Intel® 64 and IA-32
Architectures
Optimization Reference Manual

Order Number: 248966-020
November 2009

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITU-
ATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "un-
defined."” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Intel, Pentium, Intel Atom, Intel Centrino, Intel Centrino Duo, Intel Xeon, Intel NetBurst, Intel Core, Intel
Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel Speed-
Step, MMX, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2009 Intel Corporation

CONTENTS

PAGE
CHAPTER 1
INTRODUCTION
1.1 TUNING YOUR APPLICATION. ...t 1-1
12 ABOUT THISMANUAL. ...ttt 1-2
13 RELATEDINFORMATION. ..ottt 1-4
CHAPTER 2

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1 INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL CORE MICROARCHITECTURE .

2-2
2.1.1 Intel® Core™ Microarchitecture Pipeline Overviewcoovoiiiiiiiiiiinnnnnn 2-3
21.2 0 = 2-4
2.1.2.1 Branch Prediction Unito e 2-6
2.1.2.2 Instruction Fetch Unit.ooei e 2-6
2.1.23 Instruction QuUeue (1Q). v vt 2-7
21.24 INSTrUCION DECOME. . .o\ v et 2-8
2.1.25 Stack Pointer Trackert e 2-8
2.1.26 MICTO-TUSION L\ ot 2-9
213 EXECULION COTE .ttt ettt e et e e 2-9
2.1.3.1 Issue Ports and Execution Units ..o 2-10
214 Intel® Advanced MemOrY ACCESS . ..\ v vttt ettt e nenaans 2-13
2.1.4.1 L0adS aNA STOMES . ..ottt et e 2-14
2.14.2 Data Prefetchto Ll caches. ... e 2-15
2143 Data Prefetch LogiC. ... o e 2-15
2.1.4.4 StOre FOTWArdING . . v vttt e 2-16
2145 Memory Disambiguation.o 2-17
215 Intel® Advanced SMart Cacheovv v e 2-18
2.1.5.1 L0 ettt e e 2-19
2.15.2 1) (0] 1= 2-20
2.2 INTEL® MICROARCHITECTURE (NEHALEM) ...\ttt 2-21
2.2.1 Microarchitecture Pipeling. 2-21
2.2.2 Front ENA OVEIVIBW. . ..o v ettt et e e aeas 2-23
2.2.3 EXECUTION ENGINE .ttt ittt e e e 2-25
2.2.31 Issue Ports and Execution UNitso.vvvvin i 2-25
224 Cache and Memory SUDSY S M. . .. vu ittt e it e e ieaaas 2-27
2.2.5 Load and Store Operation ENhanCemMentsco.vviiiii i 2-28
2.2.5.1 Efficient Handling of Alignment Hazardscccoviviiiiiiiiiiinnnnns 2-28
2.2.5.2 Store Forwarding Enhancement e 2-29
2.2.6 REP String ENNanCemMENtottt et 2-31
2.2.7 Enhancements for System Software.ovviii it e 2-32
2.2.8 Efficiency Enhancements for Power Consumptioncoviviiiiienn, 2-33
229 Hyper-Threading Technology Support in Intel Microarchitecture (Nehalem)........ 2-33
2.3 INTEL NETBURST® MICROARCHITECTURE ...\t 2-33
231 DeSigN GOaIS. . ..t s 2-34
23.2 PPl ..t e 2-35
23.2.1 FrONt ENG. .o e 2-36
23.2.2 OUL-0F-0rder COMB. .+ vttt e e e 2-37

CONTENTS

PAGE
2323 L2] T 1= | 2-37
233 Front End Pipeline Detail. 2-38
2.3.3.1 Prefetching.coov i 2-38
2332 =Yoo T[T 2-38
2333 Execution Trace Cache ... v v 2-39
2334 Branch Prediction.oe i 2-39
234 Execution Core Detailvvuvi e 2-40
2341 Instruction Latency and Throughput ... i 2-40
234.2 Execution Units and ISSUE POrtSovi i 2-41
2343 0 o 3 2-42
2344 Data Prefetch ..o 2-44
2345 L0adS aNd STOMES ..ottt e e 2-45
2346 StOre FOMWArdING . . v e ettt e s 2-46
2.4 INTEL® PENTIUM® M PROCESSOR MICROARCHITECTUREccvviieiiiieenn 2-47
241 Front ENd. ..ot e 2-48
24.2 Data Prefetching.ovo i 2-49
243 O 11y o) 0« =T o] =Y 2-50
244 IN-Order RetiremMENT. 2-50
2.5 MICROARCHITECTURE OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS 2-50
2.5.1 FrONt BN, .o 2-51
25.2 Data Prefetching.coovi i 2-51
2.6 INTEL® HYPER-THREADING TECHNOLOGY ...\ttt 2-52
2.6.1 Processor Resources and HT Technology.vvvviiiiii i 2-53
26.1.1 Replicated RESOUMCES ...\ v v e e 2-53
26.1.2 Partitioned RESOUMCES. . .\ v vttt ettt 2-54
26.1.3 SNArEA RESOUMCES. . . vttt ettt et eens 2-54
26.2 Microarchitecture Pipeline and HT Technology.covviiiiiiiiiiinnene 2-55
26.3 Front ENd Pipeline. . ..o 2-55
264 (=T U o] N o 2-55
26.5 L= 11 1=T 0 7= 3 2-56
2.7 MULTICORE PROCESSORS ... vttt et et e 2-56
2.7.1 Microarchitecture Pipeline and MultiCore Processors.oovvvvivivinininenanns 2-58
27.2 Shared Cache in Intel® Core™ Duo Processorsovvvvviiiiiieannenes 2-58
2.7.2.1 Load and Store Operationsovuvr ettt 2-59
2.8 INTEL® 64 ARCHITECTURE ...\ttt 2-60
29 SIMD TECHNOLOGY .ttt ettt et e et ees 2-60
29.1 Summary of SIMD Technologies.ovii i e 2-63
29.1.1 MMX™ TECANOIOGY .+ vt e et e 2-63
29.1.2 Streaming SIMD EXTeNSIONS. . ..o v it e e 2-63
29.1.3 Streaming SIMD EXTENSIONS 2. ...\ttt ittt 2-63
2914 Streaming SIMD EXTENSIONS 3. .. .ttt 2-64
29.15 Supplemental Streaming SIMD EXTensionNs 3oiiiiiiiiiiiii i 2-64
29.16 S AT L 2-64
29.1.7 S B 2 o 2-65
CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES
3.1 PERFORMANCE TOOLS . .ottt 3-1
3.1.1 Intel® C++ and Fortran CoOmMPIIErS ... vvvvir it 3-1
3.1.2 General Compiler Recommendations ...t 3-2
313 VTune™ Performance ANalyzerot et 3-2

CONTENTS

PAGE
3.2 PROCESSOR PERSPECTIVES . . .ttt ettt e 3-3
3.2.1 CPUID Dispatch Strategy and Compatible Code Strategyovvvvvivininnnnn. 3-4
3.2.2 Transparent Cache-Parameter Strategy ...t 3-5
3.23 Threading Strategy and Hardware Multithreading Support......................... 3-5
33 CODING RULES, SUGGESTIONS AND TUNINGHINTS. 3-5
3.4 OPTIMIZING THE FRONT END ..ttt ittt e et anees 3-6
3.4.1 Branch Prediction Optimization. ... 3-6
3.4.1.1 EliMINating Branchesoviuiii i e 3-7
34.1.2 Spin-Wait and Idle LoOPS v vt e 3-9
3413 StatiC Prediction. .. .o e 3-9
3414 Inlining, Calls and RETUINSo vt i 3-11
34.15 Code AIGNMIENt ..ot e e e 3-12
34.1.6 Branch Type Selection.o e 3-13
34.1.7 LoOp UNrolling. . .. ve ettt 3-15
34.1.8 Compiler Support for Branch Prediction. ..o, 3-16
34.2 Fetch and Decode Optimizationo e e 3-17
34.2.1 Optimizing for Micro-fuSionouiui e 3-17
34.2.2 Optimizing for Macro-fUSIoN.coi i e 3-18
3423 Length-Changing Prefixes (LCP)o 3-21
3424 Optimizing the Loop Stream Detector (LSD)........covvvviviiiiiiiiiiiiinen, 3-23
34.25 Scheduling Rules for the Pentium 4 Processor Decoder........................ 3-24
34.26 Scheduling Rules for the Pentium M Processor Decoder 3-24
34.2.7 Other Decoding GUIdElNeSo vt e 3-24
35 OPTIMIZING THE EXECUTION CORE. ...ttt et aea s 3-25
3.5.1 INSTrUCTION SEIECHION. ..o\ttt 3-25
3.5.1.1 Use of the INCand DEC INSTrUCtiONS vvvvev e 3-26
35.1.2 INteger DiVide e 3-26
3513 USING LEA . e e 3-27
3514 Using SHIFT and ROTATEot 3-27
3515 Address CalCulations. e 3-27
3.5.1.6 Clearing Registers and Dependency Breaking Idioms 3-28
3.5.1.7 (000) T T =3 3-30
3518 USING NOPS &ttt ettt e 3-31
3.5.1.9 MixXing SIMD Data Ty S « v vttt ettt ettt 3-31
3.5.1.10 SPIll SChedUliNg. . . oot 3-32
35.2 Avoiding Stalls in EXecUtion Coreovvir it e 3-32
3.5.2.1 ROB REad POrt Stalls ..ottt e 3-33
3522 Bypass between Execution DOMaAiNsvvviii it 3-34
3523 Partial Register Stalls. ...t e 3-34
3524 Partial XMM Register Stalls ... e 3-36
3.5.25 Partial Flag Register STalls oo 3-37
3526 Floating Point/SIMD Operands in Intel NetBurst microarchitecture 3-38
353 LY=o (o4 1[0 3-38
354 Optimization of Partially VectorizableCode ..o 3-40
3.54.1 Alternate Packing Techniques. ...t 3-42
3542 Simplifying ResUlt Passingcoiii e 3-42
3543 Stack OptimMIZation ... ov e 3-43
3544 TuniNg CoNSIEratioNS . ..ot e e e e 3-44
3.6 OPTIMIZING MEMORY ACCESSES ...ttt 3-46
3.6.1 Load and Store Execution Bandwidth. ... 3-46
3.6.2 Enhance Speculative Execution and Memory Disambiguation...................... 3-47
3.6.3 AN, . o e 3-47

CONTENTS

PAGE
364 StOrE FOrWaArdING . .o ettt et e s 3-50
36.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment.................. 3-51
364.2 Store-forwarding Restriction on Data Availability 3-55
3.6.5 Data Layout Optimizationsvviiii e 3-56
3.6.6 StACK Al GBIt e 3-59
36.7 Capacity Limits and AliasinginCaches. ...t e 3-60
36.7.1 Capacity Limits in Set-AssociativeCaches ...t 3-60
36.7.2 Aliasing Cases in Processors Based on Intel NetBurst Microarchitecture........ 3-61
36.7.3 Aliasing Cases in the Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo and Intel® Core™
2 DU PrOCESSOTS . vttt e 3-62
3.6.8 Mixing Code and Datao vvi it e 3-63
3.6.8.1 Self-modifying Code. ..o e 3-64
369 Write CombININgo 3-64
3.6.10 Locality ENRanCemMENT. ...ttt e 3-65
3.6.11 MinimiziNg BUS LatenCy. . ..o i e e 3-67
36.12 Non-Temporal Store Bus Traffic ..o e 3-67
3.7 PREFETCHING ...ttt e e e e 3-68
3.7.1 Hardware Instruction Fetching and Software Prefetching........................ 3-69
3.7.2 Software and Hardware Prefetching in Prior Microarchitectures.................. 3-69
373 Hardware Prefetching for First-Level Data Cache............cccoviviviiiiiiinn, 3-70
374 Hardware Prefetching for Second-LevelCache ...t 3-73
3.7.5 Cacheability INSTtrUCTIONS ...\ vttt e e 3-74
3.76 REP Prefix and Data Movement.vv v 3-74
3.8 FLOATING-POINT CONSIDERATIONS. . . .ottt et e 3-77
3.8.1 Guidelines for Optimizing Floating-point Code...........covviiiiiiiiiiiii i 3-77
382 Floating-point Modes and EXCEPLIONS. vv v vttt 3-79
3.8.2.1 Floating-point EXCEPLIONS ...\ttt i e i e 3-79
38.2.2 Dealing with floating-point exceptions in x87 FPU code....................... 3-79
3823 Floating-point Exceptions in SSE/SSE2/SSE3 Code....ovvvvvvvviiiiiiiinnnnn 3-80
383 Floating-point MOdesS.ot e 3-81
3.8.3.1 RouNding Modeo 3-81
3.83.2 P CISION &t e 3-83
3833 Improving Parallelism and the Use of FXCH. ...t 3-84
384 x87 vs. Scalar SIMD Floating-point Trade-offsccoviviiii it 3-84
3.84.1 Scalar SSE/SSE2 Performance on Intel® Core™ Solo and Intel® Core™ Duo Processors .
3-85
384.2 x87 Floating-point Operations with Integer Operands. 3-86
3843 x87 Floating-point Comparison INStructionscovvvvviiiiiiinennnnn, 3-86
3.84.4 Transcendental FUNCLIONS ov vt e s 3-86
3.9 MAXIMIZING PCIE PERFORMANCEttt 3-87
CHAPTER 4
CODING FOR SIMD ARCHITECTURES
4.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIEScovvvvnnn 4-1
4.1.1 Checking for MMX Technology SUPPOrt.vvii e 4-2
41.2 Checking for Streaming SIMD Extensions SUPPOrt.covvvviviiiiiiininnnnnnes 4-2
413 Checking for Streaming SIMD Extensions 2 SUpport............covvvvviiniinninnn, 4-3
414 Checking for Streaming SIMD Extensions 3 SUPPOrt.........coovvviiiiiienennnnns. 4-3
415 Checking for Supplemental Streaming SIMD Extensions 3 Support................. 4-4
416 Checking for SSE4.1 SUPPOTt ..o vt 4-4
4.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD PROGRAMMING.cvvvvnn 4-5

Vi

CONTENTS

PAGE
421 Identifying HOt SPOtS . ..o\ttt e 4-7
422 Determine If Code Benefits by Conversion to SIMD Execution................c.ovv.e. 4-7
4.3 CODING TECHNIQUES . ..ottt e e 4-8
431 Coding MethodolOgGIESo\ v ittt e 4-9
43.1.1 ASS ML Lt 4-10
43.1.2 0 4-11
4313 LSS S vttt et e 4-12
43.1.4 Automatic Vectorizationvv vt e 4-13
44 STACK AND DATA ALIGNMENT ..ottt 4-14
441 Alignment and Contiguity of Data Access Patternscovoviiiiivnnns. 4-14
4411 Using Padding to AlIgn Data.ovii e 4-15
44.1.2 Using Arrays to Make Data Contiguous ..ot i ci e 4-15
442 Stack Alignment For 128-bit SIMD Technologies.cccovvviiiiiiiiiiennnn.. 4-16
443 Data Alignment for MMX Technologyvvviiiii e 4-17
444 Data Alignment for 128-bitdata ... 4-17
4441 Compiler-Supported Alignment. ..o e 4-17
4.5 IMPROVING MEMORY UTILIZATION . ..ot 4-19
451 Data Structure LayoUt . ..o e 4-19
452 SR D-MINING . . 4-23
453 LOOP BlOCKING .« v vttt e e 4-24
4.6 INSTRUCTION SELECTION . . .ottt ettt e e e et eaas 4-26
46.1 SIMD Optimizations and Microarchitecturescoooviiiiiiiiiiiiiiii e 4-28
4.7 TUNING THE FINAL APPLICATION ..ttt 4-28
CHAPTER 5
OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.1 GENERALRULES ON SIMD INTEGER CODE. .. .o\ttt v et 5-2
5.2 USING SIMD INTEGER WITH X87 FLOATING-POINT ..ot 5-2
5.2.1 Using the EMMS INSTTUCTIONo v e 5-3
5.2.2 Guidelines for Using EMMS Instruction........ .ot eeeees 5-3
53 DATA ALIGNMENT .« e e e 5-4
54 DATA MOVEMENT CODING TECHNIQUESttt 5-6
54.1 UnSigned Unpack e e 5-6
54.2 SIgNEd UNPack .. v it e e 5-7
543 Interleaved Pack with Saturation. ..o 5-8
544 Interleaved Pack without Saturation. ... 5-10
545 Non-Interleaved Unpackcovriiiiiii 5-10
546 EXtract Data Element. .. ot 5-12
54.7 Insert Data Elementoo i e 5-13
548 Non-Unit Stride Data Movement.ovuii e 5-14
549 Move Byte Mask to INtegervvi i 5-15
54.10 Packed Shuffle Word for 64-bit Registers. ...t 5-16
54.11 Packed Shuffle Word for 128-bitRegisterscooviiiiii i 5-17
5412 SUTEIE BY TS vttt ettt 5-18
54.13 Conditional Data MovemMeNt.vi e 5-18
54.14 Unpacking/interleaving 64-bit Data in 128-bit Registers..................covviut 5-18
54.15 Data MOVEMENT Lottt e e e 5-19
54.16 ConVersion INSTTUCTIONSo v e i 5-19
55 GENERATING CONSTANT S Lttt ettt e et 5-19
56 BUILDING BLOCKS ..ottt ettt ettt e e e e 5-20
56.1 Absolute Difference of Unsigned NUMbers.coviiiiiiiiiiiiiiiieennss 5-20

vii

CONTENTS

PAGE

56.2 Absolute Difference of Signed NUMbErs. ...t 5-21
56.3 ADSOIULE ValUE ..o 5-21
564 Pixel FOrmat ConNVErSIONe i ens 5-22
5.6.5 (3 Ta = Ty O p V= o 3 5-24
56.6 Clipping to an Arbitrary Range [High, LOw]. ..o 5-25
56.6.1 Highly Efficient Clippingcoovi i et e s 5-26
56.6.2 Clipping to an Arbitrary Unsigned Range [High, Low].......................... 5-27
56.7 Packed Max/Min of Byte, Wordand Dwordcccoiiiiiiiiiiiiiiiiiennns 5-28
568 Packed MUIIPIY INtEGEIS ..ottt e e e e 5-28
56.9 Packed Sum of Absolute Differences.ovvv v 5-28
5.6.10 MPSADBW and PHMINPOSUW 5-29
56.11 Packed Average (Byte/Word)covririi e 5-29
56.12 Complex Multiply by a Constant.coooiiiii i e 5-30
56.13 Packed 64-bit Add/SUbtract ..o 5-30
56.14 128Dt SRS, . ot 5-31
5.6.15 PTEST and Conditional BranChovuvieii i 5-31
56.16 Vectorization of Heterogeneous Computations across Loop Iterations............ 5-32
56.17 Vectorization of Control Flows in Nested LOOpS.ovviiiiiiii et 5-33
57 MEMORY OPTIMIZATIONS ..ottt nees 5-35
5.7.1 Partial MEMOrY ACCESS S . . vttt vttt ettt ettt e 5-36
5.7.11 Supplemental Techniques for Avoiding Cache Line Splits...................... 5-38
57.2 Increasing Bandwidth of Memory Fills and Video Fills., 5-39
57.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction.................. 5-39
5.7.22 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM

PagE o e 5-40
5723 Increasing UC and WC Store Bandwidth by Using Aligned Stores............... 5-40
573 REVErsEe MEMOMY COPY ..ttt ettt it ettt i 5-40
5.8 CONVERTING FROM 64-BIT TO 128-BIT SIMDINTEGERSovviieiiiiainen 5-43
58.1 SIMD Optimizations and MicroarchiteCtures.vvvvi i i 5-44
58.1.1 Packed SSEZ2 Integer versus MMX Instructions.covviiiiiiii it 5-44
58.1.2 Work-around for False Dependency ISSUEcoviiiiiiii i 5-45
5.9 TUNING PARTIALLY VECTORIZABLE CODE.ttt et 5-46
CHAPTER 6
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE. . ..ot v ii e eiaeienns 6-1
6.2 PLANNING CONSIDERATIONS . ..ottt et eeens 6-1
6.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINT.cvvv i 6-2
6.4 SCALAR FLOATING-POINT CODE ..\ttt ettt et 6-2
6.5 DATA ALIGNMENT L.t e e 6-3
6.5.1 Data ArTangemENT . ..ottt e 6-3
6.5.1.1 Vertical versus Horizontal Computation............cooiiiii i 6-3
6.5.1.2 Data SWIzZzZIiNg . ..o 6-6
6.5.1.3 Data Deswizzling. ov et 6-9
6514 Horizontal ADD USiNg SSEt e 6-10
6.5.2 Use of CVTTPS2PI/CVTTSS2SI INStructions.vvvvvvii i 6-13
6.5.3 Flush-to-Zero and Denormals-are-ZeroModes.oovviiiiiiiiiiiiaenns 6-13
6.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES ..o i 6-14
6.6.1 SIMD Floating-point Programming Using SSE3o 6-14
6.6.1.1 SSE3 and Complex Arithmeticsoovivrii e 6-15
6.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor 6-18

viii

CONTENTS

PAGE

6.6.2 Dot Product and Horizontal SIMD INStructions.........ovvvvvviviiiiiiini e 6-18
6.6.3 Vector NOormalizationovee e 6-21
6.64 Using Horizontal SIMD Instruction Sets and Data Layout........................s 6-23
6.6.4.1 SOA and Vector Matrix Multiplication...............oooi i 6-26
CHAPTER 7
OPTIMIZING CACHE USAGE
7.1 GENERAL PREFETCH CODING GUIDELINES.ot 7-1
7.2 HARDWARE PREFETCHING OF DAT A ottt et 7-3
73 PREFETCH AND CACHEABILITY INSTRUCTIONS.ottt 7-4
74 PREFET CH ..ttt e e 7-4
7.4.1 Software Data Prefetch ... 7-4
74.2 Prefetch Instructions - Pentium® 4 Processor Implementation..................... 7-5
743 Prefetch and Load INSTructions.ovvvvi e 7-6
75 CACHEABILITY CONTROL &\ vttt e et e e et e e e e e e e ees 7-7
7.5.1 The Non-temporal Store INStruCtionSvv v 7-7
7511 OGN . ottt 7-7
751.2 Streaming Non-temporal STores.ovvii i 7-7
7513 Memory Type and Non-temporal Storesvvviiiiiiiiiii i 7-8
7514 Write-CombinMiNg. .. .o v et 7-8
75.2 Streaming Store Usage Models. ...t 7-9
7.5.2.1 CORErENT REGQUESTS . ottt sttt 7-9
7522 NON-CONErENT FEQUESTS . . .o\ttt 7-9
753 Streaming Store Instruction Descriptions ..ot 7-10
754 The Streaming Load INStrUCTioN . ..o v v i 7-10
755 FENCE INSTrUCTIONS .« v vttt e e 7-11
7551 SFENCE INSTrUCTION . ..o e 7-11
755.2 LFENCE INSTrUCHION . . o vttt e 7-11
7553 MFENCE INSTrUCHION. . v\ v vttt e e e 7-12
756 CLFLUSH INSTrUCHION. . .ottt e nneianas 7-12
7.6 MEMORY OPTIMIZATION USING PREFETCH.t 7-13
7.6.1 Software-Controlled Prefetch. ... e 7-13
76.2 Hardware Prefetth 7-13
763 Example of Effective Latency Reduction

with Hardware Prefetcho e 7-14
764 Example of Latency Hiding with S/W Prefetch Instruction 7-16
76.5 Software Prefetching Usage Checklist...........cooviiiiiiiiiiiiii i 7-17
7.6.6 Software Prefetch Scheduling Distance. ... 7-18
76.7 Software Prefetch Concatenation..........ovviii i 7-19
76.8 Minimize Number of Software Prefetches ... 7-20
7.6.9 Mix Software Prefetch with Computation Instructions.covviinnt 7-22
76.10 Software Prefetch and Cache Blocking Techniques..................ccoviiintt 7-23
76.11 Hardware Prefetching and Cache Blocking Techniquescooovviiint 7-27
76.12 Single-pass versus Multi-pass EXECUTIONo vv v 7-28
7.7 MEMORY OPTIMIZATION USING NON-TEMPORALSTORESvvviiiiiiieiinnns 7-31
7.7.1 Non-temporal Stores and Software Write-Combining................covoviiiintn 7-31
772 Cache Management.ttt 7-32
7.7.21 VidEO ENCOET. .. .ot e 7-32
7722 VidEO DBCOMET .\ttt e 7-32
7.7.2.3 Conclusions from Video Encoder and Decoder Implementation................. 7-33
7724 Optimizing Memory Copy ROULINESoviii e 7-33

CONTENTS

PAGE
7.7.25 TUB PriMING « vttt e 7-34
7.7.26 Using the 8-byte Streaming Stores and Software Prefetch.................... 7-35
7727 Using 16-byte Streaming Stores and Hardware Prefetch...................... 7-35
7.7.28 Performance Comparisons of Memory Copy Routines......................... 7-37
773 Deterministic Cache Parameterscoovveiiiiii s 7-38
7.7.3.1 Cache Sharing Using Deterministic Cache Parameters......................... 7-40
7.73.2 Cache Sharing in Single-Core or Multicorecccoviiiviiiiiiiiiennnn., 7-40
7733 Determine Prefetch Strideovviii e 7-40
CHAPTER 8
MULTICORE AND HYPER-THREADING TECHNOLOGY
8.1 PERFORMANCE AND USAGE MODELS ...\ttt et 8-1
8.1.1 MUITRrEAdINg . . . oo 8-2
8.1.2 Multitasking ENVIFONMENT oo e 8-3
8.2 PROGRAMMING MODELS AND MULTITHREADING ... vve e i eineineeens 8-4
8.2.1 Parallel Programming Models ... 8-5
8.2.1.1 Domain DeCOMPOSITION . ..o .ttt 8-5
8.2.2 Functional DecompPOSItioN vt e 8-5
8.2.3 Specialized Programming Models.ovirii i 8-6
8.2.3.1 Producer-Consumer ThreadingModelscoviiiiiiiiiiiiiiiiiaenes 8-7
8.24 Tools for Creating Multithreaded Applications ..ot 8-10
8.24.1 Programming with OpenMP Directives ..o 8-10
8.24.2 Automatic Parallelization of Code ... 8-10
8.24.3 Supporting Development TOOIS e 8-11
8.24.4 Intel® Thread Checker.vvrv e 8-11
8.24.5 Intel® Thread Profiler ... e 8-11
8.24.6 Intel® Threading Building Blocko 8-11
83 OPTIMIZATION GUIDELINES. . . oottt 8-11
8.3.1 Key Practices of Thread Synchronization................cooiiiiiiiiiiiiiiiinn, 8-12
83.2 Key Practices of System Bus Optimization..............cocoiiiiiiiiiiiiieann 8-12
833 Key Practices of Memory Optimizationcovviiiiiiii i 8-12
834 Key Practices of Front-end Optimizationc..coviiiiiiiiiiiiiiiii s 8-13
835 Key Practices of Execution Resource Optimization.................ccoovviiiinn.. 8-13
8.3.6 Generality and Performance Impact.........oooviiiii it i 8-14
84 THREAD SYNCHRONIZATION .. oottt e e 8-14
84.1 Choice of Synchronization Primitives. ...t 8-15
84.2 Synchronization for Short Periods ..o 8-16
84.3 Optimization with SpIN-LOckS 8-18
84.4 Synchronization for Longer Periods. ... 8-18
84.4.1 Avoid Coding Pitfalls in Thread Synchronizationcoovviinns. 8-19
8.4.5 Prevent Sharing of Modified Data and False-Sharing................cooviiiiinnt 8-21
8.4.6 Placement of Shared Synchronization Variableooiiiil, 8-21
85 SYSTEM BUS OPTIMIZATION. . . . ettt ees 8-23
8.5.1 Conserve Bus Bandwidth.ouviiiiiiii e 8-23
85.2 Understand the Bus and Cache Interactions ..o 8-24
85.3 Avoid Excessive Software Prefetches. ... 8-25
854 Improve Effective Latency of Cache Misses.coviiiiiiii i 8-25
85.5 Use Full Write Transactions to Achieve Higher DataRate......................... 8-26
86 MEMORY OPTIMIZATION. . . .ottt ettt e ees 8-26
8.6.1 Cache Blocking TeChNIQUEo vt 8-27
86.2 Shared-Memory Optimization. ...t e 8-27

CONTENTS

PAGE

8.6.2.1 Minimize Sharing of Data between Physical Processors..............cccovvv... 8-27
8.6.2.2 Batched Producer-Consumer Model..........ovvviiiiiiii e 8-28
86.3 Eliminate 64-KByte Aliased Data ACCESSES. ... vv ittt it ci e 8-29
8.7 FRONT-END OPTIMIZATION . . .ttt ettt ettt e e e e e 8-30
8.7.1 Avoid Excessive Loop Unrolling.ovvvvvr i 8-30
8.8 AFFINITIES AND MANAGING SHARED PLATFORMRESOURCESc.vvvvvvennnn 8-30
8.8.1 Topology Enumeration of Shared ReSOUrCeSvvvvvii it 8-32
8.8.2 NON-UNiform MemMOMY ACCESS .o v vttt et ettt iaiaas 8-32
89 OPTIMIZATION OF OTHER SHARED RESOURCES.oi it cii i 8-35
8.9.1 Expanded Opportunity for HT Optimizationcooiiiiiii i 8-35
CHAPTER 9
64-BIT MODE CODING GUIDELINES
9.1 INTRODUCTION. . vttt et e e e 9-1
9.2 CODING RULES AFFECTING 64-BITMODE ...\ ovoieie e ein i 9-1
9.2.1 Use Legacy 32-Bit Instructions When Data Size Is32Bitscocvvvvninnn. 9-1
9.2.2 Use Extra Registers to Reduce Register Pressure...........covvviiiiiinininnnn. 9-2
9.23 Use 64-Bit by 64-Bit Multiplies To Produce

128-Bit Results Only When NeCeSSary. . ..o.vvvv ittt aeaens 9-2
9.24 Sign Extension 1o FUllB64-BitS.ot 9-2
93 ALTERNATE CODING RULES FOR 64-BIT MODE. ...\ttt iiieiieean 9-3
9.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers

for 64-Bit Arithmetic ... oo 9-3
93.2 CVTSIZSS aNd CVTSIZ2SD . vttt et e 9-4
933 Using Software Prefetch. 9-5
CHAPTER 10 SSE4.2 AND SIMD PROGRAMMING FOR TEXT-
PROCESSING/LEXING/PARSING
10.1 SSE4.2 STRING AND TEXT INSTRUCTIONS .. v oot 10-1
10.1.1 01 (0 10-5
10.2 USING SSE4.2 STRING AND TEXT INSTRUCTIONS. ... oot 10-7
10.2.1 Unaligned Memory Access and Buffer Size Management.......................... 10-7
10.2.2 Unaligned Memory Access and String Library. ... 10-8
103 SSE4.2 APPLICATION CODING GUIDELINE AND EXAMPLESooovieieieien 10-8
10.3.1 Null Character Identification (Strlen equivalent)covovvii i 10-8
10.3.2 White-Space-Like Character Identification..................coooiiiiiinonat, 10-12
1033 SUbStriNg Searches 10-16
1034 String Token Extractionand CaseHandling ...t 10-25
10.3.5 Unicode Processing and PCMPXSTRY . ..ovvviiiii i 10-30
10.3.6 Replacement String Library Function UsingSSE4.2ocovviiiiiiniinn, 10-37
104 SSE4.2 ENABLED NUMERICAL AND LEXICAL COMPUTATION ..ovvvvieeie e 10-39
CHAPTER 11
POWER OPTIMIZATION FOR MOBILE USAGES
11.1 OVERVIEW . .ttt e e e e 11-1
11.2 MOBILE USAGE SCENARIDS ..ottt e 11-2
11.3 AP - ST AT ES Lttt e 11-3
11.3.1 Processor-Specific C4 and Deep C4 Statesovv v ci i 11-4
11.4 GUIDELINES FOR EXTENDING BATTERY LIFEot 11-5

Xi

CONTENTS

PAGE
11.4.1 Adjust Performance to Meet Quality of Featuresccoooviiviiiiininnns 11-5
11.4.2 Reducing Amount of Work. 11-7
1143 Platform-Level Optimizations.t i 11-7
1144 Handling Sleep State Transitions.o e 11-7
1145 Using Enhanced Intel SpeedStep® Technologycvvviiiiiiiiii i 11-8
1146 Enabling Intel® Enhanced Deeper SIeep. . ..ot 11-10
1147 Multicore CoNSIAErationS vvvvr vttt 11-10
11.4.7.1 Enhanced Intel SpeedStep® Technologycovvviiii it 11-11
11.4.7.2 Thread Migration Considerations.ooiiiii it 11-11
11473 Multicore Considerations for C-States........covvviiiiiii i 11-12
CHAPTER 12
INTEL®° ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
12.1 OV RV EW. . ittt e e e e e 12-1
12.2 INTEL® ATOM™ MICROARCHITECTURE ...\ttt 12-1
12.2.1 Hyper-Threading Technology Support in Intel® Atom™ Microarchitecture.......... 12-3
123 CODING RECOMMENDATIONS FOR INTEL® ATOM™ MICROARCHITECTURE. 12-4
12.3.1 Optimization for Front End of Intel® Atom™ Microarchitecture..................... 12-4
123.2 Optimizing the EXeCUtion Core. ...\ vv i e 12-6
12.3.2.1 Integer Instruction Selection. ..o 12-6
123.2.2 Address GeNerationu.ve et e 12-7
12323 INteger MURIPIY . . .o e 12-8
12324 Integer Shift INStrUCtiONS.ov i e 12-9
123.25 Partial REgiSTEr ACCESS . .\ttt e ittt et e 12-9
12326 FP/SIMD Instruction Selectionvvviiii i 12-9
1233 OptimiziNg MEMOTY ACCESS . ..\ttt ettt e en s 12-12
12.3.3.1 Store FOrWardingovv it e 12-12
12332 First-level Data Cacheo vt 12-13
12333 SEgMENT BaSE . . ittt e 12-13
12334 SETING MOVES it 12-14
12335 Parameter Passing. .. ovvuitiir i 12-15
12336 FUNCION CallS. . .ot e 12-15
1233.7 Optimization of Multiply/Add Dependent Chainscovvvvninnn... 12-15
12338 Position Independent Codeovvviiiiii it e 12-17
124 INSTRUCTION LATENCY Lttt e 12-18
APPENDIX A
APPLICATION PERFORMANCE
TOOLS
Al COMPILERS .ttt e e A-2
A1 Recommended Optimization Settings for Intel® 64 and IA-32 Processors........... A-2
A1.2 Vectorization and Loop Optimization...........c.viiiiiiiiiiii e A-5
A1.21 Multithreading with OpenMP* i A-5
Al1.22 Automatic Multithreadingvviiiii i e A-5
A13 Inline Expansion of Library Functions (/0i, /0i-)covviiiiiiii s A-6
Al4 Floating-point Arithmetic Precision (/Op, /Op-, /Qprec, /Qprec_div, /Qpc, /Qlong_double).

A-6

A15 Rounding Control Option (/Qrcr, /Qred) . .v.vvee e A-6
A16 Interprocedural and Profile-Guided Optimizations.................cocoviiiiiiant, A-6
A16.1 Interprocedural Optimization (IPO)vvvrii e A-6

Xii

CONTENTS

PAGE
A16.2 Profile-Guided Optimization (PGO)c.vvrviiiiii i A-6
A1.7 Auto-Generation of Vectorized Codeoviiiiiiiii i A-7
A2 INTEL® VTUNE™ PERFORMANCE ANALYZER. . ..ottt it A-11
A2.1 SAMIPING . et e A-11
A2.1.1 Time-based Samplingccovi i A-12
A21.2 Event-based SampliNgot e A-12
A2.13 Workload Characterizationovvve v A-12
A2.2 Call GraP . o e e A-12
A23 0o T 01 (=T o T (o P A-13
A3 INTEL® PERFORMANCE LIBRARIES . ..\ttt A-13
A3.1 Benefits SUMMIErY. ..ot e e e e A-14
A3.2 Optimizations with the Intel® Performance Librariescooenas. A-14
A4 INTEL® THREADING ANALYSIS TOOLS. . oottt eieans A-15
A41 Intel® Thread Checker 3.0ot e A-15
A4. Intel® Thread Profiler 3.0, . ..o e A-15
A43 Intel® Threading Building Blocks 1.0. ...t e A-16
A5 INTEL® CLUSTER TOOLS. . . . ettt ettt e et eanes A-17
A5 INTEl® MPLLIDrary 3.1 oo A-17
A5.2 Intel® Trace Analyzer and Collector 7.7,ot e A-17
A53 Intel® MPI Benchmarks 3.7 ..o A-17
A54 Benefits SUMMAry. ...t e A-18
A5.4.1 Multiple usability improvemeNtS. e e A-18
A54.2 Improved application performanceo A-18
A543 Extended interoperability. ... e A-18
A6 INTEL® XML PRODUCTS ..ttt e e et ettt e in e A-18
A6.1 Intel® XML Software Suite 1.0. A-18
A6.1.1 INtel® XSLT ACCEIBrator v et e e e A-18
Ab6.1.2 Intel® XPath ACCEIErator vttt e A-19
A6.13 Intel® XML Schema AcCelerator.vvvir e A-19
Ab6.14 Intel® XML Parsing Acceleratorovvr i A-19
Ab6.2 Intel® SOA Security Toolkit 1.0 Beta for AXiS2......covviiiiiiii it A-19
A6.2.1 High Performance ... o. v i A-20
Ab.2.2 Standards Compliant. A-20
Ab6.2.3 Basy INtegration.\ v it e e A-20
A6.3 Intel® XSLT Accelerator 1.1 for Java* Environments on Linux* and Windows* Operating
S S IS ittt e e e e A-20
A6.3.1 High Performance Transformationscoviiiii i A-20
Ab6.3.2 Large XML File Transformations.vvvrvninnr it eeas A-20
A633 Standards Compliant. A-21
Ab634 TRrEAA-Sa e Lottt A-21
A7 INTEL® SOFTWARE COLLEGE ..ottt A-21
APPENDIX B
USING PERFORMANCE MONITORING EVENTS
B.1 INTEL® XEON® PROCESSOR 5500 SERIES. ...\ttt B-1
B.2 PERFORMANCE ANALYSIS TECHNIQUES FOR INTEL® XEON® PROCESSOR 5500 SERIES B-2
B.2.1 Cycle Accounting and Uop Flow Analysis.coveiiiiiiiiieieiee e B-3
B.2.1.1 Cycle Drill Down and Branch Mispredictions i B-5
B.2.1.2 Basic BIOCK Drill DOWN ..ot B-8
B.2.2 Stall Cycle Decomposition and Core Memory ACCESSESvvvrvrveriirenninnennn. B-9
B.2.2.1 Measuring Costs of Microarchitectural Conditionscoviivntt. B-10

CONTENTS

Xiv

PAGE
Core PMU Precise BVENTS . .. v vttt e B-11
Precise Memory ACCeSS EVENTS ... vvvv ittt B-12
Load LatenCy BNtot B-14
Precise EXeCUtion EVENTS. ...\ttt B-16
Last Branch Record (LBR)vvvvii i B-18
Measuring Core Memory Access Latency ... i i B-21
Measuring Per-Core Bandwidth ... B-24
Miscellaneous L1 and L2 Events for Cache Missescovvvvviinninnen. B-25
T MISS S ettt ettt e e e B-25
LT Data Cathe .o v vttt B-26
Front ENd Monitoring EVENTSoviu e B-27
Branch Mispredictions.o.vr v e B-27
Front End Code Generation Metricsvv v B-27
Uncore Performance Monitoring EVeNtS. ..ot B-28
Global QUEUE OCCUPANECY .. vttt e e ettt aeaenes B-28
Global QUEeUE POMt EVENTS .\ttt B-31
Global Queue SNOOP EVENTSv'i i B-31
LIRS =T o £ B-32
Intel QuickPath Interconnect Home Logic (QHL).coovvvviiiiiiniinnnns B-32
Measuring Bandwidth FromtheUncore ... B-39
USING PERFORMANCE EVENTS OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO
PROCESS RS .. ittt ettt e B-39
Understanding the Results in a Performance Counter............ovovvvviininnn, B-40
Ratio Interpretation.o B-40
Notes on Selected EVENTS vttt B-41
DRILL-DOWN TECHNIQUES FOR PERFORMANCE ANALYSIS B-42
Cycle Composition at ISsue Port.ot e e B-44
Cycle Composition of 000 EXECULION.\ v'vi it eieaaas B-45
Drill-Down on Performance Stallsoovvv i B-46
EVENT RATIOS FOR INTEL CORE MICROARCHITECTUREoovvvivie e B-47
Clocks Per Instructions Retired Ratio (CPI)........covvviiiiii s B-48
Front-end RAtioS.ov it s B-48
Code LoCalitY ..ot B-48
Branchingand Front-end ...t e B-49
Stack Pointer TraCker ...t B-49
MaCrO-TUSION Lttt B-49
Length Changing Prefix (LCP) Stallsvvv e B-50
Self Modifying Code Detection.ovviii i B-50
Branch Prediction Ratiosovveiei e B-50
Branch Mispredictions.ov vt e e B-50
Virtual Tables and Indirect Calls.ovvvie e B-51
Mispredicted RetUMNSo e e B-51
EXECULION RETIOS . ..ttt ettt e e B-51
ResoUrce STalls ..o v B-51
ROB Read Port Stalls. e B-52
Partial Register Stallsvvii i B-52
Partial FIag Stalls B-52
Bypass Between Execution DOMaiNS.ovvvviiii it B-52
Floating Point Performance Ratios. ... B-52
Memory Sub-System - Access Conflicts Ratios.............coviiiiiiiiniiiiinns. B-53
Loads Blocked by the L1 DataCache...........ovviviiiiiiiii e B-53
4K Aliasing and Store Forwarding Block Detection...................coovets B-53

B.5.5.3 Load Block by Preceding Storescoovvviiiiiiiiiiiiiinenas
B.5.54 Memory Disambiguationovviiiiiii i
B.5.5.5 Load Operation Address Translation...................ccovivinae
B.5.6 Memory Sub-System - Cache Misses Ratioscccovvvvvnint
B.5.6.1 Locating Cache MissesintheCode..........coovviiiiiiiiinninnnns.
B.56.2 L1 Data Cache MiSSeS. . ..o v vt
B.5.6.3 L2 CaChE MISSES. . ottt ittt e
B.5.7 Memory Sub-system - Prefetching...............cooocoviiii i,
B.5.7.1 L1 DataPrefetching.........cooiiiii e
B.5.7.2 L2 Hardware Prefetching...........cocoiiii i
B.5.7.3 Software Prefetching. ... e
B.5.8 Memory Sub-system - TLBMiss Ratios. ...t
B.5.9 Memory Sub-system - Core Interactioncooveviiiiinannn.
B.5.9.1 Modified Data Sharingovvvvii i
B.5.9.2 Fast SynchronizationPenalty ...
B.5.9.3 Simultaneous Extensive Stores and Load Missess
B.5.10 Memory Sub-system - Bus Characterization..................c.covvevns.
B.5.10.1 Bus Utilization.
B.5.10.2 Modified Cache Lines Evictionocovivi i
APPENDIX C

INSTRUCTION LATENCY AND THROUGHPUT

C1 OVERVIEW . o e
C2 DEFINITIONS Lottt e e s
C3 LATENCY AND THROUGHPUT ...ttt
C31 Latency and Throughput with Register Operands...............co.vvun
C3.2 Table FOOTNOTES. ..ottt
C33 Instructions with Memory Operands..........c.covviiiiiiiiiiiienannn.
APPENDIX D

STACK ALIGNMENT

D4 STACK FRAMES ..ttt e
D.4.1 Aligned ESP-Based Stack Frames.......o.vvvvviiii i eiiciieennn
D4.2 Aligned EDP-Based Stack Frames.ovvvviiii it
D43 Stack Frame Optimizations.
D5 INLINED ASSEMBLY AND EBX ..\ v ittt et ineaaas
APPENDIX E

SUMMARY OF RULES AND SUGGESTIONS

€1 ASSEMBLY/COMPILER CODING RULES ... it
€2 USER/SOURCE CODING RULES. ...ttt
€3 TUNING SUGGESTIONS. . ottt
€4 SSE4.2 CODING RULESottt

€5 ASSEMBLY/COMPILER CODING RULES FOR THE INTEL® ATOM™ PROCESSOR

CONTENTS

XV

CONTENTS

PAGE
EXAMPLES
Example 3-1. Assembly Code with an Unpredictable Branchcocooiiint, 3-8
Example 3-2. Code Optimization to Eliminate Branches.ccoiviiiiiiiiiiiienn, 3-8
Example 3-4. Use of PAUSE INStruction.t ieeans 3-9
Example 3-3. Eliminating Branch with CMOV Instruction. ...t 3-9
Example 3-5. Pentium 4 Processor Static Branch Prediction Algorithm 3-10
Example 3-6. Static Taken Prediction.vuivi i 3-11
Example 3-7. Static Not-Taken Predictiono 3-11
Example 3-8. Indirect Branch With Two Favored Targets.............covviiiiiiiiiiiennns, 3-14
Example 3-9. A Peeling Technique to Reduce Indirect Branch Misprediction 3-15
Example 3-10. Loop Unrollingovie i et ettt e 3-16
Example 3-11. Macro-fusion, Unsigned IterationCountcoiiiiiiiiiiiiinnanns. 3-19
Example 3-12. Macro-fusion, If Statement 3-20
Example 3-13. Macro-fusion, Signed Variable ... 3-21
Example 3-14. Macro-fusion, Signed COMPaAriSONovuie i 3-21
Example 3-15. Avoiding False LCP Delays with OxF7 Group Instructions...................... 3-23
Example 3-16. Clearing Register to Break Dependency While Negating Array Elements........ 3-29
Example 3-17. Spill Scheduling Code. ..o vt e 3-32
Example 3-18. Dependencies Caused by Referencing Partial Registers 3-35
Example 3-19. Avoiding Partial Register StallsinIntegerCodecooviviiiiiiinnnns, 3-35
Example 3-20. Avoiding Partial Register StallsinSIMDCodecovviviiiiiiiiiennns, 3-36
Example 3-21. Avoiding Partial Flag Register Stalls. ... e 3-37
Example 3-22. Reference Code Template for Partially Vectorizable Program 3-41
Example 3-23. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty3-42
Example 3-24. Using Four Registers to Reduce Memory Spills and Simplify Result Passing.. ... 3-43
Example 3-25. Stack Optimization Technique to Simplify Parameter Passing.................. 3-43
Example 3-26. Base Line Code Sequence to Estimate Loop Overheadccvvennn 3-45
Example 3-27. Loads Blocked by Stores of Unknown Address.cocoviviviiinnn.s. 3-47
Example 3-28. Code That Causes Cache Line Split...... ..ot e 3-49
Example 3-29. Situations Showing Small Loads After Large Store.............cocvviivnnn..,. 3-52
Example 3-30. Non-forwarding Example of Large Load After Small Store..................... 3-53
Example 3-31. A Non-forwarding Situation in Compiler Generated Code 3-53
Example 3-32. Two Ways to Avoid Non-forwarding Situation in Example 3-31................ 3-53
Example 3-33. Largeand SmallLoad Stalls. ... e i e 3-54
Example 3-34. Loop-carried Dependence Chain.c.ovvriiiiii it eaens 3-56
Example 3-35. Rearranging a Data STruCtUMe.ov vttt e 3-57
Example 3-36. DecomMPOSING N ATTAY .o v vttt ettt ettt et 3-57
Example 3-37. Dynamic Stack AlIGNmMENt.oovr it 3-59
Example 3-38. Aliasing Between Loads and Stores Across Loop Iterations.................... 3-63
Example 3-39. Using Non-temporal Stores and 64-byte Bus Write Transactions 3-68
Example 3-40. On-temporal Stores and Partial Bus Write Transactions 3-68
Example 3-41. Using DCU Hardware Prefetch. ... 3-71
Example 3-42. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines 3-72
Example 3-43. Technique For Using L1 Hardware Prefetch..............cocoiiiiiiiininns 3-73
Example 3-44. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination.......... 3-76
Example 3-45. Algorithm to Avoid Changing RoundingMode..............covviiiiiiinnes, 3-82

XVi

Example 4-1.
Example 4-2.
Example 4-3.
Example 4-4.
Example 4-5.
Example 4-6.
Example 4-7.
Example 4-8.
Example 4-9.
Example 4-10.
Example 4-11.
Example 4-12.
Example 4-14.
Example 4-15.
Example 4-13.
Example 4-16.
Example 4-17.
Example 4-18.
Example 4-19.
Example 4-20.
Example 5-1.
Example 5-2.
Example 5-3.
Example 5-5.
Example 5-4.
7

Example 5-6.
Example 5-7.
Example 5-8.
Example 5-9.
Example 5-11.
Example 5-10.
Example 5-12.
Example 5-13.
Example 5-14.
Example 5-15.
Example 5-16.
Example 5-17.
Example 5-18.
Example 5-19.
Example 5-20.
Example 5-21.
Example 5-22.
Example 5-23.
Example 5-24.
Example 5-25.
Example 5-26.

CONTENTS

PAGE
Identification of MMX Technology with CPUID.coviiiiiiii i, 4-2
Identification of SSEWith CPUID.cviiii e 4-2
Identification of SSE2 withcpuid ... 4-3
Identification of SSE3 With CPUIDoviiii e 4-3
Identification of SSSE3 withcpuid...........ccoo i 4-4
Identification of SSE4.1T withcpuid ... 4-4
Simple Four-lteration LOOPo vt e 4-10
Streaming SIMD Extensions Using Inlined Assembly Encoding.................. 4-11
Simple Four-lteration Loop Coded with INtrinsicscooovviiiiiinnenen, 4-12
C++ Code Using the Vector Classes. .. vvvv v it iennenans 4-13
Automatic Vectorization for a Simple Loop.cooviiiiii i 4-14
C Algorithm for 64-bit Data Alignment. ..., 4-17
SOA Data STTUCTUM . . .ot e 4-20
A0S and SoA Code SamPlES ... v vt 4-20
A0S Data STTUCTUE. . .ottt 4-20
Hybrid SOA Data STruCture.o 4-22
Pseudo-code Before StripMining. ...t e 4-23
St MINEd COE .. oot 4-24
LOOP BIOCKING . .ot e 4-25
Emulation of Conditional MOVES ... it 4-27
Resetting Register Between __m64 and FP Data Types Code................... 5-4
FIR Processing Example in Clanguage Code...........covoviviiiiiiniieniinnes 5-5
SSE2 and SSSE3 Implementation of FIR ProcessingCode 5-5
Signed Unpack Code . ..o e e e 5-7
Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions Code. 5-
Interleaved Pack with SaturationCodeoovviiiiiii i 5-9
Interleaved Pack without SaturationCodecovviiiiiiiiiieen, 5-10
Unpacking Two Packed-word Sources in Non-interleaved Way Code. 5-12
PEXTRW INStruction Code.vnvi e 5-13
Repeated PINSRW Instruction Codeovviiiiiiiiiiiiiiii i 5-14
PINSRW INStruction Code ovvveiii e 5-14
Non-Unit Stride Load/Store Using SSE4.1 Instructions...........cccovvvvvnnnn.. 5-15
Scatter and Gather Operations Using SSE4.1 Instructions. 5-15
PMOVMSKB InStruction Code. vve e 5-16
Broadcast a Word Across XMM, Using 2 SSE2 Instructions 5-17
Swap/Reverse words in an XMM, Using 3 SSE2 Instructions 5-18
Generating ConSTantS. ... v et e e 5-19
Absolute Difference of Two Unsigned Numbers..............cocoviiivnininns. 5-21
Absolute Difference of Signed Numbers ..o 5-21
Computing Absolute Value.ot e 5-22
Basic C Implementation of RGBA to BGRA Conversioncovvvvevnnn.. 5-22
Color Pixel Format Conversion USingSSE2ooviiiiiii it 5-23
Color Pixel Format Conversion Using SSSE3........coviiiiiii i 5-24
Big-Endian to Little-Endian CONVErsion.ovvviiiiiii i cii e 5-25
Clipping to a Signed Range of Words [High, Low] ...t 5-26
Clipping to an Arbitrary Signed Range [High, Low].............cooviviiiiinnt 5-26

XVii

CONTENTS

Example 5-28.
Example 5-27.
Example 5-29.
Example 5-30.
Example 5-31.
Example 5-32.
Example 5-33.
Example 5-34.
Example 5-36.
Example 5-37.
Example 5-35.
Example 5-38.
Example 5-39.
Example 5-40.
Example 5-41.
Example 5-42.
Example 5-43.
Example 5-44.
Example 5-45.

Example 6-1.
Example 6-2.
Example 6-3.
Example 6-4.
Example 6-5.
Example 6-6.
Example 6-7.
Example 6-8.
Example 6-9.

Example 6-10.
Example 6-11.
Example 6-12.
Example 6-13.
Example 6-14.
Example 6-15.
Example 6-16.
Example 6-17.
Example 6-18.
Example 6-19.
Example 6-20.
Example 6-21.
Example 6-22.
Example 6-23.
Example 6-24.

Example 7-1.
Example 7-2.
Example 7-3.
Example 7-4.

XViii

PAGE
Clipping to an Arbitrary Unsigned Range [High, Low].......................... 5-27
Simplified Clipping to an Arbitrary SignedRange..............oviviiiinennn, 5-27
Complex Multiply by @ Constant.covivviii e 5-30
Using PTEST to Separate Vectorizable and non-Vectorizable Loop Iterations. .. 5-31
Using PTEST and Variable BLEND to Vectorize Heterogeneous Loops.......... 5-32
Baseline C Code for Mandelbrot Set Map Evaluation........................... 5-33
Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics 5-34
A Large Load after a Series of Small Stores (Penalty)coventt 5-36
A Series of Small Loads Afteralarge Storeovvvviiiiiiiiininennnnn. 5-37
Eliminating Delay for a Series of Small Loads after a Large Store 5-37
Accessing Data Without Delayooviiii i e e 5-37
An Example of Video Processing with Cache Line Splits 5-38
Video Processing Using LDDQU to Avoid Cache Line Splits...............coovve 5-39
Un-optimized Reverse Memory Copyin C.....ovvriiiiiiii it 5-41
Using PSHUFB to Reverse Byte Ordering 16 Bytesata Time.................. 5-42
PMOVSX/PMOVZX Work-around to Avoid False Dependency 5-45
Table Look-up Operations in CCode.ovviii ittt 5-46
Shift Techniques on Non-Vectorizable Table Look-upccovutat. 5-47
PEXTRD Techniques on Non-Vectorizable Table Look-up.................. ... 5-48
Pseudocode for Horizontal (xyz, AoS) Computationcccovvvivinininns. 6-6
Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation 6-6
Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPScooiiiiinns 6-7
Swizzling Data Using UNPCKXXX INStructions..........covviiiiiiiiiiinenn 6-8
Deswizzling Single-Precision SIMDDataccov vt 6-9
Deswizzling Data Using SIMD Integer Instructions.cccoviveiiint, 6-10
Horizontal Add Using MOVHLPS/MOVLHPS 6-12
Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS. 6-12
Multiplication of Two Pair of Single-precision Complex Number................ 6-15
Division of Two Pair of Single-precision Complex Numbers 6-16
Double-Precision Complex Multiplication of Two Pairs......................... 6-17
Double-Precision Complex Multiplication Using Scalar SSE2.................... 6-17
Dot Product of Vector Length 4 Using SSE/SSE2.oovviiiiiiiininiiinn 6-19
Dot Product of Vector Length 4 UsingSSE3covviiiiiiiiii e 6-19
Dot Product of Vector Length 4 Using SSE4.1 ... 6-19
Unrolled Implementation of Four Dot Productscccoviiiiiinnt. 6-20
Normalization of an Array of Vectors ..ot 6-21
Normalize (x, v, z) Components of an Array of Vectors Using SSE2............. 6-22
Normalize (x, y, z) Components of an Array of Vectors Using SSE4.T........... 6-23
Data Organization in Memory for AOS Vector-Matrix Multiplication 6-24
AOS Vector-Matrix Multiplication with HADDPS. 6-24
AQS Vector-Matrix Multiplication with DPPS. ... 6-25
Data Organization in Memory for SOA Vector-Matrix Multiplication 6-26
Vector-Matrix Multiplication with Native SOA Datalayout 6-27
Pseudo-code Using CLFLUSHo 7-13
Populating an Array for Circular Pointer Chasing with Constant Stride 7-15
Prefetch Scheduling Distance. ..o 7-18
Using Prefetch Concatenationoovveiiiii i 7-20

CONTENTS

PAGE
Example 7-5. Concatenation and Unrolling the Last Iteration of Inner Loop 7-20
Example 7-6. Data Access of a 3D Geometry Engine without Strip-mining 7-26
Example 7-7. Data Access of a 3D Geometry Engine with Strip-mining....................... 7-26
Example 7-8. Using HW Prefetch to Improve Read-Once Memory Traffic..................... 7-28
Example 7-9. Basic Algorithm of a Simple Memory Copyoviiiiiiiii et 7-33
Example 7-10. A Memory Copy Routine Using Software Prefetch............................. 7-34
Example 7-11. Memory Copy Using Hardware Prefetch and Bus Segmentation................ 7-36
Example 8-1. Serial Execution of Producer and Consumer Work Itemscovvvivvnnnn 8-6
Example 8-2. Basic Structure of Implementing Producer Consumer Threads 8-7
Example 8-3. Thread Function for an Interlaced Producer Consumer Model 8-9
Example 8-4. Spin-wait Loop and PAUSE INStructions.coiiieiiiiiiii i 8-17
Example 8-5. Coding Pitfall using Spin Wait Loopccovviiiii e 8-20
Example 8-6. Placement of Synchronization and Reqular Variables.......................... 8-22
Example 8-7. Declaring Synchronization Variables without Sharing a Cache Line 8-22
Example 8-8. Batched Implementation of the Producer Consumer Threads 8-29
Example 8-9. Parallel Memory Initialization Technique Using OpenMP and NUMA............. 8-34
Example 10-1. A Hash FuRCtion EXamples.ot e et 10-5
Example 10-2. Hash Function Using CRC32.ottt e it 10-6
Example 10-3. Strlen() Using General-Purpose INStructions.ovvvviiiiiininnnnennnns 10-9
Example 10-4. Sub-optimal PCMPISTRI Implementation of EOS handling.................... 10-11
Example 10-5. Strlen() Using PCMPISTRI without Loop-Carry Dependency................... 10-12
Example 10-6. WordCnt() Using C and Byte-Scanning Technique.............covovvvivnen.s. 10-13
Example 10-7. WordCnt() Using PCMPISTRM.o 10-15
Example 10-8. KMP SubstringSearchin C.... ...t e 10-17
Example 10-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic..................... 10-19
Example 10-10.Substring Search Using PCMPISTRI and KMP Overlap Table 10-22
Example 10-11.1 Equivalent Strtok_s() Using PCMPISTRIINtrinsiC.......coovvvvvnvnininnnns. 10-26
Example 10-12.1 Equivalent Strupr() Using PCMPISTRM Intrinsic............covviiiiiinnen. 10-29
Example 10-13.UTF16 VerStrlen() Using C and Table LookupTechnique 10-31
Example 10-14.Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI 10-32
Example 10-15.Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRIovvvvvvvnnen 10-35
Example 10-16.Replacement String Library Stremp UsingSSE4.2ovvvvviiinvnenns 10-38
Example 10-17.High-level flow of Character Subset Validation for String Conversion......... 10-40
Example 10-18.Intrinsic Listings of atol() Replacement Using PCMPISTRI. 10-41
Example 10-19.Auxiliary Routines and Data Constants Used in sse4i_atol() listing. 10-44

Example 12-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel® Atom™ Mi-
croarchitecture 12-5

Example 12-2. Alternative to Prevent AGU and Execution Unit Dependency 12-8
Example 12-3. Pipeling Instruction Execution in Integer Computation...................ovvues 12-9
Example 12-4. Memory Copy 0f 64-byte ..o 12-14
Example 12-5. Examples of Dependent Multiply and Add Computation...................... 12-16
Example 12-6. Instruction Pointer Query Techniques ... 12-17
Example 12-8. Auto-Generated Code of Storing Absolutes ... A-8
Example 12-9. Changes Signs. . ..o vut ittt A-8
Example 12-7. Storing Absolute ValUBSoviri e A-8
Example 12-11.Data CONVEISION.ottt et e e e aenes A-9
Example 12-10.Auto-Generated Code of Sign CoNVErsionc.vvviiiiiiiiiieienaenn, A-9

XixX

CONTENTS

PAGE
Example 12-13.Un-aligned Data Operationoviiiriiiiiii ittt iineieiaans A-10
Example 12-12.Auto-Generated Code of Data Conversion..........covvviiviviiniiinenennn, A-10
Example 12-14.Auto-Generated Code to Avoid Unaligned Loadsoovveviiininnnn, A-11
Example D-1. Aligned esp-Based Stack Frame.c...ovviiiiiiiii e D-3
Example D-2. Aligned ebp-based Stack Frames.covviii i e D-5

XX

FIGURES

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.

Figure 2-14.
Figure 2-15.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 5-1.
Figure 5-2.
Figure 5-4.
Figure 5-3.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.

CONTENTS

PAGE
Intel Core Microarchitecture Pipeline Functionalitycoovviiiinnn, 2-4
Execution Core of Intel Core Microarchitecture...........covvviviiiiiiiennnnn, 2-12
Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture..... 2-17
Intel Advanced Smart Cache Architecture...........oovviiiiiii e 2-18
Intel Microarchitecture (Nehalem) Pipeline Functionality 2-22
Front End of Intel Microarchitecture (Nehalem).............cooviiiiiiinninen. 2-23
Store-forwarding Scenarios of 16-Byte Store Operations...................... 2-30
Store-Forwarding Enhancement in Intel Microarchitecture (Nehalem)........... 2-31
The Intel NetBurst Microarchitecture.oooviiiiiii e 2-36
Execution Units and Ports in Out-Of-Order Core........oovvvvviinviiniinnann, 2-42
The Intel Pentium M Processor Microarchitecturecooovvviiviieninnns 2-47
Hyper-Threading Technology onan SMP. ...t 2-53

Pentium D Processor, Pentium Processor Extreme Edition,
Intel Core Duo Processor, Intel Core 2 Duo Processor, and Intel Core 2 Quad Processor
2-57

Typical SIMD Operations . ..o .v vt i i e e e e 2-61
SIMD Instruction Register Usageoviiiiiiiiii i iiiieneans 2-62
Generic Program Flow of Partially Vectorized Code...........coovvvviivinnnnn, 3-40
Cache Line Split in Accessing ElementsiNaArMmaycoovvvviviviiiiienannn, 3-49
Size and Alignment Restrictions in Store Forwarding................c.coovuut 3-51
Converting to Streaming SIMD Extensions Chartccooviiiiiiiinn, 4-6
Hand-Coded Assembly and High-Level Compiler Performance Trade-offs........ 4-9
Loop Blocking Access Pattern........ovviii e 4-26
PACKSSDW mm, mm/mm64 INStruction..........cvvrveiiiiiiiiiiieii e 5-8
Interleaved Pack with Saturation. ... 5-9
Result of Non-Interleaved Unpack Highin MM1 ..., 5-11
Result of Non-Interleaved Unpack Low inMMO...............cooviviiennnt. 5-11
PEXTRW INSTIUCTION . . v et e e 5-12
PINSRW INSTrUCTION. . o v vt eaas 5-13
PMOVSMKB INSTrUCHION . ..o vev e 5-16
Data Alignment of Loads and Stores in Reverse Memory Copyov.t. 5-41
A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy Using Two

AlGNed Loads . ..ot 5-43
Homogeneous Operation on Parallel Data Elementscocovivviinnn 6-4
Horizontal Computation Model ..o e 6-4
Dot Product Operation.ov vttt 6-5
Horizontal Add Using MOVHLPS/MOVLHPS 6-11
Asymmetric Arithmetic Operation of the SSE3 Instruction..................... 6-14
Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD............... 6-15
Effective Latency Reduction as a Function of Access Stride.................... 7-15
Memory Access Latency and Execution Without Prefetch...................... 7-16
Memory Access Latency and Execution With Prefetch......................... 7-17
Prefetchand Loop Unrolling.ov i 7-21
Memory Access Latency and Execution With Prefetch......................... 7-22
Spread Prefetch INStructions.oveii 7-23

XXi

CONTENTS

Figure 7-7.
Figure 7-8.

Figure 7-9.
Figure 8-1.
Figure 8-2.
Figure 8-3.

Figure 8-4.
Figure 8-5.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 12-1.

Figure A-1.

Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.
Figure B-5.
Figure B-6.
Figure B-8.
Figure B-7.
Figure B-9.

Figure B-10.
Figure B-12.
Figure B-11.
Figure B-13.

Figure D-1.

XXii

PAGE
Cache Blocking - Temporally Adjacent and Non-adjacent Passes............... 7-24
Examples of Prefetch and Strip-mining for Temporally Adjacent and Non-Adjacent
PaSSES LO0PS .« o vttt ettt e 7-25
Single-Pass Vs. Multi-Pass 3D Geometry ENGINESovvvvviiiiineennn. 7-30
Amdahl's Law and MP Speed-Up ...t 8-2
Single-threaded Execution of Producer-consumer Threading Model. 8-6
Execution of Producer-consumer Threading Model
0N 3 MUIICOME PrOCESSOM .« vttt ettt et 8-7
Interlaced Variation of the Producer Consumer Model........................s. 8-8
Batched Approach of Producer Consumer Model............c.oviviiiiiinnnnn 8-28
SSE4.2 String/Text Instruction Immediate Operand Control 10-2
Retrace Inefficiency of Byte-Granular, Brute-Force Search................... 10-17
SSE4.2 Speedup of SubStringSearches ... 10-25
Performance History and State Transitions.covoviviiiiiiiiinnnnnnns 11-2
Active Time Versus Halted Time of @ Processorcovvvviiiiinannns 11-3
Application of C-states toldle Timeoovrii i 11-4
Profiles of Coarse Task Scheduling and Power Consumption................... 11-9
Thread Migration in @ Multicore Processor.........covvviiiiiiiiiiiiinnnnnn. 11-12
Progression to Deeper SIEEP ..o vt 11-13
Intel Atom Microarchitecture Pipeline ..o 12-2
Intel Thread Profiler Showing Critical Paths
of Threaded Execution TIMeliNeS. ..o v vt e A-16
System Topology Supported by Intel® Xeon® Processor 5500 Series............ B-1
PMU Specific Event Logic Within the Pipeline....................ocoiiiiiit, B-4
LBR Records and BasiC BIOCKSo v vt ee e B-19
Using LBR Records to Rectify Skewed Sample Distribution B-20
RdData Request after LLC Miss to Local Home (Clean Rsp).................... B-35
RdData Request after LLC Miss to Remote Home (CleanRsp) B-35
RdData Request after LLC Miss to Local Home (Hitm Response)............... B-36
RdData Request after LLC Miss to Remote Home (Hitm Response)............ B-36
RdData Request after LLC Miss to Local Home (Hit Response) B-37
RdIinvOwn Request after LLC Miss to Remote Home (CleanRes) B-37
RdIinvOwn Request after LLC Miss to Local Home (HitRes) B-38
RdIinvOwn Request after LLC Miss to Remote Home (HitmRes)............... B-38
Performance Events Drill-Down and Software Tuning Feedback Loop.......... B-43
Stack Frames Based on Alignment TyPe. ... ovv ittt D-2

TABLES

Table 2-1.
Table 2-2.

Table 2-3.
Table 2-4.

Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.
Table 2-10.
Table 2-11.

Table 2-12.
Table 2-13.

Table 3-1.

Table 5-1.
Table 6-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 8-1.
Table 8-2.
Table 8-3.
Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.
Table 12-1.
Table 12-2.
Table A-1.
Table A-2.
Table A-3.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.

CONTENTS

PAGE

Components of the FroNt ENd.o e 2-5
Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core Microarchitecture
2-11

Cache Parameters of Processors based on Intel Core Microarchitecture 2-19
Characteristics of Load and Store Operations

in Intel Core Microarchitecture2-20

Bypass Delay Between Producer and Consumer Micro-ops (cycles)............. 2-25
Issue Ports of Intel Microarchitecture (Nehalem)cocoviivi. 2-26
Cache Parameters of Intel Core i7 ProCESSOrS. .. .vvvvvvi et v e inaannes 2-27
Performance Impact of Address Alignments of MOVDQU from L1 2-28
Pentium 4 and Intel Xeon Processor Cache Parameters.............ccooovvnenn. 2-43
Trigger Threshold and CPUID Signatures for Processor Families................ 2-49

Cache Parameters of Pentium M, Intel Core Solo,

and Intel Core Duo Processors2-49

Family And Model Designations of Microarchitectures 2-58
Characteristics of Load and Store Operations

in Intel Core Duo Processors2-59

Store Forwarding Restrictions of Processors

Based on Intel Core Microarchitecture3-54

PSHUF ENCOAING. . .o 5-17
SoA Form of Representing VerticesDataccooiviiiiiiiiiinnnnnnt. 6-5
Software Prefetching Considerations into Strip-mining Code................... 7-27
Relative Performance of Memory Copy Routines..............covvviiinnnn., 7-37
Deterministic Cache ParametersLeaf...... ... 7-39
Properties of Synchronization Objects...........coovii i 8-15
Design-Time Resource Management ChoiCeS.ovoviiiiiiiiniinnen. 8-31
Microarchitectural Resources Comparisons of HT Implementations............. 8-36
SSE4.2 String/Text Instructions Compare Operation on N-elements............ 10-3
SSE4.2 String/Text Instructions Unary Transformation on IntRes1............. 10-3
SSE4.2 String/Text Instructions Output Selection Imm[6]...................... 10-4
SSE4.2 String/Text Instructions Element-Pair Comparison Definition........... 10-4
SSE4.2 String/Text Instructions Eflags Behavior ...t 10-5
Instruction Latency/Throughput Summary of Intel® Atom™ Microarchitecture. 12-10
Intel® Atom™ Microarchitecture Instructions LatencyData 12-19
Recommended IA-32 Processor Optimization Optionscocvvivinn, A-2
Recommended Processor Optimization Options for 64-bit Code................. A-4
Vectorization Control Switch OptionS.ovv i A-5
Cycle Accounting and Micro-ops Flow Recipe ..o, B-3
CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow................ B-4
Cycle Accounting of Wasted Work Due to Misprediction........................ B-6
Cycle Accounting of Instruction Starvation ... B-7
CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow................ B-8
Approximate Latency of L2 Misses of Intel Xeon Processor 5500 B-11
Load Latency Event Programming.ovvviniietiiiii i iiniieenns B-14
Data Source Encoding for Load Latency PEBSRecord.cocvtet B-15

XXiii

CONTENTS

Table B-9.

Table B-10.
Table B-11.
Table B-12.
Table B-13.
Table B-14.
Table B-15.

Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table C-7.

Table C-8.

Table C-9.

Table C-10.
Table C-11.
Table C-12.
Table C-13.

XXiv

PAGE
Core PMU Events to Drill Down L2 MiSSESvvvvv v B-21
Core PMU Events for Super Queue Operation.........c.ovvviviiiiiiinennnnnn.s B-22
Core PMU Event to Drill Down OFFCore RESPONSESvvvvvveiiiininennnnnnss B-22
OFFCORE_RSP_OMSR Programmingovvvvviieieenneneieieannnnnnas B-22
Common Request and Response Types for OFFCORE_RSP_O MSR............... B-23
Uncore PMU Events for Occupancy Cycles.ooviiiii i B-30
Common QHL Opcode Matching Facility Programming.............covvvvnnnn. B-33
Availability of SIMD Instruction Extensions by CPUID Signature.................. C-4
SSEA.2 INSTTUCTIONS .« v e ettt C-4
SSEA. T INSTITUCTIONS .+ vttt ettt e e C-5
Supplemental Streaming SIMD Extension 3 Instructions...................o.v.at C-6
Streaming SIMD Extension 3 SIMD Floating-point Instructions C-7
Streaming SIMD Extension 2 128-bit Integer Instructions c-8
Streaming SIMD Extension 2 Double-precision
Floating-point InstructionsC-13
Streaming SIMD Extension Single-precision
Floating-point InstructionsC-18
Streaming SIMD Extension 64-bit Integer Instructions C-22
MMX Technology 64-bit INStruCtionS.ovi i e C-23
MMX Technology 64-bit INStrUCtioNS.vvvvv i e C-24
X87 Floating-point INStructions . ..o e C-25
General Purpose INStrucCtionS oo v C-28

CHAPTER 1
INTRODUCTION

The Intel® 64 and 1A-32 Architectures Optimization Reference Manual describes how
to optimize software to take advantage of the performance characteristics of 1A-32
and Intel 64 architecture processors. Optimizations described in this manual apply to
processors based on the Intel® Core™ microarchitecture, Enhanced Intel® Core™
microarchitecture, Intel microarchitecture (Nehalem), Intel NetBurst® microarchi-
tecture, the Intel® Core™ Duo, Intel® Core™ Solo, Pentium® M processor families.

The target audience for this manual includes software programmers and compiler
writers. This manual assumes that the reader is familiar with the basics of the 1A-32
architecture and has access to the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual (five volumes). A detailed understanding of Intel 64 and I1A-32 proces-
sors is often required. In many cases, knowledge of the underlying microarchitectures
is required.

The design guidelines that are discussed in this manual for developing high-
performance software generally apply to current as well as to future 1A-32 and

Intel 64 processors. The coding rules and code optimization techniques listed target
the Intel Core microarchitecture, the Intel NetBurst microarchitecture and the
Pentium M processor microarchitecture. In most cases, coding rules apply to soft-
ware running in 64-bit mode of Intel 64 architecture, compatibility mode of Intel 64
architecture, and I1A-32 modes (IA-32 modes are supported in 1A-32 and Intel 64
architectures). Coding rules specific to 64-bit modes are noted separately.

1.1 TUNING YOUR APPLICATION

Tuning an application for high performance on any Intel 64 or 1A-32 processor
requires understanding and basic skills in:

® Intel 64 and 1A-32 architecture

® C and Assembly language

® hot-spot regions in the application that have impact on performance
® optimization capabilities of the compiler

® techniques used to evaluate application performance

The Intel® VTune™ Performance Analyzer can help you analyze and locate hot-spot
regions in your applications. On the Intel® Core™ i7, Intel® Core™2 Duo, Intel®
Core™ Duo, Intel® Core™ Solo, Pentium® 4, Intel® Xeon® and Pentium® M proces-
sors, this tool can monitor an application through a selection of performance moni-
toring events and analyze the performance event data that is gathered during code
execution.

INTRODUCTION

This manual also describes information that can be gathered using the performance
counters through Pentium 4 processor’s performance monitoring events.

1.2 ABOUT THIS MANUAL

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture. In this document,
references to the Core 2 Duo processor refer to processors based on the Intel®
Core™ microarchitecture.

The Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400 series, Intel® Core™2
Quad processor Q8000 series, and Intel® Core™2 Extreme processors QX9000
series are based on 45nm Enhanced Intel® Core™microarchitecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 5500 are based on 45 nm
Intel® Microarchitecture (Nehalem).

In this document, references to the Pentium 4 processor refer to processors based on
the Intel NetBurst® microarchitecture. This includes the Intel Pentium 4 processor
and many Intel Xeon processors based on Intel NetBurst microarchitecture. Where
appropriate, differences are noted (for example, some Intel Xeon processors have
third level cache).

The Dual-core Intel® Xeon® processor LV is based on the same architecture as Intel®
Core™ Duo and Intel® Core™ Solo processors.

Intel® Atom™ processor is based on Intel® Atom™ microarchitecture.

The following bullets summarize chapters in this manual.

® Chapter 1: Introduction — Defines the purpose and outlines the contents of
this manual.

®* Chapter 2: Intel® 64 and I1A-32 Processor Architectures — Describes the
microarchitecture of recent 1A-32 and Intel 64 processor families, and other
features relevant to software optimization.

® Chapter 3: General Optimization Guidelines — Describes general code
development and optimization techniques that apply to all applications designed
to take advantage of the common features of the Intel Core microarchitecture,
Enhanced Intel Core microarchitecture, Intel NetBurst microarchitecture and
Pentium M processor microarchitecture.

® Chapter 4: Coding for SIMD Architectures — Describes techniques and
concepts for using the SIMD integer and SIMD floating-point instructions
provided by the MMX™ technology, Streaming SIMD Extensions, Streaming
SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

® Chapter 5: Optimizing for SIMD Integer Applications — Provides optimi-
zation suggestions and common building blocks for applications that use the 128-
bit SIMD integer instructions.

INTRODUCTION

Chapter 6: Optimizing for SIMD Floating-point Applications — Provides
optimization suggestions and common building blocks for applications that use
the single-precision and double-precision SIMD floating-point instructions.

Chapter 7: Optimizing Cache Usage — Describes how to use the PREFETCH
instruction, cache control management instructions to optimize cache usage, and
the deterministic cache parameters.

Chapter 8: Multiprocessor and Hyper-Threading Technology — Describes
guidelines and techniques for optimizing multithreaded applications to achieve
optimal performance scaling. Use these when targeting multicore processor,
processors supporting Hyper-Threading Technology, or multiprocessor (MP)
systems.

Chapter 9: 64-Bit Mode Coding Guidelines — This chapter describes a set of
additional coding guidelines for application software written to run in 64-bit
mode.

Chapter 10: SSE4.2 and SIMD Programming for Text-
Processing/Lexing/Parsing— Describes SIMD techniques of using SSE4.2
along with other instruction extensions to improve text/string processing and
lexing/parsing applications.

Chapter 11: Power Optimization for Mobile Usages — This chapter provides
background on power saving techniques in mobile processors and makes recom-
mendations that developers can leverage to provide longer battery life.

Chapter 12: Intel® Atom™ Processor Architecture and Optimization —
Describes the microarchitecture of processor families based on Intel Atom
microarchitecture, and software optimization techniques targeting Intel Atom
microarchitecture.

Appendix A: Application Performance Tools — Introduces tools for analyzing
and enhancing application performance without having to write assembly code.

Appendix B: Intel® Pentium® 4 Processor Performance Metrics —
Provides information that can be gathered using Pentium 4 processor’s
performance monitoring events. These performance metrics can help
programmers determine how effectively an application is using the features of
the Intel NetBurst microarchitecture.

Appendix C: IA-32 Instruction Latency and Throughput — Provides latency
and throughput data for the 1A-32 instructions. Instruction timing data specific to
recent processor families are provided.

Appendix D: Stack Alignment — Describes stack alignment conventions and
techniques to optimize performance of accessing stack-based data.

Appendix E: Summary of Rules and Suggestions — Summarizes the rules
and tuning suggestions referenced in the manual.

INTRODUCTION

1.3 RELATED INFORMATION

For more information on the Intel® architecture, techniques, and the processor
architecture terminology, the following are of particular interest:

Intel® 64 and 1A-32 Architectures Software Developer’s Manual (in five volumes)
Intel® Processor Identification with the CPUID Instruction, AP-485

Developing Multi-threaded Applications: A Platform Consistent Approach

Intel® C++ Compiler documentation and online help

Intel® Fortran Compiler documentation and online help

Intel® VTune™ Performance Analyzer documentation and online help

Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP

More relevant links are:

Software network link:
http://softwarecommunity.intel.com/isn/home/

Developer centers:
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
Processor support general link:
http://www.intel.com/support/processors/

Software products and packages:
http://wwwa3.intel.com/cd/software/products/asmo-na/eng/index.htm
Intel 64 and 1A-32 processor manuals (printed or PDF downloads):
http://developer.intel.com/products/processor/manuals/index.htm
Intel Multi-Core Technology:
http://developer.intel.com/technology/multi-core/index.htm
Hyper-Threading Technology (HT Technology):
http://developer.intel.com/technology/hyperthread/

SSE4.1 Application Note: Motion Estimation with Intel® Streaming SIMD
Extensions 4

http://softwarecommunity.intel.com/articles/eng/1246.htm

SSE4.1 Application Note: Increasing Memory Throughput with Intel® Streaming
SIMD Extensions 4

http://softwarecommunity.intel.com/articles/eng/1248.htm
Processor Topology and Cache Topology white paper and reference code

http://software.intel.com/en-us/articles/intel-64-architecture-processor-
topology-enumeration

http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://cache-www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for
current generations of Intel 64 and 1A-32 processors (processors based on the Intel
Core microarchitecture, Enhanced Intel Core microarchitecture, Intel microarchitec-
ture (Nehalem), Intel NetBurst microarchitecture; including Intel Core Solo, Intel
Core Duo, and Intel Pentium M processors). These features are:

® Microarchitectures that enable executing instructions with high throughput at
high clock rates, a high speed cache hierarchy and high speed system bus

® Multicore architecture available in Intel Core i7, Intel Core 2 Extreme, Intel Core
2 Quad, Intel Core 2 Duo, Intel Core Duo, Intel Pentium D processors, Pentium
processor Extreme Edition?, and Quad-core Intel Xeon, Dual-core Intel Xeon
processors

® Hyper-Threading Technology2 (HT Technology) support
® Intel 64 architecture on Intel 64 processors

® SIMD instruction extensions: MMX technology, Streaming SIMD Extensions
(SSE), Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3
(SSE3), Supplemental Streaming SIMD Extensions 3 (SSSE3), SSE4.1, and
SSE4.2.

The Intel Pentium M processor introduced a power-efficient microarchitecture with
balanced performance. Dual-core Intel Xeon processor LV, Intel Core Solo and Intel
Core Duo processors incorporate enhanced Pentium M processor microarchitecture.
The Intel Core 2, Intel Core 2 Extreme, Intel Core 2 Quad processor family, Intel
Xeon processor 3000, 3200, 5100, 5300, 7300 series are based on the high-perfor-
mance and power-efficient Intel Core microarchitecture. Intel Xeon processor 3100,
3300, 5200, 5400, 7400 series, Intel Core 2 Extreme processor QX9600, QX9700
series, Intel Core 2 Quad Q9000 series, Q8000 series are based on the enhanced

1. Quad-core platforms require an Intel Xeon processor 3200, 3300, 5300, 5400, 7300 series, an
Intel Core 2 Extreme processor QX6000, QX9000 series, or an Intel Core 2 Quad processor, with
appropriate chipset, BIOS, and operating system. Six-core platform requires an Intel Xeon proces-
sor 7400 series, with appropriate chipset, BIOS, and operating system. Dual-core platform
requires an Intel Xeon processor 3000, 3100 series, Intel Xeon processor 5100, 5200, 7100
series, Intel Core 2 Duo, Intel Core 2 Extreme processor X6800, Dual-core Intel Xeon processors,
Intel Core Duo, Pentium D processor or Pentium processor Extreme Edition, with appropriate
chipset, BIOS, and operating system. Performance varies depending on the hardware and soft-
ware used.

2. Hyper-Threading Technology requires a computer system with an Intel processor supporting HT
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance
varies depending on the hardware and software used.

2-1

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Intel Core microarchitecture. Intel Core i7 processor is based on Intel microarchitec-
ture (Nehalem).

Intel Core 2 Extreme QX6700 processor, Intel Core 2 Quad processors, Intel Xeon
processors 3200 series, 5300 series are quad-core processors. Intel Pentium 4
processors, Intel Xeon processors, Pentium D processors, and Pentium processor
Extreme Editions are based on Intel NetBurst microarchitecture.

2.1 INTEL® CORE™ MICROARCHITECTURE AND
ENHANCED INTEL CORE MICROARCHITECTURE

Intel Core microarchitecture introduces the following features that enable high
performance and power-efficient performance for single-threaded as well as multi-
threaded workloads:

* Intel® wide Dynamic Execution enables each processor core to fetch,
dispatch, execute with high bandwidths and retire up to four instructions per
cycle. Features include:

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle

— Macro-fusion and micro-fusion to improve front-end throughput
— Peak issue rate of dispatching up to six pops per cycle

— Peak retirement bandwidth of up to four pops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure
entries and exits

* Intel® Advanced Smart Cache delivers higher bandwidth from the second
level cache to the core, optimal performance and flexibility for single-threaded
and multi-threaded applications. Features include:

— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data
cache

— Unified, shared second-level cache of 4 Mbyte, 16 way (or 2 MByte, 8 way)

* Intel® Smart Memory Access prefetches data from memory in response to
data access patterns and reduces cache-miss exposure of out-of-order
execution. Features include:

— Hardware prefetchers to reduce effective latency of second-level cache
misses

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— Hardware prefetchers to reduce effective latency of first-level data cache
misses

— Memory disambiguation to improve efficiency of speculative execution
execution engine

Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruc-
tions with single-cycle throughput and floating-point operations. Features
include:

— Single-cycle throughput of most 128-bit SIMD instructions (except 128-bit
shuffle, pack, unpack operations)

— Up to eight floating-point operations per cycle

— Three issue ports available to dispatching SIMD instructions for execution.

The Enhanced Intel Core microarchitecture supports all of the features of Intel Core
microarchitecture and provides a comprehensive set of enhancements.

Intel® wWide Dynamic Execution includes several enhancements:

— A radix-16 divider replacing previous radix-4 based divider to speedup long-
latency operations such as divisions and square roots.

— Improved system primitives to speedup long-latency operations such as
RDTSC, STI, CLI, and VM exit transitions.

Intel® Advanced Smart Cache provides up to 6 MBytes of second-level cache
shared between two processor cores (quad-core processors have up to 12
MBytes of L2); up to 24 way/set associativity.

Intel® Smart Memory Access supports high-speed system bus up 1600 MHz
and provides more efficient handling of memory operations such as split cache
line load and store-to-load forwarding situations.

Intel® Advanced Digital Media Boost provides 128-bit shuffler unit to
speedup shuffle, pack, unpack operations; adds support for 47 SSE4.1 instruc-
tions.

In the sub-sections of 2.1.x, most of the descriptions on Intel Core microarchitecture
also applies to Enhanced Intel Core microarchitecture. Differences between them are
note explicitly.

2.1.1 Intel® Core™ Microarchitecture Pipeline Overview

The pipeline of the Intel Core microarchitecture contains:

An in-order issue front end that fetches instruction streams from memory, with
four instruction decoders to supply decoded instruction (pops) to the out-of-
order execution core.

An out-of-order superscalar execution core that can issue up to six pLops per cycle
(see Table 2-2) and reorder pops to execute as soon as sources are ready and
execution resources are available.

2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ Anin-order retirement unit that ensures the results of execution of [lops are
processed and architectural states are updated according to the original program
order.

Intel Core 2 Extreme processor X6800, Intel Core 2 Duo processors and Intel Xeon
processor 3000, 5100 series implement two processor cores based on the Intel Core
microarchitecture. Intel Core 2 Extreme quad-core processor, Intel Core 2 Quad
processors and Intel Xeon processor 3200 series, 5300 series implement four
processor cores. Each physical package of these quad-core processors contains two
processor dies, each die containing two processor cores. The functionality of the
subsystems in each core are depicted in Figure 2-1.

Instruction Fetch and PreDecode |«

v

Instruction Queue

Micro- *

code Decode

ROM
I 4

Rename/Alloc

Shared L2 Cache
Up to 10.7 GB/s

FSB
|
Retirement Unit
(Re-Order Buffer)
Scheduler
ALU ALU ALU
Branch FAdd FMul Load Store
MMX/SSE/FP MMX/SSE MMX/SSE
Move l l
L1D Cache and DTLB S
0OM19808

Figure 2-1. Intel Core Microarchitecture Pipeline Functionality

2.1.2

Front End

The front ends needs to supply decoded instructions (pops) and sustain the stream
to a six-issue wide out-of-order engine. The components of the front end, their func-

2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

tions, and the performance challenges to microarchitectural design are described in

Table 2-1.

Table 2-1. Components of the Front End

Component

Functions

Performance Challenges

Branch Prediction
Unit (BPU)

Helps the instruction fetch unit
fetch the most likely instruction
to be executed by predicting
the various branch types:
conditional, indirect, direct, call,
and return. Uses dedicated
hardware for each type.

Enables speculative
execution.

Improves speculative
execution efficiency by
reducing the amount of
code in the “non-architected
path”! to be fetched into
the pipeline.

Instruction Fetch
Unit

Prefetches instructions that are
likely to be executed

Caches frequently-used
instructions

Predecodes and buffers
instructions, maintaining a
constant bandwidth despite
irregularities in the instruction
stream

Variable length instruction
format causes unevenness
(bubbles) in decode
bandwidth.

Taken branches and
misaligned targets causes
disruptions in the overall
bandwidth delivered by the
fetch unit.

Instruction Queue
and Decode Unit

Decodes up to four instructions,
or up to five with macro-fusion
Stack pointer tracker algorithm
for efficient procedure entry
and exit

Implements the Macro-Fusion
feature, providing higher
performance and efficiency

The Instruction Queue is also
used as a loop cache, enabling
some loops to be executed with
both higher bandwidth and
lower power

Varying amounts of work
per instruction requires
expansion into variable
numbers of pops.

Prefix adds a dimension of
decoding complexity.
Length Changing Prefix
(LCP) can cause front end
bubbles.

NOTES:

1. Code paths that the processor thought it should execute but then found out it should go in

another path and therefore reverted from its initial intention.

2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.2.1 Branch Prediction Unit

Branch prediction enables the processor to begin executing instructions long before
the branch outcome is decided. All branches utilize the BPU for prediction. The BPU
contains the following features:

® 16-entry Return Stack Buffer (RSB). It enables the BPU to accurately predict RET
instructions.

® Front end queuing of BPU lookups. The BPU makes branch predictions for 32
bytes at a time, twice the width of the fetch engine. This enables taken branches
to be predicted with no penalty.

Even though this BPU mechanism generally eliminates the penalty for taken
branches, software should still regard taken branches as consuming more
resources than do not-taken branches.

The BPU makes the following types of predictions:

® Direct Calls and Jumps. Targets are read as a target array, without regarding the
taken or not-taken prediction.

® Indirect Calls and Jumps. These may either be predicted as having a monotonic
target or as having targets that vary in accordance with recent program behavior.

® Conditional branches. Predicts the branch target and whether or not the branch
will be taken.

For information about optimizing software for the BPU, see Section 3.4, “Optimizing
the Front End”.

2.1.2.2 Instruction Fetch Unit

The instruction fetch unit comprises the instruction translation lookaside buffer
(ITLB), an instruction prefetcher, the instruction cache and the predecode logic of the
instruction queue (1Q).

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB into the instruction
cache and instruction prefetch buffers. A hit in the instruction cache causes 16 bytes
to be delivered to the instruction predecoder. Typical programs average slightly less
than 4 bytes per instruction, depending on the code being executed. Since most
instructions can be decoded by all decoders, an entire fetch can often be consumed
by the decoders in one cycle.

A misaligned target reduces the number of instruction bytes by the amount of offset
into the 16 byte fetch quantity. A taken branch reduces the number of instruction
bytes delivered to the decoders since the bytes after the taken branch are not
decoded. Branches are taken approximately every 10 instructions in typical integer
code, which translates into a “partial” instruction fetch every 3 or 4 cycles.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Due to stalls in the rest of the machine, front end starvation does not usually cause
performance degradation. For extremely fast code with larger instructions (such as
SSE2 integer media kernels), it may be beneficial to use targeted alignment to
prevent instruction starvation.

Instruction PreDecode

The predecode unit accepts the sixteen bytes from the instruction cache or prefetch
buffers and carries out the following tasks:

® Determine the length of the instructions.
® Decode all prefixes associated with instructions.

® Mark various properties of instructions for the decoders (for example, “is
branch.”).

The predecode unit can write up to six instructions per cycle into the instruction
queue. If a fetch contains more than six instructions, the predecoder continues to
decode up to six instructions per cycle until all instructions in the fetch are written to
the instruction queue. Subsequent fetches can only enter predecoding after the
current fetch completes.

For a fetch of seven instructions, the predecoder decodes the first six in one cycle,
and then only one in the next cycle. This process would support decoding 3.5 instruc-
tions per cycle. Even if the instruction per cycle (IPC) rate is not fully optimized, it is
higher than the performance seen in most applications. In general, software usually
does not have to take any extra measures to prevent instruction starvation.

The following instruction prefixes cause problems during length decoding. These
prefixes can dynamically change the length of instructions and are known as length
changing prefixes (LCPs):

® Operand Size Override (66H) preceding an instruction with a word immediate
data

® Address Size Override (67H) preceding an instruction with a mod R/M in real,
16-bit protected or 32-bit protected modes

When the predecoder encounters an LCP in the fetch line, it must use a slower length
decoding algorithm. With the slower length decoding algorithm, the predecoder
decodes the fetch in 6 cycles, instead of the usual 1 cycle.

Normal queuing within the processor pipeline usually cannot hide LCP penalties.

The REX prefix (4xh) in the Intel 64 architecture instruction set can change the size
of two classes of instruction: MOV offset and MOV immediate. Nevertheless, it does
not cause an LCP penalty and hence is not considered an LCP.

2.1.2.3 Instruction Queue (IQ)

The instruction queue is 18 instructions deep. It sits between the instruction prede-
code unit and the instruction decoders. It sends up to five instructions per cycle, and

2-7

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

supports one macro-fusion per cycle. It also serves as a loop cache for loops smaller
than 18 instructions. The loop cache operates as described below.

A Loop Stream Detector (LSD) resides in the BPU. The LSD attempts to detect loops
which are candidates for streaming from the instruction queue (1Q). When such a
loop is detected, the instruction bytes are locked down and the loop is allowed to
stream from the 1Q until a misprediction ends it. When the loop plays back from the
1Q, it provides higher bandwidth at reduced power (since much of the rest of the
front end pipeline is shut off).

The LSD provides the following benefits:

® No loss of bandwidth due to taken branches

® No loss of bandwidth due to misaligned instructions

® No LCP penalties, as the pre-decode stage has already been passed

® Reduced front end power consumption, because the instruction cache, BPU and
predecode unit can be idle

Software should use the loop cache functionality opportunistically. Loop unrolling and
other code optimizations may make the loop too big to fit into the LSD. For high
performance code, loop unrolling is generally preferable for performance even when
it overflows the loop cache capability.

2.1.2.4 Instruction Decode

The Intel Core microarchitecture contains four instruction decoders. The first,
Decoder 0, can decode Intel 64 and IA-32 instructions up to 4 pops in size. Three
other decoders handles single-pop instructions. The microsequencer can provide up
to 3 pops per cycle, and helps decode instructions larger than 4 pops.

All decoders support the common cases of single pop flows, including: micro-fusion,
stack pointer tracking and macro-fusion. Thus, the three simple decoders are not
limited to decoding single-pop instructions. Packing instructions into a 4-1-1-1
template is not necessary and not recommended.

Macro-fusion merges two instructions into a single pop. Intel Core microarchitecture
is capable of one macro-fusion per cycle in 32-bit operation (including compatibility
sub-mode of the Intel 64 architecture), but not in 64-bit mode because code that
uses longer instructions (length in bytes) more often is less likely to take advantage
of hardware support for macro-fusion.

2.1.2.5 Stack Pointer Tracker

The Intel 64 and 1A-32 architectures have several commonly used instructions for
parameter passing and procedure entry and exit: PUSH, POP, CALL, LEAVE and RET.
These instructions implicitly update the stack pointer register (RSP), maintaining a
combined control and parameter stack without software intervention. These instruc-
tions are typically implemented by several pops in previous microarchitectures.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Stack Pointer Tracker moves all these implicit RSP updates to logic contained in
the decoders themselves. The feature provides the following benefits:

® Improves decode bandwidth, as PUSH, POP and RET are single pop instructions
in Intel Core microarchitecture.

® Conserves execution bandwidth as the RSP updates do not compete for execution
resources.

® Improves parallelism in the out of order execution engine as the implicit serial
dependencies between lops are removed.

® Improves power efficiency as the RSP updates are carried out on small, dedicated
hardware.

2.1.2.6 Micro-fusion

Micro-fusion fuses multiple pops from the same instruction into a single complex
pop. The complex pop is dispatched in the out-of-order execution core. Micro-fusion
provides the following performance advantages:

® Improves instruction bandwidth delivered from decode to retirement.

¢ Reduces power consumption as the complex Llop represents more work in a
smaller format (in terms of bit density), reducing overall “bit-toggling” in the
machine for a given amount of work and virtually increasing the amount of
storage in the out-of-order execution engine.

Many instructions provide register flavors and memory flavors. The flavor involving a
memory operand will decodes into a longer flow of pops than the register version.
Micro-fusion enables software to use memory to register operations to express the
actual program behavior without worrying about a loss of decode bandwidth.

2.1.3 Execution Core

The execution core of the Intel Core microarchitecture is superscalar and can process
instructions out of order. When a dependency chain causes the machine to wait for a
resource (such as a second-level data cache line), the execution core executes other
instructions. This increases the overall rate of instructions executed per cycle (IPC).

The execution core contains the following three major components:

® Renamer — Moves pops from the front end to the execution core. Architectural
registers are renamed to a larger set of microarchitectural registers. Renaming
eliminates false dependencies known as read-after-read and write-after-read
hazards.

® Reorder buffer (ROB) — Holds pops in various stages of completion, buffers
completed Llops, updates the architectural state in order, and manages ordering
of exceptions. The ROB has 96 entries to handle instructions in flight.

2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The

Reservation station (RS) — Queues pops until all source operands are ready,
schedules and dispatches ready LLops to the available execution units. The RS has
32 entries.

initial stages of the out of order core move the pops from the front end to the

ROB and RS. In this process, the out of order core carries out the following steps:

The

Allocates resources to pops (for example: these resources could be load or store
buffers).

Binds the pop to an appropriate issue port.
Renames sources and destinations of pops, enabling out of order execution.

Provides data to the pop when the data is either an immediate value or a register
value that has already been calculated.

following list describes various types of common operations and how the core

executes them efficiently:

2.1
The

Micro-ops with single-cycle latency — Most pops with single-cycle latency
can be executed by multiple execution units, enabling multiple streams of
dependent operations to be executed quickly.

Frequently-used llops with longer latency — These [lops have pipelined
execution units so that multiple pops of these types may be executing in different
parts of the pipeline simultaneously.

Operations with data-dependent latencies — Some operations, such as
division, have data dependent latencies. Integer division parses the operands to
perform the calculation only on significant portions of the operands, thereby
speeding up common cases of dividing by small numbers.

Floating point operations with fixed latency for operands that meet
certain restrictions — Operands that do not fit these restrictions are
considered exceptional cases and are executed with higher latency and reduced
throughput. The lower-throughput cases do not affect latency and throughput for
more common cases.

Memory operands with variable latency, even in the case of an L1 cache
hit — Loads that are not known to be safe from forwarding may wait until a store-
address is resolved before executing. The memory order buffer (MOB) accepts
and processes all memory operations. See Section 2.1.5 for more information
about the MOB.

3.1 Issue Ports and Execution Units

scheduler can dispatch up to six pops per cycle through the issue ports. The

issue ports of Intel Core microarchitecture and Enhanced Intel Core microarchitec-
ture are depicted in Table 2-2, the former is denoted by its CPUID signature of
DisplayFamily_DisplayModel value of 06_O0FH, the latter denoted by the corre-
sponding signature value of 06_17H. The table provides latency and throughput data
of common integer and floating-point (FP) operations for each issue port in cycles.

2-10

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-2. Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core
Microarchitecture

Executable operations Latency, Throughput Comment’

Signature | Signature

06_OFH 06_17H
Integer ALU 1,1 1,1 Includes 64-bit mode integer MUL,;
Integer SIMD ALU 1,1 1,1 Issue port O; Writeback port O;
FP/SIMD/SSE2 Move and Logic 1,1 1,1
Single-precision (SP) FP MUL 4,1 4,1 Issue port O; Writeback port O
Double-precision FP MUL 51 51
FP MUL (X87) 52 52 Issue port O; Writeback port O
FP Shuffle 1,1 1,1 FP shuffle does not handle QW
DIV/SQRT shuffle.
Integer ALU 1,1 1,1 Excludes 64-bit mode integer MUL;
Integer SIMD ALU 1,1 1,1 Issue port 1; Writeback port 1;
FP/SIMD/SSE2 Move and Logic 1,1 1,1
FP ADD 3,1 3,1 Issue port 1; Writeback port 1;
QW Shuffle 1,12 1,13
Integer loads 3,1 3,1 Issue port 2; Writeback port 2;
FP loads 4,1 4,1
Store address* 3,1 3,1 Issue port 3;
Store data®. Issue Port 4;
Integer ALU 1,1 1,1 Issue port 5; Writeback port 5;
Integer SIMD ALU 1,1 1,1
FP/SIMD/SSE2 Move and Logic 1,1 1,1
QW shuffles 1,12 1,13 Issue port 5; Writeback port 5;
128-bit Shuffle/Pack/Unpack 2-4,2-45 | 1-3,17

NOTES:

1. Mixing operations of different latencies that use the same port can result in writeback bus con-
flicts; this can reduce overall throughput

2. 128-bit instructions executes with longer latency and reduced throughput
3. Uses 128-bit shuffle unit in port 5.
4. Prepares the store forwarding and store retirement logic with the address of the data being

stored.

5. Prepares the store forwarding and store retirement logic with the data being stored

2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

6. Varies with instructions; 128-bit instructions are executed using QW shuffle units

7. Varies with instructions, 128-bit shuffle unit replaces QW shuffle units in Intel Core microarchitec-
ture.

In each cycle, the RS can dispatch up to six pops. Each cycle, up to 4 results may be
written back to the RS and ROB, to be used as early as the next cycle by the RS. This
high execution bandwidth enables execution bursts to keep up with the functional
expansion of the micro-fused pops that are decoded and retired.

The execution core contains the following three execution stacks:
® SIMD integer

® regular integer

® x87/SIMD floating point

The execution core also contains connections to and from the memory cluster. See
Figure 2-2.

|_| EXE
Data Cache >
Unit " \ I—, s
— 0,1,5 0,1,5 0,1,5
A
SIMD Integer/ Floating
Integer [P SIMD > Integer Point
MUL
dtlb
Memory ordering L L h
store forwarding _|
Load 2 —
Store (address) 3 ¢
Store (data) 4
4—

Figure 2-2. Execution Core of Intel Core Microarchitecture

Notice that the two dark squares inside the execution block (in grey color) and
appear in the path connecting the integer and SIMD integer stacks to the floating
point stack. This delay shows up as an extra cycle called a bypass delay. Data from

2-12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

the L1 cache has one extra cycle of latency to the floating point unit. The dark-
colored squares in Figure 2-2 represent the extra cycle of latency.

2.1.4 Intel® Advanced Memory Access

The Intel Core microarchitecture contains an instruction cache and a first-level data
cache in each core. The two cores share a 2 or 4-MByte L2 cache. All caches are
writeback and non-inclusive. Each core contains:

L1 data cache, known as the data cache unit (DCU) — The DCU can handle
multiple outstanding cache misses and continue to service incoming stores and
loads. It supports maintaining cache coherency. The DCU has the following speci-
fications:

— 32-KBytes size
— 8-way set associative
— 64-bytes line size

Data translation lookaside buffer (DTLB) — The DTLB in Intel Core microar-
chitecture implements two levels of hierarchy. Each level of the DTLB have
multiple entries and can support either 4-KByte pages or large pages. The entries
of the inner level (DTLBO) is used for loads. The entries in the outer level (DTLB1)
support store operations and loads that missed DTLBO. All entries are 4-way
associative. Here is a list of entries in each DTLB:

— DTLBL1 for large pages: 32 entries

— DTLB1 for 4-KByte pages: 256 entries
— DTLBO for large pages: 16 entries

— DTLBO for 4-KByte pages: 16 entries

An DTLBO miss and DTLB1 hit causes a penalty of 2 cycles. Software only pays

this penalty if the DTLBO is used in some dispatch cases. The delays associated

with a miss to the DTLB1 and PMH are largely non-blocking due to the design of
Intel Smart Memory Access.

Page miss handler (PMH)

A memory ordering buffer (MOB) — Which:

— enables loads and stores to issue speculatively and out of order

— ensures retired loads and stores have the correct data upon retirement

— ensures loads and stores follow memory ordering rules of the Intel 64 and
IA-32 architectures.

The memory cluster of the Intel Core microarchitecture uses the following to speed
up memory operations:

128-bit load and store operations
data prefetching to L1 caches

2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® data prefetch logic for prefetching to the L2 cache
® store forwarding

® memory disambiguation

® 8fill buffer entries

® 20 store buffer entries

® out of order execution of memory operations

® pipelined read-for-ownership operation (RFO)

For information on optimizing software for the memory cluster, see Section 3.6,
“Optimizing Memory Accesses.”

2.1.4.1 Loads and Stores

The Intel Core microarchitecture can execute up to one 128-bit load and up to one
128-bit store per cycle, each to different memory locations. The microarchitecture
enables execution of memory operations out of order with respect to other instruc-
tions and with respect to other memory operations.

Loads can:

® issue before preceding stores when the load address and store address are
known not to conflict

® be carried out speculatively, before preceding branches are resolved
® take cache misses out of order and in an overlapped manner

® issue before preceding stores, speculating that the store is not going to be to a
conflicting address

Loads cannot:
® speculatively take any sort of fault or trap
® gspeculatively access the uncacheable memory type

Faulting or uncacheable loads are detected and wait until retirement, when they
update the programmer visible state. x87 and floating point SIMD loads add 1 addi-
tional clock latency.

Stores to memory are executed in two phases:

® Execution phase — Prepares the store buffers with address and data for store
forwarding. Consumes dispatch ports, which are ports 3 and 4.

¢ Completion phase — The store is retired to programmer-visible memory. It
may compete for cache banks with executing loads. Store retirement is
maintained as a background task by the memory order buffer, moving the data
from the store buffers to the L1 cache.

2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.4.2 Data Prefetch to L1 caches

Intel Core microarchitecture provides two hardware prefetchers to speed up data
accessed by a program by prefetching to the L1 data cache:

® Data cache unit (DCU) prefetcher — This prefetcher, also known as the
streaming prefetcher, is triggered by an ascending access to very recently loaded
data. The processor assumes that this access is part of a streaming algorithm
and automatically fetches the next line.

® Instruction pointer (IP)- based strided prefetcher — This prefetcher keeps
track of individual load instructions. If a load instruction is detected to have a
regular stride, then a prefetch is sent to the next address which is the sum of the
current address and the stride. This prefetcher can prefetch forward or backward
and can detect strides of up to half of a 4KB-page, or 2 KBytes.

Data prefetching works on loads only when the following conditions are met:
® Load is from writeback memory type.

® Prefetch request is within the page boundary of 4 Kbytes.

® No fence or lock is in progress in the pipeline.

® Not many other load misses are in progress.

® The bus is not very busy.

® There is not a continuous stream of stores.

DCU Prefetching has the following effects:

® Improves performance if data in large structures is arranged sequentially in the
order used in the program.

® May cause slight performance degradation due to bandwidth issues if access
patterns are sparse instead of local.

® On rare occasions, if the algorithm's working set is tuned to occupy most of the
cache and unneeded prefetches evict lines required by the program, hardware
prefetcher may cause severe performance degradation due to cache capacity of
L1.

In contrast to hardware prefetchers relying on hardware to anticipate data traffic,
software prefetch instructions relies on the programmer to anticipate cache miss
traffic, software prefetch act as hints to bring a cache line of data into the desired
levels of the cache hierarchy. The software-controlled prefetch is intended for
prefetching data, but not for prefetching code.

2143 Data Prefetch Logic

Data prefetch logic (DPL) prefetches data to the second-level (L2) cache based on
past request patterns of the DCU from the L2. The DPL maintains two independent
arrays to store addresses from the DCU: one for upstreams (12 entries) and one for
down streams (4 entries). The DPL tracks accesses to one 4K byte page in each

2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

entry. If an accessed page is not in any of these arrays, then an array entry is allo-
cated.

The DPL monitors DCU reads for incremental sequences of requests, known as
streams. Once the DPL detects the second access of a stream, it prefetches the next
cache line. For example, when the DCU requests the cache lines A and A+1, the DPL
assumes the DCU will need cache line A+2 in the near future. If the DCU then reads
A+2, the DPL prefetches cache line A+3. The DPL works similarly for “downward”
loops.

The Intel Pentium M processor introduced DPL. The Intel Core microarchitecture
added the following features to DPL:

® The DPL can detect more complicated streams, such as when the stream skips
cache lines. DPL may issue 2 prefetch requests on every L2 lookup. The DPL in
the Intel Core microarchitecture can run up to 8 lines ahead from the load
request.

® DPL in the Intel Core microarchitecture adjusts dynamically to bus bandwidth and
the number of requests. DPL prefetches far ahead if the bus is not busy, and less
far ahead if the bus is busy.

® DPL adjusts to various applications and system configurations.

Entries for the two cores are handled separately.

2144 Store Forwarding

If a load follows a store and reloads the data that the store writes to memory, the
Intel Core microarchitecture can forward the data directly from the store to the load.
This process, called store to load forwarding, saves cycles by enabling the load to
obtain the data directly from the store operation instead of through memory.

The following rules must be met for store to load forwarding to occur:

® The store must be the last store to that address prior to the load.

® The store must be equal or greater in size than the size of data being loaded.
® The load cannot cross a cache line boundary.

® The load cannot cross an 8-Byte boundary. 16-Byte loads are an exception to this
rule.

® The load must be aligned to the start of the store address, except for the
following exceptions:

— An aligned 64-bit store may forward either of its 32-bit halves
— An aligned 128-bit store may forward any of its 32-bit quarters
— An aligned 128-bit store may forward either of its 64-bit halves

Software can use the exceptions to the last rule to move complex structures without
losing the ability to forward the subfields.

2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

In Enhanced Intel Core microarchitecture, the alignment restrictions to permit store
forwarding to proceed have been relaxed. Enhanced Intel Core microarchitecture
permits store-forwarding to proceed in several situations that the succeeding load is
not aligned to the preceding store. Table 2-3 shows six situations (in gradient-filled
background) of store-forwarding that are permitted in Enhanced Intel Core microar-
chitecture but not in Intel Core microarchitecture. The cases with backward slash
background depicts store-forwarding that can proceed in both Intel Core microarchi-
tecture and Enhanced Intel Core microarchitecture.

‘BﬁeO‘Wel‘BﬂeZ‘ByteS‘Byte4‘B,:teS‘B/teG‘Byte7‘

8byte boundary 8byte boundary
Store R2hit
Load 32bit
BExanyle: 7 byte risalignment Loed 16 hit Load 16 bit
\ Load8 | Load8 | Load8 | Load8
Store 64bit
Load 64bit
Bxanple: 1byte misalignment Load 32 it Load 32 it
Load 16 bit Load 16 bit Load 16 bit Load 16 bit
/ Load8 | Load8 | Load8 | Load8 | Loed8 | Load8 | Loed8 | Load8
Store 64hit
Load 64 hit Store
Load 32 bit Load 32 hit Store-forwerding (SF) can not proceed
Load 16 bit Load 16 bit Load 16bit Loed 16 it - SF proceed in Enranced Intel Core rricroarchitect
Lced8 | Load8 | Load8 | Load8 | Load8 | Lond8 | Loads | LoodB S proceed

Figure 2-3. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture

2.14.5 Memory Disambiguation

A load instruction pop may depend on a preceding store. Many microarchitectures
block loads until all preceding store address are known.

The memory disambiguator predicts which loads will not depend on any previous
stores. When the disambiguator predicts that a load does not have such a depen-
dency, the load takes its data from the L1 data cache.

Eventually, the prediction is verified. If an actual conflict is detected, the load and all
succeeding instructions are re-executed.

2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.5 Intel® Advanced Smart Cache

The Intel Core microarchitecture optimized a number of features for two processor
cores on a single die. The two cores share a second-level cache and a bus interface
unit, collectively known as Intel Advanced Smart Cache. This section describes the
components of Intel Advanced Smart Cache. Figure 2-4 illustrates the architecture of
the Intel Advanced Smart Cache.

Core 1 Core O
.| Branch .| Branch
¥l Prediction ¥l Prediction
y A 4
. i Fetch/ . i Fetch/
Retirement [€4— Execution |[4— b oge Retirement |[4—| Execution [€— pocode
L1 Data L1 Instr. L1 Data L1 Instr.
Cache Cache Cache Cache
L2 Cache

v

Bus Interface Unit

¢ System Bus

v

A

Figure 2-4. Intel Advanced Smart Cache Architecture

Table 2-3 details the parameters of caches in the Intel Core microarchitecture. For
information on enumerating the cache hierarchy identification using the deterministic
cache parameter leaf of CPUID instruction, see the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 2A.

2-18

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-3. Cache Parameters of Processors based on Intel Core Microarchitecture

Access Access
Associativit | LineSize | Latency Throughput | Write Update

Level Capacity |y (ways) (bytes) | (clocks) (clocks) Policy
First Level 32 KB 8 64 3 1 Writeback
Instruction 32KB 8 N/A N/A N/A N/A
Second Level |2,4MB 8or 16 64 142 2 Writeback
(Shared L2)'

Second Level | 3,6MB 12 or 24 64 152 2 Writeback
(Shared L2)3

Third Level* 8,12,16 | 16 64 ~110 12 Writeback

MB
NOTES:

1. Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = OFH).
2. Software-visible latency will vary depending on access patterns and other factors.

3. Enhanced Intel Core microarchitecture (CPUID signature DisaplyFamily = 06H, DisplayModel = 17H
or 1DH).

4, Enhanced Intel Core microarchitecture (CPUID signature DisaplyFamily = O6H, DisplayModel =
1DH).

2.1.5.1 Loads

When an instruction reads data from a memory location that has write-back (WB)
type, the processor looks for the cache line that contains this data in the caches and
memory in the following order:

1. DCU of the initiating core
2. DCU of the other core and second-level cache
3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache.

Table 2-4 shows the characteristics of fetching the first four bytes of different locali-
ties from the memory cluster. The latency column provides an estimate of access
latency. However, the actual latency can vary depending on the load of cache,
memory components, and their parameters.

2-19

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-4. Characteristics of Load and Store Operations
in Intel Core Microarchitecture

Load Store

Data Locality Latency Throughput Latency Throughput

DCU 3 1 2 1

DCU of the other 14 + 5.5 bus 14 + 5.5 bus 14 + 5.5 bus

core in modified cycles cycles cycles

state

2nd-level cache 14 3 14 3

Memory 14 + 5.5 bus Depends on bus | 14 + 5.5 bus Depends on bus
cycles + memory | read protocol cycles + memory | write protocol

Sometimes a modified cache line has to be evicted to make space for a new cache
line. The modified cache line is evicted in parallel to bringing the new data and does
not require additional latency. However, when data is written back to memory, the
eviction uses cache bandwidth and possibly bus bandwidth as well. Therefore, when
multiple cache misses require the eviction of modified lines within a short time, there
is an overall degradation in cache response time.

2.1.5.2 Stores

When an instruction writes data to a memory location that has WB memory type, the
processor first ensures that the line is in Exclusive or Modified state in its own DCU.
The processor looks for the cache line in the following locations, in the specified
order:

1. DCU of initiating core
2. DCU of the other core and L2 cache
3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache. After reading for ownership is
completed, the data is written to the first-level data cache and the line is marked as
modified.

Reading for ownership and storing the data happens after instruction retirement and
follows the order of retirement. Therefore, the store latency does not effect the store
instruction itself. However, several sequential stores may have cumulative latency
that can affect performance. Table 2-4 presents store latencies depending on the
initial cache line location.

2-20

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2 INTEL® MICROARCHITECTURE (NEHALEM)

Intel microarchitecture (Nehalem) provides the foundation for many innovative
features of Intel Core i7 processors and Intel Xeon processor 5500 series. It builds on
the success of 45nm enhanced Intel Core microarchitecture and provides the
following feature enhancements:

® Enhanced processor core
— Improved branch prediction and recovery from misprediction.

— Enhanced loop streaming to improve front end performance and reduce
power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text
processing and data shuffling.

® Hyper-Threading Technology
— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory
bandwidth.

® Smart Memory Access

— Integrated memory controller provides low-latency access to system memory
and scalable memory bandwidth

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop
traffic

— Two level TLBs and increased TLB size.
— Fast unaligned memory access.
¢ Dedicated Power management Innovations

— Integrated microcontroller with optimized embedded firmware to manage
power consumption.

— Embedded real-time sensors for temperature, current, and power.
— Integrated power gate to turn off/on per-core power consumption

— Versatility to reduce power consumption of memory, link subsystems.

2.2.1 Microarchitecture Pipeline

Intel microarchitecture (Nehalem) continues the four-wide microarchitecture pipe-
line pioneered by the 65nm Intel Core Microarchitecture. Figure 2-5 illustrates the
basic components of the pipeline of Intel microarchitecture (Nehalem) as imple-
mented in Intel Core i7 processor, only two of the four cores are sketched in the
Figure 2-5 pipeline diagram.

2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Instruction Fetch and
PreDecode

Micro-
code
ROM

Instruction Queue

Rename/Alloc

Retirement Unit

(Re-Order Buffer)

Micro-

code
ROM

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

Retirement Unit
(Re-Order Buffer)

|
L2 /

A A
Scheduler | Scheduler
EXE EXE Load| | Stor EXE EXE EXE
Unit Unit Unlt Unit Unit Unit
Cluster | [Cluster | | Cluster | —§ 1 Cluster | | Cluster | [Cluster
0 1 5 0 1 5
(] 2
L1D Cache and DTLB | L1D Cache and DTLB
P L2 Cache L2 Cache
t t r Other L2
Inclusive L3 Cache by all cores
OM19808p

Load Stor

|]

<

Intel QPI Link Logic

Figure 2-5. Intel Microarchitecture (Nehalem) Pipeline Functionality

The length of the pipeline in Intel microarchitecture (Nehalem) is two cycles longer
than its predecessor in 45nm Intel Core 2 processor family, as measured by branch
misprediction delay. The front end can decode up to 4 instructions in one cycle and
supports two hardware threads by decoding the instruction streams between two

2-22

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

logical processors in alternate cycles. The front end includes enhancement in branch
handling, loop detection, MSROM throughput, etc. These are discussed in subse-
quent sections.

The scheduler (or reservation station) can dispatch up to six micro-ops in one cycle
through six issue ports (five issue ports are shown in Figure 2-5; store operation
involves separate ports for store address and store data but is depicted as one in the
diagram).

The out-of-order engine has many execution units that are arranged in three execu-

tion clusters shown in Figure 2-5. It can retire four micro-ops in one cycle, same as
its predecessor.

2.2.2 Front End Overview

Figure 2-6 depicts the key components of the front end of the microarchitecture. The
instruction fetch unit (IFU) can fetch up to 16 bytes of aligned instruction bytes each
cycle from the instruction cache to the instruction length decoder (ILD). The instruc-
tion queue (1Q) buffers the ILD-processed instructions and can deliver up to four
instructions in one cycle to the instruction decoder.

MSROM
ICache 4 micro-ops per cycle
I::I 4 2 IDQ
< 4 micro-ops
v ILD IQ ’ per cycle
1 S max
S 5 > > o s
| Fetch U > rd S -
1
u 7
—>
Instr. Instr. Queue LSD
Decoder Instr. Decoder
Br. Predict U Instr. Decoder

Queue

Figure 2-6. Front End of Intel Microarchitecture (Nehalem)

The instruction decoder has three decoder units that can decode one simple instruc-
tion per cycle per unit. The other decoder unit can decode one instruction every

cycle, either simple instruction or complex instruction made up of several micro-ops.
Instructions made up of more than four micro-ops are delivered from the MSROM. Up
to four micro-ops can be delivered each cycle to the instruction decoder queue (IDQ).

2-23

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The loop stream detector is located inside the IDQ to improve power consumption
and front end efficiency for loops with a short sequence of instructions.

The instruction decoder supports micro-fusion to improve front end throughput,
increase the effective size of queues in the scheduler and re-order buffer (ROB). The
rules for micro-fusion are similar to those of Intel Core microarchitecture.

The instruction queue also supports macro-fusion to combine adjacent instructions
into one micro-ops where possible. In previous generations of Intel Core microarchi-
tecture, macro-fusion support for CMP/Jcc sequence is limited to the CF and ZF flag,
and macrofusion is not supported in 64-bit mode.

In Intel microarchitecture (Nehalem) , macro-fusion is supported in 64-bit mode, and
the following instruction sequences are supported:

® CMP or TEST can be fused when comparing (unchanged):

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example;: CMP EAX,[ECX]; JZ label
MEM-RECG. For example: CMP [EAX],ECX; JZ label

® TEST can fused with all conditional jumps (unchanged).

® CMP can be fused with the following conditional jumps. These conditional jumps
check carry flag (CF) or zero flag (ZF). The list of macro-fusion-capable
conditional jumps are (unchanged):

JA or JNBE

JAE or JNB or JNC
JEor)z

JNA or |BE
JNAEorJCor |B
JNE or [NZ

® CMP can be fused with the following conditional jumps in Intel microarchitecture
(Nehalem), (This is an enhancement):

JL or JNGE
JGE or JNL
JLE or ING
|G or JNLE

The hardware improves branch handling in several ways. Branch target buffer has
increased to increase the accuracy of branch predictions. Renaming is supported with
return stack buffer to reduce mispredictions of return instructions in the code.
Furthermore, hardware enhancement improves the handling of branch misprediction
by expediting resource reclamation so that the front end would not be waiting to
decode instructions in an architected code path (the code path in which instructions
will reach retirement) while resources were allocated to executing mispredicted code
path. Instead, new micro-ops stream can start forward progress as soon as the front
end decodes the instructions in the architected code path.

2-24

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2.3 Execution Engine

The IDQ (Figure 2-6) delivers micro-op stream to the allocation/renaming stage
(Figure 2-5) of the pipeline. The out-of-order engine supports up to 128 micro-ops in
flight. Each micro-ops must be allocated with the following resources: an entry in the
re-order buffer (ROB), an entry in the reservation station (RS), and a load/store
buffer if a memory access is required.

The allocator also renames the register file entry of each micro-op in flight. The input
data associated with a micro-op are generally either read from the ROB or from the
retired register file.

The RS is expanded to 36 entry deep (compared to 32 entries in previous genera-
tion). It can dispatch up to six micro-ops in one cycle if the micro-ops are ready to
execute. The RS dispatch a micro-op through an issue port to a specific execution
cluster, each cluster may contain a collection of integer/FP/SIMD execution units.

The result from the execution unit executing a micro-op is written back to the
register file, or forwarded through a bypass network to a micro-op in-flight that
needs the result. Intel microarchitecture (Nehalem) can support write back
throughput of one register file write per cycle per port. The bypass network consists
of three domains of integer/FP/SIMD. Forwarding the result within the same bypass
domain from a producer micro-op to a consumer micro is done efficiently in hardware
without delay. Forwarding the result across different bypass domains may be subject
to additional bypass delays. The bypass delays may be visible to software in addition
to the latency and throughput characteristics of individual execution units. The
bypass delays between a producer micro-op and a consumer micro-op across
different bypass domains are shown in Table 2-5.

Table 2-5. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

FP Integer SIMD
FP 0 2 2
Integer 2 0 1
SIMD 2 1 0
2.2.3.1 Issue Ports and Execution Units

Table 2-6 summarizes the key characteristics of the issue ports and the execution
unit latency/throughputs for common operations in the microarchitecture.

2-25

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-6. Issue Ports of Intel Microarchitecture (Nehalem)

Port Executable Latenc | Through | Domain Comment
operations v put
Port0 | Integer ALU 1 1 Integer
Integer Shift 1 1
Port 0 | Integer SIMD ALU 1 1 SIMD
Integer SIMD Shuffle | 1 1
Port 0 | Single-precision (SP) | 4 1 FP
FP MUL
Double-precision FP | 5 1
MUL
FP MUL (X87) 5 1
FP/SIMD/SSE2 Move | 1 1
and Logic
FP Shuffle 1 1
DIV/SQRT
Port 1 | Integer ALU 1 1 Integer
Integer LEA 1 1
Integer Mul 3 1
Port 1 | Integer SIMD MUL 1 1 SIMD
Integer SIMD Shift 1 1
PSAD 3 1
StringCompare
Port 1 | FP ADD 3 1 FP
Port 2 | Integer loads 4 1 Integer
Port 3 | Store address 5 1 Integer
Port4 | Store data Integer
Port5 | Integer ALU 1 1 Integer
Integer Shift 1 1
Jmp 1 1
Port5 | Integer SIMD ALU 1 1 SIMD
Integer SIMD Shuffle | 1 1
Port5 | FP/SIMD/SSE2 Move | 1 1 FP
and Logic

2-26

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2.4 Cache and Memory Subsystem

Intel microarchitecture (Nehalem) contains an instruction cache, a first-level data
cache and a second-level unified cache in each core (see Figure 2-5). Each physical
processor may contain several processor cores and a shared collection of sub-
systems that are referred to as “uncore”. Specifically in Intel Core i7 processor, the
uncore provides a unified third-level cache shared by all cores in the physical
processor, Intel QuickPath Interconnect links and associated logic. The L1 and L2
caches are writeback and non-inclusive.

The shared L3 cache is writeback and inclusive, such that a cache line that exists in
either L1 data cache, L1 instruction cache, unified L2 cache also exists in L3. The L3
is designed to use the inclusive nature to minimize snoop traffic between processor
cores. Table 2-7 lists characteristics of the cache hierarchy. The latency of L3 access
may vary as a function of the frequency ratio between the processor and the uncore
sub-system.

Table 2-7. Cache Parameters of Intel Core i7 Processors

Access Access
Associativit | Line Size | Latency Throughput | Write Update

Level Capacity | v (ways) (bytes) | (clocks) (clocks) Policy
First Level 32 KB 8 64 4 1 Writeback
Data

Instruction 32KB 4 N/A N/A N/A N/A
Second Level | 256KB 8 64 10! Varies Writeback
Third Level 8MB 16 64 35-40+2 Varies Writeback
(Shared L3)2

NOTES:

1. Software-visible latency will vary depending on access patterns and other factors.
2. Minimal L3 latency is 35 cycles if the frequency ratio between core and uncore is unity.

The Intel microarchitecture (Nehalem) implements two levels of translation looka-
side buffer (TLB). The first level consists of separate TLBs for data and code. DTLBO
handles address translation for data accesses, it provides 64 entries to support 4KB
pages and 32 entries for large pages. The ITLB provides 64 entries (per thread) for
4KB pages and 7 entries (per thread) for large pages.

The second level TLB (STLB) handles both code and data accesses for 4KB pages. It
support 4KB page translation operation that missed DTLBO or ITLB. All entries are 4-
way associative. Here is a list of entries in each DTLB:

® STLB for 4-KByte pages: 512 entries (services both data and instruction look-
ups)
¢ DTLBO for large pages: 32 entries

2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ DTLBO for 4-KByte pages: 64 entries

An DTLBO miss and STLB hit causes a penalty of 7cycles. Software only pays this
penalty if the DTLBO is used in some dispatch cases. The delays associated with a
miss to the STLB and PMH are largely non-blocking.

2.2.5 Load and Store Operation Enhancements

The memory cluster of Intel microarchitecture (Nehalem) provides the following
enhancements to speed up memory operations:

® Peak issue rate of one 128-bit load and one 128-bit store operation per cycle

® Deeper buffers for load and store operations: 48 load buffers, 32 store buffers
and 10 fill buffers

® Fast unaligned memory access and robust handling of memory alignment
hazards

® Improved store-forwarding for aligned and non-aligned scenarios
® Store forwarding for most address alignments

2.2.5.1 Efficient Handling of Alignment Hazards

The cache and memory subsystems handles a significant percentage of instructions
in every workload. Different address alignment scenarios will produce varying perfor-
mance impact for memory and cache operations. For example, 1-cycle throughput of
L1 (see Table 2-8) generally applies to naturally-aligned loads from L1 cache. But
using unaligned load instructions (e.g. MOVUPS, MOVUPD, MOVDQU, etc) to access
data from L1 will experience varying amount of delays depending on specific microar-
chitectures and alignment scenarios.

Table 2-8. Performance Impact of Address Alignments of MOVDQU from L1

Throughput (cycle) Intel Corei7 45 nm Intel Core 65 nm Intel Core
gnp y Processor Microarchitecture Microarchitecture

Alignment Scenario 06_1AH 06_17H 06_OFH

16B aligned 1 2 2

Not-16B aligned, not 1 ~2 ~2

cache split

Split cache line boundary ~4.5 ~20 ~20

2-28

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-8 lists approximate throughput of issuing MOVDQU instructions with different
address alignment scenarios to load data from the L1 cache. If a 16-byte load spans
across cache line boundary, previous microarchitecture generations will experience
significant software-visible delays.

Intel microarchitecture (Nehalem) provides hardware enhancements to reduce the
delays of handling different address alignment scenarios including cache line splits.

2.25.2 Store Forwarding Enhancement

When a load follows a store and reloads the data that the store writes to memory, the
microarchitecture can forward the data directly from the store to the load in many
cases. This situation, called store to load forwarding, saves several cycles by
enabling the load to obtain the data directly from the store operation instead of
through the memory system.

Several general rules must be met for store to load forwarding to proceed without
delay:

® The store must be the last store to that address prior to the load.

® The store must be equal or greater in size than the size of data being loaded.
® The load data must be completely contained in the preceding store.

Specific address alignment and data sizes between the store and load operations will
determine whether a store-forward situation may proceed with data forwarding or
experience a delay via the cache/memory sub-system. The 45 nm Enhanced Intel
Core microarchitecture offers more flexible address alignment and data sizes
requirement than previous microarchitectures. Intel microarchitecture (Nehalem)
offers additional enhancement with allowing more situations to forward data expedi-
tiously.

2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The store-forwarding situations for with respect to store operations of 16 bytes are
illustrated in Figure 2-7.

Figure 2-7. Store-forwarding Scenarios of 16-Byte Store Operations

| Bte0 B,ml Bfe2 We3| a,te4| Bfe5 BﬁeGl Bte? " wesl Bfe9 | Bte10 EMe:L’L”B,AelZlB/tE]B Bel4 Eye15|
Sore
Existing forwerding
Nehdemforwerding
Not forwerding
Not goplicable
Store 128hit
loed 128
loed 64 loed64
loed 2 | loed 32 led 2 | loed 2
| loed 2 | lced 2 | lad R |
= [[|
loed 22 loed 22 loed 22
| loed 16 loed 16 | loed 16 loed 16 | loecl 16 loed 16 | loed 16
loed 16 loed 16 loed 16 lced 16 loed 16 loed 16 loed 16 loed 16
1d8 | 1d8 Id8| id8 | 1d8 |Id8 Id8 |Id8 1d8 |Id8 1d8 |ld8 d8 | d8 | Id8 |Id8

Intel microarchitecture (Nehalem) allows store-to-load forwarding to proceed
regardless of store address alignment (The white space in the diagram does not

2-30

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

correspond to an applicable store-to-load scenario). Figure 2-8 illustrates situations
for store operation of 8 bytes or less.

Figure 2-8. Store-Forwarding Enhancement in Intel Microarchitecture (Nehalem)

BieO | Bfel | Bte2 | Bfte3 | Bfe4 | BeS | Bfe6 | Bie

< 8hytebourchry | | sm@

7

Soeht
: loed it

E)Grr[ie._ _ 7 T

- byfemsaignet [T [s [s ws

Sore64hit
loedl 646t
Soe loedl R2bit | loebit
Bisting forvarding e |
- | loed bt |
v | loedl kit |
Notforvérding o | ol | ol | et
Not gplicetie loed 16 loed 16 loed 16
dg | Id8 | d8 | Id8 | d8 | Id8 | d8 | 18

2.2.6 REP String Enhancement

REP prefix in conjunction with MOVS/STOS instruction and a count value in ECX are
frequently used to implement library functions such as memcpy()/memset(). These
are referred to as "REP string" instructions. Each iteration of these instruction can
copy/write constant a value in byte/word/dword/qword granularity The performance
characteristics of using REP string can be attributed to two components: startup
overhead and data transfer throughput.

The two components of performance characteristics of REP String varies further
depending on granularity, alignment, and/or count values. Generally, MOVSB is used
to handle very small chunks of data. Therefore, processor implementation of REP
MOVSB is optimized to handle ECX < 4. Using REP MOVSB with ECX > 3 will achieve
low data throughput due to not only byte-granular data transfer but also additional

2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

startup overhead. The latency for MOVSB, is 9 cycles if ECX < 4; otherwise REP
MOVSB with ECX >9 have a 50-cycle startup cost.

For REP string of larger granularity data transfer, as ECX value increases, the startup
overhead of REP String exhibit step-wise increase:

® Short string (ECX <= 12): the latency of REP MOVSW/MOVSD/MOVSQ is about
20 cycles,

® Fast string (ECX >= 76: excluding REP MOVSB): the processor implementation
provides hardware optimization by moving as many pieces of data in 16 bytes as
possible. The latency of REP string latency will vary if one of the 16-byte data
transfer spans across cache line boundary:

— Split-free: the latency consists of a startup cost of about 40 cycles and each
64 bytes of data adds 4 cycles,

— Cache splits: the latency consists of a startup cost of about 35 cycles and
each 64 bytes of data adds 6c¢cycles.

® Intermediate string lengths: the latency of REP MOVSW/MOVSD/MOVSQ has a
startup cost of about 15 cycles plus one cycle for each iteration of the data
movement in word/dword/qword.

Intel microarchitecture (Nehalem) improves the performance of REP strings signifi-
cantly over previous microarchitectures in several ways:

® Startup overhead have been reduced in most cases relative to previous microar-
chitecture,

® Data transfer throughput are improved over previous generation

® In order for REP string to operate in “fast string”“ mode, previous microarchitec-
tures requires address alignment. In Intel microarchitecture (Nehalem), REP
string can operate in “fast string” mode even if address is not aligned to 16 bytes.

2.2.7 Enhancements for System Software

In addition to microarchitectural enhancements that can benefit both application-
level and system-level software, Intel microarchitecture (Nehalem) enhances several
operations that primarily benefit system software.

Lock primitives: Synchronization primitives using the Lock prefix (e.g. XCHG,
CMPXCHG8B) executes with significantly reduced latency than previous microarchi-
tectures.

VMM overhead improvements: VMX transitions between a Virtual Machine (VM) and
its supervisor (the VMM) can take thousands of cycle each time on previous microar-
chitectures. The latency of VMX transitions has been reduced in processors based on
Intel microarchitecture (Nehalem).

2-32

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2.8 Efficiency Enhancements for Power Consumption

Intel microarchitecture (Nehalem) is not only designed for high performance and
power-efficient performance under wide range of loading situations, it also features
enhancement for low power consumption while the system idles. Intel microarchitec-
ture (Nehalem) supports processor-specific C6 states, which have the lowest leakage
power consumption that OS can manage through ACPI and OS power management
mechanisms.

2.2.9 Hyper-Threading Technology Support in Intel
Microarchitecture (Nehalem)

Intel microarchitecture (Nehalem) supports Hyper-Threading Technology (HT). Its

implementation of HT provides two logical processors sharing most execution/cache

resources in each core. The HT implementation in Intel microarchitecture (Nehalem)

differs from previous generations of HT implementations using Intel NetBurst

microarchitecture in several areas:

® Intel microarchitecture (Nehalem) provides four-wide execution engine, more
functional execution units coupled to three issue ports capable of issuing compu-
tational operations.

® Intel microarchitecture (Nehalem) supports integrated memory controller that
can provide peak memory bandwidth of up to 25.6 GB/sec in Intel Core i7
processor.

® Deeper buffering and enhanced resource sharing/partition policies:
— Replicated resource for HT operation: register state, renamed return stack
buffer, large-page ITLB

— Partitioned resources for HT operation: load buffers, store buffers, re-order
buffers, small-page ITLB are statically allocated between two logical
processors.

— Competitively-shared resource during HT operation: the reservation station,
cache hierarchy, fill buffers, both DTLBO and STLB.

— Alternating during HT operation: front-end operation generally alternates
between two logical processors to ensure fairness.

— HT unaware resources: execution units.

2.3 INTEL NETBURST® MICROARCHITECTURE

The Pentium 4 processor, Pentium 4 processor Extreme Edition supporting Hyper-
Threading Technology, Pentium D processor, and Pentium processor Extreme Edition
implement the Intel NetBurst microarchitecture. Intel Xeon processors that imple-
ment Intel NetBurst microarchitecture can be identified using CPUID (family
encoding OFH).

2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This section describes the features of the Intel NetBurst microarchitecture and its
operation common to the above processors. It provides the technical background
required to understand optimization recommendations and the coding rules
discussed in the rest of this manual. For implementation details, including instruction
latencies, see Appendix C, “Instruction Latency and Throughput.”

Intel NetBurst microarchitecture is designed to achieve high performance for integer
and floating-point computations at high clock rates. It supports the following
features:

® hyper-pipelined technology that enables high clock rates

® high-performance, quad-pumped bus interface to the Intel NetBurst microarchi-
tecture system bus

® rapid execution engine to reduce the latency of basic integer instructions
® out-of-order speculative execution to enable parallelism

® superscalar issue to enable parallelism

® hardware register renaming to avoid register name space limitations

® cache line sizes of 64 bytes

® hardware prefetch

2.3.1 Design Goals

The design goals of Intel NetBurst microarchitecture are:

® To execute legacy IA-32 applications and applications based on single-
instruction, multiple-data (SIMD) technology at high throughput

® To operate at high clock rates and to scale to higher performance and clock rates
in the future

Design advances of the Intel NetBurst microarchitecture include:

® A deeply pipelined design that allows for high clock rates (with different parts of
the chip running at different clock rates).

® A pipeline that optimizes for the common case of frequently executed instruc-
tions; the most frequently-executed instructions in common circumstances (such
as a cache hit) are decoded efficiently and executed with short latencies.

® Employment of techniques to hide stall penalties; Among these are parallel
execution, buffering, and speculation. The microarchitecture executes instruc-
tions dynamically and out-of-order, so the time it takes to execute each individual
instruction is not always deterministic.

Chapter 3, “General Optimization Guidelines,” lists optimizations to use and situa-
tions to avoid. The chapter also gives a sense of relative priority. Because most opti-
mizations are implementation dependent, the chapter does not quantify expected
benefits and penalties.

2-34

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The following sections provide more information about key features of the Intel
NetBurst microarchitecture.

2.3.2 Pipeline

The pipeline of the Intel NetBurst microarchitecture contains:
® an in-order issue front end

® an out-of-order superscalar execution core

® an in-order retirement unit

The front end supplies instructions in program order to the out-of-order core. It
fetches and decodes instructions. The decoded instructions are translated into pops.
The front end’s primary job is to feed a continuous stream of pops to the execution
core in original program order.

The out-of-order core aggressively reorders pops so that pops whose inputs are
ready (and have execution resources available) can execute as soon as possible. The
core can issue multiple pops per cycle.

The retirement section ensures that the results of execution are processed according
to original program order and that the proper architectural states are updated.

Figure 2-5 illustrates a diagram of the major functional blocks associated with the
Intel NetBurst microarchitecture pipeline. The following subsections provide an over-
view for each.

2-35

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

System Bus

‘ A ’

\ 4

=y Frequently used paths

Bus Unit

|
| Optional
|

----- & Less frequently used paths

2nd Level Cache 1st Level Cache

8-Way a-way
i 4 t
1
H Front End L

_____ Trace Cache Execution .

Fetch/Decode “ Microcode ROM Out-Of-Order Core Retirement
? f
'
Branch History Update
BTBs/Branch Prediction =
OM19806

Figure 2-9. The Intel NetBurst Microarchitecture

2.3.2.1 Front End

The front end of the Intel NetBurst microarchitecture consists of two parts:

® fetch/decode unit

® execution trace cache

It performs the following functions:

® prefetches instructions that are likely to be executed

® fetches required instructions that have not been prefetched

® decodes instructions into pops

® generates microcode for complex instructions and special-purpose code

® delivers decoded instructions from the execution trace cache

® predicts branches using advanced algorithms

The front end is designed to address two problems that are sources of delay:

2-36

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® time required to decode instructions fetched from the target

® wasted decode bandwidth due to branches or a branch target in the middle of a
cache line

Instructions are fetched and decoded by a translation engine. The translation engine
then builds decoded instructions into pop sequences called traces. Next, traces are
then stored in the execution trace cache.

The execution trace cache stores pops in the path of program execution flow, where
the results of branches in the code are integrated into the same cache line. This
increases the instruction flow from the cache and makes better use of the overall
cache storage space since the cache no longer stores instructions that are branched
over and never executed.

The trace cache can deliver up to 3 pops per clock to the core.

The execution trace cache and the translation engine have cooperating branch
prediction hardware. Branch targets are predicted based on their linear address
using branch prediction logic and fetched as soon as possible. Branch targets are
fetched from the execution trace cache if they are cached, otherwise they are fetched
from the memory hierarchy. The translation engine’s branch prediction information is
used to form traces along the most likely paths.

2.3.2.2 Out-of-order Core

The core’s ability to execute instructions out of order is a key factor in enabling paral-
lelism. This feature enables the processor to reorder instructions so that if one pop is
delayed while waiting for data or a contended resource, other pops that appear later
in the program order may proceed. This implies that when one portion of the pipeline
experiences a delay, the delay may be covered by other operations executing in
parallel or by the execution of pops queued up in a buffer.

The core is designed to facilitate parallel execution. It can dispatch up to six pops per
cycle through the issue ports (Figure 2-6). Note that six pops per cycle exceeds the
trace cache and retirement pop bandwidth. The higher bandwidth in the core allows
for peak bursts of greater than three pops and to achieve higher issue rates by
allowing greater flexibility in issuing pops to different execution ports.

Most core execution units can start executing a new pop every cycle, so several
instructions can be in flight at one time in each pipeline. A number of arithmetic
logical unit (ALU) instructions can start at two per cycle; many floating-point instruc-
tions start one every two cycles. Finally, pops can begin execution out of program
order, as soon as their data inputs are ready and resources are available.

2.3.2.3 Retirement

The retirement section receives the results of the executed pops from the execution
core and processes the results so that the architectural state is updated according to
the original program order. For semantically correct execution, the results of Intel 64

2-37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

and 1A-32 instructions must be committed in original program order before they are
retired. Exceptions may be raised as instructions are retired. For this reason, excep-
tions cannot occur speculatively.

When a pop completes and writes its result to the destination, it is retired. Up to
three pops may be retired per cycle. The reorder buffer (ROB) is the unit in the
processor which buffers completed pops, updates the architectural state and
manages the ordering of exceptions.

The retirement section also keeps track of branches and sends updated branch target
information to the branch target buffer (BTB). This updates branch history.

Figure 2-10 illustrates the paths that are most frequently executing inside the Intel
NetBurst microarchitecture: an execution loop that interacts with multilevel cache
hierarchy and the system bus.

The following sections describe in more detail the operation of the front end and the
execution core. This information provides the background for using the optimization
techniques and instruction latency data documented in this manual.

2.3.3 Front End Pipeline Detail

The following information about the front end operation is be useful for tuning soft-
ware with respect to prefetching, branch prediction, and execution trace cache oper-
ations.

2.3.3.1 Prefetching

The Intel NetBurst microarchitecture supports three prefetching mechanisms:
® a hardware instruction fetcher that automatically prefetches instructions

® a hardware mechanism that automatically fetches data and instructions into the
unified second-level cache

® a mechanism fetches data only and includes two distinct components: (1) a
hardware mechanism to fetch the adjacent cache line within a 128-byte sector
that contains the data needed due to a cache line miss, this is also referred to as
adjacent cache line prefetch (2) a software controlled mechanism that fetches
data into the caches using the prefetch instructions.

The hardware instruction fetcher reads instructions along the path predicted by the
branch target buffer (BTB) into instruction streaming buffers. Data is read in 32-byte
chunks starting at the target address. The second and third mechanisms are
described later.

2.3.3.2 Decoder

The front end of the Intel NetBurst microarchitecture has a single decoder that
decodes instructions at the maximum rate of one instruction per clock. Some

2-38

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

complex instructions must enlist the help of the microcode ROM. The decoder opera-
tion is connected to the execution trace cache.

2.3.3.3 Execution Trace Cache

The execution trace cache (TC) is the primary instruction cache in the Intel NetBurst
microarchitecture. The TC stores decoded instructions (Lops).

In the Pentium 4 processor implementation, TC can hold up to 12-Kbyte pops and
can deliver up to three pops per cycle. TC does not hold all of the pops that need to
be executed in the execution core. In some situations, the execution core may need
to execute a microcode flow instead of the pop traces that are stored in the trace
cache.

The Pentium 4 processor is optimized so that most frequently-executed instructions
come from the trace cache while only a few instructions involve the microcode ROM.

2.3.34 Branch Prediction

Branch prediction is important to the performance of a deeply pipelined processor. It
enables the processor to begin executing instructions long before the branch
outcome is certain. Branch delay is the penalty that is incurred in the absence of
correct prediction. For Pentium 4 and Intel Xeon processors, the branch delay for a
correctly predicted instruction can be as few as zero clock cycles. The branch delay
for a mispredicted branch can be many cycles, usually equivalent to the pipeline
depth.

Branch prediction in the Intel NetBurst microarchitecture predicts near branches
(conditional calls, unconditional calls, returns and indirect branches). It does not
predict far transfers (far calls, irets and software interrupts).

Mechanisms have been implemented to aid in predicting branches accurately and to
reduce the cost of taken branches. These include:

® ability to dynamically predict the direction and target of branches based on an
instruction’s linear address, using the branch target buffer (BTB)

® if no dynamic prediction is available or if it is invalid, the ability to statically
predict the outcome based on the offset of the target: a backward branch is
predicted to be taken, a forward branch is predicted to be not taken

® ability to predict return addresses using the 16-entry return address stack

® ability to build a trace of instructions across predicted taken branches to avoid
branch penalties

The Static Predictor. Once a branch instruction is decoded, the direction of the
branch (forward or backward) is known. If there was no valid entry in the BTB for the
branch, the static predictor makes a prediction based on the direction of the branch.
The static prediction mechanism predicts backward conditional branches (those with
negative displacement, such as loop-closing branches) as taken. Forward branches
are predicted not taken.

2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

To take advantage of the forward-not-taken and backward-taken static predictions,
code should be arranged so that the likely target of the branch immediately follows
forward branches (see also Section 3.4.1, “Branch Prediction Optimization”).

Branch Target Buffer. Once branch history is available, the Pentium 4 processor
can predict the branch outcome even before the branch instruction is decoded. The
processor uses a branch history table and a branch target buffer (collectively called
the BTB) to predict the direction and target of branches based on an instruction’s
linear address. Once the branch is retired, the BTB is updated with the target
address.

Return Stack. Returns are always taken; but since a procedure may be invoked
from several call sites, a single predicted target does not suffice. The Pentium 4
processor has a Return Stack that can predict return addresses for a series of proce-
dure calls. This increases the benefit of unrolling loops containing function calls. It
also mitigates the need to put certain procedures inline since the return penalty
portion of the procedure call overhead is reduced.

Even if the direction and target address of the branch are correctly predicted, a taken
branch may reduce available parallelism in a typical processor (since the decode
bandwidth is wasted for instructions which immediately follow the branch and
precede the target, if the branch does not end the line and target does not begin the
line). The branch predictor allows a branch and its target to coexist in a single trace
cache line, maximizing instruction delivery from the front end.

234 Execution Core Detail

The execution core is designed to optimize overall performance by handling common
cases most efficiently. The hardware is designed to execute frequent operations in a
common context as fast as possible, at the expense of infrequent operations using
rare contexts.

Some parts of the core may speculate that a common condition holds to allow faster
execution. If it does not, the machine may stall. An example of this pertains to store-
to-load forwarding (see “Store Forwarding” in this chapter). If a load is predicted to

be dependent on a store, it gets its data from that store and tentatively proceeds. If
the load turned out not to depend on the store, the load is delayed until the real data
has been loaded from memory, then it proceeds.

2.3.4.1 Instruction Latency and Throughput

The superscalar out-of-order core contains hardware resources that can execute
multiple pops in parallel. The core’s ability to make use of available parallelism of
execution units can enhanced by software’s ability to:

® Select instructions that can be decoded in less than 4 pops and/or have short
latencies

2-40

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® Order instructions to preserve available parallelism by minimizing long
dependence chains and covering long instruction latencies

® Order instructions so that their operands are ready and their corresponding issue
ports and execution units are free when they reach the scheduler

This subsection describes port restrictions, result latencies, and issue latencies (also
referred to as throughput). These concepts form the basis to assist software for
ordering instructions to increase parallelism. The order that pops are presented to
the core of the processor is further affected by the machine’s scheduling resources.

It is the execution core that reacts to an ever-changing machine state, reordering
pops for faster execution or delaying them because of dependence and resource
constraints. The ordering of instructions in software is more of a suggestion to the
hardware.

Appendix C, “Instruction Latency and Throughput,” lists some of the more-
commonly-used Intel 64 and IA-32 instructions with their latency, their issue
throughput, and associated execution units (where relevant). Some execution units
are not pipelined (meaning that pops cannot be dispatched in consecutive cycles and
the throughput is less than one per cycle). The number of pops associated with each
instruction provides a basis for selecting instructions to generate. All pops executed
out of the microcode ROM involve extra overhead.

2.3.4.2 Execution Units and Issue Ports

At each cycle, the core may dispatch pops to one or more of four issue ports. At the
microarchitecture level, store operations are further divided into two parts: store
data and store address operations. The four ports through which pops are dispatched
to execution units and to load and store operations are shown in Figure 2-6. Some
ports can dispatch two pops per clock. Those execution units are marked Double
Speed.

Port O. In the first half of the cycle, port O can dispatch either one floating-point
move pop (a floating-point stack move, floating-point exchange or floating-point
store data) or one arithmetic logical unit (ALU) pop (arithmetic, logic, branch or store
data). In the second half of the cycle, it can dispatch one similar ALU pop.

Port 1. In the first half of the cycle, port 1 can dispatch either one floating-point
execution (all floating-point operations except moves, all SIMD operations) pop or
one normal-speed integer (multiply, shift and rotate) pop or one ALU (arithmetic)
Hop. In the second half of the cycle, it can dispatch one similar ALU pop.

Port 2. This port supports the dispatch of one load operation per cycle.
Port 3. This port supports the dispatch of one store address operation per cycle.

The total issue bandwidth can range from zero to six pops per cycle. Each pipeline
contains several execution units. The pops are dispatched to the pipeline that corre-
sponds to the correct type of operation. For example, an integer arithmetic logic unit
and the floating-point execution units (adder, multiplier, and divider) can share a
pipeline.

2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

GO CO I CDICD

v v v

ALU 0 EP ALU 1 cl)r;)t;Sﬁ%L FP Memory Memory
Double Move goumg Normal Execute Load Store
P pee Speed
ADD/SUB FP Move ADD/SUB Shift/Rotate FP_ADD All Loads Store
Logic FP Store Data FP_MUL Prefetch Address
Store Data FXCH FP_DIV
Branches FP_MISC
MMX_SHFT
MMX_ALU
MMX_MISC
Note:

FP_ADD refers to x87 FP, and SIMD FP add and subtract operations
FP_MUL refers to x87 FP, and SIMD FP multiply operations

FP_DIV refers to x87 FP, and SIMD FP divide and square root operations
MMX_ALU refers to SIMD integer arithmetic and logic operations
MMX_SHFT handles Shift, Rotate, Shuffle, Pack and Unpack operations
MMX_MISC handles SIMD reciprocal and some integer operations

OM15151

Figure 2-10. Execution Units and Ports in Out-Of-Order Core

2.3.4.3 Caches

The Intel NetBurst microarchitecture supports up to three levels of on-chip cache. At
least two levels of on-chip cache are implemented in processors based on the Intel
NetBurst microarchitecture. The Intel Xeon processor MP and selected Pentium and
Intel Xeon processors may also contain a third-level cache.

The first level cache (nearest to the execution core) contains separate caches for
instructions and data. These include the first-level data cache and the trace cache
(an advanced first-level instruction cache). All other caches are shared between
instructions and data.

Levels in the cache hierarchy are not inclusive. The fact that a line is in level i does
not imply that itis also in level i+1. All caches use a pseudo-LRU (least recently used)
replacement algorithm.

Table 2-5 provides parameters for all cache levels for Pentium and Intel Xeon Proces-
sors with CPUID model encoding equals O, 1, 2 or 3.

2-42

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-9. Pentium 4 and Intel Xeon Processor Cache Parameters

Access
Latency,
Integer/
Associativity | Line Size floating-point | Write Update
Level (Model) | Capacity (ways) (bytes) (clocks) Policy
First (Model O, | 8KB 4 64 2/9 write through
1,2)
First (Model 3) | 16 KB 64 4/12 write through
TC (All models) | 12K pops 8 N/A N/A N/A
Second (Model | 256 KB or 8 642 717 write back
0,1,2) 512 KB!
Second (Model | 1 MB 8 642 18/18 write back
3,4)
Second (Model | 2 MB 8 642 20/20 write back
3,4,6)
Third (Model | 0,512 KB, 8 642 14/14 write back
0.1,2) 1MBor2MB
NOTES:

1. Pentium 4 and Intel Xeon processors with CPUID model encoding value of 2 have a second level
cache of 512 KB.

2. Each read due to a cache miss fetches a sector, consisting of two adjacent cache lines; a write
operation is 64 bytes.

On processors without a third level cache, the second-level cache miss initiates a
transaction across the system bus interface to the memory sub-system. On proces-
sors with a third level cache, the third-level cache miss initiates a transaction across
the system bus. A bus write transaction writes 64 bytes to cacheable memory, or
separate 8-byte chunks if the destination is not cacheable. A bus read transaction
from cacheable memory fetches two cache lines of data.

The system bus interface supports using a scalable bus clock and achieves an effec-
tive speed that quadruples the speed of the scalable bus clock. It takes on the order
of 12 processor cycles to get to the bus and back within the processor, and 6-12 bus
cycles to access memory if there is no bus congestion. Each bus cycle equals several
processor cycles. The ratio of processor clock speed to the scalable bus clock speed

is referred to as bus ratio. For example, one bus cycle for a 100 MHz bus is equal to

15 processor cycles on a 1.50 GHz processor. Since the speed of the bus is implemen-
tation-dependent, consult the specifications of a given system for further details.

2-43

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2344 Data Prefetch

The Pentium 4 processor and other processors based on the NetBurst microarchitec-
ture have two type of mechanisms for prefetching data: software prefetch instruc-
tions and hardware-based prefetch mechanisms.

Software controlled prefetch is enabled using the four prefetch instructions
(PREFETCHh) introduced with SSE. The software prefetch is not intended for
prefetching code. Using it can incur significant penalties on a multiprocessor system
if code is shared.

Software prefetch can provide benefits in selected situations. These situations
include when:

® the pattern of memory access operations in software allows the programmer to
hide memory latency

® areasonable choice can be made about how many cache lines to fetch ahead of
the line being execute

® achoice can be made about the type of prefetch to use

SSE prefetch instructions have different behaviors, depending on cache levels
updated and the processor implementation. For instance, a processor may imple-
ment the non-temporal prefetch by returning data to the cache level closest to the
processor core. This approach has the following effect:

® minimizes disturbance of temporal data in other cache levels

® avoids the need to access off-chip caches, which can increase the realized
bandwidth compared to a normal load-miss, which returns data to all cache levels

Situations that are less likely to benefit from software prefetch are:

® For cases that are already bandwidth bound, prefetching tends to increase
bandwidth demands.

® Prefetching far ahead can cause eviction of cached data from the caches prior to
the data being used in execution.

® Not prefetching far enough can reduce the ability to overlap memory and
execution latencies.

Software prefetches are treated by the processor as a hint to initiate a request to
fetch data from the memory system, and consume resources in the processor and
the use of too many prefetches can limit their effectiveness. Examples of this include
prefetching data in a loop for a reference outside the loop and prefetching in a basic
block that is frequently executed, but which seldom precedes the reference for which
the prefetch is targeted.

See: Chapter 7, “Optimizing Cache Usage.”

Automatic hardware prefetch is a feature in the Pentium 4 processor. It brings
cache lines into the unified second-level cache based on prior reference patterns.

Software prefetching has the following characteristics:
® handles irregular access patterns, which do not trigger the hardware prefetcher

2-44

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® handles prefetching of short arrays and avoids hardware prefetching start-up
delay before initiating the fetches

® must be added to new code; so it does not benefit existing applications
Hardware prefetching for Pentium 4 processor has the following characteristics:
® works with existing applications

® does not require extensive study of prefetch instructions

® requires regular access patterns

® avoids instruction and issue port bandwidth overhead

® has a start-up penalty before the hardware prefetcher triggers and begins
initiating fetches

The hardware prefetcher can handle multiple streams in either the forward or back-
ward directions. The start-up delay and fetch-ahead has a larger effect for short
arrays when hardware prefetching generates a request for data beyond the end of an
array (not actually utilized). The hardware penalty diminishes if it is amortized over
longer arrays.

Hardware prefetching is triggered after two successive cache misses in the last level
cache and requires these cache misses to satisfy a condition that the linear address
distance between these cache misses is within a threshold value. The threshold value
depends on the processor implementation (see Table 2-6). However, hardware
prefetching will not cross 4-KByte page boundaries. As a result, hardware
prefetching can be very effective when dealing with cache miss patterns that have
small strides and that are significantly less than half the threshold distance to trigger
hardware prefetching. On the other hand, hardware prefetching will not benefit
cache miss patterns that have frequent DTLB misses or have access strides that
cause successive cache misses that are spatially apart by more than the trigger
threshold distance.

Software can proactively control data access pattern to favor smaller access strides
(e.g., stride that is less than half of the trigger threshold distance) over larger access
strides (stride that is greater than the trigger threshold distance), this can achieve
additional benefit of improved temporal locality and reducing cache misses in the last
level cache significantly.

Software optimization of a data access pattern should emphasize tuning for hard-
ware prefetch first to favor greater proportions of smaller-stride data accesses in the
workload; before attempting to provide hints to the processor by employing software
prefetch instructions.

2.3.4.5 Loads and Stores

The Pentium 4 processor employs the following techniques to speed up the execution
of memory operations:

® speculative execution of loads

® reordering of loads with respect to loads and stores

2-45

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® multiple outstanding misses
® buffering of writes
® forwarding of data from stores to dependent loads

Performance may be enhanced by not exceeding the memory issue bandwidth and
buffer resources provided by the processor. Up to one load and one store may be
issued for each cycle from a memory port reservation station. In order to be
dispatched to a reservation station, there must be a buffer entry available for each
memory operation. There are 48 load buffers and 24 store buffers3. These buffers
hold the pop and address information until the operation is completed, retired, and
deallocated.

The Pentium 4 processor is designed to enable the execution of memory operations
out of order with respect to other instructions and with respect to each other. Loads
can be carried out speculatively, that is, before all preceding branches are resolved.
However, speculative loads cannot cause page faults.

Reordering loads with respect to each other can prevent a load miss from stalling
later loads. Reordering loads with respect to other loads and stores to different
addresses can enable more parallelism, allowing the machine to execute operations
as soon as their inputs are ready. Writes to memory are always carried out in
program order to maintain program correctness.

A cache miss for a load does not prevent other loads from issuing and completing.
The Pentium 4 processor supports up to four (or eight for Pentium 4 processor with
CPUID signature corresponding to family 15, model 3) outstanding load misses that
can be serviced either by on-chip caches or by memory.

Store buffers improve performance by allowing the processor to continue executing
instructions without having to wait until a write to memory and/or cache is complete.
Writes are generally not on the critical path for dependence chains, so it is often
beneficial to delay writes for more efficient use of memory-access bus cycles.

2.3.4.6 Store Forwarding

Loads can be moved before stores that occurred earlier in the program if they are not
predicted to load from the same linear address. If they do read from the same linear
address, they have to wait for the store data to become available. However, with
store forwarding, they do not have to wait for the store to write to the memory hier-
archy and retire. The data from the store can be forwarded directly to the load, as
long as the following conditions are met:

® Sequence — Data to be forwarded to the load has been generated by a program-
matically-earlier store which has already executed.

® Size — Bytes loaded must be a subset of (including a proper subset, that is, the
same) bytes stored.

3. Pentium 4 processors with CPUID model encoding equal to 3 have more than 24 store buffers.

2-46

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ Alignment — The store cannot wrap around a cache line boundary, and the
linear address of the load must be the same as that of the store.

2.4 INTEL® PENTIUM® M PROCESSOR
MICROARCHITECTURE

Like the Intel NetBurst microarchitecture, the pipeline of the Intel Pentium M
processor microarchitecture contains three sections:

® in-order issue front end
® out-of-order superscalar execution core
® in-order retirement unit

Intel Pentium M processor microarchitecture supports a high-speed system bus (up
to 533 MHz) with 64-byte line size. Most coding recommendations that apply to the
Intel NetBurst microarchitecture also apply to the Intel Pentium M processor.

The Intel Pentium M processor microarchitecture is designed for lower power
consumption. There are other specific areas of the Pentium M processor microarchi-
tecture that differ from the Intel NetBurst microarchitecture. They are described
next. A block diagram of the Intel Pentium M processor is shown in Figure 2-7.

System Bus
‘ ’ =P Frequently used paths
t _._. Lessfrequently used
paths
Bus Unit

2nd Level Cache o (i Iéea\‘/cet:el:)ata

-
i Front End t
v

1st Level |
- ; Execution ;
Instruction —-b Fetch/Decode iy ey e =y Retirement
Cache <

Branch History Update
BTBs/Branch Prediction <

0OM19807

Figure 2-11. The Intel Pentium M Processor Microarchitecture

2-47

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.1 Front End

The Intel Pentium M processor uses a pipeline depth that enables high performance
and low power consumption. It’s shorter than that of the Intel NetBurst microarchi-
tecture.

The Intel Pentium M processor front end consists of two parts:
® fetch/decode unit
® instruction cache

The fetch and decode unit includes a hardware instruction prefetcher and three
decoders that enable parallelism. It also provides a 32-KByte instruction cache that
stores un-decoded binary instructions.

The instruction prefetcher fetches instructions in a linear fashion from memory if the
target instructions are not already in the instruction cache. The prefetcher is
designed to fetch efficiently from an aligned 16-byte block. If the modulo 16
remainder of a branch target address is 14, only two useful instruction bytes are
fetched in the first cycle. The rest of the instruction bytes are fetched in subsequent
cycles.

The three decoders decode instructions and break them down into pops. In each
clock cycle, the first decoder is capable of decoding an instruction with four or fewer
pops. The remaining two decoders each decode a one pop instruction in each clock
cycle.

The front end can issue multiple pops per cycle, in original program order, to the out-
of-order core.

The Intel Pentium M processor incorporates sophisticated branch prediction hard-
ware to support the out-of-order core. The branch prediction hardware includes
dynamic prediction, and branch target buffers.

The Intel Pentium M processor has enhanced dynamic branch prediction hardware.
Branch target buffers (BTB) predict the direction and target of branches based on an
instruction’s address.

The Pentium M Processor includes two techniques to reduce the execution time of
certain operations:

® ESP folding — This eliminates the ESP manipulation plops in stack-related
instructions such as PUSH, POP, CALL and RET. It increases decode rename and
retirement throughput. ESP folding also increases execution bandwidth by
eliminating pops which would have required execution resources.

® Micro-ops (pops) fusion — Some of the most frequent pairs of pops derived
from the same instruction can be fused into a single pops. The following
categories of fused pops have been implemented in the Pentium M processor:

“Store address” and “store data” [Lops are fused into a single “Store” pop.
This holds for all types of store operations, including integer, floating-point,
MMX technology, and Streaming SIMD Extensions (SSE and SSE2)
operations.

2-48

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— Aload pop in most cases can be fused with a successive execution [Lop.This
holds for integer, floating-point and MMX technology loads and for most kinds
of successive execution operations. Note that SSE Loads can not be fused.

24.2 Data Prefetching

The Intel Pentium M processor supports three prefetching mechanisms:

® The first mechanism is a hardware instruction fetcher and is described in the
previous section.

® The second mechanism automatically fetches data into the second-level cache.
The implementation of automatic hardware prefetching in Pentium M processor
family is basically similar to those described for NetBurst microarchitecture. The
trigger threshold distance for each relevant processor models is shown in
Table 2-6. The third mechanism is a software mechanism that fetches data into
the caches using the prefetch instructions.

Table 2-10. Trigger Threshold and CPUID Signatures for Processor Families

Trigger Threshold Distance Extended Extended

(Bytes) Model ID Family ID Family ID Model ID
512 0 0 15 3,4,6
256 0 0 15 01,2
256 0 0 6 9,13, 14

Data is fetched 64 bytes at a time; the instruction and data translation lookaside
buffers support 128 entries. See Table 2-7 for processor cache parameters.

Table 2-11. Cache Parameters of Pentium M, Intel Core Solo,
and Intel Core Duo Processors

Access

Associativity | Line Size Latency Write Update
Level Capacity (ways) (bytes) (clocks) Policy
First 32 KByte 8 64 3 Writeback
Instruction 32 KByte 8 N/A N/A N/A
Second 1 MByte 8 64 9 Writeback
(mode 9)
Second 2 MByte 8 64 10 Writeback
(model 13)
Second 2 MByte 8 64 14 Writeback
(model 14)

2-49

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.3 Out-of-Order Core

The processor core dynamically executes pops independent of program order. The
core is designed to facilitate parallel execution by employing many buffers, issue
ports, and parallel execution units.

The out-of-order core buffers pops in a Reservation Station (RS) until their operands
are ready and resources are available. Each cycle, the core may dispatch up to five
pops through the issue ports.

244 In-Order Retirement

The retirement unit in the Pentium M processor buffers completed pops is the reorder
buffer (ROB). The ROB updates the architectural state in order. Up to three pops may
be retired per cycle.

2.5 MICROARCHITECTURE OF INTEL® CORE™ SOLO AND
INTEL® CORE™ DUO PROCESSORS

Intel Core Solo and Intel Core Duo processors incorporate an microarchitecture that
is similar to the Pentium M processor microarchitecture, but provides additional
enhancements for performance and power efficiency. Enhancements include:

® Intel Smart Cache — This second level cache is shared between two cores in an
Intel Core Duo processor to minimize bus traffic between two cores accessing a
single-copy of cached data. It allows an Intel Core Solo processor (or when one
of the two cores in an Intel Core Duo processor is idle) to access its full capacity.

® Stream SIMD Extensions 3 — These extensions are supported in Intel Core
Solo and Intel Core Duo processors.

¢ Decoder improvement — Improvement in decoder and plop fusion allows the
front end to see most instructions as single pop instructions. This increases the
throughput of the three decoders in the front end.

® Improved execution core — Throughput of SIMD instructions is improved and
the out-of-order engine is more robust in handling sequences of frequently-used
instructions. Enhanced internal buffering and prefetch mechanisms also improve
data bandwidth for execution.

® Power-optimized bus — The system bus is optimized for power efficiency;
increased bus speed supports 667 MHz.

® Data Prefetch — Intel Core Solo and Intel Core Duo processors implement
improved hardware prefetch mechanisms: one mechanism can look ahead and
prefetch data into L1 from L2. These processors also provide enhanced hardware
prefetchers similar to those of the Pentium M processor (see Table 2-6).

2-50

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.1 Front End

Execution of SIMD instructions on Intel Core Solo and Intel Core Duo processors are
improved over Pentium M processors by the following enhancements:

® Micro-op fusion — Scalar SIMD operations on register and memory have single
pop flows comparable to X87 flows. Many packed instructions are fused to reduce
its pop flow from four to two LLops.

® Eliminating decoder restrictions — Intel Core Solo and Intel Core Duo
processors improve decoder throughput with micro-fusion and macro-fusion, so
that many more SSE and SSE2 instructions can be decoded without restriction.
On Pentium M processors, many single pop SSE and SSE2 instructions must be
decoded by the main decoder.

® Improved packed SIMD instruction decoding — On Intel Core Solo and Intel
Core Duo processors, decoding of most packed SSE instructions is done by all
three decoders. As a result the front end can process up to three packed SSE
instructions every cycle. There are some exceptions to the above; some
shuffle/unpack/shift operations are not fused and require the main decoder.

2.5.2 Data Prefetching

Intel Core Solo and Intel Core Duo processors provide hardware mechanisms to
prefetch data from memory to the second-level cache. There are two techniques:

1. One mechanism activates after the data access pattern experiences two cache-
reference misses within a trigger-distance threshold (see Table 2-6). This
mechanism is similar to that of the Pentium M processor, but can track 16 forward
data streams and 4 backward streams.

2. The second mechanism fetches an adjacent cache line of data after experiencing
a cache miss. This effectively simulates the prefetching capabilities of 128-byte
sectors (similar to the sectoring of two adjacent 64-byte cache lines available in
Pentium 4 processors).

Hardware prefetch requests are queued up in the bus system at lower priority than
normal cache-miss requests. If bus queue is in high demand, hardware prefetch
requests may be ignored or cancelled to service bus traffic required by demand
cache-misses and other bus transactions. Hardware prefetch mechanisms are
enhanced over that of Pentium M processor by:

® Data stores that are not in the second-level cache generate read for ownership
requests. These requests are treated as loads and can trigger a prefetch stream.

® Software prefetch instructions are treated as loads, they can also trigger a
prefetch stream.

2-51

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6 INTEL® HYPER-THREADING TECHNOLOGY

Intel® Hyper-Threading Technology (HT Technology) is supported by specific
members of the Intel Pentium 4 and Xeon processor families. The technology enables
software to take advantage of task-level, or thread-level parallelism by providing
multiple logical processors within a physical processor package. In its first implemen-
tation in Intel Xeon processor, Hyper-Threading Technology makes a single physical
processor appear as two logical processors.

The two logical processors each have a complete set of architectural registers while
sharing one single physical processor's resources. By maintaining the architecture
state of two processors, an HT Technology capable processor looks like two proces-
sors to software, including operating system and application code.

By sharing resources needed for peak demands between two logical processors, HT
Technology is well suited for multiprocessor systems to provide an additional perfor-
mance boost in throughput when compared to traditional MP systems.

Figure 2-8 shows a typical bus-based symmetric multiprocessor (SMP) based on
processors supporting HT Technology. Each logical processor can execute a software
thread, allowing a maximum of two software threads to execute simultaneously on
one physical processor. The two software threads execute simultaneously, meaning
that in the same clock cycle an “add” operation from logical processor 0 and another
“add” operation and load from logical processor 1 can be executed simultaneously by
the execution engine.

In the first implementation of HT Technology, the physical execution resources are
shared and the architecture state is duplicated for each logical processor. This mini-
mizes the die area cost of implementing HT Technology while still achieving perfor-
mance gains for multithreaded applications or multitasking workloads.

2-52

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Architectural Architectural Architectural Architectural
State State State State
Execution Engine Execution Engine
Local APIC Local APIC Local APIC Local APIC
Bus Interface Bus Interface

¢ System Bus ¢
< >

OM15152

Figure 2-12. Hyper-Threading Technology on an SMP

The performance potential due to HT Technology is due to:

® The fact that operating systems and user programs can schedule processes or
threads to execute simultaneously on the logical processors in each physical
processor

® The ability to use on-chip execution resources at a higher level than when only a
single thread is consuming the execution resources; higher level of resource
utilization can lead to higher system throughput

2.6.1 Processor Resources and HT Technology

The majority of microarchitecture resources in a physical processor are shared
between the logical processors. Only a few small data structures were replicated for
each logical processor. This section describes how resources are shared, partitioned
or replicated.

2.6.1.1 Replicated Resources

The architectural state is replicated for each logical processor. The architecture state
consists of registers that are used by the operating system and application code to
control program behavior and store data for computations. This state includes the
eight general-purpose registers, the control registers, machine state registers,
debug registers, and others. There are a few exceptions, most notably the memory

2-53

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

type range registers (MTRRs) and the performance monitoring resources. For a
complete list of the architecture state and exceptions, see the Intel® 64 and I1A-32
Architectures Software Developer’s Manual, Volumes 3A & 3B.

Other resources such as instruction pointers and register renaming tables were repli-
cated to simultaneously track execution and state changes of the two logical proces-
sors. The return stack predictor is replicated to improve branch prediction of return
instructions.

In addition, a few buffers (for example, the 2-entry instruction streaming buffers)
were replicated to reduce complexity.

2.6.1.2 Partitioned Resources

Several buffers are shared by limiting the use of each logical processor to half the
entries. These are referred to as partitioned resources. Reasons for this partitioning
include:

® Operational fairness

® Permitting the ability to allow operations from one logical processor to bypass
operations of the other logical processor that may have stalled

For example: a cache miss, a branch misprediction, or instruction dependencies may
prevent a logical processor from making forward progress for some number of
cycles. The partitioning prevents the stalled logical processor from blocking forward
progress.

In general, the buffers for staging instructions between major pipe stages are parti-
tioned. These buffers include pop queues after the execution trace cache, the queues
after the register rename stage, the reorder buffer which stages instructions for
retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implemen-
tation to maintain memory ordering for each logical processor and detect memory
ordering violations.

2.6.1.3 Shared Resources

Most resources in a physical processor are fully shared to improve the dynamic utili-
zation of the resource, including caches and all the execution units. Some shared
resources which are linearly addressed, like the DTLB, include a logical processor 1D
bit to distinguish whether the entry belongs to one logical processor or the other.

The first level cache can operate in two modes depending on a context-I1D bit:
® Shared mode: The L1 data cache is fully shared by two logical processors.

® Adaptive mode: In adaptive mode, memory accesses using the page directory is
mapped identically across logical processors sharing the L1 data cache.

The other resources are fully shared.

2-54

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6.2 Microarchitecture Pipeline and HT Technology

This section describes the HT Technology microarchitecture and how instructions
from the two logical processors are handled between the front end and the back end
of the pipeline.

Although instructions originating from two programs or two threads execute simulta-
neously and not necessarily in program order in the execution core and memory hier-
archy, the front end and back end contain several selection points to select between
instructions from the two logical processors. All selection points alternate between
the two logical processors unless one logical processor cannot make use of a pipeline
stage. In this case, the other logical processor has full use of every cycle of the pipe-
line stage. Reasons why a logical processor may not use a pipeline stage include
cache misses, branch mispredictions, and instruction dependencies.

2.6.3 Front End Pipeline

The execution trace cache is shared between two logical processors. Execution trace
cache access is arbitrated by the two logical processors every clock. If a cache line is
fetched for one logical processor in one clock cycle, the next clock cycle a line would
be fetched for the other logical processor provided that both logical processors are
requesting access to the trace cache.

If one logical processor is stalled or is unable to use the execution trace cache, the
other logical processor can use the full bandwidth of the trace cache until the initial
logical processor’s instruction fetches return from the L2 cache.

After fetching the instructions and building traces of pops, the pops are placed in a
queue. This queue decouples the execution trace cache from the register rename
pipeline stage. As described earlier, if both logical processors are active, the queue is
partitioned so that both logical processors can make independent forward progress.

2.6.4 Execution Core

The core can dispatch up to six pops per cycle, provided the pops are ready to
execute. Once the pops are placed in the queues waiting for execution, there is no
distinction between instructions from the two logical processors. The execution core
and memory hierarchy is also oblivious to which instructions belong to which logical
processor.

After execution, instructions are placed in the re-order buffer. The re-order buffer
decouples the execution stage from the retirement stage. The re-order buffer is
partitioned such that each uses half the entries.

2-55

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6.5 Retirement

The retirement logic tracks when instructions from the two logical processors are
ready to be retired. It retires the instruction in program order for each logical
processor by alternating between the two logical processors. If one logical processor
is not ready to retire any instructions, then all retirement bandwidth is dedicated to
the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-
one data cache. Selection logic alternates between the two logical processors to
commit store data to the cache.

2.7 MULTICORE PROCESSORS

The Intel Pentium D processor and the Pentium Processor Extreme Edition introduce
multicore features. These processors enhance hardware support for multithreading
by providing two processor cores in each physical processor package. The Dual-core
Intel Xeon and Intel Core Duo processors also provide two processor cores in a phys-
ical package. The multicore topology of Intel Core 2 Duo processors are similar to
those of Intel Core Duo processor.

The Intel Pentium D processor provides two logical processors in a physical package,
each logical processor has a separate execution core and a cache hierarchy. The
Dual-core Intel Xeon processor and the Intel Pentium Processor Extreme Edition
provide four logical processors in a physical package that has two execution cores.
Each core provides two logical processors sharing an execution core and a cache
hierarchy.

The Intel Core Duo processor provides two logical processors in a physical package.
Each logical processor has a separate execution core (including first-level cache) and
a smart second-level cache. The second-level cache is shared between two logical
processors and optimized to reduce bus traffic when the same copy of cached data is
used by two logical processors. The full capacity of the second-level cache can be
used by one logical processor if the other logical processor is inactive.

The functional blocks of the dual-core processors are shown in Figure 2-9. The Quad-
core Intel Xeon processors, Intel Core 2 Quad processor and Intel Core 2 Extreme
quad-core processor consist of two replica of the dual-core modules. The functional
blocks of the quad-core processors are also shown in Figure 2-9.

2-56

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Intel Core Duo Processor
Intel Core 2 Duo Processor

Pentium D Processor

Architectual State

Architectual State

Execution Engine

Execution Engine

Architectual State

Architectual State

Local APIC

Local APIC

Execution Engine

Execution Engine

Second Level Cache

Local APIC

Local APIC

Bus Interface

Bus Interface

Bus Interface

:

System Bus System Bus
Pentium Processor Extreme Edition
Architectual Architectual Architectual Architectual
State State State State

Execution Engine Execution Engine

Local APIC Local APIC Local APIC Local APIC

Bus Interface Bus Interface

System Bus

Intel Core 2 Quad Processor
Intel Xeon Processor 3200 Series
Intel Xeon Processor 5300 Series

Architectual State

Architectual State

Architectual State

Architectual State

Execution Engine

Execution Engine

Execution Engine

Execution Engine

Local APIC

Local APIC

Local APIC

Local APIC

Second Level Cache Second Level Cache

Bus Interface Bus Interface

OM19809

System Bus

Figure 2-13. Pentium D Processor, Pentium Processor Extreme Edition,
Intel Core Duo Processor, Intel Core 2 Duo Processor, and Intel Core 2 Quad Processor

2-57

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.1

Microarchitecture Pipeline and MultiCore Processors

In general, each core in a multicore processor resembles a single-core processor
implementation of the underlying microarchitecture. The implementation of the
cache hierarchy in a dual-core or multicore processor may be the same or different

from the cache hierarchy implementation in a single-core processor.

CPUID should be used to determine cache-sharing topology information in a
processor implementation and the underlying microarchitecture. The former is
obtained by querying the deterministic cache parameter leaf (see Chapter 7, “Opti-
mizing Cache Usage”); the latter by using the encoded values for extended family,

family, extended model, and model fields. See Table 2-8.

Table 2-12. Family And Model Designations of Microarchitectures

Dual-Core Micro- Extended Extended

Processor architecture | Family Family Model Model
Pentium D NetBurst 0 15 0 3,4,6
processor

Pentium NetBurst 0 15 0 3,4,6
processor

Extreme

Edition

Intel Core Duo | Improved 0 6 0 14
processor Pentium M

Intel Core 2 Intel Core 0 6 0 15
Duo Microarchitec-

processor/ ture

Intel Xeon

processor

5100

Intel Core 2 EnhancedIntel | 0 6 1 7

Duo processor | Core

E8000 Series/ | Microarchitect

Intel Xeon ure

processor

5200, 5400

2.7.2 Shared Cache in Intel® Core™ Duo Processors

The Intel Core Duo processor has two symmetric cores that share the second-level
cache and a single bus interface (see Figure 2-9). Two threads executing on two
cores in an Intel Core Duo processor can take advantage of shared second-level
cache, accessing a single-copy of cached data without generating bus traffic.

2-58

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.2.1

When an instruction needs to read data from a memory address, the processor looks
for it in caches and memory. When an instruction writes data to a memory location
(write back) the processor first makes sure that the cache line that contains the
memory location is owned by the first-level data cache of the initiating core (that is,
the line is in exclusive or modified state). Then the processor looks for the cache line
in the cache and memory sub-systems. The look-ups for the locality of load or store
operation are in the following order:

Load and Store Operations

1. DCU of the initiating core
2. DCU of the other core and second-level cache
3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache. Table 2-9 lists the performance
characteristics of generic load and store operations in an Intel Core Duo processor.
Numeric values of Table 2-9 are in terms of processor core cycles.

Table 2-13. Characteristics of Load and Store Operations
in Intel Core Duo Processors

Load Store
Data Locality Latency Throughput Latency Throughput
DCU 3 1 2 1
DCU of the other core in 14 + bus 14 + bus 14 + bus ~10
"Modified” state transaction transaction transaction
2nd-level cache 14 <6 14 <6
Memory 14 + bus Bus read 14 + bus Bus write
transaction protocol transaction protocol

Throughput is expressed as the number of cycles to wait before the same operation
can start again. The latency of a bus transaction is exposed in some of these opera-
tions, as indicated by entries containing “+ bus transaction”. On Intel Core Duo
processors, a typical bus transaction may take 5.5 bus cycles. For a 667 MHz bus and
a core frequency of 2.167GHz, the total of 14 + 5.5 * 2167 /(667/4) — 86 core
cycles.

Sometimes a modified cache line has to be evicted to make room for a new cache
line. The modified cache line is evicted in parallel to bringing in new data and does
not require additional latency. However, when data is written back to memory, the
eviction consumes cache bandwidth and bus bandwidth. For multiple cache misses
that require the eviction of modified lines and are within a short time, there is an
overall degradation in response time of these cache misses.

2-59

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

For store operation, reading for ownership must be completed before the data is
written to the first-level data cache and the line is marked as modified. Reading for
ownership and storing the data happens after instruction retirement and follows the
order of retirement. The bus store latency does not affect the store instruction itself.
However, several sequential stores may have cumulative latency that can effect
performance.

2.8 INTEL® 64 ARCHITECTURE

Intel 64 architecture supports almost all features in the 1A-32 Intel architecture and
extends support to run 64-bit OS and 64-bit applications in 64-bit linear address
space. Intel 64 architecture provides a new operating mode, referred to as 1A-32e
mode, and increases the linear address space for software to 64 bits and supports
physical address space up to 40 bits.

1A-32e mode consists of two sub-modes: (1) compatibility mode enables a 64-bit
operating system to run most legacy 32-bit software unmodified, (2) 64-bit mode
enables a 64-bit operating system to run applications written to access 64-bit linear
address space.

In the 64-bit mode of Intel 64 architecture, software may access:
® 64-bit flat linear addressing
® 8 additional general-purpose registers (GPRs)

® 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and
SSSE3)

® 64-bit-wide GPRs and instruction pointers

® uniform byte-register addressing

® fast interrupt-prioritization mechanism

® anew instruction-pointer relative-addressing mode

For optimizing 64-bit applications, the features that impact software optimizations
include:

® using a set of prefixes to access new registers or 64-bit register operand
® pointer size increases from 32 bits to 64 bits
® instruction-specific usages

2.9 SIMD TECHNOLOGY

SIMD computations (see Figure 2-10) were introduced to the architecture with MMX
technology. MMX technology allows SIMD computations to be performed on packed
byte, word, and doubleword integers. The integers are contained in a set of eight
64-bit registers called MMX registers (see Figure 2-11).

2-60

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Pentium Il processor extended the SIMD computation model with the introduc-

tion of the Streaming SIMD Extensions (SSE). SSE allows SIMD computations to be

performed on operands that contain four packed single-precision floating-point data
elements. The operands can be in memory or in a set of eight 128-bit XMM registers
(see Figure 2-11). SSE also extended SIMD computational capability by adding addi-
tional 64-bit MMX instructions.

Figure 2-10 shows a typical SIMD computation. Two sets of four packed data
elements (X1, X2, X3, and X4, and Y1, Y2, Y3, and Y4) are operated on in parallel,
with the same operation being performed on each corresponding pair of data
elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of the four
parallel computations are sorted as a set of four packed data elements.

X4 X3 X2 X1
Y4 Y3 Y2 Y1
vv v v v v
@ T @ T
X4 0p Y4 X3 op Y3 X2o0pY2 XlopVYl

OM15148

Figure 2-14. Typical SIMD Operations

The Pentium 4 processor further extended the SIMD computation model with the
introduction of Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3
(SSE3), and Intel Xeon processor 5100 series introduced Supplemental Streaming
SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology
extends SIMD computations to process packed double-precision floating-point data
elements and 128-bit packed integers. There are 144 instructions in SSE2 that
operate on two packed double-precision floating-point data elements or on 16
packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate
application performance in specific areas. These include video processing, complex
arithmetics, and thread synchronization. SSE3 complements SSE and SSE2 with
instructions that process SIMD data asymmetrically, facilitate horizontal computa-
tion, and help avoid loading cache line splits. See Figure 2-11.

2-61

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

SSSE3 provides additional enhancement for SIMD computation with 32 instructions
on digital video and signal processing.

The SIMD extensions operates the same way in Intel 64 architecture as in 1A-32
architecture, with the following enhancements:

® 128-bit SIMD instructions referencing XMM register can access 16 XMM registers
in 64-bit mode.

® Instructions that reference 32-bit general purpose registers can access 16
general purpose registers in 64-bit mode.

64-bit MMX Registers 128-bit XMM Registers
MM7 XMM7
MM6 XMM6
MM5 XMM5
MM4 XMM4
MM3 XMM3
MM2 XMM2
MM1 XMM1
MMO XMMO

OM15149

Figure 2-15. SIMD Instruction Register Usage

SIMD improves the performance of 3D graphics, speech recognition, image
processing, scientific applications and applications that have the following character-
istics:

® inherently parallel

® recurring memory access patterns

® localized recurring operations performed on the data

® data-independent control flow

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary
Floating-Point Arithmetic. They are accessible from all IA-32 execution modes:
protected mode, real address mode, and Virtual 8086 mode.

2-62

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will
continue to run correctly, without modification on Intel microprocessors that incorpo-
rate these technologies. Existing software will also run correctly in the presence of
applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering
instructions that can improve cache usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:

® Chapter 9, “Programming with Intel® MMX™ Technology”

® Chapter 10, “Programming with Streaming SIMD Extensions (SSE)”

® Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2)”
® Chapter 12, “Programming with SSE3 and Supplemental SSE3”

2.9.1 Summary of SIMD Technologies

2.9.1.1 MMX™ Technology

MMX Technology introduced:

® 64-bit MMX registers

® Support for SIMD operations on packed byte, word, and doubleword integers

MMX instructions are useful for multimedia and communications software.

2.9.1.2 Streaming SIMD Extensions

Streaming SIMD extensions introduced:

® 128-bit XMM registers

® 128-bit data type with four packed single-precision floating-point operands
® data prefetch instructions

® non-temporal store instructions and other cacheability and memory ordering
instructions

® extra 64-bit SIMD integer support

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and
video encoding and decoding.

29.1.3 Streaming SIMD Extensions 2

Streaming SIMD extensions 2 add the following:
® 128-bit data type with two packed double-precision floating-point operands

2-63

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® 128-bit data types for SIMD integer operation on 16-byte, 8-word,
4-doubleword, or 2-quadword integers

® support for SIMD arithmetic on 64-bit integer operands

® instructions for converting between new and existing data types

¢ extended support for data shuffling

® Extended support for cacheability and memory ordering operations

SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryp-
tion.

29.14 Streaming SIMD Extensions 3

Streaming SIMD extensions 3 add the following:
® SIMD floating-point instructions for asymmetric and horizontal computation
® a special-purpose 128-bit load instruction to avoid cache line splits

® an x87 FPU instruction to convert to integer independent of the floating-point
control word (FCW)

® instructions to support thread synchronization

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.9.1.5 Supplemental Streaming SIMD Extensions 3

The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to
accelerate eight types of computations on packed integers. These include:

® 12 instructions that perform horizontal addition or subtraction operations
® 6 instructions that evaluate the absolute values

® 2 instructions that perform multiply and add operations and speed up the
evaluation of dot products

® 2 instructions that accelerate packed-integer multiply operations and produce
integer values with scaling

® 2 instructions that perform a byte-wise, in-place shuffle according to the second
shuffle control operand

® 6 instructions that negate packed integers in the destination operand if the signs
of the corresponding element in the source operand is less than zero

® 2instructions that align data from the composite of two operands

2.9.1.6 SSE4.1

SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applica-
tions. SSE4.1 also improves compiler vectorization and significantly increase support
for packed dword computation. These include:

2-64

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Two instructions perform packed dword multiplies.

Two instructions perform floating-point dot products with input/output selects.
One instruction provides a streaming hint for WC loads.

Six instructions simplify packed blending.

Eight instructions expand support for packed integer MIN/MAX.

Four instructions support floating-point round with selectable rounding mode and
precision exception override.

Seven instructions improve data insertion and extractions from XMM registers

Twelve instructions improve packed integer format conversions (sign and zero
extensions).

One instruction improves SAD (sum absolute difference) generation for small
block sizes.

One instruction aids horizontal searching operations of word integers.
One instruction improves masked comparisons.

One instruction adds gword packed equality comparisons.

One instruction adds dword packing with unsigned saturation.

2.9.1.7 SSE4.2

SSE4.2 introduces 7 new instructions. These include:

A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.

Four string/text processing instructions providing a rich set of primitives, these
primitives can accelerate:

— basic and advanced string library functions from strlen, strcmp, to strcspn,
— delimiter processing, token extraction for lexing of text streams,
— Parser, schema validation including XML processing.

A general-purpose instruction for accelerating cyclic redundancy checksum
signature calculations.

A general-purpose instruction for calculating bit count population of integer
numbers.

2-65

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-66

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES

This chapter discusses general optimization techniques that can improve the perfor-
mance of applications running on Intel Core i7 processors, processors based on Intel
Core microarchitecture, Enhanced Intel Core microarchitecture, Intel NetBurst
microarchitecture, Intel Core Duo, Intel Core Solo, and Pentium M processors. These
techniques take advantage of microarchitectural described in Chapter 2, “Intel® 64
and 1A-32 Processor Architectures.” Optimization guidelines focusing on Intel multi-
core processors, Hyper-Threading Technology and 64-bit mode applications are
discussed in Chapter 8, “Multicore and Hyper-Threading Technology,” and Chapter 9,
“64-bit Mode Coding Guidelines.”

Practices that optimize performance focus on three areas:
® tools and techniques for code generation

® analysis of the performance characteristics of the workload and its interaction
with microarchitectural sub-systems

® tuning code to the target microarchitecture (or families of microarchitecture) to
improve performance

Some hints on using tools are summarized first to simplify the first two tasks. the rest
of the chapter will focus on recommendations of code generation or code tuning to
the target microarchitectures.

This chapter explains optimization techniques for the Intel C++ Compiler, the Intel
Fortran Compiler, and other compilers.

3.1 PERFORMANCE TOOLS

Intel offers several tools to help optimize application performance, including
compilers, performance analyzer and multithreading tools.

3.1.1 Intel® C++ and Fortran Compilers

Intel compilers support multiple operating systems (Windows*, Linux*, Mac OS* and
embedded). The Intel compilers optimize performance and give application devel-
opers access to advanced features:

® Flexibility to target 32-bit or 64-bit Intel processors for optimization

® Compatibility with many integrated development environments or third-party
compilers.

® Automatic optimization features to take advantage of the target processor’s
architecture.

3-1

GENERAL OPTIMIZATION GUIDELINES

® Automatic compiler optimization reduces the need to write different code for
different processors.

® Common compiler features that are supported across Windows, Linux and Mac
OS include:

— General optimization settings

— Cache-management features

— Interprocedural optimization (IPO) methods

— Profile-guided optimization (PGO) methods

— Multithreading support

— Floating-point arithmetic precision and consistency support

— Compiler optimization and vectorization reports

3.1.2 General Compiler Recommendations

Generally speaking, a compiler that has been tuned for the target microarchitecture
can be expected to match or outperform hand-coding. However, if performance prob-
lems are noted with the compiled code, some compilers (like Intel C++ and Fortran
Compilers) allow the coder to insert intrinsics or inline assembly in order to exert
control over what code is generated. If inline assembly is used, the user must verify
that the code generated is of good quality and yields good performance.

Default compiler switches are targeted for common cases. An optimization may be
made to the compiler default if it is beneficial for most programs. If the root cause of
a performance problem is a poor choice on the part of the compiler, using different
switches or compiling the targeted module with a different compiler may be the solu-
tion.

3.1.3 VTune™ Performance Analyzer

VTune uses performance monitoring hardware to collect statistics and coding infor-
mation of your application and its interaction with the microarchitecture. This allows
software engineers to measure performance characteristics of the workload for a
given microarchitecture. VTune supports Intel Core i7 processors, Intel Core microar-
chitecture, Intel NetBurst microarchitecture, Intel Core Duo, Intel Core Solo, and
Pentium M processor families.

The VTune Performance Analyzer provides two kinds of feedback:

® indication of a performance improvement gained by using a specific coding
recommendation or microarchitectural feature

® information on whether a change in the program has improved or degraded
performance with respect to a particular metric

3-2

GENERAL OPTIMIZATION GUIDELINES

The VTune Performance Analyzer also provides measures for a number of workload
characteristics, including:

® retirement throughput of instruction execution as an indication of the degree of
extractable instruction-level parallelism in the workload

® data traffic locality as an indication of the stress point of the cache and memory
hierarchy

® data traffic parallelism as an indication of the degree of effectiveness of amorti-
zation of data access latency

NOTE

Improving performance in one part of the machine does not
necessarily bring significant gains to overall performance. It is
possible to degrade overall performance by improving performance
for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of
the VTune Performance Analyzer events that provide measurable data on the perfor-
mance gain achieved by following the recommendations. For more on using the
VTune analyzer, refer to the application’s online help.

3.2 PROCESSOR PERSPECTIVES

Many coding recommendations for Intel Core microarchitecture work well across
Intel Core i7, Pentium M, Intel Core Solo, Intel Core Duo processors and processors
based on Intel NetBurst microarchitecture. However, there are situations where a
recommendation may benefit one microarchitecture more than another. Some of
these are:

® Instruction decode throughput is important for processors based on Intel Core i7
processors, Intel Core microarchitecture (Pentium M, Intel Core Solo, and Intel
Core Duo processors) but less important for processors based on Intel NetBurst
microarchitecture.

® Generating code with a 4-1-1 template (instruction with four pops followed by
two instructions with one pop each) helps the Pentium M processor.

Intel Core Solo and Intel Core Duo processors have an enhanced front end that
is less sensitive to the 4-1-1 template. Processors based on Intel Core microar-
chitecture have 4 decoders and employ micro-fusion and macro-fusion so that
each of three simple decoders are not restricted to handling simple instructions
consisting of one pop.

Taking advantage of micro-fusion will increase decoder throughput across Intel
Core Solo, Intel Core Duo and Intel Core2 Duo processors. Taking advantage of
macro-fusion can improve decoder throughput further on Intel Core 2 Duo

3-3

GENERAL OPTIMIZATION GUIDELINES

processor family. Taking advantage of macro-fusion can improve decoder
throughput in both 64-bit and 32-bit code for Intel microarchitecture (Nehalem)

® On processors based on Intel NetBurst microarchitecture, the code size limit of
interest is imposed by the trace cache. On Pentium M processors, the code size
limit is governed by the instruction cache.

® Dependencies for partial register writes incur large penalties when using the
Pentium M processor (this applies to processors with CPUID signature family 6,
model 9). On Pentium 4, Intel Xeon processors, Pentium M processor (with
CPUID signature family 6, model 13), such penalties are relieved by artificial
dependencies between each partial register write. Intel Core Solo, Intel Core Duo
processors and processors based on Intel Core microarchitecture can experience
minor delays due to partial register stalls. To avoid false dependences from
partial register updates, use full register updates and extended moves.

® Use appropriate instructions that support dependence-breaking (PXOR, SUB,
XOR instructions). Dependence-breaking support for XORPS is available in Intel
Core Solo, Intel Core Duo processors and processors based on Intel Core
microarchitecture.

® Floating point register stack exchange instructions are slightly more expensive
due to issue restrictions in processors based on Intel NetBurst microarchitecture.

® Hardware prefetching can reduce the effective memory latency for data and
instruction accesses in general. But different microarchitectures may require
some custom modifications to adapt to the specific hardware prefetch implemen-
tation of each microarchitecture.

® On processors based on Intel NetBurst microarchitecture, latencies of some
instructions are relatively significant (including shifts, rotates, integer multiplies,
and moves from memory with sign extension). Use care when using the LEA
instruction. See Section 3.5.1.3, “Using LEA.”

® On processors based on Intel NetBurst microarchitecture, there may be a penalty
when instructions with immediates requiring more than 16-bit signed represen-
tation are placed next to other instructions that use immediates.

3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy

When optimum performance on all processor generations is desired, applications can
take advantage of the CPUID instruction to identify the processor generation and
integrate processor-specific instructions into the source code. The Intel C++
Compiler supports the integration of different versions of the code for different target
processors. The selection of which code to execute at runtime is made based on the
CPU identifiers. Binary code targeted for different processor generations can be
generated under the control of the programmer or by the compiler.

For applications that target multiple generations of microarchitectures, and where
minimum binary code size and single code path is important, a compatible code
strategy is the best. Optimizing applications using techniques developed for the Intel

3-4

GENERAL OPTIMIZATION GUIDELINES

Core microarchitecture and combined with some for Intel NetBurst microarchitecture
are likely to improve code efficiency and scalability when running on processors
based on current and future generations of Intel 64 and I1A-32 processors. This
compatible approach to optimization is also likely to deliver high performance on
Pentium M, Intel Core Solo and Intel Core Duo processors.

3.2.2 Transparent Cache-Parameter Strategy

If the CPUID instruction supports function leaf 4, also known as deterministic cache
parameter leaf, the leaf reports cache parameters for each level of the cache hier-
archy in a deterministic and forward-compatible manner across Intel 64 and 1A-32
processor families.

For coding techniques that rely on specific parameters of a cache level, using the
deterministic cache parameter allows software to implement techniques in a way that
is forward-compatible with future generations of Intel 64 and 1A-32 processors, and
cross-compatible with processors equipped with different cache sizes.

3.2.3 Threading Strategy and Hardware Multithreading Support

Intel 64 and 1A-32 processor families offer hardware multithreading support in two
forms: dual-core technology and HT Technology.

To fully harness the performance potential of hardware multithreading in current and
future generations of Intel 64 and 1A-32 processors, software must embrace a
threaded approach in application design. At the same time, to address the widest
range of installed machines, multi-threaded software should be able to run without
failure on a single processor without hardware multithreading support and should
achieve performance on a single logical processor that is comparable to an
unthreaded implementation (if such comparison can be made). This generally
requires architecting a multi-threaded application to minimize the overhead of thread
synchronization. Additional guidelines on multithreading are discussed in Chapter 8,
“Multicore and Hyper-Threading Technology.”

3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS

This section includes rules, suggestions and hints. They are targeted for engineers
who are:

® modifying source code to enhance performance (user/source rules)
® writing assemblers or compilers (assembly/compiler rules)
® doing detailed performance tuning (tuning suggestions)

3-5

GENERAL OPTIMIZATION GUIDELINES

Coding recommendations are ranked in importance using two measures:

® Local impact (high, medium, or low) refers to a recommendation’s affect on the
performance of a given instance of code.

® Generality (high, medium, or low) measures how often such instances occur
across all application domains. Generality may also be thought of as “frequency”.

These recommendations are approximate. They can vary depending on coding style,
application domain, and other factors.

The purpose of the high, medium, and low (H, M, and L) priorities is to suggest the
relative level of performance gain one can expect if a recommendation is imple-
mented.

Because it is not possible to predict the frequency of a particular code instance in
applications, priority hints cannot be directly correlated to application-level perfor-
mance gain. In cases in which application-level performance gain has been observed,
we have provided a quantitative characterization of the gain (for information only).
In cases in which the impact has been deemed inapplicable, no priority is assigned.

3.4 OPTIMIZING THE FRONT END

Optimizing the front end covers two aspects:

® Maintaining steady supply of pops to the execution engine — Mispredicted
branches can disrupt streams of pops, or cause the execution engine to waste
execution resources on executing streams of pops in the non-architected code
path. Much of the tuning in this respect focuses on working with the Branch
Prediction Unit. Common techniques are covered in Section 3.4.1, “Branch
Prediction Optimization.”

® Supplying streams of pops to utilize the execution bandwidth and retirement
bandwidth as much as possible — For Intel Core microarchitecture and Intel Core
Duo processor family, this aspect focuses maintaining high decode throughput.
In Intel NetBurst microarchitecture, this aspect focuses on keeping the Trace
Cache operating in stream mode. Techniques to maximize decode throughput for
Intel Core microarchitecture are covered in Section 3.4.2, “Fetch and Decode
Optimization.”

3.4.1 Branch Prediction Optimization

Branch optimizations have a significant impact on performance. By understanding
the flow of branches and improving their predictability, you can increase the speed of
code significantly.

Optimizations that help branch prediction are:

® Keep code and data on separate pages. This is very important; see Section 3.6,
“Optimizing Memory Accesses,” for more information.

GENERAL OPTIMIZATION GUIDELINES

® Eliminate branches whenever possible.

® Arrange code to be consistent with the static branch prediction algorithm.
® Use the PAUSE instruction in spin-wait loops.

® Inline functions and pair up calls and returns.

® Unroll as necessary so that repeatedly-executed loops have sixteen or fewer
iterations (unless this causes an excessive code size increase).

® Separate branches so that they occur no more frequently than every three pops
where possible.

3.4.1.1 Eliminating Branches

Eliminating branches improves performance because:
® It reduces the possibility of mispredictions.

® It reduces the number of required branch target buffer (BTB) entries. Conditional
branches, which are never taken, do not consume BTB resources.

There are four principal ways of eliminating branches:

® Arrange code to make basic blocks contiguous.

® Unroll loops, as discussed in Section 3.4.1.7, “Loop Unrolling.”
® Use the CMOV instruction.

® Use the SETCC instruction.

The following rules apply to branch elimination:

Assembly/Compiler Coding Rule 1. (MH impact, M generality) Arrange code
to make basic blocks contiguous and eliminate unnecessary branches.

For the Pentium M processor, every branch counts. Even correctly predicted branches
have a negative effect on the amount of useful code delivered to the processor. Also,
taken branches consume space in the branch prediction structures and extra
branches create pressure on the capacity of the structures.

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC
and CMOV instructions to eliminate unpredictable conditional branches where
possible. Do not do this for predictable branches. Do not use these instructions to
eliminate all unpredictable conditional branches (because using these instructions
will incur execution overhead due to the requirement for executing both paths of a
conditional branch). In addition, converting a conditional branch to SETCC or CMOV
trades off control flow dependence for data dependence and restricts the capability
of the out-of-order engine. When tuning, note that all Intel 64 and 1A-32 processors
usually have very high branch prediction rates. Consistently mispredicted branches
are generally rare. Use these instructions only if the increase in computation time is
less than the expected cost of a mispredicted branch.

3-7

GENERAL OPTIMIZATION GUIDELINES

Consider a line of C code that has a condition dependent upon one of the constants:
X =(A <B)?CONST1:CONSTZ;

This code conditionally compares two values, A and B. If the condition is true, X is set
to CONST1; otherwise it is set to CONST2. An assembly code sequence equivalent to
the above C code can contain branches that are not predictable if there are no corre-
lation in the two values.

Example 3-1 shows the assembly code with unpredictable branches. The unpredict-
able branches can be removed with the use of the SETCC instruction. Example 3-2
shows optimized code that has no branches.

Example 3-1. Assembly Code with an Unpredictable Branch

cmpa, b ; Condition
jbe L30 ; Conditional branch
mov ebx const1 ; ebx holds X
jmp L31 ; Unconditional branch
L30:
mov ebx, const2
L31:

Example 3-2. Code Optimization to Eliminate Branches

xor ebx, ebx ; Clear ebx (X in the C code)
cnp A B
setge bl ;Whenebx=0o0r1

; OR the complement condition
sub ebx, 1 ,ebx=11..11 or 00..00

and ebx, CONST3; CONST3 = CONST1-CONSTZ2
add ebx, CONSTZ; ebx=CONST1 or CONSTZ

The optimized code in Example 3-2 sets EBX to zero, then compares A and B. If A is
greater than or equal to B, EBX is set to one. Then EBX is decreased and AND’d with
the difference of the constant values. This sets EBX to either zero or the difference of
the values. By adding CONST2 back to EBX, the correct value is written to EBX. When
CONSTZ2 is equal to zero, the last instruction can be deleted.

Another way to remove branches on Pentium Il and subsequent processors is to use
the CMOV and FCMOV instructions. Example 3-3 shows how to change a TEST and
branch instruction sequence using CMOV to eliminate a branch. If the TEST sets the
equal flag, the value in EBX will be moved to EAX. This branch is data-dependent, and
is representative of an unpredictable branch.

3-8

GENERAL OPTIMIZATION GUIDELINES

Example 3-3. Eliminating Branch with CMOV Instruction

test ecx, ecx
jne TH
mov eax, ebx
1H:
; To optimize code, combine jne and mov into one cmovcc instruction that checks the equal flag
test ecx, ecx ; Test the flags
cmoveq eax, ebx ; If the equal flag is set, move
; ebx to eax- the TH: tag no longer needed

The CMOV and FCMOV instructions are available on the Pentium Il and subsequent
processors, but not on Pentium processors and earlier 1A-32 processors. Be sure to
check whether a processor supports these instructions with the CPUID instruction.

34.1.2 Spin-Wait and Idle Loops

The Pentium 4 processor introduces a new PAUSE instruction; the instruction is
architecturally a NOP on Intel 64 and 1A-32 processor implementations.

To the Pentium 4 and later processors, this instruction acts as a hint that the code
sequence is a spin-wait loop. Without a PAUSE instruction in such loops, the Pentium
4 processor may suffer a severe penalty when exiting the loop because the processor
may detect a possible memory order violation. Inserting the PAUSE instruction
significantly reduces the likelihood of a memory order violation and as a result
improves performance.

In Example 3-4, the code spins until memory location A matches the value stored in
the register EAX. Such code sequences are common when protecting a critical
section, in producer-consumer sequences, for barriers, or other synchronization.

Example 3-4. Use of PAUSE Instruction

lock: cmpeax, a

jne loop

; Code in critical section:
loop: pause

cmp eax, a

jne loop

jmp lock

3.4.1.3 Static Prediction

Branches that do not have a history in the BTB (see Section 3.4.1, “Branch Prediction
Optimization™”) are predicted using a static prediction algorithm. Pentium 4,

3-9

GENERAL OPTIMIZATION GUIDELINES

Pentium M, Intel