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the
instruction.

Vol.2A 3-5

INSTRUCTION SET REFERENCE, A-M

® Sreg — A segment register. The segment register bit assignments are ES = 0O,
CS=1,SS=2,DS=3,FS =4, and GS = 5.

®* m32fp, m64fp, m80fp — A single-precision, double-precision, and double
extended-precision (respectively) floating-point operand in memory. These
symbols designate floating-point values that are used as operands for x87 FPU
floating-point instructions.

®* ml6int, m32int, m64int — A word, doubleword, and quadword integer
(respectively) operand in memory. These symbols designate integers that are
used as operands for x87 FPU integer instructions.

® ST or ST(0) — The top element of the FPU register stack.
® ST(i) —The ith element from the top of the FPU register stack (i < O through 7).
® mm — An MMX register. The 64-bit MMX registers are: MMO through MM7.

®* mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory
operand. The 64-bit MMX registers are: MMO through MM7. The contents of
memory are found at the address provided by the effective address computation.

®* mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX
registers are: MMO through MM7. The contents of memory are found at the
address provided by the effective address computation.

® xmm — An XMM register. The 128-bit XMM registers are: XMMO through XMM7;
XMMS8 through XMM15 are available using REX.R in 64-bit mode.

® xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM
registers are XMMO through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

® xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD
floating-point registers are XMMO through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

®* xmm/ml1l28 — An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMMO through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

® <XMMO=: indicates implied use of the XMMO register.

When there is ambiguity, xmm1 indicates the first source operand using an XMM
register and xmm2 the second source operand using an XMM register.

Some instructions use the XMMO register as the third source operand, indicated
by <XMMO0=. The use of the third XMM register operand is implicit in the instruc-
tion encoding and does not affect the ModR/M encoding.

3-6 Vol.2A

INSTRUCTION SET REFERENCE, A-M

3.1.1.3 Operand Encoding Column in the Instruction Summary Table

The “operand encoding” column is abbreviated as Op/En in the Instruction Summary
table heading. Instruction operand encoding information is provided for each
assembly instruction syntax using a letter to cross reference to a row entry in the
operand encoding definition table that follows the instruction summary table. The
definition table is organized according to the order of operand in Intel assembly
syntax. The encoding method for each operand in the instruction byte stream is
expressed via modR/M:reg, modR/M:r/m, imm8/16/32/64, etc. (cross reference).

NOTES

® The letters in the Op/En column of an instruction apply ONLY to
the encoding definition table immediately following the
instruction summary table.

® In the encoding definition table, the letter ‘r’ within a pair of
parenthesis denotes the content of the operand will be read by
the processor. The letter ‘w’ within a pair of parenthesis denotes
the content of the operand will be updated by the processor.

3.1.14 64-bit Mode Column in the Instruction Summary Table

The “64-bit Mode” column indicates whether the opcode sequence is supported in
64-bit mode. The column uses the following notation:

® Valid — Supported.
® Invalid — Not supported.

® N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may
represent part of a sequence of valid instructions in other modes).

® N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit

mode.
® N.l. — Indicates the opcode is treated as a new instruction in 64-bit mode.
® N.S. — Indicates an instruction syntax that requires an address override prefix in

64-bit mode and is not supported. Using an address override prefix in 64-bit
mode may result in model-specific execution behavior.

3.1.1.5 Compatibility/Legacy Mode Column in the Instruction Summary
Table

The “Compatibility/Legacy Mode” column provides information on the opcode
sequence in either the compatibility mode or other 1A-32 modes. The column uses
the following notation:

® Valid — Supported.

® Invalid — Not supported.

Vol.2A 3-7

INSTRUCTION SET REFERENCE, A-M

® N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not
encodable; the opcode sequence is not applicable as an individual instruction in
compatibility mode or 1A-32 mode. The opcode may represent a valid sequence
of legacy IA-32 instructions.

3.1.1.6 Description Column in the Instruction Summary Table

The “Description” column briefly explains forms of the instruction.

3.1.1.7 Description Section

Each instruction is then described by number of information sections. The “Descrip-
tion” section describes the purpose of the instructions and required operands in more
detail.

3.1.1.8 Operation Section

The “Operation” section contains an algorithm description (frequently written in
pseudo-code) for the instruction. Algorithms are composed of the following
elements:

® Comments are enclosed within the symbol pairs “(*” and “*)”.

¢ Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI
for an if statement; DO and OD for a do statement; or CASE... OF for a case
statement.

® Aregister name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the
address contained in register Sl relative to the Sl register’s default segment (DS)
or the overridden segment.

® Parentheses around the “E” in a general-purpose register name, such as (E)SI,
indicates that the offset is read from the Sl register if the address-size attribute
is 16, from the ESI register if the address-size attribute is 32. Parentheses
around the “R” in a general-purpose register name, (R)SI, in the presence of a
64-bit register definition such as (R)SI, indicates that the offset is read from the
64-bit RSI register if the address-size attribute is 64.

® Brackets are used for memory operands where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates
that the content of the source operand is a segment-relative offset.

® A « Bindicates that the value of B is assigned to A.

® The symbols =, #, >, <, >, and < are relational operators used to compare two
values: meaning equal, not equal, greater or equal, less or equal, respectively. A
relational expression such as A < B is TRUE if the value of A is equal to B;
otherwise it is FALSE.

3-8 Vol.2A

INSTRUCTION SET REFERENCE, A-M

The expression “<< COUNT” and “>> COUNT” indicates that the destination
operand should be shifted left or right by the number of bits indicated by the
count operand.

The following identifiers are used in the algorithmic descriptions:

OperandSize and AddressSize — The OperandSize identifier represents the
operand-size attribute of the instruction, which is 16, 32 or 64-bits. The
AddressSize identifier represents the address-size attribute, which is 16, 32 or
64-bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the MOV instruction used.

IF Instruction <« MOVW
THEN OperandSize « 16;
ELSE
IF Instruction «~ MOVD
THEN OperandSize « 32;
ELSE
IF Instruction <~ MOVQ
THEN OperandSize « 64;
Fl;
Fl;
Fl;
See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 1, for guidelines
on how these attributes are determined.

StackAddrSize — Represents the stack address-size attribute associated with
the instruction, which has a value of 16, 32 or 64-bits. See “Address-Size
Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1.

SRC — Represents the source operand.
DEST — Represents the destination operand.

The following functions are used in the algorithmic descriptions:

ZeroExtend(value) — Returns a value zero-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, zero
extending a byte value of —10 converts the byte from F6H to a doubleword value
of 0O0O0O000F6H. If the value passed to the ZeroExtend function and the operand-
size attribute are the same size, ZeroExtend returns the value unaltered.

SignExtend(value) — Returns a value sign-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, sign
extending a byte containing the value —10 converts the byte from F6H to a
doubleword value of FFFFFFF6H. If the value passed to the SignExtend function
and the operand-size attribute are the same size, SignExtend returns the value
unaltered.

Vol.2A 3-9

INSTRUCTION SET REFERENCE, A-M

¢ SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a
signed 8-bit value. If the signed 16-bit value is less than —128, it is represented
by the saturated value -128 (80H); if it is greater than 127, it is represented by
the saturated value 127 (7FH).

® SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than —32768, it is
represented by the saturated value —32768 (8000H); if it is greater than 32767,
it is represented by the saturated value 32767 (7FFFH).

¢ SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (O0OH); if it is greater than 255, it is represented by
the saturated value 255 (FFH).

¢ SaturateToSignedByte — Represents the result of an operation as a signed
8-bit value. If the resultis less than —128, it is represented by the saturated value
—128 (80H); if it is greater than 127, it is represented by the saturated value 127
(7FH).

® SaturateToSignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than —32768, it is represented by the saturated
value —32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

¢ SaturateToUnsignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value
zero (O0H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

® SaturateToUnsignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value
zero (OOH); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).

® LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the least significant word of the doubleword result in the destination
operand.

® HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.

® Push(value) — Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction. See the “Operation”
subsection of the “PUSH—Push Word, Doubleword or Quadword Onto the Stack”
section in Chapter 4 of the Intel® 64 and I1A-32 Architectures Software
Developer’'s Manual, Volume 2B.

® Pop() removes the value from the top of the stack and returns it. The statement
EAX « Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word, a doubleword or a quadword depending on the operand-size
attribute. See the “Operation” subsection in the “POP—Pop a Value from the

3-10 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

Stack” section of Chapter 4 of the Intel® 64 and 1A-32 Architectures Software
Developer’'s Manual, Volume 2B.

PopRegisterStack — Marks the FPU ST(0) register as empty and increments
the FPU register stack pointer (TOP) by 1.

Switch-Tasks — Performs a task switch.

Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit
string is a sequence of bits in memory or a register. Bits are numbered from low-
order to high-order within registers and within memory bytes. If the BitBase is a
register, the BitOffset can be in the range O to [15, 31, 63] depending on the
mode and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

63 31 21 0

T—Bit Offset « 21 J

Figure 3-1. Bit Offset for BIT[RAX, 21]

If BitBase is a memory address, the BitOffset can range has different ranges
depending on the operand size (see Table 3-2).

Table 3-2. Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset | Register BitOffset
16 0to15 -2 251
32 0to 31 -2%23 -1
64 0to63 —-283t0 283 -1

The addressed bit is numbered (Offset MOD 8) within the byte at address
(BitBase + (BitOffset DIV 8)) where DIV is signed division with rounding towards

negative infinity and MOD returns a positive number (see Figure 3-2).

Vol.2A 3-11

INSTRUCTION SET REFERENCE, A-M

BitBase + BitBase J BitBase -

LBitOffset «—+13

7 07 07 5 0

BitBase BitBase - BitBase —
BitOffset « — JA

Figure 3-2. Memory Bit Indexing

3.1.1.9 Intel® C/C++ Compiler Intrinsics Equivalents Section

The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions
that allow using the syntax of C function calls and C variables instead of hardware
registers. Using these intrinsics frees programmers from having to manage registers
and assembly programming. Further, the compiler optimizes the instruction sched-
uling so that executable run faster.

The following sections discuss the intrinsics APl and the MMX technology and SIMD
floating-point intrinsics. Each intrinsic equivalent is listed with the instruction
description. There may be additional intrinsics that do not have an instruction equiv-
alent. It is strongly recommended that the reader reference the compiler documen-
tation for the complete list of supported intrinsics.

See Appendix C, “InteL® C/C++ Compiler Intrinsics and Functional Equivalents,” in
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B, for
more information on using intrinsics.

Intrinsics API

The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrin-
sics is that you can use the syntax of C function calls and C variables instead of hard-
ware registers. This frees you from managing registers and programming assembly.
Further, the compiler optimizes the instruction scheduling so that your executable
runs faster. For each computational and data manipulation instruction in the new
instruction set, there is a corresponding C intrinsic that implements it directly. The
intrinsics allow you to specify the underlying implementation (instruction selection)

3-12 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

of an algorithm yet leave instruction scheduling and register allocation to the
compiler.

MMX™ Technology Intrinsics

The MMX technology intrinsics are based on a ___m64 data type that represents the
specific contents of an MMX technology register. You can specify values in bytes,
short integers, 32-bit values, or a 64-bit object. The __m64 data type, however, is
not a basic ANSI C data type, and therefore you must observe the following usage
restrictions:

® Use ___m64 data only on the left-hand side of an assignment, as a return value,
or as a parameter. You cannot use it with other arithmetic expressions (“+”, “>>",
and so on).

® Use _ m64 objects in aggregates, such as unions to access the byte elements
and structures; the address of an __m64 object may be taken.

® Use___m64 data only with the MMX technology intrinsics described in this manual
and Intel® C/C++ compiler documentation.

® See:
— http://www.intel.com/support/performancetools/

— Appendix C, “InteL® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and I1A-32 Architectures Software Developer’'s Manual,
Volume 2B, for more information on using intrinsics.

— SSE/SSE2/SSES3 Intrinsics

— SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium
lll, Pentium 4, and Intel Xeon processors. There are three data types
supported by these intrinsics: __m128, _ _m128d, and __m128i.

® The ___m128 data type is used to represent the contents of an XMM register used
by an SSE intrinsic. This is either four packed single-precision floating-point
values or a scalar single-precision floating-point value.

® The ___m128d data type holds two packed double-precision floating-point values
or a scalar double-precision floating-point value.

® The __m128i data type can hold sixteen byte, eight word, or four doubleword, or
two quadword integer values.

The compiler aligns __m128, _ m128d, and __m128i local and global data to
16-byte boundaries on the stack. To align integer, float, or double arrays, use the
declspec statement as described in Intel C/C++ compiler documentation. See
http://www.intel.com/support/performancetools/.

The __m128, _ m128d, and __m128i data types are not basic ANSI C data types
and therefore some restrictions are placed on its usage:

® Use___ml128, ml128d, and __m128i only on the left-hand side of an
assignment, as a return value, or as a parameter. Do not use it in other arithmetic
expressions such as “+” and “>>.”

Vol.2A 3-13

INSTRUCTION SET REFERENCE, A-M

® Do notinitialize __m128, _ _m128d, and ___m128i with literals; there is no way to
express 128-bit constants.

® Use__ml128, _ml128d, and __m128i objects in aggregates, such as unions (for
example, to access the float elements) and structures. The address of these
objects may be taken.

® Use_ _ml28, m128d, and __m128i data only with the intrinsics described in
this user’s guide. See Appendix C, “InteL® C/C++ Compiler Intrinsics and
Functional Equivalents,” in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 2B, for more information on using intrinsics.

The compiler aligns __m128, _ m128d, and __m128i local data to 16-byte bound-
aries on the stack. Global __m128 data is also aligned on 16-byte boundaries. (To
align float arrays, you can use the alignment declspec described in the following
section.) Because the new instruction set treats the SIMD floating-point registers in
the same way whether you are using packed or scalar data, there is no __m32 data
type to represent scalar data as you might expect. For scalar operations, you should
use the __m128 objects and the “scalar” forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” preci-
sion operations. The packed floats are represented in right-to-left order, with the
lowest word (right-most) being used for scalar operations: [z, y, X, w]. To explain
how memory storage reflects this, consider the following example.

The operation:
float a[4] «- {1.0,2.0,3.0,4.0},
__m128t « _mm_load_ps(a);

Produces the same result as follows:

__m128t« _mm_set_ps(4.0, 3.0, 2.0, 1.0);

In other words:

t«[4.0,3.0,2010]
Where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to
implement them. You should be familiar with the hardware features provided by the
SSE, SSE2, SSE3, and MMX technology when writing programs with the intrinsics.

Keep the following important issues in mind:

® Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful of their implementation cost.

¢ Data loaded or stored as __m128 objects must generally be 16-byte-aligned.

® Some intrinsics require that their argument be immediates, that is, constant
integers (literals), due to the nature of the instruction.

3-14 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

® The result of arithmetic operations acting on two NaN (Not a Number) arguments
is undefined. Therefore, floating-point operations using NaN arguments may not
match the expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to
its usage, refer to Intel C/C++ compiler documentation. See:

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 2B, for more information on using intrinsics.

3.1.1.10 Flags Affected Section

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to O; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and
I1A-32 Architectures Software Developer’'s Manual, Volume 1). Non-conventional
assignments are described in the “Operation” section. The values of flags listed as
undefined may be changed by the instruction in an indeterminate manner. Flags
that are not listed are unchanged by the instruction.

3.1.1.11 FPU Flags Affected Section

The floating-point instructions have an “FPU Flags Affected” section that describes
how each instruction can affect the four condition code flags of the FPU status word.

3.1.1.12 Protected Mode Exceptions Section

The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two
letters and an optional error code in parentheses. For example, #GP(0) denotes a
general protection exception with an error code of 0. Table 3-3 associates each two-
letter mnemonic with the corresponding interrupt vector number and exception
name. See Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A, for a detailed description of
the exceptions.

Application programmers should consult the documentation provided with their oper-
ating systems to determine the actions taken when exceptions occur.

Vol.2A 3-15

INSTRUCTION SET REFERENCE, A-M

Floating-Point
Numeric Error

instructions.

Table 3-3. Intel 64 and IA-32 General Exceptions
Vector | Name Source Protected | Real Virtual
No. Mode? Address | 8086
Mode Mode
0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes
1 #DB—Debug Any code or data reference. Yes Yes Yes
3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes
4 #0OF—Overflow INTO instruction. Yes Yes Yes
5 #BR—BOUNDRange | BOUND instruction. Yes Yes Yes
Exceeded
6 #UD—Invalid UDZ instruction or reserved Yes Yes Yes
Opcode (Undefined | opcode.
Opcode)
7 #NM—Device Not Floating-point or WAIT/FWAIT Yes Yes Yes
Available (No Math | instruction.
Coprocessor)
8 #DF—Double Fault | Any instruction that can Yes Yes Yes
generate an exception, an
NMI, or an INTR.
10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved | Yes
11 #NP—Segment Not | Loading segment registers or Yes Reserved | Yes
Present accessing system segments.
12 #SS—Stack Stack operations and SS Yes Yes Yes
Segment Fault register loads.
13 #GP—General Any memory reference and Yes Yes Yes
Protection? other protection checks.
14 #PF—Page Fault Any memory reference. Yes Reserved | Yes
16 #MF—Floating-Point | Floating-point or WAIT/FWAIT Yes Yes Yes
Error (Math Fault) instruction.
17 #AC—Alignment Any data reference in Yes Reserved | Yes
Check memory.
18 #MC—Machine Model dependent machine Yes Yes Yes
Check check errors.
19 #XM—SIMD SSE/SSEZ2/SSE3 floating-point Yes Yes Yes

3-16 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

Table 3-3. Intel 64 and IA-32 General Exceptions (Contd.)

Vector | Name Source Protected | Real Virtual
No. Mode? Address | 8086
Mode Mode

NOTES:
1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.

3.1.1.13 Real-Address Mode Exceptions Section

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode (see Table 3-3).

3.1.1.14 Virtual-8086 Mode Exceptions Section

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in virtual-8086 mode (see Table 3-3).

3.1.1.15 Floating-Point Exceptions Section

The “Floating-Point Exceptions” section lists exceptions that can occur when an x87
FPU floating-point instruction is executed. All of these exception conditions result in
a floating-point error exception (#MF, vector number 16) being generated. Table 3-4
associates a one- or two-letter mnemonic with the corresponding exception name.
See “Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 1, for a detailed description of
these exceptions.

Table 3-4. x87 FPU Floating-Point Exceptions

Mnemonic Name Source
Floating-point invalid operation:
z:i - Stack overflow or underflow - x87 FPU stack overflow or underflow
- Invalid arithmetic operation - Invalid FPU arithmetic operation
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand Source operand that is a denormal number
#0 Floating-point numeric overflow Overflow in result
#U Floating-point numeric underflow Underflow in result
#P Floating-point inexact result Inexact result (precision)
(precision)

Vol.2A 3-17

INSTRUCTION SET REFERENCE, A-M

3.1.1.16 SIMD Floating-Point Exceptions Section

The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an
SSE/SSE2/SSES3 floating-point instruction is executed. All of these exception condi-
tions result in a SIMD floating-point error exception (#XM, vector number 19) being
generated. Table 3-5 associates a one-letter mnemonic with the corresponding
exception name. For a detailed description of these exceptions, refer to ”SSE and
SSE2 Exceptions”, in Chapter 11 of the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1.

Table 3-5. SIMD Floating-Point Exceptions

Mnemonic Name Source
#l Floating-point invalid operation Invalid arithmetic operation or source operand
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand | Source operand that is a denormal number
#0 Floating-point numeric overflow | Overflow in result
#U Floating-point numeric underflow | Underflow in result
#P Floating-point inexact result Inexact result (precision)

3.1.1.17 Compatibility Mode Exceptions Section

This section lists exception that occur within compatibility mode.

3.1.1.18 64-Bit Mode Exceptions Section

This section lists exception that occur within 64-bit mode.

3.1.2 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM /
PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of

PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM. The operation of the immediate

control byte is common to these four string text processing instructions of SSE4.2,

see Chapter 4, “Instruction Set Reference, N-Z,”. This section describes the common

operations.

3.1.2.1 General Description

The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by
the combination of the respective opcode and the interpretation of an immediate
control byte that is part of the instruction encoding.

3-18 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

The opcode controls the relationship of input bytes/words to each other (determines
whether the inputs terminated strings or whether lengths are expressed explicitly) as
well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI
encodes a significant amount of programmable control over the functionality of those
instructions. Some functionality is unique to each instruction while some is common
across some or all of the four instructions. This section describes functionality which
is common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions.

However, the meanings of the flags have been overloaded from their typical mean-

ings in order to provide additional information regarding the relationships of the two
inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs
of bytes or words, one from each packed input source operand. The boolean results
of those comparisons are then aggregated in order to produce meaningful results.
The Imm8 Control Byte is used to affect the interpretation of individual input
elements as well as control the arithmetic comparisons used and the specific aggre-
gation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following
attributes:

® Source data format — Byte/word data element granularity, signed or unsigned
elements

® Aggregation operation — Encodes the mode of per-element comparison
operation and the aggregation of per-element comparisons into an intermediate
result

® Polarity — Specifies intermediate processing to be performed on the interme-
diate result

® Output selection — Specifies final operation to produce the output (depending
on index or mask) from the intermediate result

Vol.2A 3-19

INSTRUCTION SET REFERENCE, A-M

3.1.2.2 Source Data Format
Table 3-6. Source Data Format

Imm8[1:

0] Meaning Description

00b Unsigned bytes | Both 128-bit sources are treated as packed, unsigned
bytes.

01b Unsigned words | Both 128-bit sources are treated as packed, unsigned
words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.
If the bit is set each source contains 8 packed words. If the Imm8 Control Byte has

bit[1] cleared, each input contains unsigned data. If the bit is set each source
contains signed data.

3.1.2.3 Aggregation Operation
Table 3-7. Aggregation Operation

Imm8[3:2

] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between
even indexed bytes/words of reg and each byte/word of
reg/mem.
Arithmetic comparison is “less than or equal” between odd
indexed bytes/words of reg and each byte/word of reg/mem.
(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n]
for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered | The arithmetic comparison is “equal.”

All 256 (64) possible comparisons are always performed. The individual Boolean

results of those comparisons are referred by “BoolRes[Reg/Mem element index, Reg

element index].” Comparisons evaluating to “True” are represented with a 1, False

with a 0 (positive logic). The initial results are then aggregated into a 16-bit (8-bit)

3-20 Vol.2A

INSTRUCTION SET REFERENCE, A-M

intermediate result (IntRes1) using one of the modes described in the table below, as
determined by Imm8 Control Byte bit[3:2].

See Section 3.1.2.6 for a description of the overridelfDatalnvalid() function used in

Table 3-8.
Table 3-8. Aggregation Operation
Mode Pseudocode
Equal any UpperBound =imm8[0]? 7:15;
(find characters from a set) IntRes1 = 0;

For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i++
IntRes1[j] OR= overridelfDatalnvalid(BoolRes][j,i])

Ranges
(find characters from ranges)

Equal each
(string compare)

Equal ordered
(substring search)

UpperBound = imm8[0]7? 7:15;
IntRes1 = 0;

For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overridelfDatalnvalid(BoolRes[j,i]) AND
overridelfDatalnvalid(BoolRes[j,i+1]))

UpperBound =imm8[0]? 7:15;
IntRes1 = Q;

Fori =0 to UpperBound, i++
IntRes1[i] = overridelfDatalnvalid(BoolRes[i,i])

UpperBound =imm8[0]? 7 :15;

IntRes1 = imm8[0] ? OxFF : OXFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++
IntRes1[j] AND= overridelfDatalnvalid(BoolReslk,i])

Vol.2A 3-21

INSTRUCTION SET REFERENCE, A-M

3.1.24 Polarity

IntRes1 may then be further modified by performing a 1’'s compliment, according to
the value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that
only those IntRes1 bits which correspond to “valid” reg/mem input elements are
complimented (note that the definition of a valid input element is dependant on the
specific opcode and is defined in each opcode’s description). The result of the
possible negation is referred to as IntRes2.

Table 3-9. Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else =
~IntRes1[i]

3.1.2.5 Output Selection

Table 3-10. Ouput Selection

Imm8[6 | Operation Description

]

0b Least significant index | The index returned to ECX is of the least significant set bit in
IntRes2.

1b Most significant index | The index returned to ECX is of the most significant set bit in
IntRes2.

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the
index is of the least significant or most significant bit of IntRes2.

Table 3-11. Output Selection

Imm8[6] | Operation Description

Ob Bit mask IntRes2 is returned as the mask to the least significant bits of
XMMO with zero extension to 128 bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1])
and placed in XMMO. The expansion is performed by replicating
each bit into all of the bits of the byte/word of the same index.

3-22 Vol.2A

INSTRUCTION SET REFERENCE, A-M

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to
determine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

3.1.2.6

Valid/Invalid Override of Comparisons

PCMPxSTRXx instructions allow for the possibility that an end-of-string (EOS) situation
may occur within the 128-bit packed data value (see the instruction descriptions

below for details). Any data elements on either source that are determined to be past

the EOS are considered to be invalid, and the treatment of invalid data within a
comparison pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be
forced true or false if one or more elements in the pair are invalid. See Table 3-12.

Table 3-12. Comparison Result for Each Element Pair BoolRes]i.j]

xmm2/ Imm8[3:2] = | Imm8[3:2]= | Imm8[3:2] =
xmm1 m128 00b 01b 10b Imm8[3:2] = 11b
byte/ word | byte/word (equal any) (ranges) (equal each) (equal ordered)
Invalid Invalid Force false Force false Force true Force true
Invalid Valid Force false Force false | Force false Force true
Valid Invalid Force false Force false Force false Force false
Valid Valid Do not force | Do not force | Do not force Do not force

Vol.2A 3-23

INSTRUCTION SET REFERENCE, A-M

3.1.2.7 Summary of Im8 Control byte
Table 3-13. Summary of Imm8 Control Byte
Imm8 Description
------- Ob 128-bit sources treated as 16 packed bytes.
------- 1b 128-bit sources treated as 8 packed words.
------ 0-b Packed bytes/words are unsigned.
------ 1-b Packed bytes/words are signed.
----00--b Mode is equal any.
----01--b Mode is ranges.
----10--b Mode is equal each.
---11--b Mode is equal ordered.
---0----b IntRes1 is unmodified.
--1----b IntRes1 is negated (1's compliment).
--0-----b Negation of IntRes1 is for all 16 (8) bits.
--1-----b Negation of IntRes1 is masked by reg/mem validity.
-0------ b Index of the least significant, set, bit is used (regardless of corresponding
input element validity).
IntRes2 is returned in least significant bits of XMMO.
S b Index of the most significant, set, bit is used (regardless of corresponding
input element validity).
Each bit of IntRes?2 is expanded to byte/word.
0------- b This bit currently has no defined effect, should be 0.
1--mmmen b This bit currently has no defined effect, should be 0.

3-24 Vol. 2A

3.1.2.8

INSTRUCTION SET REFERENCE, A-M

Diagram Comparison and Aggregation Process

String A (xmm1)

String B (xmm2/mem)

|] imm8[1:0] =
I [EAXRAX Determine end -of- Compare all pairs of 00B: unsigned byte compares
| string and mark A, B) 01B: unsigned word compares
| EDX/RDX I~ invalid elements (i By 10B: signed byte compares
[} 1 11B: signed word compares
. ! .

PCMPESTR* only BoolResli,j]

imm8[3:2] =
00B: Equal any
Aggregation function 01B: Ranges

10B: Equal each
11B: Equal ordered

IntRes1

A J

immg[6:5] =
x0B: don’t negate IntRest
01B: negate all bits of IntRes1
11B: negate only bits of IntRes!
corresponding to valid
elements in String B

Optional boolean
negation

0: index encodes least signifi
cant true bit of IntRes 2

1: index encodes most signift
cant true bit of IntRes 2

Generate index

ECX(RCX)

PCMP*STRI only

Generate mask

imma[6] =
0: Return zero-extended IntRes2
1: expand IntRes2 to byte (word)

mask

PCMP*STRM only

Figure 3-3. Operation of PCMPSTRx and PCMPESTRX

3.2 INSTRUCTIONS (A-M)

The remainder of this chapter provides descriptions of Intel 64 and 1A-32 instructions

(A-M). See also: Chapter 4, “Instruction Set Reference, N-Z,” in the Intel® 64 and
I1A-32 Architectures Software Developer’s Manual, Volume 2B.

Vol.2A 3-25

INSTRUCTION SET REFERENCE, A-M

AAA—ASCII Adjust After Addition

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
37 AAA A Invalid Valid ASCII adjust AL after
addition.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The
AL register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF
and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register
are set to O.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF (AL AND OFH) > 9) or (AF = 1)
THEN
AL « AL+6;
AH <« AH+1;
AF < 1;
CF«1;
AL < AL AND OFH;
ELSE
AF < C;
CF«C;
AL <~ AL AND OFH;
Fl;

3-26 Vol. 2A AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-M

Fl;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; other-
wise they are set to 0. The OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

AAA—ASCII Adjust After Addition Vol.2A 3-27

INSTRUCTION SET REFERENCE, A-M

AAD—ASCII Adjust AX Before Division

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
D50A AAD A Invalid Valid ASCII adjust AX before
division.
D5 ib (No mnemonic) A Invalid Valid Adjust AX before division to
number base imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on
the result will yield a correct unpacked BCD value. The AAD instruction is only useful
when it precedes a DIV instruction that divides (binary division) the adjusted value in
the AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then
clears the AH register to OOH. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit (base 10) number in registers AH

and AL.

The generalized version of this instruction allows adjustment of two unpacked digits
of any number base (see the “Operation” section below), by setting the imm8 byte to
the selected number base (for example, 08H for octal, OAH for decimal, or OCH for
base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean
adjust ASCII (base 10) values. To adjust values in another number base, the instruc-
tion must be hand coded in machine code (D5 immS8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode

THEN
#UD;

ELSE
tempAL « AL;
tempAH « AH;
AL « (tempAL + (tempAH * imm8)) AND FFH;
(* imm8is set to OAH for the AAD mnemonic.*)

3-28 Vol. 2A AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-M

AH < O;
Fl;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register; the OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

AAD—ASCII Adjust AX Before Division Vol.2A 3-29

INSTRUCTION SET REFERENCE, A-M

AAM—ASCII Adjust AX After Multiply

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
D4 0A AAM A Invalid Valid ASCIl adjust AX after
multiply.
D4 ib (No mnemonic) A Invalid Valid Adjust AX after multiply to
number base imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair
of unpacked (base 10) BCD values. The AX register is the implied source and desti-
nation operand for this instruction. The AAM instruction is only useful when it follows
an MUL instruction that multiplies (binary multiplication) two unpacked BCD values
and stores a word result in the AX register. The AAM instruction then adjusts the
contents of the AX register to contain the correct 2-digit unpacked (base 10) BCD
result.

The generalized version of this instruction allows adjustment of the contents of the
AX to create two unpacked digits of any number base (see the “Operation” section
below). Here, the imma8 byte is set to the selected number base (for example, 08H
for octal, OAH for decimal, or OCH for base 12 numbers). The AAM mnemonic is inter-
preted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to
values in another number base, the instruction must be hand coded in machine code
(D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL « AL;
AH « tempAL / imm8; (* imm8is set to OAH for the AAM mnemonic *)
AL « tempAL MOD imm8,
Fl;

The immediate value (imma8) is taken from the second byte of the instruction.

3-30 Vol.2A AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-M

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register. The OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#DE If an immediate value of O is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

AAM—ASCII Adjust AX After Multiply Vol.2A 3-31

INSTRUCTION SET REFERENCE, A-M

AAS—ASCII Adjust AL After Subtraction

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
3F AAS A Invalid Valid ASCII adjust AL after
subtraction.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Adjusts the result of the subtraction of two unpacked BCD values to create a
unpacked BCD result. The AL register is the implied source and destination operand
for this instruction. The AAS instruction is only useful when it follows a SUB instruc-
tion that subtracts (binary subtraction) one unpacked BCD value from another and
stores a byte result in the AL register. The AAA instruction then adjusts the contents
of the AL register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the
CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared,
and the AH register is unchanged. In either case, the AL register is left with its top
four bits set to O.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-bit mode
THEN
#UD;
ELSE
IF (AL AND OFH) > 9) or (AF = 1)
THEN
AL < AL-6;
AH <« AH-1;
AF 1,
CF«1;
AL < AL AND OFH;
ELSE
CF «C;
AF < Q;
AL < AL AND OFH;

3-32 Vol.2A AAS—ASCII Adjust AL After Subtraction

INSTRUCTION SET REFERENCE, A-M
Fl;
Fl;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

AAS—ASCII Adjust AL After Subtraction Vol.2A 3-33

INSTRUCTION SET REFERENCE, A-M

ADC—Add with Carry

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
14 ib ADC AL, imm8 C Valid Valid Add with carry imm8to AL.
15 iw ADC AX, imm16 C Valid Valid Add with carry imm16 to
AX.
15id ADCEAX, imm32 C Valid Valid Add with carry imm32 to
EAX.
REXW +15id ADCRAX,imm32 C Valid N.E. Add with carry imm32 sign
extended to 64-bits to RAX.
80/2ib ADC /m8, imm8 B Valid Valid Add with carry imm8 to
r/m8.
REX+80/2ib ADC/m8,imm8 B Valid N.E. Add with carry imm8 to
r/m8.
81 /2 iw ADC r/m16, B Valid Valid Add with carry imm16 to
imm16 r/m16.
81/2id ADC r/m32, B Valid Valid Add with CF imm32 to
imm32 r/m32.
REXW +81/2 ADC r/mb4, B Valid N.E. Add with CF imm32 sign
id imm32 extended to 64-bits to
r/mé4.
83/2ib ADC r/m16, imm8 B Valid Valid Add with CF sign-extended
imm8to r/m16.
83/2ib ADC r/m32, imm8 B Valid Valid Add with CF sign-extended
imm8into r/m32.
REXW +83/2 ADC r/m64, imm8 B Valid N.E. Add with CF sign-extended
ib imm8into r/m64.
10/r ADC r/m8, r8 A Valid Valid Add with carry byte register
to r/m8.
REX+10/r ADC r/m8*, g A Valid N.E. Add with carry byte register
to r/m64.
1/ ADCr/mi16,r16 A Valid Valid Add with carry r16 to
r/m16.
111/r ADCr/m32,r32 A Valid Valid Add with CF r32 to r/m32.
REXW +11/r ADCr/m64,r64 A Valid N.E. Add with CF r64 to r/m64.
121/r ADC r8, r/m8 A Valid Valid Add with carry r/m81to byte
register.
REX+12/r ADC r8*, r/m8 A Valid N.E. Add with carry r/m64 to
byte register.
3-34 Vol. 2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
13/r ADCr16,r/m16 A Valid Valid Add with carry /m16 to
ri1é.
13/r ADCr32,r/m32 A Valid Valid Add with CF r/m32 to r32.
REXW+13/r ADCr64,r/m64 A Valid N.E. Add with CF r/m64 to r64.
NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) ModRM:reg (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
C AL/AX/EAX/RAX imm8 NA NA
Description

Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destina-
tion operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. (However, two memory operands
cannot be used in one instruction.) The state of the CF flag represents a carry from a
previous addition. When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition
in which an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST + SRC + CF;

ADC—Add with Carry Vol.2A 3-35

INSTRUCTION SET REFERENCE, A-M

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

3-36 Vol.2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

ADC—Add with Carry Vol.2A 3-37

INSTRUCTION SET REFERENCE, A-M

ADD—Add
Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
04 ib ADD AL, imm8 C Valid Valid Add imm8 to AL.
05 iw ADD AX, imm16 C Valid Valid Add imm16 to AX.
05 id ADD EAX, imm32 C Valid Valid Add imm32 to EAX.
REXW +05id ADDRAX, imm32 C Valid N.E. Add imm32 sign-extended
to 64-bits to RAX.
80/0ib ADD r/m8, imm8 B Valid Valid Add imm8 to r/m8.
REX+80/0ib ADD r/m8*, imm8 B Valid N.E. Add sign-extended imm8 to
r/mé4.
81 /0 iw ADD r/m16, B Valid Valid Add imm16 to r/m16.
imm16
81/0id ADD r/m32, B Valid Valid Add imm32 to r/m32.
imm32
REXW +81/0 ADD r/m64, B Valid N.E. Add imm32 sign-extended
id imm32 to 64-bits to r/m64.
83/0ib ADD r/m16, imm8 B Valid Valid Add sign-extended imm8 to
r/m1ié6.
83/0ib ADD r/m32, imm8 B Valid Valid Add sign-extended imm8 to
r/m32.
REXW +83/0 ADD r/m64,imm8 B Valid N.E. Add sign-extended imm8 to
ib r/m64.
00/r ADD r/m8, r8 A Valid Valid Add r8to r/m8.
REX+00/r ADD r/m8*, I A Valid N.E. Add r8to r/m8.
o1/r ADD r/mi16,r16 A Valid Valid Add r16 to r/m1ie6.
01 /r ADD r/m32,r32 A Valid Valid Add r32 to r/m32.
REXW +01/r ADDr/m64,r64 A Valid N.E. Add r64 to r/m64.
02/r ADD r8, r/m8 A Valid Valid Add r/m8+to r8.
REX+02/r ADDr8,/m8 A Valid N.E. Add r/m81to r8.
03/r ADD r16, /m16 A Valid Valid Add r/m16to rié6.
03/r ADD r32,r/m32 A Valid Valid Add r/m32to r32.
REXW +03/r ADDr64, r/m64 A Valid N.E. Add r/m64 to r64.
NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

3-38 Vol.2A

ADD—Add

INSTRUCTION SET REFERENCE, A-M

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
C AL/AX/EAX/RAX imm8 NA NA
Description

Adds the destination operand (first operand) and the source operand (second
operand) and then stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an imme-
diate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed
and unsigned integer operands and sets the OF and CF flags to indicate a carry (over-
flow) in the signed or unsigned result, respectively. The SF flag indicates the sign of
the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX a
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

DEST « DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code) If a page fault occurs.

ADD—Add Vol.2A 3-39

INSTRUCTION SET REFERENCE, A-M

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-40 Vol. 2A ADD—Add

INSTRUCTION SET REFERENCE, A-M

ADDPD—Add Packed Double-Precision Floating-Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
66 OF 58 /r ADDPD xmmT1, A Valid Valid Add packed double-precision
xmmZ2/m128 floating-point values from
xmmZ2/m128to xmm]1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD add of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed double-precision floating-point results in the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. See Chapter 11 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of SIMD double-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] < DEST[63:0] + SRC[63:0];
DEST[127:64] < DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
ADDPD _ m128d_mm_add_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

ADDPD—Add Packed Double-Precision Floating-Point Values Vol.2A 3-41

INSTRUCTION SET REFERENCE, A-M

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

3-42 Vol.2A ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ADDPD—Add Packed Double-Precision Floating-Point Values Vol.2A 3-43

INSTRUCTION SET REFERENCE, A-M

ADDPS—Add Packed Single-Precision Floating-Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
OF 58 /r ADDPS xmm], A Valid Valid Add packed single-precision
xmm2/m128 floating-point values from
xmmZ2/m128to xmm]1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD add of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed single-precision floating-point results in the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. See Chapter 10 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of SIMD single-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] < DEST[31:0] + SRC[31:0];
DEST[63:32] « DEST[63:32] + SRC[63:32];
DEST[95:64] < DEST[95:64] + SRC[95:64];
DEST[127:96] < DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
ADDPS __m128_mm_add_ps(__m128a,__m128Db)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

3-44 Vol. 2A ADDPS—Add Packed Single-Precision Floating-Point Values

#SS(0)
#PF(fault-code)
#NM

#XM

#UD

INSTRUCTION SET REFERENCE, A-M

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#NM
#XM

#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

If a memory address referencing the SS segment is in a non-

canonical form.

ADDPS—Add Packed Single-Precision Floating-Point Values Vol.2A 3-45

INSTRUCTION SET REFERENCE, A-M

#GP(0) If the memory address is in a nhon-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

3-46 Vol. 2A ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

ADDSD—Add Scalar Double-Precision Floating-Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
F2 OF 58 /r ADDSD xmm1, A Valid Valid Add the low double-
xmmZ2/m64 precision floating-point
value from xmm2/m64 to
xmmT1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Adds the low double-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand.

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The high quadword of the destination operand
remains unchanged. See Chapter 11 in the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an overview of a scalar double-precision
floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «— DEST[63:0] + SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
ADDSD __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.

ADDSD—Add Scalar Double-Precision Floating-Point Values Vol.2A 3-47

INSTRUCTION SET REFERENCE, A-M

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

3-48 Vol.2A ADDSD—Add Scalar Double-Precision Floating-Point Values

#PF(fault-code)
#NM
HXM

#UD

#AC(0)

INSTRUCTION SET REFERENCE, A-M

For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

ADDSD—Add Scalar Double-Precision Floating-Point Values Vol.2A 3-49

INSTRUCTION SET REFERENCE, A-M

ADDSS—Add Scalar Single-Precision Floating-Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
F3 OF 58 /r ADDSS xmm1, A Valid Valid Add the low single-precision
xmmZ2/m32 floating-point value from
xmmZ2/m32 to xmm]1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Adds the low single-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the single-precision
floating-point result in the destination operand.

The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. The three high-order doublewords of the destina-
tion operand remain unchanged. See Chapter 10 in the Intel® 64 and I1A-32
Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar
single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] «- DEST[31:0] + SRC[31:0];
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
ADDSS __m128_mm_add_ss(__m128a,__m128Db)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

3-50 Vol.2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

ADDSS—Add Scalar Single-Precision Floating-Point Values Vol.2A 3-51

INSTRUCTION SET REFERENCE, A-M

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.
If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-52 Vol. 2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

ADDSUBPD—Packed Double-FP Add/Subtract

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
66 OF DO /r ADDSUBPD xmm1, A Valid Valid Add/subtract double-
xmmZ2/m128 precision floating-point
values from xmm2/m128+to
xmmT1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Adds the double-precision floating-point values in the high quadword of the source
and destination operands and stores the result in the high quadword of the destina-
tion operand.

Subtracts the double-precision floating-point value in the low quadword of the source
operand from the low quadword of the destination operand and stores the result in
the low quadword of the destination operand. See Figure 3-4.

The source operand can be a 128-bit memory location or an XMM register. The desti-
nation operand is an XMM register.

ADDSUBPD xmm1, xmm2/m128

[127:64] [63:0] xmm2/m128
A 4
xmm1[127:64] + xmm2/m128[127:64] xmm1[63:0] - xmm2/m128[63:0])l(?rEriﬁJLT:

[127:64] [63:0]

OM15991

Figure 3-4. ADDSUBPD—Packed Double-FP Add/Subtract

ADDSUBPD—Packed Double-FP Add/Subtract Vol.2A 3-53

INSTRUCTION SET REFERENCE, A-M

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

xmm1[63:0] = xmm1[63:0] - xmm2/m128[63:0];
xmm1[127:64] = xmm1[127:64] + xmm2/m128[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128db)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM is 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

3-54 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

#NM If TS bitin CRO is 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

ADDSUBPD—Packed Double-FP Add/Subtract Vol.2A 3-55

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

3-56 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

ADDSUBPS—Packed Single-FP Add/Subtract

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
F2 OF DO /r ADDSUBPS xmm1, A Valid Valid Add/subtract single-
xmmZ2/m128 precision floating-point
values from xmm2/m128+to
xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Adds odd-numbered single-precision floating-point values of the source operand
(second operand) with the corresponding single-precision floating-point values from
the destination operand (first operand); stores the result in the odd-numbered
values of the destination operand.

Subtracts the even-numbered single-precision floating-point values in the source
operand from the corresponding single-precision floating values in the destination
operand; stores the result into the even-numbered values of the destination
operand.

The source operand can be a 128-bit memory location or an XMM register. The desti-
nation operand is an XMM register. See Figure 3-5.

ADDSUBPS xmm1, xmm2/m128
[127:96] [95:64] 63:32] [31:0] m?sZ/
xmm1[127:96] + xmm1[95:64] - xmm2/ xmm1[63:32] + xmm1[31:0] - RESULT:
xmm2/m128[127:96] m128[95:64] xmm2/m128[63:32] xmm2/m128[31:0] | xmm1
[127:96] [95:64] [63:32] [31:0]

OM15992

Figure 3-5. ADDSUBPS—Packed Single-FP Add/Subtract

ADDSUBPS—Packed Single-FP Add/Subtract Vol.2A 3-57

INSTRUCTION SET REFERENCE, A-M

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

xmm1[31:0] = xmm1[31:0] - xmm2/m128[31:0];
xmm1[63:32] = xmm1[63:32] + xmm2/m128[63:32];
xmm1[95:64] = xmm1[95:64] - xmm2/m128[95:64];
xmm1[127:96] = xmm1[127:96] + xmm2/m128[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPS __m128 _mm_addsub_ps(__m128a, __m128b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

3-58 Vol. 2A ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

ADDSUBPS—Packed Single-FP Add/Subtract Vol.2A 3-59

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

3-60 Vol.2A ADDSUBPS—Packed Single-FP Add/Subtract

AND—Logical AND

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode

24 ib AND AL, imm8 C Valid Valid AL AND imm8.

25 iw AND AX, imm16 C Valid Valid AX AND imm16.

25 id AND EAX, imm32 C Valid Valid EAX AND imm32.

REXW +25id ANDRAX,imm32 C Valid N.E. RAX AND imm32 sign-
extended to 64-bits.

80 /4 ib AND r/m8, imm8 B Valid Valid r/m8 AND imm8.

REX+80/4ib AND r/m8,imm8 B Valid N.E. r/m64 AND imm8 (sign-
extended).

81 /4 iw AND r/m16, B Valid Valid r/m16 AND imm16.

imm16
81 /4 id AND r/m32, B Valid Valid r/m32 AND imm32.
imm32

REXW +81/4 AND r/m64, B Valid N.E. r/m64 AND imm32 sign

id imm32 extended to 64-bits.

83/4ib AND r/m16, imm8 B Valid Valid r/m16 AND imm8 (sign-
extended).

83/4ib AND r/m32, imm8 B Valid Valid r/m32 AND imm8 (sign-
extended).

REXW +83/4 AND r/m64, inm8 B Valid N.E. r/m64 AND imm8 (sign-

ib extended).

20 /r AND r/m8, r8 A Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8’, 8’ A Valid N.E. r/m64 AND r8 (sign-
extended).

211/r AND r/m16,r16 A Valid Valid r/m16 AND r16.

21/r AND r/m32,r32 A Valid Valid r/m32 AND r32.

REXW +21/r ANDr/m64,r64 A Valid N.E. r/m64 AND r32.

221/r AND r8, r/m8 A Valid Valid r8 AND r/m8.

REX +22/r AND 8, r/m8 A Valid N.E. r/m64 AND r8 (sign-
extended).

23/r AND r16,r/m16 A Valid Valid r16 AND r/m16.

23/r AND r32,r/m32 A Valid Valid r32 AND r/m32.

REXW +23/r AND r64,r/m64 A Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

AND—Logical AND

Vol.2A 3-61

INSTRUCTION SET REFERENCE, A-M

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
C AL/AX/EAX/RAX imm8 NA NA
Description

Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination
operand can be a register or a memory location. (However, two memory operands
cannot be used in one instruction.) Each bit of the result is set to 1 if both corre-
sponding bits of the first and second operands are 1; otherwise, it is set to O.

This instruction can be used with a LOCK prefix to allow the it to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

3-62 Vol. 2A AND—Logical AND

INSTRUCTION SET REFERENCE, A-M

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

AND—Logical AND Vol.2A 3-63

INSTRUCTION SET REFERENCE, A-M

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 54 /r ANDPD xmm]1, A Valid Valid Bitwise logical AND of
xmmZ2/m128 xmmZ2/m128and xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise logical AND of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseAND SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ANDPD __m128d _mm_and_pd(__m128da, __m128db)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

3-64 Vol.2A ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values Vol.2A 3-65

INSTRUCTION SET REFERENCE, A-M

ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point
Values

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
OF 54 /r ANDPS xmm1, A Valid Valid Bitwise logical AND of
xmmZ2/m128 xmmZ2/m128and xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise logical AND of the four packed single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseAND SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ANDPS __m128 _mm_and_ps(__m1283a,_m128Db)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

3-66 Vol.2A ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values Vol.2A 3-67

INSTRUCTION SET REFERENCE, A-M

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 55 /r ANDNPD xmm1, A Valid Valid Bitwise logical AND NOT of
xmmZ2/m128 xmmZ2/m128and xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Inverts the bits of the two packed double-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the two packed
double-precision floating-point values in the source operand (second operand) and
the temporary inverted result, and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < (NOT(DEST[127:0])) BitwiseAND (SRC[127:0]);

Intel C/C++ Compiler Intrinsic Equivalent

ANDNPD _ m128d _mm_andnot_pd(__m128da,__m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

3-68 Vol.2A ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values Vol. 2A 3-69

INSTRUCTION SET REFERENCE, A-M

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
OF 55 /r ANDNPS xmm1, A Valid Valid Bitwise logical AND NOT of
xmmZ2/m128 xmmZ2/m128and xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Inverts the bits of the four packed single-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the four packed
single-precision floating-point values in the source operand (second operand) and
the temporary inverted result, and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < (NOT(DEST[127:0])) BitwiseAND (SRC[127:0]);

Intel C/C++ Compiler Intrinsic Equivalent
ANDNPS __ m128 _mm_andnot_ps(__m1283a,__m128b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

3-70 Vol.2A ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values Vol.2A 3-71

INSTRUCTION SET REFERENCE, A-M

ARPL—Adjust RPL Field of Segment Selector

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
63/r ARPL /m16,r16 A N. E. Valid Adjust RPL of r/m16 to not
less than RPL of r76.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (w) ModRM:reg (r) NA NA
Description

Compares the RPL fields of two segment selectors. The first operand (the destination
operand) contains one segment selector and the second operand (source operand)
contains the other. (The RPL field is located in bits O and 1 of each operand.) If the
RPL field of the destination operand is less than the RPL field of the source operand,
the ZF flag is set and the RPL field of the destination operand is increased to match
that of the source operand. Otherwise, the ZF flag is cleared and no change is made
to the destination operand. (The destination operand can be a word register or a
memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it
can also be used by applications). It is generally used to adjust the RPL of a segment
selector that has been passed to the operating system by an application program to
match the privilege level of the application program. Here the segment selector
passed to the operating system is placed in the destination operand and segment
selector for the application program’s code segment is placed in the source operand.
(The RPL field in the source operand represents the privilege level of the application
program.) Execution of the ARPL instruction then ensures that the RPL of the
segment selector received by the operating system is no lower (does not have a
higher privilege) than the privilege level of the application program (the segment
selector for the application program’s code segment can be read from the stack
following a procedure call).

This instruction executes as described in compatibility mode and legacy mode. It is
not encodable in 64-bit mode.

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory
Management,” of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A, for more information about the use of this instruction.

3-72 Vol.2A ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-M

Operation

IF 64-BIT MODE
THEN
See MOVSXD;
ELSE
IF DEST[RPL) < SRC[RPL)
THEN
ZF < 1;
DEST[RPL) « SRC[RPL);
ELSE
IF < Q;
Fl;
FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of
the source operand; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.

ARPL—Adjust RPL Field of Segment Selector Vol.2A 3-73

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
Not applicable.

3-74 Vol. 2A

ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-M

BLENDPD — Blend Packed Double Precision Floating-Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
66 OF 3A0D /r BLENDPD xmm1, A Valid Valid Select packed DP-FP values
ib xmmZ2/m128, from xmm1 and
imm8 xmm<Z2/m128 from mask
specified in imm8 and store
the values into xmm]1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
Description

Packed double-precision floating-point values from the source operand (second
operand) are conditionally copied to the destination operand depending on the mask
bits in the immediate operand. The mask bits are bits [1:0] of the immediate byte
(third operand). Each mask bit corresponds to a quadword element in a 128-bit
operand.

If a mask bit is “1", then the corresponding quadword in the source operand is copied
to the destination, else the quadword element in the destination operand is left
unchanged.

Operation
IF (imm8[0] == 1)
THEN DEST[63:0] < SRC[63:0];
ELSE DEST[63:0] < DEST[63:0]; FI;
IF (imm8[1] == 1)
THEN DEST[127:64] €« SRC[127:64];
ELSE DEST[127:64] < DEST[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD _ m128d _mm_blend_pd (__m128dv1, __m128d vZ, const int mask);

SIMD Floating-Point Exceptions

None
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

BLENDPD — Blend Packed Double Precision Floating-Point Values Vol.2A 3-75

INSTRUCTION SET REFERENCE, A-M

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] =0

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.

3-76 Vol.2A BLENDPD — Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

BLENDPD — Blend Packed Double Precision Floating-Point Values Vol.2A 3-77

INSTRUCTION SET REFERENCE, A-M

BLENDPS — Blend Packed Single Precision Floating-Point Values

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
66 OF 3A0C/r BLENDPS xmm1, A Valid Valid Select packed single
ib xmm2/m128, precision floating-point
imm8 values from xmm1 and

xmmZ2/m128 from mask
specified in imm8 and store
the values into xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
Description

Packed single-precision floating-point values from the source operand (second
operand) are conditionally copied to the destination operand (first operand)
depending on the mask bits in the immediate operand. The mask bits are bits [3:0]
of the immediate byte (third operand). Each mask bit corresponds to a dword
element in a 128-bit operand.

If a mask bit is “1", then the corresponding dword in the source operand is copied to
the destination, else the dword element in the destination operand is left unchanged.

Operation

IF imm8[0] == 1)
THEN DEST[31:0] €« SRC[31:0];
ELSE DEST[31:0] €« DEST[31:0]; FI;
IF (imm8[1] == 1)
THEN DEST[63:32] € SRC[63:32];
ELSE DEST[63:32] €« DEST[63:32]; FI;
IF (imm8[2] == 1)
THEN DEST[95:64] € SRC[95:64];
ELSE DEST[95:64] < DEST[95:64]; FI;
IF (imm8[3] == 1)
THEN DEST[127:96] € SRC[127:96];
ELSE DEST[127:96] < DEST[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS __m128_mm_blend_ps (_m128 v1,__m128v2, const int mask);

3-78 Vol.2A BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] =0

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
If not aligned on 16-byte boundary, regardless of segment

BLENDPS — Blend Packed Single Precision Floating-Point Values Vol.2A 3-79

INSTRUCTION SET REFERENCE, A-M

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

3-80 Vol. 2A BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

BLENDVPD — Variable Blend Packed Double Precision Floating-Point
Values

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 38 15/r BLENDVPD xmm1, A Valid Valid Select packed DP FP values
xmmz2/m128, from xmm1 and xmmZ2 from
<XMMO> mask specified in XMMO0 and
store the values in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) implicit XMMO NA
Description

Packed double-precision floating-point values from the source operand (second argu-
ment) are conditionally copied to the destination operand (first argument) depending
on the mask bits in the implicit third register argument, XMMO. The mask bits are the
most significant bit in each qword element of XMMO. Each mask bit corresponds to a
quadword element in a 128-bit operand.

If a mask bit is “1", then the corresponding quadword element in the source operand

is copied to the destination, else the quadword element in the destination operand is
left unchanged.

The register assignment of the third operand is defined to be the architectural
register XMMO.

Operation

MASK < XMMO;
IF (MASK[63] == 1)
THEN DEST[63:0] < SRC[63:0];
ELSE DEST[63:0] < DEST[63:0]; FI;
IF (MASK[127] == 1)
THEN DEST[127:64] < SRC[127:64];
ELSE DEST[127:64] < DEST[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPD __m128d _mm_blendv_pd(__m128dv1,__m128dv2,_ m128dv3);

BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Vol.2A 3-81

INSTRUCTION SET REFERENCE, A-M

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

3-82 Vol.2A BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values

#SS(0)

#PF(fault-code)
#NM

#UD

INSTRUCTION SET REFERENCE, A-M

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Vol.2A 3-83

INSTRUCTION SET REFERENCE, A-M

BLENDVPS — Variable Blend Packed Single Precision Floating-Point
Values

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 38 14 /r BLENDVPS xmm1, A Valid Valid Select packed single
xmm2/m128, precision floating-point
<XMMO> values from xmm1 and

xmmZ2/m128 from mask
specified in XMMO and store
the values into xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) implicit XMMO NA
Description

Packed single-precision floating-point values from the source operand (second argu-
ment) are conditionally written to the destination operand (first argument)
depending on the mask bits in the third register argument. The mask bits are the
most significant bit in each dword element of XMMO. Each mask bit corresponds to a
dword element in a 128-bit operand.

If a mask bit is “1", then the corresponding dword element in the source operand is
copied to the destination, else the dword element in the destination operand is left
unchanged.

The register assignment of the third operand is defined to be the architectural
register XMMO.

Operation

MASK & XMMO;
IF (MASK[31] == 1)
THEN DEST[31:0] < SRC[31:0];
ELSE DEST[31:0] < DEST[31:0]); FI;
IF (MASK[63] == 1)
THEN DEST[63:32] < SRC[63:32]);
ELSE DEST[63:32] < DEST[63:32]); FI;
IF (MASK[95] == 1)
THEN DEST[95:64] < SRC[95:64]);
ELSE DEST[95:64] < DEST[95:64]); FI;
IF (MASK[127] == 1)
THEN DEST[127:96] < SRC[127:96]);

3-84 Vol.2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

ELSE DEST[127:96] < DEST[127:96]); FI;

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS __m128 _mm_blendv_ps(__m128v1,_m128v2, _m128v3),

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values Vol.2A 3-85

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a nhon-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

3-86 Vol.2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

BOUND—Check Array Index Against Bounds

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
62/r BOUND r76, A Invalid Valid Check if r16 (array index) is
m16&16 within bounds specified by
m16&16.
62/r BOUND r32, A Invalid Valid Check if r32 (array index) is
m328&32 within bounds specified by
m16&16.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r) ModRM:r/m (r) NA NA
Description

BOUND determines if the first operand (array index) is within the bounds of an array
specified the second operand (bounds operand). The array index is a signed integer
located in a register. The bounds operand is a memory location that contains a pair of
signed doubleword-integers (when the operand-size attribute is 32) or a pair of
signed word-integers (when the operand-size attribute is 16). The first doubleword
(or word) is the lower bound of the array and the second doubleword (or word) is the
upper bound of the array. The array index must be greater than or equal to the lower
bound and less than or equal to the upper bound plus the operand size in bytes. If the
index is not within bounds, a BOUND range exceeded exception (#BR) is signaled.
When this exception is generated, the saved return instruction pointer points to the
BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and
upper limits of the array) is usually placed just before the array itself, making the
limits addressable via a constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra
bus cycles to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64bit Mode
THEN
#UD;
ELSE
IF (Arraylndex < LowerBound OR Arraylndex > UpperBound)
(* Below lower bound or above upper bound *)

BOUND—Check Array Index Against Bounds Vol.2A 3-87

INSTRUCTION SET REFERENCE, A-M

THEN #BR; FI;
Fl;
Flags Affected
None.

Protected Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.
If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.
If the LOCK prefix is used.

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.
If the LOCK prefix is used.

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

3-88 Vol. 2A BOUND—Check Array Index Against Bounds

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

BOUND—Check Array Index Against Bounds Vol.2A 3-89

INSTRUCTION SET REFERENCE, A-M

BSF—BIt Scan Forward

Opcode Instruction Op/ 64-bit Compat/ Description

€En Mode Leg Mode
OFBC/r BSF r16, r/m16 A Valid Valid Bit scan forward on r/m16.
OFBC/r BSF r32, r/m32 A Valid Valid Bit scan forward on r/m32.
REX.W + OF BC BSF r64, r/m64 A Valid N.E. Bit scan forward on r/m64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Searches the source operand (second operand) for the least significant set bit (1 bit).
If a least significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit O of the
source operand. If the content of the source operand is 0, the content of the destina-
tion operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFSRC=0
THEN
IF < 1;
DEST is undefined;
ELSE
ZF « 0;
temp « 0;
WHILE Bit(SRC, temp) =0
DO
temp « temp + 1;
DEST « temp;
0D;
Fl;

3-90 Vol.2A BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-M

Flags Affected

The ZF flag is set to 1 if all the source operand is O; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

BSF—Bit Scan Forward Vol.2A 3-91

INSTRUCTION SET REFERENCE, A-M

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-92 Vol.2A BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-M

BSR—Bit Scan Reverse

Opcode Instruction Op/ 64-bit Compat/ Description

€En Mode Leg Mode
OFBD /r BSR r16, r/m16 A Valid Valid Bit scan reverse on r/m16.
OFBD/r BSR r32, r/m32 A Valid Valid Bit scan reverse on r/m32.
REXW + OF BD BSR r64, r/m64 A Valid N.E. Bit scan reverse on r/m64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Searches the source operand (second operand) for the most significant set bit (1 bit).
If a most significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit O of the
source operand. If the content source operand is O, the content of the destination
operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFSRC=0
THEN
IF < 1;
DEST is undefined;
ELSE
ZF < 0;
temp <« OperandSize - 1;
WHILE Bit(SRC, temp) = 0
DO
temp < temp - 1;
DEST « temp;
oD;
Fl;

BSR—BIt Scan Reverse Vol.2A 3-93

INSTRUCTION SET REFERENCE, A-M

Flags Affected

The ZF flag is set to 1 if all the source operand is O; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

3-94 Vol.2A BSR—BIt Scan Reverse

INSTRUCTION SET REFERENCE, A-M

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

BSR—BIt Scan Reverse Vol.2A 3-95

INSTRUCTION SET REFERENCE, A-M

BSWAP—Byte Swap

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
OF C8+rd BSWAP r32 A Valid* Valid Reverses the byte order of
a 32-bit register.
REX.W + OF BSWAP r64 A Valid N.E. Reverses the byte order of
C8+rd a 64-bit register.
NOTES:

* See IA-32 Architecture Compatibility section below.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A reg (r, w) NA NA NA
Description

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is
provided for converting little-endian values to big-endian format and vice versa. To
swap bytes in a word value (16-bit register), use the XCHG instruction. When the
BSWAP instruction references a 16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility

The BSWAP instruction is not supported on 1A-32 processors earlier than the
Intel486™ processor family. For compatibility with this instruction, software
should include functionally equivalent code for execution on Intel processors earlier
than the Intel486 processor family.

Operation

TEMP « DEST
IF 64-bit mode AND OperandSize = 64
THEN

DEST[7:0] < TEMP[63:56];
DEST[15:8] « TEMP[55:48];
DEST[23:16] «— TEMP[47:40];
DEST[31:24] < TEMP[39:32];
DEST[39:32] <~ TEMP[31:24];

3-96 Vol.2A BSWAP—Byte Swap

INSTRUCTION SET REFERENCE, A-M

DEST[47:40] «— TEMP[23:16];
DEST[55:48] «— TEMP[15:8];
DEST[63:56] «— TEMP[7:0];
ELSE
DEST[7:0] « TEMP[31:24];
DEST[15:8] « TEMP[23:16];
DEST[23:16] «— TEMP[15:8];
DEST[31:24] «- TEMP[7:0];
FI;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

BSWAP—Byte Swap Vol.2A 3-97

INSTRUCTION SET REFERENCE, A-M

BT—Bit Test
Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
OF A3 BT r/m16,r16 A Valid Valid Store selected bit in CF flag.
OF A3 BT r/m32, r32 A Valid Valid Store selected bit in CF flag.
REXW + OF A3 BT r/m64, r64 A Valid N.E. Store selected bit in CF flag.
OFBA /4 ib BT r/m16,imm8 B Valid Valid Store selected bit in CF flag.
OFBA /4 ib BT r/m32,imm8 B Valid Valid Store selected bit in CF flag.
REXW +0OFBA BT r/m64,imm8 B Valid N.E. Store selected bit in CF flag.
/4 ib
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r) ModRM:reg (r) NA NA

B ModRM:r/m (r) imm8 NA NA
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset (specified by the second operand) and
stores the value of the bit in the CF flag. The bit base operand can be a register or a
memory location; the bit offset operand can be a register or an immediate value:

® If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode).

® If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit O of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-11.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. In this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit
operands) of the immediate bit offset are stored in the immediate bit offset field, and
the high-order bits are shifted and combined with the byte displacement in the
addressing mode by the assembler. The processor will ignore the high order bits if
they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the
memory address for a 32-bit operand size, using by the following relationship:

3-98 Vol. 2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-M

Effective Address + (4 * (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand,
using this relationship:

Effective Address + (2 * (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given
bit. When using this bit addressing mechanism, software should avoid referencing
areas of memory close to address space holes. In particular, it should avoid refer-
ences to memory-mapped 1/0 registers. Instead, software should use the MOV
instructions to load from or store to these addresses, and use the register form of
these instructions to manipulate the data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

CF « Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

BT—Bit Test Vol.2A 3-99

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-100 Vol.2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-M

BTC—Bit Test and Complement

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode

OF BB BTC /m16,r16 A Valid Valid Store selected bit in CF flag
and complement.

OF BB BTC r/m32, r32 A Valid Valid Store selected bit in CF flag
and complement.

REXW + OF BB BTC r/m64, r64 A Valid N.E. Store selected bit in CF flag
and complement.

OFBA/7 ib BTC r/m16, imm8 B Valid Valid Store selected bit in CF flag
and complement.

OFBA/7 ib BTC /m32, imm8 B Valid Valid Store selected bit in CF flag
and complement.

REX.W + OF BA BTC r/m64, imm8 B Valid N.E. Store selected bit in CF flag

/7 ib and complement.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) ModRM:reg (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and complements the selected bit in the bit string. The
bit base operand can be a register or a memory location; the bit offset operand can
be a register or an immediate value:

® If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

® If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit O of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-11.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory

BTC—Bit Test and Complement Vol.2A 3-101

INSTRUCTION SET REFERENCE, A-M

operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF « Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) «— NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF,
SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-102 Vol. 2A BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

BTC—Bit Test and Complement Vol.2A 3-103

INSTRUCTION SET REFERENCE, A-M

BTR—BIt Test and Reset

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode

OF B3 BTR r/m16, r16 A Valid Valid Store selected bit in CF flag
and clear.

OF B3 BTR/m32,r32 A Valid Valid Store selected bit in CF flag
and clear.

REXW +0FB3 BTR/m64,r64 A Valid N.E. Store selected bit in CF flag
and clear.

OFBA /6 ib BTR r/m16, imm8 B Valid Valid Store selected bit in CF flag
and clear.

OFBA/6ib BTR r/m32, imm8 B Valid Valid Store selected bit in CF flag
and clear.

REXW + OF BA BTR r/m64, imm8 B Valid N.E. Store selected bit in CF flag

/6 ib and clear.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) ModRM:reg (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:

® If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

® If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit O of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-11.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory

3-104 Vol. 2A BTR—BIt Test and Reset

INSTRUCTION SET REFERENCE, A-M

operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF « Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) «- O;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF,
AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

BTR—Bit Test and Reset Vol. 2A 3-105

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-106 Vol. 2A BTR—BIt Test and Reset

INSTRUCTION SET REFERENCE, A-M

BTS—Bit Test and Set

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode

OF AB BTS r/m16, r16 A Valid Valid Store selected bit in CF flag
and set.

OF AB BTS r/m32, r32 A Valid Valid Store selected bit in CF flag
and set.

REXW + OF AB BTS r/m64, r64 A Valid N.E. Store selected bit in CF flag
and set.

OFBA/5ib BTS r/m16, imm8 B Valid Valid Store selected bit in CF flag
and set.

OFBA/5ib BTS r/m32, imm8 B Valid Valid Store selected bit in CF flag
and set.

REXW +0FBA BTS /m64,imm8 B Valid N.E. Store selected bit in CF flag

/5ib and set.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) ModRM:reg (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:

® If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

® If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit O of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-11.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory

BTS—Bit Test and Set Vol. 2A 3-107

INSTRUCTION SET REFERENCE, A-M

operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF « Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) « 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF,
and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-108 Vol.2A BTS—Bit Test and Set

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#GP
#SS

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

BTS—Bit Test and Set

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2A 3-109

INSTRUCTION SET REFERENCE, A-M

CALL—Call Procedure

Opcode

E8 cw

€8 cd

FF/2

FF /2

FF /2

9A cd

9A cp

FF/3

FF/3

Instruction

CALL rel16

CALL rel32

CALL /m16
CALL r/m32
CALL /mb64
CALL ptr16:16
CALL ptr16:32

CALL m16:16

CALL m16:32

Op/ 64-bit
En Mode
B N.S.

B Valid
B N.E.

B N.E.

B Valid
A Invalid
A Invalid
B Valid
B Valid

Compat/
Leg Mode

Valid

Valid

Valid
Valid
N.E.

Valid
Valid

Valid

Valid

Description

Call near, relative,
displacement relative to
next instruction.

Call near, relative,
displacement relative to
next instruction. 32-bit
displacement sign extended
to 64-bits in 64-bit mode.

Call near, absolute indirect,
address given in r/m16.

Call near, absolute indirect,
address given in r/m32.

Call near, absolute indirect,
address given in r/m64.

Call far, absolute, address
given in operand.

Call far, absolute, address
given in operand.

Call far, absolute indirect
address given in m16:16.

In 32-bit mode: if selector
points to a gate, then RIP =
32-bit zero extended
displacement taken from
gate; else RIP = zero
extended 16-bit offset from
far pointer referenced in
the instruction.

In 64-bit mode: If selector
points to a gate, then RIP =
64-bit displacement taken
from gate; else RIP = zero
extended 32-bit offset from
far pointer referenced in
the instruction.

3-110 Vol.2A

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction Op/ 64-bit Compat/ Description
€En Mode Leg Mode
REXW + FF /3 CALL m16:64 B Valid N.E. In 64-bit mode: If selector

points to a gate, then RIP =
64-bit displacement taken
from gate; else RIP = 64-bit
offset from far pointer
referenced in the

instruction.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A Offset NA NA NA
B ModRM:r/m (r) NA NA NA

Description

Saves procedure linking information on the stack and branches to the called proce-
dure specified using the target operand. The target operand specifies the address of
the first instruction in the called procedure. The operand can be an immediate value,
a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:

® Near Call — A call to a procedure in the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intra-
segment call.

® Far Call — A call to a procedure located in a different segment than the current
code segment, sometimes referred to as an inter-segment call.

® Inter-privilege-level far call — A far call to a procedure in a segment at a
different privilege level than that of the currently executing program or
procedure.

® Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be
executed in protected mode. See “Calling Procedures Using Call and RET” in Chapter
6 of the Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume 1,
for additional information on near, far, and inter-privilege-level calls. See Chapter 7,
“Task Management,” in the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for information on performing task switches with the
CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP
register (which contains the offset of the instruction following the CALL instruction)
on the stack (for use later as a return-instruction pointer). The processor then

CALL—Call Procedure Vol.2A 3-111

INSTRUCTION SET REFERENCE, A-M

branches to the address in the current code segment specified by the target operand.
The target operand specifies either an absolute offset in the code segment (an offset
from the base of the code segment) or a relative offset (a signed displacement rela-
tive to the current value of the instruction pointer in the EIP register; this value
points to the instruction following the CALL instruction). The CS register is not
changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose
register or a memory location (r/m16, r/m32, or r/m64). The operand-size attribute
determines the size of the target operand (16, 32 or 64 bits). When in 64-bit mode,
the operand size for near call (and all near branches) is forced to 64-bits. Absolute
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is
16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits. When accessing an absolute offset indirectly using
the stack pointer [ESP] as the base register, the base value used is the value of the
ESP before the instruction executes.

A relative offset (rell6 or rel32) is generally specified as a label in assembly code. But
at the machine code level, it is encoded as a signed, 16- or 32-bit immediate value.
This value is added to the value in the EIP(RIP) register. In 64-bit mode the relative
offset is always a 32-bit immediate value which is sign extended to 64-bits before it
is added to the value in the RIP register for the target calculation. As with absolute
offsets, the operand-size attribute determines the size of the target operand (16, 32,
or 64 bits). In 64-bit mode the target operand will always be 64-bits because the
operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS
and EIP registers on the stack for use as a return-instruction pointer. The processor
then performs a “far branch” to the code segment and offset specified with the target
operand for the called procedure. The target operand specifies an absolute far
address either directly with a pointer (ptrl6:16 or ptrl6:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
offset of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The far
address is loaded directly into the CS and EIP registers. If the operand-size attribute
is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the
CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level
® Far call to a different privilege level (inter-privilege level call)
® Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor

3-112 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

type (code segment, call gate, task gate, or TSS) and access rights determine the
type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptrl6:16 or ptrl6:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand- size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register; the offset from the
instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to
a code segment at the same privilege level. Using this mechanism provides an extra
level of indirection and is the preferred method of making calls between 16-bit and
32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a call gate. The segment selector specified by
the target operand identifies the call gate. The target operand can specify the call
gate segment selector either directly with a pointer (ptrl6:16 or ptrl16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset)
from the call gate descriptor. (The offset from the target operand is ignored when a
call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is
specified in the TSS for the currently running task. The branch to the new code
segment occurs after the stack switch. (Note that when using a call gate to perform
a far call to a segment at the same privilege level, no stack switch occurs.) On the
new stack, the processor pushes the segment selector and stack pointer for the
calling procedure’s stack, an optional set of parameters from the calling procedures
stack, and the segment selector and instruction pointer for the calling procedure’s
code segment. (A value in the call gate descriptor determines how many parameters
to copy to the new stack.) Finally, the processor branches to the address of the
procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call
through a call gate. The target operand specifies the segment selector of the task
gate for the new task activated by the switch (the offset in the target operand is
ignored). The task gate in turn points to the TSS for the new task, which contains the
segment selectors for the task’s code and stack segments. Note that the TSS also
contains the EIP value for the next instruction that was to be executed before the
calling task was suspended. This instruction pointer value is loaded into the EIP
register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which
eliminates the indirection of the task gate. See Chapter 7, “Task Management,” in the

CALL—Call Procedure Vol.2A 3-113

INSTRUCTION SET REFERENCE, A-M

Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A, for
information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS'’s previous task link field is loaded with
the old task’s TSS selector. Code is expected to suspend this nested task by executing
an IRET instruction which, because the NT flag is set, automatically uses the previous
task link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel®
64 and I1A-32 Architectures Software Developer’'s Manual, Volume 3A, for information
on nested tasks.) Switching tasks with the CALL instruction differs in this regard from
JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET
instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit
code segment, the call should be made from the first 64 KBytes of the 32-bit code
segment. This is because the operand-size attribute of the instruction is set to 16, so
only a 16-bit return address offset can be saved. Also, the call should be made using
a 16-bit call gate so that 16-bit values can be pushed on the stack. See Chapter 18,
“Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and I1A-32 Architectures Software
Developer’'s Manual, Volume 3A, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility
mode, the CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level, remaining in compatibility mode
® Far call to the same privilege level, transitioning to 64-bit mode

® Far call to a different privilege level (inter-privilege level call), transitioning to 64-
bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility
mode since task switches are not supported in 1A-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in compatibility mode is very
similar to one carried out in protected mode. The target operand specifies an abso-
lute far address either directly with a pointer (ptr16:16 or ptrl16:32) or indirectly with
a memory location (m16:16 or m16:32). The operand-size attribute determines the
size of the offset (16 or 32 bits) in the far address. The new code segment selector
and its descriptor are loaded into CS register and the offset from the instruction is
loaded into the EIP register. The difference is that 64-bit mode may be entered. This
specified by the L bit in the new code segment descriptor.

3-114 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

Note that a 64-bit call gate (described in the next paragraph) can also be used to
perform a far call to a code segment at the same privilege level. However, using this
mechanism requires that the target code segment descriptor have the L bit set,
causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can specify the
call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset)
from the 16-byte call gate descriptor. (The offset from the target operand is ignored
when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch. (Note that when
using a call gate to perform a far call to a segment at the same privilege level, an
implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is
unchanged, but stack segment accesses use a segment base of 0x0, the limit is
ignored, and the default stack size is 64-bits. The full value of RSP is used for the
offset, of which the upper 32-bits are undefined.) On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack and
the segment selector and instruction pointer for the calling procedure’s code
segment. (Parameter copy is not supported in 1A-32e mode.) Finally, the processor
branches to the address of the procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the
CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level, transitioning to compatibility mode
® Far call to the same privilege level, remaining in 64-bit mode

® Far call to a different privilege level (inter-privilege level call), remaining in 64-bit
mode

Note that in this mode the CALL instruction can not be used to cause a task switch in
64-bit mode since task switches are not supported in 1A-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in 64-bit mode is very similar to
one carried out in compatibility mode. The target operand specifies an absolute far
address indirectly with a memory location (m16:16, m16:32 or m16:64). The form
of CALL with a direct specification of absolute far address is not defined in 64-bit

CALL—Call Procedure Vol.2A 3-115

INSTRUCTION SET REFERENCE, A-M

mode. The operand-size attribute determines the size of the offset (16, 32, or 64
bits) in the far address. The new code segment selector and its descriptor are loaded
into the CS register; the offset from the instruction is loaded into the EIP register. The
new code segment may specify entry either into compatibility or 64-bit mode, based
on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far
call to a code segment at the same privilege level. However, using this mechanism
requires that the target code segment descriptor have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can only
specify the call gate segment selector indirectly with a memory location (m16:16,
m16:32 or m16:64). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the 16-byte call gate
descriptor. (The offset from the target operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same priv-
ilege level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS
selector is unchanged, but stack segment accesses use a segment base of 0x0, the
limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for
the offset.) On the new stack, the processor pushes the segment selector and stack
pointer for the calling procedure’s stack and the segment selector and instruction
pointer for the calling procedure’s code segment. (Parameter copy is not supported in
1A-32e mode.) Finally, the processor branches to the address of the procedure being
called within the new code segment.

Operation

IF near call
THEN IF near relative call
THEN
IF OperandSize = 64
THEN
tempDEST <« SignExtend(DEST); (* DEST is rel32 *)
tempRIP «— RIP + tempDEST;
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;

Push(RIP);
RIP « tempRIP;

Fl;

IF OperandSize = 32

3-116 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

THEN
tempEIP «— EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
EIP « tempEIP;
Fl;
IF OperandSize = 16
THEN
tempEIP « (EIP + DEST) AND O000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
EIP « tempEIP;
Fl;
ELSE (* Near absolute call *)
IF OperandSize = 64
THEN
tempRIP «— DEST; (* DEST is /m64 *)
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;
Push(RIP);
RIP < tempRIP;
Fl;
IF OperandSize = 32
THEN
tempEIP «— DEST,; (* DEST is /m32 *)
IF temp€EIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
EIP « tempEIP;
Fl;
IF OperandSize = 16
THEN
tempEIP «— DEST AND OOOOFFFFH; (* DEST is /m16 *)
IF temp€EIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
EIP « tempEIP;

CALL—Call Procedure Vol.2A 3-117

INSTRUCTION SET REFERENCE, A-M

Fl;
Fl;rel/abs
Fl; near

IF far call and (PE = O or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;
IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS < DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP < DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(CS);
Push(IP);
CS < DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP < DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)
FI;
Fl;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN
IF segment selector in target operand NULL
THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); Fl;
Read type and access rights of selected segment descriptor;
IFIA32_EFERLMA =0
THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS
THEN #GP(segment selector); Fl;
ELSE
IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,
THEN #GP(segment selector); Fl;
Fl;
Depending on type and access rights:

3-118 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
Fl;

CONFORMING-CODE-SEGMENT:
IFL-Bit=1and D-BIT =1 and IA32_EFER.LMA =1
THEN GP(new code segment selector); FI;
IF DPL > CPL
THEN #GP(new code segment selector); Fl;
IF segment not present
THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address
THEN #SS(0); FI;
tempEIP « DEST(Offset);
IF OperandSize = 16
THEN
tempEIP « tempEIP AND O000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS <« DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) «— CPL;
EIP « tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS « DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) «— CPL;
EIP « tempEIP;
ELSE (* OperandSize = 64 *)

CALL—Call Procedure Vol.2A 3-119

INSTRUCTION SET REFERENCE, A-M

Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS « DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) «— CPL;
RIP «— temp€ElP;
Fl;
Fl;
END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA
THEN GP(new code segment selector); Fl;
IF (RPL > CPL) or (DPL = CPL)
THEN #GP(new code segment selector); Fl;
IF segment not present
THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address
THEN #SS(0); FI;
tempEIP « DEST(Offset);
IF OperandSize = 16
THEN tempEIP «— tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS «— DEST