
N

Intel® 64 and IA-32
Architectures

Optimization Reference Manual

Order Number: 248966-020
November 2009

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITU-
ATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "un-
defined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Intel, Pentium, Intel Atom, Intel Centrino, Intel Centrino Duo, Intel Xeon, Intel NetBurst, Intel Core, Intel
Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel Speed-
Step, MMX, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2009 Intel Corporation

CONTENTS
PAGE
CHAPTER 1
INTRODUCTION
1.1 TUNING YOUR APPLICATION. 1-1
1.2 ABOUT THIS MANUAL . 1-2
1.3 RELATED INFORMATION. 1-4

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1 INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL CORE MICROARCHITECTURE .

2-2
2.1.1 Intel® Core™ Microarchitecture Pipeline Overview . 2-3
2.1.2 Front End. 2-4
2.1.2.1 Branch Prediction Unit . 2-6
2.1.2.2 Instruction Fetch Unit . 2-6
2.1.2.3 Instruction Queue (IQ) . 2-7
2.1.2.4 Instruction Decode . 2-8
2.1.2.5 Stack Pointer Tracker . 2-8
2.1.2.6 Micro-fusion . 2-9
2.1.3 Execution Core . 2-9
2.1.3.1 Issue Ports and Execution Units . 2-10
2.1.4 Intel® Advanced Memory Access . 2-13
2.1.4.1 Loads and Stores . 2-14
2.1.4.2 Data Prefetch to L1 caches. 2-15
2.1.4.3 Data Prefetch Logic . 2-15
2.1.4.4 Store Forwarding . 2-16
2.1.4.5 Memory Disambiguation . 2-17
2.1.5 Intel® Advanced Smart Cache . 2-18
2.1.5.1 Loads . 2-19
2.1.5.2 Stores. 2-20
2.2 INTEL® MICROARCHITECTURE (NEHALEM) . 2-21
2.2.1 Microarchitecture Pipeline . 2-21
2.2.2 Front End Overview. 2-23
2.2.3 Execution Engine . 2-25
2.2.3.1 Issue Ports and Execution Units . 2-25
2.2.4 Cache and Memory Subsystem. 2-27
2.2.5 Load and Store Operation Enhancements . 2-28
2.2.5.1 Efficient Handling of Alignment Hazards . 2-28
2.2.5.2 Store Forwarding Enhancement . 2-29
2.2.6 REP String Enhancement . 2-31
2.2.7 Enhancements for System Software . 2-32
2.2.8 Efficiency Enhancements for Power Consumption . 2-33
2.2.9 Hyper-Threading Technology Support in Intel Microarchitecture (Nehalem). 2-33
2.3 INTEL NETBURST® MICROARCHITECTURE . 2-33
2.3.1 Design Goals . 2-34
2.3.2 Pipeline . 2-35
2.3.2.1 Front End. 2-36
2.3.2.2 Out-of-order Core . 2-37
iii

CONTENTS

PAGE
2.3.2.3 Retirement . 2-37
2.3.3 Front End Pipeline Detail . 2-38
2.3.3.1 Prefetching. 2-38
2.3.3.2 Decoder . 2-38
2.3.3.3 Execution Trace Cache . 2-39
2.3.3.4 Branch Prediction . 2-39
2.3.4 Execution Core Detail . 2-40
2.3.4.1 Instruction Latency and Throughput . 2-40
2.3.4.2 Execution Units and Issue Ports . 2-41
2.3.4.3 Caches . 2-42
2.3.4.4 Data Prefetch . 2-44
2.3.4.5 Loads and Stores . 2-45
2.3.4.6 Store Forwarding . 2-46
2.4 INTEL® PENTIUM® M PROCESSOR MICROARCHITECTURE . 2-47
2.4.1 Front End. 2-48
2.4.2 Data Prefetching. 2-49
2.4.3 Out-of-Order Core. 2-50
2.4.4 In-Order Retirement. 2-50
2.5 MICROARCHITECTURE OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS 2-50
2.5.1 Front End. 2-51
2.5.2 Data Prefetching. 2-51
2.6 INTEL® HYPER-THREADING TECHNOLOGY . 2-52
2.6.1 Processor Resources and HT Technology. 2-53
2.6.1.1 Replicated Resources . 2-53
2.6.1.2 Partitioned Resources. 2-54
2.6.1.3 Shared Resources. 2-54
2.6.2 Microarchitecture Pipeline and HT Technology. 2-55
2.6.3 Front End Pipeline . 2-55
2.6.4 Execution Core . 2-55
2.6.5 Retirement . 2-56
2.7 MULTICORE PROCESSORS . 2-56
2.7.1 Microarchitecture Pipeline and MultiCore Processors . 2-58
2.7.2 Shared Cache in Intel® Core™ Duo Processors . 2-58
2.7.2.1 Load and Store Operations . 2-59
2.8 INTEL®

64 ARCHITECTURE . 2-60

2.9 SIMD TECHNOLOGY . 2-60
2.9.1 Summary of SIMD Technologies. 2-63
2.9.1.1 MMX™ Technology . 2-63
2.9.1.2 Streaming SIMD Extensions. 2-63
2.9.1.3 Streaming SIMD Extensions 2. 2-63
2.9.1.4 Streaming SIMD Extensions 3. 2-64
2.9.1.5 Supplemental Streaming SIMD Extensions 3 . 2-64
2.9.1.6 SSE4.1 . 2-64
2.9.1.7 SSE4.2 . 2-65

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES
3.1 PERFORMANCE TOOLS . 3-1
3.1.1 Intel® C++ and Fortran Compilers . 3-1
3.1.2 General Compiler Recommendations . 3-2
3.1.3 VTune™ Performance Analyzer . 3-2
iv

CONTENTS

PAGE
3.2 PROCESSOR PERSPECTIVES. 3-3
3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy . 3-4
3.2.2 Transparent Cache-Parameter Strategy . 3-5
3.2.3 Threading Strategy and Hardware Multithreading Support. 3-5
3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS. 3-5
3.4 OPTIMIZING THE FRONT END . 3-6
3.4.1 Branch Prediction Optimization. 3-6
3.4.1.1 Eliminating Branches . 3-7
3.4.1.2 Spin-Wait and Idle Loops . 3-9
3.4.1.3 Static Prediction. 3-9
3.4.1.4 Inlining, Calls and Returns .3-11
3.4.1.5 Code Alignment .3-12
3.4.1.6 Branch Type Selection .3-13
3.4.1.7 Loop Unrolling. .3-15
3.4.1.8 Compiler Support for Branch Prediction .3-16
3.4.2 Fetch and Decode Optimization .3-17
3.4.2.1 Optimizing for Micro-fusion .3-17
3.4.2.2 Optimizing for Macro-fusion .3-18
3.4.2.3 Length-Changing Prefixes (LCP) .3-21
3.4.2.4 Optimizing the Loop Stream Detector (LSD) .3-23
3.4.2.5 Scheduling Rules for the Pentium 4 Processor Decoder. .3-24
3.4.2.6 Scheduling Rules for the Pentium M Processor Decoder .3-24
3.4.2.7 Other Decoding Guidelines .3-24
3.5 OPTIMIZING THE EXECUTION CORE . 3-25
3.5.1 Instruction Selection. .3-25
3.5.1.1 Use of the INC and DEC Instructions .3-26
3.5.1.2 Integer Divide .3-26
3.5.1.3 Using LEA .3-27
3.5.1.4 Using SHIFT and ROTATE .3-27
3.5.1.5 Address Calculations. .3-27
3.5.1.6 Clearing Registers and Dependency Breaking Idioms .3-28
3.5.1.7 Compares .3-30
3.5.1.8 Using NOPs .3-31
3.5.1.9 Mixing SIMD Data Types .3-31
3.5.1.10 Spill Scheduling. .3-32
3.5.2 Avoiding Stalls in Execution Core .3-32
3.5.2.1 ROB Read Port Stalls .3-33
3.5.2.2 Bypass between Execution Domains .3-34
3.5.2.3 Partial Register Stalls .3-34
3.5.2.4 Partial XMM Register Stalls .3-36
3.5.2.5 Partial Flag Register Stalls .3-37
3.5.2.6 Floating Point/SIMD Operands in Intel NetBurst microarchitecture 3-38
3.5.3 Vectorization. .3-38
3.5.4 Optimization of Partially Vectorizable Code .3-40
3.5.4.1 Alternate Packing Techniques. .3-42
3.5.4.2 Simplifying Result Passing .3-42
3.5.4.3 Stack Optimization .3-43
3.5.4.4 Tuning Considerations .3-44
3.6 OPTIMIZING MEMORY ACCESSES . 3-46
3.6.1 Load and Store Execution Bandwidth .3-46
3.6.2 Enhance Speculative Execution and Memory Disambiguation. .3-47
3.6.3 Alignment. .3-47
v

CONTENTS

PAGE
3.6.4 Store Forwarding . 3-50
3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment. 3-51
3.6.4.2 Store-forwarding Restriction on Data Availability . 3-55
3.6.5 Data Layout Optimizations . 3-56
3.6.6 Stack Alignment . 3-59
3.6.7 Capacity Limits and Aliasing in Caches . 3-60
3.6.7.1 Capacity Limits in Set-Associative Caches . 3-60
3.6.7.2 Aliasing Cases in Processors Based on Intel NetBurst Microarchitecture. 3-61
3.6.7.3 Aliasing Cases in the Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo and Intel® Core™

2 Duo Processors . 3-62
3.6.8 Mixing Code and Data . 3-63
3.6.8.1 Self-modifying Code. 3-64
3.6.9 Write Combining . 3-64
3.6.10 Locality Enhancement . 3-65
3.6.11 Minimizing Bus Latency. 3-67
3.6.12 Non-Temporal Store Bus Traffic . 3-67
3.7 PREFETCHING . 3-68
3.7.1 Hardware Instruction Fetching and Software Prefetching . 3-69
3.7.2 Software and Hardware Prefetching in Prior Microarchitectures 3-69
3.7.3 Hardware Prefetching for First-Level Data Cache . 3-70
3.7.4 Hardware Prefetching for Second-Level Cache . 3-73
3.7.5 Cacheability Instructions . 3-74
3.7.6 REP Prefix and Data Movement. 3-74
3.8 FLOATING-POINT CONSIDERATIONS. 3-77
3.8.1 Guidelines for Optimizing Floating-point Code. 3-77
3.8.2 Floating-point Modes and Exceptions. 3-79
3.8.2.1 Floating-point Exceptions . 3-79
3.8.2.2 Dealing with floating-point exceptions in x87 FPU code . 3-79
3.8.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code . 3-80
3.8.3 Floating-point Modes . 3-81
3.8.3.1 Rounding Mode . 3-81
3.8.3.2 Precision . 3-83
3.8.3.3 Improving Parallelism and the Use of FXCH . 3-84
3.8.4 x87 vs. Scalar SIMD Floating-point Trade-offs . 3-84
3.8.4.1 Scalar SSE/SSE2 Performance on Intel® Core™ Solo and Intel® Core™ Duo Processors .

3-85
3.8.4.2 x87 Floating-point Operations with Integer Operands. 3-86
3.8.4.3 x87 Floating-point Comparison Instructions . 3-86
3.8.4.4 Transcendental Functions . 3-86
3.9 MAXIMIZING PCIE PERFORMANCE . 3-87

CHAPTER 4
CODING FOR SIMD ARCHITECTURES
4.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIES . 4-1
4.1.1 Checking for MMX Technology Support. 4-2
4.1.2 Checking for Streaming SIMD Extensions Support. 4-2
4.1.3 Checking for Streaming SIMD Extensions 2 Support . 4-3
4.1.4 Checking for Streaming SIMD Extensions 3 Support . 4-3
4.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support 4-4
4.1.6 Checking for SSE4.1 Support . 4-4
4.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD PROGRAMMING. 4-5
vi

CONTENTS

PAGE
4.2.1 Identifying Hot Spots . 4-7
4.2.2 Determine If Code Benefits by Conversion to SIMD Execution . 4-7
4.3 CODING TECHNIQUES . 4-8
4.3.1 Coding Methodologies . 4-9
4.3.1.1 Assembly .4-10
4.3.1.2 Intrinsics .4-11
4.3.1.3 Classes .4-12
4.3.1.4 Automatic Vectorization .4-13
4.4 STACK AND DATA ALIGNMENT . 4-14
4.4.1 Alignment and Contiguity of Data Access Patterns .4-14
4.4.1.1 Using Padding to Align Data .4-15
4.4.1.2 Using Arrays to Make Data Contiguous .4-15
4.4.2 Stack Alignment For 128-bit SIMD Technologies. .4-16
4.4.3 Data Alignment for MMX Technology .4-17
4.4.4 Data Alignment for 128-bit data .4-17
4.4.4.1 Compiler-Supported Alignment .4-17
4.5 IMPROVING MEMORY UTILIZATION . 4-19
4.5.1 Data Structure Layout .4-19
4.5.2 Strip-Mining .4-23
4.5.3 Loop Blocking .4-24
4.6 INSTRUCTION SELECTION . 4-26
4.6.1 SIMD Optimizations and Microarchitectures .4-28
4.7 TUNING THE FINAL APPLICATION . 4-28

CHAPTER 5
OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.1 GENERAL RULES ON SIMD INTEGER CODE. 5-2
5.2 USING SIMD INTEGER WITH X87 FLOATING-POINT . 5-2
5.2.1 Using the EMMS Instruction . 5-3
5.2.2 Guidelines for Using EMMS Instruction . 5-3
5.3 DATA ALIGNMENT . 5-4
5.4 DATA MOVEMENT CODING TECHNIQUES . 5-6
5.4.1 Unsigned Unpack . 5-6
5.4.2 Signed Unpack . 5-7
5.4.3 Interleaved Pack with Saturation . 5-8
5.4.4 Interleaved Pack without Saturation. .5-10
5.4.5 Non-Interleaved Unpack .5-10
5.4.6 Extract Data Element .5-12
5.4.7 Insert Data Element .5-13
5.4.8 Non-Unit Stride Data Movement. .5-14
5.4.9 Move Byte Mask to Integer .5-15
5.4.10 Packed Shuffle Word for 64-bit Registers. .5-16
5.4.11 Packed Shuffle Word for 128-bit Registers .5-17
5.4.12 Shuffle Bytes .5-18
5.4.13 Conditional Data Movement .5-18
5.4.14 Unpacking/interleaving 64-bit Data in 128-bit Registers .5-18
5.4.15 Data Movement .5-19
5.4.16 Conversion Instructions .5-19
5.5 GENERATING CONSTANTS . 5-19
5.6 BUILDING BLOCKS . 5-20
5.6.1 Absolute Difference of Unsigned Numbers .5-20
vii

CONTENTS

PAGE
5.6.2 Absolute Difference of Signed Numbers. 5-21
5.6.3 Absolute Value . 5-21
5.6.4 Pixel Format Conversion . 5-22
5.6.5 Endian Conversion . 5-24
5.6.6 Clipping to an Arbitrary Range [High, Low]. 5-25
5.6.6.1 Highly Efficient Clipping . 5-26
5.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low] . 5-27
5.6.7 Packed Max/Min of Byte, Word and Dword . 5-28
5.6.8 Packed Multiply Integers . 5-28
5.6.9 Packed Sum of Absolute Differences . 5-28
5.6.10 MPSADBW and PHMINPOSUW . 5-29
5.6.11 Packed Average (Byte/Word) . 5-29
5.6.12 Complex Multiply by a Constant . 5-30
5.6.13 Packed 64-bit Add/Subtract . 5-30
5.6.14 128-bit Shifts. 5-31
5.6.15 PTEST and Conditional Branch . 5-31
5.6.16 Vectorization of Heterogeneous Computations across Loop Iterations 5-32
5.6.17 Vectorization of Control Flows in Nested Loops. 5-33
5.7 MEMORY OPTIMIZATIONS . 5-35
5.7.1 Partial Memory Accesses . 5-36
5.7.1.1 Supplemental Techniques for Avoiding Cache Line Splits . 5-38
5.7.2 Increasing Bandwidth of Memory Fills and Video Fills. 5-39
5.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction 5-39
5.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM

Page . 5-40
5.7.2.3 Increasing UC and WC Store Bandwidth by Using Aligned Stores 5-40
5.7.3 Reverse Memory Copy . 5-40
5.8 CONVERTING FROM 64-BIT TO 128-BIT SIMD INTEGERS . 5-43
5.8.1 SIMD Optimizations and Microarchitectures. 5-44
5.8.1.1 Packed SSE2 Integer versus MMX Instructions. 5-44
5.8.1.2 Work-around for False Dependency Issue . 5-45
5.9 TUNING PARTIALLY VECTORIZABLE CODE. 5-46

CHAPTER 6
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE . 6-1
6.2 PLANNING CONSIDERATIONS . 6-1
6.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINT. 6-2
6.4 SCALAR FLOATING-POINT CODE . 6-2
6.5 DATA ALIGNMENT . 6-3
6.5.1 Data Arrangement . 6-3
6.5.1.1 Vertical versus Horizontal Computation . 6-3
6.5.1.2 Data Swizzling . 6-6
6.5.1.3 Data Deswizzling. 6-9
6.5.1.4 Horizontal ADD Using SSE . 6-10
6.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions. 6-13
6.5.3 Flush-to-Zero and Denormals-are-Zero Modes . 6-13
6.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES . 6-14
6.6.1 SIMD Floating-point Programming Using SSE3 . 6-14
6.6.1.1 SSE3 and Complex Arithmetics . 6-15
6.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor 6-18
viii

CONTENTS

PAGE
6.6.2 Dot Product and Horizontal SIMD Instructions .6-18
6.6.3 Vector Normalization .6-21
6.6.4 Using Horizontal SIMD Instruction Sets and Data Layout .6-23
6.6.4.1 SOA and Vector Matrix Multiplication .6-26

CHAPTER 7
OPTIMIZING CACHE USAGE
7.1 GENERAL PREFETCH CODING GUIDELINES. 7-1
7.2 HARDWARE PREFETCHING OF DATA . 7-3
7.3 PREFETCH AND CACHEABILITY INSTRUCTIONS. 7-4
7.4 PREFETCH . 7-4
7.4.1 Software Data Prefetch . 7-4
7.4.2 Prefetch Instructions – Pentium® 4 Processor Implementation . 7-5
7.4.3 Prefetch and Load Instructions . 7-6
7.5 CACHEABILITY CONTROL . 7-7
7.5.1 The Non-temporal Store Instructions . 7-7
7.5.1.1 Fencing . 7-7
7.5.1.2 Streaming Non-temporal Stores . 7-7
7.5.1.3 Memory Type and Non-temporal Stores . 7-8
7.5.1.4 Write-Combining. 7-8
7.5.2 Streaming Store Usage Models . 7-9
7.5.2.1 Coherent Requests . 7-9
7.5.2.2 Non-coherent requests . 7-9
7.5.3 Streaming Store Instruction Descriptions .7-10
7.5.4 The Streaming Load Instruction .7-10
7.5.5 FENCE Instructions .7-11
7.5.5.1 SFENCE Instruction .7-11
7.5.5.2 LFENCE Instruction .7-11
7.5.5.3 MFENCE Instruction. .7-12
7.5.6 CLFLUSH Instruction .7-12
7.6 MEMORY OPTIMIZATION USING PREFETCH. 7-13
7.6.1 Software-Controlled Prefetch .7-13
7.6.2 Hardware Prefetch .7-13
7.6.3 Example of Effective Latency Reduction

with Hardware Prefetch .7-14
7.6.4 Example of Latency Hiding with S/W Prefetch Instruction .7-16
7.6.5 Software Prefetching Usage Checklist .7-17
7.6.6 Software Prefetch Scheduling Distance. .7-18
7.6.7 Software Prefetch Concatenation .7-19
7.6.8 Minimize Number of Software Prefetches .7-20
7.6.9 Mix Software Prefetch with Computation Instructions. .7-22
7.6.10 Software Prefetch and Cache Blocking Techniques .7-23
7.6.11 Hardware Prefetching and Cache Blocking Techniques .7-27
7.6.12 Single-pass versus Multi-pass Execution .7-28
7.7 MEMORY OPTIMIZATION USING NON-TEMPORAL STORES . 7-31
7.7.1 Non-temporal Stores and Software Write-Combining .7-31
7.7.2 Cache Management. .7-32
7.7.2.1 Video Encoder. .7-32
7.7.2.2 Video Decoder .7-32
7.7.2.3 Conclusions from Video Encoder and Decoder Implementation7-33
7.7.2.4 Optimizing Memory Copy Routines .7-33
ix

CONTENTS

PAGE
7.7.2.5 TLB Priming . 7-34
7.7.2.6 Using the 8-byte Streaming Stores and Software Prefetch. 7-35
7.7.2.7 Using 16-byte Streaming Stores and Hardware Prefetch. 7-35
7.7.2.8 Performance Comparisons of Memory Copy Routines . 7-37
7.7.3 Deterministic Cache Parameters . 7-38
7.7.3.1 Cache Sharing Using Deterministic Cache Parameters . 7-40
7.7.3.2 Cache Sharing in Single-Core or Multicore . 7-40
7.7.3.3 Determine Prefetch Stride . 7-40

CHAPTER 8
MULTICORE AND HYPER-THREADING TECHNOLOGY
8.1 PERFORMANCE AND USAGE MODELS . 8-1
8.1.1 Multithreading . 8-2
8.1.2 Multitasking Environment . 8-3
8.2 PROGRAMMING MODELS AND MULTITHREADING . 8-4
8.2.1 Parallel Programming Models . 8-5
8.2.1.1 Domain Decomposition . 8-5
8.2.2 Functional Decomposition . 8-5
8.2.3 Specialized Programming Models. 8-6
8.2.3.1 Producer-Consumer Threading Models . 8-7
8.2.4 Tools for Creating Multithreaded Applications . 8-10
8.2.4.1 Programming with OpenMP Directives . 8-10
8.2.4.2 Automatic Parallelization of Code . 8-10
8.2.4.3 Supporting Development Tools . 8-11
8.2.4.4 Intel® Thread Checker . 8-11
8.2.4.5 Intel® Thread Profiler . 8-11
8.2.4.6 Intel® Threading Building Block . 8-11
8.3 OPTIMIZATION GUIDELINES. 8-11
8.3.1 Key Practices of Thread Synchronization . 8-12
8.3.2 Key Practices of System Bus Optimization. 8-12
8.3.3 Key Practices of Memory Optimization . 8-12
8.3.4 Key Practices of Front-end Optimization . 8-13
8.3.5 Key Practices of Execution Resource Optimization . 8-13
8.3.6 Generality and Performance Impact . 8-14
8.4 THREAD SYNCHRONIZATION . 8-14
8.4.1 Choice of Synchronization Primitives . 8-15
8.4.2 Synchronization for Short Periods . 8-16
8.4.3 Optimization with Spin-Locks . 8-18
8.4.4 Synchronization for Longer Periods . 8-18
8.4.4.1 Avoid Coding Pitfalls in Thread Synchronization . 8-19
8.4.5 Prevent Sharing of Modified Data and False-Sharing . 8-21
8.4.6 Placement of Shared Synchronization Variable . 8-21
8.5 SYSTEM BUS OPTIMIZATION. 8-23
8.5.1 Conserve Bus Bandwidth . 8-23
8.5.2 Understand the Bus and Cache Interactions . 8-24
8.5.3 Avoid Excessive Software Prefetches. 8-25
8.5.4 Improve Effective Latency of Cache Misses. 8-25
8.5.5 Use Full Write Transactions to Achieve Higher Data Rate. 8-26
8.6 MEMORY OPTIMIZATION. 8-26
8.6.1 Cache Blocking Technique . 8-27
8.6.2 Shared-Memory Optimization . 8-27
x

CONTENTS

PAGE
8.6.2.1 Minimize Sharing of Data between Physical Processors .8-27
8.6.2.2 Batched Producer-Consumer Model. .8-28
8.6.3 Eliminate 64-KByte Aliased Data Accesses .8-29
8.7 FRONT-END OPTIMIZATION . 8-30
8.7.1 Avoid Excessive Loop Unrolling. .8-30
8.8 AFFINITIES AND MANAGING SHARED PLATFORM RESOURCES . 8-30
8.8.1 Topology Enumeration of Shared Resources .8-32
8.8.2 Non-Uniform Memory Access .8-32
8.9 OPTIMIZATION OF OTHER SHARED RESOURCES. 8-35
8.9.1 Expanded Opportunity for HT Optimization .8-35

CHAPTER 9
64-BIT MODE CODING GUIDELINES
9.1 INTRODUCTION. 9-1
9.2 CODING RULES AFFECTING 64-BIT MODE . 9-1
9.2.1 Use Legacy 32-Bit Instructions When Data Size Is 32 Bits . 9-1
9.2.2 Use Extra Registers to Reduce Register Pressure . 9-2
9.2.3 Use 64-Bit by 64-Bit Multiplies To Produce

128-Bit Results Only When Necessary . 9-2
9.2.4 Sign Extension to Full 64-Bits . 9-2
9.3 ALTERNATE CODING RULES FOR 64-BIT MODE. 9-3
9.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers

for 64-Bit Arithmetic . 9-3
9.3.2 CVTSI2SS and CVTSI2SD. 9-4
9.3.3 Using Software Prefetch. 9-5

CHAPTER 10 SSE4.2 AND SIMD PROGRAMMING FOR TEXT-
PROCESSING/LEXING/PARSING
10.1 SSE4.2 STRING AND TEXT INSTRUCTIONS . 10-1
10.1.1 CRC32 .10-5
10.2 USING SSE4.2 STRING AND TEXT INSTRUCTIONS. 10-7
10.2.1 Unaligned Memory Access and Buffer Size Management. .10-7
10.2.2 Unaligned Memory Access and String Library. .10-8
10.3 SSE4.2 APPLICATION CODING GUIDELINE AND EXAMPLES . 10-8
10.3.1 Null Character Identification (Strlen equivalent) .10-8
10.3.2 White-Space-Like Character Identification. 10-12
10.3.3 Substring Searches . 10-16
10.3.4 String Token Extraction and Case Handling . 10-25
10.3.5 Unicode Processing and PCMPxSTRy . 10-30
10.3.6 Replacement String Library Function Using SSE4.2 . 10-37
10.4 SSE4.2 ENABLED NUMERICAL AND LEXICAL COMPUTATION . 10-39

CHAPTER 11
POWER OPTIMIZATION FOR MOBILE USAGES
11.1 OVERVIEW . 11-1
11.2 MOBILE USAGE SCENARIOS . 11-2
11.3 ACPI C-STATES . 11-3
11.3.1 Processor-Specific C4 and Deep C4 States .11-4
11.4 GUIDELINES FOR EXTENDING BATTERY LIFE . 11-5
xi

CONTENTS

PAGE
11.4.1 Adjust Performance to Meet Quality of Features . 11-5
11.4.2 Reducing Amount of Work . 11-7
11.4.3 Platform-Level Optimizations . 11-7
11.4.4 Handling Sleep State Transitions. 11-7
11.4.5 Using Enhanced Intel SpeedStep® Technology . 11-8
11.4.6 Enabling Intel® Enhanced Deeper Sleep .11-10
11.4.7 Multicore Considerations .11-10
11.4.7.1 Enhanced Intel SpeedStep® Technology .11-11
11.4.7.2 Thread Migration Considerations. .11-11
11.4.7.3 Multicore Considerations for C-States .11-12

CHAPTER 12
INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
12.1 OVERVIEW. 12-1
12.2 INTEL® ATOM™ MICROARCHITECTURE . 12-1
12.2.1 Hyper-Threading Technology Support in Intel® Atom™ Microarchitecture 12-3
12.3 CODING RECOMMENDATIONS FOR INTEL® ATOM™ MICROARCHITECTURE 12-4
12.3.1 Optimization for Front End of Intel® Atom™ Microarchitecture. 12-4
12.3.2 Optimizing the Execution Core . 12-6
12.3.2.1 Integer Instruction Selection. 12-6
12.3.2.2 Address Generation . 12-7
12.3.2.3 Integer Multiply . 12-8
12.3.2.4 Integer Shift Instructions . 12-9
12.3.2.5 Partial Register Access . 12-9
12.3.2.6 FP/SIMD Instruction Selection . 12-9
12.3.3 Optimizing Memory Access .12-12
12.3.3.1 Store Forwarding .12-12
12.3.3.2 First-level Data Cache .12-13
12.3.3.3 Segment Base .12-13
12.3.3.4 String Moves .12-14
12.3.3.5 Parameter Passing .12-15
12.3.3.6 Function Calls .12-15
12.3.3.7 Optimization of Multiply/Add Dependent Chains .12-15
12.3.3.8 Position Independent Code .12-17
12.4 INSTRUCTION LATENCY . 12-18

APPENDIX A
APPLICATION PERFORMANCE
TOOLS
A.1 COMPILERS . A-2
A.1.1 Recommended Optimization Settings for Intel® 64 and IA-32 Processors A-2
A.1.2 Vectorization and Loop Optimization . A-5
A.1.2.1 Multithreading with OpenMP* . A-5
A.1.2.2 Automatic Multithreading . A-5
A.1.3 Inline Expansion of Library Functions (/Oi, /Oi-) . A-6
A.1.4 Floating-point Arithmetic Precision (/Op, /Op-, /Qprec, /Qprec_div, /Qpc, /Qlong_double).

A-6
A.1.5 Rounding Control Option (/Qrcr, /Qrcd) . A-6
A.1.6 Interprocedural and Profile-Guided Optimizations . A-6
A.1.6.1 Interprocedural Optimization (IPO) . A-6
xii

CONTENTS

PAGE
A.1.6.2 Profile-Guided Optimization (PGO) . A-6
A.1.7 Auto-Generation of Vectorized Code . A-7
A.2 INTEL® VTUNE™ PERFORMANCE ANALYZER . A-11
A.2.1 Sampling .A-11
A.2.1.1 Time-based Sampling .A-12
A.2.1.2 Event-based Sampling .A-12
A.2.1.3 Workload Characterization .A-12
A.2.2 Call Graph .A-12
A.2.3 Counter Monitor .A-13
A.3 INTEL® PERFORMANCE LIBRARIES . A-13
A.3.1 Benefits Summary. .A-14
A.3.2 Optimizations with the Intel® Performance Libraries .A-14
A.4 INTEL® THREADING ANALYSIS TOOLS. A-15
A.4.1 Intel® Thread Checker 3.0 .A-15
A.4.2 Intel® Thread Profiler 3.0. .A-15
A.4.3 Intel® Threading Building Blocks 1.0. .A-16
A.5 INTEL® CLUSTER TOOLS. A-17
A.5.1 Intel® MPI Library 3.1 .A-17
A.5.2 Intel® Trace Analyzer and Collector 7.1. .A-17
A.5.3 Intel® MPI Benchmarks 3.1 .A-17
A.5.4 Benefits Summary. .A-18
A.5.4.1 Multiple usability improvements .A-18
A.5.4.2 Improved application performance .A-18
A.5.4.3 Extended interoperability .A-18
A.6 INTEL® XML PRODUCTS . A-18
A.6.1 Intel® XML Software Suite 1.0 .A-18
A.6.1.1 Intel® XSLT Accelerator .A-18
A.6.1.2 Intel® XPath Accelerator .A-19
A.6.1.3 Intel® XML Schema Accelerator .A-19
A.6.1.4 Intel® XML Parsing Accelerator .A-19
A.6.2 Intel® SOA Security Toolkit 1.0 Beta for Axis2. .A-19
A.6.2.1 High Performance .A-20
A.6.2.2 Standards Compliant. .A-20
A.6.2.3 Easy Integration. .A-20
A.6.3 Intel® XSLT Accelerator 1.1 for Java* Environments on Linux* and Windows* Operating

Systems .A-20
A.6.3.1 High Performance Transformations .A-20
A.6.3.2 Large XML File Transformations. .A-20
A.6.3.3 Standards Compliant. .A-21
A.6.3.4 Thread-Safe .A-21
A.7 INTEL® SOFTWARE COLLEGE . A-21

APPENDIX B
USING PERFORMANCE MONITORING EVENTS
B.1 INTEL® XEON® PROCESSOR 5500 SERIES. B-1
B.2 PERFORMANCE ANALYSIS TECHNIQUES FOR INTEL® XEON® PROCESSOR 5500 SERIES B-2
B.2.1 Cycle Accounting and Uop Flow Analysis . B-3
B.2.1.1 Cycle Drill Down and Branch Mispredictions . B-5
B.2.1.2 Basic Block Drill Down . B-8
B.2.2 Stall Cycle Decomposition and Core Memory Accesses . B-9
B.2.2.1 Measuring Costs of Microarchitectural Conditions .B-10
xiii

CONTENTS

PAGE
B.2.3 Core PMU Precise Events . B-11
B.2.3.1 Precise Memory Access Events . B-12
B.2.3.2 Load Latency Event . B-14
B.2.3.3 Precise Execution Events. B-16
B.2.3.4 Last Branch Record (LBR) . B-18
B.2.3.5 Measuring Core Memory Access Latency . B-21
B.2.3.6 Measuring Per-Core Bandwidth . B-24
B.2.3.7 Miscellaneous L1 and L2 Events for Cache Misses . B-25
B.2.3.8 TLB Misses . B-25
B.2.3.9 L1 Data Cache . B-26
B.2.4 Front End Monitoring Events . B-27
B.2.4.1 Branch Mispredictions . B-27
B.2.4.2 Front End Code Generation Metrics . B-27
B.2.5 Uncore Performance Monitoring Events . B-28
B.2.5.1 Global Queue Occupancy . B-28
B.2.5.2 Global Queue Port Events . B-31
B.2.5.3 Global Queue Snoop Events . B-31
B.2.5.4 L3 Events . B-32
B.2.6 Intel QuickPath Interconnect Home Logic (QHL) . B-32
B.2.7 Measuring Bandwidth From the Uncore . B-39
B.3 USING PERFORMANCE EVENTS OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO

PROCESSORS . B-39
B.3.1 Understanding the Results in a Performance Counter . B-40
B.3.2 Ratio Interpretation . B-40
B.3.3 Notes on Selected Events . B-41
B.4 DRILL-DOWN TECHNIQUES FOR PERFORMANCE ANALYSIS . B-42
B.4.1 Cycle Composition at Issue Port . B-44
B.4.2 Cycle Composition of OOO Execution . B-45
B.4.3 Drill-Down on Performance Stalls . B-46
B.5 EVENT RATIOS FOR INTEL CORE MICROARCHITECTURE . B-47
B.5.1 Clocks Per Instructions Retired Ratio (CPI) . B-48
B.5.2 Front-end Ratios . B-48
B.5.2.1 Code Locality . B-48
B.5.2.2 Branching and Front-end . B-49
B.5.2.3 Stack Pointer Tracker . B-49
B.5.2.4 Macro-fusion . B-49
B.5.2.5 Length Changing Prefix (LCP) Stalls . B-50
B.5.2.6 Self Modifying Code Detection . B-50
B.5.3 Branch Prediction Ratios . B-50
B.5.3.1 Branch Mispredictions . B-50
B.5.3.2 Virtual Tables and Indirect Calls . B-51
B.5.3.3 Mispredicted Returns . B-51
B.5.4 Execution Ratios . B-51
B.5.4.1 Resource Stalls . B-51
B.5.4.2 ROB Read Port Stalls . B-52
B.5.4.3 Partial Register Stalls . B-52
B.5.4.4 Partial Flag Stalls . B-52
B.5.4.5 Bypass Between Execution Domains . B-52
B.5.4.6 Floating Point Performance Ratios . B-52
B.5.5 Memory Sub-System - Access Conflicts Ratios . B-53
B.5.5.1 Loads Blocked by the L1 Data Cache . B-53
B.5.5.2 4K Aliasing and Store Forwarding Block Detection . B-53
xiv

CONTENTS

PAGE
B.5.5.3 Load Block by Preceding Stores .B-54
B.5.5.4 Memory Disambiguation .B-54
B.5.5.5 Load Operation Address Translation .B-54
B.5.6 Memory Sub-System - Cache Misses Ratios .B-54
B.5.6.1 Locating Cache Misses in the Code. .B-54
B.5.6.2 L1 Data Cache Misses. .B-55
B.5.6.3 L2 Cache Misses .B-55
B.5.7 Memory Sub-system - Prefetching. .B-55
B.5.7.1 L1 Data Prefetching .B-55
B.5.7.2 L2 Hardware Prefetching .B-56
B.5.7.3 Software Prefetching. .B-56
B.5.8 Memory Sub-system - TLB Miss Ratios. .B-56
B.5.9 Memory Sub-system - Core Interaction .B-57
B.5.9.1 Modified Data Sharing .B-57
B.5.9.2 Fast Synchronization Penalty .B-57
B.5.9.3 Simultaneous Extensive Stores and Load Misses .B-58
B.5.10 Memory Sub-system - Bus Characterization .B-58
B.5.10.1 Bus Utilization. .B-58
B.5.10.2 Modified Cache Lines Eviction .B-59

APPENDIX C
INSTRUCTION LATENCY AND THROUGHPUT
C.1 OVERVIEW . C-1
C.2 DEFINITIONS . C-2
C.3 LATENCY AND THROUGHPUT . C-3
C.3.1 Latency and Throughput with Register Operands . C-3
C.3.2 Table Footnotes. .C-30
C.3.3 Instructions with Memory Operands .C-32

APPENDIX D
STACK ALIGNMENT
D.4 STACK FRAMES . D-1
D.4.1 Aligned ESP-Based Stack Frames . D-3
D.4.2 Aligned EDP-Based Stack Frames. D-4
D.4.3 Stack Frame Optimizations . D-6
D.5 INLINED ASSEMBLY AND EBX . D-7

APPENDIX E
SUMMARY OF RULES AND SUGGESTIONS
E.1 ASSEMBLY/COMPILER CODING RULES . E-1
E.2 USER/SOURCE CODING RULES. E-7
E.3 TUNING SUGGESTIONS. E-10
E.4 SSE4.2 CODING RULES . E-11
E.5 ASSEMBLY/COMPILER CODING RULES FOR THE INTEL® ATOM™ PROCESSOR E-11
xv

CONTENTS

PAGE
EXAMPLES

Example 3-1. Assembly Code with an Unpredictable Branch . 3-8
Example 3-2. Code Optimization to Eliminate Branches . 3-8
Example 3-4. Use of PAUSE Instruction. 3-9
Example 3-3. Eliminating Branch with CMOV Instruction . 3-9
Example 3-5. Pentium 4 Processor Static Branch Prediction Algorithm . 3-10
Example 3-6. Static Taken Prediction. 3-11
Example 3-7. Static Not-Taken Prediction . 3-11
Example 3-8. Indirect Branch With Two Favored Targets . 3-14
Example 3-9. A Peeling Technique to Reduce Indirect Branch Misprediction 3-15
Example 3-10. Loop Unrolling . 3-16
Example 3-11. Macro-fusion, Unsigned Iteration Count . 3-19
Example 3-12. Macro-fusion, If Statement . 3-20
Example 3-13. Macro-fusion, Signed Variable . 3-21
Example 3-14. Macro-fusion, Signed Comparison . 3-21
Example 3-15. Avoiding False LCP Delays with 0xF7 Group Instructions . 3-23
Example 3-16. Clearing Register to Break Dependency While Negating Array Elements. 3-29
Example 3-17. Spill Scheduling Code . 3-32
Example 3-18. Dependencies Caused by Referencing Partial Registers . 3-35
Example 3-19. Avoiding Partial Register Stalls in Integer Code . 3-35
Example 3-20. Avoiding Partial Register Stalls in SIMD Code . 3-36
Example 3-21. Avoiding Partial Flag Register Stalls . 3-37
Example 3-22. Reference Code Template for Partially Vectorizable Program 3-41
Example 3-23. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty 3-42
Example 3-24. Using Four Registers to Reduce Memory Spills and Simplify Result Passing. 3-43
Example 3-25. Stack Optimization Technique to Simplify Parameter Passing. 3-43
Example 3-26. Base Line Code Sequence to Estimate Loop Overhead . 3-45
Example 3-27. Loads Blocked by Stores of Unknown Address. 3-47
Example 3-28. Code That Causes Cache Line Split . 3-49
Example 3-29. Situations Showing Small Loads After Large Store . 3-52
Example 3-30. Non-forwarding Example of Large Load After Small Store . 3-53
Example 3-31. A Non-forwarding Situation in Compiler Generated Code . 3-53
Example 3-32. Two Ways to Avoid Non-forwarding Situation in Example 3-31 3-53
Example 3-33. Large and Small Load Stalls . 3-54
Example 3-34. Loop-carried Dependence Chain. 3-56
Example 3-35. Rearranging a Data Structure. 3-57
Example 3-36. Decomposing an Array . 3-57
Example 3-37. Dynamic Stack Alignment. 3-59
Example 3-38. Aliasing Between Loads and Stores Across Loop Iterations. 3-63
Example 3-39. Using Non-temporal Stores and 64-byte Bus Write Transactions 3-68
Example 3-40. On-temporal Stores and Partial Bus Write Transactions . 3-68
Example 3-41. Using DCU Hardware Prefetch . 3-71
Example 3-42. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines 3-72
Example 3-43. Technique For Using L1 Hardware Prefetch . 3-73
Example 3-44. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination 3-76
Example 3-45. Algorithm to Avoid Changing Rounding Mode . 3-82
xvi

CONTENTS

PAGE
Example 4-1. Identification of MMX Technology with CPUID. 4-2
Example 4-2. Identification of SSE with CPUID. 4-2
Example 4-3. Identification of SSE2 with cpuid . 4-3
Example 4-4. Identification of SSE3 with CPUID . 4-3
Example 4-5. Identification of SSSE3 with cpuid . 4-4
Example 4-6. Identification of SSE4.1 with cpuid . 4-4
Example 4-7. Simple Four-Iteration Loop .4-10
Example 4-8. Streaming SIMD Extensions Using Inlined Assembly Encoding4-11
Example 4-9. Simple Four-Iteration Loop Coded with Intrinsics .4-12
Example 4-10. C++ Code Using the Vector Classes .4-13
Example 4-11. Automatic Vectorization for a Simple Loop. .4-14
Example 4-12. C Algorithm for 64-bit Data Alignment .4-17
Example 4-14. SoA Data Structure .4-20
Example 4-15. AoS and SoA Code Samples .4-20
Example 4-13. AoS Data Structure .4-20
Example 4-16. Hybrid SoA Data Structure .4-22
Example 4-17. Pseudo-code Before Strip Mining .4-23
Example 4-18. Strip Mined Code .4-24
Example 4-19. Loop Blocking .4-25
Example 4-20. Emulation of Conditional Moves .4-27
Example 5-1. Resetting Register Between __m64 and FP Data Types Code. 5-4
Example 5-2. FIR Processing Example in C language Code . 5-5
Example 5-3. SSE2 and SSSE3 Implementation of FIR Processing Code . 5-5
Example 5-5. Signed Unpack Code . 5-7
Example 5-4. Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions Code. 5-
7
Example 5-6. Interleaved Pack with Saturation Code . 5-9
Example 5-7. Interleaved Pack without Saturation Code .5-10
Example 5-8. Unpacking Two Packed-word Sources in Non-interleaved Way Code.5-12
Example 5-9. PEXTRW Instruction Code. .5-13
Example 5-11. Repeated PINSRW Instruction Code .5-14
Example 5-10. PINSRW Instruction Code .5-14
Example 5-12. Non-Unit Stride Load/Store Using SSE4.1 Instructions .5-15
Example 5-13. Scatter and Gather Operations Using SSE4.1 Instructions .5-15
Example 5-14. PMOVMSKB Instruction Code. .5-16
Example 5-15. Broadcast a Word Across XMM, Using 2 SSE2 Instructions .5-17
Example 5-16. Swap/Reverse words in an XMM, Using 3 SSE2 Instructions 5-18
Example 5-17. Generating Constants. .5-19
Example 5-18. Absolute Difference of Two Unsigned Numbers .5-21
Example 5-19. Absolute Difference of Signed Numbers .5-21
Example 5-20. Computing Absolute Value .5-22
Example 5-21. Basic C Implementation of RGBA to BGRA Conversion .5-22
Example 5-22. Color Pixel Format Conversion Using SSE2 .5-23
Example 5-23. Color Pixel Format Conversion Using SSSE3. .5-24
Example 5-24. Big-Endian to Little-Endian Conversion. .5-25
Example 5-25. Clipping to a Signed Range of Words [High, Low] .5-26
Example 5-26. Clipping to an Arbitrary Signed Range [High, Low] .5-26
xvii

CONTENTS

PAGE
Example 5-28. Clipping to an Arbitrary Unsigned Range [High, Low] . 5-27
Example 5-27. Simplified Clipping to an Arbitrary Signed Range . 5-27
Example 5-29. Complex Multiply by a Constant. 5-30
Example 5-30. Using PTEST to Separate Vectorizable and non-Vectorizable Loop Iterations . . . 5-31
Example 5-31. Using PTEST and Variable BLEND to Vectorize Heterogeneous Loops. 5-32
Example 5-32. Baseline C Code for Mandelbrot Set Map Evaluation. 5-33
Example 5-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics 5-34
Example 5-34. A Large Load after a Series of Small Stores (Penalty) . 5-36
Example 5-36. A Series of Small Loads After a Large Store . 5-37
Example 5-37. Eliminating Delay for a Series of Small Loads after a Large Store 5-37
Example 5-35. Accessing Data Without Delay . 5-37
Example 5-38. An Example of Video Processing with Cache Line Splits . 5-38
Example 5-39. Video Processing Using LDDQU to Avoid Cache Line Splits. 5-39
Example 5-40. Un-optimized Reverse Memory Copy in C . 5-41
Example 5-41. Using PSHUFB to Reverse Byte Ordering 16 Bytes at a Time. 5-42
Example 5-42. PMOVSX/PMOVZX Work-around to Avoid False Dependency 5-45
Example 5-43. Table Look-up Operations in C Code . 5-46
Example 5-44. Shift Techniques on Non-Vectorizable Table Look-up . 5-47
Example 5-45. PEXTRD Techniques on Non-Vectorizable Table Look-up . 5-48
Example 6-1. Pseudocode for Horizontal (xyz, AoS) Computation . 6-6
Example 6-2. Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation 6-6
Example 6-3. Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPS . 6-7
Example 6-4. Swizzling Data Using UNPCKxxx Instructions . 6-8
Example 6-5. Deswizzling Single-Precision SIMD Data . 6-9
Example 6-6. Deswizzling Data Using SIMD Integer Instructions. 6-10
Example 6-7. Horizontal Add Using MOVHLPS/MOVLHPS . 6-12
Example 6-8. Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS . 6-12
Example 6-9. Multiplication of Two Pair of Single-precision Complex Number 6-15
Example 6-10. Division of Two Pair of Single-precision Complex Numbers . 6-16
Example 6-11. Double-Precision Complex Multiplication of Two Pairs . 6-17
Example 6-12. Double-Precision Complex Multiplication Using Scalar SSE2 . 6-17
Example 6-13. Dot Product of Vector Length 4 Using SSE/SSE2. 6-19
Example 6-14. Dot Product of Vector Length 4 Using SSE3 . 6-19
Example 6-15. Dot Product of Vector Length 4 Using SSE4.1 . 6-19
Example 6-16. Unrolled Implementation of Four Dot Products . 6-20
Example 6-17. Normalization of an Array of Vectors . 6-21
Example 6-18. Normalize (x, y, z) Components of an Array of Vectors Using SSE2. 6-22
Example 6-19. Normalize (x, y, z) Components of an Array of Vectors Using SSE4.1 6-23
Example 6-20. Data Organization in Memory for AOS Vector-Matrix Multiplication 6-24
Example 6-21. AOS Vector-Matrix Multiplication with HADDPS . 6-24
Example 6-22. AOS Vector-Matrix Multiplication with DPPS . 6-25
Example 6-23. Data Organization in Memory for SOA Vector-Matrix Multiplication 6-26
Example 6-24. Vector-Matrix Multiplication with Native SOA Data Layout . 6-27
Example 7-1. Pseudo-code Using CLFLUSH . 7-13
Example 7-2. Populating an Array for Circular Pointer Chasing with Constant Stride 7-15
Example 7-3. Prefetch Scheduling Distance. 7-18
Example 7-4. Using Prefetch Concatenation . 7-20
xviii

CONTENTS

PAGE
Example 7-5. Concatenation and Unrolling the Last Iteration of Inner Loop 7-20
Example 7-6. Data Access of a 3D Geometry Engine without Strip-mining 7-26
Example 7-7. Data Access of a 3D Geometry Engine with Strip-mining .7-26
Example 7-8. Using HW Prefetch to Improve Read-Once Memory Traffic. .7-28
Example 7-9. Basic Algorithm of a Simple Memory Copy .7-33
Example 7-10. A Memory Copy Routine Using Software Prefetch. .7-34
Example 7-11. Memory Copy Using Hardware Prefetch and Bus Segmentation7-36
Example 8-1. Serial Execution of Producer and Consumer Work Items . 8-6
Example 8-2. Basic Structure of Implementing Producer Consumer Threads 8-7
Example 8-3. Thread Function for an Interlaced Producer Consumer Model 8-9
Example 8-4. Spin-wait Loop and PAUSE Instructions .8-17
Example 8-5. Coding Pitfall using Spin Wait Loop .8-20
Example 8-6. Placement of Synchronization and Regular Variables .8-22
Example 8-7. Declaring Synchronization Variables without Sharing a Cache Line8-22
Example 8-8. Batched Implementation of the Producer Consumer Threads 8-29
Example 8-9. Parallel Memory Initialization Technique Using OpenMP and NUMA8-34
Example 10-1. A Hash Function Examples .10-5
Example 10-2. Hash Function Using CRC32. .10-6
Example 10-3. Strlen() Using General-Purpose Instructions .10-9
Example 10-4. Sub-optimal PCMPISTRI Implementation of EOS handling . 10-11
Example 10-5. Strlen() Using PCMPISTRI without Loop-Carry Dependency. 10-12
Example 10-6. WordCnt() Using C and Byte-Scanning Technique . 10-13
Example 10-7. WordCnt() Using PCMPISTRM. 10-15
Example 10-8. KMP Substring Search in C . 10-17
Example 10-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic . 10-19
Example 10-10.Substring Search Using PCMPISTRI and KMP Overlap Table 10-22
Example 10-11.I Equivalent Strtok_s() Using PCMPISTRI Intrinsic . 10-26
Example 10-12.I Equivalent Strupr() Using PCMPISTRM Intrinsic . 10-29
Example 10-13.UTF16 VerStrlen() Using C and Table LookupTechnique . 10-31
Example 10-14.Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI 10-32
Example 10-15.Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRI . 10-35
Example 10-16.Replacement String Library Strcmp Using SSE4.2 . 10-38
Example 10-17.High-level flow of Character Subset Validation for String Conversion 10-40
Example 10-18.Intrinsic Listings of atol() Replacement Using PCMPISTRI. 10-41
Example 10-19.Auxiliary Routines and Data Constants Used in sse4i_atol() listing. 10-44
Example 12-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel® Atom™ Mi-
croarchitecture 12-5
Example 12-2. Alternative to Prevent AGU and Execution Unit Dependency 12-8
Example 12-3. Pipeling Instruction Execution in Integer Computation .12-9
Example 12-4. Memory Copy of 64-byte . 12-14
Example 12-5. Examples of Dependent Multiply and Add Computation . 12-16
Example 12-6. Instruction Pointer Query Techniques . 12-17
Example 12-8. Auto-Generated Code of Storing Absolutes . A-8
Example 12-9. Changes Signs. A-8
Example 12-7. Storing Absolute Values . A-8
Example 12-11.Data Conversion. A-9
Example 12-10.Auto-Generated Code of Sign Conversion . A-9
xix

CONTENTS

PAGE
Example 12-13.Un-aligned Data Operation . A-10
Example 12-12.Auto-Generated Code of Data Conversion . A-10
Example 12-14.Auto-Generated Code to Avoid Unaligned Loads . A-11
Example D-1. Aligned esp-Based Stack Frame. D-3
Example D-2. Aligned ebp-based Stack Frames. D-5
xx

CONTENTS

PAGE
FIGURES

Figure 2-1. Intel Core Microarchitecture Pipeline Functionality . 2-4
Figure 2-2. Execution Core of Intel Core Microarchitecture .2-12
Figure 2-3. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture2-17
Figure 2-4. Intel Advanced Smart Cache Architecture. .2-18
Figure 2-5. Intel Microarchitecture (Nehalem) Pipeline Functionality .2-22
Figure 2-6. Front End of Intel Microarchitecture (Nehalem) .2-23
Figure 2-7. Store-forwarding Scenarios of 16-Byte Store Operations. .2-30
Figure 2-8. Store-Forwarding Enhancement in Intel Microarchitecture (Nehalem).2-31
Figure 2-9. The Intel NetBurst Microarchitecture .2-36
Figure 2-10. Execution Units and Ports in Out-Of-Order Core .2-42
Figure 2-11. The Intel Pentium M Processor Microarchitecture .2-47
Figure 2-12. Hyper-Threading Technology on an SMP. .2-53
Figure 2-13. Pentium D Processor, Pentium Processor Extreme Edition,

Intel Core Duo Processor, Intel Core 2 Duo Processor, and Intel Core 2 Quad Processor
2-57

Figure 2-14. Typical SIMD Operations .2-61
Figure 2-15. SIMD Instruction Register Usage .2-62
Figure 3-1. Generic Program Flow of Partially Vectorized Code. .3-40
Figure 3-2. Cache Line Split in Accessing Elements in a Array .3-49
Figure 3-3. Size and Alignment Restrictions in Store Forwarding .3-51
Figure 4-1. Converting to Streaming SIMD Extensions Chart . 4-6
Figure 4-2. Hand-Coded Assembly and High-Level Compiler Performance Trade-offs 4-9
Figure 4-3. Loop Blocking Access Pattern .4-26
Figure 5-1. PACKSSDW mm, mm/mm64 Instruction . 5-8
Figure 5-2. Interleaved Pack with Saturation . 5-9
Figure 5-4. Result of Non-Interleaved Unpack High in MM1 .5-11
Figure 5-3. Result of Non-Interleaved Unpack Low in MM0. .5-11
Figure 5-5. PEXTRW Instruction .5-12
Figure 5-6. PINSRW Instruction. .5-13
Figure 5-7. PMOVSMKB Instruction .5-16
Figure 5-8. Data Alignment of Loads and Stores in Reverse Memory Copy5-41
Figure 5-9. A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy Using Two

Aligned Loads .5-43
Figure 6-1. Homogeneous Operation on Parallel Data Elements . 6-4
Figure 6-2. Horizontal Computation Model . 6-4
Figure 6-3. Dot Product Operation . 6-5
Figure 6-4. Horizontal Add Using MOVHLPS/MOVLHPS .6-11
Figure 6-5. Asymmetric Arithmetic Operation of the SSE3 Instruction .6-14
Figure 6-6. Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD.6-15
Figure 7-1. Effective Latency Reduction as a Function of Access Stride.7-15
Figure 7-2. Memory Access Latency and Execution Without Prefetch. .7-16
Figure 7-3. Memory Access Latency and Execution With Prefetch .7-17
Figure 7-4. Prefetch and Loop Unrolling. .7-21
Figure 7-5. Memory Access Latency and Execution With Prefetch .7-22
Figure 7-6. Spread Prefetch Instructions. .7-23
xxi

CONTENTS

PAGE
Figure 7-7. Cache Blocking – Temporally Adjacent and Non-adjacent Passes 7-24
Figure 7-8. Examples of Prefetch and Strip-mining for Temporally Adjacent and Non-Adjacent

Passes Loops . 7-25
Figure 7-9. Single-Pass Vs. Multi-Pass 3D Geometry Engines . 7-30
Figure 8-1. Amdahl’s Law and MP Speed-up . 8-2
Figure 8-2. Single-threaded Execution of Producer-consumer Threading Model 8-6
Figure 8-3. Execution of Producer-consumer Threading Model

on a Multicore Processor . 8-7
Figure 8-4. Interlaced Variation of the Producer Consumer Model. 8-8
Figure 8-5. Batched Approach of Producer Consumer Model . 8-28
Figure 10-1. SSE4.2 String/Text Instruction Immediate Operand Control 10-2
Figure 10-2. Retrace Inefficiency of Byte-Granular, Brute-Force Search10-17
Figure 10-3. SSE4.2 Speedup of SubString Searches .10-25
Figure 11-1. Performance History and State Transitions. 11-2
Figure 11-2. Active Time Versus Halted Time of a Processor . 11-3
Figure 11-3. Application of C-states to Idle Time . 11-4
Figure 11-4. Profiles of Coarse Task Scheduling and Power Consumption. 11-9
Figure 11-5. Thread Migration in a Multicore Processor .11-12
Figure 11-6. Progression to Deeper Sleep .11-13
Figure 12-1. Intel Atom Microarchitecture Pipeline . 12-2
Figure A-1. Intel Thread Profiler Showing Critical Paths

 of Threaded Execution Timelines. A-16
Figure B-1. System Topology Supported by Intel® Xeon® Processor 5500 Series B-1
Figure B-2. PMU Specific Event Logic Within the Pipeline. B-4
Figure B-3. LBR Records and Basic Blocks . B-19
Figure B-4. Using LBR Records to Rectify Skewed Sample Distribution B-20
Figure B-5. RdData Request after LLC Miss to Local Home (Clean Rsp) . B-35
Figure B-6. RdData Request after LLC Miss to Remote Home (Clean Rsp) B-35
Figure B-8. RdData Request after LLC Miss to Local Home (Hitm Response). B-36
Figure B-7. RdData Request after LLC Miss to Remote Home (Hitm Response) B-36
Figure B-9. RdData Request after LLC Miss to Local Home (Hit Response) B-37
Figure B-10. RdInvOwn Request after LLC Miss to Remote Home (Clean Res) B-37
Figure B-12. RdInvOwn Request after LLC Miss to Local Home (Hit Res) B-38
Figure B-11. RdInvOwn Request after LLC Miss to Remote Home (Hitm Res) B-38
Figure B-13. Performance Events Drill-Down and Software Tuning Feedback Loop. B-43
Figure D-1. Stack Frames Based on Alignment Type. D-2
xxii

CONTENTS

PAGE
TABLES

Table 2-1. Components of the Front End . 2-5
Table 2-2. Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core Microarchitecture

2-11
Table 2-3. Cache Parameters of Processors based on Intel Core Microarchitecture 2-19
Table 2-4. Characteristics of Load and Store Operations

in Intel Core Microarchitecture2-20
Table 2-5. Bypass Delay Between Producer and Consumer Micro-ops (cycles)2-25
Table 2-6. Issue Ports of Intel Microarchitecture (Nehalem) .2-26
Table 2-7. Cache Parameters of Intel Core i7 Processors .2-27
Table 2-8. Performance Impact of Address Alignments of MOVDQU from L12-28
Table 2-9. Pentium 4 and Intel Xeon Processor Cache Parameters. .2-43
Table 2-10. Trigger Threshold and CPUID Signatures for Processor Families2-49
Table 2-11. Cache Parameters of Pentium M, Intel Core Solo,

and Intel Core Duo Processors2-49
Table 2-12. Family And Model Designations of Microarchitectures .2-58
Table 2-13. Characteristics of Load and Store Operations

in Intel Core Duo Processors2-59
Table 3-1. Store Forwarding Restrictions of Processors

Based on Intel Core Microarchitecture3-54
Table 5-1. PSHUF Encoding. .5-17
Table 6-1. SoA Form of Representing Vertices Data . 6-5
Table 7-1. Software Prefetching Considerations into Strip-mining Code7-27
Table 7-2. Relative Performance of Memory Copy Routines .7-37
Table 7-3. Deterministic Cache Parameters Leaf. .7-39
Table 8-1. Properties of Synchronization Objects .8-15
Table 8-2. Design-Time Resource Management Choices .8-31
Table 8-3. Microarchitectural Resources Comparisons of HT Implementations8-36
Table 10-1. SSE4.2 String/Text Instructions Compare Operation on N-elements10-3
Table 10-2. SSE4.2 String/Text Instructions Unary Transformation on IntRes110-3
Table 10-3. SSE4.2 String/Text Instructions Output Selection Imm[6] .10-4
Table 10-4. SSE4.2 String/Text Instructions Element-Pair Comparison Definition10-4
Table 10-5. SSE4.2 String/Text Instructions Eflags Behavior .10-5
Table 12-1. Instruction Latency/Throughput Summary of Intel® Atom™ Microarchitecture . 12-10
Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data 12-19
Table A-1. Recommended IA-32 Processor Optimization Options . A-2
Table A-2. Recommended Processor Optimization Options for 64-bit Code A-4
Table A-3. Vectorization Control Switch Options . A-5
Table B-1. Cycle Accounting and Micro-ops Flow Recipe . B-3
Table B-2. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow. B-4
Table B-3. Cycle Accounting of Wasted Work Due to Misprediction . B-6
Table B-4. Cycle Accounting of Instruction Starvation . B-7
Table B-5. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow. B-8
Table B-6. Approximate Latency of L2 Misses of Intel Xeon Processor 5500B-11
Table B-7. Load Latency Event Programming .B-14
Table B-8. Data Source Encoding for Load Latency PEBS Record. .B-15
xxiii

CONTENTS

PAGE
Table B-9. Core PMU Events to Drill Down L2 Misses . B-21
Table B-10. Core PMU Events for Super Queue Operation. B-22
Table B-11. Core PMU Event to Drill Down OFFCore Responses . B-22
Table B-12. OFFCORE_RSP_0 MSR Programming . B-22
Table B-13. Common Request and Response Types for OFFCORE_RSP_0 MSR B-23
Table B-14. Uncore PMU Events for Occupancy Cycles . B-30
Table B-15. Common QHL Opcode Matching Facility Programming . B-33
Table C-1. Availability of SIMD Instruction Extensions by CPUID SignatureC-4
Table C-2. SSE4.2 Instructions .C-4
Table C-3. SSE4.1 Instructions .C-5
Table C-4. Supplemental Streaming SIMD Extension 3 Instructions .C-6
Table C-5. Streaming SIMD Extension 3 SIMD Floating-point InstructionsC-7
Table C-6. Streaming SIMD Extension 2 128-bit Integer Instructions .C-8
Table C-7. Streaming SIMD Extension 2 Double-precision

Floating-point InstructionsC-13
Table C-8. Streaming SIMD Extension Single-precision

Floating-point InstructionsC-18
Table C-9. Streaming SIMD Extension 64-bit Integer Instructions . C-22
Table C-10. MMX Technology 64-bit Instructions . C-23
Table C-11. MMX Technology 64-bit Instructions . C-24
Table C-12. x87 Floating-point Instructions . C-25
Table C-13. General Purpose Instructions . C-28
xxiv

CHAPTER 1
INTRODUCTION

The Intel® 64 and IA-32 Architectures Optimization Reference Manual describes how
to optimize software to take advantage of the performance characteristics of IA-32
and Intel 64 architecture processors. Optimizations described in this manual apply to
processors based on the Intel® Core™ microarchitecture, Enhanced Intel® Core™
microarchitecture, Intel microarchitecture (Nehalem), Intel NetBurst® microarchi-
tecture, the Intel® Core™ Duo, Intel® Core™ Solo, Pentium® M processor families.

The target audience for this manual includes software programmers and compiler
writers. This manual assumes that the reader is familiar with the basics of the IA-32
architecture and has access to the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual (five volumes). A detailed understanding of Intel 64 and IA-32 proces-
sors is often required. In many cases, knowledge of the underlying microarchitectures
is required.

The design guidelines that are discussed in this manual for developing high-
performance software generally apply to current as well as to future IA-32 and
Intel 64 processors. The coding rules and code optimization techniques listed target
the Intel Core microarchitecture, the Intel NetBurst microarchitecture and the
Pentium M processor microarchitecture. In most cases, coding rules apply to soft-
ware running in 64-bit mode of Intel 64 architecture, compatibility mode of Intel 64
architecture, and IA-32 modes (IA-32 modes are supported in IA-32 and Intel 64
architectures). Coding rules specific to 64-bit modes are noted separately.

1.1 TUNING YOUR APPLICATION
Tuning an application for high performance on any Intel 64 or IA-32 processor
requires understanding and basic skills in:

• Intel 64 and IA-32 architecture

• C and Assembly language

• hot-spot regions in the application that have impact on performance

• optimization capabilities of the compiler

• techniques used to evaluate application performance

The Intel® VTune™ Performance Analyzer can help you analyze and locate hot-spot
regions in your applications. On the Intel® Core™ i7, Intel® Core™2 Duo, Intel®
Core™ Duo, Intel® Core™ Solo, Pentium® 4, Intel® Xeon® and Pentium® M proces-
sors, this tool can monitor an application through a selection of performance moni-
toring events and analyze the performance event data that is gathered during code
execution.
1-1

INTRODUCTION
This manual also describes information that can be gathered using the performance
counters through Pentium 4 processor’s performance monitoring events.

1.2 ABOUT THIS MANUAL
The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® CoreTM microarchitecture. In this document,
references to the Core 2 Duo processor refer to processors based on the Intel®
Core™ microarchitecture.

The Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400 series, Intel® Core™2
Quad processor Q8000 series, and Intel® Core™2 Extreme processors QX9000
series are based on 45nm Enhanced Intel® Core™microarchitecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 5500 are based on 45 nm
Intel® Microarchitecture (Nehalem).

In this document, references to the Pentium 4 processor refer to processors based on
the Intel NetBurst® microarchitecture. This includes the Intel Pentium 4 processor
and many Intel Xeon processors based on Intel NetBurst microarchitecture. Where
appropriate, differences are noted (for example, some Intel Xeon processors have
third level cache).

The Dual-core Intel® Xeon® processor LV is based on the same architecture as Intel®
Core™ Duo and Intel® Core™ Solo processors.

Intel® Atom™ processor is based on Intel® Atom™ microarchitecture.

The following bullets summarize chapters in this manual.

• Chapter 1: Introduction — Defines the purpose and outlines the contents of
this manual.

• Chapter 2: Intel® 64 and IA-32 Processor Architectures — Describes the
microarchitecture of recent IA-32 and Intel 64 processor families, and other
features relevant to software optimization.

• Chapter 3: General Optimization Guidelines — Describes general code
development and optimization techniques that apply to all applications designed
to take advantage of the common features of the Intel Core microarchitecture,
Enhanced Intel Core microarchitecture, Intel NetBurst microarchitecture and
Pentium M processor microarchitecture.

• Chapter 4: Coding for SIMD Architectures — Describes techniques and
concepts for using the SIMD integer and SIMD floating-point instructions
provided by the MMX™ technology, Streaming SIMD Extensions, Streaming
SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

• Chapter 5: Optimizing for SIMD Integer Applications — Provides optimi-
zation suggestions and common building blocks for applications that use the 128-
bit SIMD integer instructions.
1-2

INTRODUCTION
• Chapter 6: Optimizing for SIMD Floating-point Applications — Provides
optimization suggestions and common building blocks for applications that use
the single-precision and double-precision SIMD floating-point instructions.

• Chapter 7: Optimizing Cache Usage — Describes how to use the PREFETCH
instruction, cache control management instructions to optimize cache usage, and
the deterministic cache parameters.

• Chapter 8: Multiprocessor and Hyper-Threading Technology — Describes
guidelines and techniques for optimizing multithreaded applications to achieve
optimal performance scaling. Use these when targeting multicore processor,
processors supporting Hyper-Threading Technology, or multiprocessor (MP)
systems.

• Chapter 9: 64-Bit Mode Coding Guidelines — This chapter describes a set of
additional coding guidelines for application software written to run in 64-bit
mode.

• Chapter 10: SSE4.2 and SIMD Programming for Text-
Processing/Lexing/Parsing— Describes SIMD techniques of using SSE4.2
along with other instruction extensions to improve text/string processing and
lexing/parsing applications.

• Chapter 11: Power Optimization for Mobile Usages — This chapter provides
background on power saving techniques in mobile processors and makes recom-
mendations that developers can leverage to provide longer battery life.

• Chapter 12: Intel® Atom™ Processor Architecture and Optimization —
Describes the microarchitecture of processor families based on Intel Atom
microarchitecture, and software optimization techniques targeting Intel Atom
microarchitecture.

• Appendix A: Application Performance Tools — Introduces tools for analyzing
and enhancing application performance without having to write assembly code.

• Appendix B: Intel® Pentium® 4 Processor Performance Metrics —
Provides information that can be gathered using Pentium 4 processor’s
performance monitoring events. These performance metrics can help
programmers determine how effectively an application is using the features of
the Intel NetBurst microarchitecture.

• Appendix C: IA-32 Instruction Latency and Throughput — Provides latency
and throughput data for the IA-32 instructions. Instruction timing data specific to
recent processor families are provided.

• Appendix D: Stack Alignment — Describes stack alignment conventions and
techniques to optimize performance of accessing stack-based data.

• Appendix E: Summary of Rules and Suggestions — Summarizes the rules
and tuning suggestions referenced in the manual.
1-3

INTRODUCTION
1.3 RELATED INFORMATION
For more information on the Intel® architecture, techniques, and the processor
architecture terminology, the following are of particular interest:

• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes)

• Intel® Processor Identification with the CPUID Instruction, AP-485

• Developing Multi-threaded Applications: A Platform Consistent Approach

• Intel® C++ Compiler documentation and online help

• Intel® Fortran Compiler documentation and online help

• Intel® VTune™ Performance Analyzer documentation and online help

• Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP

More relevant links are:

• Software network link:

http://softwarecommunity.intel.com/isn/home/

• Developer centers:

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

• Processor support general link:

http://www.intel.com/support/processors/

• Software products and packages:

http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm

• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://developer.intel.com/products/processor/manuals/index.htm

• Intel Multi-Core Technology:

http://developer.intel.com/technology/multi-core/index.htm

• Hyper-Threading Technology (HT Technology):

http://developer.intel.com/technology/hyperthread/

• SSE4.1 Application Note: Motion Estimation with Intel® Streaming SIMD
Extensions 4

http://softwarecommunity.intel.com/articles/eng/1246.htm

• SSE4.1 Application Note: Increasing Memory Throughput with Intel® Streaming
SIMD Extensions 4

http://softwarecommunity.intel.com/articles/eng/1248.htm

• Processor Topology and Cache Topology white paper and reference code

http://software.intel.com/en-us/articles/intel-64-architecture-processor-
topology-enumeration
1-4

http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://cache-www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for
current generations of Intel 64 and IA-32 processors (processors based on the Intel
Core microarchitecture, Enhanced Intel Core microarchitecture, Intel microarchitec-
ture (Nehalem), Intel NetBurst microarchitecture; including Intel Core Solo, Intel
Core Duo, and Intel Pentium M processors). These features are:

• Microarchitectures that enable executing instructions with high throughput at
high clock rates, a high speed cache hierarchy and high speed system bus

• Multicore architecture available in Intel Core i7, Intel Core 2 Extreme, Intel Core
2 Quad, Intel Core 2 Duo, Intel Core Duo, Intel Pentium D processors, Pentium
processor Extreme Edition1, and Quad-core Intel Xeon, Dual-core Intel Xeon
processors

• Hyper-Threading Technology2 (HT Technology) support

• Intel 64 architecture on Intel 64 processors

• SIMD instruction extensions: MMX technology, Streaming SIMD Extensions
(SSE), Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3
(SSE3), Supplemental Streaming SIMD Extensions 3 (SSSE3), SSE4.1, and
SSE4.2.

The Intel Pentium M processor introduced a power-efficient microarchitecture with
balanced performance. Dual-core Intel Xeon processor LV, Intel Core Solo and Intel
Core Duo processors incorporate enhanced Pentium M processor microarchitecture.
The Intel Core 2, Intel Core 2 Extreme, Intel Core 2 Quad processor family, Intel
Xeon processor 3000, 3200, 5100, 5300, 7300 series are based on the high-perfor-
mance and power-efficient Intel Core microarchitecture. Intel Xeon processor 3100,
3300, 5200, 5400, 7400 series, Intel Core 2 Extreme processor QX9600, QX9700
series, Intel Core 2 Quad Q9000 series, Q8000 series are based on the enhanced

1. Quad-core platforms require an Intel Xeon processor 3200 , 3300, 5300 , 5400, 7300 series, an
Intel Core 2 Extreme processor QX6000, QX9000 series, or an Intel Core 2 Quad processor, with
appropriate chipset, BIOS, and operating system. Six-core platform requires an Intel Xeon proces-
sor 7400 series, with appropriate chipset, BIOS, and operating system. Dual-core platform
requires an Intel Xeon processor 3000, 3100 series, Intel Xeon processor 5100, 5200, 7100
series, Intel Core 2 Duo, Intel Core 2 Extreme processor X6800, Dual-core Intel Xeon processors,
Intel Core Duo, Pentium D processor or Pentium processor Extreme Edition, with appropriate
chipset, BIOS, and operating system. Performance varies depending on the hardware and soft-
ware used.

2. Hyper-Threading Technology requires a computer system with an Intel processor supporting HT
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance
varies depending on the hardware and software used.
2-1

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Intel Core microarchitecture. Intel Core i7 processor is based on Intel microarchitec-
ture (Nehalem).

Intel Core 2 Extreme QX6700 processor, Intel Core 2 Quad processors, Intel Xeon
processors 3200 series, 5300 series are quad-core processors. Intel Pentium 4
processors, Intel Xeon processors, Pentium D processors, and Pentium processor
Extreme Editions are based on Intel NetBurst microarchitecture.

2.1 INTEL® CORE™ MICROARCHITECTURE AND
ENHANCED INTEL CORE MICROARCHITECTURE

Intel Core microarchitecture introduces the following features that enable high
performance and power-efficient performance for single-threaded as well as multi-
threaded workloads:

• Intel® Wide Dynamic Execution enables each processor core to fetch,
dispatch, execute with high bandwidths and retire up to four instructions per
cycle. Features include:

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle

— Macro-fusion and micro-fusion to improve front-end throughput

— Peak issue rate of dispatching up to six μops per cycle

— Peak retirement bandwidth of up to four μops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure
entries and exits

• Intel® Advanced Smart Cache delivers higher bandwidth from the second
level cache to the core, optimal performance and flexibility for single-threaded
and multi-threaded applications. Features include:

— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data
cache

— Unified, shared second-level cache of 4 Mbyte, 16 way (or 2 MByte, 8 way)

• Intel® Smart Memory Access prefetches data from memory in response to
data access patterns and reduces cache-miss exposure of out-of-order
execution. Features include:

— Hardware prefetchers to reduce effective latency of second-level cache
misses
2-2

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
— Hardware prefetchers to reduce effective latency of first-level data cache
misses

— Memory disambiguation to improve efficiency of speculative execution
execution engine

• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruc-
tions with single-cycle throughput and floating-point operations. Features
include:

— Single-cycle throughput of most 128-bit SIMD instructions (except 128-bit
shuffle, pack, unpack operations)

— Up to eight floating-point operations per cycle

— Three issue ports available to dispatching SIMD instructions for execution.

The Enhanced Intel Core microarchitecture supports all of the features of Intel Core
microarchitecture and provides a comprehensive set of enhancements.

• Intel® Wide Dynamic Execution includes several enhancements:

— A radix-16 divider replacing previous radix-4 based divider to speedup long-
latency operations such as divisions and square roots.

— Improved system primitives to speedup long-latency operations such as
RDTSC, STI, CLI, and VM exit transitions.

• Intel® Advanced Smart Cache provides up to 6 MBytes of second-level cache
shared between two processor cores (quad-core processors have up to 12
MBytes of L2); up to 24 way/set associativity.

• Intel® Smart Memory Access supports high-speed system bus up 1600 MHz
and provides more efficient handling of memory operations such as split cache
line load and store-to-load forwarding situations.

• Intel® Advanced Digital Media Boost provides 128-bit shuffler unit to
speedup shuffle, pack, unpack operations; adds support for 47 SSE4.1 instruc-
tions.

In the sub-sections of 2.1.x, most of the descriptions on Intel Core microarchitecture
also applies to Enhanced Intel Core microarchitecture. Differences between them are
note explicitly.

2.1.1 Intel® Core™ Microarchitecture Pipeline Overview
The pipeline of the Intel Core microarchitecture contains:

• An in-order issue front end that fetches instruction streams from memory, with
four instruction decoders to supply decoded instruction (μops) to the out-of-
order execution core.

• An out-of-order superscalar execution core that can issue up to six μops per cycle
(see Table 2-2) and reorder μops to execute as soon as sources are ready and
execution resources are available.
2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• An in-order retirement unit that ensures the results of execution of μops are
processed and architectural states are updated according to the original program
order.

Intel Core 2 Extreme processor X6800, Intel Core 2 Duo processors and Intel Xeon
processor 3000, 5100 series implement two processor cores based on the Intel Core
microarchitecture. Intel Core 2 Extreme quad-core processor, Intel Core 2 Quad
processors and Intel Xeon processor 3200 series, 5300 series implement four
processor cores. Each physical package of these quad-core processors contains two
processor dies, each die containing two processor cores. The functionality of the
subsystems in each core are depicted in Figure 2-1.

2.1.2 Front End
The front ends needs to supply decoded instructions (μops) and sustain the stream
to a six-issue wide out-of-order engine. The components of the front end, their func-

Figure 2-1. Intel Core Microarchitecture Pipeline Functionality

Decode

ALU
Branch

MMX/SSE/FP
Move

Load

Shared L2 Cache
Up to 10.7 GB/s

FSB

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and PreDecode

Instruction Queue

Rename/Alloc

ALU
FAdd

MMX/SSE

ALU
FMul

MMX/SSE

Scheduler

Micro-
code
ROM

Store

OM19808
2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
tions, and the performance challenges to microarchitectural design are described in
Table 2-1.

Table 2-1. Components of the Front End
Component Functions Performance Challenges

Branch Prediction
Unit (BPU)

• Helps the instruction fetch unit
fetch the most likely instruction
to be executed by predicting
the various branch types:
conditional, indirect, direct, call,
and return. Uses dedicated
hardware for each type.

• Enables speculative
execution.

• Improves speculative
execution efficiency by
reducing the amount of
code in the “non-architected
path”1 to be fetched into
the pipeline.

NOTES:
1. Code paths that the processor thought it should execute but then found out it should go in

another path and therefore reverted from its initial intention.

Instruction Fetch
Unit

• Prefetches instructions that are
likely to be executed

• Caches frequently-used
instructions

• Predecodes and buffers
instructions, maintaining a
constant bandwidth despite
irregularities in the instruction
stream

• Variable length instruction
format causes unevenness
(bubbles) in decode
bandwidth.

• Taken branches and
misaligned targets causes
disruptions in the overall
bandwidth delivered by the
fetch unit.

Instruction Queue
and Decode Unit

• Decodes up to four instructions,
or up to five with macro-fusion

• Stack pointer tracker algorithm
for efficient procedure entry
and exit

• Implements the Macro-Fusion
feature, providing higher
performance and efficiency

• The Instruction Queue is also
used as a loop cache, enabling
some loops to be executed with
both higher bandwidth and
lower power

• Varying amounts of work
per instruction requires
expansion into variable
numbers of μops.

• Prefix adds a dimension of
decoding complexity.

• Length Changing Prefix
(LCP) can cause front end
bubbles.
2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1.2.1 Branch Prediction Unit
Branch prediction enables the processor to begin executing instructions long before
the branch outcome is decided. All branches utilize the BPU for prediction. The BPU
contains the following features:

• 16-entry Return Stack Buffer (RSB). It enables the BPU to accurately predict RET
instructions.

• Front end queuing of BPU lookups. The BPU makes branch predictions for 32
bytes at a time, twice the width of the fetch engine. This enables taken branches
to be predicted with no penalty.

Even though this BPU mechanism generally eliminates the penalty for taken
branches, software should still regard taken branches as consuming more
resources than do not-taken branches.

The BPU makes the following types of predictions:

• Direct Calls and Jumps. Targets are read as a target array, without regarding the
taken or not-taken prediction.

• Indirect Calls and Jumps. These may either be predicted as having a monotonic
target or as having targets that vary in accordance with recent program behavior.

• Conditional branches. Predicts the branch target and whether or not the branch
will be taken.

For information about optimizing software for the BPU, see Section 3.4, “Optimizing
the Front End”.

2.1.2.2 Instruction Fetch Unit
The instruction fetch unit comprises the instruction translation lookaside buffer
(ITLB), an instruction prefetcher, the instruction cache and the predecode logic of the
instruction queue (IQ).

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB into the instruction
cache and instruction prefetch buffers. A hit in the instruction cache causes 16 bytes
to be delivered to the instruction predecoder. Typical programs average slightly less
than 4 bytes per instruction, depending on the code being executed. Since most
instructions can be decoded by all decoders, an entire fetch can often be consumed
by the decoders in one cycle.

A misaligned target reduces the number of instruction bytes by the amount of offset
into the 16 byte fetch quantity. A taken branch reduces the number of instruction
bytes delivered to the decoders since the bytes after the taken branch are not
decoded. Branches are taken approximately every 10 instructions in typical integer
code, which translates into a “partial” instruction fetch every 3 or 4 cycles.
2-6

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Due to stalls in the rest of the machine, front end starvation does not usually cause
performance degradation. For extremely fast code with larger instructions (such as
SSE2 integer media kernels), it may be beneficial to use targeted alignment to
prevent instruction starvation.

Instruction PreDecode

The predecode unit accepts the sixteen bytes from the instruction cache or prefetch
buffers and carries out the following tasks:

• Determine the length of the instructions.

• Decode all prefixes associated with instructions.

• Mark various properties of instructions for the decoders (for example, “is
branch.”).

The predecode unit can write up to six instructions per cycle into the instruction
queue. If a fetch contains more than six instructions, the predecoder continues to
decode up to six instructions per cycle until all instructions in the fetch are written to
the instruction queue. Subsequent fetches can only enter predecoding after the
current fetch completes.

For a fetch of seven instructions, the predecoder decodes the first six in one cycle,
and then only one in the next cycle. This process would support decoding 3.5 instruc-
tions per cycle. Even if the instruction per cycle (IPC) rate is not fully optimized, it is
higher than the performance seen in most applications. In general, software usually
does not have to take any extra measures to prevent instruction starvation.

The following instruction prefixes cause problems during length decoding. These
prefixes can dynamically change the length of instructions and are known as length
changing prefixes (LCPs):

• Operand Size Override (66H) preceding an instruction with a word immediate
data

• Address Size Override (67H) preceding an instruction with a mod R/M in real,
16-bit protected or 32-bit protected modes

When the predecoder encounters an LCP in the fetch line, it must use a slower length
decoding algorithm. With the slower length decoding algorithm, the predecoder
decodes the fetch in 6 cycles, instead of the usual 1 cycle.

Normal queuing within the processor pipeline usually cannot hide LCP penalties.

The REX prefix (4xh) in the Intel 64 architecture instruction set can change the size
of two classes of instruction: MOV offset and MOV immediate. Nevertheless, it does
not cause an LCP penalty and hence is not considered an LCP.

2.1.2.3 Instruction Queue (IQ)
The instruction queue is 18 instructions deep. It sits between the instruction prede-
code unit and the instruction decoders. It sends up to five instructions per cycle, and
2-7

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
supports one macro-fusion per cycle. It also serves as a loop cache for loops smaller
than 18 instructions. The loop cache operates as described below.

A Loop Stream Detector (LSD) resides in the BPU. The LSD attempts to detect loops
which are candidates for streaming from the instruction queue (IQ). When such a
loop is detected, the instruction bytes are locked down and the loop is allowed to
stream from the IQ until a misprediction ends it. When the loop plays back from the
IQ, it provides higher bandwidth at reduced power (since much of the rest of the
front end pipeline is shut off).

The LSD provides the following benefits:

• No loss of bandwidth due to taken branches

• No loss of bandwidth due to misaligned instructions

• No LCP penalties, as the pre-decode stage has already been passed

• Reduced front end power consumption, because the instruction cache, BPU and
predecode unit can be idle

Software should use the loop cache functionality opportunistically. Loop unrolling and
other code optimizations may make the loop too big to fit into the LSD. For high
performance code, loop unrolling is generally preferable for performance even when
it overflows the loop cache capability.

2.1.2.4 Instruction Decode
The Intel Core microarchitecture contains four instruction decoders. The first,
Decoder 0, can decode Intel 64 and IA-32 instructions up to 4 μops in size. Three
other decoders handles single-μop instructions. The microsequencer can provide up
to 3 μops per cycle, and helps decode instructions larger than 4 μops.

All decoders support the common cases of single μop flows, including: micro-fusion,
stack pointer tracking and macro-fusion. Thus, the three simple decoders are not
limited to decoding single-μop instructions. Packing instructions into a 4-1-1-1
template is not necessary and not recommended.

Macro-fusion merges two instructions into a single μop. Intel Core microarchitecture
is capable of one macro-fusion per cycle in 32-bit operation (including compatibility
sub-mode of the Intel 64 architecture), but not in 64-bit mode because code that
uses longer instructions (length in bytes) more often is less likely to take advantage
of hardware support for macro-fusion.

2.1.2.5 Stack Pointer Tracker
The Intel 64 and IA-32 architectures have several commonly used instructions for
parameter passing and procedure entry and exit: PUSH, POP, CALL, LEAVE and RET.
These instructions implicitly update the stack pointer register (RSP), maintaining a
combined control and parameter stack without software intervention. These instruc-
tions are typically implemented by several μops in previous microarchitectures.
2-8

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The Stack Pointer Tracker moves all these implicit RSP updates to logic contained in
the decoders themselves. The feature provides the following benefits:

• Improves decode bandwidth, as PUSH, POP and RET are single μop instructions
in Intel Core microarchitecture.

• Conserves execution bandwidth as the RSP updates do not compete for execution
resources.

• Improves parallelism in the out of order execution engine as the implicit serial
dependencies between μops are removed.

• Improves power efficiency as the RSP updates are carried out on small, dedicated
hardware.

2.1.2.6 Micro-fusion
Micro-fusion fuses multiple μops from the same instruction into a single complex
μop. The complex μop is dispatched in the out-of-order execution core. Micro-fusion
provides the following performance advantages:

• Improves instruction bandwidth delivered from decode to retirement.

• Reduces power consumption as the complex μop represents more work in a
smaller format (in terms of bit density), reducing overall “bit-toggling” in the
machine for a given amount of work and virtually increasing the amount of
storage in the out-of-order execution engine.

Many instructions provide register flavors and memory flavors. The flavor involving a
memory operand will decodes into a longer flow of μops than the register version.
Micro-fusion enables software to use memory to register operations to express the
actual program behavior without worrying about a loss of decode bandwidth.

2.1.3 Execution Core
The execution core of the Intel Core microarchitecture is superscalar and can process
instructions out of order. When a dependency chain causes the machine to wait for a
resource (such as a second-level data cache line), the execution core executes other
instructions. This increases the overall rate of instructions executed per cycle (IPC).

The execution core contains the following three major components:

• Renamer — Moves μops from the front end to the execution core. Architectural
registers are renamed to a larger set of microarchitectural registers. Renaming
eliminates false dependencies known as read-after-read and write-after-read
hazards.

• Reorder buffer (ROB) — Holds μops in various stages of completion, buffers
completed μops, updates the architectural state in order, and manages ordering
of exceptions. The ROB has 96 entries to handle instructions in flight.
2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• Reservation station (RS) — Queues μops until all source operands are ready,
schedules and dispatches ready μops to the available execution units. The RS has
32 entries.

The initial stages of the out of order core move the μops from the front end to the
ROB and RS. In this process, the out of order core carries out the following steps:

• Allocates resources to μops (for example: these resources could be load or store
buffers).

• Binds the μop to an appropriate issue port.

• Renames sources and destinations of μops, enabling out of order execution.

• Provides data to the μop when the data is either an immediate value or a register
value that has already been calculated.

The following list describes various types of common operations and how the core
executes them efficiently:

• Micro-ops with single-cycle latency — Most μops with single-cycle latency
can be executed by multiple execution units, enabling multiple streams of
dependent operations to be executed quickly.

• Frequently-used μops with longer latency — These μops have pipelined
execution units so that multiple μops of these types may be executing in different
parts of the pipeline simultaneously.

• Operations with data-dependent latencies — Some operations, such as
division, have data dependent latencies. Integer division parses the operands to
perform the calculation only on significant portions of the operands, thereby
speeding up common cases of dividing by small numbers.

• Floating point operations with fixed latency for operands that meet
certain restrictions — Operands that do not fit these restrictions are
considered exceptional cases and are executed with higher latency and reduced
throughput. The lower-throughput cases do not affect latency and throughput for
more common cases.

• Memory operands with variable latency, even in the case of an L1 cache
hit — Loads that are not known to be safe from forwarding may wait until a store-
address is resolved before executing. The memory order buffer (MOB) accepts
and processes all memory operations. See Section 2.1.5 for more information
about the MOB.

2.1.3.1 Issue Ports and Execution Units
The scheduler can dispatch up to six μops per cycle through the issue ports. The
issue ports of Intel Core microarchitecture and Enhanced Intel Core microarchitec-
ture are depicted in Table 2-2, the former is denoted by its CPUID signature of
DisplayFamily_DisplayModel value of 06_0FH, the latter denoted by the corre-
sponding signature value of 06_17H. The table provides latency and throughput data
of common integer and floating-point (FP) operations for each issue port in cycles.
2-10

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Table 2-2. Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core
Microarchitecture

Executable operations Latency, Throughput Comment1

NOTES:
1. Mixing operations of different latencies that use the same port can result in writeback bus con-

flicts; this can reduce overall throughput

Signature
=
06_0FH

Signature
=
06_17H

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Includes 64-bit mode integer MUL;

Issue port 0; Writeback port 0;

Single-precision (SP) FP MUL

Double-precision FP MUL

4, 1

5, 1

4, 1

5, 1

Issue port 0; Writeback port 0

FP MUL (X87)

FP Shuffle

DIV/SQRT

5, 2

1, 1

5, 2

1, 1

Issue port 0; Writeback port 0

FP shuffle does not handle QW
shuffle.

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Excludes 64-bit mode integer MUL;

Issue port 1; Writeback port 1;

FP ADD

QW Shuffle

3, 1

1, 12

2. 128-bit instructions executes with longer latency and reduced throughput

3, 1

1, 13

3. Uses 128-bit shuffle unit in port 5.

Issue port 1; Writeback port 1;

Integer loads

FP loads

3, 1

4, 1

3, 1

4, 1

Issue port 2; Writeback port 2;

Store address4

4. Prepares the store forwarding and store retirement logic with the address of the data being
stored.

3, 1 3, 1 Issue port 3;

Store data5.

5. Prepares the store forwarding and store retirement logic with the data being stored

Issue Port 4;

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Issue port 5; Writeback port 5;

QW shuffles

128-bit Shuffle/Pack/Unpack

1, 12

2-4, 2-46
1, 13

1-3, 17
Issue port 5; Writeback port 5;
2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
In each cycle, the RS can dispatch up to six μops. Each cycle, up to 4 results may be
written back to the RS and ROB, to be used as early as the next cycle by the RS. This
high execution bandwidth enables execution bursts to keep up with the functional
expansion of the micro-fused μops that are decoded and retired.

The execution core contains the following three execution stacks:

• SIMD integer

• regular integer

• x87/SIMD floating point

The execution core also contains connections to and from the memory cluster. See
Figure 2-2.

Notice that the two dark squares inside the execution block (in grey color) and
appear in the path connecting the integer and SIMD integer stacks to the floating
point stack. This delay shows up as an extra cycle called a bypass delay. Data from

6. Varies with instructions; 128-bit instructions are executed using QW shuffle units
7. Varies with instructions, 128-bit shuffle unit replaces QW shuffle units in Intel Core microarchitec-

ture.

Figure 2-2. Execution Core of Intel Core Microarchitecture

Data Cache
Unit

dtlb
Memory ordering
store forwarding

0,1,5

SIMD
Integer

0,1,5

Integer

0,1,5

Floating
Point

Load 2

Store (address) 3

Store (data) 4

Integer/
SIMD
MUL

EXE
2-12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
the L1 cache has one extra cycle of latency to the floating point unit. The dark-
colored squares in Figure 2-2 represent the extra cycle of latency.

2.1.4 Intel® Advanced Memory Access
The Intel Core microarchitecture contains an instruction cache and a first-level data
cache in each core. The two cores share a 2 or 4-MByte L2 cache. All caches are
writeback and non-inclusive. Each core contains:

• L1 data cache, known as the data cache unit (DCU) — The DCU can handle
multiple outstanding cache misses and continue to service incoming stores and
loads. It supports maintaining cache coherency. The DCU has the following speci-
fications:

— 32-KBytes size

— 8-way set associative

— 64-bytes line size

• Data translation lookaside buffer (DTLB) — The DTLB in Intel Core microar-
chitecture implements two levels of hierarchy. Each level of the DTLB have
multiple entries and can support either 4-KByte pages or large pages. The entries
of the inner level (DTLB0) is used for loads. The entries in the outer level (DTLB1)
support store operations and loads that missed DTLB0. All entries are 4-way
associative. Here is a list of entries in each DTLB:

— DTLB1 for large pages: 32 entries

— DTLB1 for 4-KByte pages: 256 entries

— DTLB0 for large pages: 16 entries

— DTLB0 for 4-KByte pages: 16 entries

An DTLB0 miss and DTLB1 hit causes a penalty of 2 cycles. Software only pays
this penalty if the DTLB0 is used in some dispatch cases. The delays associated
with a miss to the DTLB1 and PMH are largely non-blocking due to the design of
Intel Smart Memory Access.

• Page miss handler (PMH)

• A memory ordering buffer (MOB) — Which:

— enables loads and stores to issue speculatively and out of order

— ensures retired loads and stores have the correct data upon retirement

— ensures loads and stores follow memory ordering rules of the Intel 64 and
IA-32 architectures.

The memory cluster of the Intel Core microarchitecture uses the following to speed
up memory operations:

• 128-bit load and store operations

• data prefetching to L1 caches
2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• data prefetch logic for prefetching to the L2 cache

• store forwarding

• memory disambiguation

• 8 fill buffer entries

• 20 store buffer entries

• out of order execution of memory operations

• pipelined read-for-ownership operation (RFO)

For information on optimizing software for the memory cluster, see Section 3.6,
“Optimizing Memory Accesses.”

2.1.4.1 Loads and Stores
The Intel Core microarchitecture can execute up to one 128-bit load and up to one
128-bit store per cycle, each to different memory locations. The microarchitecture
enables execution of memory operations out of order with respect to other instruc-
tions and with respect to other memory operations.

Loads can:

• issue before preceding stores when the load address and store address are
known not to conflict

• be carried out speculatively, before preceding branches are resolved

• take cache misses out of order and in an overlapped manner

• issue before preceding stores, speculating that the store is not going to be to a
conflicting address

Loads cannot:

• speculatively take any sort of fault or trap

• speculatively access the uncacheable memory type

Faulting or uncacheable loads are detected and wait until retirement, when they
update the programmer visible state. x87 and floating point SIMD loads add 1 addi-
tional clock latency.

Stores to memory are executed in two phases:

• Execution phase — Prepares the store buffers with address and data for store
forwarding. Consumes dispatch ports, which are ports 3 and 4.

• Completion phase — The store is retired to programmer-visible memory. It
may compete for cache banks with executing loads. Store retirement is
maintained as a background task by the memory order buffer, moving the data
from the store buffers to the L1 cache.
2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1.4.2 Data Prefetch to L1 caches
Intel Core microarchitecture provides two hardware prefetchers to speed up data
accessed by a program by prefetching to the L1 data cache:

• Data cache unit (DCU) prefetcher — This prefetcher, also known as the
streaming prefetcher, is triggered by an ascending access to very recently loaded
data. The processor assumes that this access is part of a streaming algorithm
and automatically fetches the next line.

• Instruction pointer (IP)- based strided prefetcher — This prefetcher keeps
track of individual load instructions. If a load instruction is detected to have a
regular stride, then a prefetch is sent to the next address which is the sum of the
current address and the stride. This prefetcher can prefetch forward or backward
and can detect strides of up to half of a 4KB-page, or 2 KBytes.

Data prefetching works on loads only when the following conditions are met:

• Load is from writeback memory type.

• Prefetch request is within the page boundary of 4 Kbytes.

• No fence or lock is in progress in the pipeline.

• Not many other load misses are in progress.

• The bus is not very busy.

• There is not a continuous stream of stores.

DCU Prefetching has the following effects:

• Improves performance if data in large structures is arranged sequentially in the
order used in the program.

• May cause slight performance degradation due to bandwidth issues if access
patterns are sparse instead of local.

• On rare occasions, if the algorithm's working set is tuned to occupy most of the
cache and unneeded prefetches evict lines required by the program, hardware
prefetcher may cause severe performance degradation due to cache capacity of
L1.

In contrast to hardware prefetchers relying on hardware to anticipate data traffic,
software prefetch instructions relies on the programmer to anticipate cache miss
traffic, software prefetch act as hints to bring a cache line of data into the desired
levels of the cache hierarchy. The software-controlled prefetch is intended for
prefetching data, but not for prefetching code.

2.1.4.3 Data Prefetch Logic
Data prefetch logic (DPL) prefetches data to the second-level (L2) cache based on
past request patterns of the DCU from the L2. The DPL maintains two independent
arrays to store addresses from the DCU: one for upstreams (12 entries) and one for
down streams (4 entries). The DPL tracks accesses to one 4K byte page in each
2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
entry. If an accessed page is not in any of these arrays, then an array entry is allo-
cated.

The DPL monitors DCU reads for incremental sequences of requests, known as
streams. Once the DPL detects the second access of a stream, it prefetches the next
cache line. For example, when the DCU requests the cache lines A and A+1, the DPL
assumes the DCU will need cache line A+2 in the near future. If the DCU then reads
A+2, the DPL prefetches cache line A+3. The DPL works similarly for “downward”
loops.

The Intel Pentium M processor introduced DPL. The Intel Core microarchitecture
added the following features to DPL:

• The DPL can detect more complicated streams, such as when the stream skips
cache lines. DPL may issue 2 prefetch requests on every L2 lookup. The DPL in
the Intel Core microarchitecture can run up to 8 lines ahead from the load
request.

• DPL in the Intel Core microarchitecture adjusts dynamically to bus bandwidth and
the number of requests. DPL prefetches far ahead if the bus is not busy, and less
far ahead if the bus is busy.

• DPL adjusts to various applications and system configurations.

Entries for the two cores are handled separately.

2.1.4.4 Store Forwarding
If a load follows a store and reloads the data that the store writes to memory, the
Intel Core microarchitecture can forward the data directly from the store to the load.
This process, called store to load forwarding, saves cycles by enabling the load to
obtain the data directly from the store operation instead of through memory.

The following rules must be met for store to load forwarding to occur:

• The store must be the last store to that address prior to the load.

• The store must be equal or greater in size than the size of data being loaded.

• The load cannot cross a cache line boundary.

• The load cannot cross an 8-Byte boundary. 16-Byte loads are an exception to this
rule.

• The load must be aligned to the start of the store address, except for the
following exceptions:

— An aligned 64-bit store may forward either of its 32-bit halves

— An aligned 128-bit store may forward any of its 32-bit quarters

— An aligned 128-bit store may forward either of its 64-bit halves

Software can use the exceptions to the last rule to move complex structures without
losing the ability to forward the subfields.
2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
In Enhanced Intel Core microarchitecture, the alignment restrictions to permit store
forwarding to proceed have been relaxed. Enhanced Intel Core microarchitecture
permits store-forwarding to proceed in several situations that the succeeding load is
not aligned to the preceding store. Table 2-3 shows six situations (in gradient-filled
background) of store-forwarding that are permitted in Enhanced Intel Core microar-
chitecture but not in Intel Core microarchitecture. The cases with backward slash
background depicts store-forwarding that can proceed in both Intel Core microarchi-
tecture and Enhanced Intel Core microarchitecture.

2.1.4.5 Memory Disambiguation
A load instruction μop may depend on a preceding store. Many microarchitectures
block loads until all preceding store address are known.

The memory disambiguator predicts which loads will not depend on any previous
stores. When the disambiguator predicts that a load does not have such a depen-
dency, the load takes its data from the L1 data cache.

Eventually, the prediction is verified. If an actual conflict is detected, the load and all
succeeding instructions are re-executed.

Figure 2-3. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

8 byte boundary8 byte boundary

Store 32 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8

Store 64 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 32 bit

Load 64 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8 Load 8 Load 8Load 8 Load 8

Store 64 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 32 bit

Load 64 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8 Load 8 Load 8Load 8 Load 8

Store-forwarding (SF) can not proceed

Store

Example: 7 byte misalignment

Example: 1 byte misalignment

SF proceed in Enhanced Intel Core microarchitectu

SF proceed
2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1.5 Intel® Advanced Smart Cache
The Intel Core microarchitecture optimized a number of features for two processor
cores on a single die. The two cores share a second-level cache and a bus interface
unit, collectively known as Intel Advanced Smart Cache. This section describes the
components of Intel Advanced Smart Cache. Figure 2-4 illustrates the architecture of
the Intel Advanced Smart Cache.

Table 2-3 details the parameters of caches in the Intel Core microarchitecture. For
information on enumerating the cache hierarchy identification using the deterministic
cache parameter leaf of CPUID instruction, see the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A.

Figure 2-4. Intel Advanced Smart Cache Architecture

Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 1
Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 0

L2 Cache

Bus Interface Unit

System Bus
2-18

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1.5.1 Loads
When an instruction reads data from a memory location that has write-back (WB)
type, the processor looks for the cache line that contains this data in the caches and
memory in the following order:

1. DCU of the initiating core

2. DCU of the other core and second-level cache

3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache.

Table 2-4 shows the characteristics of fetching the first four bytes of different locali-
ties from the memory cluster. The latency column provides an estimate of access
latency. However, the actual latency can vary depending on the load of cache,
memory components, and their parameters.

Table 2-3. Cache Parameters of Processors based on Intel Core Microarchitecture

Level Capacity
Associativit
y (ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput
(clocks)

Write Update
Policy

First Level 32 KB 8 64 3 1 Writeback

Instruction 32 KB 8 N/A N/A N/A N/A

Second Level
(Shared L2)1

NOTES:
1. Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 0FH).

2, 4 MB 8 or 16 64 142

2. Software-visible latency will vary depending on access patterns and other factors.

2 Writeback

Second Level
(Shared L2)3

3. Enhanced Intel Core microarchitecture (CPUID signature DisaplyFamily = 06H, DisplayModel = 17H
or 1DH).

3, 6MB 12 or 24 64 152 2 Writeback

Third Level4

4. Enhanced Intel Core microarchitecture (CPUID signature DisaplyFamily = 06H, DisplayModel =
1DH).

8, 12, 16
MB

16 64 ~110 12 Writeback
2-19

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Sometimes a modified cache line has to be evicted to make space for a new cache
line. The modified cache line is evicted in parallel to bringing the new data and does
not require additional latency. However, when data is written back to memory, the
eviction uses cache bandwidth and possibly bus bandwidth as well. Therefore, when
multiple cache misses require the eviction of modified lines within a short time, there
is an overall degradation in cache response time.

2.1.5.2 Stores
When an instruction writes data to a memory location that has WB memory type, the
processor first ensures that the line is in Exclusive or Modified state in its own DCU.
The processor looks for the cache line in the following locations, in the specified
order:

1. DCU of initiating core

2. DCU of the other core and L2 cache

3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache. After reading for ownership is
completed, the data is written to the first-level data cache and the line is marked as
modified.

Reading for ownership and storing the data happens after instruction retirement and
follows the order of retirement. Therefore, the store latency does not effect the store
instruction itself. However, several sequential stores may have cumulative latency
that can affect performance. Table 2-4 presents store latencies depending on the
initial cache line location.

Table 2-4. Characteristics of Load and Store Operations
in Intel Core Microarchitecture

Load Store

Data Locality Latency Throughput Latency Throughput

DCU 3 1 2 1

DCU of the other
core in modified
state

14 + 5.5 bus
cycles

14 + 5.5 bus
cycles

14 + 5.5 bus
cycles

2nd-level cache 14 3 14 3

Memory 14 + 5.5 bus
cycles + memory

Depends on bus
read protocol

14 + 5.5 bus
cycles + memory

Depends on bus
write protocol
2-20

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.2 INTEL® MICROARCHITECTURE (NEHALEM)
Intel microarchitecture (Nehalem) provides the foundation for many innovative
features of Intel Core i7 processors and Intel Xeon processor 5500 series. It builds on
the success of 45nm enhanced Intel Core microarchitecture and provides the
following feature enhancements:

• Enhanced processor core

— Improved branch prediction and recovery from misprediction.

— Enhanced loop streaming to improve front end performance and reduce
power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text
processing and data shuffling.

• Hyper-Threading Technology

— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory
bandwidth.

• Smart Memory Access

— Integrated memory controller provides low-latency access to system memory
and scalable memory bandwidth

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop
traffic

— Two level TLBs and increased TLB size.

— Fast unaligned memory access.

• Dedicated Power management Innovations

— Integrated microcontroller with optimized embedded firmware to manage
power consumption.

— Embedded real-time sensors for temperature, current, and power.

— Integrated power gate to turn off/on per-core power consumption

— Versatility to reduce power consumption of memory, link subsystems.

2.2.1 Microarchitecture Pipeline
Intel microarchitecture (Nehalem) continues the four-wide microarchitecture pipe-
line pioneered by the 65nm Intel Core Microarchitecture. Figure 2-5 illustrates the
basic components of the pipeline of Intel microarchitecture (Nehalem) as imple-
mented in Intel Core i7 processor, only two of the four cores are sketched in the
Figure 2-5 pipeline diagram.
2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The length of the pipeline in Intel microarchitecture (Nehalem) is two cycles longer
than its predecessor in 45nm Intel Core 2 processor family, as measured by branch
misprediction delay. The front end can decode up to 4 instructions in one cycle and
supports two hardware threads by decoding the instruction streams between two

Figure 2-5. Intel Microarchitecture (Nehalem) Pipeline Functionality

L2 Cache

OM19808p

Decode

EXE
Unit

Cluster
0

Load

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

EXE
Unit

Cluster
1

EXE
Unit

Cluster
5

Scheduler

Micro-
code
ROM

Stor
e

Decode

EXE
Unit

Cluster
0

Load

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

EXE
Unit

Cluster
1

EXE
Unit

Cluster
5

Scheduler

Micro-
code
ROM

Stor
e

Inclusive L3 Cache by all cores

Intel QPI Link Logic

Other L2

L2 Cache
2-22

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
logical processors in alternate cycles. The front end includes enhancement in branch
handling, loop detection, MSROM throughput, etc. These are discussed in subse-
quent sections.

The scheduler (or reservation station) can dispatch up to six micro-ops in one cycle
through six issue ports (five issue ports are shown in Figure 2-5; store operation
involves separate ports for store address and store data but is depicted as one in the
diagram).

The out-of-order engine has many execution units that are arranged in three execu-
tion clusters shown in Figure 2-5. It can retire four micro-ops in one cycle, same as
its predecessor.

2.2.2 Front End Overview
Figure 2-6 depicts the key components of the front end of the microarchitecture. The
instruction fetch unit (IFU) can fetch up to 16 bytes of aligned instruction bytes each
cycle from the instruction cache to the instruction length decoder (ILD). The instruc-
tion queue (IQ) buffers the ILD-processed instructions and can deliver up to four
instructions in one cycle to the instruction decoder.

The instruction decoder has three decoder units that can decode one simple instruc-
tion per cycle per unit. The other decoder unit can decode one instruction every
cycle, either simple instruction or complex instruction made up of several micro-ops.
Instructions made up of more than four micro-ops are delivered from the MSROM. Up
to four micro-ops can be delivered each cycle to the instruction decoder queue (IDQ).

Figure 2-6. Front End of Intel Microarchitecture (Nehalem)

Instr. Decoder

ILD

Instr. Queue

Instr. Decoder

ICache

Instr.

I Fetch U

Br. Predict U

Length
Decoder

4

1

1

1
LSD

MSROM

Queue

IQ

IDQ
4 micro-ops
per cycle
max

4 micro-ops per cycle
2-23

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The loop stream detector is located inside the IDQ to improve power consumption
and front end efficiency for loops with a short sequence of instructions.

The instruction decoder supports micro-fusion to improve front end throughput,
increase the effective size of queues in the scheduler and re-order buffer (ROB). The
rules for micro-fusion are similar to those of Intel Core microarchitecture.

The instruction queue also supports macro-fusion to combine adjacent instructions
into one micro-ops where possible. In previous generations of Intel Core microarchi-
tecture, macro-fusion support for CMP/Jcc sequence is limited to the CF and ZF flag,
and macrofusion is not supported in 64-bit mode.

In Intel microarchitecture (Nehalem) , macro-fusion is supported in 64-bit mode, and
the following instruction sequences are supported:

• CMP or TEST can be fused when comparing (unchanged):

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REG. For example: CMP [EAX],ECX; JZ label

• TEST can fused with all conditional jumps (unchanged).

• CMP can be fused with the following conditional jumps. These conditional jumps
check carry flag (CF) or zero flag (ZF). The list of macro-fusion-capable
conditional jumps are (unchanged):

JA or JNBE
JAE or JNB or JNC
JE or JZ
JNA or JBE
JNAE or JC or JB
JNE or JNZ

• CMP can be fused with the following conditional jumps in Intel microarchitecture
(Nehalem), (This is an enhancement):

JL or JNGE
JGE or JNL
JLE or JNG
JG or JNLE

The hardware improves branch handling in several ways. Branch target buffer has
increased to increase the accuracy of branch predictions. Renaming is supported with
return stack buffer to reduce mispredictions of return instructions in the code.
Furthermore, hardware enhancement improves the handling of branch misprediction
by expediting resource reclamation so that the front end would not be waiting to
decode instructions in an architected code path (the code path in which instructions
will reach retirement) while resources were allocated to executing mispredicted code
path. Instead, new micro-ops stream can start forward progress as soon as the front
end decodes the instructions in the architected code path.
2-24

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.2.3 Execution Engine
The IDQ (Figure 2-6) delivers micro-op stream to the allocation/renaming stage
(Figure 2-5) of the pipeline. The out-of-order engine supports up to 128 micro-ops in
flight. Each micro-ops must be allocated with the following resources: an entry in the
re-order buffer (ROB), an entry in the reservation station (RS), and a load/store
buffer if a memory access is required.

The allocator also renames the register file entry of each micro-op in flight. The input
data associated with a micro-op are generally either read from the ROB or from the
retired register file.

The RS is expanded to 36 entry deep (compared to 32 entries in previous genera-
tion). It can dispatch up to six micro-ops in one cycle if the micro-ops are ready to
execute. The RS dispatch a micro-op through an issue port to a specific execution
cluster, each cluster may contain a collection of integer/FP/SIMD execution units.

The result from the execution unit executing a micro-op is written back to the
register file, or forwarded through a bypass network to a micro-op in-flight that
needs the result. Intel microarchitecture (Nehalem) can support write back
throughput of one register file write per cycle per port. The bypass network consists
of three domains of integer/FP/SIMD. Forwarding the result within the same bypass
domain from a producer micro-op to a consumer micro is done efficiently in hardware
without delay. Forwarding the result across different bypass domains may be subject
to additional bypass delays. The bypass delays may be visible to software in addition
to the latency and throughput characteristics of individual execution units. The
bypass delays between a producer micro-op and a consumer micro-op across
different bypass domains are shown in Table 2-5.

2.2.3.1 Issue Ports and Execution Units
Table 2-6 summarizes the key characteristics of the issue ports and the execution
unit latency/throughputs for common operations in the microarchitecture.

Table 2-5. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

FP Integer SIMD

FP 0 2 2

Integer 2 0 1

SIMD 2 1 0
2-25

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Table 2-6. Issue Ports of Intel Microarchitecture (Nehalem)
Port Executable

operations
Latenc
y

Through
put

 Domain Comment

Port 0 Integer ALU

Integer Shift

1

1

1

1

Integer

Port 0 Integer SIMD ALU

Integer SIMD Shuffle

1

1

1

1

SIMD

Port 0 Single-precision (SP)
FP MUL

Double-precision FP
MUL

FP MUL (X87)

FP/SIMD/SSE2 Move
and Logic

FP Shuffle

DIV/SQRT

4

5

5

1

1

1

1

1

1

1

FP

Port 1 Integer ALU

Integer LEA

Integer Mul

1

1

3

1

1

1

Integer

Port 1 Integer SIMD MUL

Integer SIMD Shift

PSAD

StringCompare

1

1

3

1

1

1

SIMD

Port 1 FP ADD 3 1 FP

Port 2 Integer loads 4 1 Integer

Port 3 Store address 5 1 Integer

Port 4 Store data Integer

Port 5 Integer ALU

Integer Shift

Jmp

1

1

1

1

1

1

Integer

Port 5 Integer SIMD ALU

Integer SIMD Shuffle

1

1

1

1

SIMD

Port 5 FP/SIMD/SSE2 Move
and Logic

1 1 FP
2-26

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.2.4 Cache and Memory Subsystem
Intel microarchitecture (Nehalem) contains an instruction cache, a first-level data
cache and a second-level unified cache in each core (see Figure 2-5). Each physical
processor may contain several processor cores and a shared collection of sub-
systems that are referred to as “uncore“. Specifically in Intel Core i7 processor, the
uncore provides a unified third-level cache shared by all cores in the physical
processor, Intel QuickPath Interconnect links and associated logic. The L1 and L2
caches are writeback and non-inclusive.

The shared L3 cache is writeback and inclusive, such that a cache line that exists in
either L1 data cache, L1 instruction cache, unified L2 cache also exists in L3. The L3
is designed to use the inclusive nature to minimize snoop traffic between processor
cores. Table 2-7 lists characteristics of the cache hierarchy. The latency of L3 access
may vary as a function of the frequency ratio between the processor and the uncore
sub-system.

The Intel microarchitecture (Nehalem) implements two levels of translation looka-
side buffer (TLB). The first level consists of separate TLBs for data and code. DTLB0
handles address translation for data accesses, it provides 64 entries to support 4KB
pages and 32 entries for large pages. The ITLB provides 64 entries (per thread) for
4KB pages and 7 entries (per thread) for large pages.

The second level TLB (STLB) handles both code and data accesses for 4KB pages. It
support 4KB page translation operation that missed DTLB0 or ITLB. All entries are 4-
way associative. Here is a list of entries in each DTLB:

• STLB for 4-KByte pages: 512 entries (services both data and instruction look-
ups)

• DTLB0 for large pages: 32 entries

Table 2-7. Cache Parameters of Intel Core i7 Processors

Level Capacity
Associativit
y (ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput
(clocks)

Write Update
Policy

First Level
Data

32 KB 8 64 4 1 Writeback

Instruction 32 KB 4 N/A N/A N/A N/A

Second Level 256KB 8 64 101

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

Varies Writeback

Third Level
(Shared L3)2

2. Minimal L3 latency is 35 cycles if the frequency ratio between core and uncore is unity.

8MB 16 64 35-40+2 Varies Writeback
2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• DTLB0 for 4-KByte pages: 64 entries

An DTLB0 miss and STLB hit causes a penalty of 7cycles. Software only pays this
penalty if the DTLB0 is used in some dispatch cases. The delays associated with a
miss to the STLB and PMH are largely non-blocking.

2.2.5 Load and Store Operation Enhancements
The memory cluster of Intel microarchitecture (Nehalem) provides the following
enhancements to speed up memory operations:

• Peak issue rate of one 128-bit load and one 128-bit store operation per cycle

• Deeper buffers for load and store operations: 48 load buffers, 32 store buffers
and 10 fill buffers

• Fast unaligned memory access and robust handling of memory alignment
hazards

• Improved store-forwarding for aligned and non-aligned scenarios

• Store forwarding for most address alignments

2.2.5.1 Efficient Handling of Alignment Hazards
The cache and memory subsystems handles a significant percentage of instructions
in every workload. Different address alignment scenarios will produce varying perfor-
mance impact for memory and cache operations. For example, 1-cycle throughput of
L1 (see Table 2-8) generally applies to naturally-aligned loads from L1 cache. But
using unaligned load instructions (e.g. MOVUPS, MOVUPD, MOVDQU, etc) to access
data from L1 will experience varying amount of delays depending on specific microar-
chitectures and alignment scenarios.

Table 2-8. Performance Impact of Address Alignments of MOVDQU from L1

Throughput (cycle) Intel Core i7
Processor

45 nm Intel Core
Microarchitecture

65 nm Intel Core
Microarchitecture

Alignment Scenario 06_1AH 06_17H 06_0FH

16B aligned 1 2 2

Not-16B aligned, not
cache split

1 ~2 ~2

Split cache line boundary ~4.5 ~20 ~20
2-28

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Table 2-8 lists approximate throughput of issuing MOVDQU instructions with different
address alignment scenarios to load data from the L1 cache. If a 16-byte load spans
across cache line boundary, previous microarchitecture generations will experience
significant software-visible delays.

Intel microarchitecture (Nehalem) provides hardware enhancements to reduce the
delays of handling different address alignment scenarios including cache line splits.

2.2.5.2 Store Forwarding Enhancement
When a load follows a store and reloads the data that the store writes to memory, the
microarchitecture can forward the data directly from the store to the load in many
cases. This situation, called store to load forwarding, saves several cycles by
enabling the load to obtain the data directly from the store operation instead of
through the memory system.

Several general rules must be met for store to load forwarding to proceed without
delay:

• The store must be the last store to that address prior to the load.

• The store must be equal or greater in size than the size of data being loaded.

• The load data must be completely contained in the preceding store.

Specific address alignment and data sizes between the store and load operations will
determine whether a store-forward situation may proceed with data forwarding or
experience a delay via the cache/memory sub-system. The 45 nm Enhanced Intel
Core microarchitecture offers more flexible address alignment and data sizes
requirement than previous microarchitectures. Intel microarchitecture (Nehalem)
offers additional enhancement with allowing more situations to forward data expedi-
tiously.
2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The store-forwarding situations for with respect to store operations of 16 bytes are
illustrated in Figure 2-7.

Figure 2-7. Store-forwarding Scenarios of 16-Byte Store Operations

Intel microarchitecture (Nehalem) allows store-to-load forwarding to proceed
regardless of store address alignment (The white space in the diagram does not

Not forwarding

Existing forwarding
Store

ld 8 ld 8

load 16 load 16 load 16 load 16 load 16 load 16

load 32 load 32 load 32 load 32

load 64load 64

Store 128 bit

ld 8 ld 8

load 128

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15

load 32 load 32 load 32

load 16 load 16

load 16 load 16 load 16 load 16 load 16

load 32

load 32

load 32

load 32

ld 8 ld 8 ld 8 ld 8 ld 8 ld 8 ld 8 ld 8 ld 8 ld 8 ld 8 ld 8

Nehalem forwarding

load 16 load 16

load 32

load 32

Not applicable
2-30

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
correspond to an applicable store-to-load scenario). Figure 2-8 illustrates situations
for store operation of 8 bytes or less.

Figure 2-8. Store-Forwarding Enhancement in Intel Microarchitecture (Nehalem)

2.2.6 REP String Enhancement
REP prefix in conjunction with MOVS/STOS instruction and a count value in ECX are
frequently used to implement library functions such as memcpy()/memset(). These
are referred to as "REP string" instructions. Each iteration of these instruction can
copy/write constant a value in byte/word/dword/qword granularity The performance
characteristics of using REP string can be attributed to two components: startup
overhead and data transfer throughput.

The two components of performance characteristics of REP String varies further
depending on granularity, alignment, and/or count values. Generally, MOVSB is used
to handle very small chunks of data. Therefore, processor implementation of REP
MOVSB is optimized to handle ECX < 4. Using REP MOVSB with ECX > 3 will achieve
low data throughput due to not only byte-granular data transfer but also additional

Store 32 bit

ld 8 ld 8 ld 8 ld 8

load 16
load 32 bitExample:

7- byte misalignment

load 16

ld 8 ld 8 ld 8 ld 8 ld 8 ld 8 ld 8 ld 8

load 32 bit load 32 bit

load 64 bit

Store 64 bit

8 byte boundary8 byte boundary

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

load 32 bit

load 32 bit

load 16 load 16 load 16

load 32 bit

load 16 load 16 load 16
Not forwarding

Existing forwarding

Store

Nehalem forwarding

Not applicable
2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
startup overhead. The latency for MOVSB, is 9 cycles if ECX < 4; otherwise REP
MOVSB with ECX >9 have a 50-cycle startup cost.

For REP string of larger granularity data transfer, as ECX value increases, the startup
overhead of REP String exhibit step-wise increase:

• Short string (ECX <= 12): the latency of REP MOVSW/MOVSD/MOVSQ is about
20 cycles,

• Fast string (ECX >= 76: excluding REP MOVSB): the processor implementation
provides hardware optimization by moving as many pieces of data in 16 bytes as
possible. The latency of REP string latency will vary if one of the 16-byte data
transfer spans across cache line boundary:

— Split-free: the latency consists of a startup cost of about 40 cycles and each
64 bytes of data adds 4 cycles,

— Cache splits: the latency consists of a startup cost of about 35 cycles and
each 64 bytes of data adds 6cycles.

• Intermediate string lengths: the latency of REP MOVSW/MOVSD/MOVSQ has a
startup cost of about 15 cycles plus one cycle for each iteration of the data
movement in word/dword/qword.

Intel microarchitecture (Nehalem) improves the performance of REP strings signifi-
cantly over previous microarchitectures in several ways:

• Startup overhead have been reduced in most cases relative to previous microar-
chitecture,

• Data transfer throughput are improved over previous generation

• In order for REP string to operate in “fast string“ mode, previous microarchitec-
tures requires address alignment. In Intel microarchitecture (Nehalem), REP
string can operate in “fast string” mode even if address is not aligned to 16 bytes.

2.2.7 Enhancements for System Software
In addition to microarchitectural enhancements that can benefit both application-
level and system-level software, Intel microarchitecture (Nehalem) enhances several
operations that primarily benefit system software.

Lock primitives: Synchronization primitives using the Lock prefix (e.g. XCHG,
CMPXCHG8B) executes with significantly reduced latency than previous microarchi-
tectures.

VMM overhead improvements: VMX transitions between a Virtual Machine (VM) and
its supervisor (the VMM) can take thousands of cycle each time on previous microar-
chitectures. The latency of VMX transitions has been reduced in processors based on
Intel microarchitecture (Nehalem).
2-32

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.2.8 Efficiency Enhancements for Power Consumption
Intel microarchitecture (Nehalem) is not only designed for high performance and
power-efficient performance under wide range of loading situations, it also features
enhancement for low power consumption while the system idles. Intel microarchitec-
ture (Nehalem) supports processor-specific C6 states, which have the lowest leakage
power consumption that OS can manage through ACPI and OS power management
mechanisms.

2.2.9 Hyper-Threading Technology Support in Intel
Microarchitecture (Nehalem)

Intel microarchitecture (Nehalem) supports Hyper-Threading Technology (HT). Its
implementation of HT provides two logical processors sharing most execution/cache
resources in each core. The HT implementation in Intel microarchitecture (Nehalem)
differs from previous generations of HT implementations using Intel NetBurst
microarchitecture in several areas:

• Intel microarchitecture (Nehalem) provides four-wide execution engine, more
functional execution units coupled to three issue ports capable of issuing compu-
tational operations.

• Intel microarchitecture (Nehalem) supports integrated memory controller that
can provide peak memory bandwidth of up to 25.6 GB/sec in Intel Core i7
processor.

• Deeper buffering and enhanced resource sharing/partition policies:

— Replicated resource for HT operation: register state, renamed return stack
buffer, large-page ITLB

— Partitioned resources for HT operation: load buffers, store buffers, re-order
buffers, small-page ITLB are statically allocated between two logical
processors.

— Competitively-shared resource during HT operation: the reservation station,
cache hierarchy, fill buffers, both DTLB0 and STLB.

— Alternating during HT operation: front-end operation generally alternates
between two logical processors to ensure fairness.

— HT unaware resources: execution units.

2.3 INTEL NETBURST® MICROARCHITECTURE
The Pentium 4 processor, Pentium 4 processor Extreme Edition supporting Hyper-
Threading Technology, Pentium D processor, and Pentium processor Extreme Edition
implement the Intel NetBurst microarchitecture. Intel Xeon processors that imple-
ment Intel NetBurst microarchitecture can be identified using CPUID (family
encoding 0FH).
2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
This section describes the features of the Intel NetBurst microarchitecture and its
operation common to the above processors. It provides the technical background
required to understand optimization recommendations and the coding rules
discussed in the rest of this manual. For implementation details, including instruction
latencies, see Appendix C, “Instruction Latency and Throughput.”

Intel NetBurst microarchitecture is designed to achieve high performance for integer
and floating-point computations at high clock rates. It supports the following
features:

• hyper-pipelined technology that enables high clock rates

• high-performance, quad-pumped bus interface to the Intel NetBurst microarchi-
tecture system bus

• rapid execution engine to reduce the latency of basic integer instructions

• out-of-order speculative execution to enable parallelism

• superscalar issue to enable parallelism

• hardware register renaming to avoid register name space limitations

• cache line sizes of 64 bytes

• hardware prefetch

2.3.1 Design Goals
The design goals of Intel NetBurst microarchitecture are:

• To execute legacy IA-32 applications and applications based on single-
instruction, multiple-data (SIMD) technology at high throughput

• To operate at high clock rates and to scale to higher performance and clock rates
in the future

Design advances of the Intel NetBurst microarchitecture include:

• A deeply pipelined design that allows for high clock rates (with different parts of
the chip running at different clock rates).

• A pipeline that optimizes for the common case of frequently executed instruc-
tions; the most frequently-executed instructions in common circumstances (such
as a cache hit) are decoded efficiently and executed with short latencies.

• Employment of techniques to hide stall penalties; Among these are parallel
execution, buffering, and speculation. The microarchitecture executes instruc-
tions dynamically and out-of-order, so the time it takes to execute each individual
instruction is not always deterministic.

Chapter 3, “General Optimization Guidelines,” lists optimizations to use and situa-
tions to avoid. The chapter also gives a sense of relative priority. Because most opti-
mizations are implementation dependent, the chapter does not quantify expected
benefits and penalties.
2-34

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The following sections provide more information about key features of the Intel
NetBurst microarchitecture.

2.3.2 Pipeline
The pipeline of the Intel NetBurst microarchitecture contains:

• an in-order issue front end

• an out-of-order superscalar execution core

• an in-order retirement unit

The front end supplies instructions in program order to the out-of-order core. It
fetches and decodes instructions. The decoded instructions are translated into µops.
The front end’s primary job is to feed a continuous stream of µops to the execution
core in original program order.

The out-of-order core aggressively reorders µops so that µops whose inputs are
ready (and have execution resources available) can execute as soon as possible. The
core can issue multiple µops per cycle.

The retirement section ensures that the results of execution are processed according
to original program order and that the proper architectural states are updated.

Figure 2-5 illustrates a diagram of the major functional blocks associated with the
Intel NetBurst microarchitecture pipeline. The following subsections provide an over-
view for each.
2-35

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.3.2.1 Front End
The front end of the Intel NetBurst microarchitecture consists of two parts:

• fetch/decode unit

• execution trace cache

It performs the following functions:

• prefetches instructions that are likely to be executed

• fetches required instructions that have not been prefetched

• decodes instructions into µops

• generates microcode for complex instructions and special-purpose code

• delivers decoded instructions from the execution trace cache

• predicts branches using advanced algorithms

The front end is designed to address two problems that are sources of delay:

Figure 2-9. The Intel NetBurst Microarchitecture
2-36

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• time required to decode instructions fetched from the target

• wasted decode bandwidth due to branches or a branch target in the middle of a
cache line

Instructions are fetched and decoded by a translation engine. The translation engine
then builds decoded instructions into µop sequences called traces. Next, traces are
then stored in the execution trace cache.

The execution trace cache stores µops in the path of program execution flow, where
the results of branches in the code are integrated into the same cache line. This
increases the instruction flow from the cache and makes better use of the overall
cache storage space since the cache no longer stores instructions that are branched
over and never executed.

The trace cache can deliver up to 3 µops per clock to the core.

The execution trace cache and the translation engine have cooperating branch
prediction hardware. Branch targets are predicted based on their linear address
using branch prediction logic and fetched as soon as possible. Branch targets are
fetched from the execution trace cache if they are cached, otherwise they are fetched
from the memory hierarchy. The translation engine’s branch prediction information is
used to form traces along the most likely paths.

2.3.2.2 Out-of-order Core
The core’s ability to execute instructions out of order is a key factor in enabling paral-
lelism. This feature enables the processor to reorder instructions so that if one µop is
delayed while waiting for data or a contended resource, other µops that appear later
in the program order may proceed. This implies that when one portion of the pipeline
experiences a delay, the delay may be covered by other operations executing in
parallel or by the execution of µops queued up in a buffer.

The core is designed to facilitate parallel execution. It can dispatch up to six µops per
cycle through the issue ports (Figure 2-6). Note that six µops per cycle exceeds the
trace cache and retirement µop bandwidth. The higher bandwidth in the core allows
for peak bursts of greater than three µops and to achieve higher issue rates by
allowing greater flexibility in issuing µops to different execution ports.

Most core execution units can start executing a new µop every cycle, so several
instructions can be in flight at one time in each pipeline. A number of arithmetic
logical unit (ALU) instructions can start at two per cycle; many floating-point instruc-
tions start one every two cycles. Finally, µops can begin execution out of program
order, as soon as their data inputs are ready and resources are available.

2.3.2.3 Retirement
The retirement section receives the results of the executed µops from the execution
core and processes the results so that the architectural state is updated according to
the original program order. For semantically correct execution, the results of Intel 64
2-37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
and IA-32 instructions must be committed in original program order before they are
retired. Exceptions may be raised as instructions are retired. For this reason, excep-
tions cannot occur speculatively.

When a µop completes and writes its result to the destination, it is retired. Up to
three µops may be retired per cycle. The reorder buffer (ROB) is the unit in the
processor which buffers completed µops, updates the architectural state and
manages the ordering of exceptions.

The retirement section also keeps track of branches and sends updated branch target
information to the branch target buffer (BTB). This updates branch history.
Figure 2-10 illustrates the paths that are most frequently executing inside the Intel
NetBurst microarchitecture: an execution loop that interacts with multilevel cache
hierarchy and the system bus.

The following sections describe in more detail the operation of the front end and the
execution core. This information provides the background for using the optimization
techniques and instruction latency data documented in this manual.

2.3.3 Front End Pipeline Detail
The following information about the front end operation is be useful for tuning soft-
ware with respect to prefetching, branch prediction, and execution trace cache oper-
ations.

2.3.3.1 Prefetching
The Intel NetBurst microarchitecture supports three prefetching mechanisms:

• a hardware instruction fetcher that automatically prefetches instructions

• a hardware mechanism that automatically fetches data and instructions into the
unified second-level cache

• a mechanism fetches data only and includes two distinct components: (1) a
hardware mechanism to fetch the adjacent cache line within a 128-byte sector
that contains the data needed due to a cache line miss, this is also referred to as
adjacent cache line prefetch (2) a software controlled mechanism that fetches
data into the caches using the prefetch instructions.

The hardware instruction fetcher reads instructions along the path predicted by the
branch target buffer (BTB) into instruction streaming buffers. Data is read in 32-byte
chunks starting at the target address. The second and third mechanisms are
described later.

2.3.3.2 Decoder
The front end of the Intel NetBurst microarchitecture has a single decoder that
decodes instructions at the maximum rate of one instruction per clock. Some
2-38

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
complex instructions must enlist the help of the microcode ROM. The decoder opera-
tion is connected to the execution trace cache.

2.3.3.3 Execution Trace Cache
The execution trace cache (TC) is the primary instruction cache in the Intel NetBurst
microarchitecture. The TC stores decoded instructions (µops).

In the Pentium 4 processor implementation, TC can hold up to 12-Kbyte µops and
can deliver up to three µops per cycle. TC does not hold all of the µops that need to
be executed in the execution core. In some situations, the execution core may need
to execute a microcode flow instead of the µop traces that are stored in the trace
cache.

The Pentium 4 processor is optimized so that most frequently-executed instructions
come from the trace cache while only a few instructions involve the microcode ROM.

2.3.3.4 Branch Prediction
Branch prediction is important to the performance of a deeply pipelined processor. It
enables the processor to begin executing instructions long before the branch
outcome is certain. Branch delay is the penalty that is incurred in the absence of
correct prediction. For Pentium 4 and Intel Xeon processors, the branch delay for a
correctly predicted instruction can be as few as zero clock cycles. The branch delay
for a mispredicted branch can be many cycles, usually equivalent to the pipeline
depth.

Branch prediction in the Intel NetBurst microarchitecture predicts near branches
(conditional calls, unconditional calls, returns and indirect branches). It does not
predict far transfers (far calls, irets and software interrupts).

Mechanisms have been implemented to aid in predicting branches accurately and to
reduce the cost of taken branches. These include:

• ability to dynamically predict the direction and target of branches based on an
instruction’s linear address, using the branch target buffer (BTB)

• if no dynamic prediction is available or if it is invalid, the ability to statically
predict the outcome based on the offset of the target: a backward branch is
predicted to be taken, a forward branch is predicted to be not taken

• ability to predict return addresses using the 16-entry return address stack

• ability to build a trace of instructions across predicted taken branches to avoid
branch penalties

The Static Predictor. Once a branch instruction is decoded, the direction of the
branch (forward or backward) is known. If there was no valid entry in the BTB for the
branch, the static predictor makes a prediction based on the direction of the branch.
The static prediction mechanism predicts backward conditional branches (those with
negative displacement, such as loop-closing branches) as taken. Forward branches
are predicted not taken.
2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
To take advantage of the forward-not-taken and backward-taken static predictions,
code should be arranged so that the likely target of the branch immediately follows
forward branches (see also Section 3.4.1, “Branch Prediction Optimization”).

Branch Target Buffer. Once branch history is available, the Pentium 4 processor
can predict the branch outcome even before the branch instruction is decoded. The
processor uses a branch history table and a branch target buffer (collectively called
the BTB) to predict the direction and target of branches based on an instruction’s
linear address. Once the branch is retired, the BTB is updated with the target
address.

Return Stack. Returns are always taken; but since a procedure may be invoked
from several call sites, a single predicted target does not suffice. The Pentium 4
processor has a Return Stack that can predict return addresses for a series of proce-
dure calls. This increases the benefit of unrolling loops containing function calls. It
also mitigates the need to put certain procedures inline since the return penalty
portion of the procedure call overhead is reduced.

Even if the direction and target address of the branch are correctly predicted, a taken
branch may reduce available parallelism in a typical processor (since the decode
bandwidth is wasted for instructions which immediately follow the branch and
precede the target, if the branch does not end the line and target does not begin the
line). The branch predictor allows a branch and its target to coexist in a single trace
cache line, maximizing instruction delivery from the front end.

2.3.4 Execution Core Detail
The execution core is designed to optimize overall performance by handling common
cases most efficiently. The hardware is designed to execute frequent operations in a
common context as fast as possible, at the expense of infrequent operations using
rare contexts.

Some parts of the core may speculate that a common condition holds to allow faster
execution. If it does not, the machine may stall. An example of this pertains to store-
to-load forwarding (see “Store Forwarding” in this chapter). If a load is predicted to
be dependent on a store, it gets its data from that store and tentatively proceeds. If
the load turned out not to depend on the store, the load is delayed until the real data
has been loaded from memory, then it proceeds.

2.3.4.1 Instruction Latency and Throughput
The superscalar out-of-order core contains hardware resources that can execute
multiple μops in parallel. The core’s ability to make use of available parallelism of
execution units can enhanced by software’s ability to:

• Select instructions that can be decoded in less than 4 μops and/or have short
latencies
2-40

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• Order instructions to preserve available parallelism by minimizing long
dependence chains and covering long instruction latencies

• Order instructions so that their operands are ready and their corresponding issue
ports and execution units are free when they reach the scheduler

This subsection describes port restrictions, result latencies, and issue latencies (also
referred to as throughput). These concepts form the basis to assist software for
ordering instructions to increase parallelism. The order that μops are presented to
the core of the processor is further affected by the machine’s scheduling resources.

It is the execution core that reacts to an ever-changing machine state, reordering
μops for faster execution or delaying them because of dependence and resource
constraints. The ordering of instructions in software is more of a suggestion to the
hardware.

Appendix C, “Instruction Latency and Throughput,” lists some of the more-
commonly-used Intel 64 and IA-32 instructions with their latency, their issue
throughput, and associated execution units (where relevant). Some execution units
are not pipelined (meaning that µops cannot be dispatched in consecutive cycles and
the throughput is less than one per cycle). The number of µops associated with each
instruction provides a basis for selecting instructions to generate. All µops executed
out of the microcode ROM involve extra overhead.

2.3.4.2 Execution Units and Issue Ports
At each cycle, the core may dispatch µops to one or more of four issue ports. At the
microarchitecture level, store operations are further divided into two parts: store
data and store address operations. The four ports through which μops are dispatched
to execution units and to load and store operations are shown in Figure 2-6. Some
ports can dispatch two µops per clock. Those execution units are marked Double
Speed.

Port 0. In the first half of the cycle, port 0 can dispatch either one floating-point
move µop (a floating-point stack move, floating-point exchange or floating-point
store data) or one arithmetic logical unit (ALU) µop (arithmetic, logic, branch or store
data). In the second half of the cycle, it can dispatch one similar ALU µop.

Port 1. In the first half of the cycle, port 1 can dispatch either one floating-point
execution (all floating-point operations except moves, all SIMD operations) µop or
one normal-speed integer (multiply, shift and rotate) µop or one ALU (arithmetic)
µop. In the second half of the cycle, it can dispatch one similar ALU µop.

Port 2. This port supports the dispatch of one load operation per cycle.

Port 3. This port supports the dispatch of one store address operation per cycle.

The total issue bandwidth can range from zero to six µops per cycle. Each pipeline
contains several execution units. The µops are dispatched to the pipeline that corre-
sponds to the correct type of operation. For example, an integer arithmetic logic unit
and the floating-point execution units (adder, multiplier, and divider) can share a
pipeline.
2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.3.4.3 Caches
The Intel NetBurst microarchitecture supports up to three levels of on-chip cache. At
least two levels of on-chip cache are implemented in processors based on the Intel
NetBurst microarchitecture. The Intel Xeon processor MP and selected Pentium and
Intel Xeon processors may also contain a third-level cache.

The first level cache (nearest to the execution core) contains separate caches for
instructions and data. These include the first-level data cache and the trace cache
(an advanced first-level instruction cache). All other caches are shared between
instructions and data.

Levels in the cache hierarchy are not inclusive. The fact that a line is in level i does
not imply that it is also in level i+1. All caches use a pseudo-LRU (least recently used)
replacement algorithm.

Table 2-5 provides parameters for all cache levels for Pentium and Intel Xeon Proces-
sors with CPUID model encoding equals 0, 1, 2 or 3.

Figure 2-10. Execution Units and Ports in Out-Of-Order Core

OM15151

ALU 0
Double
Speed

Port 0

ADD/SUB
Logic

Store Data
Branches

FP Move
FP Store Data

FXCH

ALU 1
Double
Speed

ADD/SUB Shift/Rotate

FP
Execute

FP_ADD
FP_MUL
FP_DIV

FP_MISC
MMX_SHFT
MMX_ALU

MMX_MISC

Port 1

Memory
Store

Memory
Load

All Loads
Prefetch

Port 2 Port 3

Store
Address

FP
Move

Integer
Operation

Normal
Speed

Note:
FP_ADD refers to x87 FP, and SIMD FP add and subtract operations
FP_MUL refers to x87 FP, and SIMD FP multiply operations
FP_DIV refers to x87 FP, and SIMD FP divide and square root operations
MMX_ALU refers to SIMD integer arithmetic and logic operations
MMX_SHFT handles Shift, Rotate, Shuffle, Pack and Unpack operations
MMX_MISC handles SIMD reciprocal and some integer operations
2-42

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
On processors without a third level cache, the second-level cache miss initiates a
transaction across the system bus interface to the memory sub-system. On proces-
sors with a third level cache, the third-level cache miss initiates a transaction across
the system bus. A bus write transaction writes 64 bytes to cacheable memory, or
separate 8-byte chunks if the destination is not cacheable. A bus read transaction
from cacheable memory fetches two cache lines of data.

The system bus interface supports using a scalable bus clock and achieves an effec-
tive speed that quadruples the speed of the scalable bus clock. It takes on the order
of 12 processor cycles to get to the bus and back within the processor, and 6-12 bus
cycles to access memory if there is no bus congestion. Each bus cycle equals several
processor cycles. The ratio of processor clock speed to the scalable bus clock speed
is referred to as bus ratio. For example, one bus cycle for a 100 MHz bus is equal to
15 processor cycles on a 1.50 GHz processor. Since the speed of the bus is implemen-
tation-dependent, consult the specifications of a given system for further details.

Table 2-9. Pentium 4 and Intel Xeon Processor Cache Parameters

Level (Model) Capacity
Associativity
(ways)

Line Size
(bytes)

Access
Latency,
Integer/
floating-point
(clocks)

Write Update
Policy

First (Model 0,
1, 2)

8 KB 4 64 2/9 write through

First (Model 3) 16 KB 8 64 4/12 write through

TC (All models) 12K µops 8 N/A N/A N/A

Second (Model
0, 1, 2)

256 KB or
512 KB1

NOTES:
1. Pentium 4 and Intel Xeon processors with CPUID model encoding value of 2 have a second level

cache of 512 KB.

8 642

2. Each read due to a cache miss fetches a sector, consisting of two adjacent cache lines; a write
operation is 64 bytes.

7/7 write back

Second (Model
3, 4)

 1 MB 8 642 18/18 write back

Second (Model
3, 4, 6)

2 MB 8 642 20/20 write back

Third (Model
0, 1, 2)

0, 512 KB,
1 MB or 2 MB

8 642 14/14 write back
2-43

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.3.4.4 Data Prefetch
The Pentium 4 processor and other processors based on the NetBurst microarchitec-
ture have two type of mechanisms for prefetching data: software prefetch instruc-
tions and hardware-based prefetch mechanisms.

Software controlled prefetch is enabled using the four prefetch instructions
(PREFETCHh) introduced with SSE. The software prefetch is not intended for
prefetching code. Using it can incur significant penalties on a multiprocessor system
if code is shared.

Software prefetch can provide benefits in selected situations. These situations
include when:

• the pattern of memory access operations in software allows the programmer to
hide memory latency

• a reasonable choice can be made about how many cache lines to fetch ahead of
the line being execute

• a choice can be made about the type of prefetch to use

SSE prefetch instructions have different behaviors, depending on cache levels
updated and the processor implementation. For instance, a processor may imple-
ment the non-temporal prefetch by returning data to the cache level closest to the
processor core. This approach has the following effect:

• minimizes disturbance of temporal data in other cache levels

• avoids the need to access off-chip caches, which can increase the realized
bandwidth compared to a normal load-miss, which returns data to all cache levels

Situations that are less likely to benefit from software prefetch are:

• For cases that are already bandwidth bound, prefetching tends to increase
bandwidth demands.

• Prefetching far ahead can cause eviction of cached data from the caches prior to
the data being used in execution.

• Not prefetching far enough can reduce the ability to overlap memory and
execution latencies.

Software prefetches are treated by the processor as a hint to initiate a request to
fetch data from the memory system, and consume resources in the processor and
the use of too many prefetches can limit their effectiveness. Examples of this include
prefetching data in a loop for a reference outside the loop and prefetching in a basic
block that is frequently executed, but which seldom precedes the reference for which
the prefetch is targeted.

See: Chapter 7, “Optimizing Cache Usage.”

Automatic hardware prefetch is a feature in the Pentium 4 processor. It brings
cache lines into the unified second-level cache based on prior reference patterns.

Software prefetching has the following characteristics:

• handles irregular access patterns, which do not trigger the hardware prefetcher
2-44

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• handles prefetching of short arrays and avoids hardware prefetching start-up
delay before initiating the fetches

• must be added to new code; so it does not benefit existing applications

Hardware prefetching for Pentium 4 processor has the following characteristics:

• works with existing applications

• does not require extensive study of prefetch instructions

• requires regular access patterns

• avoids instruction and issue port bandwidth overhead

• has a start-up penalty before the hardware prefetcher triggers and begins
initiating fetches

The hardware prefetcher can handle multiple streams in either the forward or back-
ward directions. The start-up delay and fetch-ahead has a larger effect for short
arrays when hardware prefetching generates a request for data beyond the end of an
array (not actually utilized). The hardware penalty diminishes if it is amortized over
longer arrays.

Hardware prefetching is triggered after two successive cache misses in the last level
cache and requires these cache misses to satisfy a condition that the linear address
distance between these cache misses is within a threshold value. The threshold value
depends on the processor implementation (see Table 2-6). However, hardware
prefetching will not cross 4-KByte page boundaries. As a result, hardware
prefetching can be very effective when dealing with cache miss patterns that have
small strides and that are significantly less than half the threshold distance to trigger
hardware prefetching. On the other hand, hardware prefetching will not benefit
cache miss patterns that have frequent DTLB misses or have access strides that
cause successive cache misses that are spatially apart by more than the trigger
threshold distance.

Software can proactively control data access pattern to favor smaller access strides
(e.g., stride that is less than half of the trigger threshold distance) over larger access
strides (stride that is greater than the trigger threshold distance), this can achieve
additional benefit of improved temporal locality and reducing cache misses in the last
level cache significantly.

Software optimization of a data access pattern should emphasize tuning for hard-
ware prefetch first to favor greater proportions of smaller-stride data accesses in the
workload; before attempting to provide hints to the processor by employing software
prefetch instructions.

2.3.4.5 Loads and Stores
The Pentium 4 processor employs the following techniques to speed up the execution
of memory operations:

• speculative execution of loads

• reordering of loads with respect to loads and stores
2-45

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• multiple outstanding misses

• buffering of writes

• forwarding of data from stores to dependent loads

Performance may be enhanced by not exceeding the memory issue bandwidth and
buffer resources provided by the processor. Up to one load and one store may be
issued for each cycle from a memory port reservation station. In order to be
dispatched to a reservation station, there must be a buffer entry available for each
memory operation. There are 48 load buffers and 24 store buffers3. These buffers
hold the µop and address information until the operation is completed, retired, and
deallocated.

The Pentium 4 processor is designed to enable the execution of memory operations
out of order with respect to other instructions and with respect to each other. Loads
can be carried out speculatively, that is, before all preceding branches are resolved.
However, speculative loads cannot cause page faults.

Reordering loads with respect to each other can prevent a load miss from stalling
later loads. Reordering loads with respect to other loads and stores to different
addresses can enable more parallelism, allowing the machine to execute operations
as soon as their inputs are ready. Writes to memory are always carried out in
program order to maintain program correctness.

A cache miss for a load does not prevent other loads from issuing and completing.
The Pentium 4 processor supports up to four (or eight for Pentium 4 processor with
CPUID signature corresponding to family 15, model 3) outstanding load misses that
can be serviced either by on-chip caches or by memory.

Store buffers improve performance by allowing the processor to continue executing
instructions without having to wait until a write to memory and/or cache is complete.
Writes are generally not on the critical path for dependence chains, so it is often
beneficial to delay writes for more efficient use of memory-access bus cycles.

2.3.4.6 Store Forwarding
Loads can be moved before stores that occurred earlier in the program if they are not
predicted to load from the same linear address. If they do read from the same linear
address, they have to wait for the store data to become available. However, with
store forwarding, they do not have to wait for the store to write to the memory hier-
archy and retire. The data from the store can be forwarded directly to the load, as
long as the following conditions are met:

• Sequence — Data to be forwarded to the load has been generated by a program-
matically-earlier store which has already executed.

• Size — Bytes loaded must be a subset of (including a proper subset, that is, the
same) bytes stored.

3. Pentium 4 processors with CPUID model encoding equal to 3 have more than 24 store buffers.
2-46

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• Alignment — The store cannot wrap around a cache line boundary, and the
linear address of the load must be the same as that of the store.

2.4 INTEL® PENTIUM® M PROCESSOR
MICROARCHITECTURE

Like the Intel NetBurst microarchitecture, the pipeline of the Intel Pentium M
processor microarchitecture contains three sections:

• in-order issue front end

• out-of-order superscalar execution core

• in-order retirement unit

Intel Pentium M processor microarchitecture supports a high-speed system bus (up
to 533 MHz) with 64-byte line size. Most coding recommendations that apply to the
Intel NetBurst microarchitecture also apply to the Intel Pentium M processor.

The Intel Pentium M processor microarchitecture is designed for lower power
consumption. There are other specific areas of the Pentium M processor microarchi-
tecture that differ from the Intel NetBurst microarchitecture. They are described
next. A block diagram of the Intel Pentium M processor is shown in Figure 2-7.

Figure 2-11. The Intel Pentium M Processor Microarchitecture
2-47

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.4.1 Front End
The Intel Pentium M processor uses a pipeline depth that enables high performance
and low power consumption. It’s shorter than that of the Intel NetBurst microarchi-
tecture.

The Intel Pentium M processor front end consists of two parts:

• fetch/decode unit

• instruction cache

The fetch and decode unit includes a hardware instruction prefetcher and three
decoders that enable parallelism. It also provides a 32-KByte instruction cache that
stores un-decoded binary instructions.

The instruction prefetcher fetches instructions in a linear fashion from memory if the
target instructions are not already in the instruction cache. The prefetcher is
designed to fetch efficiently from an aligned 16-byte block. If the modulo 16
remainder of a branch target address is 14, only two useful instruction bytes are
fetched in the first cycle. The rest of the instruction bytes are fetched in subsequent
cycles.

The three decoders decode instructions and break them down into µops. In each
clock cycle, the first decoder is capable of decoding an instruction with four or fewer
µops. The remaining two decoders each decode a one µop instruction in each clock
cycle.

The front end can issue multiple µops per cycle, in original program order, to the out-
of-order core.

The Intel Pentium M processor incorporates sophisticated branch prediction hard-
ware to support the out-of-order core. The branch prediction hardware includes
dynamic prediction, and branch target buffers.

The Intel Pentium M processor has enhanced dynamic branch prediction hardware.
Branch target buffers (BTB) predict the direction and target of branches based on an
instruction’s address.

The Pentium M Processor includes two techniques to reduce the execution time of
certain operations:

• ESP folding — This eliminates the ESP manipulation μops in stack-related
instructions such as PUSH, POP, CALL and RET. It increases decode rename and
retirement throughput. ESP folding also increases execution bandwidth by
eliminating µops which would have required execution resources.

• Micro-ops (µops) fusion — Some of the most frequent pairs of µops derived
from the same instruction can be fused into a single µops. The following
categories of fused µops have been implemented in the Pentium M processor:

— “Store address” and “store data” μops are fused into a single “Store” μop.
This holds for all types of store operations, including integer, floating-point,
MMX technology, and Streaming SIMD Extensions (SSE and SSE2)
operations.
2-48

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
— A load μop in most cases can be fused with a successive execution μop.This
holds for integer, floating-point and MMX technology loads and for most kinds
of successive execution operations. Note that SSE Loads can not be fused.

2.4.2 Data Prefetching
The Intel Pentium M processor supports three prefetching mechanisms:

• The first mechanism is a hardware instruction fetcher and is described in the
previous section.

• The second mechanism automatically fetches data into the second-level cache.
The implementation of automatic hardware prefetching in Pentium M processor
family is basically similar to those described for NetBurst microarchitecture. The
trigger threshold distance for each relevant processor models is shown in
Table 2-6. The third mechanism is a software mechanism that fetches data into
the caches using the prefetch instructions.

Data is fetched 64 bytes at a time; the instruction and data translation lookaside
buffers support 128 entries. See Table 2-7 for processor cache parameters.

Table 2-10. Trigger Threshold and CPUID Signatures for Processor Families

Trigger Threshold Distance
(Bytes)

Extended
Model ID

Extended
Family ID Family ID Model ID

512 0 0 15 3, 4, 6

256 0 0 15 0, 1, 2

256 0 0 6 9, 13, 14

Table 2-11. Cache Parameters of Pentium M, Intel Core Solo,
and Intel Core Duo Processors

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Access
Latency
(clocks)

Write Update
Policy

First 32 KByte 8 64 3 Writeback

Instruction 32 KByte 8 N/A N/A N/A

Second
(mode 9)

1 MByte 8 64 9 Writeback

Second
(model 13)

 2 MByte 8 64 10 Writeback

Second
(model 14)

 2 MByte 8 64 14 Writeback
2-49

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.4.3 Out-of-Order Core
The processor core dynamically executes µops independent of program order. The
core is designed to facilitate parallel execution by employing many buffers, issue
ports, and parallel execution units.

The out-of-order core buffers µops in a Reservation Station (RS) until their operands
are ready and resources are available. Each cycle, the core may dispatch up to five
µops through the issue ports.

2.4.4 In-Order Retirement
The retirement unit in the Pentium M processor buffers completed µops is the reorder
buffer (ROB). The ROB updates the architectural state in order. Up to three µops may
be retired per cycle.

2.5 MICROARCHITECTURE OF INTEL® CORE™ SOLO AND
INTEL® CORE™ DUO PROCESSORS

Intel Core Solo and Intel Core Duo processors incorporate an microarchitecture that
is similar to the Pentium M processor microarchitecture, but provides additional
enhancements for performance and power efficiency. Enhancements include:

• Intel Smart Cache — This second level cache is shared between two cores in an
Intel Core Duo processor to minimize bus traffic between two cores accessing a
single-copy of cached data. It allows an Intel Core Solo processor (or when one
of the two cores in an Intel Core Duo processor is idle) to access its full capacity.

• Stream SIMD Extensions 3 — These extensions are supported in Intel Core
Solo and Intel Core Duo processors.

• Decoder improvement — Improvement in decoder and μop fusion allows the
front end to see most instructions as single μop instructions. This increases the
throughput of the three decoders in the front end.

• Improved execution core — Throughput of SIMD instructions is improved and
the out-of-order engine is more robust in handling sequences of frequently-used
instructions. Enhanced internal buffering and prefetch mechanisms also improve
data bandwidth for execution.

• Power-optimized bus — The system bus is optimized for power efficiency;
increased bus speed supports 667 MHz.

• Data Prefetch — Intel Core Solo and Intel Core Duo processors implement
improved hardware prefetch mechanisms: one mechanism can look ahead and
prefetch data into L1 from L2. These processors also provide enhanced hardware
prefetchers similar to those of the Pentium M processor (see Table 2-6).
2-50

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.5.1 Front End
Execution of SIMD instructions on Intel Core Solo and Intel Core Duo processors are
improved over Pentium M processors by the following enhancements:

• Micro-op fusion — Scalar SIMD operations on register and memory have single
μop flows comparable to X87 flows. Many packed instructions are fused to reduce
its μop flow from four to two μops.

• Eliminating decoder restrictions — Intel Core Solo and Intel Core Duo
processors improve decoder throughput with micro-fusion and macro-fusion, so
that many more SSE and SSE2 instructions can be decoded without restriction.
On Pentium M processors, many single μop SSE and SSE2 instructions must be
decoded by the main decoder.

• Improved packed SIMD instruction decoding — On Intel Core Solo and Intel
Core Duo processors, decoding of most packed SSE instructions is done by all
three decoders. As a result the front end can process up to three packed SSE
instructions every cycle. There are some exceptions to the above; some
shuffle/unpack/shift operations are not fused and require the main decoder.

2.5.2 Data Prefetching
Intel Core Solo and Intel Core Duo processors provide hardware mechanisms to
prefetch data from memory to the second-level cache. There are two techniques:

1. One mechanism activates after the data access pattern experiences two cache-
reference misses within a trigger-distance threshold (see Table 2-6). This
mechanism is similar to that of the Pentium M processor, but can track 16 forward
data streams and 4 backward streams.

2. The second mechanism fetches an adjacent cache line of data after experiencing
a cache miss. This effectively simulates the prefetching capabilities of 128-byte
sectors (similar to the sectoring of two adjacent 64-byte cache lines available in
Pentium 4 processors).

Hardware prefetch requests are queued up in the bus system at lower priority than
normal cache-miss requests. If bus queue is in high demand, hardware prefetch
requests may be ignored or cancelled to service bus traffic required by demand
cache-misses and other bus transactions. Hardware prefetch mechanisms are
enhanced over that of Pentium M processor by:

• Data stores that are not in the second-level cache generate read for ownership
requests. These requests are treated as loads and can trigger a prefetch stream.

• Software prefetch instructions are treated as loads, they can also trigger a
prefetch stream.
2-51

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.6 INTEL® HYPER-THREADING TECHNOLOGY
Intel® Hyper-Threading Technology (HT Technology) is supported by specific
members of the Intel Pentium 4 and Xeon processor families. The technology enables
software to take advantage of task-level, or thread-level parallelism by providing
multiple logical processors within a physical processor package. In its first implemen-
tation in Intel Xeon processor, Hyper-Threading Technology makes a single physical
processor appear as two logical processors.

The two logical processors each have a complete set of architectural registers while
sharing one single physical processor's resources. By maintaining the architecture
state of two processors, an HT Technology capable processor looks like two proces-
sors to software, including operating system and application code.

By sharing resources needed for peak demands between two logical processors, HT
Technology is well suited for multiprocessor systems to provide an additional perfor-
mance boost in throughput when compared to traditional MP systems.

Figure 2-8 shows a typical bus-based symmetric multiprocessor (SMP) based on
processors supporting HT Technology. Each logical processor can execute a software
thread, allowing a maximum of two software threads to execute simultaneously on
one physical processor. The two software threads execute simultaneously, meaning
that in the same clock cycle an “add” operation from logical processor 0 and another
“add” operation and load from logical processor 1 can be executed simultaneously by
the execution engine.

In the first implementation of HT Technology, the physical execution resources are
shared and the architecture state is duplicated for each logical processor. This mini-
mizes the die area cost of implementing HT Technology while still achieving perfor-
mance gains for multithreaded applications or multitasking workloads.
2-52

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The performance potential due to HT Technology is due to:

• The fact that operating systems and user programs can schedule processes or
threads to execute simultaneously on the logical processors in each physical
processor

• The ability to use on-chip execution resources at a higher level than when only a
single thread is consuming the execution resources; higher level of resource
utilization can lead to higher system throughput

2.6.1 Processor Resources and HT Technology
The majority of microarchitecture resources in a physical processor are shared
between the logical processors. Only a few small data structures were replicated for
each logical processor. This section describes how resources are shared, partitioned
or replicated.

2.6.1.1 Replicated Resources
The architectural state is replicated for each logical processor. The architecture state
consists of registers that are used by the operating system and application code to
control program behavior and store data for computations. This state includes the
eight general-purpose registers, the control registers, machine state registers,
debug registers, and others. There are a few exceptions, most notably the memory

Figure 2-12. Hyper-Threading Technology on an SMP

OM15152

Bus Interface

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

System Bus

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

Bus Interface
2-53

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
type range registers (MTRRs) and the performance monitoring resources. For a
complete list of the architecture state and exceptions, see the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volumes 3A & 3B.

Other resources such as instruction pointers and register renaming tables were repli-
cated to simultaneously track execution and state changes of the two logical proces-
sors. The return stack predictor is replicated to improve branch prediction of return
instructions.

In addition, a few buffers (for example, the 2-entry instruction streaming buffers)
were replicated to reduce complexity.

2.6.1.2 Partitioned Resources
Several buffers are shared by limiting the use of each logical processor to half the
entries. These are referred to as partitioned resources. Reasons for this partitioning
include:

• Operational fairness

• Permitting the ability to allow operations from one logical processor to bypass
operations of the other logical processor that may have stalled

For example: a cache miss, a branch misprediction, or instruction dependencies may
prevent a logical processor from making forward progress for some number of
cycles. The partitioning prevents the stalled logical processor from blocking forward
progress.

In general, the buffers for staging instructions between major pipe stages are parti-
tioned. These buffers include µop queues after the execution trace cache, the queues
after the register rename stage, the reorder buffer which stages instructions for
retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implemen-
tation to maintain memory ordering for each logical processor and detect memory
ordering violations.

2.6.1.3 Shared Resources
Most resources in a physical processor are fully shared to improve the dynamic utili-
zation of the resource, including caches and all the execution units. Some shared
resources which are linearly addressed, like the DTLB, include a logical processor ID
bit to distinguish whether the entry belongs to one logical processor or the other.

The first level cache can operate in two modes depending on a context-ID bit:

• Shared mode: The L1 data cache is fully shared by two logical processors.

• Adaptive mode: In adaptive mode, memory accesses using the page directory is
mapped identically across logical processors sharing the L1 data cache.

The other resources are fully shared.
2-54

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.6.2 Microarchitecture Pipeline and HT Technology
This section describes the HT Technology microarchitecture and how instructions
from the two logical processors are handled between the front end and the back end
of the pipeline.

Although instructions originating from two programs or two threads execute simulta-
neously and not necessarily in program order in the execution core and memory hier-
archy, the front end and back end contain several selection points to select between
instructions from the two logical processors. All selection points alternate between
the two logical processors unless one logical processor cannot make use of a pipeline
stage. In this case, the other logical processor has full use of every cycle of the pipe-
line stage. Reasons why a logical processor may not use a pipeline stage include
cache misses, branch mispredictions, and instruction dependencies.

2.6.3 Front End Pipeline
The execution trace cache is shared between two logical processors. Execution trace
cache access is arbitrated by the two logical processors every clock. If a cache line is
fetched for one logical processor in one clock cycle, the next clock cycle a line would
be fetched for the other logical processor provided that both logical processors are
requesting access to the trace cache.

If one logical processor is stalled or is unable to use the execution trace cache, the
other logical processor can use the full bandwidth of the trace cache until the initial
logical processor’s instruction fetches return from the L2 cache.

After fetching the instructions and building traces of µops, the µops are placed in a
queue. This queue decouples the execution trace cache from the register rename
pipeline stage. As described earlier, if both logical processors are active, the queue is
partitioned so that both logical processors can make independent forward progress.

2.6.4 Execution Core
The core can dispatch up to six µops per cycle, provided the µops are ready to
execute. Once the µops are placed in the queues waiting for execution, there is no
distinction between instructions from the two logical processors. The execution core
and memory hierarchy is also oblivious to which instructions belong to which logical
processor.

After execution, instructions are placed in the re-order buffer. The re-order buffer
decouples the execution stage from the retirement stage. The re-order buffer is
partitioned such that each uses half the entries.
2-55

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.6.5 Retirement
The retirement logic tracks when instructions from the two logical processors are
ready to be retired. It retires the instruction in program order for each logical
processor by alternating between the two logical processors. If one logical processor
is not ready to retire any instructions, then all retirement bandwidth is dedicated to
the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-
one data cache. Selection logic alternates between the two logical processors to
commit store data to the cache.

2.7 MULTICORE PROCESSORS
The Intel Pentium D processor and the Pentium Processor Extreme Edition introduce
multicore features. These processors enhance hardware support for multithreading
by providing two processor cores in each physical processor package. The Dual-core
Intel Xeon and Intel Core Duo processors also provide two processor cores in a phys-
ical package. The multicore topology of Intel Core 2 Duo processors are similar to
those of Intel Core Duo processor.

The Intel Pentium D processor provides two logical processors in a physical package,
each logical processor has a separate execution core and a cache hierarchy. The
Dual-core Intel Xeon processor and the Intel Pentium Processor Extreme Edition
provide four logical processors in a physical package that has two execution cores.
Each core provides two logical processors sharing an execution core and a cache
hierarchy.

The Intel Core Duo processor provides two logical processors in a physical package.
Each logical processor has a separate execution core (including first-level cache) and
a smart second-level cache. The second-level cache is shared between two logical
processors and optimized to reduce bus traffic when the same copy of cached data is
used by two logical processors. The full capacity of the second-level cache can be
used by one logical processor if the other logical processor is inactive.

The functional blocks of the dual-core processors are shown in Figure 2-9. The Quad-
core Intel Xeon processors, Intel Core 2 Quad processor and Intel Core 2 Extreme
quad-core processor consist of two replica of the dual-core modules. The functional
blocks of the quad-core processors are also shown in Figure 2-9.
2-56

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Figure 2-13. Pentium D Processor, Pentium Processor Extreme Edition,
Intel Core Duo Processor, Intel Core 2 Duo Processor, and Intel Core 2 Quad Processor

Architectual
State

System Bus

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual
State

Bus Interface Bus Interface

Local APIC Local APIC

Architectual
State

Architectual
State

Pentium Processor Extreme Edition

System Bus

Architectual State

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface

Intel Core Duo Processor
Intel Core 2 Duo Processor

Second Level Cache

Architectual State

System Bus

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface Bus Interface

Pentium D Processor

System Bus

Intel Core 2 Quad Processor
Intel Xeon Processor 3200 Series
Intel Xeon Processor 5300 Series

Architectual State

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface

Second Level Cache

Architectual State

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface

Second Level Cache

OM19809
2-57

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.7.1 Microarchitecture Pipeline and MultiCore Processors
In general, each core in a multicore processor resembles a single-core processor
implementation of the underlying microarchitecture. The implementation of the
cache hierarchy in a dual-core or multicore processor may be the same or different
from the cache hierarchy implementation in a single-core processor.

CPUID should be used to determine cache-sharing topology information in a
processor implementation and the underlying microarchitecture. The former is
obtained by querying the deterministic cache parameter leaf (see Chapter 7, “Opti-
mizing Cache Usage”); the latter by using the encoded values for extended family,
family, extended model, and model fields. See Table 2-8.

2.7.2 Shared Cache in Intel® Core™ Duo Processors
The Intel Core Duo processor has two symmetric cores that share the second-level
cache and a single bus interface (see Figure 2-9). Two threads executing on two
cores in an Intel Core Duo processor can take advantage of shared second-level
cache, accessing a single-copy of cached data without generating bus traffic.

Table 2-12. Family And Model Designations of Microarchitectures

Dual-Core
Processor

Micro-
architecture

Extended
Family Family

Extended
Model Model

Pentium D
processor

NetBurst 0 15 0 3, 4, 6

Pentium
processor
Extreme
Edition

NetBurst 0 15 0 3, 4, 6

Intel Core Duo
processor

Improved
Pentium M

0 6 0 14

Intel Core 2
Duo
processor/
Intel Xeon
processor
5100

Intel Core
Microarchitec-
ture

0 6 0 15

Intel Core 2
Duo processor
E8000 Series/
Intel Xeon
processor
5200, 5400

Enhanced Intel
Core
Microarchitect
ure

0 6 1 7
2-58

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.7.2.1 Load and Store Operations
When an instruction needs to read data from a memory address, the processor looks
for it in caches and memory. When an instruction writes data to a memory location
(write back) the processor first makes sure that the cache line that contains the
memory location is owned by the first-level data cache of the initiating core (that is,
the line is in exclusive or modified state). Then the processor looks for the cache line
in the cache and memory sub-systems. The look-ups for the locality of load or store
operation are in the following order:

1. DCU of the initiating core

2. DCU of the other core and second-level cache

3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache. Table 2-9 lists the performance
characteristics of generic load and store operations in an Intel Core Duo processor.
Numeric values of Table 2-9 are in terms of processor core cycles.

Throughput is expressed as the number of cycles to wait before the same operation
can start again. The latency of a bus transaction is exposed in some of these opera-
tions, as indicated by entries containing “+ bus transaction”. On Intel Core Duo
processors, a typical bus transaction may take 5.5 bus cycles. For a 667 MHz bus and
a core frequency of 2.167GHz, the total of 14 + 5.5 * 2167 /(667/4) ~ 86 core
cycles.

Sometimes a modified cache line has to be evicted to make room for a new cache
line. The modified cache line is evicted in parallel to bringing in new data and does
not require additional latency. However, when data is written back to memory, the
eviction consumes cache bandwidth and bus bandwidth. For multiple cache misses
that require the eviction of modified lines and are within a short time, there is an
overall degradation in response time of these cache misses.

Table 2-13. Characteristics of Load and Store Operations
in Intel Core Duo Processors

Load Store

Data Locality Latency Throughput Latency Throughput

DCU 3 1 2 1

DCU of the other core in
“Modified” state

14 + bus
transaction

14 + bus
transaction

14 + bus
transaction

~10

2nd-level cache 14 <6 14 <6

Memory 14 + bus
transaction

Bus read
protocol

14 + bus
transaction

Bus write
protocol
2-59

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
For store operation, reading for ownership must be completed before the data is
written to the first-level data cache and the line is marked as modified. Reading for
ownership and storing the data happens after instruction retirement and follows the
order of retirement. The bus store latency does not affect the store instruction itself.
However, several sequential stores may have cumulative latency that can effect
performance.

2.8 INTEL® 64 ARCHITECTURE
Intel 64 architecture supports almost all features in the IA-32 Intel architecture and
extends support to run 64-bit OS and 64-bit applications in 64-bit linear address
space. Intel 64 architecture provides a new operating mode, referred to as IA-32e
mode, and increases the linear address space for software to 64 bits and supports
physical address space up to 40 bits.

IA-32e mode consists of two sub-modes: (1) compatibility mode enables a 64-bit
operating system to run most legacy 32-bit software unmodified, (2) 64-bit mode
enables a 64-bit operating system to run applications written to access 64-bit linear
address space.

In the 64-bit mode of Intel 64 architecture, software may access:

• 64-bit flat linear addressing

• 8 additional general-purpose registers (GPRs)

• 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and
SSSE3)

• 64-bit-wide GPRs and instruction pointers

• uniform byte-register addressing

• fast interrupt-prioritization mechanism

• a new instruction-pointer relative-addressing mode

For optimizing 64-bit applications, the features that impact software optimizations
include:

• using a set of prefixes to access new registers or 64-bit register operand

• pointer size increases from 32 bits to 64 bits

• instruction-specific usages

2.9 SIMD TECHNOLOGY
SIMD computations (see Figure 2-10) were introduced to the architecture with MMX
technology. MMX technology allows SIMD computations to be performed on packed
byte, word, and doubleword integers. The integers are contained in a set of eight
64-bit registers called MMX registers (see Figure 2-11).
2-60

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The Pentium III processor extended the SIMD computation model with the introduc-
tion of the Streaming SIMD Extensions (SSE). SSE allows SIMD computations to be
performed on operands that contain four packed single-precision floating-point data
elements. The operands can be in memory or in a set of eight 128-bit XMM registers
(see Figure 2-11). SSE also extended SIMD computational capability by adding addi-
tional 64-bit MMX instructions.

Figure 2-10 shows a typical SIMD computation. Two sets of four packed data
elements (X1, X2, X3, and X4, and Y1, Y2, Y3, and Y4) are operated on in parallel,
with the same operation being performed on each corresponding pair of data
elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of the four
parallel computations are sorted as a set of four packed data elements.

The Pentium 4 processor further extended the SIMD computation model with the
introduction of Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3
(SSE3), and Intel Xeon processor 5100 series introduced Supplemental Streaming
SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology
extends SIMD computations to process packed double-precision floating-point data
elements and 128-bit packed integers. There are 144 instructions in SSE2 that
operate on two packed double-precision floating-point data elements or on 16
packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate
application performance in specific areas. These include video processing, complex
arithmetics, and thread synchronization. SSE3 complements SSE and SSE2 with
instructions that process SIMD data asymmetrically, facilitate horizontal computa-
tion, and help avoid loading cache line splits. See Figure 2-11.

Figure 2-14. Typical SIMD Operations

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

OP OP OP OP

OM15148
2-61

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
SSSE3 provides additional enhancement for SIMD computation with 32 instructions
on digital video and signal processing.

The SIMD extensions operates the same way in Intel 64 architecture as in IA-32
architecture, with the following enhancements:

• 128-bit SIMD instructions referencing XMM register can access 16 XMM registers
in 64-bit mode.

• Instructions that reference 32-bit general purpose registers can access 16
general purpose registers in 64-bit mode.

SIMD improves the performance of 3D graphics, speech recognition, image
processing, scientific applications and applications that have the following character-
istics:

• inherently parallel

• recurring memory access patterns

• localized recurring operations performed on the data

• data-independent control flow

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary
Floating-Point Arithmetic. They are accessible from all IA-32 execution modes:
protected mode, real address mode, and Virtual 8086 mode.

Figure 2-15. SIMD Instruction Register Usage

MM7

MM6

MM7

MM3

MM2

MM1

MM0

MM5

MM4

MM7

XMM6

XMM7

XMM3

XMM2

XMM1

XMM0

XMM5

XMM4

64-bit MMX Registers 128-bit XMM Registers

OM15149
2-62

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
SSE, SSE2, and MMX technologies are architectural extensions. Existing software will
continue to run correctly, without modification on Intel microprocessors that incorpo-
rate these technologies. Existing software will also run correctly in the presence of
applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering
instructions that can improve cache usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:

• Chapter 9, “Programming with Intel® MMX™ Technology”

• Chapter 10, “Programming with Streaming SIMD Extensions (SSE)”

• Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2)”

• Chapter 12, “Programming with SSE3 and Supplemental SSE3”

2.9.1 Summary of SIMD Technologies

2.9.1.1 MMX™ Technology
MMX Technology introduced:

• 64-bit MMX registers

• Support for SIMD operations on packed byte, word, and doubleword integers

MMX instructions are useful for multimedia and communications software.

2.9.1.2 Streaming SIMD Extensions
Streaming SIMD extensions introduced:

• 128-bit XMM registers

• 128-bit data type with four packed single-precision floating-point operands

• data prefetch instructions

• non-temporal store instructions and other cacheability and memory ordering
instructions

• extra 64-bit SIMD integer support

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and
video encoding and decoding.

2.9.1.3 Streaming SIMD Extensions 2
Streaming SIMD extensions 2 add the following:

• 128-bit data type with two packed double-precision floating-point operands
2-63

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• 128-bit data types for SIMD integer operation on 16-byte, 8-word,
4-doubleword, or 2-quadword integers

• support for SIMD arithmetic on 64-bit integer operands

• instructions for converting between new and existing data types

• extended support for data shuffling

• Extended support for cacheability and memory ordering operations

SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryp-
tion.

2.9.1.4 Streaming SIMD Extensions 3
Streaming SIMD extensions 3 add the following:

• SIMD floating-point instructions for asymmetric and horizontal computation

• a special-purpose 128-bit load instruction to avoid cache line splits

• an x87 FPU instruction to convert to integer independent of the floating-point
control word (FCW)

• instructions to support thread synchronization

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.9.1.5 Supplemental Streaming SIMD Extensions 3
The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to
accelerate eight types of computations on packed integers. These include:

• 12 instructions that perform horizontal addition or subtraction operations

• 6 instructions that evaluate the absolute values

• 2 instructions that perform multiply and add operations and speed up the
evaluation of dot products

• 2 instructions that accelerate packed-integer multiply operations and produce
integer values with scaling

• 2 instructions that perform a byte-wise, in-place shuffle according to the second
shuffle control operand

• 6 instructions that negate packed integers in the destination operand if the signs
of the corresponding element in the source operand is less than zero

• 2 instructions that align data from the composite of two operands

2.9.1.6 SSE4.1
SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applica-
tions. SSE4.1 also improves compiler vectorization and significantly increase support
for packed dword computation. These include:
2-64

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• Two instructions perform packed dword multiplies.

• Two instructions perform floating-point dot products with input/output selects.

• One instruction provides a streaming hint for WC loads.

• Six instructions simplify packed blending.

• Eight instructions expand support for packed integer MIN/MAX.

• Four instructions support floating-point round with selectable rounding mode and
precision exception override.

• Seven instructions improve data insertion and extractions from XMM registers

• Twelve instructions improve packed integer format conversions (sign and zero
extensions).

• One instruction improves SAD (sum absolute difference) generation for small
block sizes.

• One instruction aids horizontal searching operations of word integers.

• One instruction improves masked comparisons.

• One instruction adds qword packed equality comparisons.

• One instruction adds dword packing with unsigned saturation.

2.9.1.7 SSE4.2
SSE4.2 introduces 7 new instructions. These include:

• A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.

• Four string/text processing instructions providing a rich set of primitives, these
primitives can accelerate:

— basic and advanced string library functions from strlen, strcmp, to strcspn,

— delimiter processing, token extraction for lexing of text streams,

— Parser, schema validation including XML processing.

• A general-purpose instruction for accelerating cyclic redundancy checksum
signature calculations.

• A general-purpose instruction for calculating bit count population of integer
numbers.
2-65

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2-66

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES

This chapter discusses general optimization techniques that can improve the perfor-
mance of applications running on Intel Core i7 processors, processors based on Intel
Core microarchitecture, Enhanced Intel Core microarchitecture, Intel NetBurst
microarchitecture, Intel Core Duo, Intel Core Solo, and Pentium M processors. These
techniques take advantage of microarchitectural described in Chapter 2, “Intel® 64
and IA-32 Processor Architectures.” Optimization guidelines focusing on Intel multi-
core processors, Hyper-Threading Technology and 64-bit mode applications are
discussed in Chapter 8, “Multicore and Hyper-Threading Technology,” and Chapter 9,
“64-bit Mode Coding Guidelines.”

Practices that optimize performance focus on three areas:

• tools and techniques for code generation

• analysis of the performance characteristics of the workload and its interaction
with microarchitectural sub-systems

• tuning code to the target microarchitecture (or families of microarchitecture) to
improve performance

Some hints on using tools are summarized first to simplify the first two tasks. the rest
of the chapter will focus on recommendations of code generation or code tuning to
the target microarchitectures.

This chapter explains optimization techniques for the Intel C++ Compiler, the Intel
Fortran Compiler, and other compilers.

3.1 PERFORMANCE TOOLS
Intel offers several tools to help optimize application performance, including
compilers, performance analyzer and multithreading tools.

3.1.1 Intel® C++ and Fortran Compilers
Intel compilers support multiple operating systems (Windows*, Linux*, Mac OS* and
embedded). The Intel compilers optimize performance and give application devel-
opers access to advanced features:

• Flexibility to target 32-bit or 64-bit Intel processors for optimization

• Compatibility with many integrated development environments or third-party
compilers.

• Automatic optimization features to take advantage of the target processor’s
architecture.
3-1

GENERAL OPTIMIZATION GUIDELINES
• Automatic compiler optimization reduces the need to write different code for
different processors.

• Common compiler features that are supported across Windows, Linux and Mac
OS include:

— General optimization settings

— Cache-management features

— Interprocedural optimization (IPO) methods

— Profile-guided optimization (PGO) methods

— Multithreading support

— Floating-point arithmetic precision and consistency support

— Compiler optimization and vectorization reports

3.1.2 General Compiler Recommendations
Generally speaking, a compiler that has been tuned for the target microarchitecture
can be expected to match or outperform hand-coding. However, if performance prob-
lems are noted with the compiled code, some compilers (like Intel C++ and Fortran
Compilers) allow the coder to insert intrinsics or inline assembly in order to exert
control over what code is generated. If inline assembly is used, the user must verify
that the code generated is of good quality and yields good performance.

Default compiler switches are targeted for common cases. An optimization may be
made to the compiler default if it is beneficial for most programs. If the root cause of
a performance problem is a poor choice on the part of the compiler, using different
switches or compiling the targeted module with a different compiler may be the solu-
tion.

3.1.3 VTune™ Performance Analyzer
VTune uses performance monitoring hardware to collect statistics and coding infor-
mation of your application and its interaction with the microarchitecture. This allows
software engineers to measure performance characteristics of the workload for a
given microarchitecture. VTune supports Intel Core i7 processors, Intel Core microar-
chitecture, Intel NetBurst microarchitecture, Intel Core Duo, Intel Core Solo, and
Pentium M processor families.

The VTune Performance Analyzer provides two kinds of feedback:

• indication of a performance improvement gained by using a specific coding
recommendation or microarchitectural feature

• information on whether a change in the program has improved or degraded
performance with respect to a particular metric
3-2

GENERAL OPTIMIZATION GUIDELINES
The VTune Performance Analyzer also provides measures for a number of workload
characteristics, including:

• retirement throughput of instruction execution as an indication of the degree of
extractable instruction-level parallelism in the workload

• data traffic locality as an indication of the stress point of the cache and memory
hierarchy

• data traffic parallelism as an indication of the degree of effectiveness of amorti-
zation of data access latency

NOTE
Improving performance in one part of the machine does not
necessarily bring significant gains to overall performance. It is
possible to degrade overall performance by improving performance
for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of
the VTune Performance Analyzer events that provide measurable data on the perfor-
mance gain achieved by following the recommendations. For more on using the
VTune analyzer, refer to the application’s online help.

3.2 PROCESSOR PERSPECTIVES
Many coding recommendations for Intel Core microarchitecture work well across
Intel Core i7, Pentium M, Intel Core Solo, Intel Core Duo processors and processors
based on Intel NetBurst microarchitecture. However, there are situations where a
recommendation may benefit one microarchitecture more than another. Some of
these are:

• Instruction decode throughput is important for processors based on Intel Core i7
processors, Intel Core microarchitecture (Pentium M, Intel Core Solo, and Intel
Core Duo processors) but less important for processors based on Intel NetBurst
microarchitecture.

• Generating code with a 4-1-1 template (instruction with four μops followed by
two instructions with one μop each) helps the Pentium M processor.

Intel Core Solo and Intel Core Duo processors have an enhanced front end that
is less sensitive to the 4-1-1 template. Processors based on Intel Core microar-
chitecture have 4 decoders and employ micro-fusion and macro-fusion so that
each of three simple decoders are not restricted to handling simple instructions
consisting of one μop.

Taking advantage of micro-fusion will increase decoder throughput across Intel
Core Solo, Intel Core Duo and Intel Core2 Duo processors. Taking advantage of
macro-fusion can improve decoder throughput further on Intel Core 2 Duo
3-3

GENERAL OPTIMIZATION GUIDELINES
processor family. Taking advantage of macro-fusion can improve decoder
throughput in both 64-bit and 32-bit code for Intel microarchitecture (Nehalem)

• On processors based on Intel NetBurst microarchitecture, the code size limit of
interest is imposed by the trace cache. On Pentium M processors, the code size
limit is governed by the instruction cache.

• Dependencies for partial register writes incur large penalties when using the
Pentium M processor (this applies to processors with CPUID signature family 6,
model 9). On Pentium 4, Intel Xeon processors, Pentium M processor (with
CPUID signature family 6, model 13), such penalties are relieved by artificial
dependencies between each partial register write. Intel Core Solo, Intel Core Duo
processors and processors based on Intel Core microarchitecture can experience
minor delays due to partial register stalls. To avoid false dependences from
partial register updates, use full register updates and extended moves.

• Use appropriate instructions that support dependence-breaking (PXOR, SUB,
XOR instructions). Dependence-breaking support for XORPS is available in Intel
Core Solo, Intel Core Duo processors and processors based on Intel Core
microarchitecture.

• Floating point register stack exchange instructions are slightly more expensive
due to issue restrictions in processors based on Intel NetBurst microarchitecture.

• Hardware prefetching can reduce the effective memory latency for data and
instruction accesses in general. But different microarchitectures may require
some custom modifications to adapt to the specific hardware prefetch implemen-
tation of each microarchitecture.

• On processors based on Intel NetBurst microarchitecture, latencies of some
instructions are relatively significant (including shifts, rotates, integer multiplies,
and moves from memory with sign extension). Use care when using the LEA
instruction. See Section 3.5.1.3, “Using LEA.”

• On processors based on Intel NetBurst microarchitecture, there may be a penalty
when instructions with immediates requiring more than 16-bit signed represen-
tation are placed next to other instructions that use immediates.

3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy
When optimum performance on all processor generations is desired, applications can
take advantage of the CPUID instruction to identify the processor generation and
integrate processor-specific instructions into the source code. The Intel C++
Compiler supports the integration of different versions of the code for different target
processors. The selection of which code to execute at runtime is made based on the
CPU identifiers. Binary code targeted for different processor generations can be
generated under the control of the programmer or by the compiler.

For applications that target multiple generations of microarchitectures, and where
minimum binary code size and single code path is important, a compatible code
strategy is the best. Optimizing applications using techniques developed for the Intel
3-4

GENERAL OPTIMIZATION GUIDELINES
Core microarchitecture and combined with some for Intel NetBurst microarchitecture
are likely to improve code efficiency and scalability when running on processors
based on current and future generations of Intel 64 and IA-32 processors. This
compatible approach to optimization is also likely to deliver high performance on
Pentium M, Intel Core Solo and Intel Core Duo processors.

3.2.2 Transparent Cache-Parameter Strategy
If the CPUID instruction supports function leaf 4, also known as deterministic cache
parameter leaf, the leaf reports cache parameters for each level of the cache hier-
archy in a deterministic and forward-compatible manner across Intel 64 and IA-32
processor families.

For coding techniques that rely on specific parameters of a cache level, using the
deterministic cache parameter allows software to implement techniques in a way that
is forward-compatible with future generations of Intel 64 and IA-32 processors, and
cross-compatible with processors equipped with different cache sizes.

3.2.3 Threading Strategy and Hardware Multithreading Support
Intel 64 and IA-32 processor families offer hardware multithreading support in two
forms: dual-core technology and HT Technology.

To fully harness the performance potential of hardware multithreading in current and
future generations of Intel 64 and IA-32 processors, software must embrace a
threaded approach in application design. At the same time, to address the widest
range of installed machines, multi-threaded software should be able to run without
failure on a single processor without hardware multithreading support and should
achieve performance on a single logical processor that is comparable to an
unthreaded implementation (if such comparison can be made). This generally
requires architecting a multi-threaded application to minimize the overhead of thread
synchronization. Additional guidelines on multithreading are discussed in Chapter 8,
“Multicore and Hyper-Threading Technology.”

3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS
This section includes rules, suggestions and hints. They are targeted for engineers
who are:

• modifying source code to enhance performance (user/source rules)

• writing assemblers or compilers (assembly/compiler rules)

• doing detailed performance tuning (tuning suggestions)
3-5

GENERAL OPTIMIZATION GUIDELINES
Coding recommendations are ranked in importance using two measures:

• Local impact (high, medium, or low) refers to a recommendation’s affect on the
performance of a given instance of code.

• Generality (high, medium, or low) measures how often such instances occur
across all application domains. Generality may also be thought of as “frequency”.

These recommendations are approximate. They can vary depending on coding style,
application domain, and other factors.

The purpose of the high, medium, and low (H, M, and L) priorities is to suggest the
relative level of performance gain one can expect if a recommendation is imple-
mented.

Because it is not possible to predict the frequency of a particular code instance in
applications, priority hints cannot be directly correlated to application-level perfor-
mance gain. In cases in which application-level performance gain has been observed,
we have provided a quantitative characterization of the gain (for information only).
In cases in which the impact has been deemed inapplicable, no priority is assigned.

3.4 OPTIMIZING THE FRONT END
Optimizing the front end covers two aspects:

• Maintaining steady supply of μops to the execution engine — Mispredicted
branches can disrupt streams of μops, or cause the execution engine to waste
execution resources on executing streams of μops in the non-architected code
path. Much of the tuning in this respect focuses on working with the Branch
Prediction Unit. Common techniques are covered in Section 3.4.1, “Branch
Prediction Optimization.”

• Supplying streams of μops to utilize the execution bandwidth and retirement
bandwidth as much as possible — For Intel Core microarchitecture and Intel Core
Duo processor family, this aspect focuses maintaining high decode throughput.
In Intel NetBurst microarchitecture, this aspect focuses on keeping the Trace
Cache operating in stream mode. Techniques to maximize decode throughput for
Intel Core microarchitecture are covered in Section 3.4.2, “Fetch and Decode
Optimization.”

3.4.1 Branch Prediction Optimization
Branch optimizations have a significant impact on performance. By understanding
the flow of branches and improving their predictability, you can increase the speed of
code significantly.

Optimizations that help branch prediction are:

• Keep code and data on separate pages. This is very important; see Section 3.6,
“Optimizing Memory Accesses,” for more information.
3-6

GENERAL OPTIMIZATION GUIDELINES
• Eliminate branches whenever possible.

• Arrange code to be consistent with the static branch prediction algorithm.

• Use the PAUSE instruction in spin-wait loops.

• Inline functions and pair up calls and returns.

• Unroll as necessary so that repeatedly-executed loops have sixteen or fewer
iterations (unless this causes an excessive code size increase).

• Separate branches so that they occur no more frequently than every three μops
where possible.

3.4.1.1 Eliminating Branches
Eliminating branches improves performance because:

• It reduces the possibility of mispredictions.

• It reduces the number of required branch target buffer (BTB) entries. Conditional
branches, which are never taken, do not consume BTB resources.

There are four principal ways of eliminating branches:

• Arrange code to make basic blocks contiguous.

• Unroll loops, as discussed in Section 3.4.1.7, “Loop Unrolling.”

• Use the CMOV instruction.

• Use the SETCC instruction.

The following rules apply to branch elimination:

Assembly/Compiler Coding Rule 1. (MH impact, M generality) Arrange code
to make basic blocks contiguous and eliminate unnecessary branches.

For the Pentium M processor, every branch counts. Even correctly predicted branches
have a negative effect on the amount of useful code delivered to the processor. Also,
taken branches consume space in the branch prediction structures and extra
branches create pressure on the capacity of the structures.

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC
and CMOV instructions to eliminate unpredictable conditional branches where
possible. Do not do this for predictable branches. Do not use these instructions to
eliminate all unpredictable conditional branches (because using these instructions
will incur execution overhead due to the requirement for executing both paths of a
conditional branch). In addition, converting a conditional branch to SETCC or CMOV
trades off control flow dependence for data dependence and restricts the capability
of the out-of-order engine. When tuning, note that all Intel 64 and IA-32 processors
usually have very high branch prediction rates. Consistently mispredicted branches
are generally rare. Use these instructions only if the increase in computation time is
less than the expected cost of a mispredicted branch.
3-7

GENERAL OPTIMIZATION GUIDELINES
Consider a line of C code that has a condition dependent upon one of the constants:

X = (A < B) ? CONST1 : CONST2;

This code conditionally compares two values, A and B. If the condition is true, X is set
to CONST1; otherwise it is set to CONST2. An assembly code sequence equivalent to
the above C code can contain branches that are not predictable if there are no corre-
lation in the two values.

Example 3-1 shows the assembly code with unpredictable branches. The unpredict-
able branches can be removed with the use of the SETCC instruction. Example 3-2
shows optimized code that has no branches.

The optimized code in Example 3-2 sets EBX to zero, then compares A and B. If A is
greater than or equal to B, EBX is set to one. Then EBX is decreased and AND’d with
the difference of the constant values. This sets EBX to either zero or the difference of
the values. By adding CONST2 back to EBX, the correct value is written to EBX. When
CONST2 is equal to zero, the last instruction can be deleted.

Another way to remove branches on Pentium II and subsequent processors is to use
the CMOV and FCMOV instructions. Example 3-3 shows how to change a TEST and
branch instruction sequence using CMOV to eliminate a branch. If the TEST sets the
equal flag, the value in EBX will be moved to EAX. This branch is data-dependent, and
is representative of an unpredictable branch.

Example 3-1. Assembly Code with an Unpredictable Branch

cmp a, b ; Condition
jbe L30 ; Conditional branch
mov ebx const1 ; ebx holds X
jmp L31 ; Unconditional branch

L30:
mov ebx, const2

L31:

Example 3-2. Code Optimization to Eliminate Branches

xor ebx, ebx ; Clear ebx (X in the C code)
cmp A, B
setge bl ; When ebx = 0 or 1

 ; OR the complement condition
sub ebx, 1 ; ebx=11...11 or 00...00
and ebx, CONST3; CONST3 = CONST1-CONST2
add ebx, CONST2; ebx=CONST1 or CONST2
3-8

GENERAL OPTIMIZATION GUIDELINES
The CMOV and FCMOV instructions are available on the Pentium II and subsequent
processors, but not on Pentium processors and earlier IA-32 processors. Be sure to
check whether a processor supports these instructions with the CPUID instruction.

3.4.1.2 Spin-Wait and Idle Loops
The Pentium 4 processor introduces a new PAUSE instruction; the instruction is
architecturally a NOP on Intel 64 and IA-32 processor implementations.

To the Pentium 4 and later processors, this instruction acts as a hint that the code
sequence is a spin-wait loop. Without a PAUSE instruction in such loops, the Pentium
4 processor may suffer a severe penalty when exiting the loop because the processor
may detect a possible memory order violation. Inserting the PAUSE instruction
significantly reduces the likelihood of a memory order violation and as a result
improves performance.

In Example 3-4, the code spins until memory location A matches the value stored in
the register EAX. Such code sequences are common when protecting a critical
section, in producer-consumer sequences, for barriers, or other synchronization.

3.4.1.3 Static Prediction
Branches that do not have a history in the BTB (see Section 3.4.1, “Branch Prediction
Optimization”) are predicted using a static prediction algorithm. Pentium 4,

Example 3-3. Eliminating Branch with CMOV Instruction

test ecx, ecx
jne 1H
mov eax, ebx

1H:
; To optimize code, combine jne and mov into one cmovcc instruction that checks the equal flag

test ecx, ecx ; Test the flags
cmoveq eax, ebx ; If the equal flag is set, move

; ebx to eax- the 1H: tag no longer needed

Example 3-4. Use of PAUSE Instruction

lock: cmp eax, a
jne loop
; Code in critical section:

loop: pause
cmp eax, a
jne loop
jmp lock
3-9

GENERAL OPTIMIZATION GUIDELINES
Pentium M, Intel Core Solo and Intel Core Duo processors have similar static predic-
tion algorithms that:

• predict unconditional branches to be taken

• predict indirect branches to be NOT taken

In addition, conditional branches in processors based on the Intel NetBurst microar-
chitecture are predicted using the following static prediction algorithm:

• predict backward conditional branches to be taken; rule is suitable for loops

• predict forward conditional branches to be NOT taken

Pentium M, Intel Core Solo and Intel Core Duo processors do not statically predict
conditional branches according to the jump direction. All conditional branches are
dynamically predicted, even at first appearance.

The following rule applies to static elimination.

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to
be consistent with the static branch prediction algorithm: make the fall-through
code following a conditional branch be the likely target for a branch with a forward
target, and make the fall-through code following a conditional branch be the
unlikely target for a branch with a backward target.

Example 3-5 illustrates the static branch prediction algorithm. The body of an IF-
THEN conditional is predicted.

Examples 3-6 and Example 3-7 provide basic rules for a static prediction algorithm.
In Example 3-6, the backward branch (JC BEGIN) is not in the BTB the first time

Example 3-5. Pentium 4 Processor Static Branch Prediction Algorithm

//Forward condition branches not taken (fall through)
IF<condition> {....
↓
}

IF<condition> {...
↓
}

//Backward conditional branches are taken
LOOP {...
↑ −− }<condition>

//Unconditional branches taken
JMP
------→
3-10

GENERAL OPTIMIZATION GUIDELINES
through; therefore, the BTB does not issue a prediction. The static predictor,
however, will predict the branch to be taken, so a misprediction will not occur.

The first branch instruction (JC BEGIN) in Example 3-7 is a conditional forward
branch. It is not in the BTB the first time through, but the static predictor will predict
the branch to fall through. The static prediction algorithm correctly predicts that the
CALL CONVERT instruction will be taken, even before the branch has any branch
history in the BTB.

The Intel Core microarchitecture does not use the static prediction heuristic.
However, to maintain consistency across Intel 64 and IA-32 processors, software
should maintain the static prediction heuristic as the default.

3.4.1.4 Inlining, Calls and Returns
The return address stack mechanism augments the static and dynamic predictors to
optimize specifically for calls and returns. It holds 16 entries, which is large enough
to cover the call depth of most programs. If there is a chain of more than 16 nested
calls and more than 16 returns in rapid succession, performance may degrade.

The trace cache in Intel NetBurst microarchitecture maintains branch prediction
information for calls and returns. As long as the trace with the call or return remains
in the trace cache and the call and return targets remain unchanged, the depth limit
of the return address stack described above will not impede performance.

To enable the use of the return stack mechanism, calls and returns must be matched
in pairs. If this is done, the likelihood of exceeding the stack depth in a manner that
will impact performance is very low.

Example 3-6. Static Taken Prediction

Begin: mov eax, mem32
and eax, ebx
imul eax, edx
shld eax, 7
jc Begin

Example 3-7. Static Not-Taken Prediction

mov eax, mem32
and eax, ebx
imul eax, edx
shld eax, 7
jc Begin
mov eax, 0

Begin: call Convert
3-11

GENERAL OPTIMIZATION GUIDELINES
The following rules apply to inlining, calls, and returns.

Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near calls
must be matched with near returns, and far calls must be matched with far returns.
Pushing the return address on the stack and jumping to the routine to be called is
not recommended since it creates a mismatch in calls and returns.

Calls and returns are expensive; use inlining for the following reasons:

• Parameter passing overhead can be eliminated.

• In a compiler, inlining a function exposes more opportunity for optimization.

• If the inlined routine contains branches, the additional context of the caller may
improve branch prediction within the routine.

• A mispredicted branch can lead to performance penalties inside a small function
that are larger than those that would occur if that function is inlined.

Assembly/Compiler Coding Rule 5. (MH impact, MH generality) Selectively
inline a function if doing so decreases code size or if the function is small and the
call site is frequently executed.

Assembly/Compiler Coding Rule 6. (H impact, H generality) Do not inline a
function if doing so increases the working set size beyond what will fit in the trace
cache.

Assembly/Compiler Coding Rule 7. (ML impact, ML generality) If there are
more than 16 nested calls and returns in rapid succession; consider transforming
the program with inline to reduce the call depth.

Assembly/Compiler Coding Rule 8. (ML impact, ML generality) Favor inlining
small functions that contain branches with poor prediction rates. If a branch
misprediction results in a RETURN being prematurely predicted as taken, a
performance penalty may be incurred.)

Assembly/Compiler Coding Rule 9. (L impact, L generality) If the last
statement in a function is a call to another function, consider converting the call to
a jump. This will save the call/return overhead as well as an entry in the return
stack buffer.

Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put
more than four branches in a 16-byte chunk.

Assembly/Compiler Coding Rule 11. (M impact, L generality) Do not put
more than two end loop branches in a 16-byte chunk.

3.4.1.5 Code Alignment
Careful arrangement of code can enhance cache and memory locality. Likely
sequences of basic blocks should be laid out contiguously in memory. This may
involve removing unlikely code, such as code to handle error conditions, from the
sequence. See Section 3.7, “Prefetching,” on optimizing the instruction prefetcher.
3-12

GENERAL OPTIMIZATION GUIDELINES
Assembly/Compiler Coding Rule 12. (M impact, H generality) All branch
targets should be 16-byte aligned.

Assembly/Compiler Coding Rule 13. (M impact, H generality) If the body of a
conditional is not likely to be executed, it should be placed in another part of the
program. If it is highly unlikely to be executed and code locality is an issue, it
should be placed on a different code page.

3.4.1.6 Branch Type Selection
The default predicted target for indirect branches and calls is the fall-through path.
Fall-through prediction is overridden if and when a hardware prediction is available
for that branch. The predicted branch target from branch prediction hardware for an
indirect branch is the previously executed branch target.

The default prediction to the fall-through path is only a significant issue if no branch
prediction is available, due to poor code locality or pathological branch conflict prob-
lems. For indirect calls, predicting the fall-through path is usually not an issue, since
execution will likely return to the instruction after the associated return.

Placing data immediately following an indirect branch can cause a performance
problem. If the data consists of all zeros, it looks like a long stream of ADDs to
memory destinations and this can cause resource conflicts and slow down branch
recovery. Also, data immediately following indirect branches may appear as branches
to the branch predication hardware, which can branch off to execute other data
pages. This can lead to subsequent self-modifying code problems.

Assembly/Compiler Coding Rule 14. (M impact, L generality) When indirect
branches are present, try to put the most likely target of an indirect branch
immediately following the indirect branch. Alternatively, if indirect branches are
common but they cannot be predicted by branch prediction hardware, then follow
the indirect branch with a UD2 instruction, which will stop the processor from
decoding down the fall-through path.

Indirect branches resulting from code constructs (such as switch statements,
computed GOTOs or calls through pointers) can jump to an arbitrary number of loca-
tions. If the code sequence is such that the target destination of a branch goes to the
same address most of the time, then the BTB will predict accurately most of the time.
Since only one taken (non-fall-through) target can be stored in the BTB, indirect
branches with multiple taken targets may have lower prediction rates.

The effective number of targets stored may be increased by introducing additional
conditional branches. Adding a conditional branch to a target is fruitful if:

• The branch direction is correlated with the branch history leading up to that
branch; that is, not just the last target, but how it got to this branch.

• The source/target pair is common enough to warrant using the extra branch
prediction capacity. This may increase the number of overall branch mispredic-
tions, while improving the misprediction of indirect branches. The profitability is
lower if the number of mispredicting branches is very large.
3-13

GENERAL OPTIMIZATION GUIDELINES
User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has
two or more common taken targets and at least one of those targets is correlated
with branch history leading up to the branch, then convert the indirect branch to a
tree where one or more indirect branches are preceded by conditional branches to
those targets. Apply this “peeling” procedure to the common target of an indirect
branch that correlates to branch history.

The purpose of this rule is to reduce the total number of mispredictions by enhancing
the predictability of branches (even at the expense of adding more branches). The
added branches must be predictable for this to be worthwhile. One reason for such
predictability is a strong correlation with preceding branch history. That is, the direc-
tions taken on preceding branches are a good indicator of the direction of the branch
under consideration.

Example 3-8 shows a simple example of the correlation between a target of a
preceding conditional branch and a target of an indirect branch.

Correlation can be difficult to determine analytically, for a compiler and for an
assembly language programmer. It may be fruitful to evaluate performance with and
without peeling to get the best performance from a coding effort.

An example of peeling out the most favored target of an indirect branch with corre-
lated branch history is shown in Example 3-9.

Example 3-8. Indirect Branch With Two Favored Targets

function ()
{
int n = rand(); // random integer 0 to RAND_MAX

if (! (n & 0x01)) { // n will be 0 half the times
n = 0; // updates branch history to predict taken

}
// indirect branches with multiple taken targets
// may have lower prediction rates

 switch (n) {
case 0: handle_0(); break; // common target, correlated with

// branch history that is forward taken
 case 1: handle_1(); break; // uncommon

case 3: handle_3(); break; // uncommon
default: handle_other(); // common target

 }
}

3-14

GENERAL OPTIMIZATION GUIDELINES
3.4.1.7 Loop Unrolling
Benefits of unrolling loops are:

• Unrolling amortizes the branch overhead, since it eliminates branches and some
of the code to manage induction variables.

• Unrolling allows one to aggressively schedule (or pipeline) the loop to hide
latencies. This is useful if you have enough free registers to keep variables live as
you stretch out the dependence chain to expose the critical path.

• Unrolling exposes the code to various other optimizations, such as removal of
redundant loads, common subexpression elimination, and so on.

• The Pentium 4 processor can correctly predict the exit branch for an inner loop
that has 16 or fewer iterations (if that number of iterations is predictable and
there are no conditional branches in the loop). So, if the loop body size is not
excessive and the probable number of iterations is known, unroll inner loops until
they have a maximum of 16 iterations. With the Pentium M processor, do not
unroll loops having more than 64 iterations.

The potential costs of unrolling loops are:

• Excessive unrolling or unrolling of very large loops can lead to increased code
size. This can be harmful if the unrolled loop no longer fits in the trace cache (TC).

• Unrolling loops whose bodies contain branches increases demand on BTB
capacity. If the number of iterations of the unrolled loop is 16 or fewer, the branch

Example 3-9. A Peeling Technique to Reduce Indirect Branch Misprediction

function ()
{
 int n = rand(); // Random integer 0 to RAND_MAX

if(! (n & 0x01)) THEN
 n = 0; // n will be 0 half the times

if (!n) THEN
handle_0(); // Peel out the most common target

// with correlated branch history

 {
 switch (n) {

case 1: handle_1(); break; // Uncommon
case 3: handle_3(); break; // Uncommon

default: handle_other(); // Make the favored target in
// the fall-through path

}
 }
}

3-15

GENERAL OPTIMIZATION GUIDELINES
predictor should be able to correctly predict branches in the loop body that
alternate direction.

Assembly/Compiler Coding Rule 15. (H impact, M generality) Unroll small
loops until the overhead of the branch and induction variable accounts (generally)
for less than 10% of the execution time of the loop.

Assembly/Compiler Coding Rule 16. (H impact, M generality) Avoid unrolling
loops excessively; this may thrash the trace cache or instruction cache.

Assembly/Compiler Coding Rule 17. (M impact, M generality) Unroll loops
that are frequently executed and have a predictable number of iterations to reduce
the number of iterations to 16 or fewer. Do this unless it increases code size so that
the working set no longer fits in the trace or instruction cache. If the loop body
contains more than one conditional branch, then unroll so that the number of
iterations is 16/(# conditional branches).

Example 3-10 shows how unrolling enables other optimizations.

In this example, the loop that executes 100 times assigns X to every even-numbered
element and Y to every odd-numbered element. By unrolling the loop you can make
assignments more efficiently, removing one branch in the loop body.

3.4.1.8 Compiler Support for Branch Prediction
Compilers generate code that improves the efficiency of branch prediction in the
Pentium 4, Pentium M, Intel Core Duo processors and processors based on Intel Core
microarchitecture. The Intel C++ Compiler accomplishes this by:

• keeping code and data on separate pages

• using conditional move instructions to eliminate branches

• generating code consistent with the static branch prediction algorithm

• inlining where appropriate

• unrolling if the number of iterations is predictable

Example 3-10. Loop Unrolling

Before unrolling:

do i = 1, 100
if (i mod 2 == 0) then a(i) = x

else a(i) = y
enddo

After unrolling

do i = 1, 100, 2
a(i) = y
a(i+1) = x

enddo
3-16

GENERAL OPTIMIZATION GUIDELINES
With profile-guided optimization, the compiler can lay out basic blocks to eliminate
branches for the most frequently executed paths of a function or at least improve
their predictability. Branch prediction need not be a concern at the source level. For
more information, see Intel C++ Compiler documentation.

3.4.2 Fetch and Decode Optimization
Intel Core microarchitecture provides several mechanisms to increase front end
throughput. Techniques to take advantage of some of these features are discussed
below.

3.4.2.1 Optimizing for Micro-fusion
An Instruction that operates on a register and a memory operand decodes into more
μops than its corresponding register-register version. Replacing the equivalent work
of the former instruction using the register-register version usually require a
sequence of two instructions. The latter sequence is likely to result in reduced fetch
bandwidth.

Assembly/Compiler Coding Rule 18. (ML impact, M generality) For improving
fetch/decode throughput, Give preference to memory flavor of an instruction over
the register-only flavor of the same instruction, if such instruction can benefit from
micro-fusion.

The following examples are some of the types of micro-fusions that can be handled
by all decoders:

• All stores to memory, including store immediate. Stores execute internally as two
separate μops: store-address and store-data.

• All “read-modify” (load+op) instructions between register and memory, for
example:

ADDPS XMM9, OWORD PTR [RSP+40]
FADD DOUBLE PTR [RDI+RSI*8]
XOR RAX, QWORD PTR [RBP+32]

• All instructions of the form “load and jump,” for example:
JMP [RDI+200]
RET

• CMP and TEST with immediate operand and memory

An Intel 64 instruction with RIP relative addressing is not micro-fused in the following
cases:

• When an additional immediate is needed, for example:
CMP [RIP+400], 27
MOV [RIP+3000], 142

• When an RIP is needed for control flow purposes, for example:
JMP [RIP+5000000]
3-17

GENERAL OPTIMIZATION GUIDELINES
In these cases, Intel Core Microarchitecture provides a 2 μop flow from decoder 0,
resulting in a slight loss of decode bandwidth since 2 μop flow must be steered to
decoder 0 from the decoder with which it was aligned.

RIP addressing may be common in accessing global data. Since it will not benefit
from micro-fusion, compiler may consider accessing global data with other means of
memory addressing.

3.4.2.2 Optimizing for Macro-fusion
Macro-fusion merges two instructions to a single μop. Intel Core Microarchitecture
performs this hardware optimization under limited circumstances.

The first instruction of the macro-fused pair must be a CMP or TEST instruction. This
instruction can be REG-REG, REG-IMM, or a micro-fused REG-MEM comparison. The
second instruction (adjacent in the instruction stream) should be a conditional
branch.

Since these pairs are common ingredient in basic iterative programming sequences,
macro-fusion improves performance even on un-recompiled binaries. All of the
decoders can decode one macro-fused pair per cycle, with up to three other instruc-
tions, resulting in a peak decode bandwidth of 5 instructions per cycle.

Each macro-fused instruction executes with a single dispatch. This process reduces
latency, which in this case shows up as a cycle removed from branch mispredict
penalty. Software also gain all other fusion benefits: increased rename and retire
bandwidth, more storage for instructions in-flight, and power savings from repre-
senting more work in fewer bits.

The following list details when you can use macro-fusion:

• CMP or TEST can be fused when comparing:

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REG. For example: CMP [EAX],ECX; JZ label

• TEST can fused with all conditional jumps.

• CMP can be fused with only the following conditional jumps in Intel Core microar-
chitecture. These conditional jumps check carry flag (CF) or zero flag (ZF). jump.
The list of macro-fusion-capable conditional jumps are:

JA or JNBE
JAE or JNB or JNC
JE or JZ
JNA or JBE
JNAE or JC or JB
JNE or JNZ
3-18

GENERAL OPTIMIZATION GUIDELINES
CMP and TEST can not be fused when comparing MEM-IMM (e.g. CMP [EAX],0x80; JZ
label). Macro-fusion is not supported in 64-bit mode for Intel Core microarchitecture.

• Intel microarchitecture (Nehalem) supports the following enhancements in
macrofusion:

— CMP can be fused with the following conditional jumps (that was not
supported in Intel Core microarchitecture):

• JL or JNGE

• JGE or JNL

• JLE or JNG

• JG or JNLE

— Macro-fusion is support in 64-bit mode.

Assembly/Compiler Coding Rule 19. (M impact, ML generality) Employ
macro-fusion where possible using instruction pairs that support macro-fusion.
Prefer TEST over CMP if possible. Use unsigned variables and unsigned jumps when
possible. Try to logically verify that a variable is non-negative at the time of
comparison. Avoid CMP or TEST of MEM-IMM flavor when possible. However, do not
add other instructions to avoid using the MEM-IMM flavor.

Example 3-11. Macro-fusion, Unsigned Iteration Count
Without Macro-fusion With Macro-fusion

C code for (int1 i = 0; i < 1000; i++)
a++;

for (unsigned int2 i = 0; i < 1000; i++)
a++;

Disassembly for (int i = 0; i < 1000; i++)
mov dword ptr [i], 0
jmp First
Loop:
mov eax, dword ptr [i]
add eax, 1
mov dword ptr [i], eax

for (unsigned int i = 0; i < 1000; i++)
mov dword ptr [i], 0
jmp First
Loop:
mov eax, dword ptr [i]
add eax, 1
mov dword ptr [i], eax

First:
cmp dword ptr [i], 3E8H3

jge End
a++;

mov eax, dword ptr [a]
addqq eax,1
mov dword ptr [a], eax
jmp Loop
End:

First:
cmp eax, 3E8H 4

jae End
a++;

mov eax, dword ptr [a]
add eax, 1
mov dword ptr [a], eax
jmp Loop
End:
3-19

GENERAL OPTIMIZATION GUIDELINES
NOTES:
1. Signed iteration count inhibits macro-fusion
2. Unsigned iteration count is compatible with macro-fusion
3. CMP MEM-IMM, JGE inhibit macro-fusion
4. CMP REG-IMM, JAE permits macro-fusion

Example 3-12. Macro-fusion, If Statement
Without Macro-fusion With Macro-fusion

C code int1 a = 7;
if (a < 77)

a++;
else

a--;

NOTES:
1. Signed iteration count inhibits macro-fusion

unsigned int2 a = 7;
if (a < 77)

a++;
else

a--;

2. Unsigned iteration count is compatible with macro-fusion

Disassembly int a = 7;
mov dword ptr [a], 7
if (a < 77)
cmp dword ptr [a], 4DH 3

jge Dec
a++;

mov eax, dword ptr [a]
add eax, 1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
mov eax, dword ptr [a]
sub eax, 1
mov dword ptr [a], eax
End::

3. CMP MEM-IMM, JGE inhibit macro-fusion

unsigned int a = 7;
mov dword ptr [a], 7
if (a < 77)
mov eax, dword ptr [a]
cmp eax, 4DH
jae Dec

a++;
add eax,1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
sub eax, 1
mov dword ptr [a], eax
End::
3-20

GENERAL OPTIMIZATION GUIDELINES
Assembly/Compiler Coding Rule 20. (M impact, ML generality) Software can
enable macro fusion when it can be logically determined that a variable is non-
negative at the time of comparison; use TEST appropriately to enable macro-fusion
when comparing a variable with 0.

For either signed or unsigned variable ‘a’; “CMP a,0” and “TEST a,a” produce the
same result as far as the flags are concerned. Since TEST can be macro-fused more
often, software can use “TEST a,a” to replace “CMP a,0” for the purpose of enabling
macro-fusion.

3.4.2.3 Length-Changing Prefixes (LCP)
The length of an instruction can be up to 15 bytes in length. Some prefixes can
dynamically change the length of an instruction that the decoder must recognize.
Typically, the pre-decode unit will estimate the length of an instruction in the byte
stream assuming the absence of LCP. When the predecoder encounters an LCP in the
fetch line, it must use a slower length decoding algorithm. With the slower length
decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the
usual 1 cycle. Normal queuing throughout of the machine pipeline generally cannot
hide LCP penalties.

The prefixes that can dynamically change the length of a instruction include:

• operand size prefix (0x66)

• address size prefix (0x67)

Example 3-13. Macro-fusion, Signed Variable
Without Macro-fusion With Macro-fusion
test ecx, ecx
jle OutSideTheIF
cmp ecx, 64H
jge OutSideTheIF
<IF BLOCK CODE>
OutSideTheIF:

test ecx, ecx
jle OutSideTheIF
cmp ecx, 64H
jae OutSideTheIF
<IF BLOCK CODE>
OutSideTheIF:

Example 3-14. Macro-fusion, Signed Comparison
C Code Without Macro-fusion With Macro-fusion
if (a == 0) cmp a, 0

jne lbl
...
lbl:

test a, a
jne lbl
...
lbl:

if (a >= 0) cmp a, 0
jl lbl;
...
lbl:

test a, a
jl lbl
...
lbl:
3-21

GENERAL OPTIMIZATION GUIDELINES
The instruction MOV DX, 01234h is subject to LCP stalls in processors based on Intel
Core microarchitecture, and in Intel Core Duo and Intel Core Solo processors.
Instructions that contain imm16 as part of their fixed encoding but do not require LCP
to change the immediate size are not subject to LCP stalls. The REX prefix (4xh) in
64-bit mode can change the size of two classes of instruction, but does not cause an
LCP penalty.

If the LCP stall happens in a tight loop, it can cause significant performance degrada-
tion. When decoding is not a bottleneck, as in floating-point heavy code, isolated LCP
stalls usually do not cause performance degradation.

Assembly/Compiler Coding Rule 21. (MH impact, MH generality) Favor
generating code using imm8 or imm32 values instead of imm16 values.

If imm16 is needed, load equivalent imm32 into a register and use the word value in
the register instead.

Double LCP Stalls

Instructions that are subject to LCP stalls and cross a 16-byte fetch line boundary can
cause the LCP stall to trigger twice. The following alignment situations can cause LCP
stalls to trigger twice:

• An instruction is encoded with a MODR/M and SIB byte, and the fetch line
boundary crossing is between the MODR/M and the SIB bytes.

• An instruction starts at offset 13 of a fetch line references a memory location
using register and immediate byte offset addressing mode.

The first stall is for the 1st fetch line, and the 2nd stall is for the 2nd fetch line. A
double LCP stall causes a decode penalty of 11 cycles.

The following examples cause LCP stall once, regardless of their fetch-line location of
the first byte of the instruction:

ADD DX, 01234H
ADD word ptr [EDX], 01234H
ADD word ptr 012345678H[EDX], 01234H
ADD word ptr [012345678H], 01234H

The following instructions cause a double LCP stall when starting at offset 13 of a
fetch line:

ADD word ptr [EDX+ESI], 01234H
ADD word ptr 012H[EDX], 01234H
ADD word ptr 012345678H[EDX+ESI], 01234H

To avoid double LCP stalls, do not use instructions subject to LCP stalls that use SIB
byte encoding or addressing mode with byte displacement.

False LCP Stalls

False LCP stalls have the same characteristics as LCP stalls, but occur on instructions
that do not have any imm16 value.
3-22

GENERAL OPTIMIZATION GUIDELINES
False LCP stalls occur when (a) instructions with LCP that are encoded using the F7
opcodes, and (b) are located at offset 14 of a fetch line. These instructions are not,
neg, div, idiv, mul, and imul. False LCP experiences delay because the instruction
length decoder can not determine the length of the instruction before the next fetch
line, which holds the exact opcode of the instruction in its MODR/M byte.

The following techniques can help avoid false LCP stalls:

• Upcast all short operations from the F7 group of instructions to long, using the
full 32 bit version.

• Ensure that the F7 opcode never starts at offset 14 of a fetch line.

Assembly/Compiler Coding Rule 22. (M impact, ML generality) Ensure
instructions using 0xF7 opcode byte does not start at offset 14 of a fetch line; and
avoid using these instruction to operate on 16-bit data, upcast short data to 32 bits.

3.4.2.4 Optimizing the Loop Stream Detector (LSD)
Loops that fit the following criteria are detected by the LSD and replayed from the
instruction queue to feed the decoder in Intel Core microarchitecture:

• Must be less than or equal to four 16-byte fetches.

• Must be less than or equal to 18 instructions.

• Can contain no more than four taken branches and none of them can be a RET.

• Should usually have more than 64 iterations.

Loop Stream Detector in Intel microarchitecture (Nehalem) is improved by:

• Caching decoded micro-operations in the instruction decoder queue (IDQ, see
Section 2.2.2) to feed the rename/alloc stage.

• The size of the LSD is increased to 28 micro-ops.

Many calculation-intensive loops, searches and software string moves match these
characteristics. These loops exceed the BPU prediction capacity and always termi-
nate in a branch misprediction.

Example 3-15. Avoiding False LCP Delays with 0xF7 Group Instructions
A Sequence Causing Delay in the Decoder Alternate Sequence to Avoid Delay

neg word ptr a movsx eax, word ptr a
neg eax
mov word ptr a, AX
3-23

GENERAL OPTIMIZATION GUIDELINES
Assembly/Compiler Coding Rule 23. (MH impact, MH generality) Break up a
loop long sequence of instructions into loops of shorter instruction blocks of no
more than the size of LSD.

Assembly/Compiler Coding Rule 24. (MH impact, M generality) Avoid
unrolling loops containing LCP stalls, if the unrolled block exceeds the size of LSD.

3.4.2.5 Scheduling Rules for the Pentium 4 Processor Decoder
Processors based on Intel NetBurst microarchitecture have a single decoder that can
decode instructions at the maximum rate of one instruction per clock. Complex
instructions must enlist the help of the microcode ROM.

Because μops are delivered from the trace cache in the common cases, decoding
rules and code alignment are not required.

3.4.2.6 Scheduling Rules for the Pentium M Processor Decoder
The Pentium M processor has three decoders, but the decoding rules to supply μops
at high bandwidth are less stringent than those of the Pentium III processor. This
provides an opportunity to build a front-end tracker in the compiler and try to
schedule instructions correctly. The decoder limitations are:

• The first decoder is capable of decoding one macroinstruction made up of four or
fewer μops in each clock cycle. It can handle any number of bytes up to the
maximum of 15. Multiple prefix instructions require additional cycles.

• The two additional decoders can each decode one macroinstruction per clock
cycle (assuming the instruction is one μop up to seven bytes in length).

• Instructions composed of more than four μops take multiple cycles to decode.

Assembly/Compiler Coding Rule 25. (M impact, M generality) Avoid putting
explicit references to ESP in a sequence of stack operations (POP, PUSH, CALL,
RET).

3.4.2.7 Other Decoding Guidelines
Assembly/Compiler Coding Rule 26. (ML impact, L generality) Use simple
instructions that are less than eight bytes in length.

Assembly/Compiler Coding Rule 27. (M impact, MH generality) Avoid using
prefixes to change the size of immediate and displacement.

Long instructions (more than seven bytes) limit the number of decoded instructions
per cycle on the Pentium M processor. Each prefix adds one byte to the length of
instruction, possibly limiting the decoder’s throughput. In addition, multiple prefixes
can only be decoded by the first decoder. These prefixes also incur a delay when
decoded. If multiple prefixes or a prefix that changes the size of an immediate or
3-24

GENERAL OPTIMIZATION GUIDELINES
displacement cannot be avoided, schedule them behind instructions that stall the
pipe for some other reason.

3.5 OPTIMIZING THE EXECUTION CORE
The superscalar, out-of-order execution core(s) in recent generations of microarchi-
tectures contain multiple execution hardware resources that can execute multiple
μops in parallel. These resources generally ensure that μops execute efficiently and
proceed with fixed latencies. General guidelines to make use of the available paral-
lelism are:

• Follow the rules (see Section 3.4) to maximize useful decode bandwidth and front
end throughput. These rules include favouring single μop instructions and taking
advantage of micro-fusion, Stack pointer tracker and macro-fusion.

• Maximize rename bandwidth. Guidelines are discussed in this section and include
properly dealing with partial registers, ROB read ports and instructions which
causes side-effects on flags.

• Scheduling recommendations on sequences of instructions so that multiple
dependency chains are alive in the reservation station (RS) simultaneously, thus
ensuring that your code utilizes maximum parallelism.

• Avoid hazards, minimize delays that may occur in the execution core, allowing
the dispatched μops to make progress and be ready for retirement quickly.

3.5.1 Instruction Selection
Some execution units are not pipelined, this means that μops cannot be dispatched
in consecutive cycles and the throughput is less than one per cycle.

It is generally a good starting point to select instructions by considering the number
of μops associated with each instruction, favoring in the order of: single-μop instruc-
tions, simple instruction with less then 4 μops, and last instruction requiring microse-
quencer ROM (μops which are executed out of the microsequencer involve extra
overhead).

Assembly/Compiler Coding Rule 28. (M impact, H generality) Favor single-
micro-operation instructions. Also favor instruction with shorter latencies.

A compiler may be already doing a good job on instruction selection. If so, user inter-
vention usually is not necessary.

Assembly/Compiler Coding Rule 29. (M impact, L generality) Avoid prefixes,
especially multiple non-0F-prefixed opcodes.

Assembly/Compiler Coding Rule 30. (M impact, L generality) Do not use
many segment registers.

On the Pentium M processor, there is only one level of renaming of segment regis-
ters.
3-25

GENERAL OPTIMIZATION GUIDELINES
Assembly/Compiler Coding Rule 31. (ML impact, M generality) Avoid using
complex instructions (for example, enter, leave, or loop) that have more than four
µops and require multiple cycles to decode. Use sequences of simple instructions
instead.

Complex instructions may save architectural registers, but incur a penalty of 4 µops to
set up parameters for the microsequencer ROM in Intel NetBurst microarchitecture.

Theoretically, arranging instructions sequence to match the 4-1-1-1 template applies
to processors based on Intel Core microarchitecture. However, with macro-fusion
and micro-fusion capabilities in the front end, attempts to schedule instruction
sequences using the 4-1-1-1 template will likely provide diminishing returns.

Instead, software should follow these additional decoder guidelines:

• If you need to use multiple μop, non-microsequenced instructions, try to
separate by a few single μop instructions. The following instructions are
examples of multiple-μop instruction not requiring micro-sequencer:

ADC/SBB
CMOVcc
Read-modify-write instructions

• If a series of multiple-μop instructions cannot be separated, try breaking the
series into a different equivalent instruction sequence. For example, a series of
read-modify-write instructions may go faster if sequenced as a series of read-
modify + store instructions. This strategy could improve performance even if the
new code sequence is larger than the original one.

3.5.1.1 Use of the INC and DEC Instructions
The INC and DEC instructions modify only a subset of the bits in the flag register. This
creates a dependence on all previous writes of the flag register. This is especially
problematic when these instructions are on the critical path because they are used to
change an address for a load on which many other instructions depend.

Assembly/Compiler Coding Rule 32. (M impact, H generality) INC and DEC
instructions should be replaced with ADD or SUB instructions, because ADD and
SUB overwrite all flags, whereas INC and DEC do not, therefore creating false
dependencies on earlier instructions that set the flags.

3.5.1.2 Integer Divide
Typically, an integer divide is preceded by a CWD or CDQ instruction. Depending on
the operand size, divide instructions use DX:AX or EDX:EAX for the dividend. The
CWD or CDQ instructions sign-extend AX or EAX into DX or EDX, respectively. These
instructions have denser encoding than a shift and move would be, but they generate
the same number of micro-ops. If AX or EAX is known to be positive, replace these
instructions with:

xor dx, dx
3-26

GENERAL OPTIMIZATION GUIDELINES
or

xor edx, edx

3.5.1.3 Using LEA
In some cases with processor based on Intel NetBurst microarchitecture, the LEA
instruction or a sequence of LEA, ADD, SUB and SHIFT instructions can replace
constant multiply instructions. The LEA instruction can also be used as a multiple
operand addition instruction, for example:

LEA ECX, [EAX + EBX + 4 + A]

Using LEA in this way may avoid register usage by not tying up registers for operands
of arithmetic instructions. This use may also save code space.

If the LEA instruction uses a shift by a constant amount then the latency of the
sequence of µops is shorter if adds are used instead of a shift, and the LEA instruction
may be replaced with an appropriate sequence of µops. This, however, increases the
total number of µops, leading to a trade-off.

Assembly/Compiler Coding Rule 33. (ML impact, L generality) If an LEA
instruction using the scaled index is on the critical path, a sequence with ADDs may
be better. If code density and bandwidth out of the trace cache are the critical
factor, then use the LEA instruction.

3.5.1.4 Using SHIFT and ROTATE
The SHIFT and ROTATE instructions have a longer latency on processor with a CPUID
signature corresponding to family 15 and model encoding of 0, 1, or 2. The latency of
a sequence of adds will be shorter for left shifts of three or less. Fixed and variable
SHIFTs have the same latency.

The rotate by immediate and rotate by register instructions are more expensive than
a shift. The rotate by 1 instruction has the same latency as a shift.

Assembly/Compiler Coding Rule 34. (ML impact, L generality) Avoid ROTATE
by register or ROTATE by immediate instructions. If possible, replace with a
ROTATE by 1 instruction.

3.5.1.5 Address Calculations
For computing addresses, use the addressing modes rather than general-purpose
computations. Internally, memory reference instructions can have four operands:

• Relocatable load-time constant

• Immediate constant

• Base register

• Scaled index register
3-27

GENERAL OPTIMIZATION GUIDELINES
In the segmented model, a segment register may constitute an additional operand in
the linear address calculation. In many cases, several integer instructions can be
eliminated by fully using the operands of memory references.

3.5.1.6 Clearing Registers and Dependency Breaking Idioms
Code sequences that modifies partial register can experience some delay in its
dependency chain, but can be avoided by using dependency breaking idioms.

In processors based on Intel Core microarchitecture, a number of instructions can
help clear execution dependency when software uses these instruction to clear
register content to zero. The instructions include

XOR REG, REG
SUB REG, REG
XORPS/PD XMMREG, XMMREG
PXOR XMMREG, XMMREG
SUBPS/PD XMMREG, XMMREG
PSUBB/W/D/Q XMMREG, XMMREG

In Intel Core Solo and Intel Core Duo processors, the XOR, SUB, XORPS, or PXOR
instructions can be used to clear execution dependencies on the zero evaluation of
the destination register.

The Pentium 4 processor provides special support for XOR, SUB, and PXOR opera-
tions when executed within the same register. This recognizes that clearing a register
does not depend on the old value of the register. The XORPS and XORPD instructions
do not have this special support. They cannot be used to break dependence chains.

Assembly/Compiler Coding Rule 35. (M impact, ML generality) Use
dependency-breaking-idiom instructions to set a register to 0, or to break a false
dependence chain resulting from re-use of registers. In contexts where the
condition codes must be preserved, move 0 into the register instead. This requires
more code space than using XOR and SUB, but avoids setting the condition codes.

Example 3-16 of using pxor to break dependency idiom on a XMM register when
performing negation on the elements of an array.

int a[4096], b[4096], c[4096];
For (int i = 0; i < 4096; i++)

C[i] = - (a[i] + b[i]);
3-28

GENERAL OPTIMIZATION GUIDELINES
Assembly/Compiler Coding Rule 36. (M impact, MH generality) Break
dependences on portions of registers between instructions by operating on 32-bit
registers instead of partial registers. For moves, this can be accomplished with 32-
bit moves or by using MOVZX.

On Pentium M processors, the MOVSX and MOVZX instructions both take a single
μop, whether they move from a register or memory. On Pentium 4 processors, the
MOVSX takes an additional μop. This is likely to cause less delay than the partial
register update problem mentioned above, but the performance gain may vary. If the
additional μop is a critical problem, MOVSX can sometimes be used as alternative.

Sometimes sign-extended semantics can be maintained by zero-extending oper-
ands. For example, the C code in the following statements does not need sign exten-
sion, nor does it need prefixes for operand size overrides:

static short INT a, b;
IF (a == b) {
 . . .
}

Code for comparing these 16-bit operands might be:

MOVZW EAX, [a]
MOVZW EBX, [b]
CMP EAX, EBX

These circumstances tend to be common. However, the technique will not work if the
compare is for greater than, less than, greater than or equal, and so on, or if the

Example 3-16. Clearing Register to Break Dependency While Negating Array Elements
Negation (-x = (x XOR (-1)) - (-1) without
breaking dependency

Negation (-x = 0 -x) using PXOR reg, reg breaks
dependency

Lea eax, a
lea ecx, b
lea edi, c
xor edx, edx
movdqa xmm7, allone
lp:

lea eax, a
lea ecx, b
lea edi, c
xor edx, edx
lp:

movdqa xmm0, [eax + edx]
paddd xmm0, [ecx + edx]
pxor xmm0, xmm7
psubd xmm0, xmm7
movdqa [edi + edx], xmm0
add edx, 16
cmp edx, 4096
jl lp

movdqa xmm0, [eax + edx]
paddd xmm0, [ecx + edx]
pxor xmm7, xmm7
psubd xmm7, xmm0
movdqa [edi + edx], xmm7
add edx,16
cmp edx, 4096
jl lp
3-29

GENERAL OPTIMIZATION GUIDELINES
values in eax or ebx are to be used in another operation where sign extension is
required.

Assembly/Compiler Coding Rule 37. (M impact, M generality) Try to use zero
extension or operate on 32-bit operands instead of using moves with sign
extension.

The trace cache can be packed more tightly when instructions with operands that can
only be represented as 32 bits are not adjacent.

Assembly/Compiler Coding Rule 38. (ML impact, L generality) Avoid placing
instructions that use 32-bit immediates which cannot be encoded as sign-extended
16-bit immediates near each other. Try to schedule µops that have no immediate
immediately before or after µops with 32-bit immediates.

3.5.1.7 Compares
Use TEST when comparing a value in a register with zero. TEST essentially ANDs
operands together without writing to a destination register. TEST is preferred over
AND because AND produces an extra result register. TEST is better than CMP ..., 0
because the instruction size is smaller.

Use TEST when comparing the result of a logical AND with an immediate constant for
equality or inequality if the register is EAX for cases such as:

IF (AVAR & 8) { }

The TEST instruction can also be used to detect rollover of modulo of a power of 2.
For example, the C code:

IF ((AVAR % 16) == 0) { }

can be implemented using:

TEST EAX, 0x0F
JNZ AfterIf

Using the TEST instruction between the instruction that may modify part of the flag
register and the instruction that uses the flag register can also help prevent partial
flag register stall.

Assembly/Compiler Coding Rule 39. (ML impact, M generality) Use the TEST
instruction instead of AND when the result of the logical AND is not used. This saves
µops in execution. Use a TEST if a register with itself instead of a CMP of the register
to zero, this saves the need to encode the zero and saves encoding space. Avoid
comparing a constant to a memory operand. It is preferable to load the memory
operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a branch.
Because most Intel architecture instructions set the condition codes as part of their
execution, the compare instruction may be eliminated. Thus the operation can be
tested directly by a JCC instruction. The notable exceptions are MOV and LEA. In
these cases, use TEST.
3-30

GENERAL OPTIMIZATION GUIDELINES
Assembly/Compiler Coding Rule 40. (ML impact, M generality) Eliminate
unnecessary compare with zero instructions by using the appropriate conditional
jump instruction when the flags are already set by a preceding arithmetic
instruction. If necessary, use a TEST instruction instead of a compare. Be certain
that any code transformations made do not introduce problems with overflow.

3.5.1.8 Using NOPs
Code generators generate a no-operation (NOP) to align instructions. Examples of
NOPs of different lengths in 32-bit mode are shown below:

1-byte: XCHG EAX, EAX
2-byte: 66 NOP
3-byte: LEA REG, 0 (REG) (8-bit displacement)
4-byte: NOP DWORD PTR [EAX + 0] (8-bit displacement)
5-byte: NOP DWORD PTR [EAX + EAX*1 + 0] (8-bit displacement)
6-byte: LEA REG, 0 (REG) (32-bit displacement)
7-byte: NOP DWORD PTR [EAX + 0] (32-bit displacement)
8-byte: NOP DWORD PTR [EAX + EAX*1 + 0] (32-bit displacement)
9-byte: NOP WORD PTR [EAX + EAX*1 + 0] (32-bit displacement)

These are all true NOPs, having no effect on the state of the machine except to
advance the EIP. Because NOPs require hardware resources to decode and execute,
use the fewest number to achieve the desired padding.

The one byte NOP:[XCHG EAX,EAX] has special hardware support. Although it still
consumes a µop and its accompanying resources, the dependence upon the old value
of EAX is removed. This µop can be executed at the earliest possible opportunity,
reducing the number of outstanding instructions and is the lowest cost NOP.

The other NOPs have no special hardware support. Their input and output registers
are interpreted by the hardware. Therefore, a code generator should arrange to use
the register containing the oldest value as input, so that the NOP will dispatch and
release RS resources at the earliest possible opportunity.

Try to observe the following NOP generation priority:

• Select the smallest number of NOPs and pseudo-NOPs to provide the desired
padding.

• Select NOPs that are least likely to execute on slower execution unit clusters.

• Select the register arguments of NOPs to reduce dependencies.

3.5.1.9 Mixing SIMD Data Types
Previous microarchitectures (before Intel Core microarchitecture) do not have
explicit restrictions on mixing integer and floating-point (FP) operations on XMM
registers. For Intel Core microarchitecture, mixing integer and floating-point opera-
3-31

GENERAL OPTIMIZATION GUIDELINES
tions on the content of an XMM register can degrade performance. Software should
avoid mixed-use of integer/FP operation on XMM registers. Specifically,

• Use SIMD integer operations to feed SIMD integer operations. Use PXOR for
idiom.

• Use SIMD floating point operations to feed SIMD floating point operations. Use
XORPS for idiom.

• When floating point operations are bitwise equivalent, use PS data type instead
of PD data type. MOVAPS and MOVAPD do the same thing, but MOVAPS takes one
less byte to encode the instruction.

3.5.1.10 Spill Scheduling
The spill scheduling algorithm used by a code generator will be impacted by the
memory subsystem. A spill scheduling algorithm is an algorithm that selects what
values to spill to memory when there are too many live values to fit in registers.
Consider the code in Example 3-17, where it is necessary to spill either A, B, or C.

For modern microarchitectures, using dependence depth information in spill sched-
uling is even more important than in previous processors. The loop-carried depen-
dence in A makes it especially important that A not be spilled. Not only would a
store/load be placed in the dependence chain, but there would also be a data-not-
ready stall of the load, costing further cycles.

Assembly/Compiler Coding Rule 41. (H impact, MH generality) For small
loops, placing loop invariants in memory is better than spilling loop-carried
dependencies.

A possibly counter-intuitive result is that in such a situation it is better to put loop
invariants in memory than in registers, since loop invariants never have a load
blocked by store data that is not ready.

3.5.2 Avoiding Stalls in Execution Core
Although the design of the execution core is optimized to make common cases
executes quickly. A μop may encounter various hazards, delays, or stalls while
making forward progress from the front end to the ROB and RS. The significant cases
are:

• ROB Read Port Stalls

Example 3-17. Spill Scheduling Code

LOOP
C := ...
B := ...
A := A + ...
3-32

GENERAL OPTIMIZATION GUIDELINES
• Partial Register Reference Stalls

• Partial Updates to XMM Register Stalls

• Partial Flag Register Reference Stalls

3.5.2.1 ROB Read Port Stalls
As a μop is renamed, it determines whether its source operands have executed and
been written to the reorder buffer (ROB), or whether they will be captured “in flight”
in the RS or in the bypass network. Typically, the great majority of source operands
are found to be “in flight” during renaming. Those that have been written back to the
ROB are read through a set of read ports.

Since the Intel Core Microarchitecture is optimized for the common case where the
operands are “in flight”, it does not provide a full set of read ports to enable all
renamed μops to read all sources from the ROB in the same cycle.

When not all sources can be read, a μop can stall in the rename stage until it can get
access to enough ROB read ports to complete renaming the μop. This stall is usually
short-lived. Typically, a μop will complete renaming in the next cycle, but it appears
to the application as a loss of rename bandwidth.

Some of the software-visible situations that can cause ROB read port stalls include:

• Registers that have become cold and require a ROB read port because execution
units are doing other independent calculations.

• Constants inside registers

• Pointer and index registers

In rare cases, ROB read port stalls may lead to more significant performance degra-
dations. There are a couple of heuristics that can help prevent over-subscribing the
ROB read ports:

• Keep common register usage clustered together. Multiple references to the same
written-back register can be “folded” inside the out of order execution core.

• Keep dependency chains intact. This practice ensures that the registers will not
have been written back when the new micro-ops are written to the RS.

These two scheduling heuristics may conflict with other more common scheduling
heuristics. To reduce demand on the ROB read port, use these two heuristics only if
both the following situations are met:

• short latency operations

• indications of actual ROB read port stalls can be confirmed by measurements of
the performance event (the relevant event is RAT_STALLS.ROB_READ_PORT, see
Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B)

If the code has a long dependency chain, these two heuristics should not be used
because they can cause the RS to fill, causing damage that outweighs the positive
effects of reducing demands on the ROB read port.
3-33

GENERAL OPTIMIZATION GUIDELINES
3.5.2.2 Bypass between Execution Domains
Floating point (FP) loads have an extra cycle of latency. Moves between FP and SIMD
stacks have another additional cycle of latency.

Example:

ADDPS XMM0, XMM1
PAND XMM0, XMM3
ADDPS XMM2, XMM0

The overall latency for the above calculation is 9 cycles:

• 3 cycles for each ADDPS instruction

• 1 cycle for the PAND instruction

• 1 cycle to bypass between the ADDPS floating point domain to the PAND integer
domain

• 1 cycle to move the data from the PAND integer to the second floating point
ADDPS domain

To avoid this penalty, you should organize code to minimize domain changes. Some-
times you cannot avoid bypasses.

Account for bypass cycles when counting the overall latency of your code. If your
calculation is latency-bound, you can execute more instructions in parallel or break
dependency chains to reduce total latency.

Code that has many bypass domains and is completely latency-bound may run
slower on the Intel Core microarchitecture than it did on previous microarchitectures.

3.5.2.3 Partial Register Stalls
General purpose registers can be accessed in granularities of bytes, words, double-
words; 64-bit mode also supports quadword granularity. Referencing a portion of a
register is referred to as a partial register reference.

A partial register stall happens when an instruction refers to a register, portions of
which were previously modified by other instructions. For example, partial register
stalls occurs with a read to AX while previous instructions stored AL and AH, or a read
to EAX while previous instruction modified AX.

The delay of a partial register stall is small in processors based on Intel Core and
NetBurst microarchitectures, and in Pentium M processor (with CPUID signature
family 6, model 13), Intel Core Solo, and Intel Core Duo processors. Pentium M
processors (CPUID signature with family 6, model 9) and the P6 family incur a large
penalty.

Note that in Intel 64 architecture, an update to the lower 32 bits of a 64 bit integer
register is architecturally defined to zero extend the upper 32 bits. While this action
may be logically viewed as a 32 bit update, it is really a 64 bit update (and therefore
does not cause a partial stall).
3-34

GENERAL OPTIMIZATION GUIDELINES
Referencing partial registers frequently produces code sequences with either false or
real dependencies. Example 3-18 demonstrates a series of false and real dependen-
cies caused by referencing partial registers.

If instructions 4 and 6 (in Example 3-18) are changed to use a movzx instruction
instead of a mov, then the dependences of instruction 4 on 2 (and transitively 1
before it), and instruction 6 on 5 are broken. This creates two independent chains of
computation instead of one serial one.

Example 3-19 illustrates the use of MOVZX to avoid a partial register stall when
packing three byte values into a register.

Example 3-18. Dependencies Caused by Referencing Partial Registers

1: add ah, bh
2: add al, 3 ; Instruction 2 has a false dependency on 1
3: mov bl, al ; depends on 2, but the dependence is real
4: mov ah, ch ; Instruction 4 has a false dependency on 2
5: sar eax, 16 ; this wipes out the al/ah/ax part, so the
 ; result really doesn't depend on them programatically,

; but the processor must deal with real dependency on
 ; al/ah/ax

6: mov al, bl ; instruction 6 has a real dependency on 5
7: add ah, 13 ; instruction 7 has a false dependency on 6
8: imul dl ; instruction 8 has a false dependency on 7

; because al is implicitly used

9: mov al, 17 ; instruction 9 has a false dependency on 7
; and a real dependency on 8

10: imul cx : implicitly uses ax and writes to dx, hence
; a real dependency

Example 3-19. Avoiding Partial Register Stalls in Integer Code
A Sequence Causing Partial
Register Stall

Alternate Sequence Using
MOVZX to Avoid Delay

mov al, byte ptr a[2]
shl eax,16
mov ax, word ptr a
movd mm0, eax
ret

movzx eax, byte ptr a[2]
shl eax, 16
movzx ecx, word ptr a
or eax,ecx
movd mm0, eax
ret
3-35

GENERAL OPTIMIZATION GUIDELINES
3.5.2.4 Partial XMM Register Stalls
Partial register stalls can also apply to XMM registers. The following SSE and SSE2
instructions update only part of the destination register:

MOVL/HPD XMM, MEM64
MOVL/HPS XMM, MEM32
MOVSS/SD between registers

Using these instructions creates a dependency chain between the unmodified part of
the register and the modified part of the register. This dependency chain can cause
performance loss.

Example 3-20 illustrates the use of MOVZX to avoid a partial register stall when
packing three byte values into a register.

Follow these recommendations to avoid stalls from partial updates to XMM registers:

• Avoid using instructions which update only part of the XMM register.

• If a 64-bit load is needed, use the MOVSD or MOVQ instruction.

• If 2 64-bit loads are required to the same register from non continuous locations,
use MOVSD/MOVHPD instead of MOVLPD/MOVHPD.

• When copying the XMM register, use the following instructions for full register
copy, even if you only want to copy some of the source register data:

MOVAPS
MOVAPD
MOVDQA

Example 3-20. Avoiding Partial Register Stalls in SIMD Code
Using movlpd for memory transactions
and movsd between register copies
Causing Partial Register Stall

Using movsd for memory and movapd
between register copies Avoid Delay

mov edx, x
mov ecx, count
movlpd xmm3,_1_
movlpd xmm2,_1pt5_
align 16

mov edx, x
mov ecx, count
movsd xmm3,_1_
movsd xmm2, _1pt5_
align 16
3-36

GENERAL OPTIMIZATION GUIDELINES
3.5.2.5 Partial Flag Register Stalls
A “partial flag register stall” occurs when an instruction modifies a part of the flag
register and the following instruction is dependent on the outcome of the flags. This
happens most often with shift instructions (SAR, SAL, SHR, SHL). The flags are not
modified in the case of a zero shift count, but the shift count is usually known only at
execution time. The front end stalls until the instruction is retired.

Other instructions that can modify some part of the flag register include
CMPXCHG8B, various rotate instructions, STC, and STD. An example of assembly
with a partial flag register stall and alternative code without the stall is shown in
Example 3-21.

In processors based on Intel Core microarchitecture, shift immediate by 1 is handled
by special hardware such that it does not experience partial flag stall.

lp:
movlpd xmm0, [edx]
addsd xmm0, xmm3
movsd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmm0, xmm1
movsd [edx], xmm0
add edx, 8
dec ecx
jnz lp

lp:
movsd xmm0, [edx]
addsd xmm0, xmm3
movapd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmm0, xmm1
movsd [edx], xmm0
add edx, 8
dec ecx
jnz lp

Example 3-21. Avoiding Partial Flag Register Stalls
A Sequence with Partial
Flag Register Stall

Alternate Sequence without
Partial Flag Register Stall

xor eax, eax
mov ecx, a
sar ecx, 2
setz al
;No partial register stall,
;but flag stall as sar may
;change the flags

or eax, eax
mov ecx, a
sar ecx, 2
test ecx, ecx
setz al
;No partial reg or flag stall,
; test always updates
; all the flags

Example 3-20. Avoiding Partial Register Stalls in SIMD Code (Contd.)
Using movlpd for memory transactions
and movsd between register copies
Causing Partial Register Stall

Using movsd for memory and movapd
between register copies Avoid Delay
3-37

GENERAL OPTIMIZATION GUIDELINES
3.5.2.6 Floating Point/SIMD Operands in Intel NetBurst microarchitecture
In processors based on Intel NetBurst microarchitecture, the latency of MMX or SIMD
floating point register-to-register moves is significant. This can have implications for
register allocation.

Moves that write a portion of a register can introduce unwanted dependences. The
MOVSD REG, REG instruction writes only the bottom 64 bits of a register, not all
128 bits. This introduces a dependence on the preceding instruction that produces
the upper 64 bits (even if those bits are not longer wanted). The dependence inhibits
register renaming, and thereby reduces parallelism.

Use MOVAPD as an alternative; it writes all 128 bits. Even though this instruction has
a longer latency, the μops for MOVAPD use a different execution port and this port is
more likely to be free. The change can impact performance. There may be excep-
tional cases where the latency matters more than the dependence or the execution
port.

Assembly/Compiler Coding Rule 42. (M impact, ML generality) Avoid
introducing dependences with partial floating point register writes, e.g. from the
MOVSD XMMREG1, XMMREG2 instruction. Use the MOVAPD XMMREG1, XMMREG2
instruction instead.

The MOVSD XMMREG, MEM instruction writes all 128 bits and breaks a dependence.

The MOVUPD from memory instruction performs two 64-bit loads, but requires addi-
tional µops to adjust the address and combine the loads into a single register. This
same functionality can be obtained using MOVSD XMMREG1, MEM; MOVSD
XMMREG2, MEM+8; UNPCKLPD XMMREG1, XMMREG2, which uses fewer µops and
can be packed into the trace cache more effectively. The latter alternative has been
found to provide a several percent performance improvement in some cases. Its
encoding requires more instruction bytes, but this is seldom an issue for the Pentium
4 processor. The store version of MOVUPD is complex and slow, so much so that the
sequence with two MOVSD and a UNPCKHPD should always be used.

Assembly/Compiler Coding Rule 43. (ML impact, L generality) Instead of
using MOVUPD XMMREG1, MEM for a unaligned 128-bit load, use MOVSD
XMMREG1, MEM; MOVSD XMMREG2, MEM+8; UNPCKLPD XMMREG1, XMMREG2. If
the additional register is not available, then use MOVSD XMMREG1, MEM; MOVHPD
XMMREG1, MEM+8.

Assembly/Compiler Coding Rule 44. (M impact, ML generality) Instead of
using MOVUPD MEM, XMMREG1 for a store, use MOVSD MEM, XMMREG1;
UNPCKHPD XMMREG1, XMMREG1; MOVSD MEM+8, XMMREG1 instead.

3.5.3 Vectorization
This section provides a brief summary of optimization issues related to vectorization.
There is more detail in the chapters that follow.

Vectorization is a program transformation that allows special hardware to perform
the same operation on multiple data elements at the same time. Successive
3-38

GENERAL OPTIMIZATION GUIDELINES
processor generations have provided vector support through the MMX technology,
Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2 (SSE2), Streaming
SIMD Extensions 3 (SSE3) and Supplemental Streaming SIMD Extensions 3
(SSSE3).

Vectorization is a special case of SIMD, a term defined in Flynn’s architecture
taxonomy to denote a single instruction stream capable of operating on multiple data
elements in parallel. The number of elements which can be operated on in parallel
range from four single-precision floating point data elements in Streaming SIMD
Extensions and two double-precision floating-point data elements in Streaming SIMD
Extensions 2 to sixteen byte operations in a 128-bit register in Streaming SIMD
Extensions 2. Thus, vector length ranges from 2 to 16, depending on the instruction
extensions used and on the data type.

The Intel C++ Compiler supports vectorization in three ways:

• The compiler may be able to generate SIMD code without intervention from the
user.

• The can user insert pragmas to help the compiler realize that it can vectorize the
code.

• The user can write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code, avoid global pointers and global
variables. These issues may be less troublesome if all modules are compiled simulta-
neously, and whole-program optimization is used.

User/Source Coding Rule 2. (H impact, M generality) Use the smallest
possible floating-point or SIMD data type, to enable more parallelism with the use
of a (longer) SIMD vector. For example, use single precision instead of double
precision where possible..

User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of
loops so that the innermost nesting level is free of inter-iteration dependencies.
Especially avoid the case where the store of data in an earlier iteration happens
lexically after the load of that data in a future iteration, something which is called a
lexically backward dependence..

The integer part of the SIMD instruction set extensions cover 8-bit,16-bit and 32-bit
operands. Not all SIMD operations are supported for 32 bits, meaning that some
source code will not be able to be vectorized at all unless smaller operands are used.

User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of
conditional branches inside loops and consider using SSE instructions to eliminate
branches.

User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop)
variable expressions simple.
3-39

GENERAL OPTIMIZATION GUIDELINES
3.5.4 Optimization of Partially Vectorizable Code
Frequently, a program contains a mixture of vectorizable code and some routines
that are non-vectorizable. A common situation of partially vectorizable code involves
a loop structure which include mixtures of vectorized code and unvectorizable code.
This situation is depicted in Figure 3-1.

It generally consists of five stages within the loop:

• Prolog

• Unpacking vectorized data structure into individual elements

• Calling a non-vectorizable routine to process each element serially

• Packing individual result into vectorized data structure

• Epilog

This section discusses techniques that can reduce the cost and bottleneck associated
with the packing/unpacking stages in these partially vectorize code.

Example 3-22 shows a reference code template that is representative of partially
vectorizable coding situations that also experience performance issues. The unvec-
torizable portion of code is represented generically by a sequence of calling a serial
function named “foo” multiple times. This generic example is referred to as “shuffle
with store forwarding”, because the problem generally involves an unpacking stage
that shuffles data elements between register and memory, followed by a packing
stage that can experience store forwarding issue.

Figure 3-1. Generic Program Flow of Partially Vectorized Code

Serial Routine

Packed SIMD Instruction

 Unpacking

 Packing

 Unvectorizable Code

Packed SIMD Instruction
3-40

GENERAL OPTIMIZATION GUIDELINES
There are more than one useful techniques that can reduce the store-forwarding
bottleneck between the serialized portion and the packing stage. The following sub-
sections presents alternate techniques to deal with the packing, unpacking, and
parameter passing to serialized function calls.

Example 3-22. Reference Code Template for Partially Vectorizable Program

// Prolog ///////////////////////////////
push ebp
mov ebp, esp

// Unpacking ////////////////////////////
sub ebp, 32
and ebp, 0xfffffff0
movaps [ebp], xmm0

// Serial operations on components ///////
sub ebp, 4

mov eax, [ebp+4]
mov [ebp], eax
call foo
mov [ebp+16+4], eax

mov eax, [ebp+8]
mov [ebp], eax
call foo
mov [ebp+16+4+4], eax

mov eax, [ebp+12]
mov [ebp], eax
call foo
mov [ebp+16+8+4], eax

mov eax, [ebp+12+4]
mov [ebp], eax
call foo
mov [ebp+16+12+4], eax
3-41

GENERAL OPTIMIZATION GUIDELINES
3.5.4.1 Alternate Packing Techniques
The packing method implemented in the reference code of Example 3-22 will experi-
ence delay as it assembles 4 doubleword result from memory into an XMM register
due to store-forwarding restrictions.

Three alternate techniques for packing, using different SIMD instruction to assemble
contents in XMM registers are shown in Example 3-23. All three techniques avoid
store-forwarding delay by satisfying the restrictions on data sizes between a
preceding store and subsequent load operations.

3.5.4.2 Simplifying Result Passing
In Example 3-22, individual results were passed to the packing stage by storing to
contiguous memory locations. Instead of using memory spills to pass four results,
result passing may be accomplished by using either one or more registers. Using
registers to simplify result passing and reduce memory spills can improve perfor-
mance by varying degrees depending on the register pressure at runtime.

Example 3-24 shows the coding sequence that uses four extra XMM registers to
reduce all memory spills of passing results back to the parent routine. However, soft-
ware must observe the following conditions when using this technique:

• There is no register shortage.

// Packing ///////////////////////////////
movaps xmm0, [ebp+16+4]

// Epilog ////////////////////////////////
pop ebp
ret

Example 3-23. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty
Packing Method 1 Packing Method 2 Packing Method 3

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
punpckldq xmm0, xmm1
punpckldq xmm2, xmm3
punpckldq xmm0, xmm2

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
psllq xmm3, 32
orps xmm2, xmm3
psllq xmm1, 32
orps xmm0, xmm1movlhps
xmm0, xmm2

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
movlhps xmm1,xmm3
psllq xmm1, 32
movlhps xmm0, xmm2
orps xmm0, xmm1

Example 3-22. Reference Code Template for Partially Vectorizable Program (Contd.)
3-42

GENERAL OPTIMIZATION GUIDELINES
• If the loop does not have many stores or loads but has many computations, this
technique does not help performance. This technique adds work to the computa-
tional units, while the store and loads ports are idle.

3.5.4.3 Stack Optimization
In Example 3-22, an input parameter was copied in turn onto the stack and passed
to the non-vectorizable routine for processing. The parameter passing from consecu-
tive memory locations can be simplified by a technique shown in Example 3-25.

Example 3-24. Using Four Registers to Reduce Memory Spills and Simplify Result Passing

mov eax, [ebp+4]
mov [ebp], eax
call foo
movd xmm0, eax

mov eax, [ebp+8]
mov [ebp], eax
call foo
movd xmm1, eax

mov eax, [ebp+12]
mov [ebp], eax
call foo
movd xmm2, eax

mov eax, [ebp+12+4]
mov [ebp], eax
call foo
movd xmm3, eax

Example 3-25. Stack Optimization Technique to Simplify Parameter Passing

call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax
3-43

GENERAL OPTIMIZATION GUIDELINES
Stack Optimization can only be used when:

• The serial operations are function calls. The function “foo” is declared as: INT
FOO(INT A). The parameter is passed on the stack.

• The order of operation on the components is from last to first.

Note the call to FOO and the advance of EDP when passing the vector elements to
FOO one by one from last to first.

3.5.4.4 Tuning Considerations
Tuning considerations for situations represented by looping of Example 3-22 include

• Applying one of more of the following combinations:

— choose an alternate packing technique

— consider a technique to simply result-passing

— consider the stack optimization technique to simplify parameter passing

• Minimizing the average number of cycles to execute one iteration of the loop

• Minimizing the per-iteration cost of the unpacking and packing operations

The speed improvement by using the techniques discussed in this section will vary,
depending on the choice of combinations implemented and characteristics of the
non-vectorizable routine. For example, if the routine “foo” is short (representative of
tight, short loops), the per-iteration cost of unpacking/packing tend to be smaller
than situations where the non-vectorizable code contain longer operation or many
dependencies. This is because many iterations of short, tight loop can be in flight in
the execution core, so the per-iteration cost of packing and unpacking is only
partially exposed and appear to cause very little performance degradation.

Evaluation of the per-iteration cost of packing/unpacking should be carried out in a
methodical manner over a selected number of test cases, where each case may
implement some combination of the techniques discussed in this section. The per-
iteration cost can be estimated by:

• evaluating the average cycles to execute one iteration of the test case

• evaluating the average cycles to execute one iteration of a base line loop
sequence of non-vectorizable code

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo

Example 3-25. Stack Optimization Technique to Simplify Parameter Passing (Contd.)
3-44

GENERAL OPTIMIZATION GUIDELINES
Example 3-26 shows the base line code sequence that can be used to estimate the
average cost of a loop that executes non-vectorizable routines.

The average per-iteration cost of packing/unpacking can be derived from measuring
the execution times of a large number of iterations by:

((Cycles to run TestCase) - (Cycles to run equivalent baseline sequence)) / (Iteration count).

For example, using a simple function that returns an input parameter (representative
of tight, short loops), the per-iteration cost of packing/unpacking may range from
slightly more than 7 cycles (the shuffle with store forwarding case, Example 3-22) to
~0.9 cycles (accomplished by several test cases). Across 27 test cases (consisting of
one of the alternate packing methods, no result-simplification/simplification of either
1 or 4 results, no stack optimization or with stack optimization), the average per-iter-
ation cost of packing/unpacking is about 1.7 cycles.

Generally speaking, packing method 2 and 3 (see Example 3-23) tend to be more
robust than packing method 1; the optimal choice of simplifying 1 or 4 results will be
affected by register pressure of the runtime and other relevant microarchitectural
conditions.

Note that the numeric discussion of per-iteration cost of packing/packing is illustra-
tive only. It will vary with test cases using a different base line code sequence and will

Example 3-26. Base Line Code Sequence to Estimate Loop Overhead

push ebp
mov ebp, esp
sub ebp, 4

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

add ebp, 4
pop ebp
ret
3-45

GENERAL OPTIMIZATION GUIDELINES
generally increase if the non-vectorizable routine requires longer time to execute
because the number of loop iterations that can reside in flight in the execution core
decreases.

3.6 OPTIMIZING MEMORY ACCESSES
This section discusses guidelines for optimizing code and data memory accesses. The
most important recommendations are:

• Execute load and store operations within available execution bandwidth.

• Enable forward progress of speculative execution.

• Enable store forwarding to proceed.

• Align data, paying attention to data layout and stack alignment.

• Place code and data on separate pages.

• Enhance data locality.

• Use prefetching and cacheability control instructions.

• Enhance code locality and align branch targets.

• Take advantage of write combining.

Alignment and forwarding problems are among the most common sources of large
delays on processors based on Intel NetBurst microarchitecture.

3.6.1 Load and Store Execution Bandwidth
Typically, loads and stores are the most frequent operations in a workload, up to 40%
of the instructions in a workload carrying load or store intent are not uncommon.
Each generation of microarchitecture provides multiple buffers to support executing
load and store operations while there are instructions in flight.

Software can maximize memory performance by not exceeding the issue or buffering
limitations of the machine. In the Intel Core microarchitecture, only 20 stores and 32
loads may be in flight at once. Since only one load can issue per cycle, algorithms
which operate on two arrays are constrained to one operation every other cycle
unless you use programming tricks to reduce the amount of memory usage.

Intel NetBurst microarchitecture has the same number of store buffers, slightly more
load buffers and similar throughput of issuing load operations. Intel Core Duo and
Intel Core Solo processors have less buffers. Nevertheless the general heuristic
applies to all of them.
3-46

GENERAL OPTIMIZATION GUIDELINES
3.6.2 Enhance Speculative Execution and Memory Disambiguation
Prior to Intel Core microarchitecture, when code contains both stores and loads, the
loads cannot be issued before the address of the store is resolved. This rule ensures
correct handling of load dependencies on preceding stores.

The Intel Core microarchitecture contains a mechanism that allows some loads to be
issued early speculatively. The processor later checks if the load address overlaps
with a store. If the addresses do overlap, then the processor re-executes the instruc-
tions.

Example 3-27 illustrates a situation that the compiler cannot be sure that “Ptr-
>Array” does not change during the loop. Therefore, the compiler cannot keep “Ptr-
>Array” in a register as an invariant and must read it again in every iteration.
Although this situation can be fixed in software by a rewriting the code to require the
address of the pointer is invariant, memory disambiguation provides performance
gain without rewriting the code.

3.6.3 Alignment
Alignment of data concerns all kinds of variables:

• Dynamically allocated variables

• Members of a data structure

• Global or local variables

• Parameters passed on the stack

Misaligned data access can incur significant performance penalties. This is particu-
larly true for cache line splits. The size of a cache line is 64 bytes in the Pentium 4 and
other recent Intel processors, including processors based on Intel Core microarchi-
tecture.

Example 3-27. Loads Blocked by Stores of Unknown Address
C code Assembly sequence

struct AA {
AA ** array;
};
void nullify_array (AA *Ptr, DWORD Index,
AA *ThisPtr)
{
while (Ptr->Array[--Index] != ThisPtr)

{
Ptr->Array[Index] = NULL ;
} ;

} ;

nullify_loop:
mov dword ptr [eax], 0
mov edx, dword ptr [edi]
sub ecx, 4
cmp dword ptr [ecx+edx], esi
lea eax, [ecx+edx]
jne nullify_loop
3-47

GENERAL OPTIMIZATION GUIDELINES
An access to data unaligned on 64-byte boundary leads to two memory accesses and
requires several µops to be executed (instead of one). Accesses that span 64-byte
boundaries are likely to incur a large performance penalty, the cost of each stall
generally are greater on machines with longer pipelines.

Double-precision floating-point operands that are eight-byte aligned have better
performance than operands that are not eight-byte aligned, since they are less likely
to incur penalties for cache and MOB splits. Floating-point operation on a memory
operands require that the operand be loaded from memory. This incurs an additional
µop, which can have a minor negative impact on front end bandwidth. Additionally,
memory operands may cause a data cache miss, causing a penalty.

Assembly/Compiler Coding Rule 45. (H impact, H generality) Align data on
natural operand size address boundaries. If the data will be accessed with vector
instruction loads and stores, align the data on 16-byte boundaries.

For best performance, align data as follows:

• Align 8-bit data at any address.

• Align 16-bit data to be contained within an aligned 4-byte word.

• Align 32-bit data so that its base address is a multiple of four.

• Align 64-bit data so that its base address is a multiple of eight.

• Align 80-bit data so that its base address is a multiple of sixteen.

• Align 128-bit data so that its base address is a multiple of sixteen.

A 64-byte or greater data structure or array should be aligned so that its base
address is a multiple of 64. Sorting data in decreasing size order is one heuristic for
assisting with natural alignment. As long as 16-byte boundaries (and cache lines) are
never crossed, natural alignment is not strictly necessary (though it is an easy way to
enforce this).

Example 3-28 shows the type of code that can cause a cache line split. The code
loads the addresses of two DWORD arrays. 029E70FEH is not a 4-byte-aligned
address, so a 4-byte access at this address will get 2 bytes from the cache line this
address is contained in, and 2 bytes from the cache line that starts at 029E700H. On
processors with 64-byte cache lines, a similar cache line split will occur every 8 iter-
ations.
3-48

GENERAL OPTIMIZATION GUIDELINES
Figure 3-2 illustrates the situation of accessing a data element that span across
cache line boundaries.

Alignment of code is less important for processors based on Intel NetBurst microar-
chitecture. Alignment of branch targets to maximize bandwidth of fetching cached
instructions is an issue only when not executing out of the trace cache.

Alignment of code can be an issue for the Pentium M, Intel Core Duo and Intel Core 2
Duo processors. Alignment of branch targets will improve decoder throughput.

Example 3-28. Code That Causes Cache Line Split

mov esi, 029e70feh
mov edi, 05be5260h

Blockmove:
mov eax, DWORD PTR [esi]
mov ebx, DWORD PTR [esi+4]
mov DWORD PTR [edi], eax
mov DWORD PTR [edi+4], ebx
add esi, 8
add edi, 8
sub edx, 1
jnz Blockmove

Figure 3-2. Cache Line Split in Accessing Elements in a Array

Index 1Index 0 cont'd

Index 0

Index 15 Index 16Cache Line 029e7100h

Cache Line 029e70c0h

Index 17Index 16 cont'd Index 31 Index 32Cache Line 029e7140h

Address 029e70fehAddress 029e70c1h
3-49

GENERAL OPTIMIZATION GUIDELINES
3.6.4 Store Forwarding
The processor’s memory system only sends stores to memory (including cache) after
store retirement. However, store data can be forwarded from a store to a subsequent
load from the same address to give a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are
violated, store forwarding cannot occur and the load must get its data from the cache
(so the store must write its data back to the cache first). This incurs a penalty that is
largely related to pipeline depth of the underlying micro-architecture.

The first requirement pertains to the size and alignment of the store-forwarding data.
This restriction is likely to have high impact on overall application performance. Typi-
cally, a performance penalty due to violating this restriction can be prevented. The
store-to-load forwarding restrictions vary from one microarchitecture to another.
Several examples of coding pitfalls that cause store-forwarding stalls and solutions to
these pitfalls are discussed in detail in Section 3.6.4.1, “Store-to-Load-Forwarding
Restriction on Size and Alignment.” The second requirement is the availability of
data, discussed in Section 3.6.4.2, “Store-forwarding Restriction on Data Avail-
ability.” A good practice is to eliminate redundant load operations.

It may be possible to keep a temporary scalar variable in a register and never write it
to memory. Generally, such a variable must not be accessible using indirect pointers.
Moving a variable to a register eliminates all loads and stores of that variable and
eliminates potential problems associated with store forwarding. However, it also
increases register pressure.

Load instructions tend to start chains of computation. Since the out-of-order engine
is based on data dependence, load instructions play a significant role in the engine’s
ability to execute at a high rate. Eliminating loads should be given a high priority.

If a variable does not change between the time when it is stored and the time when
it is used again, the register that was stored can be copied or used directly. If register
pressure is too high, or an unseen function is called before the store and the second
load, it may not be possible to eliminate the second load.

Assembly/Compiler Coding Rule 46. (H impact, M generality) Pass
parameters in registers instead of on the stack where possible. Passing arguments
on the stack requires a store followed by a reload. While this sequence is optimized
in hardware by providing the value to the load directly from the memory order
buffer without the need to access the data cache if permitted by store-forwarding
restrictions, floating point values incur a significant latency in forwarding. Passing
floating point arguments in (preferably XMM) registers should save this long latency
operation.

Parameter passing conventions may limit the choice of which parameters are passed
in registers which are passed on the stack. However, these limitations may be over-
come if the compiler has control of the compilation of the whole binary (using whole-
program optimization).
3-50

GENERAL OPTIMIZATION GUIDELINES
3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment
Data size and alignment restrictions for store-forwarding apply to processors based
on Intel NetBurst microarchitecture, Intel Core microarchitecture, Intel Core 2 Duo,
Intel Core Solo and Pentium M processors. The performance penalty for violating
store-forwarding restrictions is less for shorter-pipelined machines than for Intel
NetBurst microarchitecture.

Store-forwarding restrictions vary with each microarchitecture. Intel NetBurst
microarchitecture places more constraints than Intel Core microarchitecture on code
generation to enable store-forwarding to make progress instead of experiencing
stalls. Fixing store-forwarding problems for Intel NetBurst microarchitecture gener-
ally also avoids problems on Pentium M, Intel Core Duo and Intel Core 2 Duo proces-
sors. The size and alignment restrictions for store-forwarding in processors based on
Intel NetBurst microarchitecture are illustrated in Figure 3-3.

Figure 3-3. Size and Alignment Restrictions in Store Forwarding

OM15155

(a) Small load after
Large Store

Store

Load

Load Aligned with
Store W ill Forward

Non-Forwarding

Penalty

(b) Size of Load >=
Store

Store

Load

Penalty

(c) Size of Load >=
Store(s)

Store

Load

Penalty

(d) 128-bit Forward
Must Be 16-Byte

Aligned

Store

Load

Penalty

16-Byte
Boundary
3-51

GENERAL OPTIMIZATION GUIDELINES
The following rules help satisfy size and alignment restrictions for store forwarding:

Assembly/Compiler Coding Rule 47. (H impact, M generality) A load that
forwards from a store must have the same address start point and therefore the
same alignment as the store data.

Assembly/Compiler Coding Rule 48. (H impact, M generality) The data of a
load which is forwarded from a store must be completely contained within the store
data.

A load that forwards from a store must wait for the store’s data to be written to the
store buffer before proceeding, but other, unrelated loads need not wait.

Assembly/Compiler Coding Rule 49. (H impact, ML generality) If it is
necessary to extract a non-aligned portion of stored data, read out the smallest
aligned portion that completely contains the data and shift/mask the data as
necessary. This is better than incurring the penalties of a failed store-forward.

Assembly/Compiler Coding Rule 50. (MH impact, ML generality) Avoid
several small loads after large stores to the same area of memory by using a single
large read and register copies as needed.

Example 3-29 depicts several store-forwarding situations in which small loads follow
large stores. The first three load operations illustrate the situations described in Rule
50. However, the last load operation gets data from store-forwarding without
problem.

Example 3-30 illustrates a store-forwarding situation in which a large load follows
several small stores. The data needed by the load operation cannot be forwarded

Example 3-29. Situations Showing Small Loads After Large Store

mov [EBP],‘abcd’
mov AL, [EBP] ; Not blocked - same alignment
mov BL, [EBP + 1] ; Blocked
mov CL, [EBP + 2] ; Blocked
mov DL, [EBP + 3] ; Blocked
mov AL, [EBP] ; Not blocked - same alignment

; n.b. passes older blocked loads
3-52

GENERAL OPTIMIZATION GUIDELINES
because all of the data that needs to be forwarded is not contained in the store buffer.
Avoid large loads after small stores to the same area of memory.

Example 3-31 illustrates a stalled store-forwarding situation that may appear in
compiler generated code. Sometimes a compiler generates code similar to that
shown in Example 3-31 to handle a spilled byte to the stack and convert the byte to
an integer value.

Example 3-32 offers two alternatives to avoid the non-forwarding situation shown in
Example 3-31.

When moving data that is smaller than 64 bits between memory locations, 64-bit or
128-bit SIMD register moves are more efficient (if aligned) and can be used to avoid
unaligned loads. Although floating-point registers allow the movement of 64 bits at a
time, floating point instructions should not be used for this purpose, as data may be
inadvertently modified.

Example 3-30. Non-forwarding Example of Large Load After Small Store

mov [EBP], ‘a’
mov [EBP + 1], ‘b’
mov [EBP + 2], ‘c’
mov [EBP + 3], ‘d’
mov EAX, [EBP] ; Blocked

; The first 4 small store can be consolidated into
; a single DWORD store to prevent this non-forwarding
; situation.

Example 3-31. A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h
mov BYTE PTR [esp+10h], bl
mov eax, DWORD PTR [esp+10h] ; Stall
and eax, 0xff ; Converting back to byte value

Example 3-32. Two Ways to Avoid Non-forwarding Situation in Example 3-31

; A. Use MOVZ instruction to avoid large load after small
; store, when spills are ignored.

movz eax, bl ; Replaces the last three instructions

; B. Use MOVZ instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h] ; Not blocked
3-53

GENERAL OPTIMIZATION GUIDELINES
As an additional example, consider the cases in Example 3-33.

In the first case (A), there is a large load after a series of small stores to the same
area of memory (beginning at memory address MEM). The large load will stall.

The FLD must wait for the stores to write to memory before it can access all the data
it requires. This stall can also occur with other data types (for example, when bytes
or words are stored and then words or doublewords are read from the same area of
memory).

In the second case (B), there is a series of small loads after a large store to the same
area of memory (beginning at memory address MEM). The small loads will stall.

The word loads must wait for the quadword store to write to memory before they can
access the data they require. This stall can also occur with other data types (for
example, when doublewords or words are stored and then words or bytes are read
from the same area of memory). This can be avoided by moving the store as far from
the loads as possible.

Store forwarding restrictions for processors based on Intel Core microarchitecture is
listed in Table 3-1.

Example 3-33. Large and Small Load Stalls

; A. Large load stall

mov mem, eax ; Store dword to address “MEM"
mov mem + 4, ebx ; Store dword to address “MEM + 4"
fld mem ; Load qword at address “MEM", stalls

; B. Small Load stall

fstp mem ; Store qword to address “MEM"
mov bx, mem+2 ; Load word at address “MEM + 2", stalls
mov cx, mem+4 ; Load word at address “MEM + 4", stalls

Table 3-1. Store Forwarding Restrictions of Processors
Based on Intel Core Microarchitecture

Store
Alignment

Width of
Store
(bits)

Load Alignment
(byte)

Width of
Load (bits)

Store
Forwarding
Restriction

To Natural size 16 word aligned 8, 16 not stalled

To Natural size 16 not word aligned 8 stalled

To Natural size 32 dword aligned 8, 32 not stalled

To Natural size 32 not dword aligned 8 stalled

To Natural size 32 word aligned 16 not stalled

To Natural size 32 not word aligned 16 stalled

To Natural size 64 qword aligned 8, 16, 64 not stalled
3-54

GENERAL OPTIMIZATION GUIDELINES
3.6.4.2 Store-forwarding Restriction on Data Availability
The value to be stored must be available before the load operation can be completed.
If this restriction is violated, the execution of the load will be delayed until the data is
available. This delay causes some execution resources to be used unnecessarily, and
that can lead to sizable but non-deterministic delays. However, the overall impact of
this problem is much smaller than that from violating size and alignment require-
ments.

In processors based on Intel NetBurst microarchitecture, hardware predicts when
loads are dependent on and get their data forwarded from preceding stores. These
predictions can significantly improve performance. However, if a load is scheduled
too soon after the store it depends on or if the generation of the data to be stored is
delayed, there can be a significant penalty.

To Natural size 64 not qword aligned 8, 16 stalled

To Natural size 64 dword aligned 32 not stalled

To Natural size 64 not dword aligned 32 stalled

To Natural size 128 dqword aligned 8, 16, 128 not stalled

To Natural size 128 not dqword aligned 8, 16 stalled

To Natural size 128 dword aligned 32 not stalled

To Natural size 128 not dword aligned 32 stalled

To Natural size 128 qword aligned 64 not stalled

To Natural size 128 not qword aligned 64 stalled

Unaligned, start byte 1 32 byte 0 of store 8, 16, 32 not stalled

Unaligned, start byte 1 32 not byte 0 of store 8, 16 stalled

Unaligned, start byte 1 64 byte 0 of store 8, 16, 32 not stalled

Unaligned, start byte 1 64 not byte 0 of store 8, 16, 32 stalled

Unaligned, start byte 1 64 byte 0 of store 64 stalled

Unaligned, start byte 7 32 byte 0 of store 8 not stalled

Unaligned, start byte 7 32 not byte 0 of store 8 not stalled

Unaligned, start byte 7 32 don’t care 16, 32 stalled

Unaligned, start byte 7 64 don’t care 16, 32, 64 stalled

Table 3-1. Store Forwarding Restrictions of Processors
Based on Intel Core Microarchitecture (Contd.)

Store
Alignment

Width of
Store
(bits)

Load Alignment
(byte)

Width of
Load (bits)

Store
Forwarding
Restriction
3-55

GENERAL OPTIMIZATION GUIDELINES
There are several cases in which data is passed through memory, and the store may
need to be separated from the load:

• Spills, save and restore registers in a stack frame

• Parameter passing

• Global and volatile variables

• Type conversion between integer and floating point

• When compilers do not analyze code that is inlined, forcing variables that are
involved in the interface with inlined code to be in memory, creating more
memory variables and preventing the elimination of redundant loads

Assembly/Compiler Coding Rule 51. (H impact, MH generality) Where it is
possible to do so without incurring other penalties, prioritize the allocation of
variables to registers, as in register allocation and for parameter passing, to
minimize the likelihood and impact of store-forwarding problems. Try not to store-
forward data generated from a long latency instruction - for example, MUL or DIV.
Avoid store-forwarding data for variables with the shortest store-load distance.
Avoid store-forwarding data for variables with many and/or long dependence
chains, and especially avoid including a store forward on a loop-carried dependence
chain.

shows an example of a loop-carried dependence chain.

Assembly/Compiler Coding Rule 52. (M impact, MH generality) Calculate
store addresses as early as possible to avoid having stores block loads.

3.6.5 Data Layout Optimizations
User/Source Coding Rule 6. (H impact, M generality) Pad data structures
defined in the source code so that every data element is aligned to a natural
operand size address boundary.

If the operands are packed in a SIMD instruction, align to the packed element size
(64-bit or 128-bit).

Align data by providing padding inside structures and arrays. Programmers can reor-
ganize structures and arrays to minimize the amount of memory wasted by padding.
However, compilers might not have this freedom. The C programming language, for
example, specifies the order in which structure elements are allocated in memory. For
more information, see Section 4.4, “Stack and Data Alignment,” and Appendix D,
“Stack Alignment.”

Example 3-34. Loop-carried Dependence Chain

for (i = 0; i < MAX; i++) {
a[i] = b[i] * foo;
foo = a[i] / 3;

} // foo is a loop-carried dependence.
3-56

GENERAL OPTIMIZATION GUIDELINES
Example 3-35 shows how a data structure could be rearranged to reduce its size.

Cache line size of 64 bytes can impact streaming applications (for example, multi-
media). These reference and use data only once before discarding it. Data accesses
which sparsely utilize the data within a cache line can result in less efficient utilization
of system memory bandwidth. For example, arrays of structures can be decomposed
into several arrays to achieve better packing, as shown in Example 3-36.

Example 3-35. Rearranging a Data Structure

struct unpacked { /* Fits in 20 bytes due to padding */
int a;
char b;
int c;
char d;
int e;

};

struct packed { /* Fits in 16 bytes */
int a;
int c;
int e;
char b;
char d;

}

Example 3-36. Decomposing an Array

struct { /* 1600 bytes */
int a, c, e;
char b, d;

} array_of_struct [100];

struct { /* 1400 bytes */
int a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct { /* 1200 bytes */
int a, c, e;

} hybrid_struct_of_array_ace[100];
3-57

GENERAL OPTIMIZATION GUIDELINES
The efficiency of such optimizations depends on usage patterns. If the elements of
the structure are all accessed together but the access pattern of the array is random,
then ARRAY_OF_STRUCT avoids unnecessary prefetch even though it wastes
memory.

However, if the access pattern of the array exhibits locality (for example, if the array
index is being swept through) then processors with hardware prefetchers will
prefetch data from STRUCT_OF_ARRAY, even if the elements of the structure are
accessed together.

When the elements of the structure are not accessed with equal frequency, such as
when element A is accessed ten times more often than the other entries, then
STRUCT_OF_ARRAY not only saves memory, but it also prevents fetching unneces-
sary data items B, C, D, and E.

Using STRUCT_OF_ARRAY also enables the use of the SIMD data types by the
programmer and the compiler.

Note that STRUCT_OF_ARRAY can have the disadvantage of requiring more indepen-
dent memory stream references. This can require the use of more prefetches and
additional address generation calculations. It can also have an impact on DRAM page
access efficiency. An alternative, HYBRID_STRUCT_OF_ARRAY blends the two
approaches. In this case, only 2 separate address streams are generated and refer-
enced: 1 for HYBRID_STRUCT_OF_ARRAY_ACE and 1 for
HYBRID_STRUCT_OF_ARRAY_BD. The second alterative also prevents fetching
unnecessary data — assuming that (1) the variables A, C and E are always used
together, and (2) the variables B and D are always used together, but not at the same
time as A, C and E.

The hybrid approach ensures:

• Simpler/fewer address generations than STRUCT_OF_ARRAY

• Fewer streams, which reduces DRAM page misses

• Fewer prefetches due to fewer streams

• Efficient cache line packing of data elements that are used concurrently

Assembly/Compiler Coding Rule 53. (H impact, M generality) Try to arrange
data structures such that they permit sequential access.

If the data is arranged into a set of streams, the automatic hardware prefetcher can
prefetch data that will be needed by the application, reducing the effective memory
latency. If the data is accessed in a non-sequential manner, the automatic hardware
prefetcher cannot prefetch the data. The prefetcher can recognize up to eight

struct { /* 200 bytes */
char b, d;

} hybrid_struct_of_array_bd[100];

Example 3-36. Decomposing an Array (Contd.)
3-58

GENERAL OPTIMIZATION GUIDELINES
concurrent streams. See Chapter 7, “Optimizing Cache Usage,” for more information
on the hardware prefetcher.

On Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium 4, Intel Xeon and
Pentium M processors, memory coherence is maintained on 64-byte cache lines
(rather than 32-byte cache lines. as in earlier processors). This can increase the
opportunity for false sharing.

User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing
within a cache line (64 bytes) and within a sector of 128 bytes on processors based
on Intel NetBurst microarchitecture.

3.6.6 Stack Alignment
The easiest way to avoid stack alignment problems is to keep the stack aligned at all
times. For example, a language that supports 8-bit, 16-bit, 32-bit, and 64-bit data
quantities but never uses 80-bit data quantities can require the stack to always be
aligned on a 64-bit boundary.

Assembly/Compiler Coding Rule 54. (H impact, M generality) If 64-bit data is
ever passed as a parameter or allocated on the stack, make sure that the stack is
aligned to an 8-byte boundary.

Doing this will require using a general purpose register (such as EBP) as a frame
pointer. The trade-off is between causing unaligned 64-bit references (if the stack is
not aligned) and causing extra general purpose register spills (if the stack is aligned).
Note that a performance penalty is caused only when an unaligned access splits a
cache line. This means that one out of eight spatially consecutive unaligned accesses
is always penalized.

A routine that makes frequent use of 64-bit data can avoid stack misalignment by
placing the code described in Example 3-37 in the function prologue and epilogue.

Example 3-37. Dynamic Stack Alignment

prologue:
subl esp, 4 ; Save frame ptr
movl [esp], ebp
movl ebp, esp ; New frame pointer
andl ebp, 0xFFFFFFFC ; Aligned to 64 bits
movl [ebp], esp ; Save old stack ptr
subl esp, FRAMESIZE ; Allocate space
; ... callee saves, etc.
3-59

GENERAL OPTIMIZATION GUIDELINES
If for some reason it is not possible to align the stack for 64-bits, the routine should
access the parameter and save it into a register or known aligned storage, thus incur-
ring the penalty only once.

3.6.7 Capacity Limits and Aliasing in Caches
There are cases in which addresses with a given stride will compete for some
resource in the memory hierarchy.

Typically, caches are implemented to have multiple ways of set associativity, with
each way consisting of multiple sets of cache lines (or sectors in some cases).
Multiple memory references that compete for the same set of each way in a cache
can cause a capacity issue. There are aliasing conditions that apply to specific
microarchitectures. Note that first-level cache lines are 64 bytes. Thus, the least
significant 6 bits are not considered in alias comparisons. For processors based on
Intel NetBurst microarchitecture, data is loaded into the second level cache in a
sector of 128 bytes, so the least significant 7 bits are not considered in alias compar-
isons.

3.6.7.1 Capacity Limits in Set-Associative Caches
Capacity limits may be reached if the number of outstanding memory references that
are mapped to the same set in each way of a given cache exceeds the number of
ways of that cache. The conditions that apply to the first-level data cache and second
level cache are listed below:

• L1 Set Conflicts — Multiple references map to the same first-level cache set.
The conflicting condition is a stride determined by the size of the cache in bytes,
divided by the number of ways. These competing memory references can cause
excessive cache misses only if the number of outstanding memory references
exceeds the number of ways in the working set:

— On Pentium 4 and Intel Xeon processors with a CPUID signature of family
encoding 15, model encoding of 0, 1, or 2; there will be an excess of first-
level cache misses for more than 4 simultaneous competing memory
references to addresses with 2-KByte modulus.

epilogue:
; ... callee restores, etc.
movl esp, [ebp] ; Restore stack ptr
movl ebp, [esp] ; Restore frame ptr
addl esp, 4
ret

Example 3-37. Dynamic Stack Alignment (Contd.)
3-60

GENERAL OPTIMIZATION GUIDELINES
— On Pentium 4 and Intel Xeon processors with a CPUID signature of family
encoding 15, model encoding 3; there will be an excess of first-level cache
misses for more than 8 simultaneous competing references to addresses that
are apart by 2-KByte modulus.

— On Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, and Pentium M
processors, there will be an excess of first-level cache misses for more than 8
simultaneous references to addresses that are apart by 4-KByte modulus.

• L2 Set Conflicts — Multiple references map to the same second-level cache set.
The conflicting condition is also determined by the size of the cache or the
number of ways:

— On Pentium 4 and Intel Xeon processors, there will be an excess of second-
level cache misses for more than 8 simultaneous competing references. The
stride sizes that can cause capacity issues are 32 KBytes, 64 KBytes, or
128 KBytes, depending of the size of the second level cache.

— On Pentium M processors, the stride sizes that can cause capacity issues are
128 KBytes or 256 KBytes, depending of the size of the second level cache.
On Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, stride size of
256 KBytes can cause capacity issue if the number of simultaneous accesses
exceeded the way associativity of the L2 cache.

3.6.7.2 Aliasing Cases in Processors Based on Intel NetBurst
Microarchitecture

Aliasing conditions that are specific to processors based on Intel NetBurst microar-
chitecture are:

• 16 KBytes for code — There can only be one of these in the trace cache at a
time. If two traces whose starting addresses are 16 KBytes apart are in the same
working set, the symptom will be a high trace cache miss rate. Solve this by
offsetting one of the addresses by one or more bytes.

• Data conflict — There can only be one instance of the data in the first-level
cache at a time. If a reference (load or store) occurs and its linear address
matches a data conflict condition with another reference (load or store) that is
under way, then the second reference cannot begin until the first one is kicked
out of the cache.

— On Pentium 4 and Intel Xeon processors with a CPUID signature of family
encoding 15, model encoding of 0, 1, or 2; the data conflict condition applies
to addresses having identical values in bits 15:6 (this is also referred to as a
“64-KByte aliasing conflict”). If you avoid this kind of aliasing, you can speed
up programs by a factor of three if they load frequently from preceding stores
with aliased addresses and little other instruction-level parallelism is
available. The gain is smaller when loads alias with other loads, which causes
thrashing in the first-level cache.
3-61

GENERAL OPTIMIZATION GUIDELINES
— On Pentium 4 and Intel Xeon processors with a CPUID signature of family
encoding 15, model encoding 3; the data conflict condition applies to
addresses having identical values in bits 21:6.

3.6.7.3 Aliasing Cases in the Pentium® M, Intel® Core™ Solo, Intel® Core™
Duo and Intel® Core™ 2 Duo Processors

Pentium M, Intel Core Solo, Intel Core Duo and Intel Core 2 Duo processors have the
following aliasing case:

• Store forwarding — If a store to an address is followed by a load from the same
address, the load will not proceed until the store data is available. If a store is
followed by a load and their addresses differ by a multiple of 4 KBytes, the load
stalls until the store operation completes.

Assembly/Compiler Coding Rule 55. (H impact, M generality) Avoid having a
store followed by a non-dependent load with addresses that differ by a multiple of
4 KBytes. Also, lay out data or order computation to avoid having cache lines that
have linear addresses that are a multiple of 64 KBytes apart in the same working
set. Avoid having more than 4 cache lines that are some multiple of 2 KBytes apart
in the same first-level cache working set, and avoid having more than 8 cache lines
that are some multiple of 4 KBytes apart in the same first-level cache working set.

When declaring multiple arrays that are referenced with the same index and are each
a multiple of 64 KBytes (as can happen with STRUCT_OF_ARRAY data layouts), pad
them to avoid declaring them contiguously. Padding can be accomplished by either
intervening declarations of other variables or by artificially increasing the dimension.

User/Source Coding Rule 8. (H impact, ML generality) Consider using a
special memory allocation library with address offset capability to avoid aliasing.

One way to implement a memory allocator to avoid aliasing is to allocate more than
enough space and pad. For example, allocate structures that are 68 KB instead of
64 KBytes to avoid the 64-KByte aliasing, or have the allocator pad and return
random offsets that are a multiple of 128 Bytes (the size of a cache line).

User/Source Coding Rule 9. (M impact, M generality) When padding variable
declarations to avoid aliasing, the greatest benefit comes from avoiding aliasing on
second-level cache lines, suggesting an offset of 128 bytes or more.

4-KByte memory aliasing occurs when the code accesses two different memory loca-
tions with a 4-KByte offset between them. The 4-KByte aliasing situation can mani-
fest in a memory copy routine where the addresses of the source buffer and
destination buffer maintain a constant offset and the constant offset happens to be a
multiple of the byte increment from one iteration to the next.

Example 3-38 shows a routine that copies 16 bytes of memory in each iteration of a
loop. If the offsets (modular 4096) between source buffer (EAX) and destination
buffer (EDX) differ by 16, 32, 48, 64, 80; loads have to wait until stores have been
retired before they can continue. For example at offset 16, the load of the next itera-
tion is 4-KByte aliased current iteration store, therefore the loop must wait until the
store operation completes, making the entire loop serialized. The amount of time
3-62

GENERAL OPTIMIZATION GUIDELINES
needed to wait decreases with larger offset until offset of 96 resolves the issue (as
there is no pending stores by the time of the load with same address).

The Intel Core microarchitecture provides a performance monitoring event (see
LOAD_BLOCK.OVERLAP_STORE in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B) that allows software tuning effort to detect the
occurrence of aliasing conditions.

3.6.8 Mixing Code and Data
The aggressive prefetching and pre-decoding of instructions by Intel processors have
two related effects:

• Self-modifying code works correctly, according to the Intel architecture processor
requirements, but incurs a significant performance penalty. Avoid self-modifying
code if possible.

• Placing writable data in the code segment might be impossible to distinguish
from self-modifying code. Writable data in the code segment might suffer the
same performance penalty as self-modifying code.

Assembly/Compiler Coding Rule 56. (M impact, L generality) If (hopefully
read-only) data must occur on the same page as code, avoid placing it immediately
after an indirect jump. For example, follow an indirect jump with its mostly likely
target, and place the data after an unconditional branch.

Tuning Suggestion 1. In rare cases, a performance problem may be caused by
executing data on a code page as instructions. This is very likely to happen when
execution is following an indirect branch that is not resident in the trace cache. If
this is clearly causing a performance problem, try moving the data elsewhere, or
inserting an illegal opcode or a PAUSE instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some
circumstances.

Example 3-38. Aliasing Between Loads and Stores Across Loop Iterations

LP:
movaps xmm0, [eax+ecx]
movaps [edx+ecx], xmm0
add ecx, 16
jnz lp
3-63

GENERAL OPTIMIZATION GUIDELINES
Assembly/Compiler Coding Rule 57. (H impact, L generality) Always put
code and data on separate pages. Avoid self-modifying code wherever possible. If
code is to be modified, try to do it all at once and make sure the code that performs
the modifications and the code being modified are on separate 4-KByte pages or on
separate aligned 1-KByte subpages.

3.6.8.1 Self-modifying Code
Self-modifying code (SMC) that ran correctly on Pentium III processors and prior
implementations will run correctly on subsequent implementations. SMC and cross-
modifying code (when multiple processors in a multiprocessor system are writing to
a code page) should be avoided when high performance is desired.

Software should avoid writing to a code page in the same 1-KByte subpage that is
being executed or fetching code in the same 2-KByte subpage of that is being
written. In addition, sharing a page containing directly or speculatively executed
code with another processor as a data page can trigger an SMC condition that causes
the entire pipeline of the machine and the trace cache to be cleared. This is due to the
self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written fills up a data
page before that page is accessed as code. Dynamically-modified code (for example,
from target fix-ups) is likely to suffer from the SMC condition and should be avoided
where possible. Avoid the condition by introducing indirect branches and using data
tables on data pages (not code pages) using register-indirect calls.

3.6.9 Write Combining
Write combining (WC) improves performance in two ways:

• On a write miss to the first-level cache, it allows multiple stores to the same
cache line to occur before that cache line is read for ownership (RFO) from further
out in the cache/memory hierarchy. Then the rest of line is read, and the bytes
that have not been written are combined with the unmodified bytes in the
returned line.

• Write combining allows multiple writes to be assembled and written further out in
the cache hierarchy as a unit. This saves port and bus traffic. Saving traffic is
particularly important for avoiding partial writes to uncached memory.

There are six write-combining buffers (on Pentium 4 and Intel Xeon processors with
a CPUID signature of family encoding 15, model encoding 3; there are 8 write-
combining buffers). Two of these buffers may be written out to higher cache levels
and freed up for use on other write misses. Only four write-combining buffers are
guaranteed to be available for simultaneous use. Write combining applies to memory
type WC; it does not apply to memory type UC.
3-64

GENERAL OPTIMIZATION GUIDELINES
There are six write-combining buffers in each processor core in Intel Core Duo and
Intel Core Solo processors. Processors based on Intel Core microarchitecture have
eight write-combining buffers in each core.

Assembly/Compiler Coding Rule 58. (H impact, L generality) If an inner loop
writes to more than four arrays (four distinct cache lines), apply loop fission to
break up the body of the loop such that only four arrays are being written to in each
iteration of each of the resulting loops.

Write combining buffers are used for stores of all memory types. They are particu-
larly important for writes to uncached memory: writes to different parts of the same
cache line can be grouped into a single, full-cache-line bus transaction instead of
going across the bus (since they are not cached) as several partial writes. Avoiding
partial writes can have a significant impact on bus bandwidth-bound graphics appli-
cations, where graphics buffers are in uncached memory. Separating writes to
uncached memory and writes to writeback memory into separate phases can assure
that the write combining buffers can fill before getting evicted by other write traffic.
Eliminating partial write transactions has been found to have performance impact on
the order of 20% for some applications. Because the cache lines are 64 bytes, a write
to the bus for 63 bytes will result in 8 partial bus transactions.

When coding functions that execute simultaneously on two threads, reducing the
number of writes that are allowed in an inner loop will help take full advantage of
write-combining store buffers. For write-combining buffer recommendations for
Hyper-Threading Technology, see Chapter 8, “Multicore and Hyper-Threading Tech-
nology.”

Store ordering and visibility are also important issues for write combining. When a
write to a write-combining buffer for a previously-unwritten cache line occurs, there
will be a read-for-ownership (RFO). If a subsequent write happens to another write-
combining buffer, a separate RFO may be caused for that cache line. Subsequent
writes to the first cache line and write-combining buffer will be delayed until the
second RFO has been serviced to guarantee properly ordered visibility of the writes.
If the memory type for the writes is write-combining, there will be no RFO since the
line is not cached, and there is no such delay. For details on write-combining, see
Chapter 10, “Power Optimization for Mobile Usages,” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

3.6.10 Locality Enhancement
Locality enhancement can reduce data traffic originating from an outer-level sub-
system in the cache/memory hierarchy. This is to address the fact that the access-
cost in terms of cycle-count from an outer level will be more expensive than from an
inner level. Typically, the cycle-cost of accessing a given cache level (or memory
system) varies across different microarchitectures, processor implementations, and
platform components. It may be sufficient to recognize the relative data access cost
trend by locality rather than to follow a large table of numeric values of cycle-costs,
listed per locality, per processor/platform implementations, etc. The general trend is
typically that access cost from an outer sub-system may be approximately 3-10X
3-65

GENERAL OPTIMIZATION GUIDELINES
more expensive than accessing data from the immediate inner level in the
cache/memory hierarchy, assuming similar degrees of data access parallelism.

Thus locality enhancement should start with characterizing the dominant data traffic
locality. Section A, “Application Performance Tools,” describes some techniques that
can be used to determine the dominant data traffic locality for any workload.

Even if cache miss rates of the last level cache may be low relative to the number of
cache references, processors typically spend a sizable portion of their execution time
waiting for cache misses to be serviced. Reducing cache misses by enhancing a
program’s locality is a key optimization. This can take several forms:

• Blocking to iterate over a portion of an array that will fit in the cache (with the
purpose that subsequent references to the data-block [or tile] will be cache hit
references)

• Loop interchange to avoid crossing cache lines or page boundaries

• Loop skewing to make accesses contiguous

Locality enhancement to the last level cache can be accomplished with sequencing
the data access pattern to take advantage of hardware prefetching. This can also
take several forms:

• Transformation of a sparsely populated multi-dimensional array into a one-
dimension array such that memory references occur in a sequential, small-stride
pattern that is friendly to the hardware prefetch (see Section 2.3.4.4, “Data
Prefetch”)

• Optimal tile size and shape selection can further improve temporal data locality
by increasing hit rates into the last level cache and reduce memory traffic
resulting from the actions of hardware prefetching (see Section 7.6.11,
“Hardware Prefetching and Cache Blocking Techniques”)

It is important to avoid operations that work against locality-enhancing techniques.
Using the lock prefix heavily can incur large delays when accessing memory, regard-
less of whether the data is in the cache or in system memory.

User/Source Coding Rule 10. (H impact, H generality) Optimization
techniques such as blocking, loop interchange, loop skewing, and packing are best
done by the compiler. Optimize data structures either to fit in one-half of the first-
level cache or in the second-level cache; turn on loop optimizations in the compiler
to enhance locality for nested loops.

Optimizing for one-half of the first-level cache will bring the greatest performance
benefit in terms of cycle-cost per data access. If one-half of the first-level cache is
too small to be practical, optimize for the second-level cache. Optimizing for a point
in between (for example, for the entire first-level cache) will likely not bring a
substantial improvement over optimizing for the second-level cache.
3-66

GENERAL OPTIMIZATION GUIDELINES
3.6.11 Minimizing Bus Latency
Each bus transaction includes the overhead of making requests and arbitrations. The
average latency of bus read and bus write transactions will be longer if reads and
writes alternate. Segmenting reads and writes into phases can reduce the average
latency of bus transactions. This is because the number of incidences of successive
transactions involving a read following a write, or a write following a read, are
reduced.

User/Source Coding Rule 11. (M impact, ML generality) If there is a blend of
reads and writes on the bus, changing the code to separate these bus transactions
into read phases and write phases can help performance.

Note, however, that the order of read and write operations on the bus is not the same
as it appears in the program.

Bus latency for fetching a cache line of data can vary as a function of the access
stride of data references. In general, bus latency will increase in response to
increasing values of the stride of successive cache misses. Independently, bus
latency will also increase as a function of increasing bus queue depths (the number
of outstanding bus requests of a given transaction type). The combination of these
two trends can be highly non-linear, in that bus latency of large-stride, bandwidth-
sensitive situations are such that effective throughput of the bus system for data-
parallel accesses can be significantly less than the effective throughput of small-
stride, bandwidth-sensitive situations.

To minimize the per-access cost of memory traffic or amortize raw memory latency
effectively, software should control its cache miss pattern to favor higher concentra-
tion of smaller-stride cache misses.

User/Source Coding Rule 12. (H impact, H generality) To achieve effective
amortization of bus latency, software should favor data access patterns that result
in higher concentrations of cache miss patterns, with cache miss strides that are
significantly smaller than half the hardware prefetch trigger threshold.

3.6.12 Non-Temporal Store Bus Traffic
Peak system bus bandwidth is shared by several types of bus activities, including
reads (from memory), reads for ownership (of a cache line), and writes. The data
transfer rate for bus write transactions is higher if 64 bytes are written out to the bus
at a time.

Typically, bus writes to Writeback (WB) memory must share the system bus band-
width with read-for-ownership (RFO) traffic. Non-temporal stores do not require RFO
traffic; they do require care in managing the access patterns in order to ensure 64
bytes are evicted at once (rather than evicting several 8-byte chunks).

Although the data bandwidth of full 64-byte bus writes due to non-temporal stores is
twice that of bus writes to WB memory, transferring 8-byte chunks wastes bus
3-67

GENERAL OPTIMIZATION GUIDELINES
request bandwidth and delivers significantly lower data bandwidth. This difference is
depicted in Examples 3-39 and 3-40.

3.7 PREFETCHING
Recent Intel processor families employ several prefetching mechanisms to accelerate
the movement of data or code and improve performance:

• Hardware instruction prefetcher

• Software prefetch for data

• Hardware prefetch for cache lines of data or instructions

Example 3-39. Using Non-temporal Stores and 64-byte Bus Write Transactions

#define STRIDESIZE 256
lea ecx, p64byte_Aligned
mov edx, ARRAY_LEN
xor eax, eax
slloop:
movntps XMMWORD ptr [ecx + eax], xmm0
movntps XMMWORD ptr [ecx + eax+16], xmm0
movntps XMMWORD ptr [ecx + eax+32], xmm0
movntps XMMWORD ptr [ecx + eax+48], xmm0
; 64 bytes is written in one bus transaction
add eax, STRIDESIZE
cmp eax, edx
jl slloop

Example 3-40. On-temporal Stores and Partial Bus Write Transactions

#define STRIDESIZE 256
Lea ecx, p64byte_Aligned
Mov edx, ARRAY_LEN
Xor eax, eax
slloop:
movntps XMMWORD ptr [ecx + eax], xmm0
movntps XMMWORD ptr [ecx + eax+16], xmm0
movntps XMMWORD ptr [ecx + eax+32], xmm0
; Storing 48 bytes results in 6 bus partial transactions
add eax, STRIDESIZE
cmp eax, edx
3-68

GENERAL OPTIMIZATION GUIDELINES
3.7.1 Hardware Instruction Fetching and Software Prefetching
In processor based on Intel NetBurst microarchitecture, the hardware instruction
fetcher reads instructions, 32 bytes at a time, into the 64-byte instruction streaming
buffers. Instruction fetching for Intel Core microarchitecture is discussed in
Section 2.1.2.

Software prefetching requires a programmer to use PREFETCH hint instructions and
anticipate some suitable timing and location of cache misses.

In Intel Core microarchitecture, software PREFETCH instructions can prefetch beyond
page boundaries and can perform one-to-four page walks. Software PREFETCH
instructions issued on fill buffer allocations retire after the page walk completes and
the DCU miss is detected. Software PREFETCH instructions can trigger all hardware
prefetchers in the same manner as do regular loads.

Software PREFETCH operations work the same way as do load from memory opera-
tions, with the following exceptions:

• Software PREFETCH instructions retire after virtual to physical address
translation is completed.

• If an exception, such as page fault, is required to prefetch the data, then the
software prefetch instruction retires without prefetching data.

3.7.2 Software and Hardware Prefetching in Prior
Microarchitectures

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture intro-
duced hardware prefetching in addition to software prefetching. The hardware
prefetcher operates transparently to fetch data and instruction streams from
memory without requiring programmer intervention. Subsequent microarchitectures
continue to improve and add features to the hardware prefetching mechanisms.
Earlier implementations of hardware prefetching mechanisms focus on prefetching
data and instruction from memory to L2; more recent implementations provide addi-
tional features to prefetch data from L2 to L1.

In Intel NetBurst microarchitecture, the hardware prefetcher can track 8 indepen-
dent streams.

The Pentium M processor also provides a hardware prefetcher for data. It can track
12 separate streams in the forward direction and 4 streams in the backward direc-
tion. The processor’s PREFETCHNTA instruction also fetches 64-bytes into the first-
level data cache without polluting the second-level cache.

Intel Core Solo and Intel Core Duo processors provide more advanced hardware
prefetchers for data than Pentium M processors. Key differences are summarized in
Table 2-10.

Although the hardware prefetcher operates transparently (requiring no intervention
by the programmer), it operates most efficiently if the programmer specifically
tailors data access patterns to suit its characteristics (it favors small-stride cache
3-69

GENERAL OPTIMIZATION GUIDELINES
miss patterns). Optimizing data access patterns to suit the hardware prefetcher is
highly recommended, and should be a higher-priority consideration than using soft-
ware prefetch instructions.

The hardware prefetcher is best for small-stride data access patterns in either direc-
tion with a cache-miss stride not far from 64 bytes. This is true for data accesses to
addresses that are either known or unknown at the time of issuing the load opera-
tions. Software prefetch can complement the hardware prefetcher if used carefully.

There is a trade-off to make between hardware and software prefetching. This
pertains to application characteristics such as regularity and stride of accesses. Bus
bandwidth, issue bandwidth (the latency of loads on the critical path) and whether
access patterns are suitable for non-temporal prefetch will also have an impact.

For a detailed description of how to use prefetching, see Chapter 7, “Optimizing
Cache Usage.”

Chapter 5, “Optimizing for SIMD Integer Applications,” contains an example that
uses software prefetch to implement a memory copy algorithm.

Tuning Suggestion 2. If a load is found to miss frequently, either insert a prefetch
before it or (if issue bandwidth is a concern) move the load up to execute earlier.

3.7.3 Hardware Prefetching for First-Level Data Cache
The hardware prefetching mechanism for L1 in Intel Core microarchitecture is
discussed in Section 2.1.4.2. A similar L1 prefetch mechanism is also available to
processors based on Intel NetBurst microarchitecture with CPUID signature of family
15 and model 6.

Example 3-41 depicts a technique to trigger hardware prefetch. The code demon-
strates traversing a linked list and performing some computational work on 2
members of each element that reside in 2 different cache lines. Each element is of
size 192 bytes. The total size of all elements is larger than can be fitted in the L2
cache.
3-70

GENERAL OPTIMIZATION GUIDELINES
The additional instructions to load data from one member in the modified sequence
can trigger the DCU hardware prefetch mechanisms to prefetch data in the next
cache line, enabling the work on the second member to complete sooner.

Software can gain from the first-level data cache prefetchers in two cases:

• If data is not in the second-level cache, the first-level data cache prefetcher
enables early trigger of the second-level cache prefetcher.

• If data is in the second-level cache and not in the first-level data cache, then the
first-level data cache prefetcher triggers earlier data bring-up of sequential cache
line to the first-level data cache.

There are situations that software should pay attention to a potential side effect of
triggering unnecessary DCU hardware prefetches. If a large data structure with many
members spanning many cache lines is accessed in ways that only a few of its
members are actually referenced, but there are multiple pair accesses to the same
cache line. The DCU hardware prefetcher can trigger fetching of cache lines that are
not needed. In Example , references to the “Pts” array and “AltPts” will trigger DCU

Example 3-41. Using DCU Hardware Prefetch
Original code Modified sequence benefit from prefetch

mov ebx, DWORD PTR [First]
xor eax, eax
scan_list:
mov eax, [ebx+4]
mov ecx, 60
do_some_work_1:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_1

mov ebx, DWORD PTR [First]
xor eax, eax
scan_list:
mov eax, [ebx+4]
mov eax, [ebx+4]
mov eax, [ebx+4]
mov ecx, 60
do_some_work_1:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_1

mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_2

mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_2

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

mov ebx, [ebx]
test ebx, ebx
jnz scan_list
3-71

GENERAL OPTIMIZATION GUIDELINES
prefetch to fetch additional cache lines that won’t be needed. If significant negative
performance impact is detected due to DCU hardware prefetch on a portion of the
code, software can try to reduce the size of that contemporaneous working set to be
less than half of the L2 cache.

To fully benefit from these prefetchers, organize and access the data using one of the
following methods:

Method 1:

• Organize the data so consecutive accesses can usually be found in the same
4-KByte page.

• Access the data in constant strides forward or backward IP Prefetcher.

Example 3-42. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines

while (CurrBond != NULL)
{
MyATOM *a1 = CurrBond->At1 ;
MyATOM *a2 = CurrBond->At2 ;

if (a1->CurrStep <= a1->LastStep &&
 a2->CurrStep <= a2->LastStep
)

{
a1->CurrStep++ ;
a2->CurrStep++ ;

double ux = a1->Pts[0].x - a2->Pts[0].x ;
double uy = a1->Pts[0].y - a2->Pts[0].y ;
double uz = a1->Pts[0].z - a2->Pts[0].z ;

a1->AuxPts[0].x += ux ;
a1->AuxPts[0].y += uy ;
a1->AuxPts[0].z += uz ;

a2->AuxPts[0].x += ux ;
a2->AuxPts[0].y += uy ;
a2->AuxPts[0].z += uz ;
} ;

CurrBond = CurrBond->Next ;
} ;
3-72

GENERAL OPTIMIZATION GUIDELINES
Method 2:

• Organize the data in consecutive lines.

• Access the data in increasing addresses, in sequential cache lines.

Example demonstrates accesses to sequential cache lines that can benefit from the
first-level cache prefetcher.

By elevating the load operations from memory to the beginning of each iteration, it is
likely that a significant part of the latency of the pair cache line transfer from memory
to the second-level cache will be in parallel with the transfer of the first cache line.

The IP prefetcher uses only the lower 8 bits of the address to distinguish a specific
address. If the code size of a loop is bigger than 256 bytes, two loads may appear
similar in the lowest 8 bits and the IP prefetcher will be restricted. Therefore, if you
have a loop bigger than 256 bytes, make sure that no two loads have the same
lowest 8 bits in order to use the IP prefetcher.

3.7.4 Hardware Prefetching for Second-Level Cache
The Intel Core microarchitecture contains two second-level cache prefetchers:

• Streamer — Loads data or instructions from memory to the second-level cache.
To use the streamer, organize the data or instructions in blocks of 128 bytes,
aligned on 128 bytes. The first access to one of the two cache lines in this block
while it is in memory triggers the streamer to prefetch the pair line. To software,
the L2 streamer’s functionality is similar to the adjacent cache line prefetch
mechanism found in processors based on Intel NetBurst microarchitecture.

• Data prefetch logic (DPL) — DPL and L2 Streamer are triggered only by
writeback memory type. They prefetch only inside page boundary (4 KBytes).
Both L2 prefetchers can be triggered by software prefetch instructions and by
prefetch request from DCU prefetchers. DPL can also be triggered by read for
ownership (RFO) operations. The L2 Streamer can also be triggered by DPL
requests for L2 cache misses.

Software can gain from organizing data both according to the instruction pointer and
according to line strides. For example, for matrix calculations, columns can be

Example 3-43. Technique For Using L1 Hardware Prefetch

unsigned int *p1, j, a, b;
for (j = 0; j < num; j += 16)
{
a = p1[j];
b = p1[j+1];
// Use these two values
}

3-73

GENERAL OPTIMIZATION GUIDELINES
prefetched by IP-based prefetches, and rows can be prefetched by DPL and the L2
streamer.

3.7.5 Cacheability Instructions
SSE2 provides additional cacheability instructions that extend those provided in SSE.
The new cacheability instructions include:

• new streaming store instructions

• new cache line flush instruction

• new memory fencing instructions

For more information, see Chapter 7, “Optimizing Cache Usage.”

3.7.6 REP Prefix and Data Movement
The REP prefix is commonly used with string move instructions for memory related
library functions such as MEMCPY (using REP MOVSD) or MEMSET (using REP STOS).
These STRING/MOV instructions with the REP prefixes are implemented in MS-ROM
and have several implementation variants with different performance levels.

The specific variant of the implementation is chosen at execution time based on data
layout, alignment and the counter (ECX) value. For example, MOVSB/STOSB with the
REP prefix should be used with counter value less than or equal to three for best
performance.

String MOVE/STORE instructions have multiple data granularities. For efficient data
movement, larger data granularities are preferable. This means better efficiency can
be achieved by decomposing an arbitrary counter value into a number of double-
words plus single byte moves with a count value less than or equal to 3.

Because software can use SIMD data movement instructions to move 16 bytes at a
time, the following paragraphs discuss general guidelines for designing and imple-
menting high-performance library functions such as MEMCPY(), MEMSET(), and
MEMMOVE(). Four factors are to be considered:

• Throughput per iteration — If two pieces of code have approximately identical
path lengths, efficiency favors choosing the instruction that moves larger pieces
of data per iteration. Also, smaller code size per iteration will in general reduce
overhead and improve throughput. Sometimes, this may involve a comparison of
the relative overhead of an iterative loop structure versus using REP prefix for
iteration.

• Address alignment — Data movement instructions with highest throughput
usually have alignment restrictions, or they operate more efficiently if the
destination address is aligned to its natural data size. Specifically, 16-byte moves
need to ensure the destination address is aligned to 16-byte boundaries, and
8-bytes moves perform better if the destination address is aligned to 8-byte
3-74

GENERAL OPTIMIZATION GUIDELINES
boundaries. Frequently, moving at doubleword granularity performs better with
addresses that are 8-byte aligned.

• REP string move vs. SIMD move — Implementing general-purpose memory
functions using SIMD extensions usually requires adding some prolog code to
ensure the availability of SIMD instructions, preamble code to facilitate aligned
data movement requirements at runtime. Throughput comparison must also take
into consideration the overhead of the prolog when considering a REP string
implementation versus a SIMD approach.

• Cache eviction — If the amount of data to be processed by a memory routine
approaches half the size of the last level on-die cache, temporal locality of the
cache may suffer. Using streaming store instructions (for example: MOVNTQ,
MOVNTDQ) can minimize the effect of flushing the cache. The threshold to start
using a streaming store depends on the size of the last level cache. Determine
the size using the deterministic cache parameter leaf of CPUID.

Techniques for using streaming stores for implementing a MEMSET()-type
library must also consider that the application can benefit from this technique
only if it has no immediate need to reference the target addresses. This
assumption is easily upheld when testing a streaming-store implementation on
a micro-benchmark configuration, but violated in a full-scale application
situation.

When applying general heuristics to the design of general-purpose, high-perfor-
mance library routines, the following guidelines can are useful when optimizing an
arbitrary counter value N and address alignment. Different techniques may be neces-
sary for optimal performance, depending on the magnitude of N:

• When N is less than some small count (where the small count threshold will vary
between microarchitectures -- empirically, 8 may be a good value when
optimizing for Intel NetBurst microarchitecture), each case can be coded directly
without the overhead of a looping structure. For example, 11 bytes can be
processed using two MOVSD instructions explicitly and a MOVSB with REP
counter equaling 3.

• When N is not small but still less than some threshold value (which may vary for
different micro-architectures, but can be determined empirically), an SIMD
implementation using run-time CPUID and alignment prolog will likely deliver
less throughput due to the overhead of the prolog. A REP string implementation
should favor using a REP string of doublewords. To improve address alignment, a
small piece of prolog code using MOVSB/STOSB with a count less than 4 can be
used to peel off the non-aligned data moves before starting to use
MOVSD/STOSD.

• When N is less than half the size of last level cache, throughput consideration
may favor either:

— An approach using a REP string with the largest data granularity because a
REP string has little overhead for loop iteration, and the branch misprediction
overhead in the prolog/epilogue code to handle address alignment is
amortized over many iterations.
3-75

GENERAL OPTIMIZATION GUIDELINES
— An iterative approach using the instruction with largest data granularity,
where the overhead for SIMD feature detection, iteration overhead, and
prolog/epilogue for alignment control can be minimized. The trade-off
between these approaches may depend on the microarchitecture.

An example of MEMSET() implemented using stosd for arbitrary counter value
with the destination address aligned to doubleword boundary in 32-bit mode is
shown in Example 3-44.

• When N is larger than half the size of the last level cache, using 16-byte
granularity streaming stores with prolog/epilog for address alignment will likely
be more efficient, if the destination addresses will not be referenced immediately
afterwards.

Memory routines in the runtime library generated by Intel compilers are optimized
across a wide range of address alignments, counter values, and microarchitectures.
In most cases, applications should take advantage of the default memory routines
provided by Intel compilers.

Example 3-44. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination
A ‘C’ example of Memset() Equivalent Implementation Using REP STOSD
void memset(void *dst,int c,size_t size)
{
char *d = (char *)dst;
size_t i;
for (i=0;i<size;i++)

*d++ = (char)c;
}

push edi
movzx eax, byte ptr [esp+12]
mov ecx, eax
shl ecx, 8
or ecx, eax
mov ecx, eax
shl ecx, 16
or eax, ecx

mov edi, [esp+8] ; 4-byte aligned
mov ecx, [esp+16] ; byte count
shr ecx, 2 ; do dword
cmp ecx, 127
jle _main
test edi, 4
jz _main
stosd ;peel off one dword
dec ecx

_main: ; 8-byte aligned
rep stosd
mov ecx, [esp + 16]
and ecx, 3 ; do count <= 3
rep stosb ; optimal with <= 3
pop edi
ret
3-76

GENERAL OPTIMIZATION GUIDELINES
In some situations, the byte count of the data is known by the context (as opposed
to being known by a parameter passed from a call), and one can take a simpler
approach than those required for a general-purpose library routine. For example, if
the byte count is also small, using REP MOVSB/STOSB with a count less than four can
ensure good address alignment and loop-unrolling to finish the remaining data; using
MOVSD/STOSD can reduce the overhead associated with iteration.

Using a REP prefix with string move instructions can provide high performance in the
situations described above. However, using a REP prefix with string scan instructions
(SCASB, SCASW, SCASD, SCASQ) or compare instructions (CMPSB, CMPSW,
SMPSD, SMPSQ) is not recommended for high performance. Consider using SIMD
instructions instead.

3.8 FLOATING-POINT CONSIDERATIONS
When programming floating-point applications, it is best to start with a high-level
programming language such as C, C++, or Fortran. Many compilers perform floating-
point scheduling and optimization when it is possible. However in order to produce
optimal code, the compiler may need some assistance.

3.8.1 Guidelines for Optimizing Floating-point Code
User/Source Coding Rule 13. (M impact, M generality) Enable the compiler’s
use of SSE, SSE2 or SSE3 instructions with appropriate switches.

Follow this procedure to investigate the performance of your floating-point applica-
tion:

• Understand how the compiler handles floating-point code.

• Look at the assembly dump and see what transforms are already performed on
the program.

• Study the loop nests in the application that dominate the execution time.

• Determine why the compiler is not creating the fastest code.

• See if there is a dependence that can be resolved.

• Determine the problem area: bus bandwidth, cache locality, trace cache
bandwidth, or instruction latency. Focus on optimizing the problem area. For
example, adding PREFETCH instructions will not help if the bus is already
saturated. If trace cache bandwidth is the problem, added prefetch µops may
degrade performance.

Also, in general, follow the general coding recommendations discussed in this
chapter, including:

• Blocking the cache

• Using prefetch
3-77

GENERAL OPTIMIZATION GUIDELINES
• Enabling vectorization

• Unrolling loops

User/Source Coding Rule 14. (H impact, ML generality) Make sure your
application stays in range to avoid denormal values, underflows..

Out-of-range numbers cause very high overhead.

User/Source Coding Rule 15. (M impact, ML generality) Do not use double
precision unless necessary. Set the precision control (PC) field in the x87 FPU
control word to “Single Precision”. This allows single precision (32-bit) computation
to complete faster on some operations (for example, divides due to early out).
However, be careful of introducing more than a total of two values for the floating
point control word, or there will be a large performance penalty. See Section 3.8.3.

User/Source Coding Rule 16. (H impact, ML generality) Use fast float-to-int
routines, FISTTP, or SSE2 instructions. If coding these routines, use the FISTTP
instruction if SSE3 is available, or the CVTTSS2SI and CVTTSD2SI instructions if
coding with Streaming SIMD Extensions 2.

Many libraries generate X87 code that does more work than is necessary. The FISTTP
instruction in SSE3 can convert floating-point values to 16-bit, 32-bit, or 64-bit inte-
gers using truncation without accessing the floating-point control word (FCW). The
instructions CVTTSS2SI and CVTTSD2SI save many µops and some store-forwarding
delays over some compiler implementations. This avoids changing the rounding
mode.

User/Source Coding Rule 17. (M impact, ML generality) Removing data
dependence enables the out-of-order engine to extract more ILP from the code.
When summing up the elements of an array, use partial sums instead of a single
accumulator..

For example, to calculate z = a + b + c + d, instead of:

X = A + B;
Y = X + C;
Z = Y + D;

use:

X = A + B;
Y = C + D;
Z = X + Y;

User/Source Coding Rule 18. (M impact, ML generality) Usually, math
libraries take advantage of the transcendental instructions (for example, FSIN)
when evaluating elementary functions. If there is no critical need to evaluate the
transcendental functions using the extended precision of 80 bits, applications
should consider an alternate, software-based approach, such as a look-up-table-
based algorithm using interpolation techniques. It is possible to improve
3-78

GENERAL OPTIMIZATION GUIDELINES
transcendental performance with these techniques by choosing the desired numeric
precision and the size of the look-up table, and by taking advantage of the
parallelism of the SSE and the SSE2 instructions.

3.8.2 Floating-point Modes and Exceptions
When working with floating-point numbers, high-speed microprocessors frequently
must deal with situations that need special handling in hardware or code.

3.8.2.1 Floating-point Exceptions
The most frequent cause of performance degradation is the use of masked floating-
point exception conditions such as:

• arithmetic overflow

• arithmetic underflow

• denormalized operand

Refer to Chapter 4 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for definitions of overflow, underflow and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:

• directly when are used as operands

• indirectly when are produced as a result of an underflow situation

If a floating-point application never underflows, the denormals can only come from
floating-point constants.

User/Source Coding Rule 19. (H impact, ML generality) Denormalized
floating-point constants should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the execution of x87
instructions or SSE/SSE2/SSE3 instructions. Processors based on Intel NetBurst
microarchitecture handle these exceptions more efficiently when executing
SSE/SSE2/SSE3 instructions and when speed is more important than complying with
the IEEE standard. The following paragraphs give recommendations on how to opti-
mize your code to reduce performance degradations related to floating-point excep-
tions.

3.8.2.2 Dealing with floating-point exceptions in x87 FPU code
Every special situation listed in Section 3.8.2.1, “Floating-point Exceptions,” is costly
in terms of performance. For that reason, x87 FPU code should be written to avoid
these situations.
3-79

GENERAL OPTIMIZATION GUIDELINES
There are basically three ways to reduce the impact of overflow/underflow situations
with x87 FPU code:

• Choose floating-point data types that are large enough to accommodate results
without generating arithmetic overflow and underflow exceptions.

• Scale the range of operands/results to reduce as much as possible the number of
arithmetic overflow/underflow situations.

• Keep intermediate results on the x87 FPU register stack until the final results
have been computed and stored in memory. Overflow or underflow is less likely
to happen when intermediate results are kept in the x87 FPU stack (this is
because data on the stack is stored in double extended-precision format and
overflow/underflow conditions are detected accordingly).

• Denormalized floating-point constants (which are read-only, and hence never
change) should be avoided and replaced, if possible, with zeros of the same sign.

3.8.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code
Most special situations that involve masked floating-point exceptions are handled
efficiently in hardware. When a masked overflow exception occurs while executing
SSE/SSE2/SSE3 code, processor hardware can handles it without performance
penalty.

Underflow exceptions and denormalized source operands are usually treated
according to the IEEE 754 specification, but this can incur significant performance
delay. If a programmer is willing to trade pure IEEE 754 compliance for speed, two
non-IEEE 754 compliant modes are provided to speed situations where underflows
and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically converted to a
zero with the correct sign. Although this behavior is not compliant with IEEE 754, it is
provided for use in applications where performance is more important than IEEE 754
compliance. Since denormal results are not produced when the FTZ mode is enabled,
the only denormal floating-point numbers that can be encountered in FTZ mode are
the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands efficiently when
running a SIMD floating-point application. When the DAZ mode is enabled, input
denormals are treated as zeros with the same sign. Enabling the DAZ mode is the
way to deal with denormal floating-point constants when performance is the objec-
tive.

If departing from the IEEE 754 specification is acceptable and performance is critical,
run SSE/SSE2/SSE3 applications with FTZ and DAZ modes enabled.

NOTE
The DAZ mode is available with both the SSE and SSE2 extensions,
although the speed improvement expected from this mode is fully
realized only in SSE code.
3-80

GENERAL OPTIMIZATION GUIDELINES
3.8.3 Floating-point Modes
On the Pentium III processor, the FLDCW instruction is an expensive operation. On
early generations of Pentium 4 processors, FLDCW is improved only for situations
where an application alternates between two constant values of the x87 FPU control
word (FCW), such as when performing conversions to integers. On Pentium M, Intel
Core Solo, Intel Core Duo and Intel Core 2 Duo processors, FLDCW is improved over
previous generations.

Specifically, the optimization for FLDCW in the first two generations of Pentium 4
processors allow programmers to alternate between two constant values efficiently.
For the FLDCW optimization to be effective, the two constant FCW values are only
allowed to differ on the following 5 bits in the FCW:

FCW[8-9] ; Precision control
FCW[10-11] ; Rounding control
FCW[12] ; Infinity control

If programmers need to modify other bits (for example: mask bits) in the FCW, the
FLDCW instruction is still an expensive operation.

In situations where an application cycles between three (or more) constant values,
FLDCW optimization does not apply, and the performance degradation occurs for
each FLDCW instruction.

One solution to this problem is to choose two constant FCW values, take advantage
of the optimization of the FLDCW instruction to alternate between only these two
constant FCW values, and devise some means to accomplish the task that requires
the 3rd FCW value without actually changing the FCW to a third constant value. An
alternative solution is to structure the code so that, for periods of time, the applica-
tion alternates between only two constant FCW values. When the application later
alternates between a pair of different FCW values, the performance degradation
occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate between FTZ and DAZ
mode values. Consequently, the SIMD control word does not have the short latencies
that the floating-point control register does. A read of the MXCSR register has a fairly
long latency, and a write to the register is a serializing instruction.

There is no separate control word for single and double precision; both use the same
modes. Notably, this applies to both FTZ and DAZ modes.

Assembly/Compiler Coding Rule 59. (H impact, M generality) Minimize
changes to bits 8-12 of the floating point control word. Changes for more than two
values (each value being a combination of the following bits: precision, rounding
and infinity control, and the rest of bits in FCW) leads to delays that are on the
order of the pipeline depth.

3.8.3.1 Rounding Mode
Many libraries provide float-to-integer library routines that convert floating-point
values to integer. Many of these libraries conform to ANSI C coding standards which
3-81

GENERAL OPTIMIZATION GUIDELINES
state that the rounding mode should be truncation. With the Pentium 4 processor,
one can use the CVTTSD2SI and CVTTSS2SI instructions to convert operands with
truncation without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify using SSE and
SSE2 wherever possible when truncation is involved.

For x87 floating point, the FIST instruction uses the rounding mode represented in
the floating-point control word (FCW). The rounding mode is generally “round to
nearest”, so many compiler writers implement a change in the rounding mode in the
processor in order to conform to the C and FORTRAN standards. This implementation
requires changing the control word on the processor using the FLDCW instruction.
For a change in the rounding, precision, and infinity bits, use the FSTCW instruction
to store the floating-point control word. Then use the FLDCW instruction to change
the rounding mode to truncation.

In a typical code sequence that changes the rounding mode in the FCW, a FSTCW
instruction is usually followed by a load operation. The load operation from memory
should be a 16-bit operand to prevent store-forwarding problem. If the load opera-
tion on the previously-stored FCW word involves either an 8-bit or a 32-bit operand,
this will cause a store-forwarding problem due to mismatch of the size of the data
between the store operation and the load operation.

To avoid store-forwarding problems, make sure that the write and read to the FCW
are both 16-bit operations.

If there is more than one change to the rounding, precision, and infinity bits, and the
rounding mode is not important to the result, use the algorithm in Example 3-45 to
avoid synchronization issues, the overhead of the FLDCW instruction, and having to
change the rounding mode. Note that the example suffers from a store-forwarding
problem which will lead to a performance penalty. However, its performance is still
better than changing the rounding, precision, and infinity bits among more than two
values.

Example 3-45. Algorithm to Avoid Changing Rounding Mode

_fto132proc
lea ecx, [esp-8]
sub esp, 16 ; Allocate frame
and ecx, -8 ; Align pointer on boundary of 8
fld st(0) ; Duplicate FPU stack top

fistp qword ptr[ecx]
fild qword ptr[ecx]
mov edx, [ecx+4] ; High DWORD of integer
mov eax, [ecx] ; Low DWIRD of integer
test eax, eax
je integer_QnaN_or_zero
3-82

GENERAL OPTIMIZATION GUIDELINES
Assembly/Compiler Coding Rule 60. (H impact, L generality) Minimize the
number of changes to the rounding mode. Do not use changes in the rounding
mode to implement the floor and ceiling functions if this involves a total of more
than two values of the set of rounding, precision, and infinity bits.

3.8.3.2 Precision
If single precision is adequate, use it instead of double precision. This is true
because:

• Single precision operations allow the use of longer SIMD vectors, since more
single precision data elements can fit in a register.

• If the precision control (PC) field in the x87 FPU control word is set to single
precision, the floating-point divider can complete a single-precision computation
much faster than either a double-precision computation or an extended double-
precision computation. If the PC field is set to double precision, this will enable
those x87 FPU operations on double-precision data to complete faster than

arg_is_not_integer_QnaN:
fsubp st(1), st ; TOS=d-round(d), { st(1) = st(1)-st & pop ST}
test edx, edx ; What’s sign of integer
jns positive ; Number is negative
fstp dword ptr[ecx] ; Result of subtraction
mov ecx, [ecx] ; DWORD of diff(single-precision)
add esp, 16
xor ecx, 80000000h
add ecx,7fffffffh ; If diff<0 then decrement integer
adc eax,0 ; INC EAX (add CARRY flag)
ret

positive:

positive:
fstp dword ptr[ecx] ; 17-18 result of subtraction
mov ecx, [ecx] ; DWORD of diff(single precision)
add esp, 16
add ecx, 7fffffffh ; If diff<0 then decrement integer
sbb eax, 0 ; DEC EAX (subtract CARRY flag)
ret

integer_QnaN_or_zero:
test edx, 7fffffffh
jnz arg_is_not_integer_QnaN
add esp, 16
ret

Example 3-45. Algorithm to Avoid Changing Rounding Mode (Contd.)
3-83

GENERAL OPTIMIZATION GUIDELINES
extended double-precision computation. These characteristics affect computa-
tions including floating-point divide and square root.

Assembly/Compiler Coding Rule 61. (H impact, L generality) Minimize the
number of changes to the precision mode.

3.8.3.3 Improving Parallelism and the Use of FXCH
The x87 instruction set relies on the floating point stack for one of its operands. If the
dependence graph is a tree, which means each intermediate result is used only once
and code is scheduled carefully, it is often possible to use only operands that are on
the top of the stack or in memory, and to avoid using operands that are buried under
the top of the stack. When operands need to be pulled from the middle of the stack,
an FXCH instruction can be used to swap the operand on the top of the stack with
another entry in the stack.

The FXCH instruction can also be used to enhance parallelism. Dependent chains can
be overlapped to expose more independent instructions to the hardware scheduler.
An FXCH instruction may be required to effectively increase the register name space
so that more operands can be simultaneously live.

In processors based on Intel NetBurst microarchitecture, however, that FXCH inhibits
issue bandwidth in the trace cache. It does this not only because it consumes a slot,
but also because of issue slot restrictions imposed on FXCH. If the application is not
bound by issue or retirement bandwidth, FXCH will have no impact.

The effective instruction window size in processors based on Intel NetBurst microar-
chitecture is large enough to permit instructions that are as far away as the next iter-
ation to be overlapped. This often obviates the need to use FXCH to enhance
parallelism.

The FXCH instruction should be used only when it’s needed to express an algorithm
or to enhance parallelism. If the size of register name space is a problem, the use of
XMM registers is recommended.

Assembly/Compiler Coding Rule 62. (M impact, M generality) Use FXCH only
where necessary to increase the effective name space.

This in turn allows instructions to be reordered and made available for execution in
parallel. Out-of-order execution precludes the need for using FXCH to move instruc-
tions for very short distances.

3.8.4 x87 vs. Scalar SIMD Floating-point Trade-offs
There are a number of differences between x87 floating-point code and scalar
floating-point code (using SSE and SSE2). The following differences should drive
decisions about which registers and instructions to use:

• When an input operand for a SIMD floating-point instruction contains values that
are less than the representable range of the data type, a denormal exception
occurs. This causes a significant performance penalty. An SIMD floating-point
3-84

GENERAL OPTIMIZATION GUIDELINES
operation has a flush-to-zero mode in which the results will not underflow.
Therefore subsequent computation will not face the performance penalty of
handling denormal input operands. For example, in the case of 3D applications
with low lighting levels, using flush-to-zero mode can improve performance by as
much as 50% for applications with large numbers of underflows.

• Scalar floating-point SIMD instructions have lower latencies than equivalent x87
instructions. Scalar SIMD floating-point multiply instruction may be pipelined,
while x87 multiply instruction is not.

• Only x87 supports transcendental instructions.

• x87 supports 80-bit precision, double extended floating point. SSE support a
maximum of 32-bit precision. SSE2 supports a maximum of 64-bit precision.

• Scalar floating-point registers may be accessed directly, avoiding FXCH and top-
of-stack restrictions.

• The cost of converting from floating point to integer with truncation is signifi-
cantly lower with Streaming SIMD Extensions 2 and Streaming SIMD Extensions
in the processors based on Intel NetBurst microarchitecture than with either
changes to the rounding mode or the sequence prescribed in the Example 3-45.

Assembly/Compiler Coding Rule 63. (M impact, M generality) Use Streaming
SIMD Extensions 2 or Streaming SIMD Extensions unless you need an x87 feature.
Most SSE2 arithmetic operations have shorter latency then their X87 counterpart
and they eliminate the overhead associated with the management of the X87
register stack.

3.8.4.1 Scalar SSE/SSE2 Performance on Intel® Core™ Solo and Intel® Core™
Duo Processors

On Intel Core Solo and Intel Core Duo processors, the combination of improved
decoding and μop fusion allows instructions which were formerly two, three, and four
µops to go through all decoders. As a result, scalar SSE/SSE2 code can match the
performance of x87 code executing through two floating-point units. On Pentium M
processors, scalar SSE/SSE2 code can experience approximately 30% performance
degradation relative to x87 code executing through two floating-point units.

In code sequences that have conversions from floating-point to integer, divide single-
precision instructions, or any precision change, x87 code generation from a compiler
typically writes data to memory in single-precision and reads it again in order to
reduce precision. Using SSE/SSE2 scalar code instead of x87 code can generate a
large performance benefit using Intel NetBurst microarchitecture and a modest
benefit on Intel Core Solo and Intel Core Duo processors.

Recommendation: Use the compiler switch to generate SSE2 scalar floating-point
code rather than x87 code.

When working with scalar SSE/SSE2 code, pay attention to the need for clearing the
content of unused slots in an XMM register and the associated performance impact.
3-85

GENERAL OPTIMIZATION GUIDELINES
For example, loading data from memory with MOVSS or MOVSD causes an extra
micro-op for zeroing the upper part of the XMM register.

On Pentium M, Intel Core Solo, and Intel Core Duo processors, this penalty can be
avoided by using MOVLPD. However, using MOVLPD causes a performance penalty on
Pentium 4 processors.

Another situation occurs when mixing single-precision and double-precision code. On
processors based on Intel NetBurst microarchitecture, using CVTSS2SD has perfor-
mance penalty relative to the alternative sequence:

XORPS XMM1, XMM1
MOVSS XMM1, XMM2
CVTPS2PD XMM1, XMM1

On Intel Core Solo and Intel Core Duo processors, using CVTSS2SD is more desirable
than the alternative sequence.

3.8.4.2 x87 Floating-point Operations with Integer Operands
For processors based on Intel NetBurst microarchitecture, splitting floating-point
operations (FIADD, FISUB, FIMUL, and FIDIV) that take 16-bit integer operands into
two instructions (FILD and a floating-point operation) is more efficient. However, for
floating-point operations with 32-bit integer operands, using FIADD, FISUB, FIMUL,
and FIDIV is equally efficient compared with using separate instructions.

Assembly/Compiler Coding Rule 64. (M impact, L generality) Try to use
32-bit operands rather than 16-bit operands for FILD. However, do not do so at the
expense of introducing a store-forwarding problem by writing the two halves of the
32-bit memory operand separately.

3.8.4.3 x87 Floating-point Comparison Instructions
The FCOMI and FCMOV instructions should be used when performing x87 floating-
point comparisons. Using the FCOM, FCOMP, and FCOMPP instructions typically
requires additional instruction like FSTSW. The latter alternative causes more μops to
be decoded, and should be avoided.

3.8.4.4 Transcendental Functions
If an application needs to emulate math functions in software for performance or
other reasons (see Section 3.8.1, “Guidelines for Optimizing Floating-point Code”), it
may be worthwhile to inline math library calls because the CALL and the
prologue/epilogue involved with such calls can significantly affect the latency of
operations.

Note that transcendental functions are supported only in x87 floating point, not in
Streaming SIMD Extensions or Streaming SIMD Extensions 2.
3-86

GENERAL OPTIMIZATION GUIDELINES
3.9 MAXIMIZING PCIE PERFORMANCE
PCIe performance can be dramatically impacted by the size and alignment of
upstream reads and writes (read and write transactions issued from a PCIe agent to
the host’s memory). As a general rule, the best performance, in terms of both band-
width and latency, is obtained by aligning the start addresses of upstream reads and
writes on 64-byte boundaries and ensuring that the request size is a multiple of 64-
bytes, with modest further increases in bandwidth when larger multiples (128, 192,
256 bytes) are employed. In particular, a partial write will cause a delay for the
following request (read or write).

A second rule is to avoid multiple concurrently outstanding accesses to a single cache
line. This can result in a conflict which in turn can cause serialization of accesses that
would otherwise be pipelined, resulting in higher latency and/or lower bandwidth.
Patterns that violate this rule include sequential accesses (reads or writes) that are
not a multiple of 64-bytes, as well as explicit accesses to the same cache line
address. Overlapping requests—those with different start addresses but with request
lengths that result in overlap of the requests—can have the same effect. For
example, a 96-byte read of address 0x00000200 followed by a 64-byte read of
address 0x00000240 will cause a conflict—and a likely delay— for the second read.

Upstream writes that are a multiple of 64-byte but are non-aligned will have the
performance of a series of partial and full sequential writes. For example, a write of
length 128-byte to address 0x00000070 will perform similarly to 3 sequential writes
of lengths 16, 64, and 48 to addresses 0x00000070, 0x00000080, and 0x00000100,
respectively.

For PCIe cards implementing multi-function devices, such as dual or quad port
network interface cards (NICs) or dual-GPU graphics cards, it is important to note
that non-optimal behavior by one of those devices can impact the bandwidth and/or
latency observed by the other devices on that card. With respect to the behavior
described in this section, all traffic on a given PCIe port is treated as if it originated
from a single device and function.

For the best PCIe bandwidth:

1. Align start addresses of upstream reads and writes on 64-byte
boundaries.

2. Use read and write requests that are a multiple of 64-bytes.

3. Eliminate or avoid sequential and random partial line upstream
writes.

4. Eliminate or avoid conflicting upstream reads, including sequential
partial line reads.

Techniques for avoiding performance pitfalls include cache line aligning all descrip-
tors and data buffers, padding descriptors that are written upstream to 64-byte
alignment, buffering incoming data to achieve larger upstream write payloads, allo-
cating data structures intended for sequential reading by the PCIe device in such a
way as to enable use of (multiple of) 64-byte reads. The negative impact of unopti-
3-87

GENERAL OPTIMIZATION GUIDELINES
mized reads and writes depends on the specific workload and the microarchitecture
on which the product is based.
3-88

CHAPTER 4
CODING FOR SIMD ARCHITECTURES

Processors based on Intel Core microarchitecture supports MMX, SSE, SSE2, SSE3,
and SSSE3. Processors based on Enhanced Intel Core microarchitecture supports
MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1. Processors based on Intel microarchi-
tecture (Nehalem) supports MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2.

Intel Pentium 4, Intel Xeon and Pentium M processors include support for SSE2, SSE,
and MMX technology. SSE3 were introduced with the Pentium 4 processor supporting
Hyper-Threading Technology at 90 nm technology. Intel Core Solo and Intel Core Duo
processors support SSE3/SSE2/SSE, and MMX.

Single-instruction, multiple-data (SIMD) technologies enable the development of
advanced multimedia, signal processing, and modeling applications.

Single-instruction, multiple-data techniques can be applied to text/string processing,
lexing and parser applications. This is covered in Chapter 10, “SSE4.2 and SIMD
Programming For Text-Processing/LexING/Parsing”.

To take advantage of the performance opportunities presented by these capabilities,
do the following:

• Ensure that the processor supports MMX technology, SSE, SSE2, SSE3, SSSE3
and SSE4.1.

• Ensure that the operating system supports MMX technology and SSE (OS support
for SSE2, SSE3 and SSSE3 is the same as OS support for SSE).

• Employ the optimization and scheduling strategies described in this book.

• Use stack and data alignment techniques to keep data properly aligned for
efficient memory use.

• Utilize the cacheability instructions offered by SSE and SSE2, where appropriate.

4.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD
TECHNOLOGIES

This section shows how to check whether a processor supports MMX technology, SSE,
SSE2, SSE3, SSSE3, and SSE4.1.

SIMD technology can be included in your application in three ways:

1. Check for the SIMD technology during installation. If the desired SIMD
technology is available, the appropriate DLLs can be installed.

2. Check for the SIMD technology during program execution and install the proper
DLLs at runtime. This is effective for programs that may be executed on different
machines.
4-1

CODING FOR SIMD ARCHITECTURES
3. Create a “fat” binary that includes multiple versions of routines; versions that use
SIMD technology and versions that do not. Check for SIMD technology during
program execution and run the appropriate versions of the routines. This is
especially effective for programs that may be executed on different machines.

4.1.1 Checking for MMX Technology Support
If MMX technology is available, then CPUID.01H:EDX[BIT 23] = 1. Use the code
segment in Example 4-1 to test for MMX technology.

For more information on CPUID see, Intel® Processor Identification with CPUID
Instruction, order number 241618.

4.1.2 Checking for Streaming SIMD Extensions Support
Checking for processor support of Streaming SIMD Extensions (SSE) on your
processor is similar to checking for MMX technology. However, operating system (OS)
must provide support for SSE states save and restore on context switches to ensure
consistent application behavior when using SSE instructions.

To check whether your system supports SSE, follow these steps:

1. Check that your processor supports the CPUID instruction.

2. Check the feature bits of CPUID for SSE existence.

Example 4-2 shows how to find the SSE feature bit (bit 25) in CPUID feature flags.

Example 4-1. Identification of MMX Technology with CPUID

…identify existence of cpuid instruction
… ;
… ; Identify signature is genuine Intel
… ;
mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test edx, 00800000h ; Is MMX technology bit (bit 23) in feature flags equal to 1
jnz Found

Example 4-2. Identification of SSE with CPUID

…Identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H cpuid instruction
test EDX, 002000000h ; Bit 25 in feature flags equal to 1
jnz Found
4-2

CODING FOR SIMD ARCHITECTURES
4.1.3 Checking for Streaming SIMD Extensions 2 Support
Checking for support of SSE2 is like checking for SSE support. The OS requirements
for SSE2 Support are the same as the OS requirements for SSE.

To check whether your system supports SSE2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSE2 technology existence.

Example 4-3 shows how to find the SSE2 feature bit (bit 26) in the CPUID feature
flags.

4.1.4 Checking for Streaming SIMD Extensions 3 Support
SSE3 includes 13 instructions, 11 of those are suited for SIMD or x87 style program-
ming. Checking for support of SSE3 instructions is similar to checking for SSE
support. The OS requirements for SSE3 Support are the same as the requirements
for SSE.

To check whether your system supports the x87 and SIMD instructions of SSE3,
follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the ECX feature bit 0 of CPUID for SSE3 technology existence.

Example 4-4 shows how to find the SSE3 feature bit (bit 0 of ECX) in the CPUID
feature flags.

Example 4-3. Identification of SSE2 with cpuid

…identify existence of cpuid instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test EDX, 004000000h ; Bit 26 in feature flags equal to 1
jnz Found

Example 4-4. Identification of SSE3 with CPUID

…identify existence of cpuid instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000000001h ; Bit 0 in feature flags equal to 1
jnz Found
4-3

CODING FOR SIMD ARCHITECTURES
Software must check for support of MONITOR and MWAIT before attempting to use
MONITOR and MWAIT.Detecting the availability of MONITOR and MWAIT can be done
using a code sequence similar to Example 4-4. The availability of MONITOR and
MWAIT is indicated by bit 3 of the returned value in ECX.

4.1.5 Checking for Supplemental Streaming SIMD Extensions 3
Support

Checking for support of SSSE3 is similar to checking for SSE support. The OS require-
ments for SSSE3 support are the same as the requirements for SSE.

To check whether your system supports SSSE3, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSSE3 technology existence.

Example 4-5 shows how to find the SSSE3 feature bit in the CPUID feature flags.

4.1.6 Checking for SSE4.1 Support
Checking for support of SSE4.1 is similar to checking for SSE support. The OS
requirements for SSE4.1 support are the same as the requirements for SSE.

To check whether your system supports SSE4.1, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSE4.1.

Example 4-6 shows how to find the SSE4.1 feature bit in the CPUID feature flags.

Example 4-5. Identification of SSSE3 with cpuid

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000000200h ; ECX bit 9
jnz Found

Example 4-6. Identification of SSE4.1 with cpuid

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000080000h ; ECX bit 19
jnz Found
4-4

CODING FOR SIMD ARCHITECTURES
4.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD
PROGRAMMING

The VTune Performance Enhancement Environment CD provides tools to aid in the
evaluation and tuning. Before implementing them, you need answers to the following
questions:

1. Will the current code benefit by using MMX technology, Streaming SIMD
Extensions, Streaming SIMD Extensions 2, Streaming SIMD Extensions 3, or
Supplemental Streaming SIMD Extensions 3?

2. Is this code integer or floating-point?

3. What integer word size or floating-point precision is needed?

4. What coding techniques should I use?

5. What guidelines do I need to follow?

6. How should I arrange and align the datatypes?

Figure 4-1 provides a flowchart for the process of converting code to MMX tech-
nology, SSE, SSE2, SSE3, or SSSE3.
4-5

CODING FOR SIMD ARCHITECTURES
Figure 4-1. Converting to Streaming SIMD Extensions Chart

OM15156

Code benefits
from SIMD

STOP

Identify Hot Spots in Code

Integer or
floating-point?

Yes

Floating Point

W hy FP?

Can convert
to Integer?

Range or
Precision

If possible, re-arrange data
for SIMD efficiency

Integer

Change to use
SIMD Integer

Yes

Change to use
Single Precision

Can convert to
Single-precision?

Yes

No

No

Align data structures

Convert to code to use
SIMD Technologies

Follow general coding
guidelines and SIMD

coding guidelines

Use memory optimizations
and prefetch if appropriate

Schedule instructions to
optimize performance

No

Performance
4-6

CODING FOR SIMD ARCHITECTURES
To use any of the SIMD technologies optimally, you must evaluate the following situ-
ations in your code:

• Fragments that are computationally intensive

• Fragments that are executed often enough to have an impact on performance

• Fragments that with little data-dependent control flow

• Fragments that require floating-point computations

• Fragments that can benefit from moving data 16 bytes at a time

• Fragments of computation that can coded using fewer instructions

• Fragments that require help in using the cache hierarchy efficiently

4.2.1 Identifying Hot Spots
To optimize performance, use the VTune Performance Analyzer to find sections of
code that occupy most of the computation time. Such sections are called the
hotspots. See Appendix A, “Application Performance Tools.”

The VTune analyzer provides a hotspots view of a specific module to help you identify
sections in your code that take the most CPU time and that have potential perfor-
mance problems. The hotspots view helps you identify sections in your code that take
the most CPU time and that have potential performance problems.

The VTune analyzer enables you to change the view to show hotspots by memory
location, functions, classes, or source files. You can double-click on a hotspot and
open the source or assembly view for the hotspot and see more detailed information
about the performance of each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all levels of your
source code and can also provide advice at the assembly language level. The code
coach analyzes and identifies opportunities for better performance of C/C++, Fortran
and Java* programs, and suggests specific optimizations. Where appropriate, the
coach displays pseudo-code to suggest the use of highly optimized intrinsics and
functions in the Intel® Performance Library Suite. Because VTune analyzer is
designed specifically for Intel architecture (IA)-based processors, including the
Pentium 4 processor, it can offer detailed approaches to working with IA. See
Appendix A.1.1, “Recommended Optimization Settings for Intel 64 and IA-32 Proces-
sors,” for details.

4.2.2 Determine If Code Benefits by Conversion to SIMD Execution
Identifying code that benefits by using SIMD technologies can be time-consuming
and difficult. Likely candidates for conversion are applications that are highly compu-
tation intensive, such as the following:

• Speech compression algorithms and filters

• Speech recognition algorithms
4-7

CODING FOR SIMD ARCHITECTURES
• Video display and capture routines

• Rendering routines

• 3D graphics (geometry)

• Image and video processing algorithms

• Spatial (3D) audio

• Physical modeling (graphics, CAD)

• Workstation applications

• Encryption algorithms

• Complex arithmetics

Generally, good candidate code is code that contains small-sized repetitive loops that
operate on sequential arrays of integers of 8, 16 or 32 bits, single-precision 32-bit
floating-point data, double precision 64-bit floating-point data (integer and floating-
point data items should be sequential in memory). The repetitiveness of these loops
incurs costly application processing time. However, these routines have potential for
increased performance when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you must evaluate
what should be done to determine whether the current algorithm or a modified one
will ensure the best performance.

4.3 CODING TECHNIQUES
The SIMD features of SSE3, SSE2, SSE, and MMX technology require new methods of
coding algorithms. One of them is vectorization. Vectorization is the process of trans-
forming sequentially-executing, or scalar, code into code that can execute in parallel,
taking advantage of the SIMD architecture parallelism. This section discusses the
coding techniques available for an application to make use of the SIMD architecture.

To vectorize your code and thus take advantage of the SIMD architecture, do the
following:

• Determine if the memory accesses have dependencies that would prevent
parallel execution.

• “Strip-mine” the inner loop to reduce the iteration count by the length of the
SIMD operations (for example, four for single-precision floating-point SIMD,
eight for 16-bit integer SIMD on the XMM registers).

• Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of this chapter.
These sections also discuss enabling automatic vectorization using the Intel C++
Compiler.
4-8

CODING FOR SIMD ARCHITECTURES
4.3.1 Coding Methodologies
Software developers need to compare the performance improvement that can be
obtained from assembly code versus the cost of those improvements. Programming
directly in assembly language for a target platform may produce the required perfor-
mance gain, however, assembly code is not portable between processor architec-
tures and is expensive to write and maintain.

Performance objectives can be met by taking advantage of the different SIMD tech-
nologies using high-level languages as well as assembly. The new C/C++ language
extensions designed specifically for SSSE3, SSE3, SSE2, SSE, and MMX technology
help make this possible.

Figure 4-2 illustrates the trade-offs involved in the performance of hand-coded
assembly versus the ease of programming and portability.

The examples that follow illustrate the use of coding adjustments to enable the algo-
rithm to benefit from the SSE. The same techniques may be used for single-precision
floating-point, double-precision floating-point, and integer data under SSSE3, SSE3,
SSE2, SSE, and MMX technology.

Figure 4-2. Hand-Coded Assembly and High-Level Compiler Performance Trade-offs

Pe
rf

or
m

an
ce

Ease of Programming/Portability

InstrinsicsAssembly

C/C++/Fortran

Automatic
Vectorization
4-9

CODING FOR SIMD ARCHITECTURES
As a basis for the usage model discussed in this section, consider a simple loop
shown in Example 4-7.

Note that the loop runs for only four iterations. This allows a simple replacement of
the code with Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data alignment on
the 16-byte boundary, all examples in this chapter assume that the arrays passed to
the routine, A, B, C, are aligned to 16-byte boundaries by a calling routine. For the
methods to ensure this alignment, please refer to the application notes for the
Pentium 4 processor.

The sections that follow provide details on the coding methodologies: inlined
assembly, intrinsics, C++ vector classes, and automatic vectorization.

4.3.1.1 Assembly
Key loops can be coded directly in assembly language using an assembler or by using
inlined assembly (C-asm) in C/C++ code. The Intel compiler or assembler recognize
the new instructions and registers, then directly generate the corresponding code.
This model offers the opportunity for attaining greatest performance, but this perfor-
mance is not portable across the different processor architectures.

Example 4-7. Simple Four-Iteration Loop

void add(float *a, float *b, float *c)

{

int i;

for (i = 0; i < 4; i++) {

 c[i] = a[i] + b[i];

 }

}

4-10

CODING FOR SIMD ARCHITECTURES
Example 4-8 shows the Streaming SIMD Extensions inlined assembly encoding.

4.3.1.2 Intrinsics
Intrinsics provide the access to the ISA functionality using C/C++ style coding
instead of assembly language. Intel has defined three sets of intrinsic functions that
are implemented in the Intel C++ Compiler to support the MMX technology,
Streaming SIMD Extensions and Streaming SIMD Extensions 2. Four new C data
types, representing 64-bit and 128-bit objects are used as the operands of these
intrinsic functions. __M64 is used for MMX integer SIMD, __M128 is used for single-
precision floating-point SIMD, __M128I is used for Streaming SIMD Extensions 2
integer SIMD, and __M128D is used for double precision floating-point SIMD. These
types enable the programmer to choose the implementation of an algorithm directly,
while allowing the compiler to perform register allocation and instruction scheduling
where possible. The intrinsics are portable among all Intel architecture-based
processors supported by a compiler.

The use of intrinsics allows you to obtain performance close to the levels achievable
with assembly. The cost of writing and maintaining programs with intrinsics is consid-
erably less. For a detailed description of the intrinsics and their use, refer to the
Intel C++ Compiler documentation.

Example 4-8. Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)
{
 __asm {
 mov eax, a
 mov edx, b
 mov ecx, c
 movaps xmm0, XMMWORD PTR [eax]
 addps xmm0, XMMWORD PTR [edx]
 movaps XMMWORD PTR [ecx], xmm0
 }
}

4-11

CODING FOR SIMD ARCHITECTURES
Example 4-9 shows the loop from Example 4-7 using intrinsics.

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly
code. The XMMINTRIN.H header file in which the prototypes for the intrinsics are
defined is part of the Intel C++ Compiler included with the VTune Performance
Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the
__m64 data type to represent the contents of an mm register. You can specify values
in bytes, short integers, 32-bit values, or as a 64-bit object.

The intrinsic data types, however, are not a basic ANSI C data type, and therefore
you must observe the following usage restrictions:

• Use intrinsic data types only on the left-hand side of an assignment as a return
value or as a parameter. You cannot use it with other arithmetic expressions (for
example, “+”, “>>”).

• Use intrinsic data type objects in aggregates, such as unions to access the byte
elements and structures; the address of an __M64 object may be also used.

• Use intrinsic data type data only with the MMX technology intrinsics described in
this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX
Technology Programmer’s Reference Manual. For a description of data types, see the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

4.3.1.3 Classes
A set of C++ classes has been defined and available in Intel C++ Compiler to provide
both a higher-level abstraction and more flexibility for programming with MMX tech-
nology, Streaming SIMD Extensions and Streaming SIMD Extensions 2. These
classes provide an easy-to-use and flexible interface to the intrinsic functions,
allowing developers to write more natural C++ code without worrying about which
intrinsic or assembly language instruction to use for a given operation. Since the
intrinsic functions underlie the implementation of these C++ classes, the perfor-

Example 4-9. Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>
void add(float *a, float *b, float *c)
{

__m128 t0, t1;
 t0 = _mm_load_ps(a);
 t1 = _mm_load_ps(b);
 t0 = _mm_add_ps(t0, t1);
 _mm_store_ps(c, t0);
}

4-12

CODING FOR SIMD ARCHITECTURES
mance of applications using this methodology can approach that of one using the
intrinsics. Further details on the use of these classes can be found in the Intel C++
Class Libraries for SIMD Operations User’s Guide, order number 693500.

Example 4-10 shows the C++ code using a vector class library. The example
assumes the arrays passed to the routine are already aligned to 16-byte boundaries.

Here, fvec.h is the class definition file and F32vec4 is the class representing an array
of four floats. The “+” and “=” operators are overloaded so that the actual Streaming
SIMD Extensions implementation in the previous example is abstracted out, or
hidden, from the developer. Note how much more this resembles the original code,
allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are already
aligned to 16-byte boundary.

4.3.1.4 Automatic Vectorization
The Intel C++ Compiler provides an optimization mechanism by which loops, such as
in Example 4-7 can be automatically vectorized, or converted into Streaming SIMD
Extensions code. The compiler uses similar techniques to those used by a
programmer to identify whether a loop is suitable for conversion to SIMD. This
involves determining whether the following might prevent vectorization:

• The layout of the loop and the data structures used

• Dependencies amongst the data accesses in each iteration and across iterations

Once the compiler has made such a determination, it can generate vectorized code
for the loop, allowing the application to use the SIMD instructions.

The caveat to this is that only certain types of loops can be automatically vectorized,
and in most cases user interaction with the compiler is needed to fully enable this.

Example 4-10. C++ Code Using the Vector Classes

#include <fvec.h>
void add(float *a, float *b, float *c)
{

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *bv;

}

4-13

CODING FOR SIMD ARCHITECTURES
Example 4-11 shows the code for automatic vectorization for the simple four-itera-
tion loop (from Example 4-7).

Compile this code using the -QAX and -QRESTRICT switches of the Intel C++
Compiler, version 4.0 or later.

The RESTRICT qualifier in the argument list is necessary to let the compiler know that
there are no other aliases to the memory to which the pointers point. In other words,
the pointer for which it is used, provides the only means of accessing the memory in
question in the scope in which the pointers live. Without the restrict qualifier, the
compiler will still vectorize this loop using runtime data dependence testing, where
the generated code dynamically selects between sequential or vector execution of
the loop, based on overlap of the parameters (See documentation for the Intel C++
Compiler). The restrict keyword avoids the associated overhead altogether.

See Intel C++ Compiler documentation for details.

4.4 STACK AND DATA ALIGNMENT
To get the most performance out of code written for SIMD technologies data should
be formatted in memory according to the guidelines described in this section.
Assembly code with an unaligned accesses is a lot slower than an aligned access.

4.4.1 Alignment and Contiguity of Data Access Patterns
The 64-bit packed data types defined by MMX technology, and the 128-bit packed
data types for Streaming SIMD Extensions and Streaming SIMD Extensions 2 create
more potential for misaligned data accesses. The data access patterns of many algo-
rithms are inherently misaligned when using MMX technology and Streaming SIMD
Extensions. Several techniques for improving data access, such as padding, orga-
nizing data elements into arrays, etc. are described below. SSE3 provides a special-

Example 4-11. Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)

{

int i;

for (i = 0; i < 4; i++) {

c[i] = a[i] + b[i];

}

}

4-14

CODING FOR SIMD ARCHITECTURES
purpose instruction LDDQU that can avoid cache line splits is discussed in
Section 5.7.1.1, “Supplemental Techniques for Avoiding Cache Line Splits.”

4.4.1.1 Using Padding to Align Data
However, when accessing SIMD data using SIMD operations, access to data can be
improved simply by a change in the declaration. For example, consider a declaration
of a structure, which represents a point in space plus an attribute.

typedef struct {short x,y,z; char a} Point;
Point pt[N];

Assume we will be performing a number of computations on X, Y, Z in three of the
four elements of a SIMD word; see Section 4.5.1, “Data Structure Layout,” for an
example. Even if the first element in array PT is aligned, the second element will start
7 bytes later and not be aligned (3 shorts at two bytes each plus a single byte = 7
bytes).

By adding the padding variable PAD, the structure is now 8 bytes, and if the first
element is aligned to 8 bytes (64 bits), all following elements will also be aligned. The
sample declaration follows:

typedef struct {short x,y,z; char a; char pad;} Point;
Point pt[N];

4.4.1.2 Using Arrays to Make Data Contiguous
In the following code,

for (i=0; i<N; i++) pt[i].y *= scale;

the second dimension Y needs to be multiplied by a scaling value. Here, the FOR loop
accesses each Y dimension in the array PT thus disallowing the access to contiguous
data. This can degrade the performance of the application by increasing cache
misses, by poor utilization of each cache line that is fetched, and by increasing the
chance for accesses which span multiple cache lines.

The following declaration allows you to vectorize the scaling operation and further
improve the alignment of the data access patterns:

short ptx[N], pty[N], ptz[N];
for (i=0; i<N; i++) pty[i] *= scale;

With the SIMD technology, choice of data organization becomes more important and
should be made carefully based on the operations that will be performed on the data.
In some applications, traditional data arrangements may not lead to the maximum
performance.

A simple example of this is an FIR filter. An FIR filter is effectively a vector dot product
in the length of the number of coefficient taps.

Consider the following code:

(data [j] *coeff [0] + data [j+1]*coeff [1]+...+data [j+num of taps-1]*coeff [num of taps-1]),
4-15

CODING FOR SIMD ARCHITECTURES
If in the code above the filter operation of data element I is the vector dot product
that begins at data element J, then the filter operation of data element I+1 begins at
data element J+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned coefficients
vector, the filter operation on the first data element will be fully aligned. For the
second data element, however, access to the data vector will be misaligned. For an
example of how to avoid the misalignment problem in the FIR filter, refer to Intel
application notes on Streaming SIMD Extensions and filters.

Duplication and padding of data structures can be used to avoid the problem of data
accesses in algorithms which are inherently misaligned. Section 4.5.1, “Data Struc-
ture Layout,” discusses trade-offs for organizing data structures.

NOTE
The duplication and padding technique overcomes the misalignment
problem, thus avoiding the expensive penalty for misaligned data
access, at the cost of increasing the data size. When developing your
code, you should consider this tradeoff and use the option which
gives the best performance.

4.4.2 Stack Alignment For 128-bit SIMD Technologies
For best performance, the Streaming SIMD Extensions and Streaming SIMD Exten-
sions 2 require their memory operands to be aligned to 16-byte boundaries.
Unaligned data can cause significant performance penalties compared to aligned
data. However, the existing software conventions for IA-32 (STDCALL, CDECL, FAST-
CALL) as implemented in most compilers, do not provide any mechanism for
ensuring that certain local data and certain parameters are 16-byte aligned. There-
fore, Intel has defined a new set of IA-32 software conventions for alignment to
support the new __M128* datatypes (__M128, __M128D, and __M218I). These
meet the following conditions:

• Functions that use Streaming SIMD Extensions or Streaming SIMD Extensions 2
data need to provide a 16-byte aligned stack frame.

• __M128* parameters need to be aligned to 16-byte boundaries, possibly creating
“holes” (due to padding) in the argument block.

The new conventions presented in this section as implemented by the Intel C++
Compiler can be used as a guideline for an assembly language code as well. In many
cases, this section assumes the use of the __M128* data types, as defined by the Intel
C++ Compiler, which represents an array of four 32-bit floats.

For more details on the stack alignment for Streaming SIMD Extensions and SSE2,
see Appendix D, “Stack Alignment.”
4-16

CODING FOR SIMD ARCHITECTURES
4.4.3 Data Alignment for MMX Technology
Many compilers enable alignment of variables using controls. This aligns variable bit
lengths to the appropriate boundaries. If some of the variables are not appropriately
aligned as specified, you can align them using the C algorithm in Example 4-12.

The algorithm in Example 4-12 aligns an array of 64-bit elements on a 64-bit
boundary. The constant of 7 is derived from one less than the number of bytes in a
64-bit element, or 8-1. Aligning data in this manner avoids the significant perfor-
mance penalties that can occur when an access crosses a cache line boundary.

Another way to improve data alignment is to copy the data into locations that are
aligned on 64-bit boundaries. When the data is accessed frequently, this can provide
a significant performance improvement.

4.4.4 Data Alignment for 128-bit data
Data must be 16-byte aligned when loading to and storing from the 128-bit XMM
registers used by SSE/SSE2/SSE3/SSSE3. This must be done to avoid severe perfor-
mance penalties and, at worst, execution faults.

There are MOVE instructions (and intrinsics) that allow unaligned data to be copied to
and out of XMM registers when not using aligned data, but such operations are much
slower than aligned accesses. If data is not 16-byte-aligned and the programmer or
the compiler does not detect this and uses the aligned instructions, a fault occurs. So
keep data 16-byte-aligned. Such alignment also works for MMX technology code,
even though MMX technology only requires 8-byte alignment.

The following describes alignment techniques for Pentium 4 processor as imple-
mented with the Intel C++ Compiler.

4.4.4.1 Compiler-Supported Alignment
The Intel C++ Compiler provides the following methods to ensure that the data is
aligned.

Alignment by F32vec4 or __m128 Data Types

When the compiler detects F32VEC4 or __M128 data declarations or parameters, it
forces alignment of the object to a 16-byte boundary for both global and local data,
as well as parameters. If the declaration is within a function, the compiler also aligns

Example 4-12. C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array of NUM_ELEMENTS 64-bit elements. */
double *p, *newp;
p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));
newp = (p+7) & (~0x7);
4-17

CODING FOR SIMD ARCHITECTURES
the function's stack frame to ensure that local data and parameters are 16-byte-
aligned. For details on the stack frame layout that the compiler generates for both
debug and optimized (“release”-mode) compilations, refer to Intel’s compiler docu-
mentation.

__declspec(align(16)) specifications

These can be placed before data declarations to force 16-byte alignment. This is
useful for local or global data declarations that are assigned to 128-bit data types.
The syntax for it is

__declspec(align(integer-constant))

where the INTEGER-CONSTANT is an integral power of two but no greater than 32.
For example, the following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];

The variable BUFFER could then be used as if it contained 100 objects of type __M128
or F32VEC4. In the code below, the construction of the F32VEC4 object, X, will occur
with aligned data.

void foo() {
F32vec4 x = *(__m128 *) buffer;
...

}

Without the declaration of __DECLSPEC(ALIGN(16)), a fault may occur.

Alignment by Using a UNION Structure

When feasible, a UNION can be used with 128-bit data types to allow the compiler to
align the data structure by default. This is preferred to forcing alignment with
__DECLSPEC(ALIGN(16)) because it exposes the true program intent to the compiler
in that __M128 data is being used. For example:

union {
 float f[400];
 __m128 m[100];

} buffer;

Now, 16-byte alignment is used by default due to the __M128 type in the UNION; it
is not necessary to use __DECLSPEC(ALIGN(16)) to force the result.

In C++ (but not in C) it is also possible to force the alignment of a
CLASS/STRUCT/UNION type, as in the code that follows:

struct __declspec(align(16)) my_m128
{

 float f[4];
};
4-18

CODING FOR SIMD ARCHITECTURES
If the data in such a CLASS is going to be used with the Streaming SIMD Extensions
or Streaming SIMD Extensions 2, it is preferable to use a UNION to make this explicit.
In C++, an anonymous UNION can be used to make this more convenient:

class my_m128 {
 union {
 __m128 m;
 float f[4];
 };

};

Because the UNION is anonymous, the names, M and F, can be used as immediate
member names of MY__M128. Note that __DECLSPEC(ALIGN) has no effect when
applied to a CLASS, STRUCT, or UNION member in either C or C++.

Alignment by Using __m64 or DOUBLE Data

In some cases, the compiler aligns routines with __M64 or DOUBLE data to 16-bytes
by default. The command-line switch, -QSFALIGN16, limits the compiler so that it
only performs this alignment on routines that contain 128-bit data. The default
behavior is to use -QSFALIGN8. This switch instructs the complier to align routines
with 8- or 16-byte data types to 16 bytes.

For more, see the Intel C++ Compiler documentation.

4.5 IMPROVING MEMORY UTILIZATION
Memory performance can be improved by rearranging data and algorithms for SSE,
SSE2, and MMX technology intrinsics. Methods for improving memory performance
involve working with the following:

• Data structure layout

• Strip-mining for vectorization and memory utilization

• Loop-blocking

Using the cacheability instructions, prefetch and streaming store, also greatly
enhance memory utilization. See also: Chapter 7, “Optimizing Cache Usage.”

4.5.1 Data Structure Layout
For certain algorithms, like 3D transformations and lighting, there are two basic ways
to arrange vertex data. The traditional method is the array of structures (AoS)
arrangement, with a structure for each vertex (Example 4-13). However this method
does not take full advantage of SIMD technology capabilities.
4-19

CODING FOR SIMD ARCHITECTURES
The best processing method for code using SIMD technology is to arrange the data in
an array for each coordinate (Example 4-14). This data arrangement is called struc-
ture of arrays (SoA).

There are two options for computing data in AoS format: perform operation on the
data as it stands in AoS format, or re-arrange it (swizzle it) into SoA format dynami-
cally. See Example 4-15 for code samples of each option based on a dot-product
computation.

Example 4-13. AoS Data Structure

typedef struct{
float x,y,z;
int a,b,c;
. . .

} Vertex;
Vertex Vertices[NumOfVertices];

Example 4-14. SoA Data Structure

typedef struct{
float x[NumOfVertices];
float y[NumOfVertices];
float z[NumOfVertices];
int a[NumOfVertices];
int b[NumOfVertices];
int c[NumOfVertices];
. . .

} VerticesList;
VerticesList Vertices;

Example 4-15. AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a fixed vector (Fixed) is a
; common operation in 3D lighting operations, where Array = (x0,y0,z0),(x1,y1,z1),...
; and Fixed = (xF,yF,zF)
; A dot product is defined as the scalar quantity d0 = x0*xF + y0*yF + z0*zF.

;
; AoS code
; All values marked DC are “don’t-care.”
4-20

CODING FOR SIMD ARCHITECTURES
Performing SIMD operations on the original AoS format can require more calculations
and some operations do not take advantage of all SIMD elements available. There-
fore, this option is generally less efficient.

The recommended way for computing data in AoS format is to swizzle each set of
elements to SoA format before processing it using SIMD technologies. Swizzling can
either be done dynamically during program execution or statically when the data
structures are generated. See Chapter 5 and Chapter 6 for examples. Performing the
swizzle dynamically is usually better than using AoS, but can be somewhat inefficient
because there are extra instructions during computation. Performing the swizzle
statically, when data structures are being laid out, is best as there is no runtime over-
head.

As mentioned earlier, the SoA arrangement allows more efficient use of the paral-
lelism of SIMD technologies because the data is ready for computation in a more
optimal vertical manner: multiplying components X0,X1,X2,X3 by XF,XF,XF,XF using

; In the AOS model, the vertices are stored in the xyz format
movaps xmm0, Array ; xmm0 = DC, x0, y0, z0
movaps xmm1, Fixed ; xmm1 = DC, xF, yF, zF
mulps xmm0, xmm1 ; xmm0 = DC, x0*xF, y0*yF, z0*zF
movhlps xmm, xmm0 ; xmm = DC, DC, DC, x0*xF

addps xmm1, xmm0 ; xmm0 = DC, DC, DC,
 ; x0*xF+z0*zFmovaps xmm2, xmm1
shufps xmm2, xmm2,55h ; xmm2 = DC, DC, DC, y0*yF
addps xmm2, xmm1 ; xmm1 = DC, DC, DC,

; x0*xF+y0*yF+z0*zF

; SoA code
; X = x0,x1,x2,x3
; Y = y0,y1,y2,y3
; Z = z0,z1,z2,z3
; A = xF,xF,xF,xF
; B = yF,yF,yF,yF
; C = zF,zF,zF,zF

movaps xmm0, X ; xmm0 = x0,x1,x2,x3
movaps xmm1, Y ; xmm0 = y0,y1,y2,y3
movaps xmm2, Z ; xmm0 = z0,z1,z2,z3
mulps xmm0, A ; xmm0 = x0*xF, x1*xF, x2*xF, x3*xF
mulps xmm1, B ; xmm1 = y0*yF, y1*yF, y2*yF, y3*xF
mulps xmm2, C ; xmm2 = z0*zF, z1*zF, z2*zF, z3*zF
addps xmm0, xmm1
addps xmm0, xmm2 ; xmm0 = (x0*xF+y0*yF+z0*zF), ...

Example 4-15. AoS and SoA Code Samples (Contd.)
4-21

CODING FOR SIMD ARCHITECTURES
4 SIMD execution slots to produce 4 unique results. In contrast, computing directly
on AoS data can lead to horizontal operations that consume SIMD execution slots but
produce only a single scalar result (as shown by the many “don’t-care” (DC) slots in
Example 4-15).

Use of the SoA format for data structures can lead to more efficient use of caches and
bandwidth. When the elements of the structure are not accessed with equal
frequency, such as when element x, y, z are accessed ten times more often than the
other entries, then SoA saves memory and prevents fetching unnecessary data items
a, b, and c.

Note that SoA can have the disadvantage of requiring more independent memory
stream references. A computation that uses arrays X, Y, and Z (see Example 4-14)
would require three separate data streams. This can require the use of more
prefetches, additional address generation calculations, as well as having a greater
impact on DRAM page access efficiency.

There is an alternative: a hybrid SoA approach blends the two alternatives (see
Example 4-16). In this case, only 2 separate address streams are generated and
referenced: one contains XXXX, YYYY ,ZZZZ, ZZZZ,... and the other AAAA, BBBB,
CCCC, AAAA, DDDD,... . The approach prevents fetching unnecessary data,
assuming the variables X, Y, Z are always used together; whereas the variables A, B,
C would also be used together, but not at the same time as X, Y, Z.

The hybrid SoA approach ensures:

• Data is organized to enable more efficient vertical SIMD computation

• Simpler/less address generation than AoS

• Fewer streams, which reduces DRAM page misses

Example 4-16. Hybrid SoA Data Structure

NumOfGroups = NumOfVertices/SIMDwidth
typedef struct{

float x[SIMDwidth];
float y[SIMDwidth];
float z[SIMDwidth];

} VerticesCoordList;
typedef struct{

int a[SIMDwidth];
int b[SIMDwidth];
int c[SIMDwidth];
. . .

} VerticesColorList;
VerticesCoordList VerticesCoord[NumOfGroups];
VerticesColorList VerticesColor[NumOfGroups];
4-22

CODING FOR SIMD ARCHITECTURES
• Use of fewer prefetches, due to fewer streams

• Efficient cache line packing of data elements that are used concurrently.

With the advent of the SIMD technologies, the choice of data organization becomes
more important and should be carefully based on the operations to be performed on
the data. This will become increasingly important in the Pentium 4 processor and
future processors. In some applications, traditional data arrangements may not lead
to the maximum performance. Application developers are encouraged to explore
different data arrangements and data segmentation policies for efficient computa-
tion. This may mean using a combination of AoS, SoA, and Hybrid SoA in a given
application.

4.5.2 Strip-Mining
Strip-mining, also known as loop sectioning, is a loop transformation technique for
enabling SIMD-encodings of loops, as well as providing a means of improving
memory performance. First introduced for vectorizers, this technique consists of the
generation of code when each vector operation is done for a size less than or equal to
the maximum vector length on a given vector machine. By fragmenting a large loop
into smaller segments or strips, this technique transforms the loop structure by:

• Increasing the temporal and spatial locality in the data cache if the data are
reusable in different passes of an algorithm.

• Reducing the number of iterations of the loop by a factor of the length of each
“vector,” or number of operations being performed per SIMD operation. In the
case of Streaming SIMD Extensions, this vector or strip-length is reduced by 4
times: four floating-point data items per single Streaming SIMD Extensions
single-precision floating-point SIMD operation are processed. Consider
Example 4-17.

Example 4-17. Pseudo-code Before Strip Mining

typedef struct _VERTEX {
float x, y, z, nx, ny, nz, u, v;

 } Vertex_rec;

main()
 {

Vertex_rec v[Num];
....
for (i=0; i<Num; i++) {
 Transform(v[i]);
}

4-23

CODING FOR SIMD ARCHITECTURES
The main loop consists of two functions: transformation and lighting. For each object,
the main loop calls a transformation routine to update some data, then calls the
lighting routine to further work on the data. If the size of array V[NUM] is larger than
the cache, then the coordinates for V[I] that were cached during TRANSFORM(V[I])
will be evicted from the cache by the time we do LIGHTING(V[I]). This means that
V[I] will have to be fetched from main memory a second time, reducing performance.

In Example 4-18, the computation has been strip-mined to a size STRIP_SIZE. The
value STRIP_SIZE is chosen such that STRIP_SIZE elements of array V[NUM] fit into
the cache hierarchy. By doing this, a given element V[I] brought into the cache by
TRANSFORM(V[I]) will still be in the cache when we perform LIGHTING(V[I]), and
thus improve performance over the non-strip-mined code.

4.5.3 Loop Blocking
Loop blocking is another useful technique for memory performance optimization. The
main purpose of loop blocking is also to eliminate as many cache misses as possible.
This technique transforms the memory domain of a given problem into smaller
chunks rather than sequentially traversing through the entire memory domain. Each
chunk should be small enough to fit all the data for a given computation into the
cache, thereby maximizing data reuse. In fact, one can treat loop blocking as strip
mining in two or more dimensions. Consider the code in Example 4-17 and access

for (i=0; i<Num; i++) {
 Lighting(v[i]);
}
....

 }

Example 4-18. Strip Mined Code

MAIN()
{

Vertex_rec v[Num];
....
for (i=0; i < Num; i+=strip_size) {
 FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {

 TRANSFORM(V[J]);
 }
 FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {

 LIGHTING(V[J]);
 }
}

}

Example 4-17. Pseudo-code Before Strip Mining (Contd.)
4-24

CODING FOR SIMD ARCHITECTURES
pattern in Figure 4-3. The two-dimensional array A is referenced in the J (column)
direction and then referenced in the I (row) direction (column-major order); whereas
array B is referenced in the opposite manner (row-major order). Assume the
memory layout is in column-major order; therefore, the access strides of array A and
B for the code in Example 4-19 would be 1 and MAX, respectively.

For the first iteration of the inner loop, each access to array B will generate a cache
miss. If the size of one row of array A, that is, A[2, 0:MAX-1], is large enough, by the
time the second iteration starts, each access to array B will always generate a cache
miss. For instance, on the first iteration, the cache line containing B[0, 0:7] will be
brought in when B[0,0] is referenced because the float type variable is four bytes and
each cache line is 32 bytes. Due to the limitation of cache capacity, this line will be
evicted due to conflict misses before the inner loop reaches the end. For the next
iteration of the outer loop, another cache miss will be generated while referencing
B[0, 1]. In this manner, a cache miss occurs when each element of array B is refer-
enced, that is, there is no data reuse in the cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the cache size. In
Figure 4-3, a BLOCK_SIZE is selected as the loop blocking factor. Suppose that
BLOCK_SIZE is 8, then the blocked chunk of each array will be eight cache lines
(32 bytes each). In the first iteration of the inner loop, A[0, 0:7] and B[0, 0:7] will be
brought into the cache. B[0, 0:7] will be completely consumed by the first iteration of
the outer loop. Consequently, B[0, 0:7] will only experience one cache miss after
applying loop blocking optimization in lieu of eight misses for the original algorithm.
As illustrated in Figure 4-3, arrays A and B are blocked into smaller rectangular

Example 4-19. Loop Blocking

A. Original Loop
float A[MAX, MAX], B[MAX, MAX]
for (i=0; i< MAX; i++) {

for (j=0; j< MAX; j++) {
A[i,j] = A[i,j] + B[j, i];

}
}

B. Transformed Loop after Blocking
float A[MAX, MAX], B[MAX, MAX];
for (i=0; i< MAX; i+=block_size) {

for (j=0; j< MAX; j+=block_size) {
for (ii=i; ii<i+block_size; ii++) {

for (jj=j; jj<j+block_size; jj++) {
A[ii,jj] = A[ii,jj] + B[jj, ii];

}
}

}
}

4-25

CODING FOR SIMD ARCHITECTURES
chunks so that the total size of two blocked A and B chunks is smaller than the cache
size. This allows maximum data reuse.

As one can see, all the redundant cache misses can be eliminated by applying this
loop blocking technique. If MAX is huge, loop blocking can also help reduce the
penalty from DTLB (data translation look-aside buffer) misses. In addition to
improving the cache/memory performance, this optimization technique also saves
external bus bandwidth.

4.6 INSTRUCTION SELECTION
The following section gives some guidelines for choosing instructions to complete a
task.

One barrier to SIMD computation can be the existence of data-dependent branches.
Conditional moves can be used to eliminate data-dependent branches. Conditional

Figure 4-3. Loop Blocking Access Pattern

OM15158

A (i, j) access pattern
j

i

A(i, j) access pattern
after blocking

B(i, j) access pattern
after blocking

+

< cache size

Blocking
4-26

CODING FOR SIMD ARCHITECTURES
moves can be emulated in SIMD computation by using masked compares and logi-
cals, as shown in Example 4-20. SSE4.1 provides packed blend instruction that can
vectorize data-dependent branches in a loop.

Example 4-20. Emulation of Conditional Moves

High-level code:
__declspec(align(16)) short A[MAX_ELEMENT], B[MAX_ELEMENT], C[MAX_ELEMENT],
D[MAX_ELEMENT], E[MAX_ELEMENT];

for (i=0; i<MAX_ELEMENT; i++) {
if (A[i] > B[i]) {

C[i] = D[i];
} else {

C[i] = E[i];
}

}
MMX assembly code processes 4 short values per iteration:

xor eax, eax

top_of_loop:
movq mm0, [A + eax]
pcmpgtwxmm0, [B + eax]; Create compare mask
movq mm1, [D + eax]
pand mm1, mm0; Drop elements where A<B
pandn mm0, [E + eax] ; Drop elements where A>B

por mm0, mm1; Crete single word
movq [C + eax], mm0
add eax, 8
cmp eax, MAX_ELEMENT*2
jle top_of_loop

SSE4.1 assembly processes 8 short values per iteration:
xor eax, eax

top_of_loop:
movdqq xmm0, [A + eax]
pcmpgtwxmm0, [B + eax]; Create compare mask
movdqa xmm1, [E + eax]
pblendv xmm1, [D + eax], xmm0;
movdqa [C + eax], xmm1;
add eax, 16
cmp eax, MAX_ELEMENT*2
jle top_of_loop
4-27

CODING FOR SIMD ARCHITECTURES
If there are multiple consumers of an instance of a register, group the consumers
together as closely as possible. However, the consumers should not be scheduled
near the producer.

4.6.1 SIMD Optimizations and Microarchitectures
Pentium M, Intel Core Solo and Intel Core Duo processors have a different microar-
chitecture than Intel NetBurst microarchitecture. The following sub-section discusses
optimizing SIMD code targeting Intel Core Solo and Intel Core Duo processors.

The register-register variant of the following instructions has improved performance
on Intel Core Solo and Intel Core Duo processor relative to Pentium M processors.
This is because the instructions consist of two micro-ops instead of three. Relevant
instructions are: unpcklps, unpckhps, packsswb, packuswb, packssdw, pshufd,
shuffps and shuffpd.

Recommendation: When targeting code generation for Intel Core Solo and Intel
Core Duo processors, favor instructions consisting of two μops over those with more
than two μops.

Intel Core microarchitecture generally executes SIMD instructions more efficiently
than previous microarchitectures in terms of latency and throughput, most 128-bit
SIMD operations have 1 cycle throughput (except shuffle, pack, unpack operations).
Many of the restrictions specific to Intel Core Duo, Intel Core Solo processors (such
as 128-bit SIMD operations having 2 cycle throughput at a minimum) do not apply to
Intel Core microarchitecture. The same is true of Intel Core microarchitecture rela-
tive to Intel NetBurst microarchitectures.

Enhanced Intel Core microarchitecture provides dedicated 128-bit shuffler and radix-
16 divider hardware. These capabilities and SSE4.1 instructions will make vectoriza-
tion using 128-bit SIMD instructions even more efficient and effective.

Recommendation: With the proliferation of 128-bit SIMD hardware in Intel Core
microarchitecture and Enhanced Intel Core microarchitecture, integer SIMD code
written using MMX instructions should consider more efficient implementations using
128-bit SIMD instructions.

4.7 TUNING THE FINAL APPLICATION
The best way to tune your application once it is functioning correctly is to use a
profiler that measures the application while it is running on a system. VTune analyzer
can help you determine where to make changes in your application to improve
performance. Using the VTune analyzer can help you with various phases required for
optimized performance. See Appendix A.2, “Intel® VTune™ Performance Analyzer,”
for details. After every effort to optimize, you should check the performance gains to
see where you are making your major optimization gains.
4-28

CHAPTER 5
OPTIMIZING FOR SIMD INTEGER APPLICATIONS

SIMD integer instructions provide performance improvements in applications that
are integer-intensive and can take advantage of SIMD architecture.

Guidelines in this chapter for using SIMD integer instructions (in addition to those
described in Chapter 3) may be used to develop fast and efficient code that scales
across processor generations.

The collection of 64-bit and 128-bit SIMD integer instructions supported by MMX
technology, SSE, SSE2, SSE3, SSSE3, SSE4.1, and PCMPEQQ in SSE4.2 are referred
to as SIMD integer instructions.

Code sequences in this chapter demonstrates the use of basic 64-bit SIMD integer
instructions and more efficient 128-bit SIMD integer instructions.

Processors based on Intel Core microarchitecture support MMX, SSE, SSE2, SSE3,
and SSSE3. Processors based on Enhanced Intel Core microarchitecture support
SSE4.1 and all previous generations of SIMD integer instructions. Processors based
on Intel microarchitecture (Nehalem) supports MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1 and SSE4.2.

Single-instruction, multiple-data techniques can be applied to text/string processing,
lexing and parser applications. SIMD programming in string/text processing and
lexing applications often require sophisticated techniques beyond those commonly
used in SIMD integer programming. This is covered in Chapter 10, “SSE4.2 and SIMD
Programming For Text-Processing/LexING/Parsing”

Execution of 128-bit SIMD integer instructions in Intel Core microarchitecture and
Enhanced Intel Core microarchitecture are substantially more efficient than on
previous microarchitectures. Thus newer SIMD capabilities introduced in SSE4.1
operate on 128-bit operands and do not introduce equivalent 64-bit SIMD capabili-
ties. Conversion from 64-bit SIMD integer code to 128-bit SIMD integer code is
highly recommended.

This chapter contains examples that will help you to get started with coding your
application. The goal is to provide simple, low-level operations that are frequently
used. The examples use a minimum number of instructions necessary to achieve
best performance on the current generation of Intel 64 and IA-32 processors.

Each example includes a short description, sample code, and notes if necessary.
These examples do not address scheduling as it is assumed the examples will be
incorporated in longer code sequences.

For planning considerations of using the SIMD integer instructions, refer to Section
4.1.3.
 5-1

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.1 GENERAL RULES ON SIMD INTEGER CODE
General rules and suggestions are:

• Do not intermix 64-bit SIMD integer instructions with x87 floating-point instruc-
tions. See Section 5.2, “Using SIMD Integer with x87 Floating-point.” Note that
all SIMD integer instructions can be intermixed without penalty.

• Favor 128-bit SIMD integer code over 64-bit SIMD integer code. On microarchi-
tectures prior to Intel Core microarchitecture, most 128-bit SIMD instructions
have two-cycle throughput restrictions due to the underlying 64-bit data path in
the execution engine. Intel Core microarchitecture executes most SIMD instruc-
tions (except shuffle, pack, unpack operations) with one-cycle throughput and
provides three ports to execute multiple SIMD instructions in parallel. Enhanced
Intel Core microarchitecture speeds up 128-bit shuffle, pack, unpack operations
with 1 cycle throughput.

• When writing SIMD code that works for both integer and floating-point data, use
the subset of SIMD convert instructions or load/store instructions to ensure that
the input operands in XMM registers contain data types that are properly defined
to match the instruction.

Code sequences containing cross-typed usage produce the same result across
different implementations but incur a significant performance penalty. Using
SSE/SSE2/SSE3/SSSE3/SSE44.1 instructions to operate on type-mismatched
SIMD data in the XMM register is strongly discouraged.

• Use the optimization rules and guidelines described in Chapter 3 and Chapter 4.

• Take advantage of hardware prefetcher where possible. Use the PREFETCH
instruction only when data access patterns are irregular and prefetch distance
can be pre-determined. See Chapter 7, “Optimizing Cache Usage.”

• Emulate conditional moves by using blend, masked compares and logicals
instead of using conditional branches.

5.2 USING SIMD INTEGER WITH X87 FLOATING-POINT
All 64-bit SIMD integer instructions use MMX registers, which share register state
with the x87 floating-point stack. Because of this sharing, certain rules and consider-
ations apply. Instructions using MMX registers cannot be freely intermixed with x87
floating-point registers. Take care when switching between 64-bit SIMD integer
instructions and x87 floating-point instructions to ensure functional correctness. See
Section 5.2.1.

Both Section 5.2.1 and Section 5.2.2 apply only to software that employs MMX
instructions. As noted before, 128-bit SIMD integer instructions should be favored to
replace MMX code and achieve higher performance. That also obviates the need to
use EMMS, and the performance penalty of using EMMS when intermixing MMX and
X87 instructions.
5-2

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
For performance considerations, there is no penalty of intermixing SIMD floating-
point operations and 128-bit SIMD integer operations and x87 floating-point opera-
tions.

5.2.1 Using the EMMS Instruction
When generating 64-bit SIMD integer code, keep in mind that the eight MMX regis-
ters are aliased to x87 floating-point registers. Switching from MMX instructions to
x87 floating-point instructions incurs a finite delay, so it is the best to minimize
switching between these instruction types. But when switching, the EMMS instruction
provides an efficient means to clear the x87 stack so that subsequent x87 code can
operate properly.

As soon as an instruction makes reference to an MMX register, all valid bits in the x87
floating-point tag word are set, which implies that all x87 registers contain valid
values. In order for software to operate correctly, the x87 floating-point stack should
be emptied when starting a series of x87 floating-point calculations after operating
on the MMX registers.

Using EMMS clears all valid bits, effectively emptying the x87 floating-point stack and
making it ready for new x87 floating-point operations. The EMMS instruction ensures
a clean transition between using operations on the MMX registers and using opera-
tions on the x87 floating-point stack. On the Pentium 4 processor, there is a finite
overhead for using the EMMS instruction.

Failure to use the EMMS instruction (or the _MM_EMPTY() intrinsic) between opera-
tions on the MMX registers and x87 floating-point registers may lead to unexpected
results.

NOTE
Failure to reset the tag word for FP instructions after using an MMX
instruction can result in faulty execution or poor performance.

5.2.2 Guidelines for Using EMMS Instruction
When developing code with both x87 floating-point and 64-bit SIMD integer instruc-
tions, follow these steps:

1. Always call the EMMS instruction at the end of 64-bit SIMD integer code when the
code transitions to x87 floating-point code.

2. Insert the EMMS instruction at the end of all 64-bit SIMD integer code segments
to avoid an x87 floating-point stack overflow exception when an x87 floating-
point instruction is executed.

When writing an application that uses both floating-point and 64-bit SIMD integer
instructions, use the following guidelines to help you determine when to use EMMS:
 5-3

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
• If next instruction is x87 FP — Use _MM_EMPTY() after a 64-bit SIMD integer
instruction if the next instruction is an X87 FP instruction; for example, before
doing calculations on floats, doubles or long doubles.

• Don’t empty when already empty — If the next instruction uses an MMX
register, _MM_EMPTY() incurs a cost with no benefit.

• Group Instructions — Try to partition regions that use X87 FP instructions from
those that use 64-bit SIMD integer instructions. This eliminates the need for an
EMMS instruction within the body of a critical loop.

• Runtime initialization — Use _MM_EMPTY() during runtime initialization of
__M64 and X87 FP data types. This ensures resetting the register between data
type transitions. See Example 5-1 for coding usage.

You must be aware that your code generates an MMX instruction, which uses MMX
registers with the Intel C++ Compiler, in the following situations:

• when using a 64-bit SIMD integer intrinsic from MMX technology,
SSE/SSE2/SSSE3

• when using a 64-bit SIMD integer instruction from MMX technology,
SSE/SSE2/SSSE3 through inline assembly

• when referencing the __M64 data type variable

Additional information on the x87 floating-point programming model can be found in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. For
more on EMMS, visit http://developer.intel.com.

5.3 DATA ALIGNMENT
Make sure that 64-bit SIMD integer data is 8-byte aligned and that 128-bit SIMD
integer data is 16-byte aligned. Referencing unaligned 64-bit SIMD integer data can
incur a performance penalty due to accesses that span 2 cache lines. Referencing
unaligned 128-bit SIMD integer data results in an exception unless the MOVDQU
(move double-quadword unaligned) instruction is used. Using the MOVDQU instruc-
tion on unaligned data can result in lower performance than using 16-byte aligned
references. Refer to Section 4.4, “Stack and Data Alignment,” for more information.

Loading 16 bytes of SIMD data efficiently requires data alignment on 16-byte bound-
aries. SSSE3 provides the PALIGNR instruction. It reduces overhead in situations that
requires software to processing data elements from non-aligned address. The

Example 5-1. Resetting Register Between __m64 and FP Data Types Code

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z); __m64 x = _m_paddd(y, z);
float f = init(); float f = (_mm_empty(), init());
5-4

http://developer.intel.com

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
PALIGNR instruction is most valuable when loading or storing unaligned data with the
address shifts by a few bytes. You can replace a set of unaligned loads with aligned
loads followed by using PALIGNR instructions and simple register to register copies.

Using PALIGNRs to replace unaligned loads improves performance by eliminating
cache line splits and other penalties. In routines like MEMCPY(), PALIGNR can boost
the performance of misaligned cases. Example 5-2 shows a situation that benefits by
using PALIGNR.

Example 5-3 compares an optimal SSE2 sequence of the FIR loop and an equivalent
SSSE3 implementation. Both implementations unroll 4 iteration of the FIR inner loop
to enable SIMD coding techniques. The SSE2 code can not avoid experiencing cache
line split once every four iterations. PALGNR allows the SSSE3 code to avoid the
delays associated with cache line splits.

Example 5-2. FIR Processing Example in C language Code

void FIR(float *in, float *out, float *coeff, int count)
{int i,j;

for (i=0; i<count - TAP; i++)
{ float sum = 0;

for (j=0; j<TAP; j++)
{ sum += in[j]*coeff[j]; }
*out++ = sum;
in++;

}
}

Example 5-3. SSE2 and SSSE3 Implementation of FIR Processing Code
Optimized for SSE2 Optimized for SSSE3

pxor xmm0, xmm0
xor ecx, ecx
mov eax, dword ptr[input]
mov ebx, dword ptr[coeff4]

inner_loop:
movaps xmm1, xmmword ptr[eax+ecx]
mulps xmm1, xmmword ptr[ebx+4*ecx]
addps xmm0, xmm1

pxor xmm0, xmm0
xor ecx, ecx
mov eax, dword ptr[input]
mov ebx, dword ptr[coeff4]

inner_loop:
movaps xmm1, xmmword ptr[eax+ecx]
movaps xmm3, xmm1
mulps xmm1, xmmword ptr[ebx+4*ecx]
addps xmm0, xmm1

movups xmm1, xmmword ptr[eax+ecx+4]
mulps xmm1, xmmword
ptr[ebx+4*ecx+16]
addps xmm0, xmm1

movaps xmm2, xmmword ptr[eax+ecx+16]
movaps xmm1, xmm2
palignr xmm2, xmm3, 4
mulps xmm2, xmmword ptr[ebx+4*ecx+16]
addps xmm0, xmm2
 5-5

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4 DATA MOVEMENT CODING TECHNIQUES
In general, better performance can be achieved if data is pre-arranged for SIMD
computation (see Section 4.5, “Improving Memory Utilization”). This may not always
be possible.

This section covers techniques for gathering and arranging data for more efficient
SIMD computation.

5.4.1 Unsigned Unpack
MMX technology provides several instructions that are used to pack and unpack data
in the MMX registers. SSE2 extends these instructions so that they operate on
128-bit source and destinations.

The unpack instructions can be used to zero-extend an unsigned number.
Example 5-4 assumes the source is a packed-word (16-bit) data type.

movups xmm1, xmmword ptr[eax+ecx+8]
mulps xmm1, xmmword
ptr[ebx+4*ecx+32]
addps xmm0, xmm1

movaps xmm2, xmm1
palignr xmm2, xmm3, 8
mulps xmm2, xmmword ptr[ebx+4*ecx+32]
addps xmm0, xmm2

movups xmm1, xmmword ptr[eax+ecx+12]
mulps xmm1, xmmword
ptr[ebx+4*ecx+48]
addps xmm0, xmm1

add ecx, 16
cmp ecx, 4*TAP
jl inner_loop

mov eax, dword ptr[output]
movaps xmmword ptr[eax], xmm0

movaps xmm2, xmm1
palignr xmm2, xmm3, 12
mulps xmm2, xmmword ptr[ebx+4*ecx+48]
addps xmm0, xmm2

add ecx, 16
cmp ecx, 4*TAP
jl inner_loop

mov eax, dword ptr[output]
movaps xmmword ptr[eax], xmm0

Example 5-3. SSE2 and SSSE3 Implementation of FIR Processing Code (Contd.)
Optimized for SSE2 Optimized for SSSE3
5-6

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.2 Signed Unpack
Signed numbers should be sign-extended when unpacking values. This is similar to
the zero-extend shown above, except that the PSRAD instruction (packed shift right
arithmetic) is used to sign extend the values.

Example 5-5 assumes the source is a packed-word (16-bit) data type.

Example 5-4. Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instruc-
tions Code

; Input:
; XMM0 8 16-bit values in source
; XMM7 0 a local variable can be used
; instead of the register XMM7 if
; desired.

; Output:
; XMM0 four zero-extended 32-bit
; doublewords from four low-end
; words
; XMM1 four zero-extended 32-bit
; doublewords from four high-end
; words

movdqa xmm1, xmm0 ; copy source
punpcklwd xmm0, xmm7 ; unpack the 4 low-end words

; into 4 32-bit doubleword
punpckhwd xmm1, xmm7 ; unpack the 4 high-end words

; into 4 32-bit doublewords

Example 5-5. Signed Unpack Code

 Input:
; XMM0 source value
; Output:
; XMM0 four sign-extended 32-bit doublewords
; from four low-end words
; XMM1 four sign-extended 32-bit doublewords
; from four high-end words
;

 5-7

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.3 Interleaved Pack with Saturation
Pack instructions pack two values into a destination register in a predetermined
order. PACKSSDW saturates two signed doublewords from a source operand and two
signed doublewords from a destination operand into four signed words; and it packs
the four signed words into a destination register. See Figure 5-1.

SSE2 extends PACKSSDW so that it saturates four signed doublewords from a source
operand and four signed doublewords from a destination operand into eight signed
words; the eight signed words are packed into the destination.

Figure 5-2 illustrates where two pairs of values are interleaved in a destination
register; Example 5-6 shows MMX code that accomplishes the operation.

movdqa xmm1, xmm0 ; copy source
punpcklwd xmm0, xmm0 ; unpack four low end words of the source

; into the upper 16 bits of each doubleword
; in the destination

punpckhwd xmm1, xmm1 ; unpack 4 high-end words of the source
; into the upper 16 bits of each doubleword
; in the destination

psrad xmm0, 16 ; sign-extend the 4 low-end words of the source
; into four 32-bit signed doublewords

psrad xmm1, 16 ; sign-extend the 4 high-end words of the
; source into four 32-bit signed doublewords

Figure 5-1. PACKSSDW mm, mm/mm64 Instruction

Example 5-5. Signed Unpack Code (Contd.)

OM15159

D C B A

D1 C1 B1 A1

mm/m64 mm

mm
5-8

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
Two signed doublewords are used as source operands and the result is interleaved
signed words. The sequence in Example 5-6 can be extended in SSE2 to interleave
eight signed words using XMM registers.

Pack instructions always assume that source operands are signed numbers. The
result in the destination register is always defined by the pack instruction that
performs the operation. For example, PACKSSDW packs each of two signed 32-bit
values of two sources into four saturated 16-bit signed values in a destination
register. PACKUSWB, on the other hand, packs the four signed 16-bit values of two
sources into eight saturated eight-bit unsigned values in the destination.

Figure 5-2. Interleaved Pack with Saturation

Example 5-6. Interleaved Pack with Saturation Code

; Input:
MM0 signed source1 value

; MM1 signed source2 value
; Output:

MM0 the first and third words contain the
; signed-saturated doublewords from MM0,
; the second and fourth words contain
; signed-saturated doublewords from MM1

;
packssdw mm0, mm0 ; pack and sign saturate
packssdw mm1, mm1 ; pack and sign saturate
punpcklwd mm0, mm1 ; interleave the low-end 16-bit

; values of the operands

OM15160

D C B A

D1 B1 C1 A1

MM/M64 mm

mm
 5-9

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.4 Interleaved Pack without Saturation
Example 5-7 is similar to Example 5-6 except that the resulting words are not satu-
rated. In addition, in order to protect against overflow, only the low order 16 bits of
each doubleword are used. Again, Example 5-7 can be extended in SSE2 to accom-
plish interleaving eight words without saturation.

5.4.5 Non-Interleaved Unpack
Unpack instructions perform an interleave merge of the data elements of the desti-
nation and source operands into the destination register.

The following example merges the two operands into destination registers without
interleaving. For example, take two adjacent elements of a packed-word data type in
SOURCE1 and place this value in the low 32 bits of the results. Then take two adja-
cent elements of a packed-word data type in SOURCE2 and place this value in the
high 32 bits of the results. One of the destination registers will have the combination
illustrated in Figure 5-3.

Example 5-7. Interleaved Pack without Saturation Code

; Input:
; MM0 signed source value
; MM1 signed source value

; Output:
; MM0 the first and third words contain the
; low 16-bits of the doublewords in MM0,
; the second and fourth words contain the
; low 16-bits of the doublewords in MM1

pslld mm1, 16 ; shift the 16 LSB from each of the
; doubleword values to the 16 MSB
; position

pand mm0, {0,ffff,0,ffff}
; mask to zero the 16 MSB
; of each doubleword value

por mm0, mm1 ; merge the two operands
5-10

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
The other destination register will contain the opposite combination illustrated in
Figure 5-4.

Code in the Example 5-8 unpacks two packed-word sources in a non-interleaved
way. The goal is to use the instruction which unpacks doublewords to a quadword,
instead of using the instruction which unpacks words to doublewords.

Figure 5-3. Result of Non-Interleaved Unpack Low in MM0

Figure 5-4. Result of Non-Interleaved Unpack High in MM1

OM15161

21 20 11 10

mm/m64 mm

mm

23 22 21 20 13 12 11 10

OM15162

23 22 13 12

mm/m64 mm

mm

23 22 21 20 13 12 11 10
 5-11

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.6 Extract Data Element
The PEXTRW instruction in SSE takes the word in the designated MMX register
selected by the two least significant bits of the immediate value and moves it to the
lower half of a 32-bit integer register. See Figure 5-5 and Example 5-9.

With SSE2, PEXTRW can extract a word from an XMM register to the lower 16 bits of
an integer register. SSE4.1 provides extraction of a byte, word, dword and qword
from an XMM register into either a memory location or integer register.

Example 5-8. Unpacking Two Packed-word Sources in Non-interleaved Way Code

; Input:
; MM0 packed-word source value
; MM1 packed-word source value
; Output:
; MM0 contains the two low-end words of the
; original sources, non-interleaved
; MM2 contains the two high end words of the
; original sources, non-interleaved.

movq mm2, mm0 ; copy source1
punpckldq mm0, mm1 ; replace the two high-end words of MMO with

; two low-end words of MM1;
; leave the two low-end words of MM0 in place

punpckhdq mm2, mm1 ; move two high-end words of MM2 to the two low-end
; words of MM2; place the two high-end words of
; MM1 in two high-end words of MM2

Figure 5-5. PEXTRW Instruction

OM15163

0 ..0 X1

MM

R32
31 0

31 063

X4 X3 X2 X1
5-12

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.7 Insert Data Element
The PINSRW instruction in SSE loads a word from the lower half of a 32-bit integer
register or from memory and inserts it in an MMX technology destination register at
a position defined by the two least significant bits of the immediate constant. Inser-
tion is done in such a way that three other words from the destination register are left
untouched. See Figure 5-6 and Example 5-10.

With SSE2, PINSRW can insert a word from the lower 16 bits of an integer register or
memory into an XMM register. SSE4.1 provides insertion of a byte, dword and qword
from either a memory location or integer register into an XMM register.

Example 5-9. PEXTRW Instruction Code

; Input:
; eax source value
; immediate value: “0”
; Output:
; edx 32-bit integer register containing the extracted word in the
; low-order bits & the high-order bits zero-extended
movq mm0, [eax]
pextrw edx, mm0, 0

Figure 5-6. PINSRW Instruction

OM15164

Y2

MM

R32
31 0

31 063

X4 X3 Y1 X1

Y1
 5-13

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
If all of the operands in a register are being replaced by a series of PINSRW instruc-
tions, it can be useful to clear the content and break the dependence chain by either
using the PXOR instruction or loading the register. See Example 5-11 and Section
3.5.1.6, “Clearing Registers and Dependency Breaking Idioms.”

5.4.8 Non-Unit Stride Data Movement
SSE4.1 provides instructions to insert a data element from memory into an XMM
register, and to extract .a data element from an XMM register into memory directly.
Separate instructions are provided to handle floating-point data and integer byte,
word, or dword. These instructions are suited for vectorizing code that loads/stores
non-unit stride data from memory, see Example 5-12.

Example 5-10. PINSRW Instruction Code

; Input:
; edx pointer to source value
; Output:
; mm0 register with new 16-bit value inserted
;
mov eax, [edx]
pinsrw mm0, eax, 1

Example 5-11. Repeated PINSRW Instruction Code

; Input:
; edx pointer to structure containing source
; values at offsets: of +0, +10, +13, and +24
; immediate value: “1”
; Output:
; MMX register with new 16-bit value inserted
;

pxor mm0, mm0 ; Breaks dependency on previous value of mm0
mov eax, [edx]
pinsrw mm0, eax, 0
mov eax, [edx+10]
pinsrw mm0, eax, 1
mov eax, [edx+13]
pinsrw mm0, eax, 2
mov eax, [edx+24]
pinsrw mm0, eax, 3
5-14

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
Example 5-13 provides two examples: using INSERTPS and PEXTRD to perform
gather operations on floating-point data; using EXTRACTPS and PEXTRD to perform
scatter operations on floating-point data.

5.4.9 Move Byte Mask to Integer
The PMOVMSKB instruction returns a bit mask formed from the most significant bits
of each byte of its source operand. When used with 64-bit MMX registers, this
produces an 8-bit mask, zeroing out the upper 24 bits in the destination register.
When used with 128-bit XMM registers, it produces a 16-bit mask, zeroing out the
upper 16 bits in the destination register.

The 64-bit version of this instruction is shown in Figure 5-7 and Example 5-14.

Example 5-12. Non-Unit Stride Load/Store Using SSE4.1 Instructions

/* Goal: Non-Unit Stride Load Dwords*/

movd xmm0, [addr]
pinsrd xmm0, [addr + stride], 1
pinsrd xmm0, [addr + 2*stride], 2
pinsrd xmm0, [addr + 3*stride], 3

/* Goal: Non-Unit Stride Store Dwords*/

movd [addr], xmm0
pextrd [addr + stride], xmm0, 1
pextrd [addr + 2*stride], xmm0, 2
pextrd [addr + 3*stride], xmm0, 3

Example 5-13. Scatter and Gather Operations Using SSE4.1 Instructions

/* Goal: Gather Operation*/

movd eax, xmm0
movss xmm1, [addr + 4*eax]
pextrd eax, xmm0, 1
insertps xmm1, [addr + 4*eax], 1
pextrd eax, xmm0, 2
insertps xmm1, [addr + 4*eax], 2
pextrd eax, xmm0, 3
insertps xmm1, [addr + 4*eax], 3

/* Goal: Scatter Operation*/

movd eax, xmm0
movss [addr + 4*eax], xmm1
pextrd eax, xmm0, 1
extractps [addr + 4*eax], xmm1, 1
pextrd eax, xmm0, 2
extractps [addr + 4*eax], xmm1, 2
pextrd eax, xmm0, 3
extractps [addr + 4*eax], xmm1, 3
 5-15

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.10 Packed Shuffle Word for 64-bit Registers
The PSHUFW instruction uses the immediate (IMM8) operand to select between the
four words in either two MMX registers or one MMX register and a 64-bit memory
location. SSE2 provides PSHUFLW to shuffle the lower four words into an XMM
register. In addition to the equivalent to the PSHUFW, SSE2 also provides PSHUFHW
to shuffle the higher four words. Furthermore, SSE2 offers PSHUFD to shuffle four
dwords into an XMM register. All of these four PSHUF instructions use an immediate
byte to encode the data path of individual words within the corresponding 8 bytes
from source to destination, shown in Table 5-1:

Figure 5-7. PMOVSMKB Instruction

Example 5-14. PMOVMSKB Instruction Code

; Input:
; source value
; Output:
; 32-bit register containing the byte mask in the lower eight bits
;
movq mm0, [edi]
pmovmskb eax, mm0

OM15165

MM

R32

31 063

0..0

31

0..0

7 0

55 47 39 23 15 7
5-16

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.11 Packed Shuffle Word for 128-bit Registers
The PSHUFLW/PSHUFHW instruction performs a full shuffle of any source word field
within the low/high 64 bits to any result word field in the low/high 64 bits, using an
8-bit immediate operand; other high/low 64 bits are passed through from the source
operand.

PSHUFD performs a full shuffle of any double-word field within the 128-bit source to
any double-word field in the 128-bit result, using an 8-bit immediate operand.

No more than 3 instructions, using PSHUFLW/PSHUFHW/PSHUFD, are required to
implement many common data shuffling operations. Broadcast, Swap, and Reverse
are illustrated in Example 5-15 and Example 5-16.

Table 5-1. PSHUF Encoding
Bits Words

1 - 0 0

3 - 2 1

5 - 4 2

7 - 6 3

Example 5-15. Broadcast a Word Across XMM, Using 2 SSE2 Instructions

/* Goal: Broadcast the value from word 5 to all words */
/* Instruction Result */

 | 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFHW (3,2,1,1)| 7| 6| 5| 5| 3| 2| 1| 0|

PSHUFD (2,2,2,2) | 5| 5| 5| 5| 5| 5| 5| 5|
 5-17

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.12 Shuffle Bytes
SSSE3 provides PSHUFB; this instruction carries out byte manipulation within a 16
byte range. PSHUFB can replace up to 12 other instructions: including SHIFT, OR,
AND and MOV.

Use PSHUFB if the alternative uses 5 or more instructions.

5.4.13 Conditional Data Movement
SSE4.1 provides two packed blend instructions on byte and word data elements in
128-bit operands. Packed blend instructions conditionally copies data elements from
selected positions in the source to the corresponding data element using a mask
specified by an immediate control byte or an implied XMM register (XMM0). The mask
can be generated by a packed compare instruction for example. Thus packed blend
instructions are most useful for vectorizing conditional flows within a loop and can be
more efficient than inserting single element one at a time for some situations.

5.4.14 Unpacking/interleaving 64-bit Data in 128-bit Registers
The PUNPCKLQDQ/PUNPCHQDQ instructions interleave the low/high-order 64-bits of
the source operand and the low/high-order 64-bits of the destination operand. It
then writes the results to the destination register.

The high/low-order 64-bits of the source operands are ignored.

Example 5-16. Swap/Reverse words in an XMM, Using 3 SSE2 Instructions

/* Goal: Swap the values in word 6 and word 1
*/
/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFD (3,0,1,2) | 7| 6| 1| 0| 3| 2| 5| 4|

PSHUFHW (3,1,2,0)| 7| 1| 6| 0| 3| 2| 5| 4|

PSHUFD (3,0,1,2) | 7| 1| 5| 4| 3| 2| 6| 0|

/* Goal: Reverse the order of the words */
/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFLW (0,1,2,3)| 7| 6| 5| 4| 0| 1| 2| 3|

PSHUFHW (0,1,2,3)| 4| 5| 6| 7| 0| 1| 2| 3|

PSHUFD (1,0,3,2) | 0| 1| 2| 3| 4| 5| 6| 7|
5-18

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.4.15 Data Movement
There are two additional instructions to enable data movement from 64-bit SIMD
integer registers to 128-bit SIMD registers.

The MOVQ2DQ instruction moves the 64-bit integer data from an MMX register
(source) to a 128-bit destination register. The high-order 64 bits of the destination
register are zeroed-out.

The MOVDQ2Q instruction moves the low-order 64-bits of integer data from a
128-bit source register to an MMX register (destination).

5.4.16 Conversion Instructions
SSE provides Instructions to support 4-wide conversion of single-precision data
to/from double-word integer data. Conversions between double-precision data to
double-word integer data have been added in SSE2.

SSE4.1 provides 4 rounding instructions to convert floating-point values to integer
values with rounding control specified in a more flexible manner and independent of
the rounding control in MXCSR. The integer values produced by ROUNDxx instruc-
tions are maintained as floating-point data.

SSE4.1 also provides instructions to convert integer data from

• packed bytes to packed word/dword/qword format using either sign extension or
zero extension,

• packed words to packed dword/qword format using either sign extension or zero
extension,

• packed dword to packed qword format using either sign extension or zero
extension.

5.5 GENERATING CONSTANTS
SIMD integer instruction sets do not have instructions that will load immediate
constants to the SIMD registers.

The following code segments generate frequently used constants in the SIMD
register. These examples can also be extended in SSE2 by substituting MMX with
XMM registers. See Example 5-17.

Example 5-17. Generating Constants

pxor mm0, mm0 ; generate a zero register in MM0
pcmpeq mm1, mm1 ; Generate all 1's in register MM1,

; which is -1 in each of the packed
; data type fields
 5-19

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
NOTE
Because SIMD integer instruction sets do not support shift instruc-
tions for bytes, 2n–1 and -2n are relevant only for packed words and
packed doublewords.

5.6 BUILDING BLOCKS
This section describes instructions and algorithms which implement common code
building blocks.

5.6.1 Absolute Difference of Unsigned Numbers
Example 5-18 computes the absolute difference of two unsigned numbers. It
assumes an unsigned packed-byte data type.

Here, we make use of the subtract instruction with unsigned saturation. This instruc-
tion receives UNSIGNED operands and subtracts them with UNSIGNED saturation.

pxor mm0, mm0
pcmpeq mm1, mm1
psubb mm0, mm1 [psubw mm0, mm1] (psubd mm0, mm1)

; three instructions above generate
; the constant 1 in every
; packed-byte [or packed-word]
; (or packed-dword) field

pcmpeq mm1, mm1
psrlw mm1, 16-n(psrld mm1, 32-n)

; two instructions above generate
; the signed constant 2n–1 in every
; packed-word (or packed-dword) field

pcmpeq mm1, mm1
psllw mm1, n (pslld mm1, n)

; two instructions above generate
; the signed constant -2n in every
; packed-word (or packed-dword) field

Example 5-17. Generating Constants (Contd.)
5-20

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
This support exists only for packed bytes and packed words, not for packed double-
words.

This example will not work if the operands are signed. Note that PSADBW may also
be used in some situations. See Section 5.6.9 for details.

5.6.2 Absolute Difference of Signed Numbers
Example 5-19 computes the absolute difference of two signed numbers using SSSE3
instruction PABSW. This sequence is more efficient than using previous generation of
SIMD instruction extensions.

5.6.3 Absolute Value
Example 5-20 show an MMX code sequence to compute |X|, where X is signed. This
example assumes signed words to be the operands.

Example 5-18. Absolute Difference of Two Unsigned Numbers

; Input:
; MM0 source operand
; MM1 source operand
; Output:
; MM0 absolute difference of the unsigned operands

movq mm2, mm0 ; make a copy of mm0
psubusbmm0, mm1 ; compute difference one way
psubusbmm1, mm2 ; compute difference the other way
por mm0, mm1 ; OR them together

Example 5-19. Absolute Difference of Signed Numbers

;Input:
; XMM0 signed source operand
; XMM1 signed source operand

;Output:
; XMM1absolute difference of the unsigned operands

psubw xmm0, xmm1 ; subtract words
pabsw xmm1, xmm0 ; results in XMM1
 5-21

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
With SSSE3, this sequence of three instructions can be replaced by the PABSW
instruction. Additionally, SSSE3 provides a 128-bit version using XMM registers and
supports byte, word and doubleword granularity.

NOTE
The absolute value of the most negative number (that is, 8000H for
16-bit) cannot be represented using positive numbers. This algorithm
will return the original value for the absolute value (8000H).

5.6.4 Pixel Format Conversion
SSSE3 provides the PSHUFB instruction to carry out byte manipulation within a
16-byte range. PSHUFB can replace a set of up to 12 other instruction, including
SHIFT, OR, AND and MOV.

Use PSHUFB if the alternative code uses 5 or more instructions. Example 5-21 shows
the basic form of conversion of color pixel formats.

Example 5-20. Computing Absolute Value

; Input:
; MM0 signed source operand
; Output:
; MM1 ABS(MMO)
pxor mm1, mm1 ; set mm1 to all zeros
psubw mm1, mm0 ; make each mm1 word contain the

 ; negative of each mm0 word
pmaxswmm1, mm0 ; mm1 will contain only the positive

 ; (larger) values - the absolute value

Example 5-21. Basic C Implementation of RGBA to BGRA Conversion

Standard C Code:
struct RGBA{BYTE r,g,b,a;};
struct BGRA{BYTE b,g,r,a;};

void BGRA_RGBA_Convert(BGRA *source, RGBA *dest, int num_pixels)
{

for(int i = 0; i < num_pixels; i++){
dest[i].r = source[i].r;
dest[i].g = source[i].g;
dest[i].b = source[i].b;
dest[i].a = source[i].a;

}
}

5-22

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
Example 5-22 and Example 5-23 show SSE2 code and SSSE3 code for pixel format
conversion. In the SSSE3 example, PSHUFB replaces six SSE2 instructions.

Example 5-22. Color Pixel Format Conversion Using SSE2

; Optimized for SSE2

mov esi, src
mov edi, dest
mov ecx, iterations
movdqa xmm0, ag_mask //{0,ff,0,ff,0,ff,0,ff,0,ff,0,ff,0,ff,0,ff}
movdqa xmm5, rb_mask //{ff,0,ff,0,ff,0,ff,0,ff,0,ff,0,ff,0,ff,0}
mov eax, remainder

convert16Pixs: // 16 pixels, 64 byte per iteration
movdqa xmm1, [esi] // xmm1 = [r3g3b3a3,r2g2b2a2,r1g1b1a1,r0g0b0a0]
movdqa xmm2, xmm1
movdqa xmm7, xmm1 //xmm7 abgr
psrld xmm2, 16 //xmm2 00ab
pslld xmm1, 16 //xmm1 gr00

por xmm1, xmm2 //xmm1 grab
pand xmm7, xmm0 //xmm7 a0g0
pand xmm1, xmm5 //xmm1 0r0b
por xmm1, xmm7 //xmm1 argb
movdqa [edi], xmm1

//repeats for another 3*16 bytes
…

add esi, 64
add edi, 64
sub ecx, 1
jnz convert16Pixs
 5-23

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.6.5 Endian Conversion
The PSHUFB instruction can also be used to reverse byte ordering within a double-
word. It is more efficient than traditional techniques, such as BSWAP.

Example 5-24 (a) shows the traditional technique using four BSWAP instructions to
reverse the bytes within a DWORD. Each BSWAP requires executing two μops. In
addition, the code requires 4 loads and 4 stores for processing 4 DWORDs of data.

Example 5-24 (b) shows an SSSE3 implementation of endian conversion using
PSHUFB. The reversing of four DWORDs requires one load, one store, and PSHUFB.

On Intel Core microarchitecture, reversing 4 DWORDs using PSHUFB can be approx-
imately twice as fast as using BSWAP.

Example 5-23. Color Pixel Format Conversion Using SSSE3

; Optimized for SSSE3

mov esi, src
mov edi, dest
mov ecx, iterations
movdqa xmm0, _shufb

// xmm0 = [15,12,13,14,11,8,9,10,7,4,5,6,3,0,1,2]
mov eax, remainder

convert16Pixs: // 16 pixels, 64 byte per iteration
movdqa xmm1, [esi]

// xmm1 = [r3g3b3a3,r2g2b2a2,r1g1b1a1,r0g0b0a0]
movdqa xmm2, [esi+16]
pshufb xmm1, xmm0

// xmm1 = [b3g3r3a3,b2g2r2a2,b1g1r1a1,b0g0r0a0]
movdqa [edi], xmm1

//repeats for another 3*16 bytes

…

add esi, 64
add edi, 64
sub ecx, 1
jnz convert16Pixs
5-24

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.6.6 Clipping to an Arbitrary Range [High, Low]
This section explains how to clip a values to a range [HIGH, LOW]. Specifically, if the
value is less than LOW or greater than HIGH, then clip to LOW or HIGH, respectively.
This technique uses the packed-add and packed-subtract instructions with saturation
(signed or unsigned), which means that this technique can only be used on packed-
byte and packed-word data types.

The examples in this section use the constants PACKED_MAX and PACKED_MIN and
show operations on word values. For simplicity, we use the following constants
(corresponding constants are used in case the operation is done on byte values):

PACKED_MAX equals 0X7FFF7FFF7FFF7FFF
PACKED_MIN equals 0X8000800080008000
PACKED_LOW contains the value LOW in all four words of the packed-words data type
PACKED_HIGH contains the value HIGH in all four words of the packed-words data type
PACKED_USMAX all values equal 1
HIGH_US adds the HIGH value to all data elements (4 words) of PACKED_MIN

Example 5-24. Big-Endian to Little-Endian Conversion

;;(a) Using BSWAP
lea eax, src

lea ecx, dst
mov edx, elCount

start:
mov edi, [eax]
mov esi, [eax+4]
bswap edi
mov ebx, [eax+8]

;; (b) Using PSHUFB
__declspec(align(16)) BYTE bswapMASK[16] =
{3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};

lea eax, src
lea ecx, dst
mov edx, elCount
movaps xmm7, bswapMASK

start:
movdqa xmm0, [eax]

bswap esi
mov ebp, [eax+12]
mov [ecx], edi
mov [ecx+4], esi
bswap ebx
mov [ecx+8], ebx
bswap ebp
mov [ecx+12], ebp

pshufb xmm0, xmm7
movdqa [ecx], xmm0
add eax, 16
add ecx, 16
sub edx, 4
jnz start

add eax, 16
add ecx, 16
sub edx, 4
jnz start
 5-25

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
LOW_US adds the LOW value to all data elements (4 words) of PACKED_MIN

5.6.6.1 Highly Efficient Clipping
For clipping signed words to an arbitrary range, the PMAXSW and PMINSW instruc-
tions may be used. For clipping unsigned bytes to an arbitrary range, the PMAXUB
and PMINUB instructions may be used.

Example 5-25 shows how to clip signed words to an arbitrary range; the code for
clipping unsigned bytes is similar.

With SSE4.1, Example 5-25 can be easily extended to clip signed bytes, unsigned
words, signed and unsigned dwords.

The code above converts values to unsigned numbers first and then clips them to an
unsigned range. The last instruction converts the data back to signed data and places
the data within the signed range.

Conversion to unsigned data is required for correct results when (High - Low) <
0X8000. If (High - Low) >= 0X8000, simplify the algorithm as in Example 5-27.

Example 5-25. Clipping to a Signed Range of Words [High, Low]

; Input:
; MM0 signed source operands
; Output:
; MM0 signed words clipped to the signed
; range [high, low]
pminsw mm0, packed_high
pmaxswmm0, packed_low

Example 5-26. Clipping to an Arbitrary Signed Range [High, Low]

; Input:
; MM0 signed source operands
; Output:
; MM1 signed operands clipped to the unsigned
; range [high, low]

paddw mm0, packed_min ; add with no saturation
; 0x8000 to convert to unsigned

padduswmm0, (packed_usmax - high_us)
; in effect this clips to high

psubuswmm0, (packed_usmax - high_us + low_us)
; in effect this clips to low

paddw mm0, packed_low ; undo the previous two offsets
5-26

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
This algorithm saves a cycle when it is known that (High - Low) >= 0x8000. The
three-instruction algorithm does not work when (High - Low) < 0x8000 because
0xffff minus any number < 0x8000 will yield a number greater in magnitude than
0x8000 (which is a negative number).

When the second instruction, psubssw MM0, (0xffff - High + Low) in the three-step
algorithm (Example 5-27) is executed, a negative number is subtracted. The result
of this subtraction causes the values in MM0 to be increased instead of decreased, as
should be the case, and an incorrect answer is generated.

5.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low]
Example 5-28 clips an unsigned value to the unsigned range [High, Low]. If the value
is less than low or greater than high, then clip to low or high, respectively. This tech-
nique uses the packed-add and packed-subtract instructions with unsigned satura-
tion, thus the technique can only be used on packed-bytes and packed-words data
types.

Figure 5-28 illustrates operation on word values.

Example 5-27. Simplified Clipping to an Arbitrary Signed Range

; Input: MM0 signed source operands
; Output: MM1 signed operands clipped to the unsigned
; range [high, low]
paddssw mm0, (packed_max - packed_high)

; in effect this clips to high
psubssw mm0, (packed_usmax - packed_high + packed_low)

; clips to low
paddw mm0, low ; undo the previous two offsets

Example 5-28. Clipping to an Arbitrary Unsigned Range [High, Low]

; Input:
; MM0 unsigned source operands
; Output:
; MM1 unsigned operands clipped to the unsigned
; range [HIGH, LOW]
paddusw mm0, 0xffff - high

; in effect this clips to high
psubusw mm0, (0xffff - high + low)

; in effect this clips to low
paddw mm0, low

; undo the previous two offsets
 5-27

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.6.7 Packed Max/Min of Byte, Word and Dword
The PMAXSW instruction returns the maximum between four signed words in either
of two SIMD registers, or one SIMD register and a memory location.

The PMINSW instruction returns the minimum between the four signed words in
either of two SIMD registers, or one SIMD register and a memory location.

The PMAXUB instruction returns the maximum between the eight unsigned bytes in
either of two SIMD registers, or one SIMD register and a memory location.

The PMINUB instruction returns the minimum between the eight unsigned bytes in
either of two SIMD registers, or one SIMD register and a memory location.

SSE2 extended PMAXSW/PMAXUB/PMINSW/PMINUB to 128-bit operations. SSE4.1
adds 128-bit operations for signed bytes, unsigned word, signed and unsigned
dword.

5.6.8 Packed Multiply Integers
The PMULHUW/PMULHW instruction multiplies the unsigned/signed words in the
destination operand with the unsigned/signed words in the source operand. The
high-order 16 bits of the 32-bit intermediate results are written to the destination
operand. The PMULLW instruction multiplies the signed words in the destination
operand with the signed words in the source operand. The low-order 16 bits of the
32-bit intermediate results are written to the destination operand.

SSE2 extended PMULHUW/PMULHW/PMULLW to 128-bit operations and adds
PMULUDQ.

The PMULUDQ instruction performs an unsigned multiply on the lower pair of double-
word operands within 64-bit chunks from the two sources; the full 64-bit result from
each multiplication is returned to the destination register.

This instruction is added in both a 64-bit and 128-bit version; the latter performs 2
independent operations, on the low and high halves of a 128-bit register.

SSE4.1 adds 128-bit operations of PMULDQ and PMULLD. The PMULLD instruction
multiplies the signed dwords in the destination operand with the signed dwords in the
source operand. The low-order 32 bits of the 64-bit intermediate results are written
to the destination operand. The PMULDQ instruction multiplies the two low-order,
signed dwords in the destination operand with the two low-order, signed dwords in
the source operand and stores two 64-bit results in the destination operand.

5.6.9 Packed Sum of Absolute Differences
The PSADBW instruction computes the absolute value of the difference of unsigned
bytes for either two SIMD registers, or one SIMD register and a memory location.
The differences of 8 pairs of unsigned bytes are then summed to produce a word
5-28

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
result in the lower 16-bit field, and the upper three words are set to zero. With SSE2,
PSADBW is extended to compute two word results.

The subtraction operation presented above is an absolute difference. That is,
T = ABS(X-Y). Byte values are stored in temporary space, all values are summed
together, and the result is written to the lower word of the destination register.

Motion estimation involves searching reference frames for best matches. Sum abso-
lute difference (SAD) on two blocks of pixels is a common ingredient in video
processing algorithms to locate matching blocks of pixels. PSADBW can be used as
building blocks for finding best matches by way of calculating SAD results on 4x4,
8x4, 8x8 blocks of pixels.

5.6.10 MPSADBW and PHMINPOSUW
The MPSADBW instruction in SSE4.1 performs eight SAD operations. Each SAD oper-
ation produces a word result from 4 pairs of unsigned bytes. With 8 SAD result in an
XMM register, PHMINPOSUM can help search for the best match between eight 4x4
pixel blocks.

For motion estimation algorithms, MPSADBW is likely to improve over PSADBW in
several ways:

• Simplified data movement to construct packed data format for SAD computation
on pixel blocks.

• Higher throughput in terms of SAD results per iteration (less iteration required
per frame).

• MPSADBW results are amenable to efficient search using PHMINPOSUW.

Examples of MPSADBW vs. PSADBW for 4x4 and 8x8 block search can be found in the
white paper listed in the reference section of Chapter 1.

5.6.11 Packed Average (Byte/Word)
The PAVGB and PAVGW instructions add the unsigned data elements of the source
operand to the unsigned data elements of the destination register, along with a carry-
in. The results of the addition are then independently shifted to the right by one bit
position. The high order bits of each element are filled with the carry bits of the corre-
sponding sum.

The destination operand is an SIMD register. The source operand can either be an
SIMD register or a memory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.
 5-29

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.6.12 Complex Multiply by a Constant
Complex multiplication is an operation which requires four multiplications and two
additions. This is exactly how the PMADDWD instruction operates. In order to use
this instruction, you need to format the data into multiple 16-bit values. The real and
imaginary components should be 16-bits each. Consider Example 5-29, which
assumes that the 64-bit MMX registers are being used:

• Let the input data be DR and DI, where DR is real component of the data and DI
is imaginary component of the data.

• Format the constant complex coefficients in memory as four 16-bit values [CR -
CI CI CR]. Remember to load the values into the MMX register using MOVQ.

• The real component of the complex product is PR = DR*CR - DI*CI and the
imaginary component of the complex product is PI = DR*CI + DI*CR.

• The output is a packed doubleword. If needed, a pack instruction can be used to
convert the result to 16-bit (thereby matching the format of the input).

5.6.13 Packed 64-bit Add/Subtract
The PADDQ/PSUBQ instructions add/subtract quad-word operands within each 64-bit
chunk from the two sources; the 64-bit result from each computation is written to
the destination register. Like the integer ADD/SUB instruction, PADDQ/PSUBQ can
operate on either unsigned or signed (two’s complement notation) integer operands.

When an individual result is too large to be represented in 64-bits, the lower 64-bits
of the result are written to the destination operand and therefore the result wraps
around. These instructions are added in both a 64-bit and 128-bit version; the latter
performs 2 independent operations, on the low and high halves of a 128-bit register.

Example 5-29. Complex Multiply by a Constant

; Input:
; MM0 complex value, Dr, Di
; MM1 constant complex coefficient in the form
; [Cr -Ci Ci Cr]
; Output:
; MM0 two 32-bit dwords containing [Pr Pi]
;
punpckldq mm0, mm0 ; makes [dr di dr di]
pmaddwd mm0, mm1 ; done, the result is

 ; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)]
5-30

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.6.14 128-bit Shifts
The PSLLDQ/PSRLDQ instructions shift the first operand to the left/right by the
number of bytes specified by the immediate operand. The empty low/high-order
bytes are cleared (set to zero).

If the value specified by the immediate operand is greater than 15, then the destina-
tion is set to all zeros.

5.6.15 PTEST and Conditional Branch
SSE4.1 offers PTEST instruction that can be used in vectorizing loops with conditional
branches. PTEST is an 128-bit version of the general-purpose instruction TEST. The
ZF or CF field of the EFLAGS register are modified as a result of PTEST.

Example 5-30(a) depicts a loop that requires a conditional branch to handle the
special case of divide-by-zero. In order to vectorize such loop, any iteration that may
encounter divide-by-zero must be treated outside the vectorizable iterations.

Example 5-30. Using PTEST to Separate Vectorizable and non-Vectorizable Loop
Iterations

(a) /* Loops requiring infrequent
exception handling*/
float a[CNT];
unsigned int i;

for (i=0;i<CNT;i++)
{

if (a[i] != 0.0)
{ a[i] = 1.0f/a[i];
}
else
{ call DivException();
}

}

(b) /* PTEST enables early out to handle infrequent, non-
vectorizable portion*/

xor eax,eax
movaps xmm7, [all_ones]
xorps xmm6, xmm6

lp:
movaps xmm0, a[eax]
cmpeqps xmm6, xmm0 ; convert each non-zero to

ones
ptest xmm6, xmm7
jnc zero_present; carry will be set if all 4 were non-

zero
movaps xmm1,[_1_0f_]
divps xmm1, xmm0
movaps a[eax], xmm1
add eax, 16
cmp eax, CNT
jnz lp
jmp end

zero_present:
// execute one by one, call
// exception when value is zero
 5-31

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
Example 5-30(b) shows an assembly sequence that uses PTEST to cause an early-
out branch whenever any one of the four floating-point values in xmm0 is zero. The
fall-through path enables the rest of the floating-point calculations to be vectorized
because none of the four values are zero.

5.6.16 Vectorization of Heterogeneous Computations across Loop
Iterations

Vectorization techniques on un-rolled loops generally rely on repetitive, homoge-
neous operations between each loop iteration. Using SSE4.1’s PTEST and variable
blend instructions, vectorization of heterogeneous operations across loop iterations
may be possible.

Example 5-31(a) depicts a simple heterogeneous loop. The heterogeneous operation
and conditional branch makes simple loop-unrolling technique infeasible for vector-
ization.

Example 5-31(b) depicts an assembly sequence that uses BLENDVPS and PTEST to
vectorize the handling of heterogeneous computations occurring across four consec-
utive loop iterations.

Example 5-31. Using PTEST and Variable BLEND to Vectorize Heterogeneous Loops

(a) /* Loops with heterogeneous
operation across iterations*/
float a[CNT];
unsigned int i;

for (i=0;i<CNT;i++)
{

if (a[i] > b[i])
{ a[i] += b[i]; }
else
{ a[i] -= b[i]; }

}

(b) /* Vectorize Condition Flow with PTEST, BLENDVPS*/
xor eax,eax

lp:
movaps xmm0, a[eax]
movaps xmm1, b[eax]
movaps xmm2, xmm0
// compare a and b values
cmpgtps xmm0, xmm1
// xmm3 - will hold -b
movaps xmm3, [SIGN_BIT_MASK]
xorps xmm3, xmm1
// select values for the add operation,

// true condition produce a+b, false will become a+(-b)
// blend mask is xmm0
blendvps xmm1,xmm3, xmm0
addps xmm2, xmm1
movaps a[eax], xmm2
add eax, 16
cmp eax, CNT
jnz lp
5-32

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.6.17 Vectorization of Control Flows in Nested Loops
The PTEST and BLENDVPx instructions can be used as building blocks to vectorize
more complex control-flow statements, where each control flow statement is
creating a “working” mask used as a predicate of which the conditional code under
the mask will operate.

The Mandelbrot-set map evaluation is useful to illustrate a situation with more
complex control flows in nested loops. The Mandelbrot-set is a set of height values
mapped to a 2-D grid. The height value is the number of Mandelbrot iterations
(defined over the complex number space as In = In-1

2 + I0) needed to get |In| > 2. It
is common to limit the map generation by setting some maximum threshold value of
the height, all other points are assigned with a height equal to the threshold.
Example 5-32 shows an example of Mandelbrot map evaluation implemented in C.

Example 5-32. Baseline C Code for Mandelbrot Set Map Evaluation

#define DIMX (64)
#define DIMY (64)
#define X_STEP (0.5f/DIMX)
#define Y_STEP (0.4f/(DIMY/2))
int map[DIMX][DIMY];

void mandelbrot_C()
{ int i,j;

float x,y;
for (i=0,x=-1.8f;i<DIMX;i++,x+=X_STEP)
{

for (j=0,y=-0.2f;j<DIMY/2;j++,y+=Y_STEP)
{float sx,sy;

int iter = 0;
sx = x;
sy = y;
while (iter < 256)
{ if (sx*sx + sy*sy >= 4.0f) break;

float old_sx = sx;
sx = x + sx*sx - sy*sy;
sy = y + 2*old_sx*sy;
iter++;

}
map[i][j] = iter;

}
}

}

 5-33

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
Example 5-33 shows a vectorized implementation of Mandelbrot map evaluation.
Vectorization is not done on the inner most loop, because the presence of the break
statement implies the iteration count will vary from one pixel to the next. The vector-
ized version take into account the parallel nature of 2-D, vectorize over four itera-
tions of Y values of 4 consecutive pixels, and conditionally handles three scenarios:

• In the inner most iteration, when all 4 pixels do not reach break condition,
vectorize 4 pixels.

• When one or more pixels reached break condition, use blend intrinsics to
accumulate the complex height vector for the remaining pixels not reaching the
break condition and continue the inner iteration of the complex height vector;

• When all four pixels reached break condition, exit the inner loop.

Example 5-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics

__declspec(align(16)) float _INIT_Y_4[4] = {0,Y_STEP,2*Y_STEP,3*Y_STEP};
F32vec4 _F_STEP_Y(4*Y_STEP);
I32vec4 _I_ONE_ = _mm_set1_epi32(1);
F32vec4 _F_FOUR_(4.0f);
F32vec4 _F_TWO_(2.0f);;

void mandelbrot_C()
{ int i,j;

F32vec4 x,y;

for (i = 0, x = F32vec4(-1.8f); i < DIMX; i ++, x += F32vec4(X_STEP))
{

for (j = DIMY/2, y = F32vec4(-0.2f) +
(F32vec4)_INIT_Y_4; j < DIMY; j += 4, y += _F_STEP_Y)

{ F32vec4 sx,sy;
I32vec4 iter = _mm_setzero_si128();
int scalar_iter = 0;
sx = x;
sy = y;
while (scalar_iter < 256)
{ int mask = 0;

F32vec4 old_sx = sx;
__m128 vmask = _mm_cmpnlt_ps(sx*sx + sy*sy,_F_FOUR_);
// if all data points in our vector are hitting the “exit” condition,
// the vectorized loop can exit
if (_mm_test_all_ones(_mm_castps_si128(vmask)))

break;
(continue)
5-34

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.7 MEMORY OPTIMIZATIONS
You can improve memory access using the following techniques:

• Avoiding partial memory accesses

• Increasing the bandwidth of memory fills and video fills

• Prefetching data with Streaming SIMD Extensions. See Chapter 7, “Optimizing
Cache Usage.”

MMX registers and XMM registers allow you to move large quantities of data without
stalling the processor. Instead of loading single array values that are 8, 16, or 32 bits
long, consider loading the values in a single quadword or double quadword and then
incrementing the structure or array pointer accordingly.

Any data that will be manipulated by SIMD integer instructions should be loaded
using either:

• An SIMD integer instruction that loads a 64-bit or 128-bit operand (for example:
MOVQ MM0, M64)

// if non of the data points are out, we don’t need the extra code which blends the results
if (_mm_test_all_zeros(_mm_castps_si128(vmask),

_mm_castps_si128(vmask)))
{ sx = x + sx*sx - sy*sy;

sy = y + _F_TWO_*old_sx*sy;
iter += _I_ONE_;

}
else
{

// Blended flavour of the code, this code blends values from previous iteration with the values
// from current iteration. Only values which did not hit the “exit” condition are being stored;
// values which are already “out” are maintaining their value

sx = _mm_blendv_ps(x + sx*sx - sy*sy,sx,vmask);
sy = _mm_blendv_ps(y + _F_TWO_*old_sx*sy,sy,vmask);
iter = I32vec4(_mm_blendv_epi8(iter + _I_ONE_,

iter,_mm_castps_si128(vmask)));
}
scalar_iter++;

}
_mm_storeu_si128((__m128i*)&map[i][j],iter);

}
}

}

Example 5-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics
 5-35

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
• The register-memory form of any SIMD integer instruction that operates on a
quadword or double quadword memory operand (for example, PMADDW MM0,
M64).

All SIMD data should be stored using an SIMD integer instruction that stores a 64-bit
or 128-bit operand (for example: MOVQ M64, MM0)

The goal of the above recommendations is twofold. First, the loading and storing of
SIMD data is more efficient using the larger block sizes. Second, following the above
recommendations helps to avoid mixing of 8-, 16-, or 32-bit load and store opera-
tions with SIMD integer technology load and store operations to the same SIMD data.

This prevents situations in which small loads follow large stores to the same area of
memory, or large loads follow small stores to the same area of memory. The
Pentium II, Pentium III, and Pentium 4 processors may stall in such situations. See
Chapter 3 for details.

5.7.1 Partial Memory Accesses
Consider a case with a large load after a series of small stores to the same area of
memory (beginning at memory address MEM). The large load stalls in the case
shown in Example 5-34.

MOVQ must wait for the stores to write memory before it can access all data it
requires. This stall can also occur with other data types (for example, when bytes or
words are stored and then words or doublewords are read from the same area of
memory). When you change the code sequence as shown in Example 5-35, the
processor can access the data without delay.

Example 5-34. A Large Load after a Series of Small Stores (Penalty)

mov mem, eax ; store dword to address “mem"
mov mem + 4, ebx ; store dword to address “mem + 4"
 :
 :
movq mm0, mem ; load qword at address “mem", stalls
5-36

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
Consider a case with a series of small loads after a large store to the same area of
memory (beginning at memory address MEM), as shown in Example 5-36. Most of
the small loads stall because they are not aligned with the store. See Section 3.6.4,
“Store Forwarding,” for details.

The word loads must wait for the quadword store to write to memory before they can
access the data they require. This stall can also occur with other data types (for
example: when doublewords or words are stored and then words or bytes are read
from the same area of memory).

When you change the code sequence as shown in Example 5-37, the processor can
access the data without delay.

Example 5-35. Accessing Data Without Delay

movd mm1, ebx ; build data into a qword first
; before storing it to memory

movd mm2, eax
psllq mm1, 32

por mm1, mm2
movq mem, mm1 ; store SIMD variable to “mem" as

; a qword
 :
 :
movq mm0, mem ; load qword SIMD “mem", no stall

Example 5-36. A Series of Small Loads After a Large Store

movq mem, mm0 ; store qword to address “mem"
 :
 :
mov bx, mem + 2 ; load word at “mem + 2" stalls
mov cx, mem + 4 ; load word at “mem + 4" stalls

Example 5-37. Eliminating Delay for a Series of Small Loads after a Large Store

movq mem, mm0 ; store qword to address “mem"
 :
 :

movq mm1, mem ; load qword at address “mem"
movd eax, mm1 ; transfer “mem + 2" to eax from

; MMX register, not memory
 5-37

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
These transformations, in general, increase the number of instructions required to
perform the desired operation. For Pentium II, Pentium III, and Pentium 4 processors,
the benefit of avoiding forwarding problems outweighs the performance penalty due
to the increased number of instructions.

5.7.1.1 Supplemental Techniques for Avoiding Cache Line Splits
Video processing applications sometimes cannot avoid loading data from memory
addresses that are not aligned to 16-byte boundaries. An example of this situation is
when each line in a video frame is averaged by shifting horizontally half a pixel.

Example shows a common operation in video processing that loads data from
memory address not aligned to a 16-byte boundary. As video processing traverses
each line in the video frame, it experiences a cache line split for each 64 byte chunk
loaded from memory.

SSE3 provides an instruction LDDQU for loading from memory address that are not
16-byte aligned. LDDQU is a special 128-bit unaligned load designed to avoid cache
line splits. If the address of the load is aligned on a 16-byte boundary, LDQQU loads
the 16 bytes requested. If the address of the load is not aligned on a 16-byte

psrlq mm1, 32
shr eax, 16
movd ebx, mm1 ; transfer “mem + 4" to bx from

; MMX register, not memory
and ebx, 0ffffh

Example 5-38. An Example of Video Processing with Cache Line Splits

// Average half-pels horizontally (on // the “x” axis),
// from one reference frame only.

nextLinesLoop:
movdqu xmm0, XMMWORD PTR [edx] // may not be 16B aligned
movdqu xmm0, XMMWORD PTR [edx+1]
movdqu xmm1, XMMWORD PTR [edx+eax]
movdqu xmm1, XMMWORD PTR [edx+eax+1]

pavgbxmm0, xmm1
pavgbxmm2, xmm3
movdqaXMMWORD PTR [ecx], xmm0
movdqaXMMWORD PTR [ecx+eax], xmm2
// (repeat ...)

Example 5-37. Eliminating Delay for a Series of Small Loads after a Large Store
5-38

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
boundary, LDDQU loads a 32-byte block starting at the 16-byte aligned address
immediately below the address of the load request. It then provides the requested 16
bytes. If the address is aligned on a 16-byte boundary, the effective number of
memory requests is implementation dependent (one, or more).

LDDQU is designed for programming usage of loading data from memory without
storing modified data back to the same address. Thus, the usage of LDDQU should be
restricted to situations where no store-to-load forwarding is expected. For situations
where store-to-load forwarding is expected, use regular store/load pairs (either
aligned or unaligned based on the alignment of the data accessed).

5.7.2 Increasing Bandwidth of Memory Fills and Video Fills
It is beneficial to understand how memory is accessed and filled. A memory-to-
memory fill (for example a memory-to-video fill) is defined as a 64-byte (cache line)
load from memory which is immediately stored back to memory (such as a video
frame buffer).

The following are guidelines for obtaining higher bandwidth and shorter latencies for
sequential memory fills (video fills). These recommendations are relevant for all Intel
architecture processors with MMX technology and refer to cases in which the loads
and stores do not hit in the first- or second-level cache.

5.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction
Loading any size data operand will cause an entire cache line to be loaded into the
cache hierarchy. Thus, any size load looks more or less the same from a memory
bandwidth perspective. However, using many smaller loads consumes more microar-
chitectural resources than fewer larger stores. Consuming too many resources can

Example 5-39. Video Processing Using LDDQU to Avoid Cache Line Splits

// Average half-pels horizontally (on // the “x” axis),
// from one reference frame only.
nextLinesLoop:
lddqu xmm0, XMMWORD PTR [edx] // may not be 16B aligned
lddqu xmm0, XMMWORD PTR [edx+1]
lddqu xmm1, XMMWORD PTR [edx+eax]
lddqu xmm1, XMMWORD PTR [edx+eax+1]
pavgbxmm0, xmm1
pavgbxmm2, xmm3
movdqaXMMWORD PTR [ecx], xmm0 //results stored elsewhere
movdqaXMMWORD PTR [ecx+eax], xmm2
// (repeat ...)
 5-39

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
cause the processor to stall and reduce the bandwidth that the processor can request
of the memory subsystem.

Using MOVDQ to store the data back to UC memory (or WC memory in some cases)
instead of using 32-bit stores (for example, MOVD) will reduce by three-quarters the
number of stores per memory fill cycle. As a result, using the MOVDQ in memory fill
cycles can achieve significantly higher effective bandwidth than using MOVD.

5.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and
from the Same DRAM Page

DRAM is divided into pages, which are not the same as operating system (OS) pages.
The size of a DRAM page is a function of the total size of the DRAM and the organiza-
tion of the DRAM. Page sizes of several Kilobytes are common. Like OS pages, DRAM
pages are constructed of sequential addresses. Sequential memory accesses to the
same DRAM page have shorter latencies than sequential accesses to different DRAM
pages.

In many systems the latency for a page miss (that is, an access to a different page
instead of the page previously accessed) can be twice as large as the latency of a
memory page hit (access to the same page as the previous access). Therefore, if the
loads and stores of the memory fill cycle are to the same DRAM page, a significant
increase in the bandwidth of the memory fill cycles can be achieved.

5.7.2.3 Increasing UC and WC Store Bandwidth by Using Aligned Stores
Using aligned stores to fill UC or WC memory will yield higher bandwidth than using
unaligned stores. If a UC store or some WC stores cross a cache line boundary, a
single store will result in two transaction on the bus, reducing the efficiency of the
bus transactions. By aligning the stores to the size of the stores, you eliminate the
possibility of crossing a cache line boundary, and the stores will not be split into sepa-
rate transactions.

5.7.3 Reverse Memory Copy
Copying blocks of memory from a source location to a destination location in reverse
order presents a challenge for software to make the most out of the machines capa-
bilities while avoiding microarchitectural hazards. The basic, un-optimized C code is
shown in Example 5-40.

The simple C code in Example 5-40 is sub-optimal, because it loads and stores one
byte at a time (even in situations that hardware prefetcher might have brought data
in from system memory to cache).
5-40

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
Using MOVDQA or MOVDQU, software can load and store up to 16 bytes at a time but
must either ensure 16 byte alignment requirement (if using MOVDQA) or minimize
the delays MOVDQU may encounter if data span across cache line boundary.

Given the general problem of arbitrary byte count to copy, arbitrary offsets of leading
source byte and destination bytes, address alignment relative to 16 byte and cache

Example 5-40. Un-optimized Reverse Memory Copy in C

unsigned char* src;
unsigned char* dst;
while (len > 0)
{
*dst-- = *src++;
--len;
}

Figure 5-8. Data Alignment of Loads and Stores in Reverse Memory Copy

C
ache Line boundary

16 B
yte A

ligned

Source Bytes

Destination Bytes

N0 1 2 3 4 5 6 ...

Source

Destination

0 1 2 3 4 5 6 ... N

(a)

(b)
 5-41

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
line boundaries, these alignment situations can be a bit complicated. Figure 5-8 (a)
and (b) depict the alignment situations of reverse memory copy of N bytes.

The general guidelines for dealing with unaligned loads and stores are (in order of
importance):

• Avoid stores that span cache line boundaries,

• Minimize the number of loads that span cacheline boundaries,

• Favor 16-byte aligned loads and stores over unaligned versions.

In Figure 5-8 (a), the guidelines above can be applied to the reverse memory copy
problem as follows:

1. Peel off several leading destination bytes until it aligns on 16 Byte boundary, then
the ensuing destination bytes can be written to using MOVAPS until the remaining
byte count falls below 16 bytes.

2. After the leading source bytes have been peeled (corresponding to step 1 above),
the source alignment in Figure 5-8 (a) allows loading 16 bytes at a time using
MOVAPS until the remaining byte count falls below 16 bytes.

Switching the byte ordering of each 16 bytes of data can be accomplished by a 16-
byte mask with PSHUFB. The pertinent code sequence is shown in Example 5-41.

In Figure 5-8 (b), we also start with peeling the destination bytes:

1. Peel off several leading destination bytes until it aligns on 16 Byte boundary, then
the ensuing destination bytes can be written to using MOVAPS until the remaining

Example 5-41. Using PSHUFB to Reverse Byte Ordering 16 Bytes at a Time

__declspec(align(16)) static const unsigned char BswapMask[16] =
{15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};

mov esi, src
mov edi, dst
mov ecx, len
movaps xmm7, BswapMask

start:
movdqa xmm0, [esi]
pshufb xmm0, xmm7
movdqa [edi-16], xmm0

sub edi, 16
add esi, 16
sub ecx, 16
cmp ecx, 32
jae start
//handle left-overs
5-42

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
byte count falls below 16 bytes. However, the remaining source bytes are not
aligned on 16 byte boundaries, replacing MOVDQA with MOVDQU for loads will
inevitably run into cache line splits.

2. To achieve higher data throughput than loading unaligned bytes with MOVDQU,
the 16 bytes of data targeted to each of 16 bytes of aligned destination addresses
can be assembled using two aligned loads. This technique is illustrated in Figure
5-9.

5.8 CONVERTING FROM 64-BIT TO 128-BIT SIMD
INTEGERS

SSE2 defines a superset of 128-bit integer instructions currently available in MMX
technology; the operation of the extended instructions remains. The superset simply
operates on data that is twice as wide. This simplifies porting of 64-bit integer appli-
cations. However, there are few considerations:

• Computation instructions which use a memory operand that may not be aligned
to a 16-byte boundary must be replaced with an unaligned 128-bit load
(MOVDQU) followed by the same computation operation that uses instead
register operands.

Use of 128-bit integer computation instructions with memory operands that are
not 16-byte aligned will result in a #GP. Unaligned 128-bit loads and stores are

Figure 5-9. A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy
Using Two Aligned Loads

C
ache Line boundary

16 B
yte A

ligned

Source Bytes

Destination Bytes

N0 1 2 3 4 5 6 ... Step 1:Pell off
leading bytes

Step1: Pell off
leading bytes

Step2 : Load 2
aligned 16-Byte

Blocks

Reverse byte order In register, Store aligned 16 bytes

POR

POR
 5-43

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
not as efficient as corresponding aligned versions; this fact can reduce the
performance gains when using the 128-bit SIMD integer extensions.

• General guidelines on the alignment of memory operands are:

— The greatest performance gains can be achieved when all memory streams
are 16-byte aligned.

— Reasonable performance gains are possible if roughly half of all memory
streams are 16-byte aligned and the other half are not.

— Little or no performance gain may result if all memory streams are not
aligned to 16-bytes. In this case, use of the 64-bit SIMD integer instructions
may be preferable.

• Loop counters need to be updated because each 128-bit integer instruction
operates on twice the amount of data as its 64-bit integer counterpart.

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer
operand) across a full 128-bit operand is emulated by a combination of the
following instructions: PSHUFHW, PSHUFLW, and PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) are extended to 128
bits by:

— Use of PSRLQ and PSLLQ, along with masking logic operations

— A Code sequence rewritten to use the PSRLDQ and PSLLDQ instructions (shift
double quad-word operand by bytes)

5.8.1 SIMD Optimizations and Microarchitectures
Pentium M, Intel Core Solo and Intel Core Duo processors have a different microar-
chitecture than Intel NetBurst microarchitecture. The following sections discuss opti-
mizing SIMD code that targets Intel Core Solo and Intel Core Duo processors.

On Intel Core Solo and Intel Core Duo processors, lddqu behaves identically to
movdqu by loading 16 bytes of data irrespective of address alignment.

5.8.1.1 Packed SSE2 Integer versus MMX Instructions
In general, 128-bit SIMD integer instructions should be favored over 64-bit MMX
instructions on Intel Core Solo and Intel Core Duo processors. This is because:

• Improved decoder bandwidth and more efficient μop flows relative to the
Pentium M processor

• Wider width of the XMM registers can benefit code that is limited by either
decoder bandwidth or execution latency. XMM registers can provide twice the
space to store data for in-flight execution. Wider XMM registers can facilitate
loop-unrolling or in reducing loop overhead by halving the number of loop
iterations.
5-44

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
In microarchitectures prior to Intel Core microarchitecture, execution throughput of
128-bit SIMD integration operations is basically the same as 64-bit MMX operations.
Some shuffle/unpack/shift operations do not benefit from the front end improve-
ments. The net impact of using 128-bit SIMD integer instruction on Intel Core Solo
and Intel Core Duo processors is likely to be slightly positive overall, but there may
be a few situations where their use will generate an unfavorable performance impact.

Intel Core microarchitecture generally executes 128-bit SIMD instructions more effi-
ciently than previous microarchitectures in terms of latency and throughput, many of
the limitations specific to Intel Core Duo, Intel Core Solo processors do not apply. The
same is true of Intel Core microarchitecture relative to Intel NetBurst microarchitec-
tures.

Enhanced Intel Core microarchitecture provides even more powerful 128-bit SIMD
execution capabilities and more comprehensive sets of SIMD instruction extensions
than Intel Core microarchitecture. The integer SIMD instructions offered by SSE4.1
operates on 128-bit XMM register only. All of these highly encourages software to
favor 128-bit vectorizable code to take advantage of processors based on Enhanced
Intel Core microarchitecture and Intel Core microarchitecture.

5.8.1.2 Work-around for False Dependency Issue
In processor based on Intel microarchitecture (Nehalem), using PMOVSX and
PMOVZX instructions to combine data type conversion and data movement in the
same instruction will create a false-dependency due to hardware causes. A simple
work-around to avoid the false dependency issue is to use PMOVSX, PMOVZX instruc-
tion solely for data type conversion and issue separate instruction to move data to
destination or from origin.

Example 5-42. PMOVSX/PMOVZX Work-around to Avoid False Dependency

#issuing the instruction below will create a false dependency on xmm0

pmovzxbd xmm0, dword ptr [eax]

// the above instruction may be blocked if xmm0 are updated by other instructions in flight

..

#Alternate solution to avoid false dependency

movd xmm0, dword ptr [eax] ; OOO hardware can hoist loads to hide latency

pmovsxbd xmm0, xmm0
 5-45

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.9 TUNING PARTIALLY VECTORIZABLE CODE

Some loop structured code are more difficult to vectorize than others. Example 5-43
depicts a loop carrying out table look-up operation and some arithmetic computation.

Although some of the arithmetic computations and input/output to data array in each
iteration can be easily vectorizable, but the table look-up via an index array is not.
This creates different approaches to tuning. A compiler can take a scalar approach to
execute each iteration sequentially. Hand-tuning of such loops may use a couple of
different techniques to handle the non-vectorizable table look-up operation. One
vectorization technique is to load the input data for four iteration at once, then use
SSE2 instruction to shift out individual index out of an XMM register to carry out table
look-up sequentially. The shift technique is depicted by Example 5-44. Another tech-
nique is to use PEXTRD in SSE4.1 to extract the index from an XMM directly and then
carry out table look-up sequentially. The PEXTRD technique is depicted by
Example 5-45.

Example 5-43. Table Look-up Operations in C Code

// pIn1 integer input arrays.
// pOut integer output array.
// count size of array.
// LookUpTable integer values.
TABLE_SIZE size of the look-up table.
for (unsigned i=0; i < count; i++)
{ pOut[i] =

((LookUpTable[pIn1[i] % TABLE_SIZE] + pIn1[i] + 17) | 17
) % 256;

}

5-46

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
Example 5-44. Shift Techniques on Non-Vectorizable Table Look-up

int modulo[4] = {256-1, 256-1, 256-1, 256-1};
int c[4] = {17, 17, 17, 17};

mov esi, pIn1
mov ebx, pOut
mov ecx, count
mov edx, pLookUpTablePTR
movaps xmm6, modulo
movaps xmm5, c

lloop:
// vectorizable multiple consecutive data accesses

movaps xmm4, [esi] // read 4 indices from pIn1
movaps xmm7, xmm4
pand xmm7, tableSize

//Table look-up is not vectorizable, shift out one data element to look up table one by one
movd eax, xmm7 // get first index
movd xmm0, word ptr[edx + eax*4]
psrldq xmm7, 4
movd eax, xmm7 // get 2nd index
movd xmm1, word ptr[edx + eax*4]
psrldq xmm7, 4
movd eax, xmm7 // get 3rdindex
movd xmm2, word ptr[edx + eax*4]
psrldq xmm7, 4
movd eax, xmm7 // get fourth index
movd xmm3, word ptr[edx + eax*4]

//end of scalar part
//packing

movlhps xmm1,xmm3
psllq xmm1,32
movlhps xmm0,xmm2
orps xmm0,xmm1

//end of packing
(continue)
 5-47

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
//Vectorizable computation operations
paddd xmm0, xmm4 //+pIn1
paddd xmm0, xmm5 // +17
por xmm0, xmm5
andps xmm0, xmm6 //mod
movaps [ebx], xmm0

//end of vectorizable operation

add ebx, 16
add esi, 16
add edi, 16
sub ecx, 1
test ecx, ecx
jne lloop

Example 5-45. PEXTRD Techniques on Non-Vectorizable Table Look-up

int modulo[4] = {256-1, 256-1, 256-1, 256-1};
int c[4] = {17, 17, 17, 17};

mov esi, pIn1
mov ebx, pOut
mov ecx, count
mov edx, pLookUpTablePTR
movaps xmm6, modulo
movaps xmm5, c

lloop:
// vectorizable multiple consecutive data accesses

movaps xmm4, [esi] // read 4 indices from pIn1
movaps xmm7, xmm4
pand xmm7, tableSize

//Table look-up is not vectorizable, extract one data element to look up table one by one
movd eax, xmm7 // get first index
mov eax, [edx + eax*4]
movd xmm0, eax

(continue)

Example 5-44. Shift Techniques on Non-Vectorizable Table Look-up (Contd.)
5-48

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
The effectiveness of these two hand-tuning techniques on partially vectorizable code
depends on the relative cost of transforming data layout format using various forms
of pack and unpack instructions.

The shift technique requires additional instructions to pack scalar table values into an
XMM to transition into vectorized arithmetic computations. The net performance gain
or loss of this technique will vary with the characteristics of different microarchitec-
tures. The alternate PEXTRD technique uses less instruction to extract each index,
does not require extraneous packing of scalar data into packed SIMD data format to
begin vectorized arithmetic computation.

pextrd eax, xmm7, 1 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmm0, eax, 1
pextrd eax, xmm7, 2 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmm0, eax, 2
pextrd eax, xmm7, 3 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmm0, eax, 2

//end of scalar part
//packing not needed
//Vectorizable operations

paddd xmm0, xmm4 //+pIn1
paddd xmm0, xmm5 // +17
por xmm0, xmm5
andps xmm0, xmm6 //mod
movaps [ebx], xmm0

add ebx, 16
add esi, 16
add edi, 16
sub ecx, 1
test ecx, ecx
jne lloop

Example 5-45. PEXTRD Techniques on Non-Vectorizable Table Look-up (Contd.)
 5-49

OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5-50

CHAPTER 6
OPTIMIZING FOR SIMD FLOATING-POINT

APPLICATIONS

This chapter discusses rules for optimizing for the single-instruction, multiple-data
(SIMD) floating-point instructions available in SSE, SSE2 SSE3, and SSE4.1. The
chapter also provides examples that illustrate the optimization techniques for single-
precision and double-precision SIMD floating-point applications.

6.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE
The rules and suggestions in this section help optimize floating-point code containing
SIMD floating-point instructions. Generally, it is important to understand and balance
port utilization to create efficient SIMD floating-point code. Basic rules and sugges-
tions include the following:

• Follow all guidelines in Chapter 3 and Chapter 4.

• Mask exceptions to achieve higher performance. When exceptions are
unmasked, software performance is slower.

• Utilize the flush-to-zero and denormals-are-zero modes for higher performance
to avoid the penalty of dealing with denormals and underflows.

• Use the reciprocal instructions followed by iteration for increased accuracy. These
instructions yield reduced accuracy but execute much faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration.

— If near full accuracy is needed, use a Newton-Raphson iteration.

— If full accuracy is needed, then use divide and square root which provide
more accuracy, but slow down performance.

6.2 PLANNING CONSIDERATIONS
Whether adapting an existing application or creating a new one, using SIMD floating-
point instructions to achieve optimum performance gain requires programmers to
consider several issues. In general, when choosing candidates for optimization, look
for code segments that are computationally intensive and floating-point intensive.
Also consider efficient use of the cache architecture.

The sections that follow answer the questions that should be raised before imple-
mentation:

• Can data layout be arranged to increase parallelism or cache utilization?
6-1

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
• Which part of the code benefits from SIMD floating-point instructions?

• Is the current algorithm the most appropriate for SIMD floating-point instruc-
tions?

• Is the code floating-point intensive?

• Do either single-precision floating-point or double-precision floating-point
computations provide enough range and precision?

• Does the result of computation affected by enabling flush-to-zero or denormals-
to-zero modes?

• Is the data arranged for efficient utilization of the SIMD floating-point registers?

• Is this application targeted for processors without SIMD floating-point instruc-
tions?

See also: Section 4.2, “Considerations for Code Conversion to SIMD Programming.”

6.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-
POINT

Because the XMM registers used for SIMD floating-point computations are separate
registers and are not mapped to the existing x87 floating-point stack, SIMD floating-
point code can be mixed with x87 floating-point or 64-bit SIMD integer code.

With Intel Core microarchitecture, 128-bit SIMD integer instructions provides
substantially higher efficiency than 64-bit SIMD integer instructions. Software should
favor using SIMD floating-point and integer SIMD instructions with XMM registers
where possible.

6.4 SCALAR FLOATING-POINT CODE
There are SIMD floating-point instructions that operate only on the lowest order
element in the SIMD register. These instructions are known as scalar instructions.
They allow the XMM registers to be used for general-purpose floating-point computa-
tions.

In terms of performance, scalar floating-point code can be equivalent to or exceed
x87 floating-point code and has the following advantages:

• SIMD floating-point code uses a flat register model, whereas x87 floating-point
code uses a stack model. Using scalar floating-point code eliminates the need to
use FXCH instructions. These have performance limits on the Intel Pentium 4
processor.

• Mixing with MMX technology code without penalty.

• Flush-to-zero mode.

• Shorter latencies than x87 floating-point.
6-2

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
When using scalar floating-point instructions, it is not necessary to ensure that the
data appears in vector form. However, the optimizations regarding alignment, sched-
uling, instruction selection, and other optimizations covered in Chapter 3 and
Chapter 4 should be observed.

6.5 DATA ALIGNMENT
SIMD floating-point data is 16-byte aligned. Referencing unaligned 128-bit SIMD
floating-point data will result in an exception unless MOVUPS or MOVUPD (move
unaligned packed single or unaligned packed double) is used. The unaligned instruc-
tions used on aligned or unaligned data will also suffer a performance penalty relative
to aligned accesses.

See also: Section 4.4, “Stack and Data Alignment.”

6.5.1 Data Arrangement
Because SSE and SSE2 incorporate SIMD architecture, arranging data to fully use the
SIMD registers produces optimum performance. This implies contiguous data for
processing, which leads to fewer cache misses. Correct data arrangement can poten-
tially quadruple data throughput when using SSE or double throughput when using
SSE2. Performance gains can occur because four data elements can be loaded with
128-bit load instructions into XMM registers using SSE (MOVAPS). Similarly, two data
elements can loaded with 128-bit load instructions into XMM registers using SSE2
(MOVAPD).

Refer to the Section 4.4, “Stack and Data Alignment,” for data arrangement recom-
mendations. Duplicating and padding techniques overcome misalignment problems
that occur in some data structures and arrangements. This increases the data space
but avoids penalties for misaligned data access.

For some applications (for example: 3D geometry), traditional data arrangement
requires some changes to fully utilize the SIMD registers and parallel techniques.
Traditionally, the data layout has been an array of structures (AoS). To fully utilize the
SIMD registers in such applications, a new data layout has been proposed — a struc-
ture of arrays (SoA) resulting in more optimized performance.

6.5.1.1 Vertical versus Horizontal Computation
The majority of the floating-point arithmetic instructions in SSE/SSE2 provide
greater performance gain on vertical data processing for parallel data elements. This
means each element of the destination is the result of an arithmetic operation
performed from the source elements in the same vertical position (Figure 6-1).

To supplement these homogeneous arithmetic operations on parallel data elements,
SSE and SSE2 provides data movement instructions (e.g., SHUFPS, UNPCKLPS,
6-3

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
UNPCKHPS, MOVLHPS, MOVHLPS, etc) that facilitate moving data elements
horizontally.

The organization of structured data have a significant impact on SIMD programming
efficiency and performance. This can be illustrated using two common type of data
structure organizations:

• Array of Structure: This refers to the arrangement of an array of data structures.
Within the data structure, each member is a scalar. This is shown in Figure 6-2.
Typically, a repetitive sequence of computation is applied to each element of an
array, i.e. a data structure. Computational sequence for the scalar members of
the structure is likely to be non-homogeneous within each iteration. AoS is
generally associated with a horizontal computation model.

• Structure of Array: Here, each member of the data structure is an array. Each
element of the array is a scalar. This is shown Table 6-1. Repetitive computa-
tional sequence is applied to scalar elements and homogeneous operation can be
easily achieved across consecutive iterations within the same structural member.
Consequently, SoA is generally amenable to the vertical computation model.

Figure 6-1. Homogeneous Operation on Parallel Data Elements

Figure 6-2. Horizontal Computation Model

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X 1OP Y1 X0 OP Y0

OPOPOPOP

X Y Z W
6-4

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Using SIMD instructions with vertical computation on SOA arrangement can achieve
higher efficiency and performance than AOS and horizontal computation. This can be
seen with dot-product operation on vectors. The dot product operation on SoA
arrangement is shown in Figure 6-3.

Table 6-1. SoA Form of Representing Vertices Data

Vx array X1 X2 X3 X4 Xn

Vy array Y1 Y2 Y3 Y4 Yn

Vz array Z1 Z2 Z3 Y4 Zn

Vw array W1 W2 W3 W4 Wn

Figure 6-3. Dot Product Operation

OM15168

X

+

X

+

X

+

X

=

X1 X2 X3 X4

Fx Fx Fx Fx

Y1 Y2 Y3 Y4

Fy Fy Fy Fy

Z1 Z2 Z3 Z4

Fz Fz Fz Fz

W 1 W 2 W 3 W 4

Fw Fw Fw Fw

R1 R2 R3 R4
6-5

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-1 shows how one result would be computed for seven instructions if the
data were organized as AoS and using SSE alone: four results would require 28
instructions.

Now consider the case when the data is organized as SoA. Example 6-2 demon-
strates how four results are computed for five instructions.

For the most efficient use of the four component-wide registers, reorganizing the
data into the SoA format yields increased throughput and hence much better perfor-
mance for the instructions used.

As seen from this simple example, vertical computation can yield 100% use of the
available SIMD registers to produce four results. (The results may vary for other situ-
ations.) If the data structures are represented in a format that is not “friendly” to
vertical computation, it can be rearranged “on the fly” to facilitate better utilization of
the SIMD registers. This operation is referred to as “swizzling” operation and the
reverse operation is referred to as “deswizzling.”

6.5.1.2 Data Swizzling
Swizzling data from SoA to AoS format can apply to a number of application domains,
including 3D geometry, video and imaging. Two different swizzling techniques can be
adapted to handle floating-point and integer data. Example 6-3 illustrates a swizzle
function that uses SHUFPS, MOVLHPS, MOVHLPS instructions.

Example 6-1. Pseudocode for Horizontal (xyz, AoS) Computation

mulps ; x*x', y*y', z*z'
movaps ; reg->reg move, since next steps overwrite
shufps ; get b,a,d,c from a,b,c,d
addps ; get a+b,a+b,c+d,c+d
movaps ; reg->reg move
shufps ; get c+d,c+d,a+b,a+b from prior addps
addps ; get a+b+c+d,a+b+c+d,a+b+c+d,a+b+c+d

Example 6-2. Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

mulps ; x*x' for all 4 x-components of 4 vertices
mulps ; y*y' for all 4 y-components of 4 vertices
mulps ; z*z' for all 4 z-components of 4 vertices
addps ; x*x' + y*y'
addps ; x*x'+y*y'+z*z'
6-6

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-4 shows a similar data-swizzling algorithm using SIMD instructions in the
integer domain.

Example 6-3. Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPS

typedef struct _VERTEX_AOS {
float x, y, z, color;

} Vertex_aos; // AoS structure declaration
typedef struct _VERTEX_SOA {

float x[4], float y[4], float z[4];
float color[4];

} Vertex_soa; // SoA structure declaration
void swizzle_asm (Vertex_aos *in, Vertex_soa *out)
{
// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-
// SWIZZLE XYZW --> XXXX
asm {

mov ebx, in // get structure addresses
mov edx, out

movaps xmm1, [ebx] // x4 x3 x2 x1
movaps xmm2, [ebx + 16] // y4 y3 y2 y1
movaps xmm3, [ebx + 32] // z4 z3 z2 z1
movaps xmm4, [ebx + 48] // w4 w3 w2 w1
movaps xmm7, xmm4 // xmm7= w4 z4 y4 x4
movhlps xmm7, xmm3 // xmm7= w4 z4 w3 z3
movaps xmm6, xmm2 // xmm6= w2 z2 y2 x2
movlhps xmm3, xmm4 // xmm3= y4 x4 y3 x3
movhlps xmm2, xmm1 // xmm2= w2 z2 w1 z1
movlhps xmm1, xmm6 // xmm1= y2 x2 y1 x1

movaps xmm6, xmm2// xmm6= w2 z2 w1 z1
movaps xmm5, xmm1// xmm5= y2 x2 y1 x1
shufps xmm2, xmm7, 0xDD // xmm2= w4 w3 w2 w1 => v4
shufps xmm1, xmm3, 0x88 // xmm1= x4 x3 x2 x1 => v1
shufps xmm5, xmm3, 0xDD // xmm5= y4 y3 y2 y1 => v2
shufps xmm6, xmm7, 0x88 // xmm6= z4 z3 z2 z1 => v3

movaps [edx], xmm1 // store X
movaps [edx+16], xmm5 // store Y
movaps [edx+32], xmm6 // store Z
movaps [edx+48], xmm2 // store W

}
}

6-7

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
The technique in Example 6-3 (loading 16 bytes, using SHUFPS and copying halves
of XMM registers) is preferable over an alternate approach of loading halves of each
vector using MOVLPS/MOVHPS on newer microarchitectures. This is because loading
8 bytes using MOVLPS/MOVHPS can create code dependency and reduce the
throughput of the execution engine.

The performance considerations of Example 6-3 and Example 6-4 often depends on
the characteristics of each microarchitecture. For example, in Intel Core microarchi-
tecture, executing a SHUFPS tend to be slower than a PUNPCKxxx instruction. In
Enhanced Intel Core microarchitecture, SHUFPS and PUNPCKxxx instruction all
executes with 1 cycle throughput due to the 128-bit shuffle execution unit. Then the
next important consideration is that there is only one port that can execute
PUNPCKxxx vs. MOVLHPS/MOVHLPS can execute on multiple ports. The performance
of both techniques improves on Intel Core microarchitecture over previous microar-

Example 6-4. Swizzling Data Using UNPCKxxx Instructions

void swizzle_asm (Vertex_aos *in, Vertex_soa *out)
{
// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-
// SWIZZLE XYZW --> XXXX
asm {

mov ebx, in // get structure addresses
mov edx, out

movdqa xmm1, [ebx + 0*16] //w0 z0 y0 x0
movdqa xmm2, [ebx + 1*16] //w1 z1 y1 x1
movdqa xmm3, [ebx + 2*16] //w2 z2 y2 x2
movdqa xmm4, [ebx + 3*16] //w3 z3 y3 x3
movdqa xmm5, xmm1
punpckldq xmm1, xmm2 // y1 y0 x1 x0
punpckhdq xmm5, xmm2 // w1 w0 z1 z0
movdqa xmm2, xmm3
punpckldq xmm3, xmm4 // y3 y2 x3 x2
punpckldq xmm2, xmm4 // w3 w2 z3 z2
movdqa xmm4, xmm1
punpcklqdq xmm1, xmm3 // x3 x2 x1 x0
punpckhqdq xmm4, xmm3 // y3 y2 y1 y0
movdqa xmm3, xmm5
punpcklqdq xmm5, xmm2 // z3 z2 z1 z0
punpckhqdq xmm3, xmm2 // w3 w2 w1 w0

 movdqa [edx+0*16], xmm1 //x3 x2 x1 x0
movdqa [edx+1*16], xmm4 //y3 y2 y1 y0
movdqa [edx+2*16], xmm5 //z3 z2 z1 z0
movdqa [edx+3*16], xmm3 //w3 w2 w1 w0

}

6-8

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
chitectures due to 3 ports for executing SIMD instructions. Both techniques improves
further on Enhanced Intel Core microarchitecture due to the 128-bit shuffle unit.

6.5.1.3 Data Deswizzling
In the deswizzle operation, we want to arrange the SoA format back into AoS format
so the XXXX, YYYY, ZZZZ are rearranged and stored in memory as XYZ. Example 6-5
illustrates one deswizzle function for floating-point data:

Example 6-6 shows a similar deswizzle function using SIMD integer instructions.
Both of these techniques demonstrate loading 16 bytes and performing horizontal
data movement in registers. This approach is likely to be more efficient than alterna-

Example 6-5. Deswizzling Single-Precision SIMD Data

void deswizzle_asm(Vertex_soa *in, Vertex_aos *out)
{
 __asm {

mov ecx, in // load structure addresses
mov edx, out
movaps xmm0, [ecx] //x3 x2 x1 x0
movaps xmm1, [ecx + 16] //y3 y2 y1 y0
movaps xmm2, [ecx + 32] //z3 z2 z1 z0
movaps xmm3, [ecx + 48] //w3 w2 w1 w0

movaps xmm5, xmm0
movaps xmm7, xmm2
unpcklps xmm0, xmm1 // y1 x1 y0 x0
unpcklps xmm2, xmm3 // w1 z1 w0 z0
movdqa xmm4, xmm0
movlhps xmm0, xmm2 // w0 z0 y0 x0
movhlps xmm4, xmm2 // w1 z1 y1 x1

unpckhps xmm5, xmm1 // y3 x3 y2 x2
unpckhps xmm7, xmm3 // w3 z3 w2 z2
movdqa xmm6, xmm5
movlhps xmm5, xmm7 // w2 z2 y2 x2
movhlps xmm6, xmm7 // w3 z3 y3 x3
movaps [edx+0*16], xmm0 //w0 z0 y0 x0
movaps [edx+1*16], xmm4 //w1 z1 y1 x1
movaps [edx+2*16], xmm5 //w2 z2 y2 x2
movaps [edx+3*16], xmm6 //w3 z3 y3 x3

 }
}

6-9

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
tive techniques of storing 8-byte halves of XMM registers using MOVLPS and
MOVHPS.

6.5.1.4 Horizontal ADD Using SSE
Although vertical computations generally make use of SIMD performance better than
horizontal computations, in some cases, code must use a horizontal operation.

Example 6-6. Deswizzling Data Using SIMD Integer Instructions

void deswizzle_rgb(Vertex_soa *in, Vertex_aos *out)
{
//---deswizzle rgb---
// assume: xmm1=rrrr, xmm2=gggg, xmm3=bbbb, xmm4=aaaa
__asm {

mov ecx, in // load structure addresses
mov edx, out
movdqa xmm0, [ecx] // load r4 r3 r2 r1 => xmm1
movdqa xmm1, [ecx+16] // load g4 g3 g2 g1 => xmm2

movdqa xmm2, [ecx+32] // load b4 b3 b2 b1 => xmm3
movdqa xmm3, [ecx+48] // load a4 a3 a2 a1 => xmm4

// Start deswizzling here
movdqa xmm5, xmm0
movdqa xmm7, xmm2
punpckldq xmm0, xmm1 // g2 r2 g1 r1
punpckldq xmm2, xmm3 // a2 b2 a1 b1
movdqa xmm4, xmm0
punpcklqdq xmm0, xmm2 // a1 b1 g1 r1 => v1
punpckhqdq xmm4, xmm2 // a2 b2 g2 r2 => v2
punpckhdq xmm5, xmm1 // g4 r4 g3 r3
punpckhdq xmm7, xmm3 // a4 b4 a3 b3
movdqa xmm6, xmm5
punpcklqdq xmm5, xmm7 // a3 b3 g3 r3 => v3
punpckhqdq xmm6, xmm7 // a4 b4 g4 r4 => v4

movdqa [edx], xmm0 // v1

movdqa [edx+16], xmm4 // v2
movdqa [edx+32], xmm5 // v3
movdqa [edx+48], xmm6 // v4

// DESWIZZLING ENDS HERE
 }
}

6-10

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
MOVLHPS/MOVHLPS and shuffle can be used to sum data horizontally. For example,
starting with four 128-bit registers, to sum up each register horizontally while having
the final results in one register, use the MOVLHPS/MOVHLPS to align the upper and
lower parts of each register. This allows you to use a vertical add. With the resulting
partial horizontal summation, full summation follows easily.

Figure 6-4 presents a horizontal add using MOVHLPS/MOVLHPS. Example 6-7 and
Example 6-8 provide the code for this operation.

Figure 6-4. Horizontal Add Using MOVHLPS/MOVLHPS

OM15169

A1+A2+A3+A4 B1+B2+B3+B4 C1+C2+C3+C4 D1+D2+D3+D4

A1+A3 B1+B3 C1+C3 D1+D3 A2+A4 B2+B4 C2+C4 D2+D4

A1+A3 A2+A4 B1+B3 B2+B4 C1+C3 C2+C4 D1+D3 D2+D4

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

A1 A2 B1 B2 A3 A4 B3 B4 C1 C2 D1 D2 C3 C4 D3 D4

ADDPS

SHUFPS SHUFPS

ADDPS ADDPS

MOVLHPS MOVLHPS

xmm0 xmm2

MOVHLPS MOVHLPS

xmm1 xmm3
6-11

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-7. Horizontal Add Using MOVHLPS/MOVLHPS

void horiz_add(Vertex_soa *in, float *out) {
 __asm {

mov ecx, in // load structure addresses
mov edx, out
movaps xmm0, [ecx] // load A1 A2 A3 A4 => xmm0
movaps xmm1, [ecx+16] // load B1 B2 B3 B4 => xmm1
movaps xmm2, [ecx+32] // load C1 C2 C3 C4 => xmm2
movaps xmm3, [ecx+48] // load D1 D2 D3 D4 => xmm3

 // START HORIZONTAL ADD
movaps xmm5, xmm0 // xmm5= A1,A2,A3,A4
movlhps xmm5, xmm1 // xmm5= A1,A2,B1,B2
movhlps xmm1, xmm0 // xmm1= A3,A4,B3,B4
addps xmm5, xmm1 // xmm5= A1+A3,A2+A4,B1+B3,B2+B4

movaps xmm4, xmm2
movlhps xmm2, xmm3 // xmm2= C1,C2,D1,D2
movhlps xmm3, xmm4 // xmm3= C3,C4,D3,D4
addps xmm3, xmm2 // xmm3= C1+C3,C2+C4,D1+D3,D2+D4
movaps xmm6, xmm3 // xmm6= C1+C3,C2+C4,D1+D3,D2+D4
shufps xmm3, xmm5, 0xDD

//xmm6=A1+A3,B1+B3,C1+C3,D1+D3

shufps xmm5, xmm6, 0x88
// xmm5= A2+A4,B2+B4,C2+C4,D2+D4

addps xmm6, xmm5 // xmm6= D,C,B,A

 // END HORIZONTAL ADD
 movaps [edx], xmm6
 }
}

Example 6-8. Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS

void horiz_add_intrin(Vertex_soa *in, float *out)
{
 __m128 v, v2, v3, v4;
 __m128 tmm0,tmm1,tmm2,tmm3,tmm4,tmm5,tmm6;

 // Temporary variables
 tmm0 = _mm_load_ps(in->x); // tmm0 = A1 A2 A3 A4
6-12

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions
The CVTTPS2PI and CVTTSS2SI instructions encode the truncate/chop rounding
mode implicitly in the instruction. They take precedence over the rounding mode
specified in the MXCSR register. This behavior can eliminate the need to change the
rounding mode from round-nearest, to truncate/chop, and then back to round-
nearest to resume computation.

Avoid frequent changes to the MXCSR register since there is a penalty associated
with writing this register. Typically, when using CVTTPS2P/CVTTSS2SI, rounding
control in MXCSR can always be set to round-nearest.

6.5.3 Flush-to-Zero and Denormals-are-Zero Modes
The flush-to-zero (FTZ) and denormals-are-zero (DAZ) modes are not compatible
with the IEEE Standard 754. They are provided to improve performance for applica-
tions where underflow is common and where the generation of a denormalized result
is not necessary.

See also: Section 3.8.2, “Floating-point Modes and Exceptions.”

tmm1 = _mm_load_ps(in->y); // tmm1 = B1 B2 B3 B4
tmm2 = _mm_load_ps(in->z); // tmm2 = C1 C2 C3 C4
tmm3 = _mm_load_ps(in->w); // tmm3 = D1 D2 D3 D4
tmm5 = tmm0; // tmm0 = A1 A2 A3 A4
tmm5 = _mm_movelh_ps(tmm5, tmm1); // tmm5 = A1 A2 B1 B2
tmm1 = _mm_movehl_ps(tmm1, tmm0); // tmm1 = A3 A4 B3 B4
tmm5 = _mm_add_ps(tmm5, tmm1); // tmm5 = A1+A3 A2+A4 B1+B3 B2+B4
tmm4 = tmm2;

tmm2 = _mm_movelh_ps(tmm2, tmm3); // tmm2 = C1 C2 D1 D2
tmm3 = _mm_movehl_ps(tmm3, tmm4); // tmm3 = C3 C4 D3 D4
tmm3 = _mm_add_ps(tmm3, tmm2); // tmm3 = C1+C3 C2+C4 D1+D3 D2+D4
tmm6 = tmm3; // tmm6 = C1+C3 C2+C4 D1+D3 D2+D4
tmm6 = _mm_shuffle_ps(tmm3, tmm5, 0xDD);

 // tmm6 = A1+A3 B1+B3 C1+C3 D1+D3
tmm5 = _mm_shuffle_ps(tmm5, tmm6, 0x88);

 // tmm5 = A2+A4 B2+B4 C2+C4 D2+D4
tmm6 = _mm_add_ps(tmm6, tmm5);

 // tmm6 = A1+A2+A3+A4 B1+B2+B3+B4
 // C1+C2+C3+C4 D1+D2+D3+D4

 _mm_store_ps(out, tmm6);
}

Example 6-8. Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS (Contd.)
6-13

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES
Pentium M, Intel Core Solo and Intel Core Duo processors have a different microar-
chitecture than Intel NetBurst microarchitecture. Intel Core microarchitecture offers
significantly more efficient SIMD floating-point capability than previous microarchi-
tectures. In addition, instruction latency and throughput of SSE3 instructions are
significantly improved in Intel Core microarchitecture over previous microarchitec-
tures.

6.6.1 SIMD Floating-point Programming Using SSE3
SSE3 enhances SSE and SSE2 with nine instructions targeted for SIMD floating-point
programming. In contrast to many SSE/SSE2 instructions offering homogeneous
arithmetic operations on parallel data elements and favoring the vertical computation
model, SSE3 offers instructions that performs asymmetric arithmetic operation and
arithmetic operation on horizontal data elements.

ADDSUBPS and ADDSUBPD are two instructions with asymmetric arithmetic
processing capability (see Figure 6-5). HADDPS, HADDPD, HSUBPS and HSUBPD
offers horizontal arithmetic processing capability (see Figure 6-6). In addition:
MOVSLDUP, MOVSHDUP and MOVDDUP load data from memory (or XMM register)
and replicate data elements at once.

Figure 6-5. Asymmetric Arithmetic Operation of the SSE3 Instruction

X1 X0

 X1 + Y1 X0 -Y0

SUB

Y1 Y0

ADD
6-14

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.6.1.1 SSE3 and Complex Arithmetics
The flexibility of SSE3 in dealing with AOS-type of data structure can be demon-
strated by the example of multiplication and division of complex numbers. For
example, a complex number can be stored in a structure consisting of its real and
imaginary part. This naturally leads to the use of an array of structure. Example 6-9
demonstrates using SSE3 instructions to perform multiplications of single-precision
complex numbers. Example 6-10 demonstrates using SSE3 instructions to perform
division of complex numbers.

Figure 6-6. Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD

Example 6-9. Multiplication of Two Pair of Single-precision Complex Number

// Multiplication of (ak + i bk) * (ck + i dk)
// a + i b can be stored as a data structure
movsldup xmm0, Src1; load real parts into the destination,
 ; a1, a1, a0, a0

movaps xmm1, src2; load the 2nd pair of complex values,
 ; i.e. d1, c1, d0, c0
mulps xmm0, xmm1; temporary results, a1d1, a1c1, a0d0,
 ; a0c0

shufps xmm1, xmm1, b1; reorder the real and imaginary
 ; parts, c1, d1, c0, d0
movshdup xmm2, Src1; load the imaginary parts into the
 ; destination, b1, b1, b0, b0

X1 X0

 Y0 + Y1 X0 + X1

ADD

Y1 Y0

ADD
6-15

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
In both examples, the complex numbers are store in arrays of structures.
MOVSLDUP, MOVSHDUP and the asymmetric ADDSUBPS allow performing complex
arithmetics on two pair of single-precision complex number simultaneously and
without any unnecessary swizzling between data elements.

Due to microarchitectural differences, software should implement multiplication of
complex double-precision numbers using SSE3 instructions on processors based on

mulps xmm2, xmm1; temporary results, b1c1, b1d1, b0c0,
 ; b0d0
addsubps xmm0, xmm2; b1c1+a1d1, a1c1 -b1d1, b0c0+a0d0,
 ; a0c0-b0d0

Example 6-10. Division of Two Pair of Single-precision Complex Numbers

// Division of (ak + i bk) / (ck + i dk)
movshdup xmm0, Src1; load imaginary parts into the

; destination, b1, b1, b0, b0
movaps xmm1, src2; load the 2nd pair of complex values,

; i.e. d1, c1, d0, c0
mulps xmm0, xmm1; temporary results, b1d1, b1c1, b0d0,

; b0c0

shufps xmm1, xmm1, b1; reorder the real and imaginary
; parts, c1, d1, c0, d0

movsldup xmm2, Src1; load the real parts into the
; destination, a1, a1, a0, a0

mulps xmm2, xmm1; temp results, a1c1, a1d1, a0c0, a0d0
addsubps xmm0, xmm2; a1c1+b1d1, b1c1-a1d1, a0c0+b0d0,

; b0c0-a0d0

mulps xmm1, xmm1 ; c1c1, d1d1, c0c0, d0d0
movps xmm2, xmm1; c1c1, d1d1, c0c0, d0d0
shufps xmm2, xmm2, b1; d1d1, c1c1, d0d0, c0c0
addps xmm2, xmm1; c1c1+d1d1, c1c1+d1d1, c0c0+d0d0,

; c0c0+d0d0

divps xmm0, xmm2
shufps xmm0, xmm0, b1 ; (b1c1-a1d1)/(c1c1+d1d1),

; (a1c1+b1d1)/(c1c1+d1d1),
; (b0c0-a0d0)/(c0c0+d0d0),
; (a0c0+b0d0)/(c0c0+d0d0)

Example 6-9. Multiplication of Two Pair of Single-precision Complex Number
6-16

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Intel Core microarchitecture. In Intel Core Duo and Intel Core Solo processors, soft-
ware should use scalar SSE2 instructions to implement double-precision complex
multiplication. This is because the data path between SIMD execution units is 128
bits in Intel Core microarchitecture, and only 64 bits in previous microarchitectures.
Processors based on the Enhanced Intel Core microarchitecture generally executes
SSE3 instruction more efficiently than previous microarchitectures, they also have a
128-bit shuffle unit that will benefit complex arithmetic operations further than Intel
Core microarchitecture did.

Example 6-11 shows two equivalent implementations of double-precision complex
multiply of two pair of complex numbers using vector SSE2 versus SSE3 instructions.
Example 6-12 shows the equivalent scalar SSE2 implementation.

Example 6-11. Double-Precision Complex Multiplication of Two Pairs
SSE2 Vector Implementation SSE3 Vector Implementation
movapd xmm0, [eax] ;y x
movapd xmm1, [eax+16] ;w z
unpcklpd xmm1, xmm1 ;z z
movapd xmm2, [eax+16] ;w z
unpckhpd xmm2, xmm2 ;w w
mulpd xmm1, xmm0 ;z*y z*x
mulpd xmm2, xmm0 ;w*y w*x
xorpd xmm2, xmm7 ;-w*y +w*x
shufpd xmm2, xmm2,1 ;w*x -w*y
addpd xmm2, xmm1 ;z*y+w*x z*x-w*y
movapd [ecx], xmm2

movapd xmm0, [eax] ;y x
movapd xmm1, [eax+16] ;z z
movapd xmm2, xmm1
unpcklpd xmm1, xmm1
unpckhpd xmm2, xmm2
mulpd xmm1, xmm0 ;z*y z*x
mulpd xmm2, xmm0 ;w*y w*x
shufpd xmm2, xmm2, 1 ;w*x w*y
addsubpd xmm1, xmm2 ;w*x+z*y z*x-w*y
movapd [ecx], xmm1

Example 6-12. Double-Precision Complex Multiplication Using Scalar SSE2

movsd xmm0, [eax] ;x
movsd xmm5, [eax+8] ;y
movsd xmm1, [eax+16] ;z
movsd xmm2, [eax+24] ;w

movsd xmm3, xmm1 ;z
movsd xmm4, xmm2 ;w
mulsd xmm1, xmm0 ;z*x
mulsd xmm2, xmm0 ;w*x
mulsd xmm3, xmm5 ;z*y
6-17

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor
Most packed SIMD floating-point code will speed up on Intel Core Solo processors
relative to Pentium M processors. This is due to improvement in decoding packed
SIMD instructions.

The improvement of packed floating-point performance on the Intel Core Solo
processor over Pentium M processor depends on several factors. Generally, code that
is decoder-bound and/or has a mixture of integer and packed floating-point instruc-
tions can expect significant gain. Code that is limited by execution latency and has a
“cycles per instructions” ratio greater than one will not benefit from decoder
improvement.

When targeting complex arithmetics on Intel Core Solo and Intel Core Duo proces-
sors, using single-precision SSE3 instructions can deliver higher performance than
alternatives. On the other hand, tasks requiring double-precision complex arith-
metics may perform better using scalar SSE2 instructions on Intel Core Solo and
Intel Core Duo processors. This is because scalar SSE2 instructions can be
dispatched through two ports and executed using two separate floating-point units.

Packed horizontal SSE3 instructions (HADDPS and HSUBPS) can simplify the code
sequence for some tasks. However, these instruction consist of more than five micro-
ops on Intel Core Solo and Intel Core Duo processors. Care must be taken to ensure
the latency and decoding penalty of the horizontal instruction does not offset any
algorithmic benefits.

6.6.2 Dot Product and Horizontal SIMD Instructions
Sometimes the AOS type of data organization are more natural in many algebraic
formula, one common example is the dot product operation. Dot product operation
can be implemented using SSE/SSE2 instruction sets. SSE3 added a few horizontal
add/subtract instructions for applications that rely on the horizontal computation
model. SSE4.1 provides additional enhancement with instructions that are capable of
directly evaluating dot product operations of vectors of 2, 3 or 4 components.

mulsd xmm4, xmm5 ;w*y
subsd xmm1, xmm4 ;z*x - w*y
addsd xmm3, xmm2 ;z*y + w*x
movsd [ecx], xmm1
movsd [ecx+8], xmm3

Example 6-12. Double-Precision Complex Multiplication Using Scalar SSE2 (Contd.)
6-18

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-13, Example 6-14, and Example 6-15 compare the basic code sequence
to compute one dot-product result for a pair of vectors.

The selection of an optimal sequence in conjunction with an application’s memory
access patterns may favor different approaches. For example, if each dot product
result is immediately consumed by additional computational sequences, it may be
more optimal to compare the relative speed of these different approaches. If dot
products can be computed for an array of vectors and kept in the cache for subse-
quent computations, then more optimal choice may depend on the relative
throughput of the sequence of instructions.

Example 6-13. Dot Product of Vector Length 4 Using SSE/SSE2
Using SSE/SSE2 to compute one dot product

movaps xmm0, [eax] // a4, a3, a2, a1
mulps xmm0, [eax+16] // a4*b4, a3*b3, a2*b2, a1*b1
movhlps xmm1, xmm0 // X, X, a4*b4, a3*b3, upper half not needed
addps xmm0, xmm1 // X, X, a2*b2+a4*b4, a1*b1+a3*b3,
pshufd xmm1, xmm0, 1 // X, X, X, a2*b2+a4*b4
addss xmm0, xmm1 // a1*b1+a3*b3+a2*b2+a4*b4
movss [ecx], xmm0

Example 6-14. Dot Product of Vector Length 4 Using SSE3
Using SSE3 to compute one dot product

movaps xmm0, [eax]
mulps xmm0, [eax+16] // a4*b4, a3*b3, a2*b2, a1*b1
haddps xmm0, xmm0 // a4*b4+a3*b3, a2*b2+a1*b1, a4*b4+a3*b3, a2*b2+a1*b1
movaps xmm1, xmm0 // a4*b4+a3*b3, a2*b2+a1*b1, a4*b4+a3*b3, a2*b2+a1*b1
psrlq xmm0, 32 // 0, a4*b4+a3*b3, 0, a4*b4+a3*b3
addss xmm0, xmm1 // -, -, -, a1*b1+a3*b3+a2*b2+a4*b4
movss [eax], xmm0

Example 6-15. Dot Product of Vector Length 4 Using SSE4.1
Using SSE4.1 to compute one dot product

movaps xmm0, [eax]
dpps xmm0, [eax+16], 0xf1 // 0, 0, 0, a1*b1+a3*b3+a2*b2+a4*b4
movss [eax], xmm0
6-19

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
In Intel Core microarchitecture, Example 6-14 has higher throughput than
Example 6-13. Due to the relatively longer latency of HADDPS, the speed of
Example 6-14 is slightly slower than Example 6-13.

In Enhanced Intel Core microarchitecture, Example 6-15 is faster in both speed and
throughput than Example 6-13 and Example 6-14. Although the latency of DPPS is
also relatively long, it is compensated by the reduction of number of instructions in
Example 6-15 to do the same amount of work.

Unrolling can further improve the throughput of each of three dot product implemen-
tations. Example 6-16 shows two unrolled versions using the basic SSE2 and SSE3
sequences. The SSE4.1 version can also be unrolled and using INSERTPS to pack 4
dot-product results.

Example 6-16. Unrolled Implementation of Four Dot Products
SSE2 Implementation SSE3 Implementation

movaps xmm0, [eax]
mulps xmm0, [eax+16]
;w0*w1 z0*z1 y0*y1 x0*x1
movaps xmm2, [eax+32]
mulps xmm2, [eax+16+32]
;w2*w3 z2*z3 y2*y3 x2*x3
movaps xmm3, [eax+64]
mulps xmm3, [eax+16+64]
;w4*w5 z4*z5 y4*y5 x4*x5
movaps xmm4, [eax+96]
mulps xmm4, [eax+16+96]
;w6*w7 z6*z7 y6*y7 x6*x7

movaps xmm0, [eax]
mulps xmm0, [eax+16]
movaps xmm1, [eax+32]
mulps xmm1, [eax+16+32]
movaps xmm2, [eax+64]
mulps xmm2, [eax+16+64]
movaps xmm3, [eax+96]
mulps xmm3, [eax+16+96]
haddps xmm0, xmm1
haddps xmm2, xmm3
haddps xmm0, xmm2
movaps [ecx], xmm0
6-20

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.6.3 Vector Normalization
Normalizing vectors is a common operation in many floating-point applications.
Example 6-17 shows an example in C of normalizing an array of (x, y, z) vectors.

Example 6-18 shows an assembly sequence that normalizes the x, y, z components
of a vector.

movaps xmm1, xmm0
unpcklps xmm0, xmm2
; y2*y3 y0*y1 x2*x3 x0*x1
unpckhps xmm1, xmm2
; w2*w3 w0*w1 z2*z3 z0*z1
movaps xmm5, xmm3
unpcklps xmm3, xmm4
; y6*y7 y4*y5 x6*x7 x4*x5
unpckhps xmm5, xmm4
; w6*w7 w4*w5 z6*z7 z4*z5

addps xmm0, xmm1
addps xmm5, xmm3
movaps xmm1, xmm5
movhlps xmm1, xmm0
movlhps xmm0, xmm5
addps xmm0, xmm1
movaps [ecx], xmm0

Example 6-17. Normalization of an Array of Vectors
for (i=0;i<CNT;i++)
{ float size = nodes[i].vec.dot();

if (size != 0.0)
{ size = 1.0f/sqrtf(size); }
else
{ size = 0.0; }
nodes[i].vec.x *= size;
nodes[i].vec.y *= size;
nodes[i].vec.z *= size;

}

Example 6-16. Unrolled Implementation of Four Dot Products (Contd.)
SSE2 Implementation SSE3 Implementation
6-21

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-19 shows an assembly sequence using SSE4.1 to normalizes the x, y, z
components of a vector.

Example 6-18. Normalize (x, y, z) Components of an Array of Vectors Using SSE2

Vec3 *p = &nodes[i].vec;
__asm
{ mov eax, p

xorps xmm2, xmm2
movups xmm1, [eax] // loads the (x, y, z) of input vector plus x of next vector
movaps xmm7, xmm1 // save a copy of data from memory (to restore the unnormalized

value)
movaps xmm5, _mask // mask to select (x, y, z) values from an xmm register to normalize
andps xmm1, xmm5 // mask 1st 3 elements
movaps xmm6, xmm1 // save a copy of (x, y, z) to compute normalized vector later
mulps xmm1,xmm1 // 0, z*z, y*y, x*x
pshufd xmm3, xmm1, 0x1b // x*x, y*y, z*z, 0
addps xmm1, xmm3 // x*x, z*z+y*y, z*z+y*y, x*x
pshufd xmm3, xmm1, 0x41 // z*z+y*y, x*x, x*x, z*z+y*y
addps xmm1, xmm3 // x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z
comisd xmm1, xmm2 // compare size to 0
jz zero
movaps xmm3, xmm4// preloaded unitary vector (1.0, 1.0, 1.0, 1.0)
sqrtps xmm1, xmm1
divps xmm3, xmm1
jmp store

zero:
movaps xmm3, xmm2

store:

mulps xmm3, xmm6 //normalize the vector in the lower 3 elements
andnps xmm5, xmm7 // mask off the lower 3 elements to keep the un-normalized value
orps xmm3, xmm5 // order the un-normalized component after the normalized vector
movaps [eax], xmm3 // writes normalized x, y, z; followed by unmodified value
6-22

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
In Example 6-18 and Example 6-19, the throughput of these instruction sequences
are basically limited by the long-latency instructions of DIVPS and SQRTPS. In
Example 6-19, the use of DPPS replaces eight SSE2 instructions to evaluate and
broadcast the dot-product result to four elements of an XMM register. This could
result in improvement of the relative speed of Example 6-19 over Example 6-18.

6.6.4 Using Horizontal SIMD Instruction Sets and Data Layout
SSE and SSE2 provide packed add/subtract, multiply/divide instructions that are
ideal for situations that can take advantage of vertical computation model, such as
SOA data layout. SSE3 and SSE4.1 added horizontal SIMD instructions including
horizontal add/subtract, dot-product operations. These more recent SIMD extensions
provide tools to solve problems involving data layouts or operations that do not
conform to the vertical SIMD computation model.

In this section, we consider a vector-matrix multiplication problem and discuss the
relevant factors for choosing various horizontal SIMD instructions.

Example 6-20 shows the vector-matrix data layout in AOS, where the input and out
vectors are stored as an array of structure.

Example 6-19. Normalize (x, y, z) Components of an Array of Vectors Using SSE4.1
Vec3 *p = &nodes[i].vec;
__asm
{ mov eax, p

xorps xmm2, xmm2
movups xmm1, [eax] // loads the (x, y, z) of input vector plus x of next vector
movaps xmm7, xmm1 // save a copy of data from memory
dpps xmm1, xmm1, 0x7f // x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z
comisd xmm1, xmm2 // compare size to 0
jz zero
movaps xmm3, xmm4// preloaded unitary vector (1.0, 1.0, 1.0, 1.0)
sqrtps xmm1, xmm1
divps xmm3, xmm1
jmp store

zero:
movaps xmm3, xmm2

store:
mulps xmm3, xmm6 //normalize the vector in the lower 3 elements
blendps xmm3, xmm7, 0x8 // copy the un-normalized component next to the normalized

vector
movaps [eax], xmm3
6-23

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-21 shows an example using HADDPS and MULPS to perform vector-
matrix multiplication with data layout in AOS. After three HADDPS completing the
summations of each output vector component, the output components are arranged
in AOS.

Example 6-20. Data Organization in Memory for AOS Vector-Matrix Multiplication
Matrix M4x4 (pMat): M00 M01 M02 M03

M10 M11 M12 M13
M20 M21 M22 M23
M30 M31 M32 M33

4 input vertices V4x1 (pVert): V0x V0y V0z V0w
V1x V1y V1z V1w
V2x V2y V2z V2w
V3x V3y V3z V3w

Ouput vertices O4x1 (pOutVert): O0x O0y O0z O0w
O1x O1y O1z O1w
O2x O2y O2z O2w
O3x O3y O3z O3w

Example 6-21. AOS Vector-Matrix Multiplication with HADDPS

mov eax, pMat
mov ebx, pVert
mov ecx, pOutVert
xor edx, edx
movaps xmm5,[eax+16] // load row M1?
movaps xmm6,[eax+2*16] // load row M2?
movaps xmm7,[eax+3*16] // load row M3?

lloop:
movaps xmm4, [ebx + edx] // load input vector
movaps xmm0, xmm4
mulps xmm0, [eax] // m03*vw, m02*vz, m01*vy, m00*vx,
movaps xmm1, xmm4
mulps xmm1, xmm5 // m13*vw, m12*vz, m11*vy, m10*vx,
6-24

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-22 shows an example using DPPS to perform vector-matrix multiplication
in AOS.

movaps xmm2, xmm4
mulps xmm2, xmm6// m23*vw, m22*vz, m21*vy, m20*vx
movaps xmm3, xmm4
mulps xmm3, xmm7 // m33*vw, m32*vz, m31*vy, m30*vx,
haddps xmm0, xmm1
haddps xmm2, xmm3
haddps xmm0, xmm2
movaps [ecx + edx], xmm0// store a vector of length 4
add edx, 16
cmp edx, top
jb lloop

Example 6-22. AOS Vector-Matrix Multiplication with DPPS

mov eax, pMat
mov ebx, pVert
mov ecx, pOutVert
xor edx, edx
movaps xmm5,[eax+16] // load row M1?
movaps xmm6,[eax+2*16] // load row M2?
movaps xmm7,[eax+3*16] // load row M3?

lloop:
movaps xmm4, [ebx + edx] // load input vector
movaps xmm0, xmm4
dpps xmm0, [eax], 0xf1// calculate dot product of length 4, store to lowest dword
movaps xmm1, xmm4
dpps xmm1, xmm5, 0xf1
movaps xmm2, xmm4
dpps xmm2, xmm6, 0xf1
movaps xmm3, xmm4
dpps xmm3, xmm7, 0xf1
movss [ecx + edx + 0*4], xmm0// store one element of vector length 4
movss [ecx + edx + 1*4], xmm1
movss [ecx + edx + 2*4], xmm2
movss [ecx + edx + 3*4], xmm3
add edx, 16
cmp edx, top
jb lloop

Example 6-21. AOS Vector-Matrix Multiplication with HADDPS
6-25

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-21 and Example 6-22 both work with AOS data layout using different
horizontal processing techniques provided by SSE3 and SSE4.1. The effectiveness of
either techniques will vary, depending on the degree of exposures of long-latency
instruction in the inner loop, the overhead/efficiency of data movement, and the
latency of HADDPS vs. DPPS.

On processors that support both HADDPS and DPPS, the choice between either tech-
nique may depend on application-specific considerations. If the output vectors are
written back to memory directly in a batch situation, Example 6-21 may be prefer-
able over Example 6-22, because the latency of DPPS is long and storing each output
vector component individually is less than ideal for storing an array of vectors.

There may be partially-vectorizable situations that the individual output vector
component is consumed immediately by other non-vectorizable computations. Then,
using DPPS producing individual component may be more suitable than dispersing
the packed output vector produced by three HADDPS as in Example 6-21.

6.6.4.1 SOA and Vector Matrix Multiplication
If the native data layout of a problem conforms to SOA, then vector-matrix multiply
can be coded using MULPS, ADDPS without using the longer-latency horizontal arith-
metic instructions, or packing scalar components into packed format
(Example 6-22). To achieve higher throughput with SOA data layout, there are either
pre-requisite data preparation or swizzling/deswizzling on-the-fly that must be
comprehended. For example, an SOA data layout for vector-matrix multiplication is
shown in Example 6-23. Each matrix element is replicated four times to minimize
data movement overhead for producing packed results.

The corresponding vector-matrix multiply example in SOA (unrolled for four iteration
of vectors) is shown in Example 6-24.

Example 6-23. Data Organization in Memory for SOA Vector-Matrix Multiplication
Matrix M16x4 (pMat):

M00 M00 M00 M00 M01 M01 M01 M01 M02 M02 M02 M02 M03 M03 M03 M03
M10 M10 M10 M10 M11 M11 M11 M11 M12 M12 M12 M12 M13 M13 M13 M13
M20 M20 M20 M20 M21 M21 M21 M21 M22 M22 M22 M22 M23 M23 M23 M23
M30 M30 M30 M30 M31 M31 M31 M31 M32 M32 M32 M32 M33 M33 M33 M33

4 input vertices V4x1 (pVert): V0x V1x V2x V3x
V0y V1y V2y V3y
V0z V1z V2z V3z
V0w V1w V2w V3w

Ouput vertices O4x1 (pOutVert): O0x O1x O2x O3x
O0y O1y O2y O3y
O0z O1z O2z O3z
O0w O1w O2w O3w
6-26

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
Example 6-24. Vector-Matrix Multiplication with Native SOA Data Layout

mov ebx, pVert
mov ecx, pOutVert
xor edx, edx
movaps xmm5,[eax+16] // load row M1?
movaps xmm6,[eax+2*16] // load row M2?
movaps xmm7,[eax+3*16] // load row M3?

lloop_vert:
mov eax, pMat
xor edi, edi
movaps xmm0, [ebx] // load V3x, V2x, V1x, V0x
movaps xmm1, [ebx] // load V3y, V2y, V1y, V0y
movaps xmm2, [ebx] // load V3z, V2z, V1z, V0z
movaps xmm3, [ebx] // load V3w, V2w, V1w, V0w

loop_mat:
movaps xmm4, [eax] // m00, m00, m00, m00,
mulps xmm4, xmm0 // m00*V3x, m00*V2x, m00*V1x, m00*V0x,
movaps xmm4, [eax + 16] // m01, m01, m01, m01,
mulps xmm5, xmm1 // m01*V3y, m01*V2y, m01*V1y, m01*V0y,
addps xmm4, xmm5
movaps xmm5, [eax + 32] // m02, m02, m02, m02,
mulps xmm5, xmm2 // m02*V3z, m02*V2z, m02*V1z, m02*V0z,
addps xmm4, xmm5
movaps xmm5, [eax + 48] // m03, m03, m03, m03,
mulps xmm5, xmm3 // m03*V3w, m03*V2w, m03*V1w, m03*V0w,
addps xmm4, xmm5
movaps [ecx + edx], xmm4
add eax, 64
add edx, 16
add edi, 1
cmp edi, 4
jb lloop_mat
add ebx, 64
cmp edx, top
jb lloop_vert
6-27

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6-28

CHAPTER 7
OPTIMIZING CACHE USAGE

Over the past decade, processor speed has increased. Memory access speed has
increased at a slower pace. The resulting disparity has made it important to tune
applications in one of two ways: either (a) a majority of data accesses are fulfilled
from processor caches, or (b) effectively masking memory latency to utilize peak
memory bandwidth as much as possible.

Hardware prefetching mechanisms are enhancements in microarchitecture to facili-
tate the latter aspect, and will be most effective when combined with software
tuning. The performance of most applications can be considerably improved if the
data required can be fetched from the processor caches or if memory traffic can take
advantage of hardware prefetching effectively.

Standard techniques to bring data into the processor before it is needed involve addi-
tional programming which can be difficult to implement and may require special
steps to prevent performance degradation. Streaming SIMD Extensions addressed
this issue by providing various prefetch instructions.

Streaming SIMD Extensions introduced the various non-temporal store instructions.
SSE2 extends this support to new data types and also introduce non-temporal store
support for the 32-bit integer registers.

This chapter focuses on:

• Hardware Prefetch Mechanism, Software Prefetch and Cacheability Instructions
— Discusses microarchitectural feature and instructions that allow you to affect
data caching in an application.

• Memory Optimization Using Hardware Prefetching, Software Prefetch and Cache-
ability Instructions — Discusses techniques for implementing memory optimiza-
tions using the above instructions.

NOTE
In a number of cases presented, the prefetching and cache utilization
described are specific to current implementations of Intel NetBurst
microarchitecture but are largely applicable for the future processors.

• Using deterministic cache parameters to manage cache hierarchy.

7.1 GENERAL PREFETCH CODING GUIDELINES
The following guidelines will help you to reduce memory traffic and utilize peak
memory system bandwidth more effectively when large amounts of data movement
must originate from the memory system:
7-1

OPTIMIZING CACHE USAGE
• Take advantage of the hardware prefetcher’s ability to prefetch data that are
accessed in linear patterns, in either a forward or backward direction.

• Take advantage of the hardware prefetcher’s ability to prefetch data that are
accessed in a regular pattern with access strides that are substantially smaller
than half of the trigger distance of the hardware prefetch (see Table 2-10).

• Use a current-generation compiler, such as the Intel C++ Compiler that supports
C++ language-level features for Streaming SIMD Extensions. Streaming SIMD
Extensions and MMX technology instructions provide intrinsics that allow you to
optimize cache utilization. Examples of Intel compiler intrinsics include:
_mm_prefetch, _mm_stream and _mm_load, _mm_sfence. For details, refer to
Intel C++ Compiler User’s Guide documentation.

• Facilitate compiler optimization by:

— Minimize use of global variables and pointers.

— Minimize use of complex control flow.

— Use the const modifier, avoid register modifier.

— Choose data types carefully (see below) and avoid type casting.

• Use cache blocking techniques (for example, strip mining) as follows:

— Improve cache hit rate by using cache blocking techniques such as strip-
mining (one dimensional arrays) or loop blocking (two dimensional arrays)

— Explore using hardware prefetching mechanism if your data access pattern
has sufficient regularity to allow alternate sequencing of data accesses (for
example: tiling) for improved spatial locality. Otherwise use PREFETCHNTA.

• Balance single-pass versus multi-pass execution:

— Single-pass, or unlayered execution passes a single data element through an
entire computation pipeline.

— Multi-pass, or layered execution performs a single stage of the pipeline on a
batch of data elements before passing the entire batch on to the next stage.

— If your algorithm is single-pass use PREFETCHNTA. If your algorithm is multi-
pass use PREFETCHT0.

• Resolve memory bank conflict issues. Minimize memory bank conflicts by
applying array grouping to group contiguously used data together or by
allocating data within 4-KByte memory pages.

• Resolve cache management issues. Minimize the disturbance of temporal data
held within processor’s caches by using streaming store instructions.

• Optimize software prefetch scheduling distance:

— Far ahead enough to allow interim computations to overlap memory access
time.

— Near enough that prefetched data is not replaced from the data cache.
7-2

OPTIMIZING CACHE USAGE
• Use software prefetch concatenation. Arrange prefetches to avoid unnecessary
prefetches at the end of an inner loop and to prefetch the first few iterations of
the inner loop inside the next outer loop.

• Minimize the number of software prefetches. Prefetch instructions are not
completely free in terms of bus cycles, machine cycles and resources; excessive
usage of prefetches can adversely impact application performance.

• Interleave prefetches with computation instructions. For best performance,
software prefetch instructions must be interspersed with computational instruc-
tions in the instruction sequence (rather than clustered together).

7.2 HARDWARE PREFETCHING OF DATA
Pentium M, Intel Core Solo, and Intel Core Duo processors and processors based on
Intel Core microarchitecture and Intel NetBurst microarchitecture provide hardware
data prefetch mechanisms which monitor application data access patterns and
prefetches data automatically. This behavior is automatic and does not require
programmer intervention.

For processors based on Intel NetBurst microarchitecture, characteristics of the
hardware data prefetcher are:

1. It requires two successive cache misses in the last level cache to trigger the
mechanism; these two cache misses must satisfy the condition that strides of
the cache misses are less than the trigger distance of the hardware prefetch
mechanism (see Table 2-10).

2. Attempts to stay 256 bytes ahead of current data access locations.

3. Follows only one stream per 4-KByte page (load or store).

4. Can prefetch up to 8 simultaneous, independent streams from eight different
4-KByte regions

5. Does not prefetch across 4-KByte boundary. This is independent of paging
modes.

6. Fetches data into second/third-level cache.

7. Does not prefetch UC or WC memory types.

8. Follows load and store streams. Issues Read For Ownership (RFO) transactions
for store streams and Data Reads for load streams.

Other than items 2 and 4 discussed above, most other characteristics also apply to
Pentium M, Intel Core Solo and Intel Core Duo processors. The hardware prefetcher
implemented in the Pentium M processor fetches data to a second level cache. It can
track 12 independent streams in the forward direction and 4 independent streams in
the backward direction. The hardware prefetcher of Intel Core Solo processor can
track 16 forward streams and 4 backward streams. On the Intel Core Duo processor,
the hardware prefetcher in each core fetches data independently.
7-3

OPTIMIZING CACHE USAGE
Hardware prefetch mechanisms of processors based on Intel Core microarchitecture
are discussed in Section 3.7.3 and Section 3.7.4. Despite differences in hardware
implementation technique, the overall benefit of hardware prefetching to software
are similar between Intel Core microarchitecture and prior microarchitectures.

7.3 PREFETCH AND CACHEABILITY INSTRUCTIONS
The PREFETCH instruction, inserted by the programmers or compilers, accesses a
minimum of two cache lines of data on the Pentium 4 processor prior to the data
actually being needed (one cache line of data on the Pentium M processor). This
hides the latency for data access in the time required to process data already resi-
dent in the cache.

Many algorithms can provide information in advance about the data that is to be
required. In cases where memory accesses are in long, regular data patterns; the
automatic hardware prefetcher should be favored over software prefetches.

The cacheability control instructions allow you to control data caching strategy in
order to increase cache efficiency and minimize cache pollution.

Data reference patterns can be classified as follows:

• Temporal — Data will be used again soon

• Spatial — Data will be used in adjacent locations (for example, on the same
cache line).

• Non-temporal — Data which is referenced once and not reused in the
immediate future (for example, for some multimedia data types, as the vertex
buffer in a 3D graphics application).

These data characteristics are used in the discussions that follow.

7.4 PREFETCH
This section discusses the mechanics of the software PREFETCH instructions. In
general, software prefetch instructions should be used to supplement the practice of
tuning an access pattern to suit the automatic hardware prefetch mechanism.

7.4.1 Software Data Prefetch
The PREFETCH instruction can hide the latency of data access in performance-critical
sections of application code by allowing data to be fetched in advance of actual
usage. PREFETCH instructions do not change the user-visible semantics of a
program, although they may impact program performance. PREFETCH merely
provides a hint to the hardware and generally does not generate exceptions or faults.
7-4

OPTIMIZING CACHE USAGE
PREFETCH loads either non-temporal data or temporal data in the specified cache
level. This data access type and the cache level are specified as a hint. Depending on
the implementation, the instruction fetches 32 or more aligned bytes (including the
specified address byte) into the instruction-specified cache levels.

PREFETCH is implementation-specific; applications need to be tuned to each imple-
mentation to maximize performance.

NOTE
Using the PREFETCH instruction is recommended only if data does
not fit in cache.

PREFETCH provides a hint to the hardware; it does not generate exceptions or faults
except for a few special cases (see Section 7.4.3, “Prefetch and Load Instructions”).
However, excessive use of PREFETCH instructions may waste memory bandwidth and
result in a performance penalty due to resource constraints.

Nevertheless, PREFETCH can lessen the overhead of memory transactions by
preventing cache pollution and by using caches and memory efficiently. This is partic-
ularly important for applications that share critical system resources, such as the
memory bus. See an example in Section 7.7.2.1, “Video Encoder.”

PREFETCH is mainly designed to improve application performance by hiding memory
latency in the background. If segments of an application access data in a predictable
manner (for example, using arrays with known strides), they are good candidates for
using PREFETCH to improve performance.

Use the PREFETCH instructions in:

• Predictable memory access patterns

• Time-consuming innermost loops

• Locations where the execution pipeline may stall if data is not available

7.4.2 Prefetch Instructions – Pentium® 4 Processor
Implementation

Streaming SIMD Extensions include four PREFETCH instructions variants, one non-
temporal and three temporal. They correspond to two types of operations, temporal
and non-temporal.

NOTE
At the time of PREFETCH, if data is already found in a cache level that
is closer to the processor than the cache level specified by the
instruction, no data movement occurs.
7-5

OPTIMIZING CACHE USAGE
The non-temporal instruction is:

• PREFETCHNTA— Fetch the data into the second-level cache, minimizing cache
pollution.

Temporal instructions are:

• PREFETCHNT0 — Fetch the data into all cache levels; that is, to the second-level
cache for the Pentium 4 processor.

• PREFETCHNT1 — This instruction is identical to PREFETCHT0.

• PREFETCHNT2 — This instruction is identical to PREFETCHT0.

7.4.3 Prefetch and Load Instructions
The Pentium 4 processor has a decoupled execution and memory architecture that
allows instructions to be executed independently with memory accesses (if there are
no data and resource dependencies). Programs or compilers can use dummy load
instructions to imitate PREFETCH functionality; but preloading is not completely
equivalent to using PREFETCH instructions. PREFETCH provides greater performance
than preloading.

Currently, PREFETCH provides greater performance than preloading because:

• Has no destination register, it only updates cache lines.

• Does not stall the normal instruction retirement.

• Does not affect the functional behavior of the program.

• Has no cache line split accesses.

• Does not cause exceptions except when the LOCK prefix is used. The LOCK prefix
is not a valid prefix for use with PREFETCH.

• Does not complete its own execution if that would cause a fault.

Currently, the advantage of PREFETCH over preloading instructions are processor-
specific. This may change in the future.

There are cases where a PREFETCH will not perform the data prefetch. These include:

• PREFETCH causes a DTLB (Data Translation Lookaside Buffer) miss. This applies
to Pentium 4 processors with CPUID signature corresponding to family 15, model
0, 1, or 2. PREFETCH resolves DTLB misses and fetches data on Pentium 4
processors with CPUID signature corresponding to family 15, model 3.

• An access to the specified address that causes a fault/exception.

• If the memory subsystem runs out of request buffers between the first-level cache
and the second-level cache.

• PREFETCH targets an uncacheable memory region (for example, USWC and UC).

• The LOCK prefix is used. This causes an invalid opcode exception.
7-6

OPTIMIZING CACHE USAGE
7.5 CACHEABILITY CONTROL
This section covers the mechanics of cacheability control instructions.

7.5.1 The Non-temporal Store Instructions
This section describes the behavior of streaming stores and reiterates some of the
information presented in the previous section.

In Streaming SIMD Extensions, the MOVNTPS, MOVNTPD, MOVNTQ, MOVNTDQ,
MOVNTI, MASKMOVQ and MASKMOVDQU instructions are streaming, non-temporal
stores. With regard to memory characteristics and ordering, they are similar to the
Write-Combining (WC) memory type:

• Write combining — Successive writes to the same cache line are combined.

• Write collapsing — Successive writes to the same byte(s) result in only the last
write being visible.

• Weakly ordered — No ordering is preserved between WC stores or between WC
stores and other loads or stores.

• Uncacheable and not write-allocating — Stored data is written around the
cache and will not generate a read-for-ownership bus request for the corre-
sponding cache line.

7.5.1.1 Fencing
Because streaming stores are weakly ordered, a fencing operation is required to
ensure that the stored data is flushed from the processor to memory. Failure to use
an appropriate fence may result in data being “trapped” within the processor and will
prevent visibility of this data by other processors or system agents.

WC stores require software to ensure coherence of data by performing the fencing
operation. See Section 7.5.5, “FENCE Instructions.”

7.5.1.2 Streaming Non-temporal Stores
Streaming stores can improve performance by:

• Increasing store bandwidth if the 64 bytes that fit within a cache line are written
consecutively (since they do not require read-for-ownership bus requests and 64
bytes are combined into a single bus write transaction).

• Reducing disturbance of frequently used cached (temporal) data (since they
write around the processor caches).

Streaming stores allow cross-aliasing of memory types for a given memory region.
For instance, a region may be mapped as write-back (WB) using page attribute
tables (PAT) or memory type range registers (MTRRs) and yet is written using a
streaming store.
7-7

OPTIMIZING CACHE USAGE
7.5.1.3 Memory Type and Non-temporal Stores
Memory type can take precedence over a non-temporal hint, leading to the following
considerations:

• If the programmer specifies a non-temporal store to strongly-ordered
uncacheable memory (for example, Uncacheable (UC) or Write-Protect (WP)
memory types), then the store behaves like an uncacheable store. The non-
temporal hint is ignored and the memory type for the region is retained.

• If the programmer specifies the weakly-ordered uncacheable memory type of
Write-Combining (WC), then the non-temporal store and the region have the
same semantics and there is no conflict.

• If the programmer specifies a non-temporal store to cacheable memory (for
example, Write-Back (WB) or Write-Through (WT) memory types), two cases
may result:

— CASE 1 — If the data is present in the cache hierarchy, the instruction will
ensure consistency. A particular processor may choose different ways to
implement this. The following approaches are probable: (a) updating data in-
place in the cache hierarchy while preserving the memory type semantics
assigned to that region or (b) evicting the data from the caches and writing
the new non-temporal data to memory (with WC semantics).

The approaches (separate or combined) can be different for future
processors. Pentium 4, Intel Core Solo and Intel Core Duo processors
implement the latter policy (of evicting data from all processor caches). The
Pentium M processor implements a combination of both approaches.

If the streaming store hits a line that is present in the first-level cache, the
store data is combined in place within the first-level cache. If the streaming
store hits a line present in the second-level, the line and stored data is
flushed from the second-level to system memory.

— CASE 2 — If the data is not present in the cache hierarchy and the
destination region is mapped as WB or WT; the transaction will be weakly
ordered and is subject to all WC memory semantics. This non-temporal store
will not write-allocate. Different implementations may choose to collapse and
combine such stores.

7.5.1.4 Write-Combining
Generally, WC semantics require software to ensure coherence with respect to other
processors and other system agents (such as graphics cards). Appropriate use of
synchronization and a fencing operation must be performed for producer-consumer
usage models (see Section 7.5.5, “FENCE Instructions”). Fencing ensures that all
system agents have global visibility of the stored data. For instance, failure to fence
may result in a written cache line staying within a processor, and the line would not
be visible to other agents.
7-8

OPTIMIZING CACHE USAGE
For processors which implement non-temporal stores by updating data in-place that
already resides in the cache hierarchy, the destination region should also be mapped
as WC. Otherwise, if mapped as WB or WT, there is a potential for speculative
processor reads to bring the data into the caches. In such a case, non-temporal
stores would then update in place and data would not be flushed from the processor
by a subsequent fencing operation.

The memory type visible on the bus in the presence of memory type aliasing is imple-
mentation-specific. As one example, the memory type written to the bus may reflect
the memory type for the first store to the line, as seen in program order. Other alter-
natives are possible. This behavior should be considered reserved and dependence
on the behavior of any particular implementation risks future incompatibility.

7.5.2 Streaming Store Usage Models
The two primary usage domains for streaming store are coherent requests and non-
coherent requests.

7.5.2.1 Coherent Requests
Coherent requests are normal loads and stores to system memory, which may also
hit cache lines present in another processor in a multiprocessor environment. With
coherent requests, a streaming store can be used in the same way as a regular store
that has been mapped with a WC memory type (PAT or MTRR). An SFENCE instruc-
tion must be used within a producer-consumer usage model in order to ensure coher-
ency and visibility of data between processors.

Within a single-processor system, the CPU can also re-read the same memory loca-
tion and be assured of coherence (that is, a single, consistent view of this memory
location). The same is true for a multiprocessor (MP) system, assuming an accepted
MP software producer-consumer synchronization policy is employed.

7.5.2.2 Non-coherent requests
Non-coherent requests arise from an I/O device, such as an AGP graphics card, that
reads or writes system memory using non-coherent requests, which are not reflected
on the processor bus and thus will not query the processor’s caches. An SFENCE
instruction must be used within a producer-consumer usage model in order to ensure
coherency and visibility of data between processors. In this case, if the processor is
writing data to the I/O device, a streaming store can be used with a processor with
any behavior of Case 1 (Section 7.5.1.3) only if the region has also been mapped
with a WC memory type (PAT, MTRR).
7-9

OPTIMIZING CACHE USAGE
NOTE
Failure to map the region as WC may allow the line to be speculatively
read into the processor caches (via the wrong path of a mispredicted
branch).

In case the region is not mapped as WC, the streaming might update in-place in the
cache and a subsequent SFENCE would not result in the data being written to system
memory. Explicitly mapping the region as WC in this case ensures that any data read
from this region will not be placed in the processor’s caches. A read of this memory
location by a non-coherent I/O device would return incorrect/out-of-date results.

For a processor which solely implements Case 2 (Section 7.5.1.3), a streaming store
can be used in this non-coherent domain without requiring the memory region to also
be mapped as WB, since any cached data will be flushed to memory by the streaming
store.

7.5.3 Streaming Store Instruction Descriptions
MOVNTQ/MOVNTDQ (non-temporal store of packed integer in an MMX technology or
Streaming SIMD Extensions register) store data from a register to memory. They are
implicitly weakly-ordered, do no write-allocate, and so minimize cache pollution.

MOVNTPS (non-temporal store of packed single precision floating point) is similar to
MOVNTQ. It stores data from a Streaming SIMD Extensions register to memory in
16-byte granularity. Unlike MOVNTQ, the memory address must be aligned to a
16-byte boundary or a general protection exception will occur. The instruction is
implicitly weakly-ordered, does not write-allocate, and thus minimizes cache pollu-
tion.

MASKMOVQ/MASKMOVDQU (non-temporal byte mask store of packed integer in an
MMX technology or Streaming SIMD Extensions register) store data from a register
to the location specified by the EDI register. The most significant bit in each byte of
the second mask register is used to selectively write the data of the first register on
a per-byte basis. The instructions are implicitly weakly-ordered (that is, successive
stores may not write memory in original program-order), do not write-allocate, and
thus minimize cache pollution.

7.5.4 The Streaming Load Instruction
SSE4.1 introduces the MOVNTDQA instruction. MOVNTDQA loads 16 bytes from
memory using a non-temporal hint if the memory source is WC type. For WC memory
type, the non-temporal hint may be implemented by loading into a temporary
internal buffer with the equivalent of an aligned cache line without filling this data to
the cache. Subsequent MOVNTDQA reads to unread portions of the buffered WC data
will cause 16 bytes of data transferred from the temporary internal buffer to an XMM
register if data is available.
7-10

OPTIMIZING CACHE USAGE
If used appropriately, MOVNTDQA can help software achieve significantly higher
throughput when loading data in WC memory region into the processor than other
means.

Chapter 1 provides a reference to an application note on using MOVNTDQA. Addi-
tional information and requirements to use MOVNTDQA appropriately can be found in
Chapter 12, “Programming with SSE3, SSSE3 and SSE4” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, and the instruction reference
pages of MOVNTDQA in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

7.5.5 FENCE Instructions
The following fence instructions are available: SFENCE, lFENCE, and MFENCE.

7.5.5.1 SFENCE Instruction
The SFENCE (STORE FENCE) instruction makes it possible for every STORE instruc-
tion that precedes an SFENCE in program order to be globally visible before any
STORE that follows the SFENCE. SFENCE provides an efficient way of ensuring
ordering between routines that produce weakly-ordered results.

The use of weakly-ordered memory types can be important under certain data
sharing relationships (such as a producer-consumer relationship). Using weakly-
ordered memory can make assembling the data more efficient, but care must be
taken to ensure that the consumer obtains the data that the producer intended to
see.

Some common usage models may be affected by weakly-ordered stores. Examples
are:

• Library functions, which use weakly-ordered memory to write results

• Compiler-generated code, which also benefits from writing weakly-ordered
results

• Hand-crafted code

The degree to which a consumer of data knows that the data is weakly-ordered can
vary for different cases. As a result, SFENCE should be used to ensure ordering
between routines that produce weakly-ordered data and routines that consume this
data.

7.5.5.2 LFENCE Instruction
The LFENCE (LOAD FENCE) instruction makes it possible for every LOAD instruction
that precedes the LFENCE instruction in program order to be globally visible before
any LOAD instruction that follows the LFENCE.
7-11

OPTIMIZING CACHE USAGE
The LFENCE instruction provides a means of segregating LOAD instructions from
other LOADs.

7.5.5.3 MFENCE Instruction
The MFENCE (MEMORY FENCE) instruction makes it possible for every LOAD/STORE
instruction preceding MFENCE in program order to be globally visible before any
LOAD/STORE following MFENCE. MFENCE provides a means of segregating certain
memory instructions from other memory references.

The use of a LFENCE and SFENCE is not equivalent to the use of a MFENCE since the
load and store fences are not ordered with respect to each other. In other words, the
load fence can be executed before prior stores and the store fence can be executed
before prior loads.

MFENCE should be used whenever the cache line flush instruction (CLFLUSH) is used
to ensure that speculative memory references generated by the processor do not
interfere with the flush. See Section 7.5.6, “CLFLUSH Instruction.”

7.5.6 CLFLUSH Instruction
The CLFLUSH instruction invalidates the cache line associated with the linear address
that contain the byte address of the memory location, in all levels of the processor
cache hierarchy (data and instruction). This invalidation is broadcast throughout the
coherence domain. If, at any level of the cache hierarchy, a line is inconsistent with
memory (dirty), it is written to memory before invalidation.Other characteristics
include:

• The data size affected is the cache coherency size, which is 64 bytes on Pentium
4 processor.

• The memory attribute of the page containing the affected line has no effect on
the behavior of this instruction.

• The CLFLUSH instruction can be used at all privilege levels and is subject to all
permission checking and faults associated with a byte load.

CLFLUSH is an unordered operation with respect to other memory traffic, including
other CLFLUSH instructions. Software should use a memory fence for cases where
ordering is a concern.

As an example, consider a video usage model where a video capture device is using
non-coherent AGP accesses to write a capture stream directly to system memory.
Since these non-coherent writes are not broadcast on the processor bus, they will not
flush copies of the same locations that reside in the processor caches. As a result,
before the processor re-reads the capture buffer, it should use CLFLUSH to ensure
that stale copies of the capture buffer are flushed from the processor caches. Due to
speculative reads that may be generated by the processor, it is important to observe
appropriate fencing (using MFENCE).
7-12

OPTIMIZING CACHE USAGE
Example 7-1 provides pseudo-code for CLFLUSH usage.

7.6 MEMORY OPTIMIZATION USING PREFETCH
The Pentium 4 processor has two mechanisms for data prefetch: software-controlled
prefetch and an automatic hardware prefetch.

7.6.1 Software-Controlled Prefetch
The software-controlled prefetch is enabled using the four PREFETCH instructions
introduced with Streaming SIMD Extensions instructions. These instructions are
hints to bring a cache line of data in to various levels and modes in the cache hier-
archy. The software-controlled prefetch is not intended for prefetching code. Using it
can incur significant penalties on a multiprocessor system when code is shared.

Software prefetching has the following characteristics:

• Can handle irregular access patterns which do not trigger the hardware
prefetcher.

• Can use less bus bandwidth than hardware prefetching; see below.

• Software prefetches must be added to new code, and do not benefit existing
applications.

7.6.2 Hardware Prefetch
Automatic hardware prefetch can bring cache lines into the unified last-level cache
based on prior data misses. It will attempt to prefetch two cache lines ahead of the
prefetch stream. Characteristics of the hardware prefetcher are:

• It requires some regularity in the data access patterns.

— If a data access pattern has constant stride, hardware prefetching is effective
if the access stride is less than half of the trigger distance of hardware
prefetcher (see Table 2-10).

Example 7-1. Pseudo-code Using CLFLUSH

while (!buffer_ready} {}
mfence

for(i=0;i<num_cachelines;i+=cacheline_size) {
clflush (char *)((unsigned int)buffer + i)

}
mfence

prefnta buffer[0];
VAR = buffer[0];
7-13

OPTIMIZING CACHE USAGE
— If the access stride is not constant, the automatic hardware prefetcher can
mask memory latency if the strides of two successive cache misses are less
than the trigger threshold distance (small-stride memory traffic).

— The automatic hardware prefetcher is most effective if the strides of two
successive cache misses remain less than the trigger threshold distance and
close to 64 bytes.

• There is a start-up penalty before the prefetcher triggers and there may be
fetches an array finishes. For short arrays, overhead can reduce effectiveness.

— The hardware prefetcher requires a couple misses before it starts operating.

— Hardware prefetching generates a request for data beyond the end of an
array, which is not be utilized. This behavior wastes bus bandwidth. In
addition this behavior results in a start-up penalty when fetching the
beginning of the next array. Software prefetching may recognize and handle
these cases.

• It will not prefetch across a 4-KByte page boundary. A program has to initiate
demand loads for the new page before the hardware prefetcher starts
prefetching from the new page.

• The hardware prefetcher may consume extra system bandwidth if the appli-
cation’s memory traffic has significant portions with strides of cache misses
greater than the trigger distance threshold of hardware prefetch (large-stride
memory traffic).

• The effectiveness with existing applications depends on the proportions of small-
stride versus large-stride accesses in the application’s memory traffic. An
application with a preponderance of small-stride memory traffic with good
temporal locality will benefit greatly from the automatic hardware prefetcher.

• In some situations, memory traffic consisting of a preponderance of large-stride
cache misses can be transformed by re-arrangement of data access sequences to
alter the concentration of small-stride cache misses at the expense of large-
stride cache misses to take advantage of the automatic hardware prefetcher.

7.6.3 Example of Effective Latency Reduction
with Hardware Prefetch

Consider the situation that an array is populated with data corresponding to a
constant-access-stride, circular pointer chasing sequence (see Example 7-2). The
potential of employing the automatic hardware prefetching mechanism to reduce the
effective latency of fetching a cache line from memory can be illustrated by varying
the access stride between 64 bytes and the trigger threshold distance of hardware
prefetch when populating the array for circular pointer chasing.
7-14

OPTIMIZING CACHE USAGE
The effective latency reduction for several microarchitecture implementations is
shown in Figure 7-1. For a constant-stride access pattern, the benefit of the auto-
matic hardware prefetcher begins at half the trigger threshold distance and reaches
maximum benefit when the cache-miss stride is 64 bytes.

Example 7-2. Populating an Array for Circular Pointer Chasing with Constant Stride

register char ** p;
char *next; // Populating pArray for circular pointer

// chasing with constant access stride
// p = (char **) *p; loads a value pointing to next load

p = (char **)&pArray;

for (i = 0; i < aperture; i += stride) {
p = (char **)&pArray[i];
if (i + stride >= g_array_aperture) {

next = &pArray[0];
}

else {
next = &pArray[i + stride];
}

 *p = next; // populate the address of the next node
}

Figure 7-1. Effective Latency Reduction as a Function of Access Stride

U p p e r b o u n d o f P o in t e r - C h a s in g L a te n c y R e d u c t io n

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

1 2 0 %

64 80 96
11 2

128
14 4

16 0
17 6

19 2
208

22 4
24 0

S tr i d e (B y t e s)

Ef
fe

ct
iv

e
La

te
nc

y
R

ed
uc

tio
n

F a m . 1 5 ; M o d e l 3 , 4
F a m . 1 5 ; M o d e l 0 , 1 , 2
F a m . 6 ; M o d e l 1 3
F a m . 6 ; M o d e l 1 4
F a m . 1 5 ; M o d e l 6
7-15

OPTIMIZING CACHE USAGE
7.6.4 Example of Latency Hiding with S/W Prefetch Instruction
Achieving the highest level of memory optimization using PREFETCH instructions
requires an understanding of the architecture of a given machine. This section trans-
lates the key architectural implications into several simple guidelines for program-
mers to use.

Figure 7-2 and Figure 7-3 show two scenarios of a simplified 3D geometry pipeline as
an example. A 3D-geometry pipeline typically fetches one vertex record at a time
and then performs transformation and lighting functions on it. Both figures show two
separate pipelines, an execution pipeline, and a memory pipeline (front-side bus).

Since the Pentium 4 processor (similar to the Pentium II and Pentium III processors)
completely decouples the functionality of execution and memory access, the two
pipelines can function concurrently. Figure 7-2 shows “bubbles” in both the execution
and memory pipelines. When loads are issued for accessing vertex data, the execu-
tion units sit idle and wait until data is returned. On the other hand, the memory bus
sits idle while the execution units are processing vertices. This scenario severely
decreases the advantage of having a decoupled architecture.

Figure 7-2. Memory Access Latency and Execution Without Prefetch

OM15170

Execution units idle

Mem latency

Issue loads

Time

Vertex n+1

Execution units idleExecution
pipeline

Mem latency

Issue loads
(vertex data)

Vertex n

Front-Side
Bus

FSB idle
7-16

OPTIMIZING CACHE USAGE
The performance loss caused by poor utilization of resources can be completely elim-
inated by correctly scheduling the PREFETCH instructions. As shown in Figure 7-3,
prefetch instructions are issued two vertex iterations ahead. This assumes that only
one vertex gets processed in one iteration and a new data cache line is needed for
each iteration. As a result, when iteration n, vertex Vn, is being processed; the
requested data is already brought into cache. In the meantime, the front-side bus is
transferring the data needed for iteration n+1, vertex Vn+1. Because there is no
dependence between Vn+1 data and the execution of Vn, the latency for data access
of Vn+1 can be entirely hidden behind the execution of Vn. Under such circumstances,
no “bubbles” are present in the pipelines and thus the best possible performance can
be achieved.

Prefetching is useful for inner loops that have heavy computations, or are close to the
boundary between being compute-bound and memory-bandwidth-bound. It is prob-
ably not very useful for loops which are predominately memory bandwidth-bound.

When data is already located in the first level cache, prefetching can be useless and
could even slow down the performance because the extra µops either back up
waiting for outstanding memory accesses or may be dropped altogether. This
behavior is platform-specific and may change in the future.

7.6.5 Software Prefetching Usage Checklist
The following checklist covers issues that need to be addressed and/or resolved to
use the software PREFETCH instruction properly:

Figure 7-3. Memory Access Latency and Execution With Prefetch

OM15171

Time

Vertex n-2Execution
pipeline

Mem latency for Vn

issue prefetch
for vertex n

Front-Side
Bus

Vertex n-1 Vertex n Vertex n+1

Mem latency for Vn+1

Mem latency for Vn+2

prefetch
Vn+1

prefetch
Vn+2
7-17

OPTIMIZING CACHE USAGE
• Determine software prefetch scheduling distance.

• Use software prefetch concatenation.

• Minimize the number of software prefetches.

• Mix software prefetch with computation instructions.

• Use cache blocking techniques (for example, strip mining).

• Balance single-pass versus multi-pass execution.

• Resolve memory bank conflict issues.

• Resolve cache management issues.

Subsequent sections discuss the above items.

7.6.6 Software Prefetch Scheduling Distance
Determining the ideal prefetch placement in the code depends on many architectural
parameters, including: the amount of memory to be prefetched, cache lookup
latency, system memory latency, and estimate of computation cycle. The ideal
distance for prefetching data is processor- and platform-dependent. If the distance is
too short, the prefetch will not hide the latency of the fetch behind computation. If
the prefetch is too far ahead, prefetched data may be flushed out of the cache by the
time it is required.

Since prefetch distance is not a well-defined metric, for this discussion, we define a
new term, prefetch scheduling distance (PSD), which is represented by the number
of iterations. For large loops, prefetch scheduling distance can be set to 1 (that is,
schedule prefetch instructions one iteration ahead). For small loop bodies (that is,
loop iterations with little computation), the prefetch scheduling distance must be
more than one iteration.

A simplified equation to compute PSD is deduced from the mathematical model. For
a simplified equation, complete mathematical model, and methodology of prefetch
distance determination, see Appendix E, “Summary of Rules and Suggestions.”

Example 7-3 illustrates the use of a prefetch within the loop body. The prefetch
scheduling distance is set to 3, ESI is effectively the pointer to a line, EDX is the
address of the data being referenced and XMM1-XMM4 are the data used in compu-
tation. Example 7-4 uses two independent cache lines of data per iteration. The PSD
would need to be increased/decreased if more/less than two cache lines are used per
iteration.

Example 7-3. Prefetch Scheduling Distance

top_loop:
prefetchnta [edx + esi + 128*3]
prefetchnta [edx*4 + esi + 128*3]
.
7-18

OPTIMIZING CACHE USAGE
7.6.7 Software Prefetch Concatenation
Maximum performance can be achieved when the execution pipeline is at maximum
throughput, without incurring any memory latency penalties. This can be achieved
by prefetching data to be used in successive iterations in a loop. De-pipelining
memory generates bubbles in the execution pipeline.

To explain this performance issue, a 3D geometry pipeline that processes 3D
vertices in strip format is used as an example. A strip contains a list of vertices
whose predefined vertex order forms contiguous triangles. It can be easily observed
that the memory pipe is de-pipelined on the strip boundary due to ineffective
prefetch arrangement. The execution pipeline is stalled for the first two iterations for
each strip. As a result, the average latency for completing an iteration will be 165
(FIX) clocks. See Appendix E, “Summary of Rules and Suggestions”, for a detailed
description.

This memory de-pipelining creates inefficiency in both the memory pipeline and
execution pipeline. This de-pipelining effect can be removed by applying a technique
called prefetch concatenation. With this technique, the memory access and execu-
tion can be fully pipelined and fully utilized.

For nested loops, memory de-pipelining could occur during the interval between the
last iteration of an inner loop and the next iteration of its associated outer loop.
Without paying special attention to prefetch insertion, loads from the first iteration of
an inner loop can miss the cache and stall the execution pipeline waiting for data
returned, thus degrading the performance.

In Example 7-4, the cache line containing A[II][0] is not prefetched at all and always
misses the cache. This assumes that no array A[][] footprint resides in the cache.
The penalty of memory de-pipelining stalls can be amortized across the inner loop
iterations. However, it may become very harmful when the inner loop is short. In
addition, the last prefetch in the last PSD iterations are wasted and consume

movaps xmm1, [edx + esi]
movaps xmm2, [edx*4 + esi]
movaps xmm3, [edx + esi + 16]
movaps xmm4, [edx*4 + esi + 16]
.
.

add esi, 128
cmp esi, ecx
jl top_loop

Example 7-3. Prefetch Scheduling Distance (Contd.)
7-19

OPTIMIZING CACHE USAGE
machine resources. Prefetch concatenation is introduced here in order to eliminate
the performance issue of memory de-pipelining.

Prefetch concatenation can bridge the execution pipeline bubbles between the
boundary of an inner loop and its associated outer loop. Simply by unrolling the last
iteration out of the inner loop and specifying the effective prefetch address for data
used in the following iteration, the performance loss of memory de-pipelining can be
completely removed. Example 7-5 gives the rewritten code.

This code segment for data prefetching is improved and only the first iteration of the
outer loop suffers any memory access latency penalty, assuming the computation
time is larger than the memory latency. Inserting a prefetch of the first data element
needed prior to entering the nested loop computation would eliminate or reduce the
start-up penalty for the very first iteration of the outer loop. This uncomplicated high-
level code optimization can improve memory performance significantly.

7.6.8 Minimize Number of Software Prefetches
Prefetch instructions are not completely free in terms of bus cycles, machine cycles
and resources, even though they require minimal clock and memory bandwidth.

Excessive prefetching may lead to performance penalties because of issue penalties
in the front end of the machine and/or resource contention in the memory sub-
system. This effect may be severe in cases where the target loops are small and/or
cases where the target loop is issue-bound.

Example 7-4. Using Prefetch Concatenation

for (ii = 0; ii < 100; ii++) {
 for (jj = 0; jj < 32; jj+=8) {
 prefetch a[ii][jj+8]
 computation a[ii][jj]
 }
}

Example 7-5. Concatenation and Unrolling the Last Iteration of Inner Loop

for (ii = 0; ii < 100; ii++) {
 for (jj = 0; jj < 24; jj+=8) { /* N-1 iterations */
 prefetch a[ii][jj+8]
 computation a[ii][jj]
 }
 prefetch a[ii+1][0]
 computation a[ii][jj]/* Last iteration */
}

7-20

OPTIMIZING CACHE USAGE
One approach to solve the excessive prefetching issue is to unroll and/or software-
pipeline loops to reduce the number of prefetches required. Figure 7-4 presents a
code example which implements prefetch and unrolls the loop to remove the redun-
dant prefetch instructions whose prefetch addresses hit the previously issued
prefetch instructions. In this particular example, unrolling the original loop once
saves six prefetch instructions and nine instructions for conditional jumps in every
other iteration.

Figure 7-5 demonstrates the effectiveness of software prefetches in latency hiding.

Figure 7-4. Prefetch and Loop Unrolling

OM15172

top_loop:
prefetchnta [edx+esi+32]
prefetchnta [edx*4+esi+32]
.
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
.
add esi, 16
cmp esi, ecx
jl top_loop

top_loop:
prefetchnta [edx+esi+128]
prefetchnta [edx*4+esi+128]
.
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
.
movaps xmm1, [edx+esi+16]
movaps xmm2, [edx*4+esi+16]
.
movaps xmm1, [edx+esi+96]
movaps xmm2, [edx*4+esi+96]
.
.
add esi, 128
cmp esi, ecx
jl top_loop

unrolled
iteration
7-21

OPTIMIZING CACHE USAGE
The X axis in Figure 7-5 indicates the number of computation clocks per loop (each
iteration is independent). The Y axis indicates the execution time measured in clocks
per loop. The secondary Y axis indicates the percentage of bus bandwidth utilization.
The tests vary by the following parameters:

• Number of load/store streams — Each load and store stream accesses one
128-byte cache line each per iteration.

• Amount of computation per loop — This is varied by increasing the number of
dependent arithmetic operations executed.

• Number of the software prefetches per loop — For example, one every
16 bytes, 32 bytes, 64 bytes, 128 bytes.

As expected, the leftmost portion of each of the graphs in Figure 7-5 shows that
when there is not enough computation to overlap the latency of memory access,
prefetch does not help and that the execution is essentially memory-bound. The
graphs also illustrate that redundant prefetches do not increase performance.

7.6.9 Mix Software Prefetch with Computation Instructions
It may seem convenient to cluster all of PREFETCH instructions at the beginning of a
loop body or before a loop, but this can lead to severe performance degradation. In
order to achieve the best possible performance, PREFETCH instructions must be
interspersed with other computational instructions in the instruction sequence rather
than clustered together. If possible, they should also be placed apart from loads. This
improves the instruction level parallelism and reduces the potential instruction
resource stalls. In addition, this mixing reduces the pressure on the memory access

Figure 7-5. Memory Access Latency and Execution With Prefetch

OM15171

Time

Vertex n-2Execution
pipeline

Mem latency for Vn

issue prefetch
for vertex n

Front-Side
Bus

Vertex n-1 Vertex n Vertex n+1

Mem latency for Vn+1

Mem latency for Vn+2

prefetch
Vn+1

prefetch
Vn+2
7-22

OPTIMIZING CACHE USAGE
resources and in turn reduces the possibility of the prefetch retiring without fetching
data.

Figure 7-6 illustrates distributing PREFETCH instructions. A simple and useful
heuristic of prefetch spreading for a Pentium 4 processor is to insert a PREFETCH
instruction every 20 to 25 clocks. Rearranging PREFETCH instructions could yield a
noticeable speedup for the code which stresses the cache resource.

NOTE
To avoid instruction execution stalls due to the over-utilization of the
resource, PREFETCH instructions must be interspersed with compu-
tational instructions

7.6.10 Software Prefetch and Cache Blocking Techniques
Cache blocking techniques (such as strip-mining) are used to improve temporal
locality and the cache hit rate. Strip-mining is one-dimensional temporal locality opti-
mization for memory. When two-dimensional arrays are used in programs, loop
blocking technique (similar to strip-mining but in two dimensions) can be applied for
a better memory performance.

Figure 7-6. Spread Prefetch Instructions

top_loop:
 prefetchnta [ebx+128]
 prefetchnta [ebx+1128]
 prefetchnta [ebx+2128]
 prefetchnta [ebx+3128]

 prefetchnta [ebx+17128]
 prefetchnta [ebx+18128]
 prefetchnta [ebx+19128]
 prefetchnta [ebx+20128]
 movps xmm1, [ebx]
 addps xmm2, [ebx+3000]
 mulps xmm3, [ebx+4000]
 addps xmm1, [ebx+1000]
 addps xmm2, [ebx+3016]
 mulps xmm1, [ebx+2000]
 mulps xmm1, xmm2

 add ebx, 128
 cmp ebx, ecx
 jl top_loop

top_loop:
 prefetchnta [ebx+128]
 movps xmm1, [ebx]
 addps xmm2, [ebx+3000]
 mulps xmm3, [ebx+4000]
 prefetchnta [ebx+1128]
 addps xmm1, [ebx+1000]
 addps xmm2, [ebx+3016]
 prefetchnta [ebx+2128]
 mulps xmm1, [ebx+2000]
 mulps xmm1, xmm2
 prefetchnta [ebx+3128]

 . . .
 prefetchnta [ebx+18128]

 prefetchnta [ebx+19128]

 prefetchnta [ebx+20128]
 add ebx, 128
 cmp ebx, ecx
 jl top_loop

sprea
d prefetches
7-23

OPTIMIZING CACHE USAGE
If an application uses a large data set that can be reused across multiple passes of a
loop, it will benefit from strip mining. Data sets larger than the cache will be
processed in groups small enough to fit into cache. This allows temporal data to
reside in the cache longer, reducing bus traffic.

Data set size and temporal locality (data characteristics) fundamentally affect how
PREFETCH instructions are applied to strip-mined code. Figure 7-7 shows two simpli-
fied scenarios for temporally-adjacent data and temporally-non-adjacent data.

In the temporally-adjacent scenario, subsequent passes use the same data and find
it already in second-level cache. Prefetch issues aside, this is the preferred situation.
In the temporally non-adjacent scenario, data used in pass m is displaced by pass
(m+1), requiring data re-fetch into the first level cache and perhaps the second level
cache if a later pass reuses the data. If both data sets fit into the second-level cache,
load operations in passes 3 and 4 become less expensive.

Figure 7-8 shows how prefetch instructions and strip-mining can be applied to
increase performance in both of these scenarios.

Figure 7-7. Cache Blocking – Temporally Adjacent and Non-adjacent Passes

Dataset A

Dataset B

Dataset B

Dataset A

Dataset A

Dataset A

Dataset B

Dataset B

Pass 1

Pass 2

Pass 3

Pass 4

Temporally
adjacent passes

Temporally
non-adjacent

passes
7-24

OPTIMIZING CACHE USAGE
For Pentium 4 processors, the left scenario shows a graphical implementation of
using PREFETCHNTA to prefetch data into selected ways of the second-level cache
only (SM1 denotes strip mine one way of second-level), minimizing second-level
cache pollution. Use PREFETCHNTA if the data is only touched once during the entire
execution pass in order to minimize cache pollution in the higher level caches. This
provides instant availability, assuming the prefetch was issued far ahead enough,
when the read access is issued.

In scenario to the right (see Figure 7-8), keeping the data in one way of the second-
level cache does not improve cache locality. Therefore, use PREFETCHT0 to prefetch
the data. This amortizes the latency of the memory references in passes 1 and 2, and
keeps a copy of the data in second-level cache, which reduces memory traffic and
latencies for passes 3 and 4. To further reduce the latency, it might be worth consid-
ering extra PREFETCHNTA instructions prior to the memory references in passes 3
and 4.

In Example 7-6, consider the data access patterns of a 3D geometry engine first
without strip-mining and then incorporating strip-mining. Note that 4-wide SIMD
instructions of Pentium III processor can process 4 vertices per every iteration.

Without strip-mining, all the x,y,z coordinates for the four vertices must be re-
fetched from memory in the second pass, that is, the lighting loop. This causes

Figure 7-8. Examples of Prefetch and Strip-mining for Temporally Adjacent and
Non-Adjacent Passes Loops

Temporally
non-adjacent passes

Temporally
adjacent passes

Prefetchnta
Dataset A

Reuse
Dataset A

Reuse
Dataset B

Prefetchnta
Dataset B

SM1

SM1

Prefetcht0
Dataset A

Prefetcht0
Dataset B

Reuse
Dataset B

Reuse
Dataset A

SM2
7-25

OPTIMIZING CACHE USAGE
under-utilization of cache lines fetched during transformation loop as well as band-
width wasted in the lighting loop.

Now consider the code in Example 7-7 where strip-mining has been incorporated into
the loops.

Example 7-6. Data Access of a 3D Geometry Engine without Strip-mining

while (nvtx < MAX_NUM_VTX) {
prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]

 prefetchnta vertexi+1 data
 prefetchnta vertexi+2 data
 prefetchnta vertexi+3 data
TRANSFORMATION code // use only x,y,z,tu,tv of a vertex
 nvtx+=4

}
while (nvtx < MAX_NUM_VTX) {

prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]
 // x,y,z fetched again

 prefetchnta vertexi+1 data
 prefetchnta vertexi+2 data
 prefetchnta vertexi+3 data
 compute the light vectors // use only x,y,z
 LOCAL LIGHTING code // use only nx,ny,nz

nvtx+=4
}

Example 7-7. Data Access of a 3D Geometry Engine with Strip-mining

while (nstrip < NUM_STRIP) {
/* Strip-mine the loop to fit data into one way of the second-level
 cache */
 while (nvtx < MAX_NUM_VTX_PER_STRIP) {

prefetchnta vertexi data // v=[x,y,z,nx,ny,nz,tu,tv]
 prefetchnta vertexi+1 data
 prefetchnta vertexi+2 data
 prefetchnta vertexi+3 data
 TRANSFORMATION code
 nvtx+=4

}
while (nvtx < MAX_NUM_VTX_PER_STRIP) {
 /* x y z coordinates are in the second-level cache, no prefetch is

 required */
7-26

OPTIMIZING CACHE USAGE
With strip-mining, all vertex data can be kept in the cache (for example, one way of
second-level cache) during the strip-mined transformation loop and reused in the
lighting loop. Keeping data in the cache reduces both bus traffic and the number of
prefetches used.

Table 7-1 summarizes the steps of the basic usage model that incorporates only soft-
ware prefetch with strip-mining. The steps are:

• Do strip-mining: partition loops so that the dataset fits into second-level cache.

• Use PREFETCHNTA if the data is only used once or the dataset fits into 32 KBytes
(one way of second-level cache). Use PREFETCHT0 if the dataset exceeds
32 KBytes.

The above steps are platform-specific and provide an implementation example. The
variables NUM_STRIP and MAX_NUM_VX_PER_STRIP can be heuristically deter-
mined for peak performance for specific application on a specific platform.

7.6.11 Hardware Prefetching and Cache Blocking Techniques
Tuning data access patterns for the automatic hardware prefetch mechanism can
minimize the memory access costs of the first-pass of the read-multiple-times and
some of the read-once memory references. An example of the situations of read-
once memory references can be illustrated with a matrix or image transpose, reading
from a column-first orientation and writing to a row-first orientation, or vice versa.

Example 7-8 shows a nested loop of data movement that represents a typical
matrix/image transpose problem. If the dimension of the array are large, not only
the footprint of the dataset will exceed the last level cache but cache misses will

compute the light vectors
POINT LIGHTING code
 nvtx+=4
 }
}

Table 7-1. Software Prefetching Considerations into Strip-mining Code

Read-Once Array References

Read-Multiple-Times Array References

Adjacent Passes Non-Adjacent Passes

Prefetchnta Prefetch0, SM1 Prefetch0, SM1
(2nd Level Pollution)

Evict one way; Minimize
pollution

Pay memory access cost for
the first pass of each array;
Amortize the first pass with
subsequent passes

Pay memory access cost for
the first pass of every strip;
Amortize the first pass with
subsequent passes

Example 7-7. Data Access of a 3D Geometry Engine with Strip-mining
7-27

OPTIMIZING CACHE USAGE
occur at large strides. If the dimensions happen to be powers of 2, aliasing condition
due to finite number of way-associativity (see “Capacity Limits and Aliasing in
Caches” in Chapter) will exacerbate the likelihood of cache evictions.

Example 7-8 (b) shows applying the techniques of tiling with optimal selection of tile
size and tile width to take advantage of hardware prefetch. With tiling, one can
choose the size of two tiles to fit in the last level cache. Maximizing the width of each
tile for memory read references enables the hardware prefetcher to initiate bus
requests to read some cache lines before the code actually reference the linear
addresses.

7.6.12 Single-pass versus Multi-pass Execution
An algorithm can use single- or multi-pass execution defined as follows:

• Single-pass, or unlayered execution passes a single data element through an
entire computation pipeline.

• Multi-pass, or layered execution performs a single stage of the pipeline on a
batch of data elements, before passing the batch on to the next stage.

Example 7-8. Using HW Prefetch to Improve Read-Once Memory Traffic

a) Un-optimized image transpose
// dest and src represent two-dimensional arrays
for(i = 0;i < NUMCOLS; i ++) {

// inner loop reads single column
for(j = 0; j < NUMROWS ; j ++) {

// Each read reference causes large-stride cache miss
dest[i*NUMROWS +j] = src[j*NUMROWS + i];

}

}
b)
// tilewidth = L2SizeInBytes/2/TileHeight/Sizeof(element)
for(i = 0; i < NUMCOLS; i += tilewidth) {

 for(j = 0; j < NUMROWS ; j ++) {
// access multiple elements in the same row in the inner loop
// access pattern friendly to hw prefetch and improves hit rate
for(k = 0; k < tilewidth; k ++)
dest[j+ (i+k)* NUMROWS] = src[i+k+ j* NUMROWS];

 }
}

7-28

OPTIMIZING CACHE USAGE
A characteristic feature of both single-pass and multi-pass execution is that a specific
trade-off exists depending on an algorithm’s implementation and use of a single-pass
or multiple-pass execution. See Figure 7-9.

Multi-pass execution is often easier to use when implementing a general purpose
API, where the choice of code paths that can be taken depends on the specific combi-
nation of features selected by the application (for example, for 3D graphics, this
might include the type of vertex primitives used and the number and type of light
sources).

With such a broad range of permutations possible, a single-pass approach would be
complicated, in terms of code size and validation. In such cases, each possible
permutation would require a separate code sequence. For example, an object with
features A, B, C, D can have a subset of features enabled, say, A, B, D. This stage
would use one code path; another combination of enabled features would have a
different code path. It makes more sense to perform each pipeline stage as a sepa-
rate pass, with conditional clauses to select different features that are implemented
within each stage. By using strip-mining, the number of vertices processed by each
stage (for example, the batch size) can be selected to ensure that the batch stays
within the processor caches through all passes. An intermediate cached buffer is
used to pass the batch of vertices from one stage or pass to the next one.

Single-pass execution can be better suited to applications which limit the number of
features that may be used at a given time. A single-pass approach can reduce the
amount of data copying that can occur with a multi-pass engine. See Figure 7-9.
7-29

OPTIMIZING CACHE USAGE
The choice of single-pass or multi-pass can have a number of performance implica-
tions. For instance, in a multi-pass pipeline, stages that are limited by bandwidth
(either input or output) will reflect more of this performance limitation in overall
execution time. In contrast, for a single-pass approach, bandwidth-limitations can be
distributed/amortized across other computation-intensive stages. Also, the choice of
which prefetch hints to use are also impacted by whether a single-pass or multi-pass
approach is used.

Figure 7-9. Single-Pass Vs. Multi-Pass 3D Geometry Engines

Transform

Lighting

Single-Pass

Culling

Lighting

Multi-Pass

Culling

40 vis

40 vis

60 invis
80 vis

80 vis

Vertex
processing
(inner loop)

Outer loop is
processing
strips

Transform

strip list
7-30

OPTIMIZING CACHE USAGE
7.7 MEMORY OPTIMIZATION USING NON-TEMPORAL
STORES

Non-temporal stores can also be used to manage data retention in the cache. Uses
for non-temporal stores include:

• To combine many writes without disturbing the cache hierarchy

• To manage which data structures remain in the cache and which are transient

Detailed implementations of these usage models are covered in the following
sections.

7.7.1 Non-temporal Stores and Software Write-Combining
Use non-temporal stores in the cases when the data to be stored is:

• Write-once (non-temporal)

• Too large and thus cause cache thrashing

Non-temporal stores do not invoke a cache line allocation, which means they are not
write-allocate. As a result, caches are not polluted and no dirty writeback is gener-
ated to compete with useful data bandwidth. Without using non-temporal stores, bus
bandwidth will suffer when caches start to be thrashed because of dirty writebacks.

In Streaming SIMD Extensions implementation, when non-temporal stores are
written into writeback or write-combining memory regions, these stores are weakly-
ordered and will be combined internally inside the processor’s write-combining buffer
and be written out to memory as a line burst transaction. To achieve the best possible
performance, it is recommended to align data along the cache line boundary and
write them consecutively in a cache line size while using non-temporal stores. If the
consecutive writes are prohibitive due to programming constraints, then software
write-combining (SWWC) buffers can be used to enable line burst transaction.

You can declare small SWWC buffers (a cache line for each buffer) in your application
to enable explicit write-combining operations. Instead of writing to non-temporal
memory space immediately, the program writes data into SWWC buffers and
combines them inside these buffers. The program only writes a SWWC buffer out
using non-temporal stores when the buffer is filled up, that is, a cache line (128 bytes
for the Pentium 4 processor). Although the SWWC method requires explicit instruc-
tions for performing temporary writes and reads, this ensures that the transaction on
the front-side bus causes line transaction rather than several partial transactions.
Application performance gains considerably from implementing this technique. These
SWWC buffers can be maintained in the second-level and re-used throughout the
program.
7-31

OPTIMIZING CACHE USAGE
7.7.2 Cache Management
Streaming instructions (PREFETCH and STORE) can be used to manage data and
minimize disturbance of temporal data held within the processor’s caches.

In addition, the Pentium 4 processor takes advantage of Intel C ++ Compiler support
for C ++ language-level features for the Streaming SIMD Extensions. Streaming
SIMD Extensions and MMX technology instructions provide intrinsics that allow you
to optimize cache utilization. Examples of such Intel compiler intrinsics are
_MM_PREFETCH, _MM_STREAM, _MM_LOAD, _MM_SFENCE. For detail, refer to the
Intel C ++ Compiler User’s Guide documentation.

The following examples of using prefetching instructions in the operation of video
encoder and decoder as well as in simple 8-byte memory copy, illustrate perfor-
mance gain from using the prefetching instructions for efficient cache management.

7.7.2.1 Video Encoder
In a video encoder, some of the data used during the encoding process is kept in the
processor’s second-level cache. This is done to minimize the number of reference
streams that must be re-read from system memory. To ensure that other writes do
not disturb the data in the second-level cache, streaming stores (MOVNTQ) are used
to write around all processor caches.

The prefetching cache management implemented for the video encoder reduces the
memory traffic. The second-level cache pollution reduction is ensured by preventing
single-use video frame data from entering the second-level cache. Using a non-
temporal PREFETCH (PREFETCHNTA) instruction brings data into only one way of the
second-level cache, thus reducing pollution of the second-level cache.

If the data brought directly to second-level cache is not re-used, then there is a
performance gain from the non-temporal prefetch over a temporal prefetch. The
encoder uses non-temporal prefetches to avoid pollution of the second-level cache,
increasing the number of second-level cache hits and decreasing the number of
polluting write-backs to memory. The performance gain results from the more effi-
cient use of the second-level cache, not only from the prefetch itself.

7.7.2.2 Video Decoder
In the video decoder example, completed frame data is written to local memory of
the graphics card, which is mapped to WC (Write-combining) memory type. A copy of
reference data is stored to the WB memory at a later time by the processor in order
to generate future data. The assumption is that the size of the reference data is too
large to fit in the processor’s caches. A streaming store is used to write the data
around the cache, to avoid displaying other temporal data held in the caches. Later,
the processor re-reads the data using PREFETCHNTA, which ensures maximum
bandwidth, yet minimizes disturbance of other cached temporal data by using the
non-temporal (NTA) version of prefetch.
7-32

OPTIMIZING CACHE USAGE
7.7.2.3 Conclusions from Video Encoder and Decoder Implementation
These two examples indicate that by using an appropriate combination of non-
temporal prefetches and non-temporal stores, an application can be designed to
lessen the overhead of memory transactions by preventing second-level cache pollu-
tion, keeping useful data in the second-level cache and reducing costly write-back
transactions. Even if an application does not gain performance significantly from
having data ready from prefetches, it can improve from more efficient use of the
second-level cache and memory. Such design reduces the encoder’s demand for such
critical resource as the memory bus. This makes the system more balanced, resulting
in higher performance.

7.7.2.4 Optimizing Memory Copy Routines
Creating memory copy routines for large amounts of data is a common task in soft-
ware optimization. Example 7-9 presents a basic algorithm for a the simple memory
copy.

This task can be optimized using various coding techniques. One technique uses soft-
ware prefetch and streaming store instructions. It is discussed in the following para-
graph and a code example shown in Example 7-10.

The memory copy algorithm can be optimized using the Streaming SIMD Extensions
with these considerations:

• Alignment of data

• Proper layout of pages in memory

• Cache size

• Interaction of the transaction lookaside buffer (TLB) with memory accesses

• Combining prefetch and streaming-store instructions.

The guidelines discussed in this chapter come into play in this simple example. TLB
priming is required for the Pentium 4 processor just as it is for the Pentium III
processor, since software prefetch instructions will not initiate page table walks on
either processor.

Example 7-9. Basic Algorithm of a Simple Memory Copy

#define N 512000
double a[N], b[N];
for (i = 0; i < N; i++) {

b[i] = a[i];
}

7-33

OPTIMIZING CACHE USAGE
7.7.2.5 TLB Priming
The TLB is a fast memory buffer that is used to improve performance of the transla-
tion of a virtual memory address to a physical memory address by providing fast
access to page table entries. If memory pages are accessed and the page table entry

Example 7-10. A Memory Copy Routine Using Software Prefetch

#define PAGESIZE 4096;
#define NUMPERPAGE 512 // # of elements to fit a page

double a[N], b[N], temp;
for (kk=0; kk<N; kk+=NUMPERPAGE) {

temp = a[kk+NUMPERPAGE]; // TLB priming
// use block size = page size,

// prefetch entire block, one cache line per loop
for (j=kk+16; j<kk+NUMPERPAGE; j+=16) {
 _mm_prefetch((char*)&a[j], _MM_HINT_NTA);

 }

// copy 128 byte per loop

for (j=kk; j<kk+NUMPERPAGE; j+=16) {

 _mm_stream_ps((float*)&b[j],

 _mm_load_ps((float*)&a[j]));

_mm_stream_ps((float*)&b[j+2],

 _mm_load_ps((float*)&a[j+2]));

_mm_stream_ps((float*)&b[j+4],

 _mm_load_ps((float*)&a[j+4]));

_mm_stream_ps((float*)&b[j+6],

 _mm_load_ps((float*)&a[j+6]));

_mm_stream_ps((float*)&b[j+8],

 _mm_load_ps((float*)&a[j+8]));

_mm_stream_ps((float*)&b[j+10],

 _mm_load_ps((float*)&a[j+10]));

_mm_stream_ps((float*)&b[j+12],

 _mm_load_ps((float*)&a[j+12]));

_mm_stream_ps((float*)&b[j+14],

 _mm_load_ps((float*)&a[j+14]));

} // finished copying one block

} // finished copying N elements

_mm_sfence();
7-34

OPTIMIZING CACHE USAGE
is not resident in the TLB, a TLB miss results and the page table must be read from
memory.

The TLB miss results in a performance degradation since another memory access
must be performed (assuming that the translation is not already present in the
processor caches) to update the TLB. The TLB can be preloaded with the page table
entry for the next desired page by accessing (or touching) an address in that page.
This is similar to prefetch, but instead of a data cache line the page table entry is
being loaded in advance of its use. This helps to ensure that the page table entry is
resident in the TLB and that the prefetch happens as requested subsequently.

7.7.2.6 Using the 8-byte Streaming Stores and Software Prefetch
Example 7-10 presents the copy algorithm that uses second level cache. The algo-
rithm performs the following steps:

1. Uses blocking technique to transfer 8-byte data from memory into second-level
cache using the _MM_PREFETCH intrinsic, 128 bytes at a time to fill a block. The
size of a block should be less than one half of the size of the second-level cache,
but large enough to amortize the cost of the loop.

2. Loads the data into an XMM register using the _MM_LOAD_PS intrinsic.

3. Transfers the 8-byte data to a different memory location via the _MM_STREAM
intrinsics, bypassing the cache. For this operation, it is important to ensure that
the page table entry prefetched for the memory is preloaded in the TLB.

In Example 7-10, eight _MM_LOAD_PS and _MM_STREAM_PS intrinsics are used so
that all of the data prefetched (a 128-byte cache line) is written back. The prefetch
and streaming-stores are executed in separate loops to minimize the number of tran-
sitions between reading and writing data. This significantly improves the bandwidth
of the memory accesses.

The TEMP = A[KK+CACHESIZE] instruction is used to ensure the page table entry for
array, and A is entered in the TLB prior to prefetching. This is essentially a prefetch
itself, as a cache line is filled from that memory location with this instruction. Hence,
the prefetching starts from KK+4 in this loop.

This example assumes that the destination of the copy is not temporally adjacent to
the code. If the copied data is destined to be reused in the near future, then the
streaming store instructions should be replaced with regular 128 bit stores
(_MM_STORE_PS). This is required because the implementation of streaming stores
on Pentium 4 processor writes data directly to memory, maintaining cache coher-
ency.

7.7.2.7 Using 16-byte Streaming Stores and Hardware Prefetch
An alternate technique for optimizing a large region memory copy is to take advan-
tage of hardware prefetcher, 16-byte streaming stores, and apply a segmented
7-35

OPTIMIZING CACHE USAGE
approach to separate bus read and write transactions. See Section 3.6.11, “Mini-
mizing Bus Latency.”

The technique employs two stages. In the first stage, a block of data is read from
memory to the cache sub-system. In the second stage, cached data are written to
their destination using streaming stores.

Example 7-11. Memory Copy Using Hardware Prefetch and Bus Segmentation

void block_prefetch(void *dst,void *src)
{ _asm {

mov edi,dst
mov esi,src
mov edx,SIZE
align 16

main_loop:
xor ecx,ecx
align 16

}

prefetch_loop:
movaps xmm0, [esi+ecx]
movaps xmm0, [esi+ecx+64]
add ecx,128
cmp ecx,BLOCK_SIZE
jne prefetch_loop
xor ecx,ecx
align 16
cpy_loop:

movdqa xmm0,[esi+ecx]
movdqa xmm1,[esi+ecx+16]
movdqa xmm2,[esi+ecx+32]
movdqa xmm3,[esi+ecx+48]
movdqa xmm4,[esi+ecx+64]
movdqa xmm5,[esi+ecx+16+64]
movdqa xmm6,[esi+ecx+32+64]
movdqa xmm7,[esi+ecx+48+64]
movntdq [edi+ecx],xmm0
movntdq [edi+ecx+16],xmm1
movntdq [edi+ecx+32],xmm2
7-36

OPTIMIZING CACHE USAGE
7.7.2.8 Performance Comparisons of Memory Copy Routines
The throughput of a large-region, memory copy routine depends on several factors:

• Coding techniques that implements the memory copy task

• Characteristics of the system bus (speed, peak bandwidth, overhead in
read/write transaction protocols)

• Microarchitecture of the processor

A comparison of the two coding techniques discussed above and two un-optimized
techniques is shown in Table 7-2.

movntdq [edi+ecx+48],xmm3
movntdq [edi+ecx+64],xmm4
movntdq [edi+ecx+80],xmm5
movntdq [edi+ecx+96],xmm6
movntdq [edi+ecx+112],xmm7
add ecx,128
cmp ecx,BLOCK_SIZE
jne cpy_loop

add esi,ecx
add edi,ecx
sub edx,ecx
jnz main_loop
sfence

}
}

Table 7-2. Relative Performance of Memory Copy Routines

Processor, CPUID
Signature and
FSB Speed Byte Sequential

DWORD
Sequential

SW prefetch + 8
byte streaming
store

4KB-Block HW
prefetch + 16
byte streaming
stores

Pentium M
processor,
0x6Dn, 400

1.3X 1.2X 1.6X 2.5X

Intel Core Solo
and Intel Core
Duo processors,
0x6En, 667

3.3X 3.5X 2.1X 4.7X

Example 7-11. Memory Copy Using Hardware Prefetch and Bus Segmentation (Contd.)
7-37

OPTIMIZING CACHE USAGE
The baseline for performance comparison is the throughput (bytes/sec) of 8-MByte
region memory copy on a first-generation Pentium M processor (CPUID signature
0x69n) with a 400-MHz system bus using byte-sequential technique similar to that
shown in Example 7-9. The degree of improvement relative to the performance
baseline for some recent processors and platforms with higher system bus speed
using different coding techniques are compared.

The second coding technique moves data at 4-Byte granularity using REP string
instruction. The third column compares the performance of the coding technique
listed in Example 7-10. The fourth column of performance compares the throughput
of fetching 4-KBytes of data at a time (using hardware prefetch to aggregate bus
read transactions) and writing to memory via 16-Byte streaming stores.

Increases in bus speed is the primary contributor to throughput improvements. The
technique shown in Example 7-11 will likely take advantage of the faster bus speed
in the platform more efficiently. Additionally, increasing the block size to multiples of
4-KBytes while keeping the total working set within the second-level cache can
improve the throughput slightly.

The relative performance figure shown in Table 7-2 is representative of clean
microarchitectural conditions within a processor (e.g. looping s simple sequence of
code many times). The net benefit of integrating a specific memory copy routine into
an application (full-featured applications tend to create many complicated micro-
architectural conditions) will vary for each application.

7.7.3 Deterministic Cache Parameters
If CPUID supports the deterministic parameter leaf, software can use the leaf to
query each level of the cache hierarchy. Enumeration of each cache level is by speci-
fying an index value (starting form 0) in the ECX register (see “CPUID-CPU Identifi-
cation” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A).

The list of parameters is shown in Table 7-3.

Pentium D
processor, 0xF4n,
800

3.4X 3.3X 4.9X 5.7X

Table 7-2. Relative Performance of Memory Copy Routines (Contd.)

Processor, CPUID
Signature and
FSB Speed Byte Sequential

DWORD
Sequential

SW prefetch + 8
byte streaming
store

4KB-Block HW
prefetch + 16
byte streaming
stores
7-38

OPTIMIZING CACHE USAGE
The deterministic cache parameter leaf provides a means to implement software with
a degree of forward compatibility with respect to enumerating cache parameters.
Deterministic cache parameters can be used in several situations, including:

• Determine the size of a cache level.

• Adapt cache blocking parameters to different sharing topology of a cache-level
across Hyper-Threading Technology, multicore and single-core processors.

• Determine multithreading resource topology in an MP system (See Chapter 7,
“Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A).

• Determine cache hierarchy topology in a platform using multicore processors
(See topology enumeration white paper and reference code listed at the end of
CHAPTER 1).

• Manage threads and processor affinities.

• Determine prefetch stride.

The size of a given level of cache is given by:

Table 7-3. Deterministic Cache Parameters Leaf

Bit Location Name Meaning

EAX[4:0] Cache Type 0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

EAX[7:5] Cache Level Starts at 1

EAX[8] Self Initializing cache level 1: does not need SW initialization

EAX[9] Fully Associative cache 1: Yes

EAX[13:10] Reserved

EAX[25:14] Maximum number of logical processors
sharing this cache

Plus encoding

EAX[31:26] Maximum number of cores in a package Plus 1 encoding

EBX[11:0] System Coherency Line Size (L) Plus 1 encoding (Bytes)

EBX[21:12] Physical Line partitions (P) Plus 1 encoding

EBX[31:22] Ways of associativity (W) Plus 1 encoding

ECX[31:0] Number of Sets (S) Plus 1 encoding

EDX Reserved

CPUID leaves > 3 < 80000000 are only visible when IA32_CR_MISC_ENABLES.BOOT_NT4 (bit 22)
is clear (Default).
7-39

OPTIMIZING CACHE USAGE
(# of Ways) * (Partitions) * (Line_size) * (Sets) = (EBX[31:22] + 1) * (EBX[21:12] + 1) *
(EBX[11:0] + 1) * (ECX + 1)

7.7.3.1 Cache Sharing Using Deterministic Cache Parameters
Improving cache locality is an important part of software optimization. For example,
a cache blocking algorithm can be designed to optimize block size at runtime for
single-processor implementations and a variety of multiprocessor execution environ-
ments (including processors supporting HT Technology, or multicore processors).

The basic technique is to place an upper limit of the blocksize to be less than the size
of the target cache level divided by the number of logical processors serviced by the
target level of cache. This technique is applicable to multithreaded application
programming. The technique can also benefit single-threaded applications that are
part of a multi-tasking workloads.

7.7.3.2 Cache Sharing in Single-Core or Multicore
Deterministic cache parameters are useful for managing shared cache hierarchy in
multithreaded applications for more sophisticated situations. A given cache level may
be shared by logical processors in a processor or it may be implemented to be shared
by logical processors in a physical processor package.

Using the deterministic cache parameter leaf and initial APIC_ID associated with
each logical processor in the platform, software can extract information on the
number and the topological relationship of logical processors sharing a cache level.

7.7.3.3 Determine Prefetch Stride
The prefetch stride (see description of CPUID.01H.EBX) provides the length of the
region that the processor will prefetch with the PREFETCHh instructions
(PREFETCHT0, PREFETCHT1, PREFETCHT2 and PREFETCHNTA). Software will use the
length as the stride when prefetching into a particular level of the cache hierarchy as
identified by the instruction used. The prefetch size is relevant for cache types of
Data Cache (1) and Unified Cache (3); it should be ignored for other cache types.
Software should not assume that the coherency line size is the prefetch stride.

If the prefetch stride field is zero, then software should assume a default size of
64 bytes is the prefetch stride. Software should use the following algorithm to deter-
mine what prefetch size to use depending on whether the deterministic cache param-
eter mechanism is supported or the legacy mechanism:

• If a processor supports the deterministic cache parameters and provides a non-
zero prefetch size, then that prefetch size is used.

• If a processor supports the deterministic cache parameters and does not
provides a prefetch size then default size for each level of the cache hierarchy is
64 bytes.
7-40

OPTIMIZING CACHE USAGE
• If a processor does not support the deterministic cache parameters but provides
a legacy prefetch size descriptor (0xF0 - 64 byte, 0xF1 - 128 byte) will be the
prefetch size for all levels of the cache hierarchy.

• If a processor does not support the deterministic cache parameters and does not
provide a legacy prefetch size descriptor, then 32-bytes is the default size for all
levels of the cache hierarchy.
7-41

OPTIMIZING CACHE USAGE
7-42

CHAPTER 8
MULTICORE AND HYPER-THREADING TECHNOLOGY

This chapter describes software optimization techniques for multithreaded applica-
tions running in an environment using either multiprocessor (MP) systems or proces-
sors with hardware-based multithreading support. Multiprocessor systems are
systems with two or more sockets, each mated with a physical processor package.
Intel 64 and IA-32 processors that provide hardware multithreading support include
dual-core processors, quad-core processors and processors supporting HT Tech-
nology1.

Computational throughput in a multithreading environment can increase as more
hardware resources are added to take advantage of thread-level or task-level paral-
lelism. Hardware resources can be added in the form of more than one physical-
processor, processor-core-per-package, and/or logical-processor-per-core. There-
fore, there are some aspects of multithreading optimization that apply across MP,
multicore, and HT Technology. There are also some specific microarchitectural
resources that may be implemented differently in different hardware multithreading
configurations (for example: execution resources are not shared across different
cores but shared by two logical processors in the same core if HT Technology is
enabled). This chapter covers guidelines that apply to these situations.

This chapter covers

• Performance characteristics and usage models

• Programming models for multithreaded applications

• Software optimization techniques in five specific areas

8.1 PERFORMANCE AND USAGE MODELS
The performance gains of using multiple processors, multicore processors or HT
Technology are greatly affected by the usage model and the amount of parallelism in
the control flow of the workload. Two common usage models are:

• Multithreaded applications

• Multitasking using single-threaded applications

1. The presence of hardware multithreading support in Intel 64 and IA-32 processors can be
detected by checking the feature flag CPUID .01H:EDX[28]. A return value of in bit 28 indicates
that at least one form of hardware multithreading is present in the physical processor package.
The number of logical processors present in each package can also be obtained from CPUID. The
application must check how many logical processors are enabled and made available to applica-
tion at runtime by making the appropriate operating system calls. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A for information.
8-1

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.1.1 Multithreading
When an application employs multithreading to exploit task-level parallelism in a
workload, the control flow of the multi-threaded software can be divided into two
parts: parallel tasks and sequential tasks.

Amdahl’s law describes an application’s performance gain as it relates to the degree
of parallelism in the control flow. It is a useful guide for selecting the code modules,
functions, or instruction sequences that are most likely to realize the most gains from
transforming sequential tasks and control flows into parallel code to take advantage
multithreading hardware support.

Figure 8-1 illustrates how performance gains can be realized for any workload
according to Amdahl’s law. The bar in Figure 8-1 represents an individual task unit or
the collective workload of an entire application.

In general, the speed-up of running multiple threads on an MP systems with N phys-
ical processors, over single-threaded execution, can be expressed as:

where P is the fraction of workload that can be parallelized, and O represents the
overhead of multithreading and may vary between different operating systems. In
this case, performance gain is the inverse of the relative response.

When optimizing application performance in a multithreaded environment, control
flow parallelism is likely to have the largest impact on performance scaling with
respect to the number of physical processors and to the number of logical processors
per physical processor.

Figure 8-1. Amdahl’s Law and MP Speed-up

RelativeResponse Tsequential
Tparallel

--------------------------------= 1 P– P
N
---- O+ +⎝ ⎠

⎛ ⎞=

1-P P

Tsequential

1-P P/2

Tparallel

P/2

Single Thread

Multi-Thread on MP

O
verhead
8-2

MULTICORE AND HYPER-THREADING TECHNOLOGY
If the control flow of a multi-threaded application contains a workload in which only
50% can be executed in parallel, the maximum performance gain using two physical
processors is only 33%, compared to using a single processor. Using four processors
can deliver no more than a 60% speed-up over a single processor. Thus, it is critical to
maximize the portion of control flow that can take advantage of parallelism. Improper
implementation of thread synchronization can significantly increase the proportion of
serial control flow and further reduce the application’s performance scaling.

In addition to maximizing the parallelism of control flows, interaction between
threads in the form of thread synchronization and imbalance of task scheduling can
also impact overall processor scaling significantly.

Excessive cache misses are one cause of poor performance scaling. In a multi-
threaded execution environment, they can occur from:

• Aliased stack accesses by different threads in the same process

• Thread contentions resulting in cache line evictions

• False-sharing of cache lines between different processors

Techniques that address each of these situations (and many other areas) are
described in sections in this chapter.

8.1.2 Multitasking Environment
Hardware multithreading capabilities in Intel 64 and IA-32 processors can exploit
task-level parallelism when a workload consists of several single-threaded applica-
tions and these applications are scheduled to run concurrently under an MP-aware
operating system. In this environment, hardware multithreading capabilities can
deliver higher throughput for the workload, although the relative performance of a
single task (in terms of time of completion relative to the same task when in a single-
threaded environment) will vary, depending on how much shared execution
resources and memory are utilized.

For development purposes, several popular operating systems (for example
Microsoft Windows* XP Professional and Home, Linux* distributions using kernel
2.4.19 or later2) include OS kernel code that can manage the task scheduling and the
balancing of shared execution resources within each physical processor to maximize
the throughput.

Because applications run independently under a multitasking environment, thread
synchronization issues are less likely to limit the scaling of throughput. This is
because the control flow of the workload is likely to be 100% parallel3 (if no inter-
processor communication is taking place and if there are no system bus constraints).

2. This code is included in Red Hat* Linux Enterprise AS 2.1.

3. A software tool that attempts to measure the throughput of a multitasking workload is likely to
introduce control flows that are not parallel. Thread synchronization issues must be considered
as an integral part of its performance measuring methodology.
8-3

MULTICORE AND HYPER-THREADING TECHNOLOGY
With a multitasking workload, however, bus activities and cache access patterns are
likely to affect the scaling of the throughput. Running two copies of the same appli-
cation or same suite of applications in a lock-step can expose an artifact in perfor-
mance measuring methodology. This is because an access pattern to the first level
data cache can lead to excessive cache misses and produce skewed performance
results. Fix this problem by:

• Including a per-instance offset at the start-up of an application

• Introducing heterogeneity in the workload by using different datasets with each
instance of the application

• Randomizing the sequence of start-up of applications when running multiple
copies of the same suite

When two applications are employed as part of a multitasking workload, there is little
synchronization overhead between these two processes. It is also important to
ensure each application has minimal synchronization overhead within itself.

An application that uses lengthy spin loops for intra-process synchronization is less
likely to benefit from HT Technology in a multitasking workload. This is because crit-
ical resources will be consumed by the long spin loops.

8.2 PROGRAMMING MODELS AND MULTITHREADING
Parallelism is the most important concept in designing a multithreaded application
and realizing optimal performance scaling with multiple processors. An optimized
multithreaded application is characterized by large degrees of parallelism or minimal
dependencies in the following areas:

• Workload

• Thread interaction

• Hardware utilization

The key to maximizing workload parallelism is to identify multiple tasks that have
minimal inter-dependencies within an application and to create separate threads for
parallel execution of those tasks.

Concurrent execution of independent threads is the essence of deploying a multi-
threaded application on a multiprocessing system. Managing the interaction between
threads to minimize the cost of thread synchronization is also critical to achieving
optimal performance scaling with multiple processors.

Efficient use of hardware resources between concurrent threads requires optimiza-
tion techniques in specific areas to prevent contentions of hardware resources.
Coding techniques for optimizing thread synchronization and managing other hard-
ware resources are discussed in subsequent sections.

Parallel programming models are discussed next.
8-4

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.2.1 Parallel Programming Models
Two common programming models for transforming independent task requirements
into application threads are:

• Domain decomposition

• Functional decomposition

8.2.1.1 Domain Decomposition
Usually large compute-intensive tasks use data sets that can be divided into a
number of small subsets, each having a large degree of computational indepen-
dence. Examples include:

• Computation of a discrete cosine transformation (DCT) on two-dimensional data
by dividing the two-dimensional data into several subsets and creating threads to
compute the transform on each subset

• Matrix multiplication; here, threads can be created to handle the multiplication of
half of matrix with the multiplier matrix

Domain Decomposition is a programming model based on creating identical or
similar threads to process smaller pieces of data independently. This model can take
advantage of duplicated execution resources present in a traditional multiprocessor
system. It can also take advantage of shared execution resources between two
logical processors in HT Technology. This is because a data domain thread typically
consumes only a fraction of the available on-chip execution resources.

Section 8.3.5, “Key Practices of Execution Resource Optimization,” discusses addi-
tional guidelines that can help data domain threads use shared execution resources
cooperatively and avoid the pitfalls creating contentions of hardware resources
between two threads.

8.2.2 Functional Decomposition
Applications usually process a wide variety of tasks with diverse functions and many
unrelated data sets. For example, a video codec needs several different processing
functions. These include DCT, motion estimation and color conversion. Using a func-
tional threading model, applications can program separate threads to do motion esti-
mation, color conversion, and other functional tasks.

Functional decomposition will achieve more flexible thread-level parallelism if it is
less dependent on the duplication of hardware resources. For example, a thread
executing a sorting algorithm and a thread executing a matrix multiplication routine
are not likely to require the same execution unit at the same time. A design recog-
nizing this could advantage of traditional multiprocessor systems as well as multipro-
cessor systems using processors supporting HT Technology.
8-5

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.2.3 Specialized Programming Models
Intel Core Duo processor and processors based on Intel Core microarchitecture offer
a second-level cache shared by two processor cores in the same physical package.
This provides opportunities for two application threads to access some application
data while minimizing the overhead of bus traffic.

Multi-threaded applications may need to employ specialized programming models to
take advantage of this type of hardware feature. One such scenario is referred to as
producer-consumer. In this scenario, one thread writes data into some destination
(hopefully in the second-level cache) and another thread executing on the other core
in the same physical package subsequently reads data produced by the first thread.

The basic approach for implementing a producer-consumer model is to create two
threads; one thread is the producer and the other is the consumer. Typically, the
producer and consumer take turns to work on a buffer and inform each other when
they are ready to exchange buffers. In a producer-consumer model, there is some
thread synchronization overhead when buffers are exchanged between the producer
and consumer. To achieve optimal scaling with the number of cores, the synchroniza-
tion overhead must be kept low. This can be done by ensuring the producer and
consumer threads have comparable time constants for completing each incremental
task prior to exchanging buffers.

Example 8-1 illustrates the coding structure of single-threaded execution of a
sequence of task units, where each task unit (either the producer or consumer)
executes serially (shown in Figure 8-2). In the equivalent scenario under multi-
threaded execution, each producer-consumer pair is wrapped as a thread function
and two threads can be scheduled on available processor resources simultaneously.

Example 8-1. Serial Execution of Producer and Consumer Work Items

for (i = 0; i < number_of_iterations; i++) {
producer (i, buff); // pass buffer index and buffer address
consumer (i, buff);

}(

Figure 8-2. Single-threaded Execution of Producer-consumer Threading Model

P(1)P(1) C(1)C(1)P(1)
Main

Thread
8-6

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.2.3.1 Producer-Consumer Threading Models
Figure 8-3 illustrates the basic scheme of interaction between a pair of producer and
consumer threads. The horizontal direction represents time. Each block represents a
task unit, processing the buffer assigned to a thread.

The gap between each task represents synchronization overhead. The decimal
number in the parenthesis represents a buffer index. On an Intel Core Duo processor,
the producer thread can store data in the second-level cache to allow the consumer
thread to continue work requiring minimal bus traffic.

The basic structure to implement the producer and consumer thread functions with
synchronization to communicate buffer index is shown in Example 8-2.

Figure 8-3. Execution of Producer-consumer Threading Model
on a Multicore Processor

Example 8-2. Basic Structure of Implementing Producer Consumer Threads

(a) Basic structure of a producer thread function
void producer_thread()
{ int iter_num = workamount - 1; // make local copy

int mode1 = 1; // track usage of two buffers via 0 and 1
produce(buffs[0],count); // placeholder function
while (iter_num--) {

Signal(&signal1,1); // tell the other thread to commence
produce(buffs[mode1],count); // placeholder function
WaitForSignal(&end1);
mode1 = 1 - mode1; // switch to the other buffer

}

Main
Thread P(2) P(1)P(2)P(1)

C(1)C(2)C(1) C(2)

P(1)

P: producer
C: consumer
8-7

MULTICORE AND HYPER-THREADING TECHNOLOGY
It is possible to structure the producer-consumer model in an interlaced manner such
that it can minimize bus traffic and be effective on multicore processors without
shared second-level cache.

In this interlaced variation of the producer-consumer model, each scheduling quanta
of an application thread comprises of a producer task and a consumer task. Two iden-
tical threads are created to execute in parallel. During each scheduling quanta of a
thread, the producer task starts first and the consumer task follows after the comple-
tion of the producer task; both tasks work on the same buffer. As each task
completes, one thread signals to the other thread notifying its corresponding task to
use its designated buffer. Thus, the producer and consumer tasks execute in parallel
in two threads. As long as the data generated by the producer reside in either the
first or second level cache of the same core, the consumer can access them without
incurring bus traffic. The scheduling of the interlaced producer-consumer model is
shown in Figure 8-4.

}
b) Basic structure of a consumer thread
void consumer_thread()
{ int mode2 = 0; // first iteration start with buffer 0, than alternate

int iter_num = workamount - 1;
while (iter_num--) {

WaitForSignal(&signal1);
consume(buffs[mode2],count); // placeholder function
Signal(&end1,1);
mode2 = 1 - mode2;

}
consume(buffs[mode2],count);

}

Figure 8-4. Interlaced Variation of the Producer Consumer Model

Example 8-2. Basic Structure of Implementing Producer Consumer Threads (Contd.)

P(2)

P(1)

P(2)

P(1) C(1)

C(2)

C(1)

C(2)

P(1)Thread 0

Thread 1
8-8

MULTICORE AND HYPER-THREADING TECHNOLOGY
Example 8-3 shows the basic structure of a thread function that can be used in this
interlaced producer-consumer model.

Example 8-3. Thread Function for an Interlaced Producer Consumer Model

// master thread starts first iteration, other thread must wait
// one iteration
void producer_consumer_thread(int master)
{
int mode = 1 - master; // track which thread and its designated

// buffer index
unsigned int iter_num = workamount >> 1;
unsigned int i=0;

iter_num += master & workamount & 1;

 if (master) // master thread starts the first iteration
 {

produce(buffs[mode],count);
Signal(sigp[1-mode1],1); // notify producer task in follower

// thread that it can proceed
 consume(buffs[mode],count);

Signal(sigc[1-mode],1);
 i = 1;
 }

for (; i < iter_num; i++)
{

 WaitForSignal(sigp[mode]);
produce(buffs[mode],count); // notify the producer task in

// other thread
Signal(sigp[1-mode],1);

 WaitForSignal(sigc[mode]);
 consume(buffs[mode],count);

Signal(sigc[1-mode],1);
}

}

8-9

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.2.4 Tools for Creating Multithreaded Applications
Programming directly to a multithreading application programming interface (API) is
not the only method for creating multithreaded applications. New tools (such as the
Intel compiler) have become available with capabilities that make the challenge of
creating multithreaded application easier.

Features available in the latest Intel compilers are:

• Generating multithreaded code using OpenMP* directives4

• Generating multithreaded code automatically from unmodified high-level code5

8.2.4.1 Programming with OpenMP Directives
OpenMP provides a standardized, non-proprietary, portable set of Fortran and C++
compiler directives supporting shared memory parallelism in applications. OpenMP
supports directive-based processing. This uses special preprocessors or modified
compilers to interpret parallelism expressed in Fortran comments or C/C++
pragmas. Benefits of directive-based processing include:

• The original source can be compiled unmodified.

• It is possible to make incremental code changes. This preserves algorithms in the
original code and enables rapid debugging.

• Incremental code changes help programmers maintain serial consistency. When
the code is run on one processor, it gives the same result as the unmodified
source code.

• Offering directives to fine tune thread scheduling imbalance.

• Intel’s implementation of OpenMP runtime can add minimal threading overhead
relative to hand-coded multithreading.

8.2.4.2 Automatic Parallelization of Code
While OpenMP directives allow programmers to quickly transform serial applications
into parallel applications, programmers must identify specific portions of the applica-
tion code that contain parallelism and add compiler directives. Intel Compiler 6.0
supports a new (-QPARALLEL) option, which can identify loop structures that contain
parallelism. During program compilation, the compiler automatically attempts to
decompose the parallelism into threads for parallel processing. No other intervention
or programmer is needed.

4. Intel Compiler 5.0 and later supports OpenMP directives. Visit http://devel-
oper.intel.com/software/products for details.

5. Intel Compiler 6.0 supports auto-parallelization.
8-10

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.2.4.3 Supporting Development Tools
Intel® Threading Analysis Tools include Intel® Thread Checker and Intel® Thread
Profiler.

8.2.4.4 Intel® Thread Checker
Use Intel Thread Checker to find threading errors (which include data races, stalls
and deadlocks) and reduce the amount of time spent debugging threaded applica-
tions.

Intel Thread Checker product is an Intel VTune Performance Analyzer plug-in data
collector that executes a program and automatically locates threading errors. As the
program runs, Intel Thread Checker monitors memory accesses and other events
and automatically detects situations which could cause unpredictable threading-
related results.

8.2.4.5 Intel® Thread Profiler
Intel Thread Profiler is a plug-in data collector for the Intel VTune Performance
Analyzer. Use it to analyze threading performance and identify parallel performance
bottlenecks. It graphically illustrates what each thread is doing at various levels of
detail using a hierarchical summary. It can identify inactive threads, critical paths
and imbalances in thread execution. Data is collapsed into relevant summaries,
sorted to identify parallel regions or loops that require attention.

8.2.4.6 Intel® Threading Building Block
Intel Threading Building Block (Intel TBB) is a C++ template library that abstracts
threads to tasks to create reliable, portable and scalable parallel applications. Use
Intel TBB to implement task-based parallel applications and enhance developer
productivity for scalable software on multi-core platforms. Intel TBB is the most effi-
cient way to implement parallel applications and unleash multi-core platform perfor-
mance compared with other threading methods like native threads and thread
wrappers.

8.3 OPTIMIZATION GUIDELINES
This section summarizes optimization guidelines for tuning multithreaded applica-
tions. Five areas are listed (in order of importance):

• Thread synchronization

• Bus utilization

• Memory optimization

• Front end optimization
8-11

MULTICORE AND HYPER-THREADING TECHNOLOGY
• Execution resource optimization

Practices associated with each area are listed in this section. Guidelines for each area
are discussed in greater depth in sections that follow.

Most of the coding recommendations improve performance scaling with processor
cores; and scaling due to HT Technology. Techniques that apply to only one environ-
ment are noted.

8.3.1 Key Practices of Thread Synchronization
Key practices for minimizing the cost of thread synchronization are summarized
below:

• Insert the PAUSE instruction in fast spin loops and keep the number of loop
repetitions to a minimum to improve overall system performance.

• Replace a spin-lock that may be acquired by multiple threads with pipelined locks
such that no more than two threads have write accesses to one lock. If only one
thread needs to write to a variable shared by two threads, there is no need to
acquire a lock.

• Use a thread-blocking API in a long idle loop to free up the processor.

• Prevent “false-sharing” of per-thread-data between two threads.

• Place each synchronization variable alone, separated by 128 bytes or in a
separate cache line.

See Section 8.4, “Thread Synchronization,” for details.

8.3.2 Key Practices of System Bus Optimization
Managing bus traffic can significantly impact the overall performance of multi-
threaded software and MP systems. Key practices of system bus optimization for
achieving high data throughput and quick response are:

• Improve data and code locality to conserve bus command bandwidth.

• Avoid excessive use of software prefetch instructions and allow the automatic
hardware prefetcher to work. Excessive use of software prefetches can signifi-
cantly and unnecessarily increase bus utilization if used inappropriately.

• Consider using overlapping multiple back-to-back memory reads to improve
effective cache miss latencies.

• Use full write transactions to achieve higher data throughput.

See Section 8.5, “System Bus Optimization,” for details.

8.3.3 Key Practices of Memory Optimization
Key practices for optimizing memory operations are summarized below:
8-12

MULTICORE AND HYPER-THREADING TECHNOLOGY
• Use cache blocking to improve locality of data access. Target one quarter to one
half of cache size when targeting processors supporting HT Technology.

• Minimize the sharing of data between threads that execute on different physical
processors sharing a common bus.

• Minimize data access patterns that are offset by multiples of 64-KBytes in each
thread.

• Adjust the private stack of each thread in an application so the spacing between
these stacks is not offset by multiples of 64 KBytes or 1 MByte (prevents
unnecessary cache line evictions) when targeting processors supporting HT
Technology.

• Add a per-instance stack offset when two instances of the same application are
executing in lock steps to avoid memory accesses that are offset by multiples of
64 KByte or 1 MByte when targeting processors supporting HT Technology.

See Section 8.6, “Memory Optimization,” for details.

8.3.4 Key Practices of Front-end Optimization
Key practices for front-end optimization on processors that support HT Technology
are:

• Avoid Excessive Loop Unrolling to ensure the Trace Cache is operating efficiently.

• Optimize code size to improve locality of Trace Cache and increase delivered trace
length.

See Section 8.7, “Front-end Optimization,” for details.

8.3.5 Key Practices of Execution Resource Optimization
Each physical processor has dedicated execution resources. Logical processors in
physical processors supporting HT Technology share specific on-chip execution
resources. Key practices for execution resource optimization include:

• Optimize each thread to achieve optimal frequency scaling first.

• Optimize multithreaded applications to achieve optimal scaling with respect to
the number of physical processors.

• Use on-chip execution resources cooperatively if two threads are sharing the
execution resources in the same physical processor package.

• For each processor supporting HT Technology, consider adding functionally
uncorrelated threads to increase the hardware resource utilization of each
physical processor package.

See Section 8.8, “Using Thread Affinities to Manage Shared Platform Resources,” for
details.
8-13

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.3.6 Generality and Performance Impact
The next five sections cover the optimization techniques in detail. Recommendations
discussed in each section are ranked by importance in terms of estimated local
impact and generality.

Rankings are subjective and approximate. They can vary depending on coding style,
application and threading domain. The purpose of including high, medium and low
impact ranking with each recommendation is to provide a relative indicator as to the
degree of performance gain that can be expected when a recommendation is imple-
mented.

It is not possible to predict the likelihood of a code instance across many applications,
so an impact ranking cannot be directly correlated to application-level performance
gain. The ranking on generality is also subjective and approximate.

Coding recommendations that do not impact all three scaling factors are typically
categorized as medium or lower.

8.4 THREAD SYNCHRONIZATION
Applications with multiple threads use synchronization techniques in order to ensure
correct operation. However, thread synchronization that are improperly implemented
can significantly reduce performance.

The best practice to reduce the overhead of thread synchronization is to start by
reducing the application’s requirements for synchronization. Intel Thread Profiler can
be used to profile the execution timeline of each thread and detect situations where
performance is impacted by frequent occurrences of synchronization overhead.

Several coding techniques and operating system (OS) calls are frequently used for
thread synchronization. These include spin-wait loops, spin-locks, critical sections, to
name a few. Choosing the optimal OS call for the circumstance and implementing
synchronization code with parallelism in mind are critical in minimizing the cost of
handling thread synchronization.

SSE3 provides two instructions (MONITOR/MWAIT) to help multithreaded software
improve synchronization between multiple agents. In the first implementation of
MONITOR and MWAIT, these instructions are available to operating system so that
operating system can optimize thread synchronization in different areas. For
example, an operating system can use MONITOR and MWAIT in its system idle loop
(known as C0 loop) to reduce power consumption. An operating system can also use
MONITOR and MWAIT to implement its C1 loop to improve the responsiveness of the
C1 loop. See Chapter 7 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.
8-14

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.4.1 Choice of Synchronization Primitives
Thread synchronization often involves modifying some shared data while protecting
the operation using synchronization primitives. There are many primitives to choose
from. Guidelines that are useful when selecting synchronization primitives are:

• Favor compiler intrinsics or an OS provided interlocked API for atomic updates of
simple data operation, such as increment and compare/exchange. This will be
more efficient than other more complicated synchronization primitives with
higher overhead.

For more information on using different synchronization primitives, see the
white paper Developing Multi-threaded Applications: A Platform Consistent
Approach. See http://www3.intel.com/cd/ids/developer/asmo-
na/eng/53797.htm.

• When choosing between different primitives to implement a synchronization
construct, using Intel Thread Checker and Thread Profiler can be very useful in
dealing with multithreading functional correctness issue and performance impact
under multi-threaded execution. Additional information on the capabilities of
Intel Thread Checker and Thread Profiler are described in Appendix A.

Table 8-1 is useful for comparing the properties of three categories of synchroniza-
tion objects available to multi-threaded applications.

Table 8-1. Properties of Synchronization Objects

Characteristics
Operating System
Synchronization Objects

Light Weight User
Synchronization

Synchronization
Object based on
MONITOR/MWAIT

Cycles to acquire
and release (if
there is a
contention)

Thousands or Tens of
thousands cycles

Hundreds of cycles Hundreds of cycles

Power
consumption

Saves power by halting the
core or logical processor if
idle

Some power saving if
using PAUSE

Saves more power
than PAUSE

Scheduling and
context
switching

Returns to the OS scheduler
if contention exists (can be
tuned with earlier spin loop
count)

Does not return to OS
scheduler voluntarily

Does not return to OS
scheduler voluntarily

Ring level Ring 0 Ring 3 Ring 0
8-15

http://www3.intel.com/cd/ids/developer/asmo-na/eng/53797.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/53797.htm

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.4.2 Synchronization for Short Periods
The frequency and duration that a thread needs to synchronize with other threads
depends application characteristics. When a synchronization loop needs very fast
response, applications may use a spin-wait loop.

A spin-wait loop is typically used when one thread needs to wait a short amount of
time for another thread to reach a point of synchronization. A spin-wait loop consists
of a loop that compares a synchronization variable with some pre-defined value. See
Example 8-4(a).

On a modern microprocessor with a superscalar speculative execution engine, a loop
like this results in the issue of multiple simultaneous read requests from the spinning
thread. These requests usually execute out-of-order with each read request being
allocated a buffer resource. On detection of a write by a worker thread to a load that
is in progress, the processor must guarantee no violations of memory order occur.
The necessity of maintaining the order of outstanding memory operations inevitably
costs the processor a severe penalty that impacts all threads.

This penalty occurs on the Pentium M processor, the Intel Core Solo and Intel Core
Duo processors. However, the penalty on these processors is small compared with
penalties suffered on the Pentium 4 and Intel Xeon processors. There the perfor-
mance penalty for exiting the loop is about 25 times more severe.

On a processor supporting HT Technology, spin-wait loops can consume a significant
portion of the execution bandwidth of the processor. One logical processor executing
a spin-wait loop can severely impact the performance of the other logical processor.

Miscellaneous Some objects provide intra-
process synchronization and
some are for inter-process
communication

Must lock accesses to
synchronization
variable if several
threads may write to it
simultaneously.

Otherwise can write
without locks.

Same as light weight.

Can be used only on
systems supporting
MONITOR/MWAIT

Recommended
use conditions

• Number of active threads is
greater than number of
cores

• Waiting thousands of cycles
for a signal

• Synchronization among
processes

• Number of active
threads is less than
or equal to number
of cores

• Infrequent
contention

• Need inter process
synchronization

• Same as light weight
objects

• MONITOR/MWAIT
available

Table 8-1. Properties of Synchronization Objects (Contd.)

Characteristics
Operating System
Synchronization Objects

Light Weight User
Synchronization

Synchronization
Object based on
MONITOR/MWAIT
8-16

MULTICORE AND HYPER-THREADING TECHNOLOGY

User/Source Coding Rule 20. (M impact, H generality) Insert the PAUSE
instruction in fast spin loops and keep the number of loop repetitions to a minimum
to improve overall system performance.

On processors that use the Intel NetBurst microarchitecture core, the penalty of
exiting from a spin-wait loop can be avoided by inserting a PAUSE instruction in the
loop. In spite of the name, the PAUSE instruction improves performance by intro-
ducing a slight delay in the loop and effectively causing the memory read requests to

Example 8-4. Spin-wait Loop and PAUSE Instructions

(a) An un-optimized spin-wait loop experiences performance penalty when exiting the loop. It
consumes execution resources without contributing computational work.
do {

// This loop can run faster than the speed of memory access,
// other worker threads cannot finish modifying sync_var until
// outstanding loads from the spinning loops are resolved.

} while(sync_var != constant_value);
(b) Inserting the PAUSE instruction in a fast spin-wait loop prevents performance-penalty to the
spinning thread and the worker thread

do {
_asm pause

// Ensure this loop is de-pipelined, i.e. preventing more than one
// load request to sync_var to be outstanding,
// avoiding performance penalty when the worker thread updates
// sync_var and the spinning thread exiting the loop.

}
while(sync_var != constant_value);
(c) A spin-wait loop using a “test, test-and-set” technique to determine the availability of the
synchronization variable. This technique is recommended when writing spin-wait loops to run on
Intel 64 and IA-32 architecture processors.

Spin_Lock:
CMP lockvar, 0 ; // Check if lock is free.
JE Get_lock

PAUSE; // Short delay.
JMP Spin_Lock;

Get_Lock:
MOV EAX, 1;
XCHG EAX, lockvar; // Try to get lock.
CMP EAX, 0; // Test if successful.
JNE Spin_Lock;

Critical_Section:
<critical section code>
MOV lockvar, 0; // Release lock.
8-17

MULTICORE AND HYPER-THREADING TECHNOLOGY
be issued at a rate that allows immediate detection of any store to the synchroniza-
tion variable. This prevents the occurrence of a long delay due to memory order
violation.

One example of inserting the PAUSE instruction in a simplified spin-wait loop is
shown in Example 8-4(b). The PAUSE instruction is compatible with all Intel 64 and
IA-32 processors. On IA-32 processors prior to Intel NetBurst microarchitecture, the
PAUSE instruction is essentially a NOP instruction. Additional examples of optimizing
spin-wait loops using the PAUSE instruction are available in Application note AP-949,
“Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor.” See
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledge-
base/19083.htm.

Inserting the PAUSE instruction has the added benefit of significantly reducing the
power consumed during the spin-wait because fewer system resources are used.

8.4.3 Optimization with Spin-Locks
Spin-locks are typically used when several threads needs to modify a synchronization
variable and the synchronization variable must be protected by a lock to prevent un-
intentional overwrites. When the lock is released, however, several threads may
compete to acquire it at once. Such thread contention significantly reduces perfor-
mance scaling with respect to frequency, number of discrete processors, and HT
Technology.

To reduce the performance penalty, one approach is to reduce the likelihood of many
threads competing to acquire the same lock. Apply a software pipelining technique to
handle data that must be shared between multiple threads.

Instead of allowing multiple threads to compete for a given lock, no more than two
threads should have write access to a given lock. If an application must use spin-
locks, include the PAUSE instruction in the wait loop. Example 8-4(c) shows an
example of the “test, test-and-set” technique for determining the availability of the
lock in a spin-wait loop.

User/Source Coding Rule 21. (M impact, L generality) Replace a spin lock that
may be acquired by multiple threads with pipelined locks such that no more than
two threads have write accesses to one lock. If only one thread needs to write to a
variable shared by two threads, there is no need to use a lock.

8.4.4 Synchronization for Longer Periods
When using a spin-wait loop not expected to be released quickly, an application
should follow these guidelines:

• Keep the duration of the spin-wait loop to a minimum number of repetitions.

• Applications should use an OS service to block the waiting thread; this can
release the processor so that other runnable threads can make use of the
processor or available execution resources.
8-18

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm

MULTICORE AND HYPER-THREADING TECHNOLOGY
On processors supporting HT Technology, operating systems should use the HLT
instruction if one logical processor is active and the other is not. HLT will allow an idle
logical processor to transition to a halted state; this allows the active logical
processor to use all the hardware resources in the physical package. An operating
system that does not use this technique must still execute instructions on the idle
logical processor that repeatedly check for work. This “idle loop” consumes execution
resources that could otherwise be used to make progress on the other active logical
processor.

If an application thread must remain idle for a long time, the application should use
a thread blocking API or other method to release the idle processor. The techniques
discussed here apply to traditional MP system, but they have an even higher impact
on processors that support HT Technology.

Typically, an operating system provides timing services, for example Sleep(dwMilli-
seconds)6; such variables can be used to prevent frequent checking of a synchroni-
zation variable.

Another technique to synchronize between worker threads and a control loop is to
use a thread-blocking API provided by the OS. Using a thread-blocking API allows the
control thread to use less processor cycles for spinning and waiting. This gives the OS
more time quanta to schedule the worker threads on available processors. Further-
more, using a thread-blocking API also benefits from the system idle loop optimiza-
tion that OS implements using the HLT instruction.

User/Source Coding Rule 22. (H impact, M generality) Use a thread-blocking
API in a long idle loop to free up the processor.

Using a spin-wait loop in a traditional MP system may be less of an issue when the
number of runnable threads is less than the number of processors in the system. If
the number of threads in an application is expected to be greater than the number of
processors (either one processor or multiple processors), use a thread-blocking API
to free up processor resources. A multithreaded application adopting one control
thread to synchronize multiple worker threads may consider limiting worker threads
to the number of processors in a system and use thread-blocking APIs in the control
thread.

8.4.4.1 Avoid Coding Pitfalls in Thread Synchronization
Synchronization between multiple threads must be designed and implemented with
care to achieve good performance scaling with respect to the number of discrete
processors and the number of logical processor per physical processor. No single
technique is a universal solution for every synchronization situation.

The pseudo-code example in Example 8-5(a) illustrates a polling loop implementa-
tion of a control thread. If there is only one runnable worker thread, an attempt to

6. The Sleep() API is not thread-blocking, because it does not guarantee the processor will be
released. Example 8-5(a) shows an example of using Sleep(0), which does not always realize the
processor to another thread.
8-19

MULTICORE AND HYPER-THREADING TECHNOLOGY
call a timing service API, such as Sleep(0), may be ineffective in minimizing the cost
of thread synchronization. Because the control thread still behaves like a fast spin-
ning loop, the only runnable worker thread must share execution resources with the
spin-wait loop if both are running on the same physical processor that supports HT
Technology. If there are more than one runnable worker threads, then calling a
thread blocking API, such as Sleep(0), could still release the processor running the
spin-wait loop, allowing the processor to be used by another worker thread instead of
the spinning loop.

A control thread waiting for the completion of worker threads can usually implement
thread synchronization using a thread-blocking API or a timing service, if the worker
threads require significant time to complete. Example 8-5(b) shows an example that
reduces the overhead of the control thread in its thread synchronization.

In general, OS function calls should be used with care when synchronizing threads.
When using OS-supported thread synchronization objects (critical section, mutex, or
semaphore), preference should be given to the OS service that has the least
synchronization overhead, such as a critical section.

Example 8-5. Coding Pitfall using Spin Wait Loop

(a) A spin-wait loop attempts to release the processor incorrectly. It experiences a performance
penalty if the only worker thread and the control thread runs on the same physical processor
package.
// Only one worker thread is running,
// the control loop waits for the worker thread to complete.

ResumeWorkThread(thread_handle);
While (!task_not_done) {
 Sleep(0) // Returns immediately back to spin loop.
 …
}
(b) A polling loop frees up the processor correctly.

// Let a worker thread run and wait for completion.
ResumeWorkThread(thread_handle);
While (!task_not_done) {
 Sleep(FIVE_MILISEC)

// This processor is released for some duration, the processor
// can be used by other threads.
…
}

8-20

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.4.5 Prevent Sharing of Modified Data and False-Sharing
On an Intel Core Duo processor or a processor based on Intel Core microarchitecture,
sharing of modified data incurs a performance penalty when a thread running on one
core tries to read or write data that is currently present in modified state in the first
level cache of the other core. This will cause eviction of the modified cache line back
into memory and reading it into the first-level cache of the other core. The latency of
such cache line transfer is much higher than using data in the immediate first level
cache or second level cache.

False sharing applies to data used by one thread that happens to reside on the same
cache line as different data used by another thread. These situations can also incur
performance delay depending on the topology of the logical processors/cores in the
platform.

An example of false sharing of multithreading environment using processors based
on Intel NetBurst Microarchitecture is when thread-private data and a thread
synchronization variable are located within the line size boundary (64 bytes) or
sector boundary (128 bytes). When one thread modifies the synchronization vari-
able, the “dirty” cache line must be written out to memory and updated for each
physical processor sharing the bus. Subsequently, data is fetched into each target
processor 128 bytes at a time, causing previously cached data to be evicted from its
cache on each target processor.

False sharing can experience performance penalty when the threads are running on
logical processors reside on different physical processors. For processors that
support HT Technology, false-sharing incurs a performance penalty when two threads
run on different cores, different physical processors, or on two logical processors in
the physical processor package. In the first two cases, the performance penalty is
due to cache evictions to maintain cache coherency. In the latter case, performance
penalty is due to memory order machine clear conditions.

False sharing is not expected to have a performance impact with a single Intel Core
Duo processor.

User/Source Coding Rule 23. (H impact, M generality) Beware of false sharing
within a cache line (64 bytes on Intel Pentium 4, Intel Xeon, Pentium M, Intel Core
Duo processors), and within a sector (128 bytes on Pentium 4 and Intel Xeon
processors).

When a common block of parameters is passed from a parent thread to several
worker threads, it is desirable for each work thread to create a private copy of
frequently accessed data in the parameter block.

8.4.6 Placement of Shared Synchronization Variable
On processors based on Intel NetBurst microarchitecture, bus reads typically fetch
128 bytes into a cache, the optimal spacing to minimize eviction of cached data is
128 bytes. To prevent false-sharing, synchronization variables and system objects
8-21

MULTICORE AND HYPER-THREADING TECHNOLOGY
(such as a critical section) should be allocated to reside alone in a 128-byte region
and aligned to a 128-byte boundary.

Example 8-6 shows a way to minimize the bus traffic required to maintain cache
coherency in MP systems. This technique is also applicable to MP systems using
processors with or without HT Technology.

On Pentium M, Intel Core Solo, Intel Core Duo processors, and processors based on
Intel Core microarchitecture; a synchronization variable should be placed alone and
in separate cache line to avoid false-sharing. Software must not allow a synchroniza-
tion variable to span across page boundary.

User/Source Coding Rule 24. (M impact, ML generality) Place each
synchronization variable alone, separated by 128 bytes or in a separate cache
line.

User/Source Coding Rule 25. (H impact, L generality) Do not place any spin
lock variable to span a cache line boundary.

At the code level, false sharing is a special concern in the following cases:

• Global data variables and static data variables that are placed in the same cache
line and are written by different threads.

• Objects allocated dynamically by different threads may share cache lines. Make
sure that the variables used locally by one thread are allocated in a manner to
prevent sharing the cache line with other threads.

Another technique to enforce alignment of synchronization variables and to avoid a
cacheline being shared is to use compiler directives when declaring data structures.
See Example 8-7.

Other techniques that prevent false-sharing include:

Example 8-6. Placement of Synchronization and Regular Variables

int regVar;
int padding[32];
int SynVar[32*NUM_SYNC_VARS];
int AnotherVar;

Example 8-7. Declaring Synchronization Variables without Sharing a Cache Line

__declspec(align(64)) unsigned __int64 sum;
struct sync_struct {…};
__declspec(align(64)) struct sync_struct sync_var;
8-22

MULTICORE AND HYPER-THREADING TECHNOLOGY
• Organize variables of different types in data structures (because the layout that
compilers give to data variables might be different than their placement in the
source code).

• When each thread needs to use its own copy of a set of variables, declare the
variables with:

— Directive threadprivate, when using OpenMP

— Modifier __declspec (thread), when using Microsoft compiler

• In managed environments that provide automatic object allocation, the object
allocators and garbage collectors are responsible for layout of the objects in
memory so that false sharing through two objects does not happen.

• Provide classes such that only one thread writes to each object field and close
object fields, in order to avoid false sharing.

One should not equate the recommendations discussed in this section as favoring a
sparsely populated data layout. The data-layout recommendations should be
adopted when necessary and avoid unnecessary bloat in the size of the work set.

8.5 SYSTEM BUS OPTIMIZATION
The system bus services requests from bus agents (e.g. logical processors) to fetch
data or code from the memory sub-system. The performance impact due data traffic
fetched from memory depends on the characteristics of the workload, and the degree
of software optimization on memory access, locality enhancements implemented in
the software code. A number of techniques to characterize memory traffic of a work-
load is discussed in Appendix A. Optimization guidelines on locality enhancement is
also discussed in Section 3.6.10, “Locality Enhancement,” and Section 7.6.11, “Hard-
ware Prefetching and Cache Blocking Techniques.”

The techniques described in Chapter 3 and Chapter 7 benefit application perfor-
mance in a platform where the bus system is servicing a single-threaded environ-
ment. In a multi-threaded environment, the bus system typically services many
more logical processors, each of which can issue bus requests independently. Thus,
techniques on locality enhancements, conserving bus bandwidth, reducing large-
stride-cache-miss-delay can have strong impact on processor scaling performance.

8.5.1 Conserve Bus Bandwidth
In a multithreading environment, bus bandwidth may be shared by memory traffic
originated from multiple bus agents (These agents can be several logical processors
and/or several processor cores). Preserving the bus bandwidth can improve
processor scaling performance. Also, effective bus bandwidth typically will decrease
if there are significant large-stride cache-misses. Reducing the amount of large-
stride cache misses (or reducing DTLB misses) will alleviate the problem of band-
width reduction due to large-stride cache misses.
8-23

MULTICORE AND HYPER-THREADING TECHNOLOGY
One way for conserving available bus command bandwidth is to improve the locality
of code and data. Improving the locality of data reduces the number of cache line
evictions and requests to fetch data. This technique also reduces the number of
instruction fetches from system memory.

User/Source Coding Rule 26. (M impact, H generality) Improve data and code
locality to conserve bus command bandwidth.

Using a compiler that supports profiler-guided optimization can improve code locality
by keeping frequently used code paths in the cache. This reduces instruction fetches.
Loop blocking can also improve the data locality. Other locality enhancement tech-
niques can also be applied in a multithreading environment to conserve bus band-
width (see Section 7.6, “Memory Optimization Using Prefetch”).

Because the system bus is shared between many bus agents (logical processors or
processor cores), software tuning should recognize symptoms of the bus
approaching saturation. One useful technique is to examine the queue depth of bus
read traffic (see Appendix A.2.1.3, “Workload Characterization”). When the bus
queue depth is high, locality enhancement to improve cache utilization will benefit
performance more than other techniques, such as inserting more software
prefetches or masking memory latency with overlapping bus reads. An approximate
working guideline for software to operate below bus saturation is to check if bus read
queue depth is significantly below 5.

Some MP and workstation platforms may have a chipset that provides two system
buses, with each bus servicing one or more physical processors. The guidelines for
conserving bus bandwidth described above also applies to each bus domain.

8.5.2 Understand the Bus and Cache Interactions
Be careful when parallelizing code sections with data sets that results in the total
working set exceeding the second-level cache and /or consumed bandwidth
exceeding the capacity of the bus. On an Intel Core Duo processor, if only one thread
is using the second-level cache and / or bus, then it is expected to get the maximum
benefit of the cache and bus systems because the other core does not interfere with
the progress of the first thread. However, if two threads use the second-level cache
concurrently, there may be performance degradation if one of the following condi-
tions is true:

• Their combined working set is greater than the second-level cache size.

• Their combined bus usage is greater than the capacity of the bus.

• They both have extensive access to the same set in the second-level cache, and
at least one of the threads writes to this cache line.

To avoid these pitfalls, multithreading software should try to investigate parallelism
schemes in which only one of the threads access the second-level cache at a time, or
where the second-level cache and the bus usage does not exceed their limits.
8-24

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.5.3 Avoid Excessive Software Prefetches
Pentium 4 and Intel Xeon Processors have an automatic hardware prefetcher. It can
bring data and instructions into the unified second-level cache based on prior refer-
ence patterns. In most situations, the hardware prefetcher is likely to reduce system
memory latency without explicit intervention from software prefetches. It is also
preferable to adjust data access patterns in the code to take advantage of the char-
acteristics of the automatic hardware prefetcher to improve locality or mask memory
latency. Processors based on Intel Core microarchitecture also provides several
advanced hardware prefetching mechanisms. Data access patterns that can take
advantage of earlier generations of hardware prefetch mechanism generally can take
advantage of more recent hardware prefetch implementations.

Using software prefetch instructions excessively or indiscriminately will inevitably
cause performance penalties. This is because excessively or indiscriminately using
software prefetch instructions wastes the command and data bandwidth of the
system bus.

Using software prefetches delays the hardware prefetcher from starting to fetch data
needed by the processor core. It also consumes critical execution resources and can
result in stalled execution. In some cases, it may be fruitful to evaluate the reduction
or removal of software prefetches to migrate towards more effective use of hardware
prefetch mechanisms. The guidelines for using software prefetch instructions are
described in Chapter 3. The techniques for using automatic hardware prefetcher is
discussed in Chapter 7.

User/Source Coding Rule 27. (M impact, L generality) Avoid excessive use of
software prefetch instructions and allow automatic hardware prefetcher to work.
Excessive use of software prefetches can significantly and unnecessarily increase
bus utilization if used inappropriately.

8.5.4 Improve Effective Latency of Cache Misses
System memory access latency due to cache misses is affected by bus traffic. This is
because bus read requests must be arbitrated along with other requests for bus
transactions. Reducing the number of outstanding bus transactions helps improve
effective memory access latency.

One technique to improve effective latency of memory read transactions is to use
multiple overlapping bus reads to reduce the latency of sparse reads. In situations
where there is little locality of data or when memory reads need to be arbitrated with
other bus transactions, the effective latency of scattered memory reads can be
improved by issuing multiple memory reads back-to-back to overlap multiple
outstanding memory read transactions. The average latency of back-to-back bus
reads is likely to be lower than the average latency of scattered reads interspersed
with other bus transactions. This is because only the first memory read needs to wait
for the full delay of a cache miss.
8-25

MULTICORE AND HYPER-THREADING TECHNOLOGY
User/Source Coding Rule 28. (M impact, M generality) Consider using
overlapping multiple back-to-back memory reads to improve effective cache miss
latencies.

Another technique to reduce effective memory latency is possible if one can adjust
the data access pattern such that the access strides causing successive cache misses
in the last-level cache is predominantly less than the trigger threshold distance of the
automatic hardware prefetcher. See Section 7.6.3, “Example of Effective Latency
Reduction with Hardware Prefetch.”

User/Source Coding Rule 29. (M impact, M generality) Consider adjusting the
sequencing of memory references such that the distribution of distances of
successive cache misses of the last level cache peaks towards 64 bytes.

8.5.5 Use Full Write Transactions to Achieve Higher Data Rate
Write transactions across the bus can result in write to physical memory either using
the full line size of 64 bytes or less than the full line size. The latter is referred to as a
partial write. Typically, writes to writeback (WB) memory addresses are full-size and
writes to write-combine (WC) or uncacheable (UC) type memory addresses result in
partial writes. Both cached WB store operations and WC store operations utilize a set
of six WC buffers (64 bytes wide) to manage the traffic of write transactions. When
competing traffic closes a WC buffer before all writes to the buffer are finished, this
results in a series of 8-byte partial bus transactions rather than a single 64-byte write
transaction.

User/Source Coding Rule 30. (M impact, M generality) Use full write
transactions to achieve higher data throughput.

Frequently, multiple partial writes to WC memory can be combined into full-sized
writes using a software write-combining technique to separate WC store operations
from competing with WB store traffic. To implement software write-combining,
uncacheable writes to memory with the WC attribute are written to a small, tempo-
rary buffer (WB type) that fits in the first level data cache. When the temporary
buffer is full, the application copies the content of the temporary buffer to the final
WC destination.

When partial-writes are transacted on the bus, the effective data rate to system
memory is reduced to only 1/8 of the system bus bandwidth.

8.6 MEMORY OPTIMIZATION
Efficient operation of caches is a critical aspect of memory optimization. Efficient
operation of caches needs to address the following:

• Cache blocking

• Shared memory optimization

• Eliminating 64-KByte aliased data accesses
8-26

MULTICORE AND HYPER-THREADING TECHNOLOGY
• Preventing excessive evictions in first-level cache

8.6.1 Cache Blocking Technique
Loop blocking is useful for reducing cache misses and improving memory access
performance. The selection of a suitable block size is critical when applying the loop
blocking technique. Loop blocking is applicable to single-threaded applications as
well as to multithreaded applications running on processors with or without HT Tech-
nology. The technique transforms the memory access pattern into blocks that effi-
ciently fit in the target cache size.

When targeting Intel processors supporting HT Technology, the loop blocking tech-
nique for a unified cache can select a block size that is no more than one half of the
target cache size, if there are two logical processors sharing that cache. The upper
limit of the block size for loop blocking should be determined by dividing the target
cache size by the number of logical processors available in a physical processor
package. Typically, some cache lines are needed to access data that are not part of
the source or destination buffers used in cache blocking, so the block size can be
chosen between one quarter to one half of the target cache (see Chapter 3, “General
Optimization Guidelines”).

Software can use the deterministic cache parameter leaf of CPUID to discover which
subset of logical processors are sharing a given cache (see Chapter 7, “Optimizing
Cache Usage”). Therefore, guideline above can be extended to allow all the logical
processors serviced by a given cache to use the cache simultaneously, by placing an
upper limit of the block size as the total size of the cache divided by the number of
logical processors serviced by that cache. This technique can also be applied to
single-threaded applications that will be used as part of a multitasking workload.

User/Source Coding Rule 31. (H impact, H generality) Use cache blocking to
improve locality of data access. Target one quarter to one half of the cache size
when targeting Intel processors supporting HT Technology or target a block size
that allow all the logical processors serviced by a cache to share that cache
simultaneously.

8.6.2 Shared-Memory Optimization
Maintaining cache coherency between discrete processors frequently involves
moving data across a bus that operates at a clock rate substantially slower that the
processor frequency.

8.6.2.1 Minimize Sharing of Data between Physical Processors
When two threads are executing on two physical processors and sharing data,
reading from or writing to shared data usually involves several bus transactions
(including snooping, request for ownership changes, and sometimes fetching data
8-27

MULTICORE AND HYPER-THREADING TECHNOLOGY
across the bus). A thread accessing a large amount of shared memory is likely to
have poor processor-scaling performance.

User/Source Coding Rule 32. (H impact, M generality) Minimize the sharing of
data between threads that execute on different bus agents sharing a common bus.
The situation of a platform consisting of multiple bus domains should also minimize
data sharing across bus domains.

One technique to minimize sharing of data is to copy data to local stack variables if it
is to be accessed repeatedly over an extended period. If necessary, results from
multiple threads can be combined later by writing them back to a shared memory
location. This approach can also minimize time spent to synchronize access to shared
data.

8.6.2.2 Batched Producer-Consumer Model
The key benefit of a threaded producer-consumer design, shown in Figure 8-5, is to
minimize bus traffic while sharing data between the producer and the consumer
using a shared second-level cache. On an Intel Core Duo processor and when the
work buffers are small enough to fit within the first-level cache, re-ordering of
producer and consumer tasks are necessary to achieve optimal performance. This is
because fetching data from L2 to L1 is much faster than having a cache line in one
core invalidated and fetched from the bus.

Figure 8-5 illustrates a batched producer-consumer model that can be used to over-
come the drawback of using small work buffers in a standard producer-consumer
model. In a batched producer-consumer model, each scheduling quanta batches two
or more producer tasks, each producer working on a designated buffer. The number
of tasks to batch is determined by the criteria that the total working set be greater
than the first-level cache but smaller than the second-level cache.

Example 8-8 shows the batched implementation of the producer and consumer
thread functions.

Figure 8-5. Batched Approach of Producer Consumer Model

Main
Thread P(2) P(5)P(4)P(3)

C(3)C(2)C(1) C(4)

P(1)

P: producer
C: consumer

P(6)
8-28

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.6.3 Eliminate 64-KByte Aliased Data Accesses
The 64-KByte aliasing condition is discussed in Chapter 3. Memory accesses that
satisfy the 64-KByte aliasing condition can cause excessive evictions of the first-level
data cache. Eliminating 64-KByte aliased data accesses originating from each thread

Example 8-8. Batched Implementation of the Producer Consumer Threads

void producer_thread()
{ int iter_num = workamount - batchsize;

int mode1;
for (mode1=0; mode1 < batchsize; mode1++)
{ produce(buffs[mode1],count); }

while (iter_num--)
{ Signal(&signal1,1);

produce(buffs[mode1],count); // placeholder function
WaitForSignal(&end1);
mode1++;
if (mode1 > batchsize)

mode1 = 0;
}

}

void consumer_thread()
{ int mode2 = 0;

int iter_num = workamount - batchsize;
while (iter_num--)
{ WaitForSignal(&signal1);

consume(buffs[mode2],count); // placeholder function
Signal(&end1,1);
mode2++;
if (mode2 > batchsize)

mode2 = 0;

}
for (i=0;i<batchsize;i++)
{ consume(buffs[mode2],count);

mode2++;
if (mode2 > batchsize)

mode2 = 0;
}

}

8-29

MULTICORE AND HYPER-THREADING TECHNOLOGY
helps improve frequency scaling in general. Furthermore, it enables the first-level
data cache to perform efficiently when HT Technology is fully utilized by software
applications.

User/Source Coding Rule 33. (H impact, H generality) Minimize data access
patterns that are offset by multiples of 64 KBytes in each thread.

The presence of 64-KByte aliased data access can be detected using Pentium 4
processor performance monitoring events. Appendix B includes an updated list of
Pentium 4 processor performance metrics. These metrics are based on events
accessed using the Intel VTune Performance Analyzer.

Performance penalties associated with 64-KByte aliasing are applicable mainly to
current processor implementations of HT Technology or Intel NetBurst microarchitec-
ture. The next section discusses memory optimization techniques that are applicable
to multithreaded applications running on processors supporting HT Technology.

8.7 FRONT-END OPTIMIZATION
For dual-core processors where the second-level unified cache is shared by two
processor cores (Intel Core Duo processor and processors based on Intel Core
microarchitecture), multi-threaded software should consider the increase in code
working set due to two threads fetching code from the unified cache as part of front-
end and cache optimization. For quad-core processors based on Intel Core microar-
chitecture, the considerations that applies to Intel Core 2 Duo processors also apply
to quad-core processors.

8.7.1 Avoid Excessive Loop Unrolling
Unrolling loops can reduce the number of branches and improve the branch predict-
ability of application code. Loop unrolling is discussed in detail in Chapter 3. Loop
unrolling must be used judiciously. Be sure to consider the benefit of improved
branch predictability and the cost of under-utilization of the loop stream detector
(LSD).

User/Source Coding Rule 34. (M impact, L generality) Avoid excessive loop
unrolling to ensure the LSD is operating efficiently..

8.8 AFFINITIES AND MANAGING SHARED PLATFORM
RESOURCES

Modern OSes provide either API and/or data constructs (e.g. affinity masks) that
allow applications to manage certain shared resources , e.g. logical processors, Non-
Uniform Memory Access (NUMA) memory sub-systems.
8-30

MULTICORE AND HYPER-THREADING TECHNOLOGY
Before multithreaded software considers using affinity APIs, it should consider the
recommendations in Table 8-2.

Table 8-2. Design-Time Resource Management Choices

Runtime Environment
Thread
Scheduling/Processor
Affinity Consideration

Memory Affinity
Consideration

A single-threaded
application

Support OS scheduler
objectives on system response
and throughput by letting OS
scheduler manage scheduling.
OS provides facilities for end
user to optimize runtime
specific environment.

Not relevant, Let OS do its
job.

A multi-threaded
application requiring:
i) less than all
processor resource in
the system,
ii) share system
resource with other
concurrent
applications,
iii) other concurrent
applications may have
higher priority.

Rely on OS default scheduler
policy.
Hard-coded affinity-binding will
likely harm system response
and throughput; and/or in some
cases hurting application
performance.

Rely on OS default scheduler
policy.
Use API that could provide
transparent NUMA benefit
without managing NUMA
explicitly.

A multi-threaded
application requiring
i) foreground and higher
priority,
ii) uses less than all
processor resource in
the system,
iii) share system
resource with other
concurrent
applications,
iv) but other concurrent
applications have lower
priority.

If application-customized thread
binding policy is considered, a
cooperative approach with OS
scheduler should be taken
instead of hard-coded thread
affinity binding policy. For
example, the use of
SetThreadIdealProcessor() can
provide a floating base to
anchor a next-free-core binding
policy for locality-optimized
application binding policy, and
cooperate with default OS
policy.

Use API that could provide
transparent NUMA benefit
without managing NUMA
explicitly.
Use performance event to
diagnose non-local memory
access issue if default OS
policy cause performance
issue.
8-31

MULTICORE AND HYPER-THREADING TECHNOLOGY
8.8.1 Topology Enumeration of Shared Resources
Whether multithreaded software ride on OS scheduling policy or need to use affinity
APIs for customized resource management, understanding the topology of the
shared platform resource is essential. The processor topology of logical processors
(SMT), processor cores, and physical processors in the platform can enumerated
using information provided by CPUID. This is discussed in Chapter 8, “Multiple-
Processor Management” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A. A white paper and reference code is also available from Intel.

8.8.2 Non-Uniform Memory Access
Platforms using two or more Intel Xeon processors based on Intel microarchitecture
(Nehalem) support non-uniform memory access (NUMA) topology because each
physical processor provides its own local memory controller. NUMA offers system
memory bandwidth that can scale with the number of physical processors. System
memory latency will exhibit asymmetric behavior depending on the memory transac-
tion occurring locally in the same socket or remotely from another socket. Addition-
ally, OS-specific construct and/or implementation behavior may present additional
complexity at the API level that the multi-threaded software may need to pay atten-
tion to memory allocation/initialization in a NUMA environment.

A multi-threaded
application runs in
foreground, requiring all
processor resource in
the system and not
sharing system
resource with
concurrent
applications; MPI-based
multi-threading.

Application-customized thread
binding policy can be more
efficient than default OS policy.
Use performance event to help
optimize locality and cache
transfer opportunities.
A multi-threaded application
that employs its own explicit
thread affinity-binding policy
should deploy with some form
of opt-in choice granted by the
end-user or administrator. For
example, permission to deploy
explicit thread affinity-binding
policy can be activated after
permission is granted after
installation.

Application-customized
memory affinity binding
policy can be more efficient
than default OS policy. Use
performance event to
diagnose non-local memory
access issues related to
either OS or custom policy

Table 8-2. Design-Time Resource Management Choices

Runtime Environment
Thread
Scheduling/Processor
Affinity Consideration

Memory Affinity
Consideration
8-32

MULTICORE AND HYPER-THREADING TECHNOLOGY
Generally, latency sensitive workload would favor memory traffic to stay local over
remote. If multiple threads shares a buffer, the programmer will need to pay atten-
tion to OS-specific behavior of memory allocation/initialization on a NUMA system.

Bandwidth sensitive workloads will find it convenient to employ a data composition
threading model and aggregates application threads executing in each socket to
favor local traffic on a per-socket basis to achieve overall bandwidth scalable with the
number of physical processors.

The OS construct that provides the programming interface to manage local/remote
NUMA traffic is referred to as memory affinity. Because OS manages the mapping
between physical address (populated by system RAM) to linear address (accessed by
application software); and paging allows dynamic reassignment of a physical page to
map to different linear address dynamically, proper use of memory affinity will
require a great deal of OS-specific knowledge.

To simplify application programming, OS may implement certain APIs and phys-
ical/linear address mapping to take advantage of NUMA characteristics transparently
in certain situations. One common technique is for OS to delay commit of physical
memory page assignment until the first memory reference on that physical page is
accessed in the linear address space by an application thread. This means that the
allocation of a memory buffer in the linear address space by an application thread
does not necessarily determine which socket will service local memory traffic when
the memory allocation API returns to the program. However, the memory allocation
API that supports this level of NUMA transparency varies across different OSes. For
example, the portable C-language API “malloc“ provides some degree of transpar-
ency on Linux*, whereas the API “VirtualAlloc” behave similarly on Windows*.
Different OSes may also provide memory allocation APIs that require explicit NUMA
information, such that the mapping between linear address to local/remote memory
traffic are fixed at allocation.

Example 8-9 shows an example that multi-threaded application could undertake the
least amount of effort dealing with OS-specific APIs and to take advantage of NUMA
8-33

MULTICORE AND HYPER-THREADING TECHNOLOGY
hardware capability. This parallel approach to memory buffer initialization is condu-
cive to having each worker thread keep memory traffic local on NUMA systems.

Note that the example shown in Example 8-9 implies that the memory buffers will be
freed after the worker threads created by OpenMP have ended. This situation avoids
a potential issue of repeated use of malloc/free across different application threads.
Because if the local memory that was initialized by one thread and subsequently got

Example 8-9. Parallel Memory Initialization Technique Using OpenMP and NUMA

#ifdef _LINUX // Linux implements malloc to commit physical page at first touch/access

buf1 = (char *) malloc(DIM*(sizeof (double))+1024);

buf2 = (char *) malloc(DIM*(sizeof (double))+1024);

buf3 = (char *) malloc(DIM*(sizeof (double))+1024);

#endif

#ifdef windows

// Windows implements malloc to commit physical page at allocation, so use VirtualAlloc

buf1 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

buf2 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

buf3 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

#endif

(continue)

a = (double *) buf1;

b = (double *) buf2;

c = (double *) buf3;

#pragma omp parallel

{ // use OpenMP threads to execute each iteration of the loop

// number of OpenMP threads can be specified by default or via environment variable

#pragma omp for private(num)

// each loop iteration is dispatched to execute in different OpenMP threads using private iterator

for(num=0;num<len;num++)

{// each thread perform first-touches to its own subset of memory address, physical pages

// mapped to the local memory controller of the respective threads

a[num]=10.;

b[num]=10.;

c[num]=10.;

}

}

8-34

MULTICORE AND HYPER-THREADING TECHNOLOGY
freed up by another thread, the OS may have difficulty in tracking/re-allocating
memory pools in linear address space relative to NUMA topology. In Linux, another
API, “numa_local_alloc“ may be used.

8.9 OPTIMIZATION OF OTHER SHARED RESOURCES
Resource optimization in multi-threaded application depends on the cache topology
and execution resources associated within the hierarchy of processor topology.
Processor topology and an algorithm for software to identify the processor topology
are discussed in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

In platforms with shared buses, the bus system is shared by multiple agents at the
SMT level and at the processor core level of the processor topology. Thus multi-
threaded application design should start with an approach to manage the bus band-
width available to multiple processor agents sharing the same bus link in an equitable
manner. This can be done by improving the data locality of an individual application
thread or allowing two threads to take advantage of a shared second-level cache
(where such shared cache topology is available).

In general, optimizing the building blocks of a multi-threaded application can start
from an individual thread. The guidelines discussed in Chapter 3 through Chapter 9
largely apply to multi-threaded optimization.

Tuning Suggestion 3. Optimize single threaded code to maximize execution
throughput first.

Tuning Suggestion 4. Employ efficient threading model, leverage available tools
(such as Intel Threading Building Block, Intel Thread Checker, Intel Thread Profiler)
to achieve optimal processor scaling with respect to the number of physical
processors or processor cores.

8.9.1 Expanded Opportunity for HT Optimization
The Hyper-Threading Technology (HT) implementation in Intel microarchitecture
(Nehalem) differs from previous generations of HT implementations. It offers
broader opportunity for multi-threaded software to take advantage of HT and
achieve higher system throughput over a broader range of application problems. This
section provide a few heuristic recommendations and illustrates some of those situa-
tions that HT in Nehalem provides more optimization opportunities.

Chapter 2, “Intel® 64 and IA-32 Architectures” covered some of the microarchitec-
tural capability enhancement in Hyper-Threading Technology. Many of these
enhancements centers around the basic needs of multi-threaded software in terms of
sharing common hardware resources that may be used by more than one thread
context.

Different software algorithms and workload characteristics may produce different
performance characteristics due to their demands on critical microarchitectural
8-35

MULTICORE AND HYPER-THREADING TECHNOLOGY
resources that may be shared amongst several logical processors. A brief comparison
of the various microarchitectural subsystem that can play a significant role in soft-
ware tuning for HT is summarized in Table 8-3.

For compute bound workloads, the HT opportunity in Intel NetBurst microarchitec-
ture tend to favor thread contexts that executes with relatively high CPI (average
cycles to retire consecutive instructions). At a hardware level, this is in part due to
the issue port imbalance in the microarchitecture, as port 1 is shared by fast ALU,
slow ALU (more heavy-duty integer operations), SIMD, and FP computations. At a
software level, some of the cause for high CPI and may appear as benign catalyst for
providing HT benefit may include: long latency instructions (port 1), some L2 hits,
occasional branch mispredictions, etc. But the length of the pipeline in Intel NetBurst
microarchitecture often impose additional internal hardware constraints that limits
software’s ability to take advantage of HT.

The microarchitectural enhancements listed in Table 8-3 is expected to provide
broader software optimization opportunities for compute-bound workloads. Whereas
contention in the same execution unit by two compute-bound threads might be a

Table 8-3. Microarchitectural Resources Comparisons of HT Implementations

Microarchitectural
Subsystem

Intel Microarchitecture
(Nehalem) Intel NetBurst

Microarchitecture

06_1AH 0F_02H, 0F_03H, 0F_04H,
0F_06H

Issue ports, execution
units

Three issue ports (0, 1, 5)
distributed to handle ALU,
SIMD, FP computations

Unbalanced ports, fast ALU
SIMD and FP sharing the
same port (port 1).

Buffering More entries in ROB, RS, fill
buffers, etc with moderate
pipeline depths

Less balance between buffer
entries and pipeline depths

Branch Prediction and
Misaligned memory
access

More robust speculative
execution with immediate
reclamation after misprediction;
efficient handling of cache splits

More microarchitectural
hazards resulting in pipeline
cleared for both threads.

Cache hierarchy Larger and more efficient More microarchitectural
hazards to work around

Memory and bandwidth NUMA, three channels per
socket to DDR3, up to 32GB/s
per socket

SMP, FSB, or dual FSB, up
to 12.8 GB/s per FSB
8-36

MULTICORE AND HYPER-THREADING TECHNOLOGY
concern to choose a functional-decomposition threading model over data-composi-
tion threading. Intel microarchitecture (Nehalem) will likely be more accommodating
to support the programmer to choose the optimal threading decomposition models.

Memory intensive workloads can exhibit a wide range of performance characteristics,
ranging from completely parallel memory traffic (saturating system memory band-
width, as in the well-known example of Stream), memory traffic dominated by
memory latency, or various mixtures of compute operations and memory traffic of
either kind.

The HT implementation in Intel NetBurst microarchitecture may provide benefit to
some of the latter two types of workload characteristics. The HT capability in the Intel
microarchitecture (Nehalem) can broaden the operating envelop of the two latter
types workload characteristics to deliver higher system throughput, due to its
support for non-uniform memory access (NUMA), more efficient link protocol, and
system memory bandwidth that scales with the number of physical processors.

Some cache levels of the cache hierarchy may be shared by multiple logical proces-
sors. Using the cache hierarchy is an important means for software to improve the
efficiency of memory traffic and avoid saturating the system memory bandwidth.
Multi-threaded applications employing cache-blocking technique may wish to parti-
tion a target cache level to take advantage of Hyper-Threading Technology. Alter-
nately two logical processors sharing the same L1 and L2, or logical processors
sharing the L3 may wish to manage the shared resources according to their relative
topological relationship. A white paper on processor topology enumeration and cache
topology enumeration with companion reference code has been published (see refer-
ence at the end of chapter 1).
8-37

MULTICORE AND HYPER-THREADING TECHNOLOGY
8-38

CHAPTER 9
64-BIT MODE CODING GUIDELINES

9.1 INTRODUCTION
This chapter describes coding guidelines for application software written to run in
64-bit mode. Some coding recommendations applicable to 64-bit mode are covered
in Chapter 3. The guidelines in this chapter should be considered as an addendum to
the coding guidelines described in Chapter 3 through Chapter 8.

Software that runs in either compatibility mode or legacy non-64-bit modes should
follow the guidelines described in Chapter 3 through Chapter 8.

9.2 CODING RULES AFFECTING 64-BIT MODE

9.2.1 Use Legacy 32-Bit Instructions When Data Size Is 32 Bits
64-bit mode makes 16 general purpose 64-bit registers available to applications. If
application data size is 32 bits, there is no need to use 64-bit registers or 64-bit arith-
metic.

The default operand size for most instructions is 32 bits. The behavior of those
instructions is to make the upper 32 bits all zeros. For example, when zeroing out a
register, the following two instruction streams do the same thing, but the 32-bit
version saves one instruction byte:

32-bit version:

xor eax, eax; Performs xor on lower 32bits and zeroes the upper 32 bits.

64-bit version:

xor rax, rax; Performs xor on all 64 bits.

This optimization holds true for the lower 8 general purpose registers: EAX, ECX,
EBX, EDX, ESP, EBP, ESI, EDI. To access the data in registers R9-R15, the REX prefix
is required. Using the 32-bit form there does not reduce code size.
9-1

64-BIT MODE CODING GUIDELINES
Assembly/Compiler Coding Rule 65. (H impact, M generality) Use the 32-bit
versions of instructions in 64-bit mode to reduce code size unless the 64-bit version
is necessary to access 64-bit data or additional registers.

9.2.2 Use Extra Registers to Reduce Register Pressure
64-bit mode makes 8 additional 64-bit general purpose registers and 8 additional
XMM registers available to applications. To access the additional registers, a single
byte REX prefix is necessary. Using 8 additional registers can prevent the compiler
from needing to spill values onto the stack.

Note that the potential increase in code size, due to the REX prefix, can increase
cache misses. This can work against the benefit of using extra registers to access the
data. When eight registers are sufficient for an algorithm, don’t use the registers that
require an REX prefix. This keeps the code size smaller.

Assembly/Compiler Coding Rule 66. (M impact, MH generality) When they
are needed to reduce register pressure, use the 8 extra general purpose registers
for integer code and 8 extra XMM registers for floating-point or SIMD code.

9.2.3 Use 64-Bit by 64-Bit Multiplies To Produce
128-Bit Results Only When Necessary

Integer multiplies of 64-bit by 64-bit operands that produce a 128-bit result cost
more than multiplies that produce a 64-bit result. The upper 64-bits of a result take
longer to compute than the lower 64 bits.

If the compiler can determine at compile time that the result of a multiply will not
exceed 64 bits, then the compiler should generate the multiply instruction that
produces a 64-bit result. If the compiler or assembly programmer can not determine
that the result will be less than 64 bits, then a multiply that produces a 128-bit result
is necessary.

Assembly/Compiler Coding Rule 67. (ML impact, M generality) Prefer 64-bit
by 64-bit integer multiplies that produce 64-bit results over multiplies that produce
128-bit results.

9.2.4 Sign Extension to Full 64-Bits
When in 64-bit mode, processors based on Intel NetBurst microarchitecture can
sign-extend to 64 bits in a single μop. In 64-bit mode, when the destination is 32
bits, the upper 32 bits must be zeroed.

Zeroing the upper 32 bits requires an extra μop and is less optimal than sign
extending to 64 bits. While sign extending to 64 bits makes the instruction one byte
longer, it reduces the number of μops that the trace cache has to store, improving
performance.
9-2

64-BIT MODE CODING GUIDELINES
For example, to sign-extend a byte into ESI, use:

movsx rsi, BYTE PTR[rax]

instead of:

movsx esi, BYTE PTR[rax]

If the next instruction uses the 32-bit form of esi register, the result will be the same.
This optimization can also be used to break an unintended dependency. For example,
if a program writes a 16-bit value to a register and then writes the register with an 8-
bit value, if bits 15:8 of the destination are not needed, use the sign-extended
version of writes when available.

For example:

mov r8w, r9w; Requires a merge to preserve
; bits 63:15.

mov r8b, r10b; Requires a merge to preserve bits 63:8

Can be replaced with:

movsx r8, r9w ; If bits 63:8 do not need to be
; preserved.

movsx r8, r10b ; If bits 63:8 do not need to
; be preserved.

In the above example, the moves to R8W and R8B both require a merge to preserve
the rest of the bits in the register. There is an implicit real dependency on R8 between
the 'MOV R8W, R9W' and 'MOV R8B, R10B'. Using MOVSX breaks the real depen-
dency and leaves only the output dependency, which the processor can eliminate
through renaming.

For processors based on Intel Core microarchitecture, zeroing the upper 32 bits is
faster than sign-extend to 64 bits. For processors based on Intel microarchitecture
(Nehalem), zeroing or sign-extend the upper bits is single micro-op.

9.3 ALTERNATE CODING RULES FOR 64-BIT MODE

9.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers
for 64-Bit Arithmetic

Legacy 32-bit mode offers the ability to support extended precision integer arith-
metic (such as 64-bit arithmetic). However, 64-bit mode offers native support for
64-bit arithmetic. When 64-bit integers are desired, use the 64-bit forms of arith-
metic instructions.

In 32-bit legacy mode, getting a 64-bit result from a 32-bit by 32-bit integer multiply
requires three registers; the result is stobbred in 32-bit chunks in the EDX:EAX pair.
When the instruction is available in 64-bit mode, using the 32-bit version of the
9-3

64-BIT MODE CODING GUIDELINES
instruction is not the optimal implementation if a 64-bit result is desired. Use the
extended registers.

For example, the following code sequence loads the 32-bit values sign-extended into
the 64-bit registers and performs a multiply:

movsx rax, DWORD PTR[x]
movsx rcx, DWORD PTR[y]
imul rax, rcx

The 64-bit version above is more efficient than using the following 32-bit version:

mov eax, DWORD PTR[x]
mov ecx, DWORD PTR[y]
imul ecx

In the 32-bit case above, EAX is required to be a source. The result ends up in the
EDX:EAX pair instead of in a single 64-bit register.

Assembly/Compiler Coding Rule 68. (ML impact, M generality) Use the
64-bit versions of multiply for 32-bit integer multiplies that require a 64 bit result.

To add two 64-bit numbers in 32-bit legacy mode, the add instruction followed by the
addc instruction is used. For example, to add two 64-bit variables (X and Y), the
following four instructions could be used:

mov eax, DWORD PTR[X]
mov edx, DWORD PTR[X+4]
add eax, DWORD PTR[Y]
adc edx, DWORD PTR[Y+4]

The result will end up in the two-register EDX:EAX.

In 64-bit mode, the above sequence can be reduced to the following:

mov rax, QWORD PTR[X]
add rax, QWORD PTR[Y]

The result is stored in rax. One register is required instead of two.

Assembly/Compiler Coding Rule 69. (ML impact, M generality) Use the
64-bit versions of add for 64-bit adds.

9.3.2 CVTSI2SS and CVTSI2SD
The CVTSI2SS and CVTSI2SD instructions convert a signed integer in a general-
purpose register or memory location to a single-precision or double-precision
floating-point value. The signed integer can be either 32-bits or 64-bits.

In processors based on Intel NetBurst microarchitecture, the 32-bit version will
execute from the trace cache; the 64-bit version will result in a microcode flow from
the microcode ROM and takes longer to execute. In most cases, the 32-bit versions
of CVTSI2SS and CVTSI2SD is sufficient.
9-4

64-BIT MODE CODING GUIDELINES
In processors based on Intel Core microarchitecture, CVTSI2SS and CVTSI2SD are
improved significantly over those in Intel NetBurst microarchitecture, in terms of
latency and throughput. The improvements applies equally to 64-bit and 32-bit
versions.

9.3.3 Using Software Prefetch
Intel recommends that software developers follow the recommendations in
Chapter 3 and Chapter 7 when considering the choice of organizing data access
patterns to take advantage of the hardware prefetcher (versus using software
prefetch).

Assembly/Compiler Coding Rule 70. (L impact, L generality) If software
prefetch instructions are necessary, use the prefetch instructions provided by SSE.
9-5

64-BIT MODE CODING GUIDELINES
9-6

CHAPTER 10 SSE4.2 AND SIMD PROGRAMMING FOR
TEXT-PROCESSING/LEXING/PARSING

String/text processing spans a discipline that often employs techniques different
from traditional SIMD integer vector processing. Much of the traditional string/text
algorithms are character based, where characters may be represented by encodings
(or code points) of fixed or variable byte sizes. Textual data represents a vast amount
of raw data and often carrying contextual information. The contextual information
embedded in raw textual data often requires algorithmic processing dealing with a
wide range of attributes, such as character values, character positions, character
encoding formats, subsetting of character sets, strings of explicit or implicit lengths,
tokens, delimiters; contextual objects may be represented by sequential characters
within a pre-defined character subsets (e.g. decimal-valued strings); textual streams
may contain embedded state transitions separating objects of different contexts
(e.g. tag-delimited fields).

Traditional Integer SIMD vector instructions may, in some simpler situations, be
successful to speed up simple string processing functions. SSE4.2 includes four new
instructions that offer advances to computational algorithms targeting string/text
processing, lexing and parsing of either unstructured or structured textual data.

10.1 SSE4.2 STRING AND TEXT INSTRUCTIONS
SSE4.2 provides four instructions, PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM
that can accelerate string and text processing by combining the efficiency of SIMD
programming techniques and the lexical primitives that are embedded in these 4
instructions. Simple examples of these instructions include string length determina-
tion, direct string comparison, string case handling, delimiter/token processing,
locating word boundaries, locating sub-string matches in large text blocks. Sophisti-
cated application of SSE4.2 can accelerate XML parsing and Schema validation.

Processor’s support for SSE4.2 is indicated by the feature flag value returned in ECX
[bit 20] after executing CPUID instruction with EAX input value of 1 (i.e. SSE4.2 is
supported if CPUID.01H:ECX.SSE4_2 [bit 20] = 1). Therefore, software must verify
CPUID.01H:ECX.SSE4_2 [bit 20] is set before using these 4 instructions. (Verifying
CPUID.01H:ECX.SSE4_2 = 1 is also required before using PCMPGTQ or CRC32. Veri-
fying CPUID.01H:ECX.POPCNT[Bit 23] = 1 is required before using the POPCNT
instruction.)

These string/text processing instructions work by performing up to 256 comparison
operations on text fragments. Each text fragment can be 16 bytes. They can handle
fragments of different formats: either byte or word elements. Each of these four
instructions can be configured to perform four types of parallel comparison operation
on two text fragments.
 10-1

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
The aggregated intermediate result of a parallel comparison of two text fragments
become a bit patterns:16 bits for processing byte elements or 8 bits for word
elements. These instruction provide additional flexibility, using bit fields in the imme-
diate operand of the instruction syntax, to configure an unary transformation
(polarity) on the first intermediate result.

Lastly, the instruction’s immediate operand offers a output selection control to
further configure the flexibility of the final result produced by the instruction. The rich
configurability of these instruction is summarized in Figure 10-1.

The PCMPxSTRI instructions produce final result as an integer index in ECX, the
PCMPxSTRM instructions produce final result as a bit mask in the XMM0 register. The
PCMPISTRy instructions support processing string/text fragments using implicit
length control via null termination for handling string/text of unknown size. the
PCMPESTRy instructions support explicit length control via EDX:EAX register pair to
specify the length text fragments in the source operands.

The first intermediate result, IntRes1, is an aggregated result of bit patterns from
parallel comparison operations done on pairs of data elements from each text frag-
ment, according to the imm[3:2] bit field encoding, see Table 10-1.

Figure 10-1. SSE4.2 String/Text Instruction Immediate Operand Control

Fragment1

0

IntRes1

Data Format Imm[1:0]:

Imm[3:2]

Imm[5:4]

PCMPxSTRy XMM1, XMM2/M128, imm

Fragment2 of words
127

015|7
015|7

IntRes2

031

Imm[6] Imm[6]

Index Result Mask Result

Compare
Polarity

Output
Select

00b: unsigned bytes
01b: unsigned words
10b: signed bytes
11b: signed words

XMM0ECX
10-2 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Input data element format selection using imm[1:0] can support signed or unsigned
byte/word elements.

The bit field imm[5:4] allows applying a unary transformation on IntRes1, see
Table 10-2.

The output selection field, imm[6] is described in Table 10-3.

Table 10-1. SSE4.2 String/Text Instructions Compare Operation on N-elements

Imm[3:2] Name IntRes1[i] is TRUE if Potential Usage

00B Equal
Any

Element i in fragment2 matches any
element j in fragment1

Tokenization, XML parser

01B Ranges Element i in fragment2 is within any
range pairs specified in fragment1

Subsetting, Case
handling, XML parser,
Schema validation

10B Equal
Each

Element i in fragment2 matches element
i in fragment1

Strcmp()

11B Equal
Ordered

Element i and subsequent, consecutive
valid elements in fragment2 match fully or
partially with fragment1 starting from
element 0

Substring Searches, KMP,
Strstr()

Table 10-2. SSE4.2 String/Text Instructions Unary Transformation on IntRes1

Imm[5:4] Name IntRes2[i] = Potential Usage

00B No
Change

IntRes1[i]

01B Invert -IntRes1[i]

10B No
Change

IntRes1[i]

11B Mask
Negative

IntRes1[i] if element i of fragment2 is invalid,
otherwise
-IntRes1[i]
 10-3

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
The comparison operation on each data element pair is defined in Table 10-4.
Table 10-4 defines the type of comparison operation between valid data elements
(last row of Table 10-4) and boundary conditions when the fragment in a source
operand may contain invalid data elements (rows 1 through 3 of Table 10-4). Arith-
metic comparison are performed only if both data elements are valid element in
fragment1 and fragment2, as shown in row 4 of Table 10-4.

The string and text processing instruction provides several aid to handle end-of-
string situations, see Table 10-5. Additionally, the PCMPxSTRy instructions are
designed to not require 16-byte alignment to simplify text processing requirements.

Table 10-3. SSE4.2 String/Text Instructions Output Selection Imm[6]

Imm[6] Instruction Final Result Potential Usage

0B PCMPxSTRI ECX = offset of least significant bit set in
IntRes2 if IntRes2 != 0, otherwise
ECX = number of data element per 16
bytes

0B PCMPxSTR
M

XMM0 = ZeroExtend(IntRes2);

1B PCMPxSTRI ECX = offset of most significant bit set in
IntRes2 if IntRes2 != 0, otherwise
ECX = number of data element per 16
bytes

1B PCMPxSTR
M

Data element i of XMM0 =
SignExtend(IntRes2[i]);

Table 10-4. SSE4.2 String/Text Instructions Element-Pair Comparison Definition

fragment1
element

fragment2
element

Imm[3:2]=
00B, Equal
Any

Imm[3:2]=
01B,
Ranges

Imm[3:2]=
10B, Equal
Each

Imm[3:2]=
11B, Equal
Ordered

invalid invalid Force False Force False Force True Force True

invalid valid Force False Force False Force False Force True

valid invalid Force False Force False Force False Force False

valid valid Compare Compare Compare Compare
10-4 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
10.1.1 CRC32
CRC32 instruction computes the 32-bit cyclic redundancy checksum signature for
byte/word/dword or qword stream of data. It can also be used as a hash function. For
examples, a dictionary uses hash indices to dereference strings. CRC32 instruction
can be easily adapted for use in this situation.

Example 10-1 shows a straight forward hash function that can be used to evaluate
the hash index of a string to populate a hash table. Typically, the hash index is
derived from the hash value by taking the remainder of the hash value modulo the
size of a hash table.

CRC32 instruction can be use to derive an alternate hash function. Example 10-2
takes advantage the 32-bit granular CRC32 instruction to update signature value of
the input data stream. For string of small to moderate sizes, using the hardware
accelerated CRC32 can be twice as fast as Example 10-1.

Table 10-5. SSE4.2 String/Text Instructions Eflags Behavior

EFLAGs Description Potential Usage

CF Reset if IntRes2 = 0; Otherwise set When CF=0, ECX= #of data
element to scan next

ZF Reset if entire 16-byte fragment2 is valid likely end-of-string

SF Reset if entire 16-byte fragment1 is valid

OF IntRes2[0];

Example 10-1. A Hash Function Examples

unsigned int hash_str(unsigned char* pStr)

{ unsigned int hVal = (unsigned int)(*pStr++);

 while (*pStr)

{ hVal = (hashVal * CONST_A) + (hVal >> 24) + (unsigned int)(*pStr++);

}

return hVal;

}

 10-5

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Example 10-2. Hash Function Using CRC32

static unsigned cn_7e = 0x7efefeff, Cn_81 = 0x81010100;

unsigned int hash_str_32_crc32x(unsigned char* pStr)

{ unsigned *pDW = (unsigned *) &pStr[1];

unsigned short *pWd = (unsigned short *) &pStr[1];

unsigned int tmp, hVal = (unsigned int)(*pStr);

if(!pStr[1]) ;

else {

tmp = ((pDW[0] +cn_7e) ^(pDW[0]^ -1)) & Cn_81;

while (!tmp) // loop until there is byte in *pDW had 0x00

{

hVal = _mm_crc32_u32 (hVal, *pDW ++);

tmp = ((pDW[0] +cn_7e) ^(pDW[0]^ -1)) & Cn_81;

};

if(!pDW[0]);

else if(pDW[0] < 0x100) { // finish last byte that’s non-zero

hVal = _mm_crc32_u8 (hVal, pDW[0]);

}

else if(pDW[0] < 0x10000) { // finish last two byte that’s non-zero

hVal = _mm_crc32_u16 (hVal, pDW[0]);

}

else { // finish last three byte that’s non-zero

hVal = _mm_crc32_u32 (hVal, pDW[0]);

}

}

return hVal;

}

10-6 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
10.2 USING SSE4.2 STRING AND TEXT INSTRUCTIONS
String libraries provided by high-level languages or as part of system library are used
in a wide range of situations across applications and privileged system software.
These situations can be accelerated using a replacement string library that imple-
ments PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM.

Although system-provided string library provides standardized string handling func-
tionality and interfaces, most situations dealing with structured document processing
requires considerable more sophistication, optimization, and services not available
from system-provided string libraries. For example, structured document processing
software often architect different class objects to provide building block functionality
to service specific needs of the application. Often application may choose to disperse
equivalent string library services into separate classes (string, lexer, parser) or inte-
grate memory management capability into string handling/lexing/parsing objects.

PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM instructions are general-purpose
primitives that software can use to build replacement string libraries or build class
hierarchy to provide lexing/parsing services for structured document processing.
XML parsing and schema validation are examples of the latter situations.

Unstructured, raw text/string data consist of characters, and have no natural align-
ment preferences. Therefore, PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM
instructions are architected to not require the 16-Byte alignment restrictions of other
128-bit SIMD integer vector processing instructions.

With respect to memory alignment, PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMP-
ISTRM support unaligned memory loads like other unaligned 128-bit memory access
instructions, e.g. MOVDQU.

Unaligned memory accesses may encounter special situations that require additional
coding techniques, depending on the code running in ring 3 application space or in
privileged space. Specifically, an unaligned 16-byte load may cross page boundary.
Section 10.2.1 discusses a technique that application code can use. Section 10.2.2
discusses the situation string library functions needs to deal with. Section 10.3 gives
detailed examples of using PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM
instructions to implement equivalent functionality of several string library functions
in situations that application code has control over memory buffer allocation.

10.2.1 Unaligned Memory Access and Buffer Size Management
In application code, the size requirements for memory buffer allocation should
consider unaligned SIMD memory semantics and application usage.

For certain types of application usage, it may be desirable to make distinctions
between valid buffer range limit versus valid application data size (e.g. a video
frame). The former must be greater or equal to the latter.

To support algorithms requiring unaligned 128-bit SIMD memory accesses, memory
buffer allocation by a caller function should consider adding some pad space so that
 10-7

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
a callee function can safely use the address pointer safely with unaligned 128-bit
SIMD memory operations.

The minimal padding size should be the width of the SIMD register that might be
used in conjunction with unaligned SIMD memory access.

10.2.2 Unaligned Memory Access and String Library
String library functions may be used by application code or privileged code. String
library functions must be careful not to violate memory access rights. Therefore, a
replacement string library that employ SIMD unaligned access must employ special
techniques to ensure no memory access violation occur.

Section 10.3.6 provides an example of a replacement string library function imple-
mented with SSE4.2 and demonstrates a technique to use 128-bit unaligned memory
access without unintentionally crossing page boundary.

10.3 SSE4.2 APPLICATION CODING GUIDELINE AND
EXAMPLES

Software implementing SSE4.2 instruction must use CPUID feature flag mechanism
to verify processor’s support for SSE4.2. Details can be found in CHAPTER 12 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and in
CPUID of CHAPTER 3 in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

In the following sections, we use several examples in string/text processing of
progressive complexity to illustrates the basic techniques of adapting the SIMD
approach to implement string/text processing using PCMPxSTRy instructions in
SSE4.2. For simplicity, we will consider string/text in byte data format in situations
that caller functions have allocated sufficient buffer size to support unaligned 128-bit
SIMD loads from memory without encountering side-effects of cross page bound-
aries.

10.3.1 Null Character Identification (Strlen equivalent)
The most widely used string function is probably strlen(). One can view the lexing
requirement of strlen() is to identify the null character in a text block of unknown size
(end of string condition). Brute-force, byte-granular implementation fetches data
inefficiently by loading one byte at a time.

Optimized implementation using general-purpose instructions can take advantage of
dword operations in 32-bit environment (and qword operations in 64-bit environ-
ment) to reduce the number of iterations.
10-8 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
A 32-bit assembly implementation of strlen() is shown Example 10-3. The peak
execution throughput of handling EOS condition is determined by eight ALU instruc-
tions in the main loop.

Example 10-3. Strlen() Using General-Purpose Instructions

int strlen_asm(const char* s1)
{int len = 0;

_asm{
mov ecx, s1
test ecx, 3 ; test addr aligned to dword
je short _main_loop1 ; dword aligned loads would be faster

_malign_str1:
mov al, byte ptr [ecx] ; read one byte at a time
add ecx, 1
test al, al ; if we find a null, go calculate the length
je short _byte3a
test ecx, 3; test if addr is now aligned to dword
jne short _malign_str1; if not, repeat
align16

_main_loop1:; read each 4-byte block and check for a NULL char in the dword
mov eax, [ecx]; read 4 byte to reduce loop count
mov edx, 7efefeffh
add edx, eax
xor eax, -1
xor eax, edx
add ecx, 4; increment address pointer by 4
test eax, 81010100h ; if no null code in 4-byte stream, do the next 4 bytes
je short _main_loop1
; there is a null char in the dword we just read,
; since we already advanced pointer ecx by 4, and the dword is lost
mov eax, [ecx -4]; re-read the dword that contain at least a null char
test al, al ; if byte0 is null
je short _byte0a; the least significant byte is null
test ah, ah ; if byte1 is null
je short _byte1a
test eax, 00ff0000h; if byte2 is null

(continue)
 10-9

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
The equivalent functionality of EOS identification can be implemented using PCMP-
ISTRI. Example 10-4 shows a simplistic SSE4.2 implementation to scan a text block
by loading 16-byte text fragments and locate the null termination character.
Example 10-5 shows the optimized SSE4.2 implementation that demonstrates the
importance of using memory disambiguation to improve instruction-level parallelism.

je short _byte2a
test eax, 00ff000000h; if byte3 is null
je short _byte3a
jmp short _main_loop1

_byte3a:
; we already found the null, but pointer already advanced by 1
lea eax, [ecx-1]; load effective address corresponding to null code
mov ecx, s1
sub eax, ecx; difference between null code and start address
jmp short _resulta

_byte2a:

lea eax, [ecx-2]
mov ecx, s1
sub eax, ecx
jmp short _resulta

_byte1a:
lea eax, [ecx-3]
mov ecx, s1
sub eax, ecx
jmp short _resulta

_byte0a:
lea eax, [ecx-4]
mov ecx, s1
sub eax, ecx

_resulta:
mov len, eax; store result
}
return len;

}

Example 10-3. Strlen() Using General-Purpose Instructions
10-10 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
The code sequence shown in Example 10-4 has a loop consisting of three instruc-
tions. From a performance tuning perspective, the loop iteration has loop-carry
dependency because address update is done using the result (ECX value) of a
previous loop iteration. This loop-carry dependency deprives the out-of-order
engine’s capability to have multiple iterations of the instruction sequence making
forward progress. The latency of memory loads, the latency of these instructions,
any bypass delay could not be amortized by OOO execution in the presence of loop-
carry dependency.

A simple optimization technique to eliminate loop-carry dependency is shown in
Example 10-5.

Using memory disambiguation technique to eliminate loop-carry dependency, the
cumulative latency exposure of the 3-instruction sequence of Example 10-5 is amor-
tized over multiple iterations, the net cost of executing each iteration (handling 16
bytes) is less then 3 cycles. In contrast, handling 4 bytes of string data using 8 ALU
instructions in Example 10-3 will also take a little less than 3 cycles per iteration.

Example 10-4. Sub-optimal PCMPISTRI Implementation of EOS handling

static char ssch2[16]= {0x1, 0xff, 0x00, }; // range values for non-null characters

int strlen_un_optimized(const char* s1)
{int len = 0;

_asm{
mov eax, s1
movdquxmm2, ssch2 ; load character pair as range (0x01 to 0xff)
xor ecx, ecx ; initial offset to 0

(continue)

_loopc:
add eax, ecx ; update addr pointer to start of text fragment
pcmpistri xmm2, [eax], 14h; unsigned bytes, ranges, invert, lsb index returned to ecx

; if there is a null char in the 16Byte fragment at [eax], zf will be set.
; if all 16 bytes of the fragment are non-null characters, ECX will return 16,

jnz short _loopc; xmm1 has no null code, ecx has 16, continue search
; we have a null code in xmm1, ecx has the offset of the null code i
add eax, ecx ; add ecx to the address of the last fragment2/xmm1
mov edx, s1; retrieve effective address of the input string
sub eax, edx;the string length
mov len, eax; store result
}
return len;

}

 10-11

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Whereas each iteration of the code sequence in Example 10-4 will take more than 10
cycles because of loop-carry dependency.

SSE4.2 Coding Rule 5. (H impact, H generality) Loop-carry dependency that
depends on the ECX result of PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM for
address adjustment must be minimized. Isolate code paths that expect ECX result
will be 16 (bytes) or 8 (words), replace these values of ECX with constants in
address adjustment expressions to take advantage of memory disambiguation
hardware.

10.3.2 White-Space-Like Character Identification
Character-granular-based text processing algorithms have developed techniques to
handle specific tasks to remedy the efficiency issue of character-granular
approaches. One such technique is using look-up tables for character subset classifi-
cation. For example, some application may need to separate alpha-numeric charac-
ters from white-space-like characters. More than one character may be treated as
white-space characters.

Example 10-5. Strlen() Using PCMPISTRI without Loop-Carry Dependency

int strlen_sse4_2(const char* s1)
{int len = 0;

_asm{
mov eax, s1
movdquxmm2, ssch2 ; load character pair as range (0x01 to 0xff)
xor ecx, ecx ; initial offset to 0
sub eax, 16 ; address arithmetic to eliminate extra instruction and a branch

_loopc:
add eax, 16 ; adjust address pointer and disambiguate load address for each iteration
pcmpistri xmm2, [eax], 14h; unsigned bytes, ranges, invert, lsb index returned to ecx

; if there is a null char in [eax] fragment, zf will be set.
; if all 16 bytes of the fragment are non-null characters, ECX will return 16,

jnz short _loopc ; ECX will be 16 if there is no null byte in [eax], so we disambiguate
_endofstring:

add eax, ecx ; add ecx to the address of the last fragment
mov edx, s1; retrieve effective address of the input string
sub eax, edx;the string length
mov len, eax; store result
}
return len;

}

10-12 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Example 10-6 illustrates a simple situation of identifying white-space-like characters
for the purpose of marking the beginning and end of consecutive non-white-space
characters.

Example 10-6. WordCnt() Using C and Byte-Scanning Technique

// Counting words involves locating the boundary of contiguous non-whitespace characters.
// Different software may choose its own mapping of white space character set.
// This example employs a simple definition for tutorial purpose:
// Non-whitespace character set will consider: A-Z, a-z, 0-9, and the apostrophe mark '
// The example uses a simple technique to map characters into bit patterns of square waves
// we can simply count the number of falling edges

static char alphnrange[16]= {0x27, 0x27, 0x30, 0x39, 0x41, 0x5a, 0x61, 0x7a, 0x0};
static char alp_map8[32] = {0x0, 0x0, 0x0, 0x0, 0x80,0x0,0xff, 0x3,0xfe, 0xff, 0xff, 0x7, 0xfe,
0xff, 0xff, 0x7}; // 32 byte lookup table, 1s map to bit patterns of alpha numerics in alphnrange
int wordcnt_c(const char* s1)
{int i, j, cnt = 0;
char cc, cc2;
char flg[3]; // capture the a wavelet to locate a falling edge

cc2 = cc = s1[0];
// use the compacted bit pattern to consolidate multiple comparisons into one look up
if(alp_map8[cc>>3] & (1<< (cc & 7)))
{ flg[1] = 1; } // non-white-space char that is part of a word,

(continue)
 10-13

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
In Example 10-6, a 32-byte look-up table is constructed to represent the ascii code
values 0x0-0xff, and partitioned with each bit of 1 corresponding to the specified
subset of characters. While this bit-lookup technique simplifies the comparison oper-
ations, data fetching remains byte-granular.

Example 10-7 shows an equivalent implementation of counting words using PCMP-
ISTRM. The loop iteration is performed at 16-byte granularity instead of byte granu-
larity. Additionally, character set subsetting is easily expressed using range value
pairs and parallel comparisons between the range values and each byte in the text
fragment are performed by executing PCMPISTRI once.

// we're including apostrophe in this example since counting the
// following 's' as a separate word would be kind of silly
else
{ flg[1] = 0; } // 0: whitespace, punctuations not be considered as part of a word

i = 1; // now we’re ready to scan through the rest of the block
// we'll try to pick out each falling edge of the bit pattern to increment word count.
// this works with consecutive white spaces, dealing with punctuation marks, and
// treating hyphens as connecting two separate words.
while (cc2)
{ cc2 = s1[i];

if(alp_map8[cc2>>3] & (1<< (cc2 & 7)))
{ flg[2] = 1;} // non-white-space
else
{ flg[2] = 0;} // white-space-like

if(!flg[2] && flg[1])
{ cnt ++; }// found the falling edge
flg[1] = flg[2];
i++;

}
return cnt;

}

Example 10-6. WordCnt() Using C and Byte-Scanning Technique
10-14 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Example 10-7. WordCnt() Using PCMPISTRM

// an SSE 4.2 example of counting words using the definition of non-whitespace character
// set of {A-Z, a-z, 0-9, '}. Each text fragment (up to 16 bytes) are mapped to a
// 16-bit pattern, which may contain one or more falling edges. Scanning bit-by-bit
// would be inefficient and goes counter to leveraging SIMD programming techniques.
// Since each falling edge must have a preceding rising edge, we take a finite
// difference approach to derive a pattern where each rising/falling edge maps to 2-bit pulse,
// count the number of bits in the 2-bit pulses using popcnt and divide by two.
int wdcnt_sse4_2(const char* s1)
{int len = 0;

_asm{
mov eax, s1
movdquxmm3, alphnrange ; load range value pairs to detect non-white-space codes
xor ecx, ecx
xor esi, esi
xor edx, edx
movdquxmm1, [eax]
pcmpistrm xmm3, xmm1, 04h ; white-space-like char becomes 0 in xmm0[15:0]
movdqa xmm4, xmm0
movdqa xmm1, xmm0
psrld xmm4, 15 ; save MSB to use in next iteration
movdqa xmm5, xmm1
psllw xmm5, 1; lsb is effectively mapped to a white space
pxor xmm5, xmm0; the first edge is due to the artifact above
pextrd edi, xmm5, 0
jz _lastfragment; if xmm1 had a null, zf would be set
popcnt edi, edi; the first fragment will include a rising edge
add esi, edi
mov ecx, 16

(continue)

_loopc:
add eax, ecx ; advance address pointer
movdquxmm1, [eax]
pcmpistrm xmm3, xmm1, 04h ; white-space-like char becomes 0 in xmm0[15:0]
movdqa xmm5, xmm4 ; retrieve the MSB of the mask from last iteration
movdqa xmm4, xmm0
psrld xmm4, 15 ; save mSB of this iteration for use in next iteration
movdqa xmm1, xmm0
 10-15

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
10.3.3 Substring Searches
Strstr() is a common function in the standard string library. Typically, A library may
implement strstr(sTarg, sRef) with a brute-force, byte-granular technique of iterative
comparisons between the reference string with a round of string comparison with a
subset of the target string. Brute-force, byte-granular techniques provide reasonable
efficiency when the first character of the target substring and the reference string are
different, allowing subsequent string comparisons of target substrings to proceed
forward to the next byte in the target string.

When a string comparison encounters partial matches of several characters (i.e. the
sub-string search found a partial match starting from the beginning of the reference
string) and determined the partial match led to a false-match. The brute-force search
process need to go backward and restart string comparisons from a location that had
participated in previous string comparison operations. This is referred to as re-trace
inefficiency of the brute-force substring search algorithm. See Figure 10-2.

psllw xmm1, 1
por xmm5, xmm1 ; combine MSB of last iter and the rest from current iter
pxor xmm5, xmm0; differentiate binary wave form into pattern of edges
pextrdedi, xmm5, 0 ; the edge patterns has (1 bit from last, 15 bits from this round)
jz _lastfragment; if xmm1 had a null, zf would be set
mov ecx, 16; xmm1, had no null char, advance 16 bytes
popcntedi, edi; count both rising and trailing edges
add esi, edi; keep a running count of both edges
jmp short _loopc

_lastfragment:
popcntedi, edi; count both rising and trailing edges
add esi, edi; keep a running count of both edges
shr esi, 1 ; word count corresponds to the trailing edges
mov len, esi
}
return len;

}

Example 10-7. WordCnt() Using PCMPISTRM
10-16 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
The Knuth, Morris, Pratt algorithm1 (KMP) provides an elegant enhancement to over-
come the re-trace inefficiency of brute-force substring searches. By deriving an
overlap table that is used to manage retrace distance when a partial match leads to
a false match, KMP algorithm is very useful for applications that search relevant arti-
cles containing keywords from a large corpus of documents.

Example 10-8 illustrates a C-code example of using KMP substring searches.

Figure 10-2. Retrace Inefficiency of Byte-Granular, Brute-Force Search

1. Donald E. Knuth, James H. Morris, and Vaughan R. Pratt; SIAM J. Comput. Volume 6, Issue 2, pp.
323-350 (1977)

Example 10-8. KMP Substring Search in C

// s1 is the target string of length cnt1
// s2 is the reference string of length cnt2
// j is the offset in target string s1 to start each round of string comparison
// i is the offset in reference string s2 to perform byte granular comparison

(continue)

Ref str

T/F:

Target Str

B

B

A

A

A

A

C

C

G

GC

M

M

C

C

M

B A C A G M C M

T T T T F

B A AC G M C M

F

B A AC G M C M

F

Retrace 3 bytes after partial match of first 4 bytes
 10-17

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Example 10-8 also includes the calculation of the KMP overlap table. Typical usage of
KMP algorithm involves multiple invocation of the same reference string, so the over-
head of precalculating the overlap table is easily amortized. When a false match is
determined at offset i of the reference string, the overlap table will predict where the

int str_kmp_c(const char* s1, int cnt1, const char* s2, int cnt2)

{ int i, j;

i = 0; j = 0;

while (i+j < cnt1) {

if(s2[i] == s1[i+j]) {

i++;

if(i == cnt2) break; // found full match

}

else {

j = j+i - ovrlap_tbl[i]; // update the offset in s1 to start next round of string compare

if(i > 0) {

i = ovrlap_tbl[i]; // update the offset of s2 for next string compare should start at

}

}

};

 return j;

}

void kmp_precalc(const char * s2, int cnt2)
{int i = 2;
char nch = 0;

ovrlap_tbl[0] = -1; ovrlap_tbl[1] = 0;
// pre-calculate KMP table

while(i < cnt2) {
if(s2[i-1] == s2[nch]) {

ovrlap_tbl[i] = nch +1;
i++; nch++;

}
else if (nch > 0) nch = ovrlap_tbl[nch];
else {

ovrlap_tbl[i] = 0;
i++;

}
};
ovrlap_tbl[cnt2] = 0;

}

Example 10-8. KMP Substring Search in C
10-18 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
next round of string comparison should start (updating the offset j), and the offset in
the reference string that byte-granular character comparison should resume/restart.

While KMP algorithm provides efficiency improvement over brute-force byte-granular
substring search, its best performance is still limited by the number of byte-granular
operations. To demonstrate the versatility and built-in lexical capability of PCMP-
ISTRI, we show an SSE4.2 implementation of substring search using brute-force 16-
byte granular approach in Example 10-9, and combining KMP overlap table with
substring search using PCMPISTRI in Example 10-10.

Example 10-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic

int strsubs_sse4_2i(const char* s1, int cnt1, const char* s2, int cnt2)

{ int kpm_i=0, idx;

int ln1= 16, ln2=16, rcnt1 = cnt1, rcnt2= cnt2;

__m128i *p1 = (__m128i *) s1;

__m128i *p2 = (__m128i *) s2;

__m128ifrag1, frag2;

int cmp, cmp2, cmp_s;

__m128i *pt = NULL;

if(cnt2 > cnt1 || !cnt1) return -1;

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

while(rcnt1 > 0)

{ cmp_s = _mm_cmpestrs(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x0c);

cmp = _mm_cmpestri(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x0c);

if(!cmp) { // we have a partial match that needs further analysis

if(cmp_s) { // if we're done with s2

if(pt)

{idx = (int) ((char *) pt - (char *) s1) ; }

else

{idx = (int) ((char *) p1 - (char *) s1) ; }

return idx;

}

(continue)
 10-19

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
// we do a round of string compare to verify full match till end of s2

if(pt == NULL) pt = p1;

cmp2 = 16;

rcnt2 = cnt2 - 16 -(int) ((char *)p2-(char *)s2);

while(cmp2 == 16 && rcnt2) { // each 16B frag matches,

rcnt1 = cnt1 - 16 -(int) ((char *)p1-(char *)s1);

rcnt2 = cnt2 - 16 -(int) ((char *)p2-(char *)s2);

if(rcnt1 <=0 || rcnt2 <= 0) break;

p1 = (__m128i *)(((char *)p1) + 16);

p2 = (__m128i *)(((char *)p2) + 16);

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

cmp2 = _mm_cmpestri(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1,
0x18); // lsb, eq each

};

if(!rcnt2 || rcnt2 == cmp2) {

idx = (int) ((char *) pt - (char *) s1) ;

return idx;

}

else if (rcnt1 <= 0) { // also cmp2 < 16, non match

if(cmp2 == 16 && ((rcnt1 + 16) >= (rcnt2+16)))

{idx = (int) ((char *) pt - (char *) s1) ;

return idx;

}

else return -1;

}

(continue)

Example 10-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic
10-20 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
In Example 10-9, address adjustment using a constant to minimize loop-carry
dependency is practised in two places:

• In the inner while loop of string comparison to determine full match or false
match (the result cmp2 is not used for address adjustment to avoid depen-
dency).

• In the last code block when the outer loop executed PCMPISTRI to compare 16
sets of ordered compare between a target fragment with the first 16-byte
fragment of the reference string, and all 16 ordered compare operations
produced false result (producing cmp with a value of 16).

Example 10-10 shows an equivalent intrinsic implementation of substring search
using SSE4.2 and KMP overlap table. When the inner loop of string comparison deter-
mines a false match, the KMP overlap table is consulted to determine the address
offset for the target string fragment and the reference string fragment to minimize
retrace.

It should be noted that a significant portions of retrace with retrace distance less than
15 bytes are avoided even in the brute-force SSE4.2 implementation of
Example 10-9. This is due to the order-compare primitive of PCMPISTRI. “Ordered
compare” performs 16 sets of string fragment compare, and many false match with
less than 15 bytes of partial matches can be filtered out in the same iteration that
executed PCMPISTRI.

else { // in brute force, we advance fragment offset in target string s1 by 1
p1 = (__m128i *)(((char *)pt) + 1); // we're not taking advantage of kmp
rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);
pt = NULL;
p2 = (__m128i *)((char *)s2) ;
rcnt2 = cnt2 -(int) ((char *)p2-(char *)s2);
frag1 = _mm_loadu_si128(p1);// load next fragment from s1
frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

}
}
else{

if(cmp == 16) p1 = (__m128i *)(((char *)p1) + 16);
else p1 = (__m128i *)(((char *)p1) + cmp);
rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);
if(pt && cmp) pt = NULL;
frag1 = _mm_loadu_si128(p1);// load next fragment from s1

}
}
return idx;

}

Example 10-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic
 10-21

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Retrace distance of greater than 15 bytes does not get filtered out by the
Example 10-9. By consulting with the KMP overlap table, Example 10-10 can elimi-
nate retraces of greater than 15 bytes.

Example 10-10. Substring Search Using PCMPISTRI and KMP Overlap Table

int strkmp_sse4_2(const char* s1, int cnt1, const char* s2, int cnt2)

{ int kpm_i=0, idx;

int ln1= 16, ln2=16, rcnt1 = cnt1, rcnt2= cnt2;

__m128i *p1 = (__m128i *) s1;

__m128i *p2 = (__m128i *) s2;

__m128ifrag1, frag2;

int cmp, cmp2, cmp_s;

__m128i *pt = NULL;

if(cnt2 > cnt1 || !cnt1) return -1;

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

while(rcnt1 > 0)

{ cmp_s = _mm_cmpestrs(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x0c);

cmp = _mm_cmpestri(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x0c);

if(!cmp) { // we have a partial match that needs further analysis

if(cmp_s) { // if we've reached the end with s2

if(pt)

{idx = (int) ((char *) pt - (char *) s1) ; }

else

{idx = (int) ((char *) p1 - (char *) s1) ; }

return idx;

}

// we do a round of string compare to verify full match till end of s2

if(pt == NULL) pt = p1;
cmp2 = 16;
rcnt2 = cnt2 - 16 -(int) ((char *)p2-(char *)s2);

(continue)
10-22 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
while(cmp2 == 16 && rcnt2) { // each 16B frag matches

rcnt1 = cnt1 - 16 -(int) ((char *)p1-(char *)s1);

rcnt2 = cnt2 - 16 -(int) ((char *)p2-(char *)s2);

if(rcnt1 <=0 || rcnt2 <= 0) break;

p1 = (__m128i *)(((char *)p1) + 16);

p2 = (__m128i *)(((char *)p2) + 16);

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

cmp2 = _mm_cmpestri(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1,
0x18); // lsb, eq each

};

if(!rcnt2 || rcnt2 == cmp2) {

idx = (int) ((char *) pt - (char *) s1) ;

return idx;

}

else if (rcnt1 <= 0) { // also cmp2 < 16, non match

return -1;

}

else { // a partial match led to false match, consult KMP overlap table for addr adjustment

kpm_i = (int) ((char *)p1 - (char *)pt)+ cmp2 ;

p1 = (__m128i *)(((char *)pt) + (kpm_i - ovrlap_tbl[kpm_i])); // use kmp to skip retrace

rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);

pt = NULL;

p2 = (__m128i *)(((char *)s2) + (ovrlap_tbl[kpm_i]));

rcnt2 = cnt2 -(int) ((char *)p2-(char *)s2);

frag1 = _mm_loadu_si128(p1);// load next fragment from s1

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

}

}

(continue)

Example 10-10. Substring Search Using PCMPISTRI and KMP Overlap Table
 10-23

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
The relative speed up of byte-granular KMP, brute-force SSE4.2, and SSE4.2 with
KMP overlap table over byte-granular brute-force substring search is illustrated in
the graph that plots relative speedup over percentage of retrace for a reference
string of 55 bytes long. A retrace of 40% in the graph meant, after a partial match of
the first 22 characters, a false match is determined.

So when brute-force, byte-granular code has to retrace, the other three implementa-
tion may be able to avoid the need to retrace because:

• Example 10-8 can use KMP overlap table to predict the start offset of next round
of string compare operation after a partial-match/false-match, but forward
movement after a first-character-false-match is still byte-granular.

else{
if(kpm_i && ovrlap_tbl[kpm_i]) {
p2 = (__m128i *)(((char *)s2));
frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment
//p1 = (__m128i *)(((char *)p1));

//rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);
if(pt && cmp) pt = NULL;
rcnt2 = cnt2 ;
//frag1 = _mm_loadu_si128(p1);// load next fragment from s1
frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment
kpm_i = 0;
}
else { // equ order comp resulted in sub-frag match or non-match
if(cmp == 16) p1 = (__m128i *)(((char *)p1) + 16);
else p1 = (__m128i *)(((char *)p1) + cmp);
rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);
if(pt && cmp) pt = NULL;
frag1 = _mm_loadu_si128(p1);// load next fragment from s1
}

}
}
return idx;

}

Example 10-10. Substring Search Using PCMPISTRI and KMP Overlap Table
10-24 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
• Example 10-9 can avoid retrace of shorter than 15 bytes but will be subject to
retrace of 21 bytes after a partial-match/false-match at byte 22 of the reference
string. Forward movement after each order-compare-false-match is 16 byte
granular.

• Example 10-10 avoids retrace of 21 bytes after a partial-match/false-match, but
KMP overlap table lookup incurs some overhead. Forward movement after each
order-compare-false-match is 16 byte granular.

10.3.4 String Token Extraction and Case Handling
Token extraction is a common task in text/string handling. It is one of the foundation
of implementing lexer/parser objects of higher sophistication. Indexing services also
build on tokenization primitives to sort text data from streams.

Tokenization requires the flexibility to use an array of delimiter characters.

Figure 10-3. SSE4.2 Speedup of SubString Searches

SSE4.2 Sub-String Match Performance

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.7
%

17.
4%

27.
8%

34.
8%

43.
4%

52.
1%

60.
8%

69.
5%

78.
2%

86.
9%

95.
6%

Retrace of non-degen. String n = 55

Re
lat

ive
 Pe

rf.

Brute
KMP
STTNI
STTNI+KMP
 10-25

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
A library implementation of Strtok_s() may employ a table-lookup technique to
consolidate sequential comparisons of the delimiter characters into one comparison
(similar to Example 10-6). An SSE4.2 implementation of the equivalent functionality
of strtok_s() using intrinsic is shown in Example 10-11.

Example 10-11. I Equivalent Strtok_s() Using PCMPISTRI Intrinsic

char ws_map8[32]; // packed bit lookup table for delimiter characters

char * strtok_sse4_2i(char* s1, char *sdlm, char ** pCtxt)
{
__m128i *p1 = (__m128i *) s1;
__m128ifrag1, stmpz, stmp1;
int cmp_z, jj =0;
int start, endtok, s_idx, ldx;

if (sdlm == NULL || pCtxt == NULL) return NULL;
if(p1 == NULL && *pCtxt == NULL) return NULL;
if(s1 == NULL) {

if(*pCtxt[0] == 0) { return NULL; }
p1 = (__m128i *) *pCtxt;
s1 = *pCtxt;

}
else p1 = (__m128i *) s1;
memset(&ws_map8[0], 0, 32);
while (sdlm[jj]) {

ws_map8[(sdlm[jj] >> 3)] |= (1 << (sdlm[jj] & 7)); jj ++
}
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
stmpz = _mm_loadu_si128((__m128i *)sdelimiter);
// if the first char is not a delimiter , proceed to check non-delimiter,
// otherwise need to skip leading delimiter chars
if(ws_map8[s1[0]>>3] & (1 << (s1[0]&7))) {
 start = s_idx = _mm_cmpistri(stmpz, frag1, 0x10);// unsigned bytes/equal any, invert, lsb
}
else start = s_idx = 0;

(continue)
10-26 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
// check if we're dealing with short input string less than 16 bytes
cmp_z = _mm_cmpistrz(stmpz, frag1, 0x10);
if(cmp_z) { // last fragment

if(!start) {
endtok = ldx = _mm_cmpistri(stmpz, frag1, 0x00);
if(endtok == 16) { // didn't find delimiter at the end, since it's null-terminated

// find where is the null byte
*pCtxt = s1+ 1+ _mm_cmpistri(frag1, frag1, 0x40);
return s1;

}
else { // found a delimiter that ends this word
s1[start+endtok] = 0;
*pCtxt = s1+start+endtok+1;
}

}
else {

if(!s1[start]) {
*pCtxt = s1 + start +1;
return NULL;

}
p1 = (__m128i *)(((char *)p1) + start);
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
endtok = ldx = _mm_cmpistri(stmpz, frag1, 0x00);// unsigned bytes/equal any, lsb
if(endtok == 16) { // looking for delimiter, found none

*pCtxt = (char *)p1 + 1+ _mm_cmpistri(frag1, frag1, 0x40);
return s1+start;

}
else { // found delimiter before null byte

s1[start+endtok] = 0;
*pCtxt = s1+start+endtok+1;

}
}

}
(continue)

Example 10-11. I Equivalent Strtok_s() Using PCMPISTRI Intrinsic
 10-27

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
else
{ while (!cmp_z && s_idx == 16) {

p1 = (__m128i *)(((char *)p1) + 16);
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
s_idx = _mm_cmpistri(stmpz, frag1, 0x10);// unsigned bytes/equal any, invert, lsb
cmp_z = _mm_cmpistrz(stmpz, frag1, 0x10);

}
if(s_idx != 16) start = ((char *) p1 -s1) + s_idx;
else { // corner case if we ran to the end looking for delimiter and never found a non-dilimiter

*pCtxt = (char *)p1 +1+ _mm_cmpistri(frag1, frag1, 0x40);
return NULL;

}
if(!s1[start]) { // in case a null byte follows delimiter chars

*pCtxt = s1 + start+1;
return NULL;

}
// now proceed to find how many non-delimiters are there
p1 = (__m128i *)(((char *)p1) + s_idx);
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
endtok = ldx = _mm_cmpistri(stmpz, frag1, 0x00);// unsigned bytes/equal any, lsb
cmp_z = 0;
while (!cmp_z && ldx == 16) {

p1 = (__m128i *)(((char *)p1) + 16);
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
ldx = _mm_cmpistri(stmpz, frag1, 0x00);// unsigned bytes/equal any, lsb
cmp_z = _mm_cmpistrz(stmpz, frag1, 0x00);
if(cmp_z) { endtok += ldx; }

}
(continue)

if(cmp_z) { // reached the end of s1
if(ldx < 16) // end of word found by finding a delimiter

endtok += ldx;
else { // end of word found by finding the null

if(s1[start+endtok]) // ensure this frag don’t start with null byte
endtok += 1+ _mm_cmpistri(frag1, frag1, 0x40);

}
}
*pCtxt = s1+start+endtok+1;
s1[start+endtok] = 0;

}
return (char *) (s1+ start);

}

Example 10-11. I Equivalent Strtok_s() Using PCMPISTRI Intrinsic
10-28 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
An SSE4.2 implementation of the equivalent functionality of strupr() using intrinsic is
shown in Example 10-12.

Example 10-12. I Equivalent Strupr() Using PCMPISTRM Intrinsic

static char uldelta[16]= {0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20};

static char ranglc[6]= {0x61, 0x7a, 0x00, 0x00, 0x00, 0x00};

char * strup_sse4_2i(char* s1)

{int len = 0, res = 0;

__m128i *p1 = (__m128i *) s1;

__m128ifrag1, ranglo, rmsk, stmpz, stmp1;

int cmp_c, cmp_z, cmp_s;

if(!s1[0]) return (char *) s1;

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

ranglo = _mm_loadu_si128((__m128i *)ranglc);// load up to 16 bytes of fragment

stmpz = _mm_loadu_si128((__m128i *)uldelta);

(continue)
 10-29

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
10.3.5 Unicode Processing and PCMPxSTRy
Unicode representation of string/text data is required for software localization. UTF-
16 is a common encoding scheme for localized content. In UTF-16 representation,
each character is represented by a code point. There are two classes of code points:
16-bit code points and 32-bit code points which consists of a pair of 16-bit code
points in specified value range, the latter is also referred to as a surrogate pair.

cmp_z = _mm_cmpistrz(ranglo, frag1, 0x44);// range compare, produce byte masks

while (!cmp_z)

{

rmsk = _mm_cmpistrm(ranglo, frag1, 0x44); // producing byte mask

stmp1 = _mm_blendv_epi8(stmpz, frag1, rmsk); // bytes of lc preserved, other bytes
replaced by const

stmp1 =_mm_sub_epi8(stmp1, stmpz); // bytes of lc becomes uc, other bytes are now zero

stmp1 = _mm_blendv_epi8(frag1, stmp1, rmsk); //bytes of lc replaced by uc, other bytes
unchanged

_mm_storeu_si128(p1, stmp1);//

p1 = (__m128i *)(((char *)p1) + 16);

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

cmp_z = _mm_cmpistrz(ranglo, frag1, 0x44);

}

if(*(char *)p1 == 0) return (char *) s1;

rmsk = _mm_cmpistrm(ranglo, frag1, 0x44);// byte mask, valid lc bytes are 1, all other 0

stmp1 = _mm_blendv_epi8(stmpz, frag1, rmsk); // bytes of lc continue, other bytes replaced
by const

stmp1 =_mm_sub_epi8(stmp1, stmpz); // bytes of lc becomes uc, other bytes are now zero

stmp1 = _mm_blendv_epi8(frag1, stmp1, rmsk); //bytes of lc replaced by uc, other bytes
unchanged

rmsk = _mm_cmpistrm(frag1, frag1, 0x44);// byte mask, valid bytes are 1, invalid bytes are
zero

_mm_maskmoveu_si128(stmp1, rmsk, (char *) p1);//

return (char *) s1;

}

Example 10-12. I Equivalent Strupr() Using PCMPISTRM Intrinsic
10-30 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
A common technique in unicode processing uses a table-loop up method, which has
the benefit of reduced branching. As a tutorial example we compare the analogous
problem of determining properly-encoded UTF-16 string length using general
purpose code with table-lookup vs. SSE4.2.

Example 10-13 lists the C code sequence to determine the number of properly-
encoded UTF-16 code points (either 16-bit or 32-bit code points) in a unicode text
block. The code also verifies if there are any improperly-encoded surrogate pairs in
the text block.

Example 10-13. UTF16 VerStrlen() Using C and Table LookupTechnique

// This example demonstrates validation of surrogate pairs (32-bit code point) and
// tally the number of16-bit and 32-bit code points in the text block
// Parameters: s1 is pointer to input utf-16 text block.
// pLen: store count of utf-16 code points
// return the number of 16-bit code point encoded in the surrogate range but do not form
// a properly encoded surrogate pair. if 0: s1 is a properly encoded utf-16 block,
// If return value >0 then s1 contains invalid encoding of surrogates

int u16vstrlen_c(const short* s1, unsigned * pLen)
{int i, j, cnt = 0, cnt_invl = 0, spcnt= 0;
unsigned short cc, cc2;
char flg[3];

 cc2 = cc = s1[0];
 // map each word in s1into bit patterns of 0, 1or 2 using a table lookup
// the first half of a surrogate pair must be encoded between D800-DBFF and mapped as 2
// the 2nd half of a surrogate pair must be encoded between DC00-DFFF and mapped as 1
// regular 16-bit encodings are mapped to 0, except null code mapped to 3
flg[1] = utf16map[cc];
 flg[0] = flg[1];
 if(!flg[1]) cnt ++;
 i = 1;

(continue)
 10-31

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
The VerStrlen() function for UTF-16 encoded text block can be implemented using
SSE4.2.

Example 10-14 shows the listing of SSE4.2 assembly implementation and
Example 10-15 shows the listing of SSE4.2 intrinsic listings of VerStrlen().

 while (cc2) // examine each non-null word encoding
 { cc2 = s1[i];

flg[2] = utf16map[cc2];
if((flg[1] && flg[2] && (flg[1]-flg[2] == 1)))
{ spcnt ++; }// found a surrogate pair
else if(flg[1] == 2 && flg[2] != 1)
{ cnt_invl += 1; } // orphaned 1st half
else if(!flg[1] && flg[2] == 1)
{ cnt_invl += 1; } // orphaned 2nd half
else
{ if(!flg[2]) cnt ++;// regular non-null code16-bit code point

else ;
}
flg[0] = flg[1];// save the pair sequence for next iteration
flg[1] = flg[2];
i++;

 }
 *pLen = cnt + spcnt;
 return cnt_invl;
}

Example 10-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI

// complementary range values for detecting either halves of 32-bit UTF-16 code point
static short ssch0[16]= {0x1, 0xd7ff, 0xe000, 0xffff, 0, 0};
// complementary range values for detecting the 1st half of 32-bit UTF-16 code point
static short ssch1[16]= {0x1, 0xd7ff, 0xdc00, 0xffff, 0, 0};
// complementary range values for detecting the 2nd half of 32-bit UTF-16 code point
static short ssch2[16]= {0x1, 0xdbff, 0xe000, 0xffff, 0, 0};

(continue)

Example 10-13. UTF16 VerStrlen() Using C and Table LookupTechnique
10-32 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
int utf16slen_sse4_2a(const short* s1, unsigned * pLen)
{int len = 0, res = 0;

_asm{
mov eax, s1
movdquxmm2, ssch0 ; load range value to identify either halves
movdquxmm3, ssch1 ; load range value to identify 1st half (0xd800 to 0xdbff)
movdquxmm4, ssch2 ; load range value to identify 2nd half (0xdc00 to 0xdfff)
xor ecx, ecx
xor edx, edx; store # of 32-bit code points (surrogate pairs)
xor ebx, ebx; store # of non-null 16-bit code points
xor edi, edi ; store # of invalid word encodings

_loopc:
shl ecx, 1; pcmpistri with word processing return ecx in word granularity, multiply by 2 to get

byte offset
add eax, ecx
movdquxmm1, [eax] ; load a string fragment of up to 8 words
pcmpistri xmm2, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx

; if there is a utf-16 null wchar in xmm1, zf will be set.
; if all 8 words in the comparison matched range,
; none of bits in the intermediate result will be set after polarity inversions,
; and ECX will return with a value of 8

jz short _lstfrag; if null code, handle last fragment
; if ecx < 8, ecx point to a word of either 1st or 2nd half of a 32-bit code point
cmp ecx, 8
jne _chksp
add ebx, ecx ; accumulate # of 16-bit non-null code points
mov ecx, 8 ; ecx must be 8 at this point, we want to avoid loop carry dependency
jmp _loopc

Example 10-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI
 10-33

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
_chksp:; this fragment has word encodings in the surrogate value range
add ebx, ecx ; account for the 16-bit code points
shl ecx, 1; pcmpistri with word processing return ecx in word granularity, multiply by 2 to get

byte offset
add eax, ecx
movdquxmm1, [eax] ; ensure the fragment start with word encoding in either half
pcmpistri xmm3, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx
jz short _lstfrag2; if null code, handle the last fragment
cmp ecx, 0 ; properly encoded 32-bit code point must start with 1st half
jg _invalidsp; some invalid s-p code point exists in the fragment
pcmpistri xmm4, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx
cmp ecx, 1 ; the 2nd half must follow the first half
jne _invalidsp
add edx, 1; accumulate # of valid surrogate pairs
add ecx, 1 ; we want to advance two words
jmp _loopc

_invalidsp:; the first word of this fragment is either the 2nd half or an un-paired 1st half
add edi, 1 ; we have an invalid code point (not a surrogate pair)
mov ecx, 1 ; advance one word and continue scan for 32-bit code points
jmp _loopc

_lstfrag:
add ebx, ecx ; account for the non-null 16-bit code points

_morept:
shl ecx, 1; pcmpistri with word processing return ecx in word granularity, multiply by 2 to get

byte offset
add eax, ecx
mov si, [eax] ; need to check for null code
cmp si, 0
je _final
movdquxmm1, [eax] ; load remaining word elements which start with either 1st/2nd half
pcmpistri xmm3, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx

Example 10-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI
10-34 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
_lstfrag2:
cmp ecx, 0 ; a valid 32-bit code point must start from 1st half
jne _invalidsp2
pcmpistri xmm4, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx
cmp ecx, 1
jne _invalidsp2
add edx, 1
mov ecx, 2
jmp _morept

_invalidsp2:
add edi, 1
mov ecx, 1
jmp _morept

_final:
add edx, ebx; add # of 16-bit and 32-bit code points
mov ecx, pLen; retrieve address of pointer provided by caller
mov [ecx], edx; store result of string length to memory
mov res, edi
}
return res;

}

Example 10-15. Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRI

int utf16slen_i(const short* s1, unsigned * pLen)
{int len = 0, res = 0;
__m128i *pF = (__m128i *) s1;
__m128iu32 =_mm_loadu_si128((__m128i *)ssch0);

(continue)

Example 10-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI
 10-35

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
__m128i u32a =_mm_loadu_si128((__m128i *)ssch1);
__m128i u32b =_mm_loadu_si128((__m128i *)ssch2);
__m128ifrag1;
int offset1 = 0, cmp, cmp_1, cmp_2;
intcnt_16 = 0, cnt_sp=0, cnt_invl= 0;
short *ps;
while (1) {

pF = (__m128i *)(((short *)pF) + offset1);
frag1 = _mm_loadu_si128(pF);// load up to 8 words
// does frag1 contain either halves of a 32-bit UTF-16 code point?
cmp = _mm_cmpistri(u32, frag1, 0x15);// unsigned bytes, equal order, lsb index returned to

ecx

if (_mm_cmpistrz(u32, frag1, 0x15))// there is a null code in frag1
{ cnt_16 += cmp;

ps = (((short *)pF) + cmp);
while (ps[0])
{ frag1 = _mm_loadu_si128((__m128i *)ps);

cmp_1 = _mm_cmpistri(u32a, frag1, 0x15);
if(!cmp_1)
{ cmp_2 = _mm_cmpistri(u32b, frag1, 0x15);

if(cmp_2 ==1) { cnt_sp++; offset1 = 2;}
else {cnt_invl++; offset1= 1;}

}
else
{ cmp_2 = _mm_cmpistri(u32b, frag1, 0x15);

if(!cmp_2) {cnt_invl ++; offset1 = 1;}
else {cnt_16 ++; offset1 = 1; }

}
ps = (((short *)ps) + offset1);

}
break;

}

Example 10-15. Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRI
10-36 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
10.3.6 Replacement String Library Function Using SSE4.2
Unaligned 128-bit SIMD memory access can fetch data cross page boundary, since
system software manages memory access rights with page granularity.

Implementing a replacement string library function using SIMD instructions must not
cause memory access violation. This requirement can be met by adding a small
amounts of code to check the memory address of each string fragment. If a memory
address is found to be within 16 bytes of crossing over to the next page boundary,
string processing algorithm can fall back to byte-granular technique.

Example 10-16 shows an SSE4.2 implementation of strcmp() that can replace byte-
granular implementation supplied by standard tools.

if(cmp != 8) // we have at least some half of 32-bit utf-16 code points
{ cnt_16 += cmp; // regular 16-bit UTF16 code points

pF = (__m128i *)(((short *)pF) + cmp);
frag1 = _mm_loadu_si128(pF);
cmp_1 = _mm_cmpistri(u32a, frag1, 0x15);
if(!cmp_1)
{ cmp_2 = _mm_cmpistri(u32b, frag1, 0x15);

if(cmp_2 ==1) { cnt_sp++; offset1 = 2;}
else {cnt_invl++; offset1= 1;}

}
else
{ cnt_invl ++;

offset1 = 1;
}

}
else {

offset1 = 8; // increment address by 16 bytes to handle next fragment
cnt_16+= 8;

}
};

*pLen = cnt_16 + cnt_sp;
return cnt_invl;

}

Example 10-15. Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRI
 10-37

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Example 10-16. Replacement String Library Strcmp Using SSE4.2

// return 0 if strings are equal, 1 if greater, -1 if less
int strcmp_sse4_2(const char *src1, const char *src2)
{

int val;
__asm{

mov esi, src1 ;
mov edi, src2
mov edx, -16 ; common index relative to base of either string pointer
xor eax, eax

topofloop:
add edx, 16 ; prevent loop carry dependency

next:
lea ecx, [esi+edx] ; address of fragment that we want to load
and ecx, 0x0fff ; check least significant12 bits of addr for page boundary
cmp ecx, 0x0ff0
jg too_close_pgb ; branch to byte-granular if within 16 bytes of boundary
lea ecx, [edi+edx] ; do the same check for each fragment of 2nd string
and ecx, 0x0fff
cmp ecx, 0x0ff0
jg too_close_pgb
movdqu xmm2, BYTE PTR[esi+edx]
movdqu xmm1, BYTE PTR[edi+edx]
pcmpistri xmm2, xmm1, 0x18 ; equal each
ja topofloop
jnc ret_tag
add edx, ecx ; ecx points to the byte offset that differ

not_equal:
movzx eax, BYTE PTR[esi+edx]
movzx edx, BYTE PTR[edi+edx]
cmp eax, edx
cmova eax, ONE
cmovb eax, NEG_ONE
jmp ret_tag

(continue)
10-38 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
In Example 10-16, 8 instructions were added following the label “next“ to perform
4KByte boundary checking of address that will be used to load two string fragments
into registers. If either address is found to be within 16 bytes of crossing over to the
next page, the code branches to byte-granular comparison path following the label
“too_close_pgb“.

The return values of Example 10-16 uses the convention of returning 0, +1, -1 using
CMOV. It is straight forward to modify a few instructions to implement the convention
of returning 0, positive integer, negative integer.

10.4 SSE4.2 ENABLED NUMERICAL AND LEXICAL
COMPUTATION

SSE4.2 can enable SIMD programming techniques to explore byte-granular compu-
tational problems that were considered unlikely candidates for using SIMD instruc-
tions. We consider a common library function atol() in its full 64-bit flavor of
converting a sequence of alpha numerical characters within the range representable
by the data type __int64.

There are several attributes of this string-to-integer problem that poses as difficult
challenges for using prior SIMD instruction sets (before the introduction of SSE4.2)
to accelerate the numerical computation aspect of string-to-integer conversions:

too_close_pgb:
add edx, 1 ; do byte granular compare
movzx ecx, BYTE PTR[esi+edx-1]
movzx ebx, BYTE PTR[edi+edx-1]
cmp ecx, ebx
jne inequality
add ebx, ecx
jnz next
jmp ret_tag

inequality:
cmovb eax, NEG_ONE
cmova eax, ONE

ret_tag:
mov [val], eax

}
return(val);

}

Example 10-16. Replacement String Library Strcmp Using SSE4.2
 10-39

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
• Character subset validation: Each character in the input stream must be
validated with respect to the character subset definitions and conform to data
representation rules of white space, signs, numerical digits. SSE4.2 provides the
perfect tools for character subset validation.

• State-dependent nature of character validation: While SIMD computation
instructions can expedite the arithmetic operations of “multiply by 10 and add“,
the arithmetic computation requires the input byte stream to consist of numerical
digits only. For example, the validation of numerical digits, white-space, and the
presence/absence of sign, must be validated in mid-stream. The flexibility of the
SSE4.2 primitive can handle these state-dependent validation well.

• Additionally, exit condition to wrap up arithmetic computation can happen in
mid-stream due to invalid characters, or due to finite representable range of the
data type (~10^19 for int64, no more than 10 non-zero-leading digits for int32)
may lead one to believe this type data stream consisting of short bursts are not
suited for exploring SIMD ISA and be content with byte-granular solutions.

Because of the character subset validation and state-dependent nature, byte-gran-
ular solutions of the standard library function tends to have a high start-up cost (for
example, converting a single numerical digit to integer may take 50 or 60 cycles),
and low throughput (each additional numeric digit in the input character stream may
take 6-8 cycles per byte).

A high level pseudo-operation flow of implementing a library replacement of atol() is
described in Example 10-17.

Example 10-18 shows the code listing of an equivalent functionality of atol() capable
of producing int64 output range. Auxiliary function and data constants are listed in
Example 10-19.

Example 10-17. High-level flow of Character Subset Validation for String Conversion

1. Check Early_Out Exit Conditions (e.g. first byte is not valid).
2. Check if 1st byte is white space and skip any additional leading white space.
3. Check for the presence of a sign byte.
4. Check the validity of the remaining byte stream if they are numeric digits.
5. If the byte stream starts with ‘0’, skip all leading digits that are ‘0’.
6. Determine how many valid non-zero-leading numeric digits.
7. Convert up to 16 non-zero-leading digits to int64 value.
8. load up to the next 16 bytes safely and check for consecutive numeric digits
9. Normalize int64 value converted from the first 16 digits, according to # of remaining digits,
10. Check for out-of-bound results of normalized intermediate int64 value,
11. Convert remaining digits to int64 value and add to normalized intermediate result,
12. Check for out-of-bound final results.
10-40 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
Example 10-18. Intrinsic Listings of atol() Replacement Using PCMPISTRI

__int64 sse4i_atol(const char* s1)
{char *p = (char *) s1;
 int NegSgn = 0;
 __m128i mask0;
 __m128i value0, value1;
 __m128i w1, w1_l8, w1_u8, w2, w3 = _mm_setzero_si128();
 __int64 xxi;
 int index, cflag, sflag, zflag, oob=0;
// check the first character is valid via lookup
if ((BtMLValDecInt[*p >> 3] & (1 << ((*p) & 7))) == 0) return 0;
// if the first character is white space, skip remaining white spaces
if (BtMLws[*p >>3] & (1 <<((*p) & 7)))
{ p ++;
 value0 = _mm_loadu_si128 ((__m128i *) listws);
skip_more_ws:
 mask0 = __m128i_strloadu_page_boundary (p);
 /* look for the 1st non-white space character */
 index = _mm_cmpistri (value0, mask0, 0x10);
 cflag = _mm_cmpistrc (value0, mask0, 0x10);
 sflag = _mm_cmpistrs (value0, mask0, 0x10);
 if(!sflag && !cflag)
 { p = (char *) ((size_t) p + 16);
 goto skip_more_ws;
 }
 else p = (char *) ((size_t) p + index);
}
if(*p == '-')
{ p++;
 NegSgn = 1;
}
else if(*p == '+') p++;

/* load up to 16 byte safely and check how many valid numeric digits we can do SIMD */
value0 = _mm_loadu_si128 ((__m128i *) rangenumint);
mask0 = __m128i_strloadu_page_boundary (p);
index = _mm_cmpistri (value0, mask0, 0x14);
zflag = _mm_cmpistrz (value0, mask0, 0x14);

(continue)
 10-41

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
/* index points to the first digit that is not a valid numeric digit */
if(!index) return 0;
else if (index == 16)
{ if(*p == '0') /* if all 16 bytes are numeric digits */
 { /* skip leading zero */
 value1 = _mm_loadu_si128 ((__m128i *) rangenumintzr);
 index = _mm_cmpistri (value1, mask0, 0x14);
 zflag = _mm_cmpistrz (value1, mask0, 0x14);
 while(index == 16 && !zflag)
 { p = (char *) ((size_t) p + 16);
 mask0 = __m128i_strloadu_page_boundary (p);
 index = _mm_cmpistri (value1, mask0, 0x14);
 zflag = _mm_cmpistrz (value1, mask0, 0x14);
 }
 /* now the 1st digit is non-zero, load up to 16 bytes and update index */
 if(index < 16)
 p = (char *) ((size_t) p + index);
 /* load up to 16 bytes of non-zero leading numeric digits */
 mask0 = __m128i_strloadu_page_boundary (p);
 /* update index to point to non-numeric character or indicate we may have more than 16
bytes */
 index = _mm_cmpistri (value0, mask0, 0x14);
 }
}
if(index == 0) return 0;
else if(index == 1) return (NegSgn? (long long) -(p[0]-48): (long long) (p[0]-48));
// Input digits in xmm are ordered in reverse order. the LS digit of output is next to eos
// least sig numeric digit aligned to byte 15 , and subtract 0x30 from each ascii code
mask0 = ShfLAlnLSByte(mask0, 16 -index);
w1_u8 = _mm_slli_si128 (mask0, 1);
w1 = _mm_add_epi8(mask0, _mm_slli_epi16 (w1_u8, 3)); /* mul by 8 and add */
w1 = _mm_add_epi8(w1, _mm_slli_epi16 (w1_u8, 1)); /* 7 LS bits per byte, in bytes 0, 2, 4, 6, 8,
10, 12, 14*/
w1 = _mm_srli_epi16(w1, 8); /* clear out upper bits of each wd*/
w2 = _mm_madd_epi16(w1, _mm_loadu_si128((__m128i *) &MulplyPairBaseP2[0])); /*
multiply base^2, add adjacent word,*/
w1_u8 = _mm_packus_epi32 (w2, w2); /* pack 4 low word of each dword into 63:0 */
w1 = _mm_madd_epi16(w1_u8, _mm_loadu_si128((__m128i *) &MulplyPairBaseP4[0])); /*
multiply base^4, add adjacent word,*/
w1 = _mm_cvtepu32_epi64(w1); /* converted dw was in 63:0, expand to qw */
w1_l8 = _mm_mul_epu32(w1, _mm_setr_epi32(100000000, 0, 0, 0));
w2 = _mm_add_epi64(w1_l8, _mm_srli_si128 (w1, 8));

(continue)

Example 10-18. Intrinsic Listings of atol() Replacement Using PCMPISTRI
10-42 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
if(index < 16)
{ xxi = _mm_extract_epi64(w2, 0);
 return (NegSgn? (long long) -xxi: (long long) xxi);
}
/* 64-bit integer allow up to 20 non-zero-leading digits. */
/* accumulate each 16-digit fragment*/
w3 = _mm_add_epi64(w3, w2);
/* handle next batch of up to 16 digits, 64-bit integer only allow 4 more digits */
p = (char *) ((size_t) p + 16);
if(*p == 0)
{ xxi = _mm_extract_epi64(w2, 0);
 return (NegSgn? (long long) -xxi: (long long) xxi);
}
mask0 = __m128i_strloadu_page_boundary (p);
/* index points to first non-numeric digit */
index = _mm_cmpistri (value0, mask0, 0x14);
zflag = _mm_cmpistrz (value0, mask0, 0x14);
if(index == 0) /* the first char is not valid numeric digit */
{ xxi = _mm_extract_epi64(w2, 0);
 return (NegSgn? (long long) -xxi: (long long) xxi);
}
if (index > 3) return (NegSgn? (long long) RINT64VALNEG: (long long) RINT64VALPOS);
/* multiply low qword by base^index */
w1 = _mm_mul_epu32(_mm_shuffle_epi32(w2, 0x50), _mm_setr_epi32(MulplyByBaseExpN
 [index - 1] , 0, MulplyByBaseExpN[index-1], 0));
w3 = _mm_add_epi64(w1, _mm_slli_epi64 (_mm_srli_si128(w1, 8), 32));
mask0 = ShfLAlnLSByte(mask0, 16 -index);
// convert upper 8 bytes of xmm: only least sig. 4 digits of output will be added to prev 16 digits
w1_u8 = _mm_cvtepi8_epi16(_mm_srli_si128 (mask0, 8));
/* merge 2 digit at a time with multiplier into each dword*/
w1_u8 = _mm_madd_epi16(w1_u8, _mm_loadu_si128((__m128i *) &MulplyQuadBaseExp3To0
[0]));
/* bits 63:0 has two dword integer, bits 63:32 is the LS dword of output; bits 127:64 is not
needed*/
w1_u8 = _mm_cvtepu32_epi64(_mm_hadd_epi32(w1_u8, w1_u8));
w3 = _mm_add_epi64(w3, _mm_srli_si128(w1_u8, 8));
xxi = _mm_extract_epi64(w3, 0);
if(xxi >> 63)
 return (NegSgn? (long long) RINT64VALNEG: (long long) RINT64VALPOS);
else return (NegSgn? (long long) -xxi: (long long) xxi);

}

Example 10-18. Intrinsic Listings of atol() Replacement Using PCMPISTRI
 10-43

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
The general performance characteristics of an SSE4.2 enhanced atol() replacement
have a start-up cost that is somewhat lower than byte-granular implementations
generated from C code.

Example 10-19. Auxiliary Routines and Data Constants Used in sse4i_atol() listing

// bit lookup table of valid ascii code for decimal string conversion, white space, sign, numeric
digits
static char BtMLValDecInt[32] = {0x0, 0x3e, 0x0, 0x0, 0x1, 0x28, 0xff, 0x03,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
// bit lookup table, white space only
static char BtMLws[32] = {0x0, 0x3e, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
// list of white space for sttni use
static char listws[16] =
 {0x20, 0x9, 0xa, 0xb, 0xc, 0xd, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
// list of numeric digits for sttni use
static char rangenumint[16] =
 {0x30, 0x39, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
static char rangenumintzr[16] =
 {0x30, 0x30, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};

// we use pmaddwd to merge two adjacent short integer pair, this is the second step of merging
each pair of 2-digit integers
static short MulplyPairBaseP2[8] =
{ 100, 1, 100, 1, 100, 1, 100, 1};

// Multiplier-pair for two adjacent short integer pair, this is the third step of merging each pair of
4-digit integers
static short MulplyPairBaseP4[8] =
{ 10000, 1, 10000, 1, 10000, 1, 10000, 1 };

// multiplier for pmulld for normalization of > 16 digits
static int MulplyByBaseExpN[8] =
{ 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000};

static short MulplyQuadBaseExp3To0[8] =
{ 1000, 100, 10, 1, 1000, 100, 10, 1};

(continue)
10-44 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
__m128i __m128i_shift_right (__m128i value, int offset)
{ switch (offset)
 {
 case 1: value = _mm_srli_si128 (value, 1); break;
 case 2: value = _mm_srli_si128 (value, 2); break;
 case 3: value = _mm_srli_si128 (value, 3); break;
 case 4: value = _mm_srli_si128 (value, 4); break;
 case 5: value = _mm_srli_si128 (value, 5); break;
 case 6: value = _mm_srli_si128 (value, 6); break;
 case 7: value = _mm_srli_si128 (value, 7); break;
 case 8: value = _mm_srli_si128 (value, 8); break;
 case 9: value = _mm_srli_si128 (value, 9); break;
 case 10: value = _mm_srli_si128 (value, 10); break;
 case 11: value = _mm_srli_si128 (value, 11); break;
 case 12: value = _mm_srli_si128 (value, 12); break;
 case 13: value = _mm_srli_si128 (value, 13); break;
 case 14: value = _mm_srli_si128 (value, 14); break;
 case 15: value = _mm_srli_si128 (value, 15); break;
 }
 return value;
}
/* Load string at S near page boundary safely. */

__m128i __m128i_strloadu_page_boundary (const char *s)
{
 int offset = ((size_t) s & (16 - 1));
 if (offset)
 {
 __m128i v = _mm_load_si128 ((__m128i *) (s - offset));
 __m128i zero = _mm_setzero_si128 ();
 int bmsk = _mm_movemask_epi8 (_mm_cmpeq_epi8 (v, zero));
 if ((bmsk >> offset) != 0) return __m128i_shift_right (v, offset);
 }
 return _mm_loadu_si128 ((__m128i *) s);
}

(continue)

Example 10-19. Auxiliary Routines and Data Constants Used in sse4i_atol() listing
 10-45

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
With an input byte stream no more than 16 non-zero-leading digits, it has a constant
performance. An input string consisting of more than 16 bytes of non-zero-leading

__m128i ShfLAlnLSByte(__m128i value, int offset)
{
 /*now remove constant bias, so each byte element are unsigned byte int */
 value = _mm_sub_epi8(value, _mm_setr_epi32(0x30303030, 0x30303030, 0x30303030,
0x30303030));
 switch (offset)

{
case 1:
 value = _mm_slli_si128 (value, 1); break;
case 2:
 value = _mm_slli_si128 (value, 2); break;
case 3:
 value = _mm_slli_si128 (value, 3); break;
case 4:
 value = _mm_slli_si128 (value, 4); break;
case 5:
 value = _mm_slli_si128 (value, 5); break;
case 6:
 value = _mm_slli_si128 (value, 6); break;
case 7:
 value = _mm_slli_si128 (value, 7); break;
case 8:
 value = _mm_slli_si128 (value, 8); break;
case 9:
 value = _mm_slli_si128 (value, 9); break;
case 10:
 value = _mm_slli_si128 (value, 10); break;
case 11:
 value = _mm_slli_si128 (value, 11); break;
case 12:
 value = _mm_slli_si128 (value, 12); break;
case 13:
 value = _mm_slli_si128 (value, 13); break;
case 14:
 value = _mm_slli_si128 (value, 14); break;
case 15:
 value = _mm_slli_si128 (value, 15); break;
}
return value;

}

Example 10-19. Auxiliary Routines and Data Constants Used in sse4i_atol() listing
10-46 –

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
digits can be processed in about 100 cycles or less, compared byte-granular solution
needing around 200 cycles. Even for shorter input strings of 9 non-zero-leading
digits, SSE4.2 enhanced replacement can also achieve ~2X performance of byte-
granular solutions.
 10-47

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
10-48 –

CHAPTER 11
POWER OPTIMIZATION FOR MOBILE USAGES

11.1 OVERVIEW
Mobile computing allows computers to operate anywhere, anytime. Battery life is a
key factor in delivering this benefit. Mobile applications require software optimization
that considers both performance and power consumption. This chapter provides
background on power saving techniques in mobile processors1 and makes recom-
mendations that developers can leverage to provide longer battery life.

A microprocessor consumes power while actively executing instructions and doing
useful work. It also consumes power in inactive states (when halted). When a
processor is active, its power consumption is referred to as active power. When a
processor is halted, its power consumption is referred to as static power.

ACPI 3.0 (ACPI stands for Advanced Configuration and Power Interface) provides a
standard that enables intelligent power management and consumption. It does this
by allowing devices to be turned on when they are needed and by allowing control of
processor speed (depending on application requirements). The standard defines a
number of P-states to facilitate management of active power consumption; and
several C-state types2 to facilitate management of static power consumption.

Pentium M, Intel Core Solo, Intel Core Duo processors, and processors based on Intel
Core microarchitecture implement features designed to enable the reduction of
active power and static power consumption. These include:

• Enhanced Intel SpeedStep® Technology enables operating system (OS) to
program a processor to transition to lower frequency and/or voltage levels while
executing a workload.

• Support for various activity states (for example: Sleep states, ACPI C-states) to
reduces static power consumption by turning off power to sub-systems in the
processor.

Enhanced Intel SpeedStep Technology provides low-latency transitions between
operating points that support P-state usages. In general, a high-numbered P-state
operates at a lower frequency to reduce active power consumption. High-numbered
C-state types correspond to more aggressive static power reduction. The trade-off is
that transitions out of higher-numbered C-states have longer latency.

1. For Intel® Centrino® mobile technology and Intel® Centrino® Duo mobile technology, only pro-
cessor-related techniques are covered in this manual.

2. ACPI 3.0 specification defines four C-state types, known as C0, C1, C2, C3. Microprocessors sup-
porting the ACPI standard implement processor-specific states that map to each ACPI C-state
type.
11-1

POWER OPTIMIZATION FOR MOBILE USAGES
11.2 MOBILE USAGE SCENARIOS
In mobile usage models, heavy loads occur in bursts while working on battery power.
Most productivity, web, and streaming workloads require modest performance
investments. Enhanced Intel SpeedStep Technology provides an opportunity for an
OS to implement policies that track the level of performance history and adapt the
processor’s frequency and voltage. If demand changes in the last 300 ms3, the tech-
nology allows the OS to optimize the target P-state by selecting the lowest possible
frequency to meet demand.

Consider, for example, an application that changes processor utilization from 100%
to a lower utilization and then jumps back to 100%. The diagram in Figure 11-1
shows how the OS changes processor frequency to accommodate demand and adapt
power consumption. The interaction between the OS power management policy and
performance history is described below:

1. Demand is high and the processor works at its highest possible frequency (P0).

2. Demand decreases, which the OS recognizes after some delay; the OS sets the
processor to a lower frequency (P1).

3. The processor decreases frequency and processor utilization increases to the
most effective level, 80-90% of the highest possible frequency. The same
amount of work is performed at a lower frequency.

3. This chapter uses numerical values representing time constants (300 ms, 100 ms, etc.) on power
management decisions as examples to illustrate the order of magnitude or relative magnitude.
Actual values vary by implementation and may vary between product releases from the same
vendor.

Figure 11-1. Performance History and State Transitions

 Frequency
 & Power

CPU demand

1

2

3 4
5

11-2

POWER OPTIMIZATION FOR MOBILE USAGES
4. Demand decreases and the OS sets the processor to the lowest frequency,
sometimes called Low Frequency Mode (LFM).

5. Demand increases and the OS restores the processor to the highest frequency.

11.3 ACPI C-STATES
When computational demands are less than 100%, part of the time the processor is
doing useful work and the rest of the time it is idle. For example, the processor could
be waiting on an application time-out set by a Sleep() function, waiting for a web
server response, or waiting for a user mouse click. Figure 11-2 illustrates the rela-
tionship between active and idle time.

When an application moves to a wait state, the OS issues a HLT instruction and the
processor enters a halted state in which it waits for the next interrupt. The interrupt
may be a periodic timer interrupt or an interrupt that signals an event.

As shown in the illustration of Figure 11-2, the processor is in either active or idle
(halted) state. ACPI defines four C-state types (C0, C1, C2 and C3). Processor-
specific C states can be mapped to an ACPI C-state type via ACPI standard mecha-
nisms. The C-state types are divided into two categories: active (C0), in which the
processor consumes full power; and idle (C1-3), in which the processor is idle and
may consume significantly less power.

The index of a C-state type designates the depth of sleep. Higher numbers indicate a
deeper sleep state and lower power consumption. They also require more time to
wake up (higher exit latency).

C-state types are described below:

• C0 — The processor is active and performing computations and executing
instructions.

Figure 11-2. Active Time Versus Halted Time of a Processor
11-3

POWER OPTIMIZATION FOR MOBILE USAGES
• C1 — This is the lowest-latency idle state, which has very low exit latency. In the
C1 power state, the processor is able to maintain the context of the system
caches.

• C2 — This level has improved power savings over the C1 state. The main
improvements are provided at the platform level.

• C3 — This level provides greater power savings than C1 or C2. In C3, the
processor stops clock generating and snooping activity. It also allows system
memory to enter self-refresh mode.

The basic technique to implement OS power management policy to reduce static
power consumption is by evaluating processor idle durations and initiating transitions
to higher-numbered C-state types. This is similar to the technique of reducing active
power consumption by evaluating processor utilization and initiating P-state transi-
tions. The OS looks at history within a time window and then sets a target C-state
type for the next time window, as illustrated in Figure 11-3:

Consider that a processor is in lowest frequency (LFM- low frequency mode) and utili-
zation is low. During the first time slice window (Figure 11-3 shows an example that
uses 100 ms time slice for C-state decisions), processor utilization is low and the OS
decides to go to C2 for the next time slice. After the second time slice, processor utili-
zation is still low and the OS decides to go into C3.

11.3.1 Processor-Specific C4 and Deep C4 States
The Pentium M, Intel Core Solo, Intel Core Duo processors, and processors based on
Intel Core microarchitecture4 provide additional processor-specific C-states (and
associated sub C-states) that can be mapped to ACPI C3 state type. The processor-

Figure 11-3. Application of C-states to Idle Time

4. Pentium M processor can be detected by CPUID signature with family 6, model 9 or 13; Intel Core
Solo and Intel Core Duo processor has CPUID signature with family 6, model 14; processors based
on Intel Core microarchitecture has CPUID signature with family 6, model 15.
11-4

POWER OPTIMIZATION FOR MOBILE USAGES
specific C states and sub C-states are accessible using MWAIT extensions and can be
discovered using CPUID. One of the processor-specific state to reduce static power
consumption is referred to as C4 state. C4 provides power savings in the following
manner:

• The voltage of the processor is reduced to the lowest possible level that still
allows the L2 cache to maintain its state.

• In an Intel Core Solo, Intel Core Duo processor or a processor based on Intel Core
microarchitecture, after staying in C4 for an extended time, the processor may
enter into a Deep C4 state to save additional static power.

The processor reduces voltage to the minimum level required to safely maintain
processor context. Although exiting from a deep C4 state may require warming the
cache, the performance penalty may be low enough such that the benefit of longer
battery life outweighs the latency of the deep C4 state.

11.4 GUIDELINES FOR EXTENDING BATTERY LIFE
Follow the guidelines below to optimize to conserve battery life and adapt for mobile
computing usage:

• Adopt a power management scheme to provide just-enough (not the highest)
performance to achieve desired features or experiences.

• Avoid using spin loops.

• Reduce the amount of work the application performs while operating on a
battery.

• Take advantage of hardware power conservation features using ACPI C3 state
type and coordinate processor cores in the same physical processor.

• Implement transitions to and from system sleep states (S1-S4) correctly.

• Allow the processor to operate at a higher-numbered P-state (lower frequency
but higher efficiency in performance-per-watt) when demand for processor
performance is low.

• Allow the processor to enter higher-numbered ACPI C-state type (deeper, low-
power states) when user demand for processor activity is infrequent.

11.4.1 Adjust Performance to Meet Quality of Features
When a system is battery powered, applications can extend battery life by reducing
the performance or quality of features, turning off background activities, or both.
Implementing such options in an application increases the processor idle time.
Processor power consumption when idle is significantly lower than when active,
resulting in longer battery life.
11-5

POWER OPTIMIZATION FOR MOBILE USAGES
Example of techniques to use are:

• Reducing the quality/color depth/resolution of video and audio playback.

• Turning off automatic spell check and grammar correction.

• Turning off or reducing the frequency of logging activities.

• Consolidating disk operations over time to prevent unnecessary spin-up of the
hard drive.

• Reducing the amount or quality of visual animations.

• Turning off, or significantly reducing file scanning or indexing activities.

• Postponing possible activities until AC power is present.

Performance/quality/battery life trade-offs may vary during a single session, which
makes implementation more complex. An application may need to implement an
option page to enable the user to optimize settings for user’s needs (see
Figure 11-4).

To be battery-power-aware, an application may use appropriate OS APIs. For
Windows XP, these include:

• GetSystemPowerStatus — Retrieves system power information. This status
indicates whether the system is running on AC or DC (battery) power, whether
the battery is currently charging, and how much battery life remains.

• GetActivePwrScheme — Retrieves the active power scheme (current system
power scheme) index. An application can use this API to ensure that system is
running best power scheme.Avoid Using Spin Loops.

Spin loops are used to wait for short intervals of time or for synchronization. The
main advantage of a spin loop is immediate response time. Using the PeekMessage()
in Windows API has the same advantage for immediate response (but is rarely
needed in current multitasking operating systems).

However, spin loops and PeekMessage() in message loops require the constant atten-
tion of the processor, preventing it from entering lower power states. Use them spar-
ingly and replace them with the appropriate API when possible. For example:

• When an application needs to wait for more then a few milliseconds, it should
avoid using spin loops and use the Windows synchronization APIs, such as
WaitForSingleObject().

• When an immediate response is not necessary, an application should avoid using
PeekMessage(). Use WaitMessage() to suspend the thread until a message is in
the queue.

Intel® Mobile Platform Software Development Kit5 provides a rich set of APIs for
mobile software to manage and optimize power consumption of mobile processor
and other components in the platform.

5. Evaluation copy may be downloaded at http://www.intel.com/cd/software/products/asmo-
na/eng/219691.htm
11-6

POWER OPTIMIZATION FOR MOBILE USAGES
11.4.2 Reducing Amount of Work
When a processor is in the C0 state, the amount of energy a processor consumes
from the battery is proportional to the amount of time the processor executes an
active workload. The most obvious technique to conserve power is to reduce the
number of cycles it takes to complete a workload (usually that equates to reducing
the number of instructions that the processor needs to execute, or optimizing appli-
cation performance).

Optimizing an application starts with having efficient algorithms and then improving
them using Intel software development tools, such as Intel VTune Performance
Analyzers, Intel compilers, and Intel Performance Libraries.

See Chapter 3 through Chapter 7 for more information about performance optimiza-
tion to reduce the time to complete application workloads.

11.4.3 Platform-Level Optimizations
Applications can save power at the platform level by using devices appropriately and
redistributing the workload. The following techniques do not impact performance and
may provide additional power conservation:

• Read ahead from CD/DVD data and cache it in memory or hard disk to allow the
DVD drive to stop spinning.

• Switch off unused devices.

• When developing a network-intensive application, take advantage of opportu-
nities to conserve power. For example, switch to LAN from WLAN whenever both
are connected.

• Send data over WLAN in large chunks to allow the WiFi card to enter low power
mode in between consecutive packets. The saving is based on the fact that after
every send/receive operation, the WiFi card remains in high power mode for up to
several seconds, depending on the power saving mode. (Although the purpose
keeping the WiFI in high power mode is to enable a quick wake up).

• Avoid frequent disk access. Each disk access forces the device to spin up and stay
in high power mode for some period after the last access. Buffer small disk reads
and writes to RAM to consolidate disk operations over time. Use the GetDevice-
PowerState() Windows API to test disk state and delay the disk access if it is not
spinning.

11.4.4 Handling Sleep State Transitions
In some cases, transitioning to a sleep state may harm an application. For example,
suppose an application is in the middle of using a file on the network when the
system enters suspend mode. Upon resuming, the network connection may not be
available and information could be lost.
11-7

POWER OPTIMIZATION FOR MOBILE USAGES
An application may improve its behavior in such situations by becoming aware of
sleep state transitions. It can do this by using the WM_POWERBROADCAST message.
This message contains all the necessary information for an application to react
appropriately.

Here are some examples of an application reaction to sleep mode transitions:

• Saving state/data prior to the sleep transition and restoring state/data after the
wake up transition.

• Closing all open system resource handles such as files and I/O devices (this
should include duplicated handles).

• Disconnecting all communication links prior to the sleep transition and re-estab-
lishing all communication links upon waking up.

• Synchronizing all remote activity, such as like writing back to remote files or to
remote databases, upon waking up.

• Stopping any ongoing user activity, such as streaming video, or a file download,
prior to the sleep transition and resuming the user activity after the wake up
transition.

Recommendation: Appropriately handling the suspend event enables more robust,
better performing applications.

11.4.5 Using Enhanced Intel SpeedStep® Technology
Use Enhanced Intel SpeedStep Technology to adjust the processor to operate at a
lower frequency and save energy. The basic idea is to divide computations into
smaller pieces and use OS power management policy to effect a transition to higher
P-states.

Typically, an OS uses a time constant on the order of 10s to 100s of milliseconds6 to
detect demand on processor workload. For example, consider an application that
requires only 50% of processor resources to reach a required quality of service
(QOS). The scheduling of tasks occurs in such a way that the processor needs to stay
in P0 state (highest frequency to deliver highest performance) for 0.5 seconds and
may then goes to sleep for 0.5 seconds. The demand pattern then alternates.

Thus the processor demand switches between 0 and 100% every 0.5 seconds,
resulting in an average of 50% of processor resources. As a result, the frequency
switches accordingly between the highest and lowest frequency. The power
consumption also switches in the same manner, resulting in an average power usage
represented by the equation Paverage = (Pmax+Pmin)/2.

Figure 11-4 illustrates the chronological profiles of coarse-grain (> 300 ms) task
scheduling and its effect on operating frequency and power consumption.

6. The actual number may vary by OS and by OS release.
11-8

POWER OPTIMIZATION FOR MOBILE USAGES
The same application can be written in such a way that work units are divided into
smaller granularity, but scheduling of each work unit and Sleep() occurring at more
frequent intervals (e.g. 100 ms) to deliver the same QOS (operating at full perfor-
mance 50% of the time). In this scenario, the OS observes that the workload does
not require full performance for each 300 ms sampling. Its power management
policy may then commence to lower the processor’s frequency and voltage while
maintaining the level of QOS.

The relationship between active power consumption, frequency and voltage is
expressed by the equation:

In the equation: ‘V’ is core voltage, ‘F’ is operating frequency, and ‘α’ is the activity
factor. Typically, the quality of service for 100% performance at 50% duty cycle can
be met by 50% performance at 100% duty cycle. Because the slope of frequency
scaling efficiency of most workloads will be less than one, reducing the core
frequency to 50% can achieve more than 50% of the original performance level. At
the same time, reducing the core frequency to 50% allows for a significant reduction
of the core voltage.

Because executing instructions at higher P-state (lower power state) takes less
energy per instruction than at P0 state, Energy savings relative to the half of the duty
cycle in P0 state (Pmax /2) more than compensate for the increase of the half of the
duty cycle relative to inactive power consumption (Pmin /2). The non-linear relation-
ship between power consumption to frequency and voltage means that changing the
task unit to finer granularity will deliver substantial energy savings. This optimization
is possible when processor demand is low (such as with media streaming, playing a
DVD, or running less resource intensive applications like a word processor, email or
web browsing).

An additional positive effect of continuously operating at a lower frequency is that
frequent changes in power draw (from low to high in our case) and battery current
eventually harm the battery. They accelerate its deterioration.

Figure 11-4. Profiles of Coarse Task Scheduling and Power Consumption

CPU demand

Average power

Frequency
& Power
11-9

POWER OPTIMIZATION FOR MOBILE USAGES
When the lowest possible operating point (highest P-state) is reached, there is no
need for dividing computations. Instead, use longer idle periods to allow the
processor to enter a deeper low power mode.

11.4.6 Enabling Intel® Enhanced Deeper Sleep
In typical mobile computing usages, the processor is idle most of the time.
Conserving battery life must address reducing static power consumption.

Typical OS power management policy periodically evaluates opportunities to reduce
static power consumption by moving to lower-power C-states. Generally, the longer
a processor stays idle, OS power management policy directs the processor into
deeper low-power C-states.

After an application reaches the lowest possible P-state, it should consolidate compu-
tations in larger chunks to enable the processor to enter deeper C-States between
computations. This technique utilizes the fact that the decision to change frequency
is made based on a larger window of time than the period to decide to enter deep
sleep. If the processor is to enter a processor-specific C4 state to take advantage of
aggressive static power reduction features, the decision should be based on:

• Whether the QOS can be maintained in spite of the fact that the processor will be
in a low-power, long-exit-latency state for a long period.

• Whether the interval in which the processor stays in C4 is long enough to
amortize the longer exit latency of this low-power C state.

Eventually, if the interval is large enough, the processor will be able to enter deeper
sleep and save a considerable amount of power. The following guidelines can help
applications take advantage of Intel® Enhanced Deeper Sleep:

• Avoid setting higher interrupt rates. Shorter periods between interrupts may
keep OSes from entering lower power states. This is because transition to/from a
deep C-state consumes power, in addition to a latency penalty. In some cases,
the overhead may outweigh power savings.

• Avoid polling hardware. In a ACPI C3 type state, the processor may stop
snooping and each bus activity (including DMA and bus mastering) requires
moving the processor to a lower-numbered C-state type. The lower-numbered
state type is usually C2, but may even be C0. The situation is significantly
improved in the Intel Core Solo processor (compared to previous generations of
the Pentium M processors), but polling will likely prevent the processor from
entering into highest-numbered, processor-specific C-state.

11.4.7 Multicore Considerations
Multicore processors deserves some special considerations when planning power
savings. The dual-core architecture in Intel Core Duo processor and mobile proces-
sors based on Intel Core microarchitecture provide additional potential for power
savings for multi-threaded applications.
11-10

POWER OPTIMIZATION FOR MOBILE USAGES
11.4.7.1 Enhanced Intel SpeedStep® Technology
Using domain-composition, a single-threaded application can be transformed to take
advantage of multicore processors. A transformation into two domain threads means
that each thread will execute roughly half of the original number of instructions. Dual
core architecture enables running two threads simultaneously, each thread using
dedicated resources in the processor core. In an application that is targeted for the
mobile usages, this instruction count reduction for each thread enables the physical
processor to operate at lower frequency relative to a single-threaded version. This in
turn enables the processor to operate at a lower voltage, saving battery life.

Note that the OS views each logical processor or core in a physical processor as a
separate entity and computes CPU utilization independently for each logical
processor or core. On demand, the OS will choose to run at the highest frequency
available in a physical package. As a result, a physical processor with two cores will
often work at a higher frequency than it needs to satisfy the target QOS.

For example if one thread requires 60% of single-threaded execution cycles and the
other thread requires 40% of the cycles, the OS power management may direct the
physical processor to run at 60% of its maximum frequency.

However, it may be possible to divide work equally between threads so that each of
them require 50% of execution cycles. As a result, both cores should be able to
operate at 50% of the maximum frequency (as opposed to 60%). This will allow the
physical processor to work at a lower voltage, saving power.

So, while planning and tuning your application, make threads as symmetric as
possible in order to operate at the lowest possible frequency-voltage point.

11.4.7.2 Thread Migration Considerations
Interaction of OS scheduling and multicore unaware power management policy may
create some situations of performance anomaly for multi-threaded applications. The
problem can arise for multithreading application that allow threads to migrate freely.

When one full-speed thread is migrated from one core to another core that has idled
for a period of time, an OS without a multicore-aware P-state coordination policy may
mistakenly decide that each core demands only 50% of processor resources (based
on idle history). The processor frequency may be reduced by such multicore unaware
P-state coordination, resulting in a performance anomaly. See Figure 11-5.
11-11

POWER OPTIMIZATION FOR MOBILE USAGES
Software applications have a couple of choices to prevent this from happening:

• Thread affinity management — A multi-threaded application can enumerate
processor topology and assign processor affinity to application threads to prevent
thread migration. This can work around the issue of OS lacking multicore aware
P-state coordination policy.

• Upgrade to an OS with multicore aware P-state coordination policy —
Some newer OS releases may include multicore aware P-state coordination
policy. The reader should consult with specific OS vendors.

11.4.7.3 Multicore Considerations for C-States
There are two issues that impact C-states on multicore processors.

Multicore-unaware C-state Coordination May Not Fully Realize Power Savings

When each core in a multicore processor meets the requirements necessary to enter
a different C-state type, multicore-unaware hardware coordination causes the phys-
ical processor to enter the lowest possible C-state type (lower-numbered C state has
less power saving). For example, if Core 1 meets the requirement to be in ACPI C1
and Core 2 meets requirement for ACPI C3, multicore-unaware OS coordination
takes the physical processor to ACPI C1. See Figure 11-6.

Figure 11-5. Thread Migration in a Multicore Processor

Core 1

Core 2

active

Idle

active

Idle
11-12

POWER OPTIMIZATION FOR MOBILE USAGES
Enabling Both Cores to Take Advantage of Intel Enhanced Deeper Sleep.

To best utilize processor-specific C-state (e.g., Intel Enhanced Deeper Sleep) to
conserve battery life in multithreaded applications, a multi-threaded application
should synchronize threads to work simultaneously and sleep simultaneously using
OS synchronization primitives. By keeping the package in a fully idle state longer
(satisfying ACPI C3 requirement), the physical processor can transparently take
advantage of processor-specific Deep C4 state if it is available.

Multi-threaded applications need to identify and correct load-imbalances of its
threaded execution before implementing coordinated thread synchronization. Identi-
fying thread imbalance can be accomplished using performance monitoring events.
Intel Core Duo processor provides an event for this purpose. The event
(Serial_Execution_Cycle) increments under the following conditions:

• Core actively executing code in C0 state

• Second core in physical processor in idle state (C1-C4)

This event enables software developers to find code that is executing serially, by
comparing Serial_Execution_Cycle and Unhalted_Ref_Cycles. Changing sections of
serialized code to execute into two parallel threads enables coordinated thread
synchronization to achieve better power savings.

Although Serial_Execution_Cycle is available only on Intel Core Duo processors,
application thread with load-imbalance situations usually remains the same for
symmetric application threads and on symmetrically configured multicore proces-
sors, irrespective of differences in their underlying microarchitecture. For this
reason, the technique to identify load-imbalance situations can be applied to multi-
threaded applications in general, and not specific to Intel Core Duo processors.

Figure 11-6. Progression to Deeper Sleep

Thread 1
(core 1)

Thread 2
(core 2)

CPU

Active

Sleep

Active

Active

Sleep

Sleep Deeper
Sleep
11-13

POWER OPTIMIZATION FOR MOBILE USAGES
11-14

CHAPTER 12
INTEL® ATOMTM MICROARCHITECTURE AND

SOFTWARE OPTIMIZATION

12.1 OVERVIEW
This chapter covers a brief overview the Intel Atom microarchitecture, and specific
coding techniques for software whose primary targets are processors based on the
Intel Atom microarchitecture. The key features of Intel Atom processors to support
low power consumption and efficient performance include:

• Enhanced Intel SpeedStep® Technology enables operating system (OS) to
program a processor to transition to lower frequency and/or voltage levels while
executing a workload.

• Support deep power down technology to reduces static power consumption by
turning off power to cache and other sub-systems in the processor.

• Intel Hyper-Threading Technology providing two logical processor for multi-
tasking and multi-threading workloads

• Support Single-instruction multiple-data extensions up to SSE3 and SSSE3.

• Support for Intel 64 and IA-32 architecture.

The Intel Atom microarchitecture is designed to support the general performance
requirements of modern workloads within the power-consumption envelop of small
form-factor and/or thermally-constrained environments.

12.2 INTEL® ATOM™ MICROARCHITECTURE
Intel Atom microarchitecture achieves efficient performance and low power opera-
tion with a two-issue wide, in-order pipeline that support Hyper-Threading Tech-
nology. The in-order pipeline differs from out-of-order pipelines by treating an IA-32
instruction with a memory operand as a single pipeline operation instead of multiple
micro-operations.

The basic block diagram of the Intel Atom microarchitecture pipeline is shown in
Figure 12-1.
12-1

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
The front end features a power-optimized pipeline, including

• 32KB, 8-way set associative, first-level instruction cache,

• Branch prediction units and ITLB,

• Two instruction decoders, each can decode up to one instruction per cycle.

The front end can deliver up to two instructions per cycle to the instruction queue for
scheduling. The scheduler can issue up to two instructions per cycle to the integer or
SIMD/FP execution clusters via two issue ports.

Each of the two issue ports can dispatch an instruction per cycle to the integer cluster
or the SIMD/FP cluster to execute. The port-bindings of the integer and SIMD/FP
clusters have the following features:

• Integer execution cluster:

— Port 0: ALU0, Shift/Rotate unit, Load/Store,

Figure 12-1. Intel Atom Microarchitecture Pipeline

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU
Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

Pe
rT

hr
ea

d
Pr

efe
tch

Bu
ffe

rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front - End Cluster

FP/ SIMD execution cluster

Integer Execution Cluster

Memory Execution
Cluster

ALU

Shifter

XLAT/
FL

FSB
BIU

Bus Cluster

APIC

ALU

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU
Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

Pe
rT

hr
ea

d
Pr

efe
tch

Bu
ffe

rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU
Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

Pe
rT

hr
ea

d
Pr

efe
tch

Bu
ffe

rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front - End Cluster

FP/ SIMD execution cluster

Integer Execution Cluster

Memory Execution
Cluster

ALU

Shifter

XLAT/
FL

FSB
BIU

Bus Cluster

APIC

ALU
12-2

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
— Port 1: ALU1, Bit processing unit, jump unite and LEA,

— Effective “load-to-use“ latency of 0 cycle

• SIMD/FP execution cluster:

— Port 0: SIMD ALU, Shuffle unit, SIMD/FP multiply unit, Divide unit, (support
IMUL, IDIV)

— Port 1: SIMD ALU, FP Adder,

— The two SIMD ALUs and the shuffle unit in the SIMD/FP cluster are 128-bit
wide, but 64-bit integer SIMD computation is restricted to port 0 only.

— FP adder can execute ADDPS/SUBPS in 128-bit datapath, data path for other
FP add operations are 64-bit wide,

— Safe Instruction Recognition algorithm for FP/SIMD execution allow younger,
short-latency integer instruction to execute without being blocked by older
FP/SIMD instruction that might cause exception,

— FP multiply pipe also supports memory loads

— FP ADD instructions with memory load reference can use both ports to
dispatch

The memory execution sub-system (MEU) can support 48-bit linear address for Intel
64 Architecture, either 32-bit or 36-bit physical addressing modes. The MEU
provides:

• 24KB first level data cache,

• Hardware prefetching for L1 data cache,

• Two levels of DTLB for 4KByte and larger paging structure.

• Hardware pagewalker to service DTLB and ITLB misses.

• Two address generation units (port 0 supports loads and stores, port 1 supports
LEA and stack operations)

• Store-forwarding support for integer operations

• 8 write combining buffers.

The bus logic sub-system provides

• 512KB, 8-way set associative, unified L2 cache,

• Hardware prefetching for L2 and interface logic to the front side bus.

12.2.1 Hyper-Threading Technology Support in Intel® Atom™
Microarchitecture

The instruction queue is statically partitioned for scheduling instruction execution
from two threads. The scheduler is able to pick one instruction from either thread and
dispatch to either of port 0 or port 1 for execution. The hardware makes selection
12-3

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
choice on fetching/decoding/dispatching instructions between two threads based on
criteria of fairness as well as each thread’s readiness to make forward progress.

12.3 CODING RECOMMENDATIONS FOR INTEL® ATOM™
MICROARCHITECTURE

Instruction scheduling heuristics and coding techniques that apply to out-of-order
microarchitectures may not deliver optimal performance on an in-order microarchi-
tecture. Likewise instruction scheduling heuristics and coding techniques for an in-
order pipeline like Intel Atom microarchitecture may not achieve optimal perfor-
mance on out-of-order microarchitectures. This section covers specific coding recom-
mendations for software whose primary deployment targets are processors based on
Intel Atom microarchitecture.

12.3.1 Optimization for Front End of Intel® Atom™ Microarchitecture
The two decoders in the front end of Intel Atom microarchitecture can handle most
instructions in the Intel 64 and IA-32 architecture. Some instructions dealing with
complicated operations require the use of an MSROM in the front end. Instructions
that go through the two decoders generally can be decoded by either decoder unit of
the front end in most cases. Instructions the must use the MSROM or conditions that
cause the front end to re-arrange decoder assignments will experience a delay in the
front end.

Software can use specific performance monitoring events to detect instruction
sequences and/or conditions that cause front end to re-arrange decoder assignment.

Assembly/Compiler Coding Rule 1. (MH impact, ML generality) For Intel
Atom processors, minimize the presence of complex instructions requiring MSROM
to take advantage the optimal decode bandwidth provided by the two decode units.

Using the performance monitoring events “MACRO_INSTS.NON_CISC_DECODED”
and “MACRO_INSTS.CISC_DECODED” can be used to evaluate the percentage
instructions in a workload that required MSROM.

Assembly/Compiler Coding Rule 2. (M impact, H generality) For Intel Atom
processors, keeping the instruction working set footprint small will help the front
end to take advantage the optimal decode bandwidth provided by the two decode
units.

Assembly/Compiler Coding Rule 3. (MH impact, ML generality) For Intel
Atom processors, avoiding back-to-back X87 instructions will help the front end to
take advantage the optimal decode bandwidth provided by the two decode units.

Using the performance monitoring events “DECODE_RESTRICTION“ can count the
number of occurrences in a workload that encountered delays causing reduction of
decode throughput.
12-4

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
In general the front end restrictions are not typical a performance limiter until the
retired “cycle per instruction” becomes less than unity (maximum theoretical retire-
ment throughput corresponds to CPI of 0.5). To reach CPI below unity, it is important
to generate instruction sequences that go through the front end as instruction pairs
decodes in parallel by the two decoders. After the front end, the scheduler and
execution hardware do not need to dispatch the decode pairings through port 0 and
port 1 in the same order.

The decoders cannot decode past a jump instruction, so jumps should be paired as
the second instruction in a decoder-optimized pairing. The front end can only handle
one X87 instruction per cycle, and only decoder unit 0 can request a transfer to use
MSROM. Instructions that are longer than 8 bytes or having more than three prefixes
will results in a MSROM transfer, experiencing two cycles of delay in the front end.

Instruction lengths and alignment can impact decode throughput. The prefetching
buffers inside the front end imposes a throughput limit that if the number of bytes
being decoded in any 7-cycle window exceeds 48 bytes, the front end will experience
a delay to wait for a buffer. Additionally, every time an instruction pair crosses 16
byte boundary, it requires the front end buffer to be held on for at least one more
cycle. So instruction alignment crossing 16 byte boundary is highly problematic.

Instruction alignment can be improved using a combination of an ignore prefix and
an instruction.

Example 12-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel®
Atom™ Microarchitecture

Address Instruction Bytes Disassembly

7FFFFDF0 0F594301 mulps xmm0, [ebx+ 01h]

7FFFFDF4 8341FFFF add dword ptr [ecx-01h], -1

7FFFFDF8 83C2FF add edx, , -1

7FFFFDFB 64 ; FS prefix override is ignored, improves code alignment

7FFFFDFC F20f58E4 add xmm4, xmm4

7FFFFE00 0F594B11 mulps xmm1, [ebx+ 11h]

7FFFFE04 8369EFFF sub dword ptr [ecx- 11h], -1

7FFFFE08 83EAFF sub edx, -1

7FFFFE0B 64 ; FS prefix override is ignored, improves code alignment

7FFFFE0C F20F58ED addsd xmm5, xmm5

7FFFFE10 0F595301 mulps xmm2, [ebx +1]
12-5

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
When a small loop contains some long-latency operation inside, loop unrolling may
be considered as a technique to find adjacent instruction that could be paired with
the long-latency instruction to enable that adjacent instruction to make forward
progress. However, loop unrolling must also be evaluated on its impact to increased
code size and pressure to the branch target buffer.

The performance monitoring event “BACLEARS“ can provide a means to evaluate
whether loop unrolling is helping or hurting front end performance. Another event
“ICACHE_MISSES“ can help evaluate if loop unrolling is increasing the instruction
footprint.

Branch predictors in Intel Atom processor do not distinguish different branch types.
Sometimes mixing different branch types can cause confusion in the branch predic-
tion hardware.

The performance monitoring event “BR_MISSP_TYPE_RETIRED“ can provide a
means to evaluate branch prediction issues due to branch types.

12.3.2 Optimizing the Execution Core
This section covers several items that can help software use the two-issue-wide
execution core to make forward progress with two instructions more frequently.

12.3.2.1 Integer Instruction Selection
In an in-order machine, instruction selection and pairing can have an impact on the
machine’s ability to discover instruction-level-parallelism for instructions that have
data ready to execute. Some examples are:

• EFLAG: The consumer instruction of any EFLAG flag bit can not be issued in the
same cycle as the producer instruction of the EFLAG register. For example, ADD
could modify the carry bit, so it is a producer; JC (or ADC) reads the carry bit and
is a consumer.

7FFFFE14 8341DFFF add dword ptr [ecx-21H], -1

7FFFFE18 83C2FF add edx, -1

7FFFFE1B 64 ; FS prefix override is ignored, improves code alignment

7FFFFE1C F20F58F6 addssd xmm6, xmm6

7FFFFE20 0F595B11 mulps xmm3, [ebx+ 11h]

7FFFFE24 8369CFFF sub dword ptr [ecx- 31h], -1

7FFFFE28 83EAFF sub edx, -1

Example 12-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel®
Atom™ Microarchitecture
12-6

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
— Conditional jumps are able to issue in the following cycle after the consumer.

— A consumer instruction of other EFLAG bits must wait one cycle to issue after
the producer (two cycle delay).

Assembly/Compiler Coding Rule 4. (M impact, H generality) For Intel Atom
processors, place a MOV instruction between a flag producer instruction and a flag
consumer instruction that would have incurred a two-cycle delay. This will prevent
partial flag dependency.

• Long-latency Integer Instructions: They will block shorter latency instruction
on the same thread from issuing (required by program order). Additionally, they
will also block shorter-latency instruction on both threads for one cycle to resolve
writeback resource.

• Common Destination: Two instructions that produce results to the same
destination can not issue in the same cycle.

• Expensive Instructions: Some instructions have special requirements and
become expensive in consuming hardware resources for an extended period
during execution. It may be delayed in execution until it is the oldest in the
instruction queue; it may delay the issuing of other younger instructions.
Examples of these include FDIV, instructions requiring execution units from both
ports, etc.

12.3.2.2 Address Generation
The hardware optimizes the general case of instruction ready to execute must have
data ready, and address generation precedes data being ready. If address generation
encounters a dependency that needs data from another instruction, this dependency
in address generation will incur a delay of 3 cycles.

The address generation unit (AGU) may be used directly in three situations that
affect execution throughput of the two-wide machine. The situations are:

• Implicit ESP updates: When the ESP register is not used as the destination of
an instruction (explicit ESP updates), an implicit ESP update will occur with
instructions like PUSH, POP, CALL, RETURN. Mixing explicit ESP updates and
implicit ESP updates will also lead to dependency between address generation
and data execution.

• LEA: The LEA instruction uses the AGU instead of the ALU. If one of the source
register of LEA must come from an execution unit. This dependency will also
cause a 3 cycle delay. Thus, LEA should not be used in the technique of adding
two values and produce the result in a third register. LEA should be used for
address computation.

• Integer-FP/SIMD transfer: Instructions that transfer integer data to the
FP/SIMD side of the machine also uses AGU. Examples of these instructions
include MOVD, PINSRW. If one of the source register of these instructions
depends on the result of an execution unit, this dependency will also cause a
delay of 3 cycles.
12-7

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
Assembly/Compiler Coding Rule 5. (MH impact, H generality) For Intel Atom
processors, LEA should be used for address manipulation; but software should
avoid the following situations which creates dependencies from ALU to AGU: an ALU
instruction (instead of LEA) for address manipulation or ESP updates; a LEA for
ternary addition or non-destructive writes which do not feed address generation.
Alternatively, hoist producer instruction more than 3 cycles above the consumer
instruction that uses the AGU.

12.3.2.3 Integer Multiply
Integer multiply instruction takes several cycles to execute. They are pipelined such
that an integer multiply instruction and another long-latency instruction can make
forward progress in the execution phase. However, integer multiply instructions will
block other single-cycle integer instructions from issuing due to requirement of
program order.

Example 12-2. Alternative to Prevent AGU and Execution Unit Dependency

a) Three cycle delay when using LEA in ternary operations
mov eax, 0x01
lea eax, 0x8000[eax+ebp]; values in eax comes from execution of previous instruction
; 3 cycle delay due to lea and execution dependency

b) Dependency handled in execution, avoiding AGU and execution dependency
mov eax, 0x01
add eax, 0x8000
add eax, ebp
12-8

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
Assembly/Compiler Coding Rule 6. (M impact, M generality) For Intel Atom
processors, sequence an independent FP or integer multiply after an integer
multiply instruction to take advantage of pipelined IMUL execution.

12.3.2.4 Integer Shift Instructions
Integer shift instructions that encodes shift count in the immediate byte have one-
cycle latency. In contrast, shift instructions using shift count in the ECX register may
need to wait for the register count are updated. Thus shift instruction using register
count has 3-cycle latency.

Assembly/Compiler Coding Rule 7. (M impact, M generality) For Intel Atom
processors, hoist the producer instruction for the implicit register count of an
integer shift instruction before the shift instruction by at least two cycles.

12.3.2.5 Partial Register Access
Although partial register access does not cause additional delay, the in-order hard-
ware tracks dependency on the full register. Thus 8-bit registers like AL and AH are
not treated as independent registers. Additionally some instructions like LEA, vanilla
loads, and pop are slower when the input is smaller than 4 bytes.

Assembly/Compiler Coding Rule 8. (M impact, MH generality) For Intel Atom
processors, LEA, simple loads and POP are slower if the input is smaller than 4
bytes.

12.3.2.6 FP/SIMD Instruction Selection
Table 12-1 summarizes the characteristics of various execution units in Intel Atom
microarchitecture that are likely used most frequently by software.

Example 12-3. Pipeling Instruction Execution in Integer Computation

a) Multi-cycle Imul instruction can block 1-cycle integer instruction
imul eax, eax
add ecx, ecx ; 1 cycle int instruction blocked by imul for 4 cycles
imul ebx, ebx ; instruction blocked by in-orer issue

b) Back-to-back issue of independent imul are pipelined
imul eax, eax
imul ebx, ebx ; 2nd imul can issue 1 cycle later
add ecx, ecx ; 1 cycle int instruction blocked by imul
12-9

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
Table 12-1. Instruction Latency/Throughput Summary of Intel® Atom™ Microarchitecture

Instruction Category Latency (cycles) Throughput # of Execution Unit

SIMD Integer ALU

128-bit ALU/logical/move 1 1 2

64-bit ALU/logical/move 1 1 2

SIMD Integer Shift

128-bit 1 1 1

64-bit 1 1 1

SIMD Shuffle

128-bit 1 1 1

64-bit 1 1 1

SIMD Integer Multiply

128-bit 5 2 1

64-bit 4 1 1

FP Adder

X87 Ops (FADD) 5 1 1

Scalar SIMD (addsd, addss) 5 1 1

Packed single (addps) 5 1 1

Packed double (addpd) 6 5 1

FP Multiplier

X87 Ops (FMUL) 5 2 1

Scalar single (mulss) 4 1 1
12-10

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
SIMD/FP instruction selection generally should favor shorter latency first, then favor
faster throughput alternatives whenever possible. Note that packed double-precision
instructions are not pipelined, using two scalar double-precision instead can achieve
higher performance in the execution cluster.

Assembly/Compiler Coding Rule 9. (MH impact, H generality) For Intel Atom
processors, prefer SIMD instructions operating on XMM register over X87
instructions using FP stack. Use Packed single-precision instructions where possible.
Replace packed double-precision instruction with scalar double-precision
instructions.

Assembly/Compiler Coding Rule 10. (M impact, ML generality) For Intel
Atom processors, library software performing sophisticated math operations like
transcendental functions should use SIMD instructions operating on XMM register
instead of native X87 instructions.

Assembly/Compiler Coding Rule 11. (M impact, M generality) For Intel Atom
processors, enable DAZ and FTZ whenever possible.

Several performance monitoring events may be useful for SIMD/FP instruction selec-
tion tuning: “SIMD_INST_RETIRED.{PACKED_SINGLE, SCALAR_SINGLE,
PACKED_DOUBLE, SCALAR_DOUBLE}” can be used to determine the instruction
selection in the program. “FP_ASSIST” and “SIR” can be used to see if floating excep-
tions (or false alarms) are impacting program performance.

The latency and throughput of divide instructions vary with input values and data
size. Intel Atom microarchitecture implements a radix-2 based divider unit. So,
divide/sqrt latency will be significantly longer than other FP operations. The issue
throughput rate of divide/sqrt will be correspondingly lower. The divide unit is shared
between two logical processors, so software should consider all alternatives to using
the divide instructions.

Scalar double (mulsd) 5 2 1

Packed single (mulps) 5 2 1

Packed double (mulpd) 9 9 1

IMUL

IMUL r32, r/m32 5 1 1

IMUL r12, r/m16 6 1 1

Table 12-1. Instruction Latency/Throughput Summary of Intel® Atom™ Microarchitecture
12-11

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
Assembly/Compiler Coding Rule 12. (H impact, L generality) For Intel Atom
processors, use divide instruction only when it is absolutely necessary, and pay
attention to use the smallest data size operand.

The performance monitoring events “DIV” and “CYCLES_DIV_BUSY” can be used to
see if the divides are a bottleneck in the program.

FP operations generally have longer latency than integer instructions. Writeback of
results from FP operation generally occur later in the pipe stages than integer pipe-
line. Consequently, if an instruction has dependency on the result of some FP opera-
tion, there will be a two-cycle delay. Examples of these type of instructions are FP-to-
integer conversions CVTxx2xx, MOVD from XMM to general purpose registers.

In situations where software needs to do computation with consecutive groups 4
single-precision data elements, PALIGNR+MOVAPS is preferred over MOVUPS.
Loading 4 data elements with unconstrained array index k, such as MOVUPS xmm1,
_pArray[k], where the memory address _pArray is aligned on 16-byte boundary, will
periodically causing cache line split, incurring a 14-cycle delay.

The optimal approach is for each k that is not a multiple of 4, round down k to multi-
ples of 4 with j = 4*(k/4), do a MOVAPS MOVAPS xmm1, _pArray[j] and MOVAPS
xmm1, _pArray[j+4], and use PALIGNR to splice together the four data elements
needed for computation.

Assembly/Compiler Coding Rule 13. (MH impact, M generality) For Intel
Atom processors, prefer a sequence MOVAPS+PALIGN over MOVUPS. Similarly,
MOVDQA+PALIGNR is preferred over MOVDQU.

12.3.3 Optimizing Memory Access
This section covers several items that can help software optimize the performance of
the memory sub-system.

Memory access to system memory of cache access that encounter certain hazards
can cause the memory access to become an expensive operation, blocking short-
latency instructions to issue even when they have data ready to execute.

The performance monitoring events “REISSUE” can be used to assess the impact of
re-issued memory instructions in the program.

12.3.3.1 Store Forwarding
In a few limited situations, Intel Atom microarchitecture can forward data from a
preceding store operation to a subsequent load instruction. The situations are:

• Store-forwarding is supported only in the integer pipe line, and does not apply to
FP nor SIMD data. Furthermore, the following conditions must be met:

• The store and load operations must be of the same size and to the same address.
Data size larger than 8 bytes do not forward from a store operation.
12-12

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
• When data forwarding proceeds, data is forwarded base on the least significant
12 bits of the address. So software must avoid the address aliasing situation of
storing to an address and then loading from another address that aliases in the
lowest 12-bits with the store address.

12.3.3.2 First-level Data Cache
Intel Atom microarchitecture handles each 64-byte cache line of the first-level data
cache in 16 4-byte chunks. This implementation characteristic has a performance
impact to data alignment and some data access patterns.

Assembly/Compiler Coding Rule 14. (MH impact, H generality) For Intel
Atom processors, ensure data are aligned in memory to its natural size. For
example, 4-byte data should be aligned to 4-byte boundary, etc. Additionally,
smaller access (less than 4 bytes) within a chunk may experience delay if they
touch different bytes.

12.3.3.3 Segment Base
In Intel Atom microarchitecture, the address generation unit assumes that the
segment base will be 0 by default. Non-zero segment base will cause load and store
operations to experience a delay.

• If the segment base isn’t aligned to a cache line boundary, the max throughput of
memory operations is reduced to one very 9 cycles.

If the segment base is non-zero but cache line aligned the penalty varies by segment
base.

• DS will have a max throughput of one every two cycles.

• FS, and GS will have a max throughput of one every two cycles. However, FS and
GS are anticipated to be used only with non-zero bases and therefore have a max
throughput of one every two cycles even if the segment base is zero.

• ES,

— If used as the implicit segment base for the destination of string operation,
will have a max throughput of one every two cycles for non-zero but
cacheline aligned bases,

— Otherwise, only do one operation every nine cycles.

• CS, and SS will always have a max throughput of one every nine cycles if its
segment base is non-zero but cache line aligned.
12-13

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
Assembly/Compiler Coding Rule 15. (H impact, ML generality) For Intel
Atom processors, use segments with base set to 0 whenever possible; avoid non-
zero segment base address that is not aligned to cache line boundary at all cost.

Assembly/Compiler Coding Rule 16. (H impact, L generality) For Intel Atom
processors, when using non-zero segment bases, Use DS, FS, GS; string operation
should use implicit ES.

Assembly/Compiler Coding Rule 17. (M impact, ML generality) For Intel
Atom processors, favor using ES, DS, SS over FS, GS with zero segment base.

12.3.3.4 String Moves
Using MOVS/STOS instruction and REP prefix on Intel Atom processor should recog-
nize the following items:

• For small count values, using REP prefix is less efficient than not using REP prefix.
This is because the hardware does have small REP count optimization.

• For small count values, using REP prefix is less efficient than not using REP prefix.
This is because the hardware does have small REP count optimization.

• For large count values, using REP prefix will be less efficient than using 16-byte
SIMD instructions.

• Incrementing address in loop iterations should favor LEA instruction over explicit
ADD instruction.

• If data footprint is such that memory operation is accessing L2, use of software
prefetch to bring data to L1 can avoid memory operation from being re-issued.

• If string/memory operation is accessing system memory, using non-temporal
hints of streaming store instructions can avoid cache pollution.

Example 12-4. Memory Copy of 64-byte

T1: prefetcht0 [eax+edx+0x80] ; prefetch ahead by two iterations
movdqa xmm0, [eax+ edx] ; load data from source (in L1 by prefetch)
movdqa xmm1, [eax+ edx+0x10]
movdqa xmm2, [eax+ edx+0x20]
movdqa xmm3, [eax+ edx+0x30]
movdqa [ebx+ edx], xmm0; store data to destination
movdqa [ebx+ edx+0x10], xmm1
movdqa [ebx+ edx+0x30], xmm2
movdqa [ebx+ edx+0x30], xmm3
lea edx, 0x40 ; use LEA to adjust offset address for next iteration
dec ecx
jnz T1
12-14

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
12.3.3.5 Parameter Passing
Due to the limited situations of load-to-store forwarding support in Intel Atom
microarchitecture, parameter passing via the stack places restrictions on optimal
usage by the callee function. For example, “bool“ and “char“ data usually are pushed
onto the stack as 32-bit data, a callee function that reads “bool“ or “char“ data off the
stack will face store-forwarding delay and causing the memory operation to be re-
issued.

Compiler should recognize this limitation and generate prolog for callee function to
read 32-bit data instead of smaller sizes.

Assembly/Compiler Coding Rule 18. (MH impact, M generality) For Intel
Atom processors, “bool“ and “char“ value should be passed onto and read off the
stack as 32-bit data.

12.3.3.6 Function Calls
In Intel Atom microarchitecture, using PUSH/POP instructions to manage stack space
and address adjustment between function calls/returns will be more optimal than
using ENTER/LEAVE alternatives. This is because PUSH/POP will not need MSROM
flows and stack pointer address update is done at AGU.

When a callee function need to return to the caller, the callee could issue POP instruc-
tion to restore data and restore the stack pointer from the EBP.

Assembly/Compiler Coding Rule 19. (MH impact, M generality) For Intel
Atom processors, favor register form of PUSH/POP and avoid using LEAVE; Use LEA
to adjust ESP instead of ADD/SUB.

12.3.3.7 Optimization of Multiply/Add Dependent Chains
Computations of dependent multiply and add operations can illustrate the usage of
several coding techniques to optimize for the front end and in-order execution pipe-
line of the Intel Atom microarchitecture.

Example 12-5a shows a code sequence that may be used on out-of-order microarchi-
tectures. This sequence is far from optimal on Intel Atom microarchitecture. The full
latency of multiply and add operations are exposed and it is not very successful at
taking advantage of the two-issue pipeline.

Example 12-5b shows an improved code sequence that takes advantage of the two-
issue in-order pipeline of Intel Atom microarchitecture. Because the dependency
between multiply and add operations are present, the exposure of latency are only
partially covered.
12-15

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
Example 12-5. Examples of Dependent Multiply and Add Computation

a) Instruction sequence that encounters stalls
; accumulator xmm2 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

movaps xmm1, [edi] ; vector stored in 16-byte aligned memory
mulps xmm0, xmm1
addps xmm2, xmm0 ; dependency and branch exposes latency of mul and add
add esi, 16 ;
add edi, 16
sub ecx, 1
jnz top

b) Improved instruction sequence to increase execution throughput
; accumulator xmm4 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm0, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm4, xmm0 ; latency exposures partially covered by independent instructions
dec ecx ;
jnz top

c) Improving instruction sequence further by unrolling and interleaving
; accumulator xmm0, xmm1, xmm2, xmm3 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm0, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm5, xmm1 ; dependent multiply hoisted by unrolling and interleaving
movaps xmm1, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm1, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm6, xmm2 ; dependent multiply hoisted by unrolling and interleaving

(continue)
12-16

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
Example 12-5c illustrates a technique that increases instruction-level parallelism and
further reduces latency exposures of the multiply and add operations. By unrolling
four times, each ADDPS instruction can be hoisted far from its dependent producer
instruction MULPS. Using an interleaving technique, non-dependent ADDPS and
MULPS can be placed in close proximity. Because the hardware that executes MULPS
and ADDPS is pipelined, the associated latency can be covered much more effectively
by this technique relative to Example 12-5b.

12.3.3.8 Position Independent Code
Position independent code often needs to obtain the value of the instruction pointer.
Example 12-5a show one technique to put the value of IP into the ECX register by
issuing a CALL without a matching RET. Example 12-5b show an alternative tech-
nique to put the value of IP into the ECX register using a matched pair of CALL/RET.

movaps xmm2, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm2, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm7, xmm3 ; dependent multiply hoisted by unrolling and interleaving
movaps xmm3, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm3, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm4, xmm0 ; dependent multiply hoisted by unrolling and interleaving
sub ecx, 4;
jnz top
; sum up accumulators xmm0, xmm1, xmm2, xmm3 to reduce dependency inside the loop

Example 12-6. Instruction Pointer Query Techniques

a) Using call without return to obtain IP
call _label; return address pushed is the IP of next instruction

_label:
pop ECX; IP of this instruction is now put into ECX

Example 12-5. Examples of Dependent Multiply and Add Computation
12-17

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
12.4 INSTRUCTION LATENCY
This section lists the port-binding and latency information of Intel Atom microarchi-
tecture. The port-binding information for each instruction may show one of 3 situa-
tions:

• ‘single digit’ - the specific port that must be issued,

• (0, 1) - either port 0 or port 1,

• ‘B’ - both ports are required.

In the “Instruction” column:

• if different operand syntax of the same instruction have the same port-binding
and latency, operand syntax is omitted.

• when different operand syntax may produce different latency or port binding, the
operand syntax is listed; but instruction syntax of different operand sizes may be
compacted and abbreviated with a footnote.

Instruction that required decoder assistance from MSROM are marked in the
“Comment“ column (should be used minimally if more decode-efficient alternatives
are available).

b) Using matched call/ret pair

call _lblcx;
... ; ECX now contains IP of this instruction
...

_lblcx
mov ecx, [esp];
ret

Example 12-6. Instruction Pointer Query Techniques
12-18

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data

Instruction Ports Latency Throug
hput

DisplayFamily_DisplayModel 06_1CH 06_1CH 06_1CH

ADD/AND/CMP/OR/SUB/XOR/TEST1 (E)AX/AL, imm; (0, 1) 1 0.5

ADD/AND/CMP/OR/SUB/XOR2 mem, Imm8;
ADD/AND/CMP/OR/SUB/XOR/TEST4 mem, imm; TEST m8, imm8

0 1 1

ADD/AND/CMP/OR/SUB/XOR/TEST2 mem, reg;
ADD/AND/CMP/OR/SUB/XOR2 reg, mem;

0 1 1

ADD/AND/CMP/OR/SUB/XOR2 reg, Imm8;
ADD/AND/CMP/OR/SUB/XOR4 reg, imm

(0, 1) 1 0.5

ADDPD/ADDSUBPD/MAXPD/MAXPS/MINPD/MINPS/SUBPD
xmm, mem

B 7 6

ADDPD/ADDSUBPD/MAXPD/MAXPS/MINPD/MINPS/SUBPD
xmm, xmm

B 6 5

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/SUBSS xmm,
mem

B 5 1

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/SUBSS xmm,
xmm

1 5 1

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XORPD/XORPS
xmm, mem

0 1 1

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XORPD/XORPS
xmm, xmm

(0, 1) 1 1

BSF/BSR r16, m16 B 17 16

BSF/BSR3 reg, mem B 16 15

BSF/BSR4 reg, reg B 16 15

BT m16, imm8; BT3 mem, imm8 (0, 1) 2; 1 1

BT m16, r16; BT3 mem, reg B 10, 9 8

BT4 reg, imm8; BT4 reg, reg 1 1 1

BTC m16, imm8; BTC3 mem, imm8 B 3; 2 2

BTC/BTR/BTS m16; r16 B 12 11

 BTC/BTR/BTS3 mem, reg B 11 10

BTC/BTR/BTS4 reg, imm8; BTC/BTR/BTS4 reg, reg 1 1 1

CALL mem (0, 1) 2 2

CALL reg; CALL rel16; CALL rel32 B 1 1
12-19

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
CMOV4 reg, mem; MOV1 (E)AX/AL, MOFFS; MOV2 mem, imm 0 1 1

CMOV4 reg, reg; MOV2 reg, imm; MOV2 reg, reg; ; SETcc r8 (0, 1) 1 0.5

CMPPD/CMPPS xmm, mem, imm; CVTTPS2DQ xmm, mem B 7 6

CMPPD/CMPPS xmm, xmm, imm; CVTTPS2DQ xmm, xmm B 6 5

CMPSD/CMPSS xmm, mem, imm B 5 1

CMPSD/CMPSS xmm, xmm, imm 1 5 1

(U)COMISD/(U)COMISS xmm, mem; B 10 9

(U)COMISD/(U)COMISS xmm, xmm; B 9 8

CVTDQ2PD/CVTPD2DQ/CVTPD2PS xmm, mem B 8 7

CVTDQ2PD/CVTPD2DQ/CVTPD2PS xmm, xmm B 7 6

CVTDQ2PS/CVTSD2SS/CVTSI2SS/CVTSS2SD xmm, mem B 7 6

CVTDQ2PS/CVTSD2SS/CVTSS2SD xmm, xmm B 6 5

CVT(T)PD2PI mm, mem; CVTPI2PD xmm, mem B 8 7

CVT(T)PD2PI mm, xmm; CVTPI2PD xmm, mm B 7 6

CVTPI2PS/CVTSI2SD xmm, mem; B 5 4

CVTPI2PS xmm, mm; 1 5 1

CVT(T)PS2PI mm, mem; B 5 5

CVT(T)PS2PI mm, xmm; 1 5 1

CVT(T)SD2SI3 reg, mem; CVT(T)SS2SI r32, mem B 9 8

CVT(T)SD2SI3 reg, xmm; CVT(T)SS2SI r32, xmm B 8 7

CVTSI2SD xmm, r32; CVTSI2SS xmm, r32 B 7; 6 5

CVTSI2SD xmm, r64; CVTSI2SS xmm, r64 B 6; 7 5

CVT(T)SS2SI r64, mem; RCPPS xmm, mem B 10 9

CVT(T)SS2SI r64, xmm; RCPPS xmm, xmm B 9 8

CVTTPD2DQ xmm, mem B 8 7

CVTTPD2DQ xmm, xmm B 7 6

DEC/INC2 mem; MASKMOVQ; MOVAPD/MOVAPS mem, xmm 0 1 1

DEC/INC2 reg; FLD ST; FST/FSTP ST; MOVDQ2Q mm, xmm (0, 1) 1 0.5

DIVPD; DIVPS B 125; 70 124; 69

Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throug
hput

DisplayFamily_DisplayModel 06_1CH 06_1CH 06_1CH
12-20

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
DIVSD; DIVSS B 62; 34 61; 33

EMMS; LDMXCSR B 5 4

FABS/FCHS/FXCH; MOVQ2DQ xmm, mm; MOVSX/MOVZX r16,
r16

(0, 1) 1 0.5

FADD/FSUB/FSUBR3 mem B 5 4

FADD/FADDP/FSUB/FSUBP/FSUBR/FSUBRP ST; 1 5 1

FCMOV B 6 5

FCOM/FCOMP3 mem B 1 1

FCOM/FCOMP/FCOMPP/FUCOM/FUCOMP ST; FTST 1 1 1

FCOMI/FCOMIP/FUCOMI/FUCOMIP ST B 9 8

FDIV/FSQRT3 mem; FDIV/FSQRT ST 0 25-65 24-64

FIADD/FIMUL5 mem B 11 10

FICOM/FICOMP mem B 7 6

FILD4 mem B 5 4

FLD3 mem; FXAM; MOVAPD/MOVAPS/MOVD xmm, mem 0 1 1

FLDCW B 5 4

FMUL/FMULP ST; FMUL3 mem 0 5 1

FNSTSW AX; FNSTSW m16 B 10; 14 9; 13

FST/FSTP3 mem B 2 1

HADDPD/HADDPS/HSUBPD/HSUBPS xmm, mem B 9 8

HADDPD/HADDPS/HSUBPD/HSUBPS xmm, xmm B 8 7

IDIV r/m8; IDIV r/m16; IDIV r/m32; IDIV r/m64; B 33;42;57;
197

32;41;5
6;196

IMUL/MUL6 EAX/AL, mem; IMUL/MUL AX, m16 B 7; 8 6; 7

IMUL/MUL7 AX/AL, reg; IMUL/MUL EAX, r32 B 7; 6 6; 5

IMUL m16, imm8/imm16; IMUL r16, m16 B 7; 6

IMUL r/m32, imm8/imm32; IMUL r32, r/m32 0 5 1

IMUL r/m64, imm8/imm32; B 14 13

IMUL r16, r16; IMUL r16, imm8/imm16 B 6 5

IMUL r64, r/m64; IMUL/MUL RAX, r/m64 B 11; 12 10; 11

Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throug
hput

DisplayFamily_DisplayModel 06_1CH 06_1CH 06_1CH
12-21

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
JCC1; JMP4 reg; JMP1 1 1 1

JCXZ; JECXZ; JRCXZ B 4 1

JMP mem4; B 2 1

LDDQU; MOVDQU/MOVUPD/MOVUPS xmm, mem; B 3 2

LEA r16, mem; MASKMOVDQU; SETcc m8 (0, 1) 2 1

LEA, reg, mem 1 1 1

LEAVE; B 2; 2

MAXSD/MAXSS/MINSD/MINSS xmm, mem B 5 1

MAXSD/MAXSS/MINSD/MINSS xmm, xmm 1 5 1

MOV2 MOFFS, (E)AX/AL; MOV2 reg, mem; MOV2 mem, reg 0 1 1

MOVD mem3, mm; MOVD xmm, reg3; MOVD mm, mem3 0 1 1

MOVD reg3, mm; MOVD reg3, xmm; PMOVMSK reg3, mm 0 3 1

MOVDQA/MOVQ xmm, mem; MOVDQA/MOVD mem, xmm; 0 1 1

MOVDQA/MOVDQU/MOVUPD xmm, xmm; MOVQ mm, mm (0, 1) 1 0.5

MOVDQU/MOVUPD/MOVUPS mem, xmm; B 2 2

MOVHLPS;MOVLHPS;MOVHPD/MOVHPS/MOVLPD/MOVLPS 0 1 1

MOVMSKPD/MOVSKPS/PMOVMSKB reg3, xmm 0 3 1

MOVNTI3 mem, reg; MOVNTPD/MOVNTPS; MOVNTQ 0 1 1

MOVQ mem, mm; MOVQ mm, mem; MOVDDUP 0 1 1

MOVSD/MOVSS xmm, xmm; MOVSXD5 reg, reg (0, 1) 1 0.5

MOVSD/MOVSS xmm, mem; PALIGNR 0 1 1

MOVSD/MOVSS mem, xmm; PINSRW 0 1 1

MOVSHDUP/MOVSLDUP xmm, mem 0 1 1

MOVSHDUP/MOVSLDUP/MOVUPS xmm, xmm (0, 1) 1 0.5

MOVSX/MOVZX r16, m8; MOVSX/MOVZX r16, r8 0 3; 2 1

MOVSX/MOVZX reg3, r/m8; MOVSX/MOVZX reg3, r/m16 0 1 1

MOVSXD5 reg, mem; MOVSXD r64, r/m32 0 1 1

MULPS/MULSD xmm, mem; MULSS xmm, mem; 0 5; 4 2

MULPS/MULSD xmm, xmm; MULSS xmm, xmm 0 5; 4 2

Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throug
hput

DisplayFamily_DisplayModel 06_1CH 06_1CH 06_1CH
12-22

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
MULPD B 5; 4 2

NEG/NOT2 mem; PREFETCHNTA; PREFETCHTx 0 10 9

NEG/NOT2 reg; NOP (0, 1) 1 0.5

PABSB/D/W mm, mem; PABSB/D/W xmm, mem 0 1 1

PABSB/D/W mm, mm; PABSB/D/W xmm, xmm (0, 1) 1 0.5

PACKSSDW/WB mm, mem; PACKSSDW/WB xmm, mem 0 1 1

PACKSSDW/WB mm, mm; PACKSSDW/WB xmm, xmm 0 1 1

PACKUSWB mm, mem; PACKUSWB xmm, mem 0 1 1

PACKUSWB mm, mm; PACKUSWB xmm, xmm 0 1 1

PADDB/D/W/Q mm, mem; PADDB/D/W/Q xmm, mem 0 1 1

PADDB/D/W/Q mm, mm; PADDB/D/W/Q xmm, xmm (0, 1) 1 0.5

PADDSB/W mm, mem; PADDSB/W xmm, mem 0 1 1

PADDSB/W mm, mm; PADDSB/W xmm, xmm (0, 1) 1 0.5

PADDUSB/W mm, mem; PADDUSB/W xmm, mem 0 1 1

PADDUSB/W mm, mm; PADDUSB/W xmm, xmm (0, 1) 1 0.5

PAND/PANDN/POR/PXOR mm, mem; PAND/PANDN/POR/PXOR
xmm, mem

0 1 1

PAND/PANDN/POR/PXOR mm, mm; PAND/PANDN/POR/PXOR
xmm, xmm

(0, 1) 1 0.5

PAVGB/W mm, mem; PAVGB/W xmm, mem 0 1 1

PAVGB/W mm, mm; PAVGB/W xmm, xmm (0, 1) 1 0.5

PCMPEQB/D/W mm, mem; PCMPEQB/D/W xmm, mem 0 1 1

PCMPEQB/D/W mm, mm; PCMPEQB/D/W xmm, xmm (0, 1) 1 0.5

PCMPGTB/D/W mm, mem; PCMPGTB/D/W xmm, mem 0 1 1

PCMPGTB/D/W mm, mm; PCMPGTB/D/W xmm, xmm (0, 1) 1 0.5

PEXTRW; B 4 1

PHADDD/PHSUBD mm, mem; PHADDD/PHSUBD xmm, mem B 4 3

PHADDD/PHSUBD mm, mm; PHADDD/PHSUBD xmm, xmm B 3 2

PHADDW/PHADDSW mm, mem;PHADDW/PHADDSW xmm, mem B 6; 8 5;7

PHADDW/PHADDSW mm, mm; PHADDW/PHADDSW xmm, xmm B 5; 7 M

Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throug
hput

DisplayFamily_DisplayModel 06_1CH 06_1CH 06_1CH
12-23

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
PHSUBW/PHSUBSW mm, mem;PHSUBW/PHSUBSW xmm, mem B 6; 8 M

PHSUBW/PHSUBSW mm, mm; PHSUBW/PHSUBSW xmm, xmm B 5; 7 M

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW mm, mm;
PMADDUBSW/PMADDWD/PMULHRSW/PSADBW mm, mem

0 4 1

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW xmm, xmm;
PMADDUBSW/PMADDWD/PMULHRSW/PSADBW xmm, mem

0 5 1

PMAXSW/UB mm, mem; PMAXSW/UB xmm, mem 0 1 1

PMAXSW/UB mm, mm; PMAXSW/UB xmm, xmm (0, 1) 1 0.5

PMINSW/UB mm, mem; PMINSW/UB xmm, mem 0 1 1

PMINSW/UB mm, mm; PMINSW/UB xmm, xmm (0, 1) 1 0.5

PMULHUW/PMULHW/PMULLW/PMULUDQ mm, mm;
PMULHUW/PMULHW/PMULLW/PMULUDQ mm, mem

0 4 1

PMULHUW/PMULHW/PMULLW/PMULUDQ xmm, xmm;
PMULHUW/PMULHW/PMULLW/PMULUDQ xmm, mem

0 5 1

POP mem5; PSLLD/Q/W mm, mem; PSLLD/Q/W xmm, mem B 3 2

POP r16; PUSH mem4; PSLLD/Q/W mm, mm; PSLLD/Q/W xmm,
xmm

B 2 1

POP reg3; PUSH reg4; PUSH imm B 1 1

POPA ; POPAD B 9 8

PSHUFB mm, mem; PSHUFD; PSHUFHW; PSHUFLW; PSHUFW 0 1 1

PSHUFB mm, mm; PSLLD/Q/W mm, imm; PSLLD/Q/W xmm, imm 0 1 1

PSHUFB xmm, mem B 5 4

PSHUFB xmm, xmm B 4 3

PSIGNB/D/W mm, mem; PSIGNB/D/W xmm, mem 0 1 1

PSIGNB/D/W mm, mm; PSIGNB/D/W xmm, xmm (0, 1) 1 0.5

PSRAD/W mm, imm; PSRAD/W xmm, imm; 0 1 1

PSRLD/Q/W mm, mem; PSRLD/Q/W xmm, mem B 3 2

PSRLD/Q/W mm, mm; PSRLD/Q/W xmm, xmm B 2 1

PSRLD/Q/W mm, imm; PSRLD/Q/W xmm, imm; 0 1 1

PSLLDQ/PSRLDQ xmm, imm; SHUFPD/SHUFPS 0 1 1

PSUBB/D/W/Q mm, mem; PSUBB/D/W/Q xmm, mem 0 1 1

Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throug
hput

DisplayFamily_DisplayModel 06_1CH 06_1CH 06_1CH
12-24

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
PSUBB/D/W/Q mm, mm; PSUBB/D/W/Q xmm, xmm (0, 1) 1 0.5

PSUBSB/W mm, mem; PSUBSB/W xmm, mem 0 1 1

PSUBSB/W mm, mm; PSUBSB/W xmm, xmm (0, 1) 1 0.5

PSUBUSB/W mm, mem; PSUBUSB/W xmm, mem 0 1 1

PSUBUSB/W mm, mm; PSUBUSB/W xmm, xmm (0, 1) 1 0.5

PUNPCKHBW/DQ/WD; PUNPCKLBW/DQ/WD 0 1 1

PUNPCKHQDQ; PUNPCKLQDQ 0 1 1

PUSHA ; PUSHAD B 8 7

RCL mem2, 1; RCL reg2, 1 0 1 1

RCL m8, CL; RCL m16, CL; RCL mem3, CL; B 18;16; 14 17;15;1
3

RCL m8, imm; RCL m16, imm; RCL mem3, imm; B 18; 17;
14

17;16;1
3

RCL r8, CL; RCL r16, CL; RCL reg3, CL; B 17; 16;
14

16;15;1
4

RCL r8, imm; RCL r16, imm; RCL reg3, imm; B 18;16; 14 17;15;1
3

RCPSS 0 4 1

RCR mem2, 1; RCR reg2, 1 B 7; 5 6;4

RCR m8, CL; RCR m16, CL; RCR mem3, CL; B 15; 13;
12

14;12;1
1

RCR m8, imm; RCR m16, imm; RCR mem3, imm; B 16,;14;
12

15;13;1
1

RCR r8, CL; RCR r16, CL; RCR reg3, CL; B 14; 13;
12

13;12;1
1

RCR r8, imm; RCR r16, imm; RCR reg3, imm; B 15, 14,
12

14;13;1
1

RET imm16 B 1 1

RET (far) B 79

ROL; ROR; SAL; SAR; SHL; SHR 0 1 1

SETcc 1 1

SHLD8 mem, reg, imm; SHLD r64, r64, imm; SHLD m64, r64, CL B 11 10

Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throug
hput

DisplayFamily_DisplayModel 06_1CH 06_1CH 06_1CH
12-25

INTEL® ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
SHLD m32, r32; SHLD r32, r32 B 4; 2 3; 1

SHLD m16, r16, CL; SHLD r16, r16, imm; SHLD r64, r64, CL B 10 9

SHLD r16, r16, CL; SHRD m64, r64; SHRD r64, r64, imm B 9 8

SHRD m32, r32; SHRD r32, r32 B 4; 2 3; 1

SHRD m16, r16; SHRD r16, r16 B 6 5

SHRD r64, r64, CL B 8 7

STMXCSR B 15 14

TEST2 reg, reg; TEST4 reg, imm (0, 1) 1 0.5

UNPCKHPD; UNPCKHPS; UNPCKLPD, UNPCKLPS 0 1 1

Notes on operand size (osize) and address size (asize):
1. osize = 8, 16, 32 or asize = 8, 16, 32
2. osize = 8, 16, 32, 64
3. osize = 32, 64
4. osize = 16, 32, 64 or asize = 16, 32, 64
5. osize = 16, 32
6. osize = 8, 32
7. osize = 8, 16
8. osize = 16, 64

Table 12-2. Intel® Atom™ Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throug
hput

DisplayFamily_DisplayModel 06_1CH 06_1CH 06_1CH
12-26

APPENDIX A
APPLICATION PERFORMANCE

TOOLS

Intel offers an array of application performance tools that are optimized to take
advantage of the Intel architecture (IA)-based processors. This appendix introduces
these tools and explains their capabilities for developing the most efficient programs
without having to write assembly code.

The following performance tools are available:

• Intel® C++ Compiler and Intel® Fortran Compiler — Intel compilers
generate highly optimized executable code for Intel 64 and IA-32 processors. The
compilers support advanced optimizations that include auto-vectorization for
MMX technology, and the Streaming SIMD Extensions (SSE) instruction set archi-
tectures (SSE, SSE2, SSE3, SSSE3, and SSE4) of our latest processors.

• VTune Performance Analyzer — The VTune analyzer collects, analyzes, and
displays Intel architecture-specific software performance data from the system-
wide view down to a specific line of code.

• Intel® Performance Libraries — The Intel Performance Library family consists
of a set of software libraries optimized for Intel architecture processors. The
library family includes the following:

— Intel® Math Kernel Library (Intel® MKL)

— Intel® Integrated Performance Primitives (Intel® IPP)

• Intel® Threading Tools — Intel Threading Tools consist of the following:

— Intel® Thread Checker

— Intel® Thread Profiler

• Intel® Cluster Tools - The Intel® Cluster Toolkit 3.1 helps you develop,
analyze and optimize performance of parallel applications for clusters using IA-
32, IA-64, and Intel® 64 architectures. Intel Cluster Tools consist of the
following:

— Intel® Cluster Tool Kit

— Intel® MPI Library

— Intel® Trace Analyzer and Collector

• Intel® XML Products - Intel XML Products consist of the following:

— Intel® XML Software Suite 1.0 Beta

— Intel® SOA Security Toolkit 1.0 Beta for Axis2

— Intel® XSLT Accelerator 1.1 for Java* Environments on Linux* and Windows*
Operating Systems
A-1

APPLICATION PERFORMANCE TOOLS
A.1 COMPILERS
Intel compilers support several general optimization settings, including /O1, /O2,
/O3, and /fast. Each of them enables a number of specific optimization options. In
most cases, /O2 is recommended over /O1 because the /O2 option enables function
expansion, which helps programs that have many calls to small functions. The /O1
may sometimes be preferred when code size is a concern. The /O2 option is on by
default.

The /Od (-O0 on Linux) option disables all optimizations. The /O3 option enables
more aggressive optimizations, most of which are effective only in conjunction with
processor-specific optimizations described below.

The /fast option maximizes speed across the entire program. For most Intel 64 and
IA-32 processors, the “/fast” option is equivalent to “/O3 /Qipo /QxP” (-Q3 -ipo -
static -xP on Linux). For Mac OS, the "-fast" option is equivalent to "-O3 -ipo".

All the command-line options are described in Intel® C++ Compiler documentation.

A.1.1 Recommended Optimization Settings for Intel® 64 and IA-32
Processors

64-bit addressable code can only run in 64-bit mode of processors that support
Intel 64 architecture. The optimal compiler settings for 64-bit code generation is
different from 32-bit code generation. Table A-1 lists recommended compiler options
for generating 32-bit code for Intel 64 and IA-32 processors. Table A-1 also applies
to code targeted to run in compatibility mode on an Intel 64 processor, but does not
apply to running in 64-bit mode. Table A-2 lists recommended compiler options for
generating 64-bit code for Intel 64 processors, it only applies to code target to run in
64-bit mode. Intel compilers provide separate compiler binary to generate 64-bit
code versus 32-bit code. The 64-bit compiler binary generates only 64-bit address-
able code.

Table A-1. Recommended IA-32 Processor Optimization Options
Need Recommendation Comments

Best performance
on Intel Core 2
processor family and
Intel Xeon processor
5400 series,
utilizing SSE4
instructions

• /QxS (-xS on
Linux and Mac
OS)

• Single code path
A-2

APPLICATION PERFORMANCE TOOLS
Best performance
on Intel Core 2
processor family and
Intel Xeon processor
5400 series,
utilizing SSE4
instructions

• /QaxS (-axS on
Linux and Mac
OS)

• Multiple code path are generated
• Be sure to validate your application on

all systems where it may be deployed.

Best performance
on Intel Core 2
processor family and
Intel Xeon processor
3000 and 5100
series, utilizing
SSSE3 and other
processor-specific
instructions

• /QxT (-xT on
Linux)

• Single code path
• Will not run on earlier processors that

do not support SSSE3

Best performance
on Intel Core 2
processor family and
Intel Xeon processor
3000 and 5100
series, utilizing
SSSE3; runs on non-
Intel processor
supporting SSE2

• /QaxT /QxW (-axT
-xW on Linux)

• Multiple code path are generated
• Be sure to validate your application on

all systems where it may be deployed.

Best performance
on IA-32 processors
with SSE3
instruction support

/QxP (-xP on Linux) • Single code path
• Will not run on earlier processors.that

do not support SSE3

Best performance
on IA-32 processors
with SSE2
instruction support

/QaxN (-axN on Linux)
Optimized for Pentium
4 and Pentium M
processors, and an
optimized, generic code-
path to run on other
processors

• Multiple code paths are generated.
• Use /QxN (-xN for Linux) if you know

your application will not be run on
processors older than the Pentium 4 or
Pentium M processors.

Table A-1. Recommended IA-32 Processor Optimization Options
Need Recommendation Comments
A-3

APPLICATION PERFORMANCE TOOLS

Best performance
on IA-32 processors
with SSE3
instruction support
for multiple code
paths

• /QaxP /QxW (-axP
-xW on Linux)

• Optimized for
Pentium 4
processor and
Pentium 4
processor with
SSE3 instruction
support

Generates two code paths:
• one for the Pentium 4 processor
• one for the Pentium 4 processor or

non-Intel processors with SSE3
instruction support.

Table A-2. Recommended Processor Optimization Options for 64-bit Code
Need Recommendation Comments

Best performance on Intel Core
2 processor family and Intel
Xeon processor 3000 and
5100 series, utilizing SSSE3
and other processor-specific
instructions

• /QxT (-xT on
Linux)

• Single code path
• Will not run on earlier

processors that do not
support SSSE3

Best performance on Intel Core
2 processor family and Intel
Xeon processor 3000 and
5100 series, utilizing SSSE3;
runs on non-Intel processor
supporting SSE2

• /QaxT /QxW (-axT
-xW on Linux)

• Multiple code path are
generated

• Be sure to validate your
application on all systems
where it may be deployed.

Best performance on other
processors supporting Intel 64
architecture, utilizing SSE3
where possible

• /QxP (-xP on
Linux)

• Single code path are
generated

• Will not run on processors
that do not support Intel 64
architecture and SSE3.

Best performance on other
processors supporting Intel 64
architecture, utilizing SSE3
where possible, while still
running on older Intel as well
as non-Intel x86-64 processors
supporting SSE2

• /QaxP /QxW (-axP
-xW on Linux)

• Multiple code path are
generated

• Be sure to validate your
application on all systems
where it may be deployed.

Table A-1. Recommended IA-32 Processor Optimization Options
Need Recommendation Comments
A-4

APPLICATION PERFORMANCE TOOLS
A.1.2 Vectorization and Loop Optimization
The Intel C++ and Fortran Compiler’s vectorization feature can detect sequential
data access by the same instruction and transforms the code to use SSE, SSE2,
SSE3, SSSE3 and SSE4, depending on the target processor platform. The vectorizer
supports the following features:

• Multiple data types: Float/double, char/short/int/long (both signed and
unsigned), _Complex float/double are supported.

• Step by step diagnostics: Through the /Qvec-report[n] (-vec-report[n] on Linux
and Mac OS) switch (see Table A-3), the vectorizer can identify, line-by-line and
variable-by-variable, what code was vectorized, what code was not vectorized,
and more importantly, why it was not vectorized. This feedback gives the
developer the information necessary to slightly adjust or restructure code, with
dependency directives and restrict keywords, to allow vectorization to occur.

• Advanced dynamic data-alignment strategies: Alignment strategies include loop
peeling and loop unrolling. Loop peeling can generate aligned loads, enabling
faster application performance. Loop unrolling matches the prefetch of a full
cache line and allows better scheduling.

• Portable code: By using appropriate Intel compiler switches to take advantage
new processor features, developers can avoid the need to rewrite source code.

The processor-specific vectorizer switch options are: -Qx[K,W, N, P, S, T] and
-Qax[K,W, N, P, S, T]. The compiler provides a number of other vectorizer switch
options that allow you to control vectorization. The latter switches require the -
Qx[,K,W,N,P,T] or -Qax[K,W,N,P,T] switch to be on. The default is off.

A.1.2.1 Multithreading with OpenMP*
Both the Intel C++ and Fortran Compilers support shared memory parallelism using
OpenMP compiler directives, library functions and environment variables. OpenMP
directives are activated by the compiler switch /Qopenmp (-openmp on Linux and
Mac OS). The available directives are described in the Compiler User's Guides avail-
able with the Intel C++ and Fortran Compilers. For information about the OpenMP
standard, see http://www.openmp.org.

A.1.2.2 Automatic Multithreading
Both the Intel C++ and Fortran Compilers can generate multithreaded code auto-
matically for simple loops with no dependencies. This is activated by the compiler
switch /Qparallel (-parallel in Linux and Mac OS).

Table A-3. Vectorization Control Switch Options

-Qvec_report[n] Controls the vectorizer’s diagnostic levels, where n is either 0, 1, 2, or 3.

-Qrestrict Enables pointer disambiguation with the restrict qualifier.
A-5

http://www.openmp.org
http://www.openmp.org

APPLICATION PERFORMANCE TOOLS
A.1.3 Inline Expansion of Library Functions (/Oi, /Oi-)
The compiler inlines a number of standard C, C++, and math library functions by
default. This usually results in faster execution. Sometimes, however, inline expan-
sion of library functions can cause unexpected results. For explanation, see the
Intel C++ Compiler documentation.

A.1.4 Floating-point Arithmetic Precision (/Op, /Op-, /Qprec,
/Qprec_div, /Qpc, /Qlong_double)

These options provide a means of controlling optimization that might result in a small
change in the precision of floating-point arithmetic.

A.1.5 Rounding Control Option (/Qrcr, /Qrcd)
The compiler uses the -Qrcd option to improve the performance of code that requires
floating-point calculations. The optimization is obtained by controlling the change of
the rounding mode.

The -Qrcd option disables the change to truncation of the rounding mode in floating-
point-to-integer conversions.

For more on code optimization options, see the Intel C++ Compiler documentation.

A.1.6 Interprocedural and Profile-Guided Optimizations
The following are two methods to improve the performance of your code based on its
unique profile and procedural dependencies.

A.1.6.1 Interprocedural Optimization (IPO)
You can use the /Qip (-ip in Linux and Mac OS) option to analyze your code and apply
optimizations between procedures within each source file. Use multifile IPO with
/Qipo (-ipo in Linux and Mac OS) to enable the optimizations between procedures in
separate source files.

A.1.6.2 Profile-Guided Optimization (PGO)
Creates an instrumented program from your source code and special code from the
compiler. Each time this instrumented code is executed, the compiler generates a
dynamic information file. When you compile a second time, the dynamic information
files are merged into a summary file. Using the profile information in this file, the
compiler attempts to optimize the execution of the most heavily travelled paths in
the program.
A-6

APPLICATION PERFORMANCE TOOLS
Profile-guided optimization is particularly beneficial for the Pentium 4 and Intel Xeon
processor family. It greatly enhances the optimization decisions the compiler makes
regarding instruction cache utilization and memory paging. Also, because PGO uses
execution-time information to guide the optimizations, branch-prediction can be
significantly enhanced by reordering branches and basic blocks to keep the most
commonly used paths in the microarchitecture pipeline, as well as generating the
appropriate branch-hints for the processor.

When you use PGO, consider the following guidelines:

• Minimize the changes to your program after instrumented execution and before
feedback compilation. During feedback compilation, the compiler ignores
dynamic information for functions modified after that information was generated.

NOTE
The compiler issues a warning that the dynamic information
corresponds to a modified function.

• Repeat the instrumentation compilation if you make many changes to your
source files after execution and before feedback compilation.

For more on code optimization options, see the Intel C++ Compiler documentation.

A.1.7 Auto-Generation of Vectorized Code
This section covers several high-level language examples that programmers can
use Intel Compiler to generate vectorized code automatically.

A-7

APPLICATION PERFORMANCE TOOLS
The following examples are illustrative of the likely differences of two compiler
switches.

Example 12-7. Storing Absolute Values

int dst[1024], src[1024]
for (i = 0; i < 1024; i++) {

dst[i] = (src[i] >=0) ? src[i] : -src[i];
}

Example 12-8. Auto-Generated Code of Storing Absolutes
Compiler Switch QxW Compiler Switch QxT

movdqa xmm1, _src[eax*4]
pxor xmm0, xmm0
pcmpgtd xmm0, xmm1
pxor xmm1, xmm0
psubd xmm1, xmm0
movdqa _dst[eax*4], xmm1
add eax, 4
cmp eax, 1024
 jb $B1$3

pabsd xmm0, _src[eax*4]
movdqa _dst[eax*4], xmm0
add eax, 4
cmp eax, 1024
jb $B1$3

Example 12-9. Changes Signs

int dst[NUM], src[1024];
for (i = 0; i < 1024; i++) {

if (src[i] == 0)
{ dst[i] = 0; }

else if (src[i] < 0)
{ dst[i] = -dst[i]; }

}

A-8

APPLICATION PERFORMANCE TOOLS

Example 12-10. Auto-Generated Code of Sign Conversion
Compiler Switch QxW Compiler Switch QxT

$B1$3:
mov edx, _src[eax*4]
add eax, 1
test edx, edx
jne $B1$5

$B1$4:
mov _dst[eax*4], 0
jmp $B1$7
ALIGN 4

$B1$3:
movdqa xmm0, _dst[eax*4]
psignd xmm0, _src[eax*4]
movdqa _dst[eax*4], xmm0
add eax, 4
cmp eax, 1024
jb $B1$3

$B1$5:
jge $B1$7

$B1$6:
mov edx, _dst[eax*4]
neg edx
mov _dst[eax*4], edx

$B1$7:
cmp eax, 1024
jl $B1$3

Example 12-11. Data Conversion

int dst[1024];
unsigned char src[1024];
for (i = 0; i < 1024; i++) {

dst[i] = src[i]
 }
A-9

APPLICATION PERFORMANCE TOOLS
Intel Compiler can use PALIGNR to generate code to avoid penalties associated with
unaligned loads.

Example 12-12. Auto-Generated Code of Data Conversion
Compiler Switch QxW Compiler Switch QxT

$B1$2:
xor eax, eax
pxor xmm0, xmm0

$B1$3:
movd xmm1, _src[eax]
punpcklbw xmm1, xmm0
punpcklwd xmm1, xmm0
movdqa _dst[eax*4], xmm1
add eax, 4
cmp eax, 1024
jb $B1$3

$B1$2:
movdqa xmm0, _2il0fl2t$1DD
xor eax, eax

$B1$3:
movd xmm1, _src[eax]
pshufb xmm1, xmm0
movdqa _dst[eax*4], xmm1
add eax, 4
cmp eax, 1024
jb $B1$3

…
_2il0fl2t$1DD
0ffffff00H,0ffffff01H,0ffffff02H,0ffffff03H

Example 12-13. Un-aligned Data Operation

__declspec(align(16)) float src[1024], dst[1024];
for(i = 2; i < 1024-2; i++)

dst[i] = src[i-2] - src[i-1] - src[i+2];
A-10

APPLICATION PERFORMANCE TOOLS
A.2 INTEL® VTUNE™ PERFORMANCE ANALYZER
The Intel VTune Performance Analyzer is a powerful software-profiling tool for
Microsoft Windows and Linux. The VTune analyzer helps you understand the perfor-
mance characteristics of your software at all levels: system, application, microarchi-
tecture.

The sections that follow describe the major features of the VTune analyzer and briefly
explain how to use them. For more details on these features, run the VTune analyzer
and see the online documentation.

All features are available for Microsoft Windows. On Linux, sampling and call graph
are available.

A.2.1 Sampling
Sampling allows you to profile all active software on your system, including operating
system, device driver, and application software. It works by occasionally interrupting
the processor and collecting the instruction address, process ID, and thread ID. After
the sampling activity completes, the VTune analyzer displays the data by process,
thread, software module, function, or line of source. There are two methods for
generating samples: Time-based sampling and Event-based sampling.

Example 12-14. Auto-Generated Code to Avoid Unaligned Loads
Compiler Switch QxW Compiler Switch QxT

$B2$2
movups xmm0, _src[eax+4]
movaps xmm1, _src[eax]
movaps xmm4, _src[eax+16]
movsd xmm3, _src[eax+20]
subps xmm1, xmm0
subps xmm1, _src[eax+16]
movss xmm2, _src[eax+28]
movhps xmm2, _src[eax+32]
movups _dst[eax+8], xmm1
shufps xmm3, xmm2, 132
subps xmm4, xmm3
subps xmm4, _src[eax+32]
movlps _dst[eax+24], xmm4
movhps _dst[eax+32], xmm4
add eax, 32
cmp eax, 4064
jb $B2$2

$B2$2:
movaps xmm2, _src[eax+16]
movaps xmm0, _src[eax]
movdqa xmm3, _src[eax+32]
movdqa xmm1, xmm2
palignr xmm3, xmm2, 4
palignr xmm1, xmm0, 4
subps xmm0, xmm1
subps xmm0, _src[eax+16]
movups _dst[eax+8], xmm0
subps xmm2, xmm3
subps xmm2, _src[eax+32]
movlps _dst[eax+24], xmm2
movhps _dst[eax+32], xmm2
add eax, 32
cmp eax, 4064
jb $B2$2
A-11

APPLICATION PERFORMANCE TOOLS
A.2.1.1 Time-based Sampling
Time-based sampling (TBS) uses an operating system’s (OS) timer to periodically
interrupt the processor to collect samples. The sampling interval is user definable.
TBS is useful for identifying the software on your computer that is taking the most
CPU time. This feature is only available in the Windows version of the VTune Analyzer

A.2.1.2 Event-based Sampling
Event-based sampling (EBS) can be used to provide detailed information on the
behavior of the microprocessor as it executes software. Some of the events that can
be used to trigger sampling include clockticks, cache misses, and branch mispredic-
tions. The VTune analyzer indicates where micro architectural events, specific to the
Intel Core microarchitecture, Pentium 4, Pentium M and Intel Xeon processors, occur
the most often. On processors based on Intel Core microarchitecture, it is possible to
collect up to 5 events (three events using fixed-function counters, two events using
general-purpose counters) at a time from a list of over 400 events (see Appendix A,
“Performance Monitoring Events” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B). On Pentium M processors, the VTune analyzer can
collect two different events at a time. The number of the events that the VTune
analyzer can collect at once on the Pentium 4 and Intel Xeon processor depends on
the events selected.

Event-based samples are collected periodically after a specific number of processor
events have occurred while the program is running. The program is interrupted,
allowing the interrupt handling driver to collect the Instruction Pointer (IP), load
module, thread and process ID's. The instruction pointer is then used to derive the
function and source line number from the debug information created at compile time.
The Data can be displayed as horizontal bar charts or in more detail as spread sheets
that can be exported for further manipulation and easy dissemination.

A.2.1.3 Workload Characterization
Using event-based sampling and processor-specific events can provide useful
insights into the nature of the interaction between a workload and the microarchitec-
ture. A few metrics useful for workload characterization are discussed in Appendix B.
The event lists available on various Intel processors can be found in Appendix A,
“Performance Monitoring Events” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B.

A.2.2 Call Graph
Call graph helps you understand the relationships between the functions in your
application by providing timing and caller/callee (functions called) information. Call
graph works by instrumenting the functions in your application. Instrumentation is
the process of modifying a function so that performance data can be captured when
the function is executed. Instrumentation does not change the functionality of the
A-12

APPLICATION PERFORMANCE TOOLS
program. However, it can reduce performance. The VTune analyzer can detect
modules as they are loaded by the operating system, and instrument them at run-
time. Call graph can be used to profile Win32*, Java*, and Microsoft.NET* applica-
tions. Call graph only works for application (ring 3) software.

Call graph profiling provides the following information on the functions called by your
application: total time, self-time, total wait time, wait time, callers, callees, and the
number of calls. This data is displayed using three different views: function
summary, call graph, and call list. These views are all synchronized.

The Function Summary View can be used to focus the data displayed in the call graph
and call list views. This view displays all the information about the functions called by
your application in a sortable table format. However, it does not provide callee and
caller information. It just provides timing information and number of times a function
is called.

The Call Graph View depicts the caller/callee relationships. Each thread in the appli-
cation is the root of a call tree. Each node (box) in the call tree represents a function.
Each edge (line with an arrow) connecting two nodes represents the call from the
parent to the child function. If the mouse pointer is hovered over a node, a tool tip
will pop up displaying the function's timing information.

The Call List View is useful for analyzing programs with large, complex call trees.
This view displays only the caller and callee information for the single function that
you select in the Function Summary View. The data is displayed in a table format.

A.2.3 Counter Monitor
Counter monitor helps you identify system level performance bottlenecks. It period-
ically polls software and hardware performance counters. The performance counter
data can help you understand how your application is impacting the performance of
the computer's various subsystems. Counter monitor data can be displayed in real-
time and logged to a file. The VTune analyzer can also correlate performance counter
data with sampling data. This feature is only available in the Windows version of the
VTune Analyzer

A.3 INTEL® PERFORMANCE LIBRARIES
The Intel Performance Library family contains a variety of specialized libraries which
has been optimized for performance on Intel processors. These optimizations take
advantage of appropriate architectural features, including MMX technology,
Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2 (SSE2) and
Streaming SIMD Extensions 3 (SSE3). The library set includes the Intel Math Kernel
Library (MKL) and the Intel Integrated Performance Primitives (IPP).

• The Intel Math Kernel Library for Linux and Windows: MKL is composed of highly
optimized mathematical functions for engineering, scientific and financial appli-
cations requiring high performance on Intel platforms. The functional areas of the
A-13

APPLICATION PERFORMANCE TOOLS
library include linear algebra consisting of LAPACK and BLAS, Discrete Fourier
Transforms (DFT), vector transcendental functions (vector math library/VML) and
vector statistical functions (VSL). Intel MKL is optimized for the latest features
and capabilities of the Intel® Itanium® , Intel® Xeon®, Intel® Pentium® 4, and
Intel® Core2 Duo processor-based systems. Special attention has been paid to
optimizing multi-threaded performance for the new Quad-Core Intel® Xeon®
processor 5300 series.

• Intel® Integrated Performance Primitives for Linux* and Windows*: IPP is a
cross-platform software library which provides a range of library functions for
video decode/encode, audio decode/encode, image color conversion, computer
vision, data compression, string processing, signal processing, image processing,
JPEG decode/encode, speech recognition, speech decode/encode, cryptography
plus math support routines for such processing capabilities.

Intel IPP is optimized for the broad range of Intel microprocessors: Intel Core 2
processor family, Dual-core Intel Xeon processors, Intel Pentium 4 processor,
Pentium M processor, Intel Xeon processors, the Intel Itanium architecture,
Intel® SA-1110 and Intel® PCA application processors based on the Intel
XScale® microarchitecture. With a single API across the range of platforms, the
users can have platform compatibility and reduced cost of development.

A.3.1 Benefits Summary
The overall benefits the libraries provide to the application developers are as follows:

• Time-to-Market — Low-level building block functions that support rapid
application development, improving time to market.

• Performance — Highly-optimized routines with a C interface that give
Assembly-level performance in a C/C++ development environment (MKL also
supports a Fortran interface).

• Platform tuned — Processor-specific optimizations that yield the best
performance for each Intel processor.

• Compatibility — Processor-specific optimizations with a single application
programming interface (API) to reduce development costs while providing
optimum performance.

• Threaded application support — Applications can be threaded with the
assurance that the MKL and IPP functions are safe for use in a threaded
environment.

A.3.2 Optimizations with the Intel® Performance Libraries
The Intel Performance Libraries implement a number of optimizations that are
discussed throughout this manual. Examples include architecture-specific tuning
such as loop unrolling, instruction pairing and scheduling; and memory management
with explicit and implicit data prefetching and cache tuning.
A-14

APPLICATION PERFORMANCE TOOLS
The Libraries take advantage of the parallelism in the SIMD instructions using MMX
technology, Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2
(SSE2), and Streaming SIMD Extensions 3 (SSE3). These techniques improve the
performance of computationally intensive algorithms and deliver hand coded perfor-
mance in a high level language development environment.

For performance sensitive applications, the Intel Performance Libraries free the
application developer from the time consuming task of assembly-level programming
for a multitude of frequently used functions. The time required for prototyping and
implementing new application features is substantially reduced and most important,
the time to market is substantially improved. Finally, applications developed with the
Intel Performance Libraries benefit from new architectural features of future genera-
tions of Intel processors simply by relinking the application with upgraded versions of
the libraries.

A.4 INTEL® THREADING ANALYSIS TOOLS
The Intel® Threading Analysis Tools consist of the Intel Thread Checker 3.0, the
Thread Profiler 3.0, and the Intel Threading Building Blocks 1.0 (1). The Intel Thread
Checker and Thread Profiler supports Windows and Linux. The Intel Threading
Building Blocks 1.0 supports Windows, Linux, and Mac OS.

A.4.1 Intel® Thread Checker 3.0
The Intel Thread Checker locates programming errors (for example: data races,
stalls and deadlocks) in threaded applications. Use the Intel Thread Checker to find
threading errors and reduce the amount of time you spend debugging your threaded
application.

The Intel Thread Checker product is an Intel VTune Performance Analyzer plug-in
data collector that executes your program and automatically locates threading
errors. As your program runs, the Intel Thread Checker monitors memory accesses
and other events and automatically detects situations which could cause unpredict-
able threading-related results. The Intel Thread Checker detects thread deadlocks,
stalls, data race conditions and more.

A.4.2 Intel® Thread Profiler 3.0
The thread profiler is a plug-in data collector for the Intel VTune Performance
Analyzer. Use it to analyze threading performance and identify parallel performance
problems. The thread profiler graphically illustrates what each thread is doing at
various levels of detail using a hierarchical summary. It can identify inactive threads,

1 For additional threading resources, visit http://www3.intel.com/cd/software/products/asmo-
na/eng/index.htm
A-15

http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm

APPLICATION PERFORMANCE TOOLS
critical paths and imbalances in thread execution, etc. Mountains of data are
collapsed into relevant summaries, sorted to identify parallel regions or loops that
require attention. Its intuitive, color-coded displays make it easy to assess your
application's performance.

Figure A-1 shows the execution timeline of a multi-threaded application when run in
(a) a single-threaded environment, (b) a multi-threaded environment capable of
executing two threads simultaneously, (c) a multi-threaded environment capable of
executing four threads simultaneously. In Figure A-1, the color-coded timeline of
three hardware configurations are super-imposed together to compare processor
scaling performance and illustrate the imbalance of thread execution.

Load imbalance problem is visually identified in the two-way platform by noting that
there is a significant portion of the timeline, during which one logical processor had
no task to execute. In the four-way platform, one can easily identify those portions of
the timeline of three logical processors, each having no task to execute.

A.4.3 Intel® Threading Building Blocks 1.0
The Intel Threading Building Blocks is a C++ template-based runtime library that
simplifies threading for scalable, multi-core performance. It can help avoid re-
writing, re-testing, re-tuning common parallel data structures and algorithms.

Figure A-1. Intel Thread Profiler Showing Critical Paths
 of Threaded Execution Timelines
A-16

APPLICATION PERFORMANCE TOOLS
A.5 INTEL® CLUSTER TOOLS
The Intel® Cluster Toolkit 3.1 consists of the Intel® Trace Analyzer and Collector,
Intel® Math Kernel Library (Intel® MKL), Intel® MPI Library, and Intel® MPI
Benchmarks in a single package. The Intel® Cluster Toolkit 3.1 helps you develop,
analyze and optimize performance of parallel applications for clusters using IA-32,
IA-64, and Intel® 64 architectures. The Intel® Cluster Toolkit 3.1supports Windows,
Linux and SGI ProPack.

A.5.1 Intel® MPI Library 3.1
The Intel® MPI Library 3.1 is a multi-fabric message passing library that implements
the Message Passing Interface, v2 (MPI-2) specification. It provides a standard
library across Intel® platforms. The Intel® MPI Library supports multiple hardware
fabrics including InfiniBand, Myrinet*, and Quadrics. Intel® MPI Library covers all
your configurations by providing an accelerated universal, multi-fabric layer for fast
interconnects via the Direct Access Programming Library (DAPL) methodology.
Develop MPI code independent of the fabric, knowing it will run efficiently on what-
ever fabric is chosen by the user at runtime.

Intel MPI Library dynamically establishes the connection, but only when needed,
which reduces the memory footprint. It also automatically chooses the fastest trans-
port available. The fallback to sockets at job startup avoids the chance of execution
failure even if the interconnect selection fails. This is especially helpful for batch
computing. Any products developed with Intel MPI Library are assured run time
compatibility since your users can download Intel’s free runtime environment kit.
Application performance can also be increased via the large message bandwidth
advantage from the optional use of DAPL inside a multi-core or SMP node.

A.5.2 Intel® Trace Analyzer and Collector 7.1
The Intel® Trace Analyzer and Collector 7.1 helps to provide information critical to
understanding and optimizing application performance on clusters by quickly finding
performance bottlenecks in MPI communication. Version 7.1 includes trace file
comparison, counter data displays, and an MPI correctness checking library which
can detect deadlocks, data corruption, or errors with MPI parameters, data types,
buffers, communicators, point-to-point messages and collective operations.

A.5.3 Intel® MPI Benchmarks 3.1
The Intel MPI Benchmarks will help enable an easy performance comparison of MPI
functions and patterns, the benchmark features improvements in usability, applica-
tion performance, and interoperability.
A-17

APPLICATION PERFORMANCE TOOLS
A.5.4 Benefits Summary
The overall benefits the improved MPI Benchmarks provide are as follows:

A.5.4.1 Multiple usability improvements
• New benchmarks (Gather(v), Scatter(v))

A.5.4.2 Improved application performance
• New Command line flags to control cache reuse and to limit memory usage

• Options for cold cache operation mode, maximum buffer size setting and
dynamic iteration count determination

• Run time improvements for collectives like Alltoall(v) on large clusters

A.5.4.3 Extended interoperability
• Support for Windows Compute Cluster Server

A.6 INTEL® XML PRODUCTS

Intel® XML Software products deliver outstanding performance for XML processing
including: XSLT, Parsing, XPath and Schema Validation. The XML Software suites
offer an enterprise solution for both C/C++ and Java environments running in Linux
and Windows operating systems.

A.6.1 Intel® XML Software Suite 1.0
The Intel® XML Software Suite is a comprehensive suite of high-performance C++
and Java* software-based runtime libraries for Linux* and Windows* operating
systems. Intel® XML Software Suite is standards compliant, to allow for easy
integration into existing XML environments and is optimized to support complex and
large-size XML document processing. The key functional components of the software
suite are: XML parsing, XML schema validation, XML transformation, and XML XPath
navigation.

A.6.1.1 Intel® XSLT Accelerator
XSLT (eXtensible Stylesheet Language Transformation) is an XML-based language
used to transform XML documents into other XML or human readable documents.
Intel® XSLT Accelerator facilitates efficient XML transformations in a variety of
formats and can be applied to a full range of XML documents such as a tree (the DOM
tree model) or a series of events (the SAX model). Intel® XSLT Accelerator supports
A-18

APPLICATION PERFORMANCE TOOLS
the following groups of XSLT extension functions: Common operations, Math
computations, String manipulations, Sets handling, and Date-and-Time functions.
User Defined Java extension functions are supported allowing developers to access
Java class functions (static or non-static methods) from an XSLT stylesheet to
augment native XSLT transformations.

A.6.1.2 Intel® XPath Accelerator
XPath is a language that enables the navigation and data manipulation of XML
documents. Intel® XPath Accelerator evaluates an XML Path (XPath) expression over
an XML document DOM tree or a derived instance of Source (StreamSource,
DOMSource, SAXSource or XMLDocSource) and returns a node, node set, string,
number or Boolean value. Intel® XPath Accelerator supports and resolves user-
defined namespace context, variables and functions. Optionally, XPath expressions
can be compiled to further enhance XML processing performance.

A.6.1.3 Intel® XML Schema Accelerator
XML schema validation compares an XML document against a document that
contains a set of rules and constraints specific to the XML application environment
adherent to W3C specifications. Validation ensures that an XML document meets
application and environment requirements for processing as described by the
schema document. Intel® XML Schema Accelerator quickly and efficiently validates
XML documents in Stream, SAX, or DOM mode against an XML Schema document.

A.6.1.4 Intel® XML Parsing Accelerator
The XML parser reads an XML file and makes the data in the file available for
manipulation and processing to applications and programming languages. The parser
is also responsible for testing if a document is well-formed. Intel® XML Parsing
Accelerator parses data by following specific models: Simple API for XML (SAX)
model as a sequence of events; Document Object Model (DOM) as a tree node
structure; and an internal storage data-stream model for effective XML processing
between Intel XML Software Suite components. Intel® XML Parsing Accelerator can
enable document validation Intel® XML Schema Accelerator before passing data to
the application.

A.6.2 Intel® SOA Security Toolkit 1.0 Beta for Axis2

This toolkit provides XML Digital Signature and XML Encryption following the WS-
Security standard. Low cost of ownership and easy integration with consistent
behavior are facilitated via a simple integrated Axis2* interface and Apache
Rampart* configuration files. Key Features include the following:
A-19

APPLICATION PERFORMANCE TOOLS
A.6.2.1 High Performance

The Intel® SOA Security Toolkit achieves high performance for XML security
processing. The toolkitís efficient design provides more than three times the
performance compared to competitive Open Source solutions, enabling fast
throughput for business processes.

A.6.2.2 Standards Compliant
A standards compliance design allows for functional interoperability with existing
code and XML based applications. IntelÆ SOA Security Toolkit implements the
following standards:

• WS-Security 1.1
• SOAP v1.1, v1.2

A.6.2.3 Easy Integration
A simple interface allows drop-in compatibility and functional interoperability for the
following environments:

• Apache Rampart*
• Axis2*

A.6.3 Intel® XSLT Accelerator 1.1 for Java* Environments on Linux*
and Windows* Operating Systems

Intel® XSLT Accelerator is a standards compliant software-based runtime library
delivering high performance eXtensible Stylesheet Language Transformations (XSLT)
processing. Intel® XSLT Accelerator is optimized to support complex and large-size
XML document transformations. Main features include:

A.6.3.1 High Performance Transformations
Fast transformations enable fast throughput for business processes.

• 2X over Apache* Xalan* XSLTC* processor
• 4X over Apache Xalan-J* processor

A.6.3.2 Large XML File Transformations
Large file support facilitates application scalability, data growth, and application
reliability.
• Process large XML documents
• Sustained workload support
A-20

APPLICATION PERFORMANCE TOOLS
A.6.3.3 Standards Compliant
The standards compliance design allows for functional interoperability with existing
code and applications. Intel® XSLT Accelerator complies with the following
standards:
• W3C XML 1.0
• W3C XSLT 1.0
• JAXP 1.3 (TrAX API)
• SAX
• DOM

A.6.3.4 Thread-Safe

IIntel® XSLT Accelerator is thread-safe supporting multi-threaded applications and
designed for optimal performance on Intel® Core microarchitecture.

A.7 INTEL® SOFTWARE COLLEGE
You can find information on classroom training offered by the Intel Software College
at http://developer.intel.com/software/college. Find general information for devel-
opers at http://softwarecommunity.intel.com/isn/home/.
A-21

http://softwarecommunity.intel.com/isn/home/
http://developer.intel.com/software/college

APPLICATION PERFORMANCE TOOLS
A-22

APPENDIX B
USING PERFORMANCE MONITORING EVENTS

Performance monitoring events provide facilities to characterize the interaction
between programmed sequences of instructions and microarchitectural sub-
systems. Performance monitoring events are described in Chapter 18 and Appendix
A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

The first part of this chapter provides information on how to use performance events
specific to Intel Xeon processor 5500 series. Section B.5 discusses similar topics for
performance events available on Intel Core Solo and Intel Core Duo processors.

B.1 INTEL® XEON® PROCESSOR 5500 SERIES
Intel Xeon processor 5500 series are based on the same microarchitecture as Intel
Core i7 processors, see Section 2.2, “Intel® Microarchitecture (Nehalem)”. In addi-
tion, Intel Xeon processor 5500 series support non-uniform memory access (NUMA)
in platforms that have two physical processors, see Figure B-1. Figure B-1 illustrates
4 processor cores and an uncore sub-system in each physical processor. The uncore
sub-system consists of L3, an integrated memory controller (IMC), and Intel Quick-
Path Interconnect (QPI) interfaces. The memory sub-system consists of three chan-
nels of DDR3 memory locally connected to each IMC. Access to physical memory
connected to a non-local IMC is often described as a remote memory access.

Figure B-1. System Topology Supported by Intel® Xeon® Processor 5500 Series

DDR3

IOH/PCH

QPI Link

Two-way

Core0 Core1

Core2 Core3

8MB L3
IMC QPI QPI

Core0 Core1

Core2 Core3

8MB L3
IMCQPI QPI

DDR3
Vol. 1 B-1

USING PERFORMANCE MONITORING EVENTS
The performance monitoring events on Intel Xeon processor 5500 series can be used
to analyze the interaction between software (code and data) and microarchitectural
units hierarchically:

• Per-core PMU: Each processor core provides 4 programmable counters and 3
fixed counters. The programmable per-core counters can be configured to
investigate front-end/micro-op flow issues, stalls inside a processor core.
Additionally, a subset of per-core PMU events support precise event-based
sampling (PEBS). Load latency measurement facility is new in Intel Core i7
processor and Intel Xeon processor 5500.

• Uncore PMU: The uncore PMU provides 8 programmable counters and 1 fixed
counter. The programmable per-core counters can be configured to characterize
L3 and Intel QPI operations, local and remote data memory accesses.

The number and variety of performance counters and the breadth of programmable
performance events available in Intel Xeon processor 5500 offer software tuning
engineers the ability to analyze performance issues and achieve higher performance.
Using performance events to analyze performance issues can be grouped into the
following subjects:

• Cycle Accounting and Uop Flow

• Stall Decomposition and Core Memory Access Events (non-PEBS)

• Precise Memory Access Events (PEBS)

• Precise Branch Events (PEBS, LBR)

• Core Memory Access Events (non-PEBS)

• Other Core Events (non-PEBS)

• Front End Issues

• Uncore Events

B.2 PERFORMANCE ANALYSIS TECHNIQUES FOR INTEL®
XEON® PROCESSOR 5500 SERIES

The techniques covered in this chapter focuses on identifying opportunity to
remove/reduce performance bottlenecks that are measurable at runtime. Compile-
time and source-code level techniques are covered in other chapters in this docu-
ment. Individual sub-sections describe specific techniques to identify tuning opportu-
nity by examining various metrics that can be measured or derived directly from
performance monitoring events.
B-2

USING PERFORMANCE MONITORING EVENTS
B.2.1 Cycle Accounting and Uop Flow Analysis
The objectives, performance metrics and component events of the basic cycle
accounting technique is summarized in Table B-1.

Cycle accounting of executed micro-ops is an effective technique to identify stalled
cycles for performance tuning. Within the microarchitecture pipeline, the meaning of
micro-ops being “issued“, “dispatched“, “executed”, “retired“ has precise meaning.
This is illustrated in Figure B-2.

Cycles are divided into those where micro-ops are dispatched to the execution units
and those where no micro-ops are dispatched, which are thought of as execution
stalls.

“Total cycles” of execution for the code under test can be directly measured with
CPU_CLK_UNHALTED.THREAD (event code 3CH, Umask= 1) and setting CMask = 2
and INV=1 in IA32_PERFEVTSELCn.

The signals used to count the memory access uops executed (ports 2, 3 and 4) are
the only core events which cannot be counted per-logical processor. Thus, Event code
B1H with Umask=3FH only counts on a per-core basis, and the total execution stall

Table B-1. Cycle Accounting and Micro-ops Flow Recipe

Summary

Objective Identify code/basic block that had significant stalls

Method Binary decomposition of cycles into “productive“ and “unproductive“ parts

PMU-Pipeline
Focus

Micro-ops issued to execute

Event
code/Umask

Event code B1H, Umask= 3FH for micro-op execution;
Event code 3CH, Umak= 1, CMask=2 for counting total cycles

EvtSelc Use CMask, Invert, Edge fields to count cycles and separate stalled vs.
active cycles

Basic
Equation

“Total Cycles“ = UOPS_EXECUTED.CORE_STALLS_CYCLES +
UOPS_EXECUTED.CORE_ACTIVE_CYCLES

Metric UOPS_EXECUTED.CORE_STALLS_CYCLES /
UOPS_EXECUTED.CORE_STALLS_COUNT

Drill-down
scope

Counting: Workload; Sampling: basic block

Variations Port 0,1, 5 cycle counting for computational micro-ops execution.
B-3

USING PERFORMANCE MONITORING EVENTS
cycles can only be evaluated on a per core basis. If HT is disabled, this presents no
difficulty to conduct per-thread analysis of micro-op flow cycle accounting.

The PMU signals to count uops_executed in port 0, 1, 5 can count on a per-thread
basis even when HT is active. This provides an alternate cycle accounting technique
when the workload under test interacts with HT.

The alternate metric is built from UOPS_EXECUTED.PORT015_STALL_CYCLES, using
appropriate CMask, Inv, and Edge settings. Details of performance events are shown
in Table B-2.

Figure B-2. PMU Specific Event Logic Within the Pipeline

Table B-2. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow

Event Name Umask Event
Code Cmask Inv Edge All

Thread

CPU_CLK_UNHALTED.TOTAL_
CYCLES

0H 3CH 2 1 0 0

UOPS_EXECUTED.CORE_STAL
LS_CYCLES

3FH B1H 1 1 0 1

UOPS_EXECUTED.CORE_STAL
LS_COUNT

3FH B1H 1 1 ! 1

UOPS_EXECUTED.CORE_ACTI
VE_CYCLES

3FH B1H 1 0 0 1

Resource

“UOPS_ISSUED”

“UOPS_RETIRED”

IFetch/

Decoder

Dispatch
Execution

“UOPS_EXECUTED“

Retirement/

RS

ROB

“RESOURCE_STALLS”

BPU

Allocator

Writeback

Units
B-4

USING PERFORMANCE MONITORING EVENTS
B.2.1.1 Cycle Drill Down and Branch Mispredictions
While executed micro-ops are considered productive from the perspective of execu-
tion units being subscribed, not all such micro-ops contribute to forward progress of
the program. Branch mispredictions can introduce execution inefficiencies in OOO
processor that are typically decomposed into three components.

• Wasted work associated with executing the uops of the incorrectly predicted path

• Cycles lost when the pipeline is flushed of the incorrect uops

• Cycles lost while waiting for the correct uops to arrive at the execution units

In processors based on Intel microarchitecture (Nehalem), there are no execution
stalls associated with clearing the pipeline of mispredicted uops (component 2).
These uops are simply removed from the pipeline without stalling executions or
dispatch. This typically lowers the penalty for mispredicted branches. Further, the
penalty associated with instruction starvation (component 3) can be measured.

The wasted work within executed uops are those uops that will never be retired. This
is part of the cost associated with mispredicted branches. It can be found through
monitoring the flow of uops through the pipeline. The uop flow can be measured at 3
points in Figure B-2, going into the RS with the event UOPS_ISSUED, going into the
execution units with UOPS_EXECUTED and at retirement with UOPS_RETIRED. The
differences of between the upstream measurements and at retirement measure the
wasted work associated with these mispredicted uops.

As UOPS_EXECUTED must be measured per core, rather than per thread, the wasted
work per core is evaluated as

Wasted Work = UOPS_EXECUTED.PORT234_CORE +
UOPS_EXECUTED.PORT015_All_Thread - UOPS_RETIRED.ANY_ALL_THREAD

The ratio above can be converted to cycles by dividing the average issue rate of uops.
The events above were designed to be used in this manner without corrections for
micro fusion or macro fusion.

UOPS_EXECUTED.PORT015_S
TALLS_CYCLES

40H B1H 1 1 0 0

UOPS_RETIRED.STALL_CYCLE
S

1H C2H 1 1 0 0

UOPS_RETIRED.ACTIVE_CYCL
ES

1H C2H 1 0 0 0

Table B-2. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow

Event Name Umask Event
Code Cmask Inv Edge All

Thread
B-5

USING PERFORMANCE MONITORING EVENTS
A "per thread" measurement can be made from the difference between the uops
issued and uops retired as the latter two of the above events can be counted per
thread. It over counts slightly, by the mispredicted uops that are eliminated in the RS
before they can waste cycles being executed, but this is usually a small correction.

Wasted Work/thread = (UOPS_ISSUED.ANY + UOPS_ISSUED.FUSED) -
UOPS_RETIRED.ANY

The third component of the misprediction penalty, instruction starvation, occurs
when the instructions associated with the correct path are far away from the core and
execution is stalled due to lack of uops in the RAT. Because the two primary cause of
uops not being issued are either front-end starvation or resource not available in the
back end. So we can explicitly measured at the output of the resource allocation as
follows:

• Count the total number of cycles where no uops were issued to the OOO engine.

• Count the cycles where resources (RS, ROB entries, load buffer, store buffer, etc.)
are not available for allocation.

If HT is not active, instruction starvation is simply the difference:

Instruction Starvation = UOPS_ISSUED.STALL_CYCLES - RESOURCE_STALLS.ANY

Table B-3. Cycle Accounting of Wasted Work Due to Misprediction

Summary

Objective Evaluate uops that executed but not retired due to misprediction

Method Examine uop flow differences between execution and retirement

PMU-Pipeline
Focus

Micro-ops execute and retirement

Event
code/Umask

Event code B1H, Umask= 3FH for micro-op execution;
Event code C2H, Umask= 1, AllThread=1 for per-core counting

EvtSelc Zero CMask, Invert, Edge fields to count uops

Basic
Equation

“Wasted work“ = UOPS_EXECUTED.PORT234_CORE +
UOPS_EXECUTED.PORT015_ALL_THREAD -
UOPS_RETIRED.ANY_ALL_THREAD

Drill-down
scope

Counting: Branch misprediction cost

Variations Divide by average uop issue rate for cycle accounting.
Set AllThread=0 to estimate per-thread cost.
B-6

USING PERFORMANCE MONITORING EVENTS
When HT is enabled, the uop delivery to the RS alternates between the two threads.
In an ideal case the above condition would then over count, as 50% of the issuing
stall cycles may be delivering uops for the other thread. We can modify the expres-
sion by subtracting the cycles that the other thread is having uops issued.

Instruction Starvation (per thread) = UOPS_ISSUED.STALL_CYCLES -
RESOURCE_STALLS.ANY - UOPS_ISSUED.ACTIVE_CYCLES_OTHER_THREAD.

The per-thread expression above will over count somewhat because the
resource_stall condition could exist on "this" thread while the other thread in the
same core was issuing uops. An alternative might be

CPU_CLK_UNHALTED.THREAD - UOPS_ISSUED.CORE_CYCLES_ACTIVE-
RESOURCE_STALLS.ANY

The above technique is summarized in Table B-4.

Table B-4. Cycle Accounting of Instruction Starvation

Summary

Objective Evaluate cycles that uops issuing is starved after misprediction

Method Examine cycle differences between uops issuing and resource allocation

PMU-Pipeline
Focus

Micro-ops issue and resource allocation

Event
code/Umask

Event code 0EH, Umak= 1, for uops issued.
Event code A2H, Umask=1, for Resource allocation stall cycles

EvtSelc Set CMask=1, Inv=1, fields to count uops issue stall cycles.
Set CMask=1, Inv=0, fields to count uops issue active cycles.
Use AllThread = 0 and AllThread=1 on two counter to evaluate
contribution from the other thread for
UOPS_ISSUED.ACTIVE_CYCLES_OTHER_THREAD

Basic
Equation

“Instruction Starvation“ (HT off) = UOPS_ISSUED.STALL_CYCLES -
RESOURCE_STALLS.ANY;

Drill-down
scope

Counting: Branch misprediction cost

Variations Evaluate per-thread contribution with
Instruction Starvation = UOPS_ISSUED.STALL_CYCLES -
RESOURCE_STALLS.ANY -
UOPS_ISSUED.ACTIVE_CYCLES_OTHER_THREAD
B-7

USING PERFORMANCE MONITORING EVENTS
Details of performance events are shown in Table B-5.

B.2.1.2 Basic Block Drill Down
The event INST_RETIRED.ANY (instructions retired) is commonly used to evaluate a
cycles/instruction ratio (CPI). Another important usage is to determine the perfor-
mance-critical basic blocks by evaluating basic block execution counts.

In a sampling tool (such as VTune Analyzer), the samples tend to cluster around
certain IP values. This is true when using INST_RETIRED.ANY or cycle counting
events. Disassembly listing based on the hot samples may associate some instruc-
tions with high sample counts and adjacent instructions with no samples.

Because all instructions within a basic block are retired exactly the same number of
times by the very definition of a basic block. Drilling down the hot basic blocks will be
more accurate by averaging the sample counts over the instructions of the basic
block.

Basic Block Execution Count = Sum (Sample counts of instructions within basic
block) * Sample_after_value / (number of instructions in basic block)

Inspection of disassembly listing to identify basic blocks associated with loop struc-
ture being a hot loop or not can be done systematically by adapting the technique

Table B-5. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow

Event Name Umask Event
Code Cmask Inv Edge All

Thread

UOPS_EXECUTED.PORT234_C
ORE

80H B1H 0 0 0 1

UOPS_EXECUTED.PORT015_A
LL_THREAD

40H B1H 0 0 0 1

UOPS_RETIRED.ANY_ALL_TH
READ

1H C2H 0 0 0 1

RESOURCE_STALLS.ANY 1H A2H 0 0 0 0

UOPS_ISSUED.ANY 1H 0EH 0 0 0 0

UOPS_ISSUED.STALL_CYCLES 1H 0EH 1 1 0 0

UOPS_ISSUED.ACTIVE_CYCLE
S

1H 0EH 1 0 0 0

UOPS_ISSUED.CORE_CYCLES
_ACTIVE

1H 0EH 1 0 0 1
B-8

USING PERFORMANCE MONITORING EVENTS
above to evaluate the trip count of each loop construct. For a simple loop with no
conditional branches, the trip count ends up being the ratio of the basic block execu-
tion count of the loop block to the basic block execution count of the block immedi-
ately before and/or after the loop block. Judicious use of averaging over multiple
blocks can be used to improve the accuracy.

This will allow the user to identify loops with high trip counts to focus on tuning
efforts. This technique can be implemented using fixed counters.

Chains of dependent long-latency instructions (fmul, fadd, imul, etc) can result in the
dispatch being stalled while the outputs of the long latency instructions become
available. In general there are no events that assist in counting such stalls with the
exception of instructions using the divide/sqrt execution unit. In such cases, the
event ARITH can be used to count both the occurrences of these instructions and the
duration in cycles that they kept their execution units occupied. The event
ARITH.CYCLES_DIV_BUSY counts the cycles that either the divide/sqrt execution
unit was occupied.

B.2.2 Stall Cycle Decomposition and Core Memory Accesses
The decomposition of the stall cycles is accomplished through a standard approxima-
tion. It is assumed that the penalties occur sequentially for each performance
impacting event. Consequently, the total loss of cycles available for useful work is
then the number of events, Ni, times the average penalty for each type of event, Pi

Counted_Stall_Cycles = Sum (Ni* Pi)

This only accounts for the performance impacting events that are or can be counted
with a PMU event. Ultimately there will be several sources of stalls that cannot be
counted, however their total contribution can be estimated:

Unaccounted stall cycles = Stall_Cycles - Counted_Stall_Cycles =
UOPS_EXECUTED.CORE_STALLS_CYCLES - Sum (Ni* Pi)_both_threads

The unaccounted component can become negative as the sequential penalty model
is overly simple and usually over counts the contributions of the individual microar-
chitectural issues.

As noted in Section B.2.1.1, UOPS_EXECUTED.CORE_STALL_CYCLES counts on a per
core basis rather than on a per thread basis, the over counting can become severe.
In such cases it may be preferable to use the port 0,1,5 uop stalls, as that can be
done on a per thread basis:

Unaccounted stall cycles (per thread) =
UOPS_EXECUTED.PORT015_THREADED_STALLS_CYCLES - Sum (Ni* Pi)

This unaccounted component is meant to represent the components that were either
not counted due to lack of performance events or simply neglected during the data
collection.

One can also choose to use the “retirement” point as the basis for stalls. The PEBS
event, UOPS_RETIRED.STALL_CYCLES, has the advantage of being evaluated on a
B-9

USING PERFORMANCE MONITORING EVENTS
per thread basis and being having the HW capture the IP associated with the retiring
uop. This means that the IP distribution will not be effected by STI/CLI deferral of
interrupts in critical sections of OS kernels, thus producing a more accurate profile of
OS activity.

B.2.2.1 Measuring Costs of Microarchitectural Conditions
Decomposition of stalled cycles in this manner should start by first focusing on condi-
tions that carry large performance penalty, for example, events with penalties of
greater than 10 cycles. Short penalty events (P < 5 cycles) can frequently be hidden
by the combined actions of the OOO execution and the compiler. The OOO engine
manages both types of situations in the instruction stream and strive to keep the
execution units busy during stalls of either type due to instruction dependencies.
Usually, the large penalty operations are dominated by memory access and the very
long latency instructions for divide and sqrt.

The largest penalty events are associated with load operations that require a cache-
line which is not in L1 or L2 of the cache hierarchy. Not only must we count how
many occur, but we need to know what penalty to assign.

The standard approach to measuring latency is to measure the average number of
cycles a request is in a queue:

Latency = Sum (CYCLES_Queue_entries_outstanding) /Queue_inserts

where “queue_inserts“ refers to the total number of entries that caused the
outstanding cycles in that queue. However, the penalty associated with each queue
insert (i.e. cachemiss), is the latency divided by the average queue occupancy. This
correction is needed to avoid over counting associated with overlapping penalties.

Avg_Queue_Depth= Sum (CYCLES_Queue_entries_outstanding) /
Cycles_Queue_not_empty

The the penalty (cost) of each occurrence is

Penalty = Latency / Avg_Queue_Depth = Cycles_Queue_not_empty /
Queue_inserts

An alternative way of thinking about this is to realize that the sum of all the penalties,
for an event that occupies a queue for its duration, cannot exceed the time that the
queue is not empty

Cycles_Queue_not_empty = Events * <Penalty>

The standard techniques described above are simple conceptually. In practice, the
large amount of memory references in the workload and wide range of varying
state/location-specific latencies made standard sampling techniques less practical.
Using precise-event-based sampling (PEBS) is the preferred technique on processors
based on Intel microarchitecture (Nehalem).

The profiling the penalty by sampling (to localize the measurement in IP) is likely to
have accuracy difficulties. Since the latencies for L2 misses can vary from 40 to 400
cycles, collecting the number of required samples will tend to be invasive.
B-10

USING PERFORMANCE MONITORING EVENTS
The use of the precise latency event, that will be discussed later, provides a more
accurate and flexible measurement technique when sampling is used. As each
sample records both a load to use latency and a data source, the average latency per
data source can be evaluated. Further as the PEBS hardware supports buffering the
events without generating a PMI until the buffer is full, it is possible to make such an
evaluation efficient without perturbing the workload intrusively.

A number of performance events in core PMU can be used to measure the costs of
memory accesses that originated in the core and experienced delays due to various
conditions, locality, or traffic due to cache coherence requirements. The latency of
memory accesses vary, depending on locality of L3, DRAM attached to the local
memory controller or remote controller, and cache coherency factors. Some exam-
ples of the approximate latency values are shown in Table B-6.

B.2.3 Core PMU Precise Events
The Precise Event Based Sampling (PEBS) mechanism enables the PMU to capture
the architectural state and IP at the completion of the instruction that caused the
event. This provides two significant benefit for profiling and tuning:

• The location of the eventing condition in the instruction space can be accurate
profiled,

• Instruction arguments can be reconstructed in a post processing phase, using
captured PEBS records of the register states.

The PEBS capability has been greatly expanded in processors based on Intel microar-
chitecture (Nehalem), covering a large number of and more types of precise events.

The mechanism works by using the counter overflow to arm the PEBS data acquisi-
tion. Then on the next event, the data is captured and the interrupt is raised.

Table B-6. Approximate Latency of L2 Misses of Intel Xeon Processor 5500

Data Source Latency

L3 hit, Line exclusive ~ 42 cycles

L3 Hit, Line shared ~ 63 cycles

L3 Hit, modified in another core ~ 73 cycles

Remote L3 100 - 150 cycles

Local DRAM ~ 50 ns

Remote DRAM ~ 90 ns
B-11

USING PERFORMANCE MONITORING EVENTS
The captured IP value is sometimes referred to as IP +1, because at the completion
of the instruction, the IP value is that of the next instruction.

By their very nature precise events must be “at-retirement” events. For the purposes
of this discussion the precise events are divided into Memory Access events, associ-
ated with the retirement of loads and stores, and Execution Events, associated with
the retirement of all instructions or specific non memory instructions (branches, FP
assists, SSE uops).

B.2.3.1 Precise Memory Access Events
There are two important common properties to all precise memory access events:

• The exact instruction can be identified because the hardware captures the IP of
the offending instruction. Of course the captured IP is that of the following
instruction but one simply moves the samples up one instruction. This works
even when the recorded IP points to the first instruction of a basic block because
n such a case the offending instruction has to be the last instruction of the
previous basic block, as branch instructions never load or store data, instruction
arguments can be reconstructed in a post processing phase, using captured PEBS
records of the register states.

• The PEBS buffer contains the values of all 16 general registers, R1-R16, where R1
is also called RAX. When coupled with the disassembly the address of the load or
store can be reconstructed and used for data access profiling. The Intel®
Performance Tuning Utility does exactly this, providing a wide variety of powerful
analysis techniques

Precise memory access events mainly focus on loads as those are the events typically
responsible for the very long duration execution stalls. They are broken down by the
data source, thereby indicating the typical latency and the data locality in the intrin-
sically NUMA configurations. These precise load events are the only L2, L3 and DRAM
access events that only count loads. All others will also include the L1D and/or L2
hardware prefetch requests. Many will also include RFO requests, both due to stores
and to the hardware prefetchers.

All four general counters can be programmed to collect data for precise events. The
ability to reconstruct the virtual addresses of the load and store instructions allows
an analysis of the cacheline and page usage efficiency. Even though cachelines and
pages are defined by physical address the lower order bits are identical, so the virtual
address can be used.

As the PEBS mechanism captures the values of the register at completion of the
instruction, one should be aware that pointer-chasing type of load operation will not
be captured because it is not possible to infer the load instruction from the derefer-
enced address.

The basic PEBS memory access events falls into the following categories:

• MEM_INST_RETIRED: This category counts instruction retired which contain a
load operation, it is selected by event code 0BH.
B-12

USING PERFORMANCE MONITORING EVENTS
• MEM_LOAD_RETIRED: This category counts retired load instructions that
experienced specific condition selected by the Umask value, the event code is
0CBH.

• MEM_UNCORE_RETIRED: This category counts memory instructions retired and
received data from the uncore sub-system, it is selected by event code 0FH.

• MEM_STORE_RETIRED: This category counts instruction retired which contain a
store operation, it is selected by event code 0CH.

• ITLE_MISS_RETIRED: This counts instruction retired which missed the ITLB, it is
selected by event code 0C8H

Umask values and associated name suffixes for the above PEBS memory events are
listed under the in Appendix A, “Performance Monitoring Events” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B.

The precise events listed above allow load driven cache misses to be identified by
data source. This does not identify the “home” location of the cachelines with respect
to the NUMA configuration. The exceptions to this statement are the events

MEM_UNCORE_RETIRED.LOCAL_DRAM and
MEM_UNCORE_RETIRED.NON_LOCAL_DRAM. These can be used in conjunction with
instrumented malloc invocations to identify the NUMA “home” for the critical contig-
uous buffers used in an application.

The sum of all the MEM_LOAD_RETIRED events will equal the
MEM_INST_RETIRED.LOADS count.

A count of L1D misses can be achieved with the use of all the MEM_LOAD_RETIRED

events, except MEM_LOAD_RETIRED.L1D_HIT. It is better to use all of the individual

MEM_LOAD_RETIRED events to do this, rather than the difference of
MEM_INST_RETIRED.LOADS-MEM_LOAD_RETIRED.L1D_HIT because while the total
counts of precise events will be correct, and they will correctly identify instructions
that caused the event in question, the distribution of the events may not be correct
due to PEBS SHADOWING, discussed later in this section.

L1D_MISSES = MEM_LOAD_RETIRED.HIT_LFB + MEM_LOAD_RETIRED.L2_HIT +
MEM_LOAD_RETIRED.L3_UNSHARED_HIT +
MEM_LOAD_RETIRED.OTHER_CORE_HIT_HITM + MEM_LOAD_RETIRED.L3_MISS

The MEM_LOAD_RETIRED.L3_UNSHARED_HIT event merits some explanation. The
inclusive L3 has a bit pattern to identify which core has a copy of the line. If the only
bit set is for the requesting core (unshared hit) then the line can be returned from the
L3 with no snooping of the other cores. If multiple bits are set, then the line is in a
shared state and the copy in the L3 is current and can also be returned without
snooping the other cores.

If the line is read for ownership (RFO) by another core, this will put the copy in the L3
into an exclusive state. If the line is then modified by that core and later evicted, the
written back copy in the L3 will be in a modified state and snooping will not be
required. MEM_LOAD_RETIRED.L3_UNSHARED_HIT counts all of these. The event
should really have been called MEM_LOAD_RETIRED.L3_HIT_NO_SNOOP.
B-13

USING PERFORMANCE MONITORING EVENTS
The event MEM_LOAD_RETIRED.L3_HIT_OTHER_CORE_HIT_HITM could have been
named as MEM_LOAD_RETIRED.L3_HIT_SNOOP intuitively for similar reason.

When a modified line is retrieved from another socket it is also written back to
memory. This causes remote HITM access to appear as coming from the home dram.
The MEM_UNCORE_RETIRED.LOCAL_DRAM and
MEM_UNCORE_RETIRED.REMOTE_DRAM evens thus also count the L3 misses satis-
fied by modified lines in the caches of the remote socket.

There is a difference in the behavior of MEM_LOAD_RETIRED.DTLB_MISSES with
respect to that on Intel® Core™2 processors. Previously the event only counted the
first miss to the page, as do the imprecise events. The event now counts all loads
that result in a miss, thus it includes the secondary misses as well.

B.2.3.2 Load Latency Event
Intel Processors based on the Intel microarchitecture (Nehalem) provide support for
“load-latency event”, MEM_INST_RETIRED with event code 0BH and Umask value of
10H (LATENCY_ABOVE_THRESHOLD). This event samples loads, recording the
number of cycles between the execution of the instruction and actual deliver of the
data. If the measured latency is larger than the minimum latency programmed into
MSR 0x3f6, bits 15:0, then the counter is incremented.

Counter overflow arms the PEBS mechanism and on the next event satisfying the
latency threshold, the PMU writes the measured latency, the virtual or linear address,
and the data source into a PEBS record format in the PEBS buffer. Because the virtual
address is captured into a known location, the sampling driver could also execute a
virtual to physical translation and capture the physical address. The physical address
identifies the NUMA home location and in principle allows an analysis of the details of
the cache occupancies.

Further, as the address is captured before retirement even the pointer chasing
encoding “MOV RAX, [RAX+const]” have their addresses captured. Because the
MSR_PEBS_LD_LAT_THRESHOLD MSR is required to specify the latency threshold
value, only one minimum latency value can be sampled on a core during a given
period. To enable this, the Intel performance tools restrict the programming of this
event to counter 4 to simplify the scheduling. Table B-7 lists a few examples of event
programming configurations used by the Intel® PTU and Vtune™ Performance
Analyzer for the load latency events. Different threshold values for the minimum
latencies are specified in MSR_PEBS_LD_LAT_THRESHOLD (address 0x3f6).

Table B-7. Load Latency Event Programming

Load Latency Precise Events MSR
0x3F6 Umask Event

Code

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_4 4 10H 0BH
B-14

USING PERFORMANCE MONITORING EVENTS
One of the three fields written to each PEBS record by the PEBS assist mechanism of
the load latency event, encodes the data source locality information.

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_8 8 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_10 16 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_20 32 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_40 64 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_80 128 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_10
0

256 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_20
0

512 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_80
00

32768 10H 0BH

Table B-8. Data Source Encoding for Load Latency PEBS Record

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address
was already underway. The data is not yet in the data cache, but is located in a fill
buffer that will soon be committed to cache.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no
coherency actions required (snooping).

0x5 L3 HIT (other core hit snoop). Local or Remote home requests that hit the L3 cache
and was serviced by another processor core with a cross core snoop where no
modified copies were found. (clean).

0x6 L3 HIT (other core HITM). Local or Remote home requests that hit the L3 cache and
was serviced by another processor core with a cross core snoop where modified
copies were found. (HITM).

0x7 Reserved

Table B-7. Load Latency Event Programming

Load Latency Precise Events MSR
0x3F6 Umask Event

Code
B-15

USING PERFORMANCE MONITORING EVENTS
The latency event is the recommended method to measure the penalties for a cycle
accounting decomposition. Each time a PMI is raised by this PEBS event a load to use
latency and a data source for the cacheline is recorded in the PEBS buffer. The data
source for the cacheline can be deduced from the low order 4 bits of the data source
field and the table shown above. Thus an average latency for each of the 16 sources
can be evaluated from the collected data. As only one minimum latency at a time can
be collected it may be awkward to evaluate the latency for an MLC hit and a remote
socket dram. A minimum latency of 32 cycles should give a reasonable distribution
for all the offcore sources however. The Intel® PTU version 3.2 performance tool can
display the latency distribution in the data profiling mode and allows sophisticated
event filtering capabilities for this event.

B.2.3.3 Precise Execution Events
PEBS capability in core PMU goes beyond load and store instructions. Branches, near
calls and conditional branches can all be counted with precise events, for both retired
and mispredicted (and retired) branches of the type selected. For these events, the
PEBS buffer will contain the target of the branch. If the Last Branch Record (LBR) is
also captured then the location of the branch instruction can also be determined.

When the branch is taken the IP value in the PEBS buffer will also appear as the last
target in the LBR. If the branch was not taken (conditional branches only) then it
won’t and the branch that was not taken and retired is the instruction before the IP in
the PEBS buffer.

In the case of near calls retired, this means that Event Based Sampling (EBS) can be
used to collect accurate function call counts. As this is the primary measurement for

0x8 L3 MISS (remote cache forwarding). Local homed requests that missed the L3
cache and was serviced by forwarded data following a cross package snoop where
no modified copies found. (Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS (local DRMA go to S). Local home requests that missed the L3 cache and
was serviced by local DRAM (go to shared state).

0xB L3 MISS (remote DRMA go to S). Remote home requests that missed the L3 cache
and was serviced by remote DRAM (go to shared state).

0xC L3 MISS (local DRMA go to E). Local home requests that missed the L3 cache and
was serviced by local DRAM (go to exclusive state).

0xD L3 MISS (remote DRMA go to E). Remote home requests that missed the L3 cache
and was serviced by remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation

0xF The request was to un-cacheable memory.

Table B-8. Data Source Encoding for Load Latency PEBS Record (Contd.)

Encoding Description
B-16

USING PERFORMANCE MONITORING EVENTS
driving the decision to inline a function, this is an important improvement. In order to
measure call counts, you must sample on calls. Any other trigger introduces a bias
that cannot be guaranteed to be corrected properly.

The precise branch events can be found under event code C4H in Appendix A,
“Performance Monitoring Events” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B.

There is one source of sampling artifact associated with precise events. It is due to
the time delay between the PMU counter overflow and the arming of the PEBS hard-
ware. During this period events cannot be detected due to the timing shadow. To
illustrate the effect, consider a function call chain where a long duration function,
“foo”, which calls a chain of 3 very short duration functions, “foo1“ calling “foo2“
which calls “foo3“, followed by a long duration function “foo4“. If the durations of
foo1, foo2 and foo3 are less than the shadow period the distribution of PEBS sampled
calls will be severely distorted. For example,

• if the overflow occurs on the call to foo, the PEBS mechanism is armed by the
time the call to foo1 is executed and samples will be taken showing the call to
foo1 from foo.

• if the overflow occurs due to the call to foo1, foo2 or foo3 however, the PEBS
mechanism will not be armed until execution is in the body of foo4. Thus the calls
to foo2, foo3 and foo4 cannot appear as PEBS sampled calls.

Shadowing can effect the distribution of all PEBS events. It will also effect the distri-
bution of basic block execution counts identified by using the combination of a branch
retired event (PEBS or not) and the last entry in the LBR. If there were no delay
between the PMU counter overflow and the LBR freeze, the last LBR entry could be
used to sample taken retired branches and from that the basic block execution
counts. All the instructions between the last taken branch and the previous target are
executed once.

Such a sampling could be used to generate a “software” instruction retired event with
uniform sampling, which in turn can be used to identify basic block execution counts.
Unfortunately the shadowing causes the branches at the end of short basic blocks to
not be the last entry in the LBR, distorting the measurement. Since all the instruc-
tions in a basic block are by definition executed the same number of times.

The shadowing effect on call counts and basic block execution counts can be allevi-
ated to a large degree by averaging over the entries in the LBR. This will be discussed
in the section on LBRs.

Typically, branches account for more than 10% of all instructions in a workload, loop
optimization needs to focus on those loops with high tripcounts. For counted loops, it
is very common for the induction variable to be compared to the tripcount in the
termination condition evaluation. This is particularly true if the induction variable is
used within the body of the loop, even in the face of heavy optimization. Thus a loop
sequence of unrolled operation by eight times may resemble:

add rcx, 8
cmp rcx, rax
B-17

USING PERFORMANCE MONITORING EVENTS
jnge triad+0x27

In this case the two registers, rax and rcx are the tripcount and induction variable. If
the PEBS buffer is captured for the conditional branches retired event, the average
values of the two registers in the compare can be evaluated. The one with the larger
average will be the tripcount. Thus the average, RMS, min and max can be evaluated
and even a distribution of the recorded values.

B.2.3.4 Last Branch Record (LBR)
The LBR captures the source and target of each retired taken branch. Processors
based on Intel microarchitecture (Nehalem) can track 16 pair of source/target
addresses in a rotating buffer. Filtering of the branch instructions by types and privi-
lege levels are permitted using a dedicated facility, MSR_LBR_SELECT. This means
that the LBR mechanism can be programmed to capture branches occurring at ring0
or ring3 or both (default) privilege levels. Further the types of taken branches that
are recorded can also be filtered. The list of filtering options that can be specified
using MSR_LBR_SELECT is described in Chapter 16, “Debugging, Branch Profiles and
Time-Stamp Counter” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B.

The default is to capture all branches at all privilege levels (all bits zero). Another
reasonable programming would set all bits to 1 except bit 1 (capture ring 3) and bit
3 (capture near calls) and bits 6 and 7. This would leave only ring 3 calls and uncon-
ditional jumps in the LBR. Such a programming would result in the LBR having the
last 16 taken calls and unconditional jumps retired and their targets in the buffer.

A PMU sampling driver could then capture this restricted “call chain” with any event,
thereby providing a “call tree” context. The inclusion of the unconditional jumps will
unfortunately cause problems, particularly when there are if-else structures within
loops.

In the case of frequent function calls at all levels, the inclusion of returns could be
added to clarify the context. However this would reduce the call chain depth that
could be captured. A fairly obvious usage would be to trigger the sampling on
extremely long latency loads, to enrich the sample with accesses to heavily
contended locked variables, and then capture the call chain to identify the context of
the lock usage.

Call Counts and Function Arguments

If the LBRs are captured for PMIs triggered by the BR_INST_RETIRED.NEAR_CALL
event, then the call count per calling function can be determined by simply using the
last entry in LBR. As the PEBS IP will equal the last target IP in the LBR, it is the entry
point of the calling function. Similarly, the last source in the LBR buffer was the call
site from within the calling function. If the full PEBS record is captured as well, then
for functions with limited numbers of arguments on 64-bit OS’s, you can sample both
the call counts and the function arguments.
B-18

USING PERFORMANCE MONITORING EVENTS
LBRs and Basic Block Execution Counts

Another interesting usage is to use the BR_INST_RETIRED.ALL_BRANCHES event
and the LBRs with no filter to evaluate the execution rate of basic blocks. As the LBRs
capture all taken branches, all the basic blocks between a branch IP (source) and the
previous target in the LBR buffer were executed one time. Thus a simple way to eval-
uate the basic block execution counts for a given load module is to make a map of the
starting locations of every basic block. Then for each sample triggered by the PEBS
collection of BR_INST_RETIRED.ALL_BRANCHES, starting from the PEBS address (a
target but perhaps for a not taken branch and thus not necessarily in the LBR buffer)
and walking backwards through the LBRs until finding an address not corresponding
to the load module of interest, count all the basic blocks that were executed. Calling
this value “number_of_basic_blocks”, increment the execution counts for all of those
blocks by 1/(number_of_basic_blocks). This technique also yields the taken and not
taken rates for the active branches. All branch instructions between a source IP and
the previous target IP (within the same module) were not taken, while the branches
listed in the LBR were taken. This is illustrated in the graphics below

The 16 sets LBR records can help rectify the artifact of PEBS samples aggregating
disproportionately to certain instructions in the sampling process. The situation of
skewed distribution of PEBS sample is illustrated below in Figure B-4.

Consider a number of basic blocks in the flow of normal execution, some basic block
takes 20 cycles to execute, others taking 2 cycles, and shadowing takes 10 cycles.
Each time an overflow condition occurs, the delay of PEBS being armed is at least 10
cycles. Once the PEBS is armed, PEBS record is captured on the next eventing condi-
tion. The skewed distribution of sampled instruction address using PEBS record will
be skewed as shown in the middle of Figure B-4. In this conceptual example, we
assume every branch in taken in these basic blocks.

In the skewed distribution of PEBS samples, the branch IP of the last basic block will
be recorded 5 times as much as the least sampled branch IP address (the 2nd basic
block).

Figure B-3. LBR Records and Basic Blocks

Branch_0

“All instructions between Target_0 and Branch_1 are retired 1 time for each event count”

Target_0

Target_1Branch_1

“LBR record”

“All basic blocks between Target_0 and Branch_1 are executed 1 time for each event count”
“All branch instructions between Target_0 and Branch_1 are not taken”

“To”“From”
B-19

USING PERFORMANCE MONITORING EVENTS
This situation where some basic blocks would appear to never get samples and some
have many times too many. Weighting each entry by 1/(num of basic blocks in the
LBR trajectory), in this example would result in dividing the numbers in the right
most table by 16. Thus we end up with far more accurate execution counts ((1.25->
1.0) * N) in all of the basic blocks, even those that never directly caused a PEBS
sample.

As on Intel® Core™2 processors there is a precise instructions retired event that can
be used in a wide variety of ways. In addition there are precise events for
uops_retired, various SSE instruction classes, FP assists. It should be noted that the
FP assist events only detect x87 FP assists, not those involving SSE FP instructions.
Detecting all assists will be discussed in the section on the pipeline Front End.

The instructions retired event has a few special uses. While its distribution is not
uniform, the totals are correct. If the values recorded for all the instructions in a basic
block are averaged, a measure of the basic block execution count can be extracted.
The ratios of basic block executions can be used to estimate loop tripcounts when the
counted loop technique discussed above cannot be applied.

The PEBS version (general counter) instructions retired event can further be used to
profile OS execution accurately even in the face of STI/CLI semantics, because the
PEBS interrupt then occurs after the critical section has completed, but the data was
frozen correctly. If the cmask value is set to some very high value and the invert
condition is applied, the result is always true, and the event will count core cycles
(halted + unhalted).

Figure B-4. Using LBR Records to Rectify Skewed Sample Distribution

20

O: overflow; P: PEBS armed; C: interrupt occurs

2
C

O

P

2

2

2

20

20

0

N

0

0

0

0

5NC

O

P

C

O

P

C

O

P

C

O

P

C

O

P

Cycle Flow PEBS Sample Distribution

16N

16N

18N

16N

17N

19N

20N

Branch IP Distribution
 in LBRTrajectory
B-20

USING PERFORMANCE MONITORING EVENTS
Consequently both cycles and instructions retired can be accurately profiled. The
UOPS_RETIRED.ANY event, which is also precise can also be used to profile Ring 0
execution and really gives a more accurate display of execution. The precise events
available for this purpose are listed under event code C0H, C2H, C7H, F7H in
Appendix A, “Performance Monitoring Events” of Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.

B.2.3.5 Measuring Core Memory Access Latency
Drilling down performance issues associated with locality or cache coherence issues
will require using performance monitoring events. In each processor core, there is a
super queue that allocates entries to buffer requests of memory access traffic due to
an L2 miss to the uncore sub-system. Table B-9 lists various performance events
available in the core PMU that can drill down performance issues related to L2
misses.

Table B-10 lists various performance events available in the core PMU that can drill
down performance issues related to super queue operation.

Table B-9. Core PMU Events to Drill Down L2 Misses

Core PMU Events Umask Event Code

OFFCORE_REQUESTS.DEMAND.READ_DATA1

NOTES:
1. The *DEMAND* events also include any requests made by the L1D cache hardware prefetchers.

01H B0H

OFFCORE_REQUESTS.DEMAND.READ_CODE1 02H B0H

OFFCORE_REQUESTS.DEMAND.RFO1 04H B0H

OFFCORE_REQUESTS.ANY.READ 08H B0H

OFFCORE_REQUESTS.ANY.RFO 10H B0H

OFFCORE_REQUESTS.UNCACHED_MEM 20H B0H

OFFCORE_REQUESTS.L1D.WRITEBACK 40H B0H

OFFCORE_REQUESTS.ANY 80H B0H
B-21

USING PERFORMANCE MONITORING EVENTS
Additionally, L2 misses can be drilled down further by data origin attributes and
response attributes. The matrix to specify data origin and response type attributes is
done by a dedicated MSR OFFCORE_RSP_0 at address 1A6H. See Table B-11 and
Table B-12.

Table B-10. Core PMU Events for Super Queue Operation

Core PMU Events Umask Event Code

OFFCORE_REQUESTS_BUFFER_FULL 01H B2H

SQ_STALL 01H F6H

Table B-11. Core PMU Event to Drill Down OFFCore Responses

Core PMU Events OFFCORE_RSP_0 MSR Umask Event Code

OFFCORE_RESPONSE see Table B-12 01H B7H

Table B-12. OFFCORE_RSP_0 MSR Programming

Position Description Note

Request type 0 Demand Data Rd = DCU reads
(includes partials, DCU Prefetch)

1 Demand RFO = DCU RFOs

2 Demand Ifetch = IFU Fetches

3 Writeback = L2_EVICT/DCUWB

4 PF Data Rd = L2 Prefetcher
Reads

5 PF RFO= L2 Prefetcher RFO

6 PF Ifetch= L2 Prefetcher
Instruction fetches

7 Other Include non-temporal
stores
B-22

USING PERFORMANCE MONITORING EVENTS
Although Table B-12 allows 2^16 combinations of setting in MSR_OFFCORE_RSP_0
in theory, it is more useful to consider combining the subsets of 8-bit values to
specify “Request type“ and “Response type“. The more common 8-bit mask values
are listed in Table B-13.

Response type 8 L3_HIT_UNCORE_HIT exclusive line

9 L3_HIT_OTHER_CORE_HIT_SNP clean line

10 L3_HIT_OTHER_CORE_HITM modified line

11 L3_MISS_REMOTE_HIT_SCRUB Used by multiple
cores

12 L3_MISS_REMOTE_FWD Clean line used by
one core

13 L3_MISS_REMOTE_DRAM

14 L3_MISS_LOCAL_DRAM

15 Non-DRAM Non-DRAM requests

Table B-13. Common Request and Response Types for OFFCORE_RSP_0 MSR

Request Type Mask Response Type Mask

ANY_DATA xx11H ANY_CACHE_DRAM 7FxxH

ANY_IFETCH xx44H ANY_DRAM 60xxH

ANY_REQUEST xxFFH ANY_L3_MISS F8xxH

ANY_RFO xx22H ANY_LOCATION FFxxH

CORE_WB xx08H IO 80xxH

DATA_IFETCH xx77H L3_HIT_NO_OTHER_CORE 01xxH

DATA_IN xx33H L3_OTHER_CORE_HIT 02xxH

DEMAND_DATA xx03H L3_OTHER_CORE_HITM 04xxH

DEMAND_DATA_RD xx01H LOCAL_CACHE 07xxH

DEMAND_IFETCH xx04H LOCAL_CACHE_DRAM 47xxH

Table B-12. OFFCORE_RSP_0 MSR Programming

Position Description Note
B-23

USING PERFORMANCE MONITORING EVENTS
B.2.3.6 Measuring Per-Core Bandwidth
Measuring the bandwidth of all memory traffic for an individual core is complicated,
the core PMU and uncore PMU do provide capability to measure the important
components of per-core bandwidth.

At the microarchitectural level, there is the buffering of L3 for writebacks/evictions
from L2 (similarly to some degree with the non temporal writes). The eviction of
modified lines from the L2 causes a write of the line back to the L3. The line in L3 is
only written to memory when it is evicted from the L3 some time later (if at all). And
L3 is part of the uncore sub-system, not part of the core.

The writebacks to memory due to eviction of modified lines from L3 cannot be asso-
ciated with an individual core in the uncore PMU logic. The net result of this is that the
total write bandwidth for all the cores can be measured with events in the uncore
PMU. The read bandwidth and the non-temporal write bandwidth can be measured
on a per core basis. In a system populated with two physical processor, the NUMA
nature of memory bandwidth implies the measurement for those 2 components has
to be divided into bandwidths for the core on a per-socket basis.

The per-socket read bandwidth can be measured with the events:

OFFCORE_RESPONSE_0.DATA_IFETCH.L3_MISS_LOCAL_DRAM

OFFCORE_RESPONSE_0.DATA_IFETCH.L3_MISS_REMOTE_DRAM

The total read bandwidth for all sockets can be measured with the event:

OFFCORE_RESPONSE_0.DATA_IFETCH.ANY_DRAM

The per-socket non-temporal store bandwidth can be measured with the events:

DEMAND_RFO xx02H LOCAL_DRAM 40xxH

OTHER1 xx80H REMOTE_CACHE 18xxH

PF_DATA xx30H REMOTE_CACHE_DRAM 38xxH

PF_DATA_RD xx10H REMOTE_CACHE_HIT 10xxH

PF_IFETCH xx40H REMOTE_CACHE_HITM 08xxH

PF_RFO xx20H REMOTE-DRAM 20xxH

PREFETCH xx70H

NOTES:
1. The PMU may report incorrect counts with setting MSR_OFFCORE_RSP_0 to the value of 4080H.

Non-temporal stores to the local DRAM is not reported in the count.

Table B-13. Common Request and Response Types for OFFCORE_RSP_0 MSR

Request Type Mask Response Type Mask
B-24

USING PERFORMANCE MONITORING EVENTS
OFFCORE_RESPONSE_0.OTHER.L3_MISS_LOCAL_CACHE_DRAM

OFFCORE_RESPONSE_0.OTHER.L3_MISS_REMOTE_DRAM

The total non-temporal store bandwidth can be measured with the event:

OFFCORE_RESPONSE_0.OTHER.ANY.CACHE_DRAM

The use of “CACHE_DRAM“ encoding is to work around the defect in the footnote of
Table B-13. Note that none of the above includes the bandwidth associated with
writebacks of modified cacheable lines.

B.2.3.7 Miscellaneous L1 and L2 Events for Cache Misses
In addition to the OFFCORE_RESPONSE_0 event and the precise events that will be
discussed later, there are several other events that can be used as well. There are
additional events that can be used to supplement the offcore_response_0 events,
because the offcore_response_0 event code is supported on counter 0 only.

L2 misses can also be counted with the architecturally defined event
LONGEST_LAT_CACHE_ACCESS, however as this event also includes requests due to
the L1D and L2 hardware prefetchers, its utility may be limited. Some of the L2
access events can be used for both drilling down L2 accesses and L2 misses by type,
in addition to the OFFCORE_REQUESTS events discussed earlier. The L2_RQSTS and
L2_DATA_RQSTS events can be used to discern assorted access types. In all of the L2
access events the designation PREFETCH only refers to the L2 hardware prefetch.
The designation DEMAND includes loads and requests due to the L1D hardware
prefetchers.

The L2_LINES_IN and L2_LINES_OUT events have been arranged slightly differently
than the equivalent events on Intel® Core™2 processors. The L2_LINES_OUT event
can now be used to decompose the evicted lines by clean and dirty (i.e. a Writeback)
and whether they were evicted by an L1D request or an L2 HW prefetch.

The event L2_TRANSACTIONS counts all interactions with the L2.

Writes and locked writes are counted with a combined event, L2_WRITE.

The details of the numerous derivatives of L2_RQSTS, L2_DATA_RQSTS,
L2_LINES_IN, L2_LINES_OUT, L2_TRANSACTIONS, L2_WRITE, can be found under
event codes24H, 26H, F1H, F2H, F0H, and 27H in Appendix A, “Performance Moni-
toring Events” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B.

B.2.3.8 TLB Misses
The next largest set of memory access delays are associated with the TLBs when
linear-to-physical address translation is mapped with a finite number of entries in the
TLBs. A miss in the first level TLBs results in a very small penalty that can usually be
hidden by the OOO execution and compiler's scheduling. A miss in the shared TLB
B-25

USING PERFORMANCE MONITORING EVENTS
results in the Page Walker being invoked and this penalty can be noticeable in the
execution.

The (non-PEBS) TLB miss events break down into three sets:

• DTLB misses and its derivatives are programmed with event code 49H,

• Load DTLB misses and its derivatives are programmed with event code 08H,

• ITLB misses and its derivatives are programmed with event code 85H.

Store DTLB misses can be evaluated from the difference of the DTLB misses and the
Load DTLB misses. Each then has a set of sub events programmed with the umask
value. The Umask details of the numerous derivatives of the above events are listed
in Appendix A, “Performance Monitoring Events” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.

B.2.3.9 L1 Data Cache
There are PMU events that can be used to analyze L1 data cache operations. These
events can only be counted with the first 2 of the 4 general counters, i.e. IA32_PMC0
and IA32_PMC1. Most of the L1D events are self explanatory.

The total number of references to the L1D can be counted with L1D_ALL_REF, either
just cacheable references or all. The cacheable references can be divided into loads
and stores with L1D_CACHE_LOAD and L1D_CACHE.STORE. These events are
further subdivided by MESI states through their Umask values, with the I state refer-
ences indicating the cache misses.

The evictions of modified lines in the L1D result in writebacks to the L2. These are
counted with the L1D_WB_L2 events. The umask values break these down by the
MESI state of the version of the line in the L2.

The locked references can be counted also with the L1D_CACHE_LOCK events. Again
these are broken down by MES states for the lines in L1D.

The total number of lines brought into L1D, the number that arrived in an M state and
the number of modified lines that get evicted due to receiving a snoop are counted
with the L1D event and its Umask variations.

The L1D events are listed under event codes28H, 40H, 41H, 42H, 43H, 48H, 4EH,
51H, 52H, 53H, 80H, and 83H in Appendix A, “Performance Monitoring Events” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

There are few cases of loads not being able to forward from active store buffers. The
predominant situations have to do with larger loads overlapping smaller stores.
There is not event that detects when this occurs. There is also a “false store
forwarding” case where the addresses only match in the lower 12 address bits. This
is sometimes referred to as 4K aliasing. This can be detected with the event
“PARTIAL_ADDRESS_ALIAS“ which has event code 07H and Umask 01H.
B-26

USING PERFORMANCE MONITORING EVENTS
B.2.4 Front End Monitoring Events
Branch misprediction effects can sometimes be reduced through code changes and
enhanced inlining. Most other front end performance limitations have to be dealt with
by the code generation. The analysis of such issues is mostly of use by compiler
developers.

B.2.4.1 Branch Mispredictions
In addition to branch retired events that was discussed in conjunction with PEBS in
Section B.2.3.3. These are enhanced by use of the LBR to identify the branch location
to go along with the target location captured in the PEBS buffer. Aside from those
usage, many other PMU events (event code E6, E5, E0, 68, 69) associated with
branch predictions are more relevant to hardware design than performance tuning.

Branch mispredictions are not in and of themselves an indication of a performance
bottleneck. They have to be associated with dispatch stalls and the instruction star-
vation condition, UOPS_ISSUED:C1:I1 – RESOURCE_STALLS.ANY. Such stalls are
likely to be associated with icache misses and ITLB misses. The precise ITLB miss
event can be useful for such issues. The icache and ITLB miss events are listed under
event code 80H, 81H, 82H, 85H, AEH.

B.2.4.2 Front End Code Generation Metrics
The remaining front end events are mostly of use in identifying when details of the
code generation interact poorly with the instructions decoding and uop issue to the
OOO engine. Examples are length changing prefix issues associated with the use of
16 bit immediates, rob read port stalls, instruction alignment interfering with the
loop detection and instruction decoding bandwidth limitations. The activity of the
LSD is monitored using CMASK values on a signal monitoring activity. Some of these
events are listed under event code 17H, 18H, 1EH, 1FH, 87H, A6H, A8H, D0H, D2H in
Appendix A, “Performance Monitoring Events” of Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.

Some instructions (FSIN, FCOS, and other transcendental instructions) are decoded
with the assistance of MS-ROM. Frequent occurrences of instructions that required
assistance of MS-ROM to decode complex uop flows are opportunity to improve
instruction selection to reduce such occurrences. The UOPS_DECODED.MS event can
be used to identify code regions that could benefit from better instruction selection.

Other situations that can trigger this event are due to FP assists, like performing a
numeric operation on denormalized FP values or QNaNs. In such cases the penalty is
essentially the uops required for the assist plus the pipeline clearing required to
ensure the correct state.

Consequently this situation has a very clear signature consisting of
MACHINE_CLEAR.CYCLES and uops being inserted by the microcode sequencer,
UOPS_DECODED.MS. The execution penalty being the sum of these two contribu-
tions. The event codes for these are listed under D1H and C3H.
B-27

USING PERFORMANCE MONITORING EVENTS
B.2.5 Uncore Performance Monitoring Events
The uncore sub-system includes the L3, IMC and Intel QPI units in the diagram
shown in Figure B-1. Within the uncore sub-system, the uncore PMU consists of eight
general-purpose counters and one fixed counter. The fixed counter in uncore moni-
tors the unhalted clock cycles in the uncore clock domain, which runs at a different
frequency than the core.

The uncore cannot by itself generate a PMI interrupt. While the core PMU can raise
PMI at a per-logical-processor specificity, the uncore PMU can cause PMI at a per-
core specificity using the interrupt hardware in the processor core. When an uncore
counter overflows, a bit pattern is used to specify which cores should be signaled to
raise a PMI. The uncore PMU is unaware of the core, Processor ID or Thread ID that
caused the event that overflowed a counter. Consequently the most reasonable
approach for sampling on uncore events is to raise a PMI on all the logical processors
in the package.

There are a wide variety of events that monitor queue occupancies and inserts. There
are others that count cacheline transfers, dram paging policy statistics, snoop types
and responses, and so on. The uncore is the only place the total bandwidth to
memory can be measured. This will be discussed explicitly after all the uncore
components and their events are described.

B.2.5.1 Global Queue Occupancy
Each processor core has a super queue that buffers requests of memory access
traffic due to an L2 miss. The uncore has a global queue (GQ) to service transaction
requests from the processor cores and buffers data traffic that arrive from L3, IMC,
or Intel QPI links.

Within the GQ, there are 3 "trackers" in the GQ for three types of transactions:

• on-package read requests, its tracker queue has 32 entries.

• on-package writeback requests, its tracker queue has 16 entries

• requests that arrive from a "peer", its tracker queue has 12 entries.

A “peer“ refers to any requests coming from the Intel® QuickPath Interconnect.

The occupancies, inserts, cycles full and cycles not empty for all three trackers can be
monitored. Further as load requests go through a series of stages the occupancy and
inserts associated with the stages can also be monitored, enabling a "cycle
accounting" breakdown of the uncore memory accesses due to loads.

When a uncore counter is first programmed to monitor a queue occupancy, for any of
the uncore queues, the queue must first be emptied. This is accomplished by the
driver of the monitoring software tool issuing a bus lock. This only needs to be done
when the counter is first programmed. From that point on the counter will correctly
reflect the state of the queue, so it can be repeatedly sampled for example without
another bus lock being issued.
B-28

USING PERFORMANCE MONITORING EVENTS
The uncore events that monitor GQ allocation (UNC_GQ_ALLOC) and GQ tracker
occupancy (UNC_GQ_TRACKER_OCCUP) are listed under the event code 03H and
02H in Appendix A, “Performance Monitoring Events” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B. The selection between the three
trackers is specified from the Umask value. The mnemonic of these derivative events
use the notation: “RT” signifying the read tracker, “WT”, the write tracker and “PPT”
the peer probe tracker.

Latency can measured by the average duration of the queue occupancy, if the occu-
pancy stops as soon as the data has been delivered. Thus the ratio of
UNC_GQ_TRACKER_OCCUP.X/UNC_GQ_ALLOC.X measures an average duration of
queue occupancy, where ‘X’ represents a specific Umask value. The total occupancy
period of the read tracker as measured by

Total Read Period = UNC_GQ_TRACKER_OCCUP.RT/UNC_GQ_ALLOC.RT

Is longer than the data delivery latency due to it including time for extra bookkeeping
and cleanup. The measurement

LLC response Latency = UNC_GQ_TRACKER_OCCUP.RT_TO_LLC_RESP /
UNC_GQ_ALLOC.RT_TO_LLC_RESP

is essentially a constant. It does not include the total time to snoop and retrieve a
modified line from another core for example, just the time to scan the L3 and see if
the line is or is not present in this socket.

An overall latency for an L3 hit is the weighted average of three terms:

• the latency of a simple hit, where the line has only been used by the core making
the request,

• the latencies for accessing clean lines by multiple cores,

• the latencies for accessing dirty lines that have been accessed by multiple cores.

These three components of the L3 hit for loads can be decomposed using the deriva-
tive events of OFFCORE_RESPONSE:

• OFFCORE_RESPONSE_0.DEMAND_DATA.L3_HIT_NO_OTHER_CORE,

• OFFCORE_RESPONSE_0.DEMAND_DATA.L3_HIT_OTHER_CORE_HIT,

• OFFCORE_RESPONSE_0.DEMAND_DATA.L3_HIT_OTHER_CORE_HITM.

The event OFFCORE_RESPONSE_0.DEMAND_DATA.LOCAL_CACHE should be used as
the denominator to obtain latencies. The individual latencies could have to be
measured with microbenchmarks, but the use of the precise latency event will be far
more effective as any bandwidth loading effects will be included.

The L3 miss component is the weighted average over three terms:

• the latencies of L3 hits in a cache on another socket (this is described in the
previous paragraph) ,

• the latencies to local DRAM,

• the latencies to remote DRAM.
B-29

USING PERFORMANCE MONITORING EVENTS
The local dram access and the remote socket access can be decomposed with more
uncore events. This will be discussed a bit later in this paper.

Miss to fill latency = UNC_GQ_TRACKER_OCCUP.RT_LLC_MISS /
UNC_GQ_ALLOC.RT_LLC_MISS

The uncore GQ events using Umask value associated with *RTID* mnemonic allow
the monitoring of a sub component of the Miss to fill latency associated with the
communications between the GQ and the QHL.

There are uncore PMU events which monitor cycles when the three trackers are not
empty (>= 1 entry) or full. These events are listed under the event code 00H and
01H in Appendix A, “Performance Monitoring Events” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B

Because the uncore PMU generally does not differentiate which processor core
causes a particular eventing condition, the technique of dividing the latencies by the
average queue occupancy in order to determine a penalty does not work for the
uncore. Overlapping entries from different cores do not result in overlapping penal-
ties and thus a reduction in stalled cycles. Each core suffers the full latency indepen-
dently.

To evaluate the correction on a per core basis one needs the number of cycles there
is an entry from the core in question. A *NOT_EMPTY_CORE_N type event would
needed. There is no such event. Consequently, in the cycle decomposition one must
use the full latency for the estimate of the penalty. As has been stated before it is
best to use the PEBS latency event as the data sources are also collected with the
latency for the individual sample.

The individual components of the read tracker, discussed above, can also be moni-
tored as busy or full by setting the cmask value to 1 or 32 and applying it to the
assorted RT occupancy events.

Table B-14. Uncore PMU Events for Occupancy Cycles

Uncore PMU Events Cmask Umask Event Code

UNC_GQ_TRACKER_OCCUP.RT_L3_MISS_FULL 32 02H 02H

UNC_GQ_TRACKER_OCCUP.RT_TO_L3_RESP_FU
LL

32 04H 02H

UNC_GQ_TRACKER_OCCUP.RT_TO_RTID_ACCQ
UIRED_FULL

32 08H 02H

UNC_GQ_TRACKER_OCCUP.RT_L3_MISS_BUSY 1 02H 02H

UNC_GQ_TRACKER_OCCUP.RT_TO_L3_RESP_B
USY

1 04H 02H
B-30

USING PERFORMANCE MONITORING EVENTS
B.2.5.2 Global Queue Port Events
The GQ data buffer traffic controls the flow of data to and from different sub-systems
via separate ports:

• Core traffic: two ports handles data traffic, each port dedicated to a pair of
processor cores.

• L3 traffic: one port service L3 data traffic

• Intel QPI traffic: one service traffic to QPI logic

• IMC traffic: one service data traffic to integrated memory controller.

The ports for L3 and core traffic transfer a fixed number of bits per cycle. However
the Intel® QuickPath Interconnect protocols can result in either 8 or 16 bytes being
transferred on the read Intel QPI and IMC ports. Consequently these events cannot
be used to measure total data transfers and bandwidths.

The uncore PMU events that can distinguish traffic flow are listed under the event
code 04H and 05H in Appendix A, “Performance Monitoring Events” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B.

B.2.5.3 Global Queue Snoop Events
Cacheline requests from the cores or from a remote package or the I/O Hub are
handled by the GQ. When the uncore receives a cacheline request from one of the
cores, the GQ first checks the L3 to see if the line is on the package. Because the L3
is inclusive, this answer can be quickly ascertained. If the line is in the L3 and was
owned by the requesting core, data can be returned to the core from the L3 directly.
If the line is being used by multiple cores, the GQ will snoop the other cores to see if
there is a modified copy. If so the L3 is updated and the line is sent to the requesting
core.

In the event of an L3 miss, the GQ must send out requests to the local memory
controller (or over the Intel QPI links) for the line. A request through the Intel QPI to
a remote L3 (or remote DRAM) must be made if data exists in a remote L3 or does
not exist in local DRAM. As each physical package has its own local integrated
memory controller the GQ must identify the "home" location of the requested cache-
line from the physical address. If the address identifies home as being on the local
package then the GQ makes a simultaneous request to the local memory controller.
If home is identified as belonging to the remote package, the request sent over the
Intel QPI will also access the remote IMC.

UNC_GQ_TRACKER_OCCUP.RT_TO_RTID_ACCQ
UIRED_BUSY

1 08H 02H

Table B-14. Uncore PMU Events for Occupancy Cycles

Uncore PMU Events Cmask Umask Event Code
B-31

USING PERFORMANCE MONITORING EVENTS
The GQ handles the snoop responses for the cacheline requests that come in from
the Intel® QuickPath Interconnect. These snoop traffic correspond to the queue
entries in the peer probe tracker.

The snoop responses are divided into requests for locally homed data and remotely
homed data. If the line is in a modified state and the GQ is responding to a read
request, the line also must be written back to memory. This would be a wasted effort
for a response to a RFO as the line will just be modified again, so no Writeback is
done for RFOs.

The snoop responses of local home events that can be monitored by an uncore PMU
are listed under event code 06H in Appendix A, “Performance Monitoring Events” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. The
snoop responses of remotely home events are listed under event code 07H.

Some related events count the MESI transitions in response to snoops from other
caching agents (processors or IOH). Some of these rely on programming MSR so
they can only be measured one at a time, as there is only one MSR. The Intel perfor-
mance tools will schedule this correctly by restricting these events to a single general
uncore counter.

B.2.5.4 L3 Events
Although the number of L3 hits and misses can be determined from the GQ tracker
allocation events, Several uncore PMU event is simpler to use. They are listed under
event code 08H and 09H in the uncore event list of Appendix A, “Performance Moni-
toring Events” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B.

The MESI states breakdown of lines allocated and victimized can also be monitored
with LINES_IN, LINES_OUT events in the uncore using event code 0AH and 0BH.
Details are listed in Appendix A, “Performance Monitoring Events” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B.

B.2.6 Intel QuickPath Interconnect Home Logic (QHL)
When a data misses L3 and causing the GQ of the uncore to send out a transaction
request, the Intel QPI fabric will fulfill the request either from the local DRAM
controller or from a remote DRAM controller in another physical package. The GQ
must identify the “home“ location of the requested cacheline from the physical
address. If the address identifies home as being on the local package then the GQ
makes a simultaneous request to the local memory controller, the Integrated
memory controller (IMC). If home is identified as belonging to the remote package,
the request is sent to the Intel QPI first and then to access the remote IMC.

The Intel QPI logic and IMC are distinct units in the uncore sub-system. The Intel QPI
logic distinguish the local IMC relative to remote IMC using the concept of “caching
agent” and “home agent“. Specifically, the Intel QPI protocol considers each socket
as having a “caching agent”: and a “home agent”:
B-32

USING PERFORMANCE MONITORING EVENTS
• Caching Agent is the GQ and L3 in the uncore (or an IOH if present),

• Home Agent is the IMC.

An L3 miss result in simultaneous queries for the line from all the Caching Agents and
the Home agent (wherever it is).

QHL requests can be superseded when another source can supply the required line
more quickly. L3 misses to locally homed lines, due to on package requests, are
simultaneously directed to the QHL and Intel QPI. If a remote caching agent supplies
the line first then the request to the QHL is sent a signal that the transaction is
complete. If the remote caching agent returns a modified line in response to a read
request then the data in dram must be updated with a writeback of the new version
of the line.

There is a similar flow of control signals when the Intel QPI simultaneously sends a
snoop request for a locally homed line to both the GQ and the QHL. If the L3 has the
line, the QHL must be signaled that the transaction was completely by the L3/GQ. If
the line in L3 (or the cores) was modified and the snoop request from the remote
package was for a load, then a writeback must be completed by the QHL and the QHL
forwards the line to the Intel QPI to complete the transaction.

Uncore PMU provides events for monitoring these cacheline access and writeback
traffic in the uncore by using the QHL opcode matching capability. The opcode
matching facility is described in Chapter 30, “Performance Monitoring” of Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3B. The uncore PMU
event that uses the opcode matching capability is listed under event code 35H.
Several of the more useful setting to program QHL opcode matching is shown in
Table B-15

Table B-15. Common QHL Opcode Matching Facility Programming

Load Latency Precise Events MSR 0x396 Uma
sk

Event
Code

UNC_ADDR_OPCODE_MATCH.IOH.NONE 0 1H 35H

UNC_ADDR_OPCODE_MATCH.IOH.RSPFWDI 40001900_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.IOH.RSPFWDS 40001A00_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.IOH.RSPIWB 40001D00_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.REMOTE.NON
E

0 2H 35H

UNC_ADDR_OPCODE_MATCH.REMOTE.RSP
FWDI

40001900_00000000 2H 35H
B-33

USING PERFORMANCE MONITORING EVENTS
These predefined opcode match encodings can be used to monitor HITM accesses. It
is the only event that allows profiling the code requesting HITM transfers.

The diagrams Figure B-5 through Figure B-12 show a series of Intel QPI protocol
exchanges associated with Data Reads and Reads for Ownership (RFO), after an L3
miss, under a variety of combinations of the local home of the cacheline, and the
MESI state in the remote cache. Of particular note are the cases where the data
comes from the remote QHL even when the data was in the remote L3. These are the
Read Data with the remote L3 having the line in an M state.

UNC_ADDR_OPCODE_MATCH.REMOTE.RSP
FWDS

40001A00_00000000 2H 35H

UNC_ADDR_OPCODE_MATCH.REMOTE.RSPI
WB

40001D00_00000000 2H 35H

UNC_ADDR_OPCODE_MATCH.LOCAL.NONE 0 4H 35H

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPF
WDI

40001900_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPF
WDS

40001A00_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPIW
B

40001D00_00000000 1H 35H

Table B-15. Common QHL Opcode Matching Facility Programming

Load Latency Precise Events MSR 0x396 Uma
sk

Event
Code
B-34

USING PERFORMANCE MONITORING EVENTS
Figure B-5. RdData Request after LLC Miss to Local Home (Clean Rsp)

Figure B-6. RdData Request after LLC Miss to Remote Home (Clean Rsp)

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

Cac
he

 M
iss

[Send
Snoop
to LLC]

SnpDataRspl

Socket 1 Socket 2

SnpData

Rspl

Uncore Uncore
[Broadcast
snoops to all
other caching
agents]

[Sending Req
to Local Home
(socket 2 owns
this address)]

Data

Speculative
mem Rd

[Fill complete
to socket 2]

Cache Lookup

Cache M
iss

Allocate in E state

[I-> E]

D
at

aC
_E

_C
M

P

Rsp
l

Snp
Dat

a

R
dD

at
a

Rspl

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

(7
)

Clea
n

Rsp
 (8

) [Send
Snoop
to LLC]

SnpData (6)

Socket 1 Socket 2

RdData (5)

DataC_E_cmp

Uncore Uncore

[Sending Req

Cache Lookup (2)

Cache M
iss (3)

Allocate in E state

[I-> E] (13)
Dat

aC
_E

_c
m

p
(1

2)

RdD
at

a
(4

)

(1)

(11) to Remote Home
(socket 1 owns
this address)]

R
sp

l (
9)

RdD
at

a
(6

)

Dat
aC

_E
_c

m
p

(1
0)

[Send
Request
to CHL]

[Send complete and
Data to socket 2 to
allocate in E state]

Speculative
mem Rd (7)

Data (9)

[Rspl indicates
clean snoop]
B-35

USING PERFORMANCE MONITORING EVENTS
Figure B-7. RdData Request after LLC Miss to Remote Home (Hitm Response)

Figure B-8. RdData Request after LLC Miss to Local Home (Hitm Response)

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

(7
)

Hitm
 R

sp

[Send
Snoop
to LLC]

SnpData (6)

Socket 1 Socket 2

RdData (5)

DataC_E_cmp

Uncore Uncore

[Sending Req

Cache Lookup (2)

Cache M
iss (3)

Allocate in E state

[I-> E] (13)
Dat

aC
_E

_c
m

p
(1

2)

RdD
at

a
(4

)

(1)

(11) to Remote Home
(socket 1 owns
this address)]R

sp
lW

b,

RdD
at

a
(6

)

Dat
aC

_E
_c

m
p

(1
0)

[Send complete and
Data to socket 2 to
allocate in E state]

Speculative mem Rd (7)

Data (9)

[S
en

d

Req
ue

st

to
 C

HL]

W
bl

D
at

a
(9

)

M
->

 I,
 D

at
a

(8
)

[Data written back to
Home RsplWb is a
NDR response. Hint
to home that wb data
follows shortly which
is WblData.] WB

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

Hitm
 R

sp

[Send
Snoop
to LLC]

SnpData

Socket 1 Socket 2

SnpData

RsplWb

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in E state

[I-> E]Snp
Dat

a

WblData

to Remote Home
(socket 2 owns
this address)]

M
->

 I,
 D

at
a

[Data written back to
Home RsplWb is a
NDR response. Hint
to home that wb data
follows shortly which
is WblData.]

W
blData

RsplW
b

[Broadcast
snoops to all
other caching
agents]

D
at

aC
_E

_c
m

p

R
dD

at
a

W
blData

RsplW
b

[Send complete
to socket 2]

Speculative memRd
WB

Data
B-36

USING PERFORMANCE MONITORING EVENTS
Figure B-9. RdData Request after LLC Miss to Local Home (Hit Response)

Figure B-10. RdInvOwn Request after LLC Miss to Remote Home (Clean Res)

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

Hit R
sp

[Send
Snoop
to LLC]

SnpData

Socket 1 Socket 2

SnpData

DataC_F

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in F state

[I-> F]
Snp

Dat
a

RspFwdS

to Local Home
(socket 2 owns
this address)]

E,F
 ->

 S
, D

at
a

DataC_F
RspFwdS

[Broadcast
snoops to all
other caching
agents]

C
M

P

R
dD

at
a

RspFwdS

[Send complete
to socket 2]

Speculative memRd

Data

Dat
aC

_F

[RspFwdS indicates Hit
snoop response and data
forwarded to Peer agent]

[DataC_F indicates data
forwarded to Peer agent
in F state]

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

RFO

Cac
he

 L
oo

ku
p

[Send
Snoop
to LLC]

SnpInvOwn

Socket 1 Socket 2

RdInvOwn

DataC_E_cmp

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in E state

[I-> E]

Dat
aC

_E
_c

m
pRdI

nv
Own

to Remote Home
(socket 1 owns
this address)]

RdI
nv

Own

Dat
aC

_E
_c

m
p

[Home sends cmp
Speculative mem Rd

Data

[Send
Request
to CHL]

and Data to socket
2 to allocate in E
state]

R
sp

l

Clea
n

(S
, F

, I
 ->

 I)

Rspl indicates
Clean snoop
Response
B-37

USING PERFORMANCE MONITORING EVENTS
Figure B-11. RdInvOwn Request after LLC Miss to Remote Home (Hitm Res)

Figure B-12. RdInvOwn Request after LLC Miss to Local Home (Hit Res)

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

RFO

Cac
he

 L
oo

ku
p

[Send
Snoop
to LLC]

SnpInvOwn

Socket 1 Socket 2

RdInvOwn
DataC_M

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in M
 state

[I-> M
]Dat

aC
_M

RdI
nv

Own

to Remote Home
(socket 1 owns
this address)]

RdI
nv

Own

cm
p

Speculative mem Rd

Data

R
sp

lF
w

dI

cmp

cm
p

DataC_M

HIT
M

 (M
->

 I)
,

Dat
a

Indicates to Home
that Data has already
been forwarded to
socket 2

[Send
Data to
socket 2 to
allocate in
M state]

[S
en

d

Req
ue

st

to
 C

HL]

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

RFO

Cac
he

 L
oo

ku
p

[Send
Snoop
to LLC]

SnpInvOwn

Socket 1 Socket 2

SnpInvOwn
DataC_E

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in E state

[I-> E]
Snp

In
vO

wn

RspFwdI

to Local Home
(socket 2 owns
this address)]

HIT
 (E

 ->
 I)

,

DataC_E
RspFwdI

[Broadcast
snoops to all
other caching
agents]

cm
p

R
dI

nv
O

w
n

RspFwdI

[Send complete
to socket 2]

Speculative memRd

Data

Dat
aC

_E

Dat
a

Indicates to
Home that
Data has
already been
forwarded to
socket 2

[Send Data to
socket 2 to
allocate in E
state]
B-38

USING PERFORMANCE MONITORING EVENTS
Whether the line is locally or remotely “homed” it has to be written back to dram
before the originating GQ receives the line, so it always appears to come from a QHL.
The RFO does not do this. However, when responding to a remote RFO (SnpInvOwn)
and the line is in an S or F state, the cacheline gets invalidated and the line is sent
from the QHL. The point is that the data source might not always be so obvious.

B.2.7 Measuring Bandwidth From the Uncore
Read bandwidth can be measured on a per core basis using events like
OFFCORE_RESPONSE_0.DATA_IN.LOCAL_DRAM and
OFFCORE_RESPONSE_0.DATA_IN.REMOTE_DRAM. The total bandwidth includes
writes and these cannot be monitored from the core as they are mostly caused by
evictions of modified lines in the L3. Thus a line used and modified by one core can
end up being written back to dram when it is evicted due to a read on another core
doing some completely unrelated task. Modified cached lines and writebacks of
uncached lines (e.g. written with non temporal streaming stores) are handled differ-
ently in the uncore and their writebacks increment various events in different ways.

All full lines written to DRAM are counted by the UNC_IMC_WRITES.FULL.* events.
This includes the writebacks of modified cached lines and the writes of uncached
lines, for example generated by non-temporal SSE stores. The uncached line write-
backs from a remote socket will be counted by
UNC_QHL_REQUESTS.REMOTE_WRITES. The uncached writebacks from the local
cores are not counted by UNC_QHL_REQUESTS.LOCAL_WRITES, as this event only
counts writebacks of locally cached lines.

The UNC_IMC_NORMAL_READS.* events only count the reads. The
UNC_QHL_REQUESTS.LOCAL_READS and the
UNC_QHL_REQUESTS.REMOTE_READS count the reads and the “InvtoE” transac-
tions, which are issued for the uncacheable writes, eg USWC/UC writes. This allows
the evaluation of the uncacheable writes, by computing the difference of
UNC_QHL_REQUESTS.LOCAL_READS +

UNC_QHL_REQUESTS.REMOTE_READS – UNC_IMC_NORMAL_READS.ANY.

These uncore PMU events that are useful for bandwidth evaluation are listed under
event code 20H, 2CH, 2FH in Appendix A, “Performance Monitoring Events” of Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

B.3 USING PERFORMANCE EVENTS OF INTEL® CORE™
SOLO AND INTEL® CORE™ DUO PROCESSORS

There are performance events specific to the microarchitecture of Intel Core Solo and
Intel Core Duo processors. See also: Appendix A of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B).
B-39

USING PERFORMANCE MONITORING EVENTS
B.3.1 Understanding the Results in a Performance Counter
Each performance event detects a well-defined microarchitectural condition occur-
ring in the core while the core is active. A core is active when:

• It’s running code (excluding the halt instruction).

• It’s being snooped by the other core or a logical processor on the platform. This
can also happen when the core is halted.

Some microarchitectural conditions are applicable to a sub-system shared by more
than one core and some performance events provide an event mask (or unit mask)
that allows qualification at the physical processor boundary or at bus agent
boundary.

Some events allow qualifications that permit the counting of microarchitectural
conditions associated with a particular core versus counts from all cores in a physical
processor (see L2 and bus related events in Appendix A of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B).

When a multi-threaded workload does not use all cores continuously, a performance
counter counting a core-specific condition may progress to some extent on the halted
core and stop progressing or a unit mask may be qualified to continue counting
occurrences of the condition attributed to either processor core. Typically, one can
adjust the highest two bits (bits 15:14 of the IA32_PERFEVTSELx MSR) in the unit
mask field to distinguish such asymmetry (See Chapter 18, “Debugging and Perfor-
mance Monitoring,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B).

There are three cycle-counting events which will not progress on a halted core, even
if the halted core is being snooped. These are: Unhalted core cycles, Unhalted refer-
ence cycles, and Unhalted bus cycles. All three events are detected for the unit
selected by event 3CH.

Some events detect microarchitectural conditions but are limited in their ability to
identify the originating core or physical processor. For example, bus_drdy_clocks
may be programmed with a unit mask of 20H to include all agents on a bus. In this
case, the performance counter in each core will report nearly identical values. Perfor-
mance tools interpreting counts must take into account that it is only necessary to
equate bus activity with the event count from one core (and not use not the sum
from each core).

The above is also applicable when the core-specificity sub field (bits 15:14 of
IA32_PERFEVTSELx MSR) within an event mask is programmed with 11B. The result
of reported by performance counter on each core will be nearly identical.

B.3.2 Ratio Interpretation
Ratios of two events are useful for analyzing various characteristics of a workload. It
may be possible to acquire such ratios at multiple granularities, for example: (1) per-
B-40

USING PERFORMANCE MONITORING EVENTS
application thread, (2) per logical processor, (3) per core, and (4) per physical
processor.

The first ratio is most useful from a software development perspective, but requires
multi-threaded applications to manage processor affinity explicitly for each applica-
tion thread. The other options provide insights on hardware utilization.

In general, collect measurements (for all events in a ratio) in the same run. This
should be done because:

• If measuring ratios for a multi-threaded workload, getting results for all events in
the same run enables you to understand which event counter values belongs to
each thread.

• Some events, such as writebacks, may have non-deterministic behavior for
different runs. In such a case, only measurements collected in the same run yield
meaningful ratio values.

B.3.3 Notes on Selected Events
This section provides event-specific notes for interpreting performance events listed
in Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B.

• L2_Reject_Cycles, event number 30H — This event counts the cycles during
which the L2 cache rejected new access requests.

• L2_No_Request_Cycles, event number 32H — This event counts cycles
during which no requests from the L1 or prefetches to the L2 cache were issued.

• Unhalted_Core_Cycles, event number 3C, unit mask 00H — This event
counts the smallest unit of time recognized by an active core.

In many operating systems, the idle task is implemented using HLT instruction.
In such operating systems, clock ticks for the idle task are not counted. A
transition due to Enhanced Intel SpeedStep Technology may change the
operating frequency of a core. Therefore, using this event to initiate time-based
sampling can create artifacts.

• Unhalted_Ref_Cycles, event number 3C, unit mask 01H — This event
guarantees a uniform interval for each cycle being counted. Specifically, counts
increment at bus clock cycles while the core is active. The cycles can be
converted to core clock domain by multiplying the bus ratio which sets the core
clock frequency.

• Serial_Execution_Cycles, event number 3C, unit mask 02H — This event
counts the bus cycles during which the core is actively executing code (non-
halted) while the other core in the physical processor is halted.

• L1_Pref_Req, event number 4FH, unit mask 00H — This event counts the
number of times the Data Cache Unit (DCU) requests to prefetch a data cache
line from the L2 cache. Requests can be rejected when the L2 cache is busy.
Rejected requests are re-submitted.
B-41

USING PERFORMANCE MONITORING EVENTS
• DCU_Snoop_to_Share, event number 78H, unit mask 01H — This event
counts the number of times the DCU is snooped for a cache line needed by the
other core. The cache line is missing in the L1 instruction cache or data cache of
the other core; or it is set for read-only, when the other core wants to write to it.
These snoops are done through the DCU store port. Frequent DCU snoops may
conflict with stores to the DCU, and this may increase store latency and impact
performance.

• Bus_Not_In_Use, event number 7DH, unit mask 00H — This event counts
the number of bus cycles for which the core does not have a transaction waiting
for completion on the bus.

• Bus_Snoops, event number 77H, unit mask 00H — This event counts the
number of CLEAN, HIT, or HITM responses to external snoops detected on the
bus.

In a single-processor system, CLEAN and HIT responses are not likely to
happen. In a multiprocessor system this event indicates an L2 miss in one
processor that did not find the missed data on other processors.

In a single-processor system, an HITM response indicates that an L1 miss
(instruction or data) found the missed cache line in the other core in a modified
state. In a multiprocessor system, this event also indicates that an L1 miss
(instruction or data) found the missed cache line in another core in a modified
state.

B.4 DRILL-DOWN TECHNIQUES FOR PERFORMANCE
ANALYSIS

Software performance intertwines code and microarchitectural characteristics of the
processor. Performance monitoring events provide insights to these interactions.
Each microarchitecture often provides a large set of performance events that target
different sub-systems within the microarchitecture. Having a methodical approach to
select key performance events will likely improve a programmer’s understanding of
the performance bottlenecks and improve the efficiency of code-tuning effort.

Recent generations of Intel 64 and IA-32 processors feature microarchitectures using
an out-of-order execution engine. They are also accompanied by an in-order front
end and retirement logic that enforces program order. Superscalar hardware, buff-
ering and speculative execution often complicates the interpretation of performance
events and software-visible performance bottlenecks.

This section discusses a methodology of using performance events to drill down on
likely areas of performance bottleneck. By narrowed down to a small set of perfor-
mance events, the programmer can take advantage of Intel VTune Performance
Analyzer to correlate performance bottlenecks with source code locations and apply
coding recommendations discussed in Chapter 3 through Chapter 8. Although the
general principles of our method can be applied to different microarchitectures, this
B-42

USING PERFORMANCE MONITORING EVENTS
section will use performance events available in processors based on Intel Core
microarchitecture for simplicity.

Performance tuning usually centers around reducing the time it takes to complete a
well-defined workload. Performance events can be used to measure the elapsed time
between the start and end of a workload. Thus, reducing elapsed time of completing
a workload is equivalent to reducing measured processor cycles.

The drill-down methodology can be summarized as four phases of performance event
measurements to help characterize interactions of the code with key pipe stages or
sub-systems of the microarchitecture. The relation of the performance event drill-
down methodology to the software tuning feedback loop is illustrated in Figure B-13.

Typically, the logic in performance monitoring hardware measures microarchitectural
conditions that varies across different counting domains, ranging from cycles, micro-
ops, address references, instances, etc. The drill-down methodology attempts to

Figure B-13. Performance Events Drill-Down and Software Tuning Feedback Loop
B-43

USING PERFORMANCE MONITORING EVENTS
provide an intuitive, cycle-based view across different phases by making suitable
approximations that are described below:

• Total cycle measurement — This is the start to finish view of total number of
cycle to complete the workload of interest. In typical performance tuning
situations, the metric Total_cycles can be measured by the event
CPU_CLK_UNHALTED.CORE. See Appendix A, “Performance Monitoring Events,”
of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B).

• Cycle composition at issue port — The reservation station (RS) dispatches
micro-ops for execution so that the program can make forward progress. Hence
the metric Total_cycles can be decomposed as consisting of two exclusive
components: Cycles_not_issuing_uops representing cycles that the RS is not
issuing micro-ops for execution, and Cycles_issuing_uops cycles that the RS is
issuing micro-ops for execution. The latter component includes μops in the
architected code path or in the speculative code path.

• Cycle composition of OOO execution — The out-of-order engine provides
multiple execution units that can execute μops in parallel. If one execution unit
stalls, it does not necessarily imply the program execution is stalled. Our
methodology attempts to construct a cycle-composition view that approximates
the progress of program execution. The three relevant metrics are:
Cycles_stalled, Cycles_not_retiring_uops, and Cycles_retiring_uops.

• Execution stall analysis — From the cycle compositions of overall program
execution, the programmer can narrow down the selection of performance
events to further pin-point unproductive interaction between the workload and a
micro-architectural sub-system.

When cycles lost to a stalled microarchitectural sub-system, or to unproductive spec-
ulative execution are identified, the programmer can use VTune Analyzer to correlate
each significant performance impact to source code location. If the performance
impact of stalls or misprediction is insignificant, VTune can also identify the source
locations of hot functions, so the programmer can evaluate the benefits of vectoriza-
tion on those hot functions.

B.4.1 Cycle Composition at Issue Port
Recent processor microarchitectures employ out-of-order engines that execute
streams of μops natively, while decoding program instructions into μops in its front
end. The metric Total_cycles alone, is opaque with respect to decomposing cycles
that are productive or non-productive for program execution. To establish a consis-
tent cycle-based decomposition, we construct two metrics that can be measured
using performance events available in processors based on Intel Core microarchitec-
ture. These are:

• Cycles_not_issuing_uops — This can be measured by the event
RS_UOPS_DISPATCHED, setting the INV bit and specifying a counter mask
(CMASK) value of 1 in the target performance event select (IA32_PERFEVSELx)
MSR (See Chapter 18 of the Intel® 64 and IA-32 Architectures Software
B-44

USING PERFORMANCE MONITORING EVENTS
Developer’s Manual, Volume 3B). In VTune Analyzer, the special values for
CMASK and INV is already configured for the VTune event name
RS_UOPS_DISPATCHED.CYCLES_NONE.

• Cycles_issuing_uops — This can be measured using the event
RS_UOPS_DISPATCHED, clear the INV bit and specifying a counter mask
(CMASK) value of 1 in the target performance event select MSR

Note the cycle decomposition view here is approximate in nature; it does not distin-
guish specificities, such as whether the RS is full or empty, transient situations of RS
being empty but some in-flight uops is getting retired.

B.4.2 Cycle Composition of OOO Execution
In an OOO engine, speculative execution is an important part of making forward
progress of the program. But speculative execution of μops in the shadow of mispre-
dicted code path represent un-productive work that consumes execution resources
and execution bandwidth.

Cycles_not_issuing_uops, by definition, represents the cycles that the OOO engine is
stalled (Cycles_stalled). As an approximation, this can be interpreted as the cycles
that the program is not making forward progress.

The μops that are issued for execution do not necessarily end in retirement. Those
μops that do not reach retirement do not help forward progress of program execu-
tion. Hence, a further approximation is made in the formalism of decomposition of
Cycles_issuing_uops into:

• Cycles_non_retiring_uops — Although there isn’t a direct event to measure
the cycles associated with non-retiring μops, we will derive this metric from
available performance events, and several assumptions:

— A constant issue rate of μops flowing through the issue port. Thus, we define:
uops_rate” = “Dispatch_uops/Cycles_issuing_uops, where Dispatch_uops
can be measured with RS_UOPS_DISPATCHED, clearing the INV bit and the
CMASK.

— We approximate the number of non-productive, non-retiring μops by
[non_productive_uops = Dispatch_uops - executed_retired_uops], where
executed_retired_uops represent productive μops contributing towards
forward progress that consumed execution bandwidth.

— The executed_retired_uops can be approximated by the sum of two contribu-
tions: num_retired_uops (measured by the event UOPS_RETIRED.ANY) and
num_fused_uops (measured by the event UOPS_RETIRED.FUSED).

Thus, Cycles_non_retiring_uops = non_productive_uops / uops_rate.

• Cycles_retiring_uops — This can be derived from Cycles_retiring_uops =
num_retired_uops / uops_rate.

The cycle-decomposition methodology here does not distinguish situations where
productive uops and non-productive μops may be dispatched in the same cycle into
B-45

USING PERFORMANCE MONITORING EVENTS
the OOO engine. This approximation may be reasonable because heuristically high
contribution of non-retiring uops likely correlates to situations of congestions in the
OOO engine and subsequently cause the program to stall.

Evaluations of these three components: Cycles_non_retiring_uops, Cycles_stalled,
Cycles_retiring_uops, relative to the Total_cycles, can help steer tuning effort in the
following directions:

• If the contribution from Cycles_non_retiring_uops is high, focusing on code
layout and reducing branch mispredictions will be important.

• If both the contributions from Cycles_non_retiring_uops and Cycles_stalled are
insignificant, the focus for performance tuning should be directed to vectorization
or other techniques to improve retirement throughput of hot functions.

• If the contributions from Cycles_stalled is high, additional drill-down may be
necessary to locate bottlenecks that lies deeper in the microarchitecture pipeline.

B.4.3 Drill-Down on Performance Stalls
In some situations, it may be useful to evaluate cycles lost to stalls associated with
various stress points in the microarchitecture and sum up the contributions from
each candidate stress points. This approach implies a very gross simplification and
introduce complications that may be difficult to reconcile with the superscalar nature
and buffering in an OOO engine.

Due to the variations of counting domains associated with different performance
events, cycle-based estimation of performance impact at each stress point may carry
different degree of errors due to over-estimation of exposures or under-estimations.

Over-estimation is likely to occur when overall performance impact for a given cause
is estimated by multiplying the per-instance-cost to an event count that measures
the number of occurrences of that microarchitectural condition. Consequently, the
sum of multiple contributions of lost cycles due to different stress points may exceed
the more accurate metric Cycles_stalled.

However an approach that sums up lost cycles associated with individual stress point
may still be beneficial as an iterative indicator to measure the effectiveness of code
tuning loop effort when tuning code to fix the performance impact of each stress
point. The remaining of this sub-section will discuss a few common causes of perfor-
mance bottlenecks that can be counted by performance events and fixed by following
coding recommendations described in this manual.

The following items discuss several common stress points of the microarchitecture:

• L2 Miss Impact — An L2 load miss may expose the full latency of memory sub-
system. The latency of accessing system memory varies with different chipset,
generally on the order of more than a hundred cycles. Server chipset tend to
exhibit longer latency than desktop chipsets. The number L2 cache miss
references can be measured by MEM_LOAD_RETIRED.L2_LINE_MISS.
B-46

USING PERFORMANCE MONITORING EVENTS
An estimation of overall L2 miss impact by multiplying system memory latency
with the number of L2 misses ignores the OOO engine’s ability to handle multiple
outstanding load misses. Multiplication of latency and number of L2 misses imply
each L2 miss occur serially.

To improve the accuracy of estimating L2 miss impact, an alternative technique
should also be considered, using the event BUS_REQUEST_OUTSTANDING with a
CMASK value of 1. This alternative technique effectively measures the cycles that
the OOO engine is waiting for data from the outstanding bus read requests. It can
overcome the over-estimation of multiplying memory latency with the number of
L2 misses.

• L2 Hit Impact — Memory accesses from L2 will incur the cost of L2 latency (See
Table 2-3). The number cache line references of L2 hit can be measured by the
difference between two events: MEM_LOAD_RETIRED.L1D_LINE_MISS -
MEM_LOAD_RETIRED.L2_LINE_MISS.

An estimation of overall L2 hit impact by multiplying the L2 hit latency with the
number of L2 hit references ignores the OOO engine’s ability to handle multiple
outstanding load misses.

• L1 DTLB Miss Impact — The cost of a DTLB lookup miss is about 10 cycles. The
event MEM_LOAD_RETIRED.DTLB_MISS measures the number of load micro-ops
that experienced a DTLB miss.

• LCP Impact — The overall impact of LCP stalls can be directly measured by the
event ILD_STALLS. The event ILD_STALLS measures the number of times the
slow decoder was triggered, the cost of each instance is 6 cycles

• Store forwarding stall Impact — When a store forwarding situation does not
meet address or size requirements imposed by hardware, a stall occurs. The
delay varies for different store forwarding stall situations. Consequently, there
are several performance events that provide fine-grain specificity to detect
different store-forwarding stall conditions. These include:

— A load blocked by preceding store to unknown address: This situation can be
measure by the event Load_Blocks.Sta. The per-instance cost is about 5
cycles.

— Load partially overlaps with proceeding store or 4-KByte aliased address
between a load and a proceeding store: these two situations can be
measured by the event Load_Blocks.Overlap_store.

— A load spanning across cache line boundary: This can be measured by
Load_Blocks.Until_Retire. The per-instance cost is about 20 cycles.

B.5 EVENT RATIOS FOR INTEL CORE
MICROARCHITECTURE

Appendix B.6 provides examples of using performance events to quickly diagnose
performance bottlenecks. This section provides additional information on using
B-47

USING PERFORMANCE MONITORING EVENTS
performance events to evaluate metrics that can help in wide range of performance
analysis, workload characterization, and performance tuning. Note that many perfor-
mance event names in the Intel Core microarchitecture carry the format of
XXXX.YYY. this notation derives from the general convention that XXXX typically
corresponds to a unique event select code in the performance event select register
(IA32_PERFEVSELx), while YYY corresponds to a unique sub-event mask that
uniquely defines a specific microarchitectural condition (See Chapter 18 and
Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B).

B.5.1 Clocks Per Instructions Retired Ratio (CPI)
1. Clocks Per Instruction Retired Ratio (CPI): CPU_CLK_UNHALTED.CORE /

INST_RETIRED.ANY.

The Intel Core microarchitecture is capable of reaching CPI as low as 0.25 in ideal
situations. But most of the code has higher CPI The greater value of CPI for a given
workload indicate it has more opportunity for code tuning to improve performance.
The CPI is an overall metric, it does not provide specificity of what microarchitectural
sub-system may be contributing to a high CPI value.

The following subsections defines a list of event ratios that are useful to characterize
interactions with the front end, execution, and memory.

B.5.2 Front-end Ratios
2. RS Full Ratio: RESOURCE_STALLS.RS_FULL / CPU_CLK_UNHALTED.CORE * 100

3. ROB Full Ratio: RESOURCE_STALLS.ROB_FULL / CPU_CLK_UNHALTED.CORE *
100

4. Load or Store Buffer Full Ratio: RESOURCE_STALLS.LD_ST /
CPU_CLK_UNHALTED.CORE * 100

When there is a low value for the ROB Full Ratio, RS Full Ratio, and Load Store Buffer
Full Ratio, and high CPI it is likely that the front end cannot provide instructions and
micro-ops at a rate high enough to fill the buffers in the out-of-order engine, and
therefore it is starved waiting for micro-ops to execute. In this case check further for
other front end performance issues.

B.5.2.1 Code Locality
5. Instruction Fetch Stall: CYCLES_L1I_MEM_STALLED /

CPU_CLK_UNHALTED.CORE * 100

The Instruction Fetch Stall ratio is the percentage of cycles during which the Instruc-
tion Fetch Unit (IFU) cannot provide cache lines for decoding due to cache and
Instruction TLB (ITLB) misses. A high value for this ratio indicates potential opportu-
B-48

USING PERFORMANCE MONITORING EVENTS
nities to improve performance by reducing the working set size of code pages and
instructions being executed, hence improving code locality.

6. ITLB Miss Rate: ITLB_MISS_RETIRED / INST_RETIRED.ANY

A high ITLB Miss Rate indicates that the executed code is spread over too many
pages and cause many Instructions TLB misses. Retired ITLB misses cause the pipe-
line to naturally drain, while the miss stalls fetching of more instructions.

7. L1 Instruction Cache Miss Rate: L1I_MISSES / INST_RETIRED.ANY

A high value for L1 Instruction Cache Miss Rate indicates that the code working set is
bigger than the L1 instruction cache. Reducing the code working set may improve
performance.

8. L2 Instruction Cache Line Miss Rate: L2_IFETCH.SELF.I_STATE /
INST_RETIRED.ANY

L2 Instruction Cache Line Miss Rate higher than zero indicates instruction cache line
misses from the L2 cache may have a noticeable performance impact of program
performance.

B.5.2.2 Branching and Front-end
9. BACLEAR Performance Impact: 7 * BACLEARS / CPU_CLK_UNHALTED.CORE

A high value for BACLEAR Performance Impact ratio usually indicates that the code
has many branches such that they cannot be consumed by the Branch Prediction
Unit.

10. Taken Branch Bubble: (BR_TKN_BUBBLE_1+BR_TKN_BUBBLE_2) /
CPU_CLK_UNHALTED.CORE

A high value for Taken Branch Bubble ratio indicates that the code contains many
taken branches coming one after the other and cause bubbles in the front-end. This
may affect performance only if it is not covered by execution latencies and stalls later
in the pipe.

B.5.2.3 Stack Pointer Tracker
11. ESP Synchronization: ESP.SYNCH / ESP.ADDITIONS

The ESP Synchronization ratio calculates the ratio of ESP explicit use (for example by
load or store instruction) and implicit uses (for example by PUSH or POP instruction).
The expected ratio value is 0.2 or lower. If the ratio is higher, consider rearranging
your code to avoid ESP synchronization events.

B.5.2.4 Macro-fusion
12. Macro-Fusion: UOPS_RETIRED.MACRO_FUSION / INST_RETIRED.ANY
B-49

USING PERFORMANCE MONITORING EVENTS
The Macro-Fusion ratio calculates how many of the retired instructions were fused to
a single micro-op. You may find this ratio is high for a 32-bit binary executable but
significantly lower for the equivalent 64-bit binary, and the 64-bit binary performs
slower than the 32-bit binary. A possible reason is the 32-bit binary benefited from
macro-fusion significantly.

B.5.2.5 Length Changing Prefix (LCP) Stalls
13. LCP Delays Detected: ILD_STALL / CPU_CLK_UNHALTED.CORE

A high value of the LCP Delays Detected ratio indicates that many Length Changing
Prefix (LCP) delays occur in the measured code.

B.5.2.6 Self Modifying Code Detection
14. Self Modifying Code Clear Performance Impact: MACHINE_NUKES.SMC * 150 /

CPU_CLK_UNHALTED.CORE * 100

A program that writes into code sections and shortly afterwards executes the gener-
ated code may incur severe penalties. Self Modifying Code Performance Impact esti-
mates the percentage of cycles that the program spends on self-modifying code
penalties.

B.5.3 Branch Prediction Ratios
Appendix B.7.2.2, discusses branching that impacts the front-end performance. This
section describes event ratios that are commonly used to characterize branch
mispredictions.

B.5.3.1 Branch Mispredictions
15. Branch Misprediction Performance Impact: RESOURCE_STALLS.BR_MISS_CLEAR

/ CPU_CLK_UNHALTED.CORE * 100

With the Branch Misprediction Performance Impact, you can tell the percentage of
cycles that the processor spends in recovering from branch mispredictions.

16. Branch Misprediction per Micro-Op Retired:
BR_INST_RETIRED.MISPRED/UOPS_RETIRED.ANY

The ratio Branch Misprediction per Micro-Op Retired indicates if the code suffers from
many branch mispredictions. In this case, improving the predictability of branches
can have a noticeable impact on the performance of your code.

In addition, the performance impact of each branch misprediction might be high. This
happens if the code prior to the mispredicted branch has high CPI, such as cache
misses, which cannot be parallelized with following code due to the branch mispre-
B-50

USING PERFORMANCE MONITORING EVENTS
diction. Reducing the CPI of this code will reduce the misprediction performance
impact. See other ratios to identify these cases.

You can use the precise event BR_INST_RETIRED.MISPRED to detect the actual
targets of the mispredicted branches. This may help you to identify the mispredicted
branch.

B.5.3.2 Virtual Tables and Indirect Calls
17. Virtual Table Usage: BR_IND_CALL_EXEC / INST_RETIRED.ANY

A high value for the ratio Virtual Table Usage indicates that the code includes many
indirect calls. The destination address of an indirect call is hard to predict.

18. Virtual Table Misuse: BR_CALL_MISSP_EXEC / BR_INST_RETIRED.MISPRED

A high value of Branch Misprediction Performance Impact ratio (Ratio 15) together
with high Virtual Table Misuse ratio indicate that significant time is spent due to
mispredicted indirect function calls.

In addition to explicit use of function pointers in C code, indirect calls are used for
implementing inheritance, abstract classes, and virtual methods in C++.

B.5.3.3 Mispredicted Returns
19. Mispredicted Return Instruction Rate: BR_RET_MISSP_EXEC/BR_RET_EXEC

The processor has a special mechanism that tracks CALL-RETURN pairs. The
processor assumes that every CALL instruction has a matching RETURN instruction.
If a RETURN instruction restores a return address, which is not the one stored during
the matching CALL, the code incurs a misprediction penalty.

B.5.4 Execution Ratios
This section covers event ratios that can provide insights to the interactions of micro-
ops with RS, ROB, execution units, and so forth.

B.5.4.1 Resource Stalls
A high value for the RS Full Ratio (Ratio 2) indicates that the Reservation Station (RS)
often gets full with μops due to long dependency chains. The μops that get into the
RS cannot execute because they wait for their operands to be computed by previous
μops, or they wait for a free execution unit to be executed. This prevents exploiting
the parallelism provided by the multiple execution units.

A high value for the ROB Full Ratio (Ratio 3) indicates that the reorder buffer (ROB)
often gets full with μops. This usually implies on long latency operations, such as L2
cache demand misses.
B-51

USING PERFORMANCE MONITORING EVENTS
B.5.4.2 ROB Read Port Stalls
20. ROB Read Port Stall Rate: RAT_STALLS.ROB_READ_PORT /

CPU_CLK_UNHALTED.CORE

The ratio ROB Read Port Stall Rate identifies ROB read port stalls. However it should
be used only if the number of resource stalls, as indicated by Resource Stall Ratio, is
low.

B.5.4.3 Partial Register Stalls
21. Partial Register Stalls Ratio: RAT_STALLS.PARTIAL_CYCLES /

CPU_CLK_UNHALTED.CORE*100

Frequent accesses to registers that cause partial stalls increase access latency and
decrease performance. Partial Register Stalls Ratio is the percentage of cycles when
partial stalls occur.

B.5.4.4 Partial Flag Stalls
22. Partial Flag Stalls Ratio:RAT_STALLS.FLAGS / CPU_CLK_UNHALTED.CORE

Partial flag stalls have high penalty and they can be easily avoided. However, in some
cases, Partial Flag Stalls Ratio might be high although there are no real flag stalls.
There are a few instructions that partially modify the RFLAGS register and may cause
partial flag stalls. The most popular are the shift instructions (SAR, SAL, SHR, and
SHL) and the INC and DEC instructions.

B.5.4.5 Bypass Between Execution Domains
23. Delayed Bypass to FP Operation Rate: DELAYED_BYPASS.FP /

CPU_CLK_UNHALTED.CORE

24. Delayed Bypass to SIMD Operation Rate: DELAYED_BYPASS.SIMD /
CPU_CLK_UNHALTED.CORE

25. Delayed Bypass to Load Operation Rate: DELAYED_BYPASS.LOAD /
CPU_CLK_UNHALTED.CORE

Domain bypass adds one cycle to instruction latency. To identify frequent domain
bypasses in the code you can use the above ratios.

B.5.4.6 Floating Point Performance Ratios
26. Floating Point Instructions Ratio: X87_OPS_RETIRED.ANY / INST_RETIRED.ANY

* 100

Significant floating-point activity indicates that specialized optimizations for floating-
point algorithms may be applicable.
B-52

USING PERFORMANCE MONITORING EVENTS
27. FP Assist Performance Impact: FP_ASSIST * 80 / CPU_CLK_UNHALTED.CORE *
100

Floating Point assist is activated for non-regular FP values like denormals and NANs.
FP assist is extremely slow compared to regular FP execution. Different assists incur
different penalties. FP Assist Performance Impact estimates the overall impact.

28. Divider Busy: IDLE_DURING_DIV / CPU_CLK_UNHALTED.CORE * 100

A high value for the Divider Busy ratio indicates that the divider is busy and no other
execution unit or load operation is in progress for many cycles. Using this ratio
ignores L1 data cache misses and L2 cache misses that can be executed in parallel
and hide the divider penalty.

29. Floating-Point Control Word Stall Ratio: RESOURCE_STALLS.FPCW /
CPU_CLK_UNHALTED.CORE * 100

Frequent modifications to the Floating-Point Control Word (FPCW) might significantly
decrease performance. The main reason for changing FPCW is for changing rounding
mode when doing FP to integer conversions.

B.5.5 Memory Sub-System - Access Conflicts Ratios
A high value for Load or Store Buffer Full Ratio (Ratio 4) indicates that the load buffer
or store buffer are frequently full, hence new micro-ops cannot enter the execution
pipeline. This can reduce execution parallelism and decrease performance.

30. Load Rate: L1D_CACHE_LD.MESI / CPU_CLK_UNHALTED.CORE

One memory read operation can be served by a core each cycle. A high “Load Rate”
indicates that execution may be bound by memory read operations.

31. Store Order Block: STORE_BLOCK.ORDER / CPU_CLK_UNHALTED.CORE * 100

Store Order Block ratio is the percentage of cycles that store operations, which miss
the L2 cache, block committing data of later stores to the memory sub-system. This
behavior can further cause the store buffer to fill up (see Ratio 4).

B.5.5.1 Loads Blocked by the L1 Data Cache
32. Loads Blocked by L1 Data Cache Rate:

LOAD_BLOCK.L1D/CPU_CLK_UNHALTED.CORE

A high value for “Loads Blocked by L1 Data Cache Rate” indicates that load opera-
tions are blocked by the L1 data cache due to lack of resources, usually happening as
a result of many simultaneous L1 data cache misses.

B.5.5.2 4K Aliasing and Store Forwarding Block Detection
33. Loads Blocked by Overlapping Store Rate:

LOAD_BLOCK.OVERLAP_STORE/CPU_CLK_UNHALTED.CORE
B-53

USING PERFORMANCE MONITORING EVENTS
4K aliasing and store forwarding block are two different scenarios in which loads are
blocked by preceding stores due to different reasons. Both scenarios are detected by
the same event: LOAD_BLOCK.OVERLAP_STORE. A high value for “Loads Blocked by
Overlapping Store Rate” indicates that either 4K aliasing or store forwarding block
may affect performance.

B.5.5.3 Load Block by Preceding Stores
34. Loads Blocked by Unknown Store Address Rate: LOAD_BLOCK.STA /

CPU_CLK_UNHALTED.CORE

A high value for “Loads Blocked by Unknown Store Address Rate” indicates that loads
are frequently blocked by preceding stores with unknown address and implies perfor-
mance penalty.

35. Loads Blocked by Unknown Store Data Rate: LOAD_BLOCK.STD /
CPU_CLK_UNHALTED.CORE

A high value for “Loads Blocked by Unknown Store Data Rate” indicates that loads
are frequently blocked by preceding stores with unknown data and implies perfor-
mance penalty.

B.5.5.4 Memory Disambiguation
The memory disambiguation feature of Intel Core microarchitecture eliminates most
of the non-required load blocks by stores with unknown address. When this feature
fails (possibly due to flaky load - store disambiguation cases) the event
LOAD_BLOCK.STA will be counted and also MEMORY_DISAMBIGUATION.RESET.

B.5.5.5 Load Operation Address Translation
36. L0 DTLB Miss due to Loads - Performance Impact: DTLB_MISSES.L0_MISS_LD *

2 / CPU_CLK_UNHALTED.CORE

High number of DTLB0 misses indicates that the data set that the workload uses
spans a number of pages that is bigger than the DTLB0. The high number of misses
is expected to impact workload performance only if the CPI (Ratio 1) is low - around
0.8. Otherwise, it is likely that the DTLB0 miss cycles are hidden by other latencies.

B.5.6 Memory Sub-System - Cache Misses Ratios

B.5.6.1 Locating Cache Misses in the Code
Intel Core microarchitecture provides you with precise events for retired load instruc-
tions that miss the L1 data cache or the L2 cache. As precise events they provide the
instruction pointer of the instruction following the one that caused the event. There-
B-54

USING PERFORMANCE MONITORING EVENTS
fore the instruction that comes immediately prior to the pointed instruction is the one
that causes the cache miss. These events are most helpful to quickly identify on
which loads to focus to fix a performance problem. The events are:

MEM_LOAD_RETIRE.L1D_MISS

MEM_LOAD_RETIRE.L1D_LINE_MISS

MEM_LOAD_RETIRE.L2_MISS

MEM_LOAD_RETIRE.L2_LINE_MISS

B.5.6.2 L1 Data Cache Misses
37. L1 Data Cache Miss Rate: L1D_REPL / INST_RETIRED.ANY

A high value for L1 Data Cache Miss Rate indicates that the code misses the L1 data
cache too often and pays the penalty of accessing the L2 cache. See also Loads
Blocked by L1 Data Cache Rate (Ratio 32).

You can count separately cache misses due to loads, stores, and locked operations
using the events L1D_CACHE_LD.I_STATE, L1D_CACHE_ST.I_STATE, and
L1D_CACHE_LOCK.I_STATE, accordingly.

B.5.6.3 L2 Cache Misses
38. L2 Cache Miss Rate: L2_LINES_IN.SELF.ANY / INST_RETIRED.ANY

A high L2 Cache Miss Rate indicates that the running workload has a data set larger
than the L2 cache. Some of the data might be evicted without being used. Unless all
the required data is brought ahead of time by the hardware prefetcher or software
prefetching instructions, bringing data from memory has a significant impact on the
performance.

39. L2 Cache Demand Miss Rate: L2_LINES_IN.SELF.DEMAND / INST_RETIRED.ANY

A high value for L2 Cache Demand Miss Rate indicates that the hardware prefetchers
are not exploited to bring the data this workload needs. Data is brought from
memory when needed to be used and the workload bears memory latency for each
such access.

B.5.7 Memory Sub-system - Prefetching

B.5.7.1 L1 Data Prefetching
The event L1D_PREFETCH.REQUESTS is counted whenever the DCU attempts to
prefetch cache lines from the L2 (or memory) to the DCU. If you expect the DCU
prefetchers to work and to count this event, but instead you detect the event
MEM_LOAD_RETIRE.L1D_MISS, it might be that the IP prefetcher suffers from load
instruction address collision of several loads.
B-55

USING PERFORMANCE MONITORING EVENTS
B.5.7.2 L2 Hardware Prefetching
With the event L2_LD.SELF.PREFETCH.MESI you can count the number of prefetch
requests that were made to the L2 by the L2 hardware prefetchers. The actual
number of cache lines prefetched to the L2 is counted by the event
L2_LD.SELF.PREFETCH.I_STATE.

B.5.7.3 Software Prefetching
The events for software prefetching cover each level of prefetching separately.

40. Useful PrefetchNTA Ratio: SSE_PRE_MISS.NTA / SSE_PRE_EXEC.NTA * 100

41. Useful PrefetchT0 Ratio: SSE_PRE_MISS.L1 / SSE_PRE_EXEC.L1 * 100

42. Useful PrefetchT1 and PrefetchT2 Ratio: SSE_PRE_MISS.L2 / SSE_PRE_EXEC.L2
* 100

A low value for any of the prefetch usefulness ratios indicates that some of the SSE
prefetch instructions prefetch data that is already in the caches.

43. Late PrefetchNTA Ratio: LOAD_HIT_PRE / SSE_PRE_EXEC.NTA

44. Late PrefetchT0 Ratio: LOAD_HIT_PRE / SSE_PRE_EXEC.L1

45. Late PrefetchT1 and PrefetchT2 Ratio: LOAD_HIT_PRE / SSE_PRE_EXEC.L2

A high value for any of the late prefetch ratios indicates that software prefetch
instructions are issued too late and the load operations that use the prefetched data
are waiting for the cache line to arrive.

B.5.8 Memory Sub-system - TLB Miss Ratios
46. TLB miss penalty: PAGE_WALKS.CYCLES / CPU_CLK_UNHALTED.CORE * 100

A high value for the TLB miss penalty ratio indicates that many cycles are spent on
TLB misses. Reducing the number of TLB misses may improve performance. This
ratio does not include DTLB0 miss penalties (see Ratio 37).

The following ratios help to focus on the kind of memory accesses that cause TLB
misses most frequently See “ITLB Miss Rate” (Ratio 6) for TLB misses due to instruc-
tion fetch.

47. DTLB Miss Rate: DTLB_MISSES.ANY / INST_RETIRED.ANY

A high value for DTLB Miss Rate indicates that the code accesses too many data
pages within a short time, and causes many Data TLB misses.

48. DTLB Miss Rate due to Loads: DTLB_MISSES.MISS_LD / INST_RETIRED.ANY

A high value for DTLB Miss Rate due to Loads indicates that the code accesses loads
data from too many pages within a short time, and causes many Data TLB misses.
DTLB misses due to load operations may have a significant impact, since the DTLB
B-56

USING PERFORMANCE MONITORING EVENTS
miss increases the load operation latency. This ratio does not include DTLB0 miss
penalties (see Ratio 37).

To precisely locate load instructions that caused DTLB misses you can use the precise
event MEM_LOAD_RETIRE.DTLB_MISS.

49. DTLB Miss Rate due to Stores: DTLB_MISSES.MISS_ST / INST_RETIRED.ANY

A high value for DTLB Miss Rate due to Stores indicates that the code accesses too
many data pages within a short time, and causes many Data TLB misses due to store
operations. These misses can impact performance if they do not occur in parallel to
other instructions. In addition, if there are many stores in a row, some of them
missing the DTLB, it may cause stalls due to full store buffer.

B.5.9 Memory Sub-system - Core Interaction

B.5.9.1 Modified Data Sharing
50. Modified Data Sharing Ratio: EXT_SNOOP.ALL_AGENTS.HITM /

INST_RETIRED.ANY

Frequent occurrences of modified data sharing may be due to two threads using and
modifying data laid in one cache line. Modified data sharing causes L2 cache misses.
When it happens unintentionally (aka false sharing) it usually causes demand misses
that have high penalty. When false sharing is removed code performance can
dramatically improve.

51. Local Modified Data Sharing Ratio: EXT_SNOOP.THIS_AGENT.HITM /
INST_RETIRED.ANY

Modified Data Sharing Ratio indicates the amount of total modified data sharing
observed in the system. For systems with several processors you can use Local Modi-
fied Data Sharing Ratio to indicates the amount of modified data sharing between
two cores in the same processor. (In systems with one processor the two ratios are
similar).

B.5.9.2 Fast Synchronization Penalty
52. Locked Operations Impact: (L1D_CACHE_LOCK_DURATION + 20 *

L1D_CACHE_LOCK.MESI) / CPU_CLK_UNHALTED.CORE * 100

Fast synchronization is frequently implemented using locked memory accesses. A
high value for Locked Operations Impact indicates that locked operations used in the
workload have high penalty. The latency of a locked operation depends on the loca-
tion of the data: L1 data cache, L2 cache, other core cache or memory.
B-57

USING PERFORMANCE MONITORING EVENTS
B.5.9.3 Simultaneous Extensive Stores and Load Misses
53. Store Block by Snoop Ratio: (STORE_BLOCK.SNOOP /

CPU_CLK_UNHALTED.CORE) * 100

A high value for “Store Block by Snoop Ratio” indicates that store operations are
frequently blocked and performance is reduced. This happens when one core
executes a dense stream of stores while the other core in the processor frequently
snoops it for cache lines missing in its L1 data cache.

B.5.10 Memory Sub-system - Bus Characterization

B.5.10.1 Bus Utilization
54. Bus Utilization: BUS_TRANS_ANY.ALL_AGENTS * 2 / CPU_CLK_UNHALTED.BUS *

100

Bus Utilization is the percentage of bus cycles used for transferring bus transactions
of any type. In single processor systems most of the bus transactions carry data. In
multiprocessor systems some of the bus transactions are used to coordinate cache
states to keep data coherency.

55. Data Bus Utilization: BUS_DRDY_CLOCKS.ALL_AGENTS /
CPU_CLK_UNHALTED.BUS * 100

Data Bus Utilization is the percentage of bus cycles used for transferring data among
all bus agents in the system, including processors and memory. High bus utilization
indicates heavy traffic between the processor(s) and memory. Memory sub-system
latency can impact the performance of the program. For compute-intensive applica-
tions with high bus utilization, look for opportunities to improve data and code
locality. For other types of applications (for example, copying large amounts of data
from one memory area to another), try to maximize bus utilization.

56. Bus Not Ready Ratio: BUS_BNR_DRV.ALL_AGENTS * 2 /
CPU_CLK_UNHALTED.BUS * 100

Bus Not Ready Ratio estimates the percentage of bus cycles during which new bus
transactions cannot start. A high value for Bus Not Ready Ratio indicates that the bus
is highly loaded. As a result of the Bus Not Ready (BNR) signal, new bus transactions
might defer and their latency will have higher impact on program performance.

57. Burst Read in Bus Utilization: BUS_TRANS_BRD.SELF * 2 /
CPU_CLK_UNHALTED.BUS * 100

A high value for Burst Read in Bus Utilization indicates that bus and memory latency
of burst read operations may impact the performance of the program.

58. RFO in Bus Utilization: BUS_TRANS_RFO.SELF * 2 / CPU_CLK_UNHALTED.BUS *
100
B-58

USING PERFORMANCE MONITORING EVENTS
A high value for RFO in Bus Utilization indicates that latency of Read For Ownership
(RFO) transactions may impact the performance of the program. RFO transactions
may have a higher impact on the program performance compared to other burst read
operations (for example, as a result of loads that missed the L2). See also Ratio 31.

B.5.10.2 Modified Cache Lines Eviction
59. L2 Modified Lines Eviction Rate: L2_M_LINES_OUT.SELF.ANY /

INST_RETIRED.ANY

When a new cache line is brought from memory, an existing cache line, possibly
modified, is evicted from the L2 cache to make space for the new line. Frequent evic-
tions of modified lines from the L2 cache increase the latency of the L2 cache misses
and consume bus bandwidth.

60. Explicit WB in Bus Utilization: BUS_TRANS_WB.SELF * 2 /
CPU_CLK_UNHALTED.BUS*100

Explicit Write-back in Bus Utilization considers modified cache line evictions not only
from the L2 cache but also from the L1 data cache. It represents the percentage of
bus cycles used for explicit write-backs from the processor to memory.
B-59

USING PERFORMANCE MONITORING EVENTS
B-60

APPENDIX C
INSTRUCTION LATENCY AND THROUGHPUT

This appendix contains tables showing the latency and throughput are associated
with commonly used instructions1. The instruction timing data varies across proces-
sors family/models. It contains the following sections:

• Appendix C.1, “Overview” — Provides an overview of issues related to
instruction selection and scheduling.

• Appendix C.2, “Definitions” — Presents definitions.

• Appendix C.3, “Latency and Throughput” — Lists instruction throughput,
latency associated with commonly-used instruction.

C.1 OVERVIEW
This appendix provides information to assembly language programmers and
compiler writers. The information aids in the selection of instruction sequences (to
minimize chain latency) and in the arrangement of instructions (assists in hardware
processing). The performance impact of applying the information has been shown to
be on the order of several percent. This is for applications not dominated by other
performance factors, such as:

• cache miss latencies

• bus bandwidth

• I/O bandwidth

Instruction selection and scheduling matters when the programmer has already
addressed the performance issues discussed in Chapter 2:

• observe store forwarding restrictions

• avoid cache line and memory order buffer splits

• do not inhibit branch prediction

• minimize the use of xchg instructions on memory locations

1. Although instruction latency may be useful in some limited situations (e.g., a tight loop with a
dependency chain that exposes instruction latency), software optimization on super-scalar, out-
of-order microarchitecture, in general, will benefit much more on increasing the effective
throughput of the larger-scale code path. Coding techniques that rely on instruction latency
alone to influence the scheduling of instruction is likely to be sub-optimal as such coding tech-
nique is likely to interfere with the out-of-order machine or restrict the amount of instruction-
level parallelism.
 C-1

INSTRUCTION LATENCY AND THROUGHPUT
While several items on the above list involve selecting the right instruction, this
appendix focuses on the following issues. These are listed in priority order, though
which item contributes most to performance varies by application:

• Maximize the flow of μops into the execution core. Instructions which consist of
more than four μops require additional steps from microcode ROM. Instructions
with longer μop flows incur a delay in the front end and reduce the supply of μops
to the execution core.

In Pentium 4 and Intel Xeon processors, transfers to microcode ROM often reduce
how efficiently μops can be packed into the trace cache. Where possible, it is
advisable to select instructions with four or fewer μops. For example, a 32-bit
integer multiply with a memory operand fits in the trace cache without going to
microcode, while a 16-bit integer multiply to memory does not.

• Avoid resource conflicts. Interleaving instructions so that they don’t compete for
the same port or execution unit can increase throughput. For example, alternate
PADDQ and PMULUDQ (each has a throughput of one issue per two clock cycles).
When interleaved, they can achieve an effective throughput of one instruction
per cycle because they use the same port but different execution units. Selecting
instructions with fast throughput also helps to preserve issue port bandwidth,
hide latency and allows for higher software performance.

• Minimize the latency of dependency chains that are on the critical path. For
example, an operation to shift left by two bits executes faster when encoded as
two adds than when it is encoded as a shift. If latency is not an issue, the shift
results in a denser byte encoding.

In addition to the general and specific rules, coding guidelines and the instruction
data provided in this manual, you can take advantage of the software performance
analysis and tuning toolset available at http://developer.intel.com/software/prod-
ucts/index.htm. The tools include the Intel VTune Performance Analyzer, with its
performance-monitoring capabilities.

C.2 DEFINITIONS
The data is listed in several tables. The tables contain the following:

• Instruction Name — The assembly mnemonic of each instruction.

• Latency — The number of clock cycles that are required for the execution core to
complete the execution of all of the μops that form an instruction.

• Throughput — The number of clock cycles required to wait before the issue
ports are free to accept the same instruction again. For many instructions, the
throughput of an instruction can be significantly less than its latency.
C-2

http://developer.intel.com/software/products/index.htm
http://developer.intel.com/software/products/index.htm

INSTRUCTION LATENCY AND THROUGHPUT
C.3 LATENCY AND THROUGHPUT
This section presents the latency and throughput information for commonly-used
instructions including: MMX technology, Streaming SIMD Extensions, subsequent
generations of SIMD instruction extensions, and most of the frequently used general-
purpose integer and x87 floating-point instructions.

Due to the complexity of dynamic execution and out-of-order nature of the execution
core, the instruction latency data may not be sufficient to accurately predict realistic
performance of actual code sequences based on adding instruction latency data.

• Instruction latency data is useful when tuning a dependency chain. However,
dependency chains limit the out-of-order core’s ability to execute micro-ops in
parallel. Instruction throughput data are useful when tuning parallel code
unencumbered by dependency chains.

• Numeric data in the tables is:

— approximate and subject to change in future implementations of the microar-
chitecture.

— not meant to be used as reference for instruction-level performance
benchmarks. Comparison of instruction-level performance of micropro-
cessors that are based on different microarchitectures is a complex subject
and requires information that is beyond the scope of this manual.

Comparisons of latency and throughput data between different microarchitectures
can be misleading.

Appendix C.3.1 provides latency and throughput data for the register-to-register
instruction type. Appendix C.3.3 discusses how to adjust latency and throughput
specifications for the register-to-memory and memory-to-register instructions.

In some cases, the latency or throughput figures given are just one half of a clock.
This occurs only for the double-speed ALUs.

C.3.1 Latency and Throughput with Register Operands
Instruction latency and throughput data are presented in Table C-2 through
Table C-13. Tables include SSE4.1, Supplemental Streaming SIMD Extension 3,
Streaming SIMD Extension 3, Streaming SIMD Extension 2, Streaming SIMD Exten-
sion, MMX technology and most common Intel 64 and IA-32 instructions. Instruction
latency and throughput for different processor microarchitectures are in separate
columns.

Processor instruction timing data for Intel NetBurst microarchitecture is implementa-
tion specific; it can vary between model encodings (value = 3 and model < 2). Sepa-
rate sets of instruction latency and throughput are shown in the columns for CPUID
signature 0xF2n and 0xF3n. The column represented by 0xF3n also applies to Intel
processors with CPUID signature 0xF4n and 0xF6n. The notation 0xF2n represents
the hex value of the lower 12 bits of the EAX register reported by CPUID instruction
 C-3

INSTRUCTION LATENCY AND THROUGHPUT
with input value of EAX = 1; ‘F’ indicates the family encoding value is 15, ‘2’ indicates
the model encoding is 2, ‘n’ indicates it applies to any value in the stepping encoding.

The instruction timing for Pentium M processor with CPUID signature 0x6Dn is the
same as that of 0x69n.

Intel Core Solo and Intel Core Duo processors are represented by 06_0EH. Proces-
sors bases on 65 nm Intel Core microarchitecture are represented by 06_0FH.
Processors based on Enhanced Intel Core microarchitecture are represented by
06_17H and 06_1DH. CPUID family/stepping signatures of processors based on Intel
microarchitecture (Nehalem) starts with 06_1AH and include 06_1EH, and 06_2EH.

Availability of various SIMD extensions by CPUID’s “display_family“ and
“display_model“ are given in Table C-1.

Table C-1. Availability of SIMD Instruction Extensions by CPUID Signature
SIMD Instruction
Extensions

DisplayFamily_DisplayModel

06_1AH
06_1EH
06_1FH
06_2EH

06_17H
06_1DH

06_0FH 06_0EH 0F_06H 0F_04H 0F_03H

SSE4.2, POPCNT Yes No No No No No No

SSE4.1 Yes Yes No No No No No

SSSE3 Yes Yes Yes No No No No

SSE3 Yes Yes Yes Yes Yes Yes Yes

SSE2 Yes Yes Yes Yes Yes Yes Yes

SSE Yes Yes Yes Yes Yes Yes Yes

MMX Yes Yes Yes Yes Yes Yes Yes

Table C-2. SSE4.2 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_1AH, 06_1EH,
06_1FH, 06_2EH

06_1AH, 06_1EH,
06_2EH

CRC32 r32, r32 3 1

PCMPESTRI xmm1, xmm2, imm 7 2

PCMPESTRM xmm1, xmm2, imm 8 2

PCMPISTRI xmm1, xmm2, imm 7 2

PCMPISTRM xmm1, xmm2, imm 8 2
C-4

INSTRUCTION LATENCY AND THROUGHPUT
PCMPGTQ xmm1, xmm2 3 1

POPCNT r32, r32 3 1

Table C-3. SSE4.1 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_1AH,
06_1EH,
06_1FH,
06_2EH

06_17H
06_1DH

06_1AH,
06_1EH,
06_2EH

06_17H,
06_1DH

BLENDPD/S xmm1, xmm2, imm 1 1 1 1

BLENDVPD/S xmm1, xmm2 2 2 2 2

DPPD xmm1, xmm2 9 9 2 2

DPPS xmm1, xmm2 11 11 2 2

EXTRACTPS xmm1, xmm2, imm 2 5 1 1

INSERTPS xmm1, xmm2, imm 1 1 1 1

MPSADBW xmm1, xmm2, imm 4 4 1 2

PACKUSDW xmm1, xmm2 1 1 0.5 1

PBLENVB xmm1, xmm2 1 2 1 2

PBLENDW xmm1, xmm2, imm 1 1 1 1

PCMPEQQ xmm1, xmm2 1 1 0.5 1

PEXTRB/W/D reg, xmm1, imm 3 5 1 1

PHMINPOSUW xmm1,xmm2 3 1

PINSRB/W/D xmm1,reg, imm 2 4 1 1

PMAXSB/SD xmm1, xmm2 1 1 1 1

PMAXUW/UD xmm1, xmm2 1 1 1 1

PMINSB/SD xmm1, xmm2 1 1 1 1

PMINUW/UD xmm1, xmm2 1 1 1 1

PMOVSXBD/BW/BQ xmm1, xmm2 1 1 1 1

PMOVSXWD/WQ/DQ xmm1, xmm2 1 1 1 1

Table C-2. SSE4.2 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_1AH, 06_1EH,
06_1FH, 06_2EH

06_1AH, 06_1EH,
06_2EH
 C-5

INSTRUCTION LATENCY AND THROUGHPUT
PMOVZXBD/BW/BQ xmm1, xmm2 1 1 1 1

PMOVZXWD/WQ/DQ xmm1, xmm2 1 1 1 1

PMULDQ xmm1, xmm2 3 3 1 1

PMULLD xmm1, xmm2 6 5 2 2

PTEST xmm1, xmm2 2 2 1 1

ROUNDPD/PS xmm1, xmm2, imm 3 1 1 1

ROUNDSD/SS xmm1, xmm2, imm 3 1 1 1

Table C-4. Supplemental Streaming SIMD Extension 3 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_1AH,
06_1EH,
06_1FH,
06_2EH

06_17H
06_1DH

06_0FH 06_1AH,
06_1EH,
06_2EH

06_17H
06_1DH

06_0FH

PALIGNR mm1, mm2, imm 2 1

PALIGNR xmm1, xmm2, imm 1 1 2 1 1 1

PHADDD mm1, mm2 3 3 2 2

PHADDD xmm1, xmm2 3 3 5 1.5 2 3

PHADDW/PHADDSW mm1, mm2 3 5 2 4

PHADDW/PHADDSW xmm1, xmm2 3 3 6 1.5 2 4

PHSUBD mm1, mm2 3 3 2 2

PHSUBD xmm1, xmm2 3 3 5 1.5 2 3

PHSUBW/PHSUBSW mm1, mm2 3 5 2 4

PHSUBW/PHSUBSW xmm1, xmm2 3 3 6 1.5 2 4

PMADDUBSW mm1, mm2 3 3 1 1

PMADDUBSW xmm1, xmm2 3 3 3 1 1 1

PMULHRSW mm1, mm2 3 3 1 1

Table C-3. SSE4.1 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_1AH,
06_1EH,
06_1FH,
06_2EH

06_17H
06_1DH

06_1AH,
06_1EH,
06_2EH

06_17H,
06_1DH
C-6

INSTRUCTION LATENCY AND THROUGHPUT
PMULHRSW xmm1, xmm2 3 3 3 1 1 1

PSHUFB mm1, mm2 1 1 1 1

PSHUFB xmm1, xmm2 1 1 3 0.5 1 2

PSIGNB/PSIGND/PSIGNW mm1,
mm2

1 1 0.5 0.5

PSIGNB/PSIGND/PSIGNW xmm1,
xmm2

1 1 1 0.5 0.5 0.5

PABSB/PABSD/PABSW xmm1,
xmm2

1 1 1 0.5 0.5 0.5

Table C-5. Streaming SIMD Extension 3 SIMD Floating-point Instructions
Instruction Latency 1 Throughput Execution Unit

CPUID 0F_03H 0F_03H 0F_03H

ADDSUBPD/ADDSUBPS 5 2 FP_ADD

HADDPD/HADDPS 13 4 FP_ADD,FP_MISC

HSUBPD/HSUBPS 13 4 FP_ADD,FP_MISC

MOVDDUP xmm1, xmm2 4 2 FP_MOVE

MOVSHDUP xmm1, xmm2 6 2 FP_MOVE

MOVSLDUP xmm1, xmm2 6 2 FP_MOVE

See Appendix C.3.2, “Table Footnotes”

Table C-4. Supplemental Streaming SIMD Extension 3 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_1AH,
06_1EH,
06_1FH,
06_2EH

06_17H
06_1DH

06_0FH 06_1AH,
06_1EH,
06_2EH

06_17H
06_1DH

06_0FH
 C-7

INSTRUCTION LATENCY AND THROUGHPUT
Table C-5a. Streaming SIMD Extension 3 SIMD Floating-point Instructions
Instruction Latency1 Throughput

DisplayFamily_DisplayModel 06_1AH,
06_1EH,
06_1FH,
06_2EH

06_17H
06_1DH

06_0FH 06_1AH,
06_1EH,
06_2EH

06_17H
06_1DH

06_0FH

ADDSUBPD/ADDSUBPS 3 3 3 1 1 1

HADDPD xmm1, xmm2 5 6 5 2 1 2

HADDPS xmm1, xmm2 5 7 9 2 2 4

HSUBPD xmm1, xmm2 5 6 5 2 1 2

HSUBPS xmm1, xmm2 5 7 9 2 2 4

MOVDDUP xmm1, xmm2 1 1 1 1 1 1

MOVSHDUP xmm1, xmm2 2 1

MOVSLDUP xmm1, xmm2

Table C-6. Streaming SIMD Extension 2 128-bit Integer Instructions
Instruction Latency1 Throughput Execution Unit2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H

CVTDQ2PS3 xmm, xmm 5 5 2 2 FP_ADD

CVTPS2DQ3 xmm, xmm 5 5 2 2 FP_ADD

CVTTPS2DQ3 xmm, xmm 5 5 2 2 FP_ADD

MOVD xmm, r32 6 6 2 2 MMX_MISC,MMX_S
HFT

MOVD r32, xmm 10 10 1 1 FP_MOVE,
FP_MISC

MOVDQA xmm, xmm 6 6 1 1 FP_MOVE

MOVDQU xmm, xmm 6 6 1 1 FP_MOVE

MOVDQ2Q mm, xmm 8 8 2 2 FP_MOVE,
MMX_ALU

MOVQ2DQ xmm, mm 8 8 2 2 FP_MOVE,
MMX_SHFT

MOVQ xmm, xmm 2 2 2 2 MMX_SHFT

PACKSSWB/PACKSSDW/
PACKUSWB xmm, xmm

4 4 2 2 MMX_SHFT
C-8

INSTRUCTION LATENCY AND THROUGHPUT
PADDB/PADDW/PADDD xmm, xmm 2 2 2 2 MMX_ALU

PADDSB/PADDSW/
PADDUSB/PADDUSW
xmm, xmm

2 2 2 2 MMX_ALU

PADDQ mm, mm 2 2 1 1 FP_MISC

PSUBQ mm, mm 2 2 1 1 FP_MISC

PADDQ/ PSUBQ3 xmm, xmm 6 6 2 2 FP_MISC

PAND xmm, xmm 2 2 2 2 MMX_ALU

PANDN xmm, xmm 2 2 2 2 MMX_ALU

PAVGB/PAVGW xmm, xmm 2 2 2 2 MMX_ALU

PCMPEQB/PCMPEQD/
PCMPEQW xmm, xmm

2 2 2 2 MMX_ALU

PCMPGTB/PCMPGTD/PCMPGTW
xmm, xmm

2 2 2 2 MMX_ALU

PEXTRW r32, xmm, imm8 7 7 2 2 MMX_SHFT,
FP_MISC

PINSRW xmm, r32, imm8 4 4 2 2 MMX_SHFT,MMX_
MISC

PMADDWD xmm, xmm 9 8 2 2 FP_MUL

PMAX xmm, xmm 2 2 2 2 MMX_ALU

PMIN xmm, xmm 2 2 2 2 MMX_ALU

PMOVMSKB3 r32, xmm 7 7 2 2 FP_MISC

PMULHUW/PMULHW/
PMULLW3 xmm, xmm

9 8 2 2 FP_MUL

PMULUDQ mm, mm 9 8 1 FP_MUL

PMULUDQ xmm, xmm 9 8 2 2 FP_MUL

POR xmm, xmm 2 2 2 2 MMX_ALU

PSADBW xmm, xmm 4 4 2 2 MMX_ALU

PSHUFD xmm, xmm, imm8 4 4 2 2 MMX_SHFT

PSHUFHW xmm, xmm, imm8 2 2 2 2 MMX_SHFT

PSHUFLW xmm, xmm, imm8 2 2 2 2 MMX_SHFT

PSLLDQ xmm, imm8 4 4 2 2 MMX_SHFT

PSLLW/PSLLD/PSLLQ xmm,
xmm/imm8

2 2 2 2 MMX_SHFT

Table C-6. Streaming SIMD Extension 2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput Execution Unit2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H
 C-9

INSTRUCTION LATENCY AND THROUGHPUT
PSRAW/PSRAD xmm, xmm/imm8 2 2 2 2 MMX_SHFT

PSRLDQ xmm, imm8 4 4 2 2 MMX_SHFT

PSRLW/PSRLD/PSRLQ xmm,
xmm/imm8

2 2 2 2 MMX_SHFT

PSUBB/PSUBW/PSUBD xmm, xmm 2 2 2 2 MMX_ALU

PSUBSB/PSUBSW/PSUBUSB/PSUBU
SW xmm, xmm

2 2 2 2 MMX_ALU

PUNPCKHBW/PUNPCKHWD/PUNPC
KHDQ xmm, xmm

4 4 2 2 MMX_SHFT

PUNPCKHQDQ xmm, xmm 4 4 2 2 MMX_SHFT

PUNPCKLBW/PUNPCKLWD/PUNPCK
LDQ xmm, xmm

2 2 2 2 MMX_SHFT

PUNPCKLQDQ3 xmm, xmm 4 4 1 1 FP_MISC

PXOR xmm, xmm 2 2 2 2 MMX_ALU

See Appendix C.3.2, “Table Footnotes”

Table C-6a. Streaming SIMD Extension 2 128-bit Integer Instructions
Instruction Latency1 Throughput

CPUID

06_1A
/1E/1F
/2E

06_17H,
06_1DH

06_0F
H

06_0E
H

06_1A
/1E/1F
/2E

06_17H,
06_1DH

06_0F
H

06_0E
H

CVTDQ2PS xmm,
xmm

3 3 3 4 1 1 1 2

CVTPS2DQ xmm,
xmm

3 3 3 4 1 1 1 2

CVTTPS2DQ xmm,
xmm

3 3 3 4 1 1 1 2

MASKMOVDQU
xmm, xmm

8 2

MOVD xmm, r32 1 1 1 1 0.33 0.33 0.5 0.5

MOVD xmm, r64 1 1 N/A 0.33 0.5 N/A

MOVD r32, xmm 1 1 1 1 0.33 0.33 0.33 1

MOVD r64, xmm 1 1 N/A 0.33 0.33 N/A

Table C-6. Streaming SIMD Extension 2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput Execution Unit2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H
C-10

INSTRUCTION LATENCY AND THROUGHPUT
MOVDQA xmm,
xmm

1 1 1 1 0.33 0.33 0.33 1

MOVDQU xmm,
xmm

1 1 1 1 0.33 0.33 0.5 1

MOVDQ2Q mm,
xmm

1 1 1 0.33 0.33 0.5

MOVQ2DQ xmm,
mm

1 1 1 0.33 0.33 1 1

MOVQ xmm, xmm 1 1 1 0.33 0.33 0.33

PACKSSWB/PACKSS
DW/
PACKUSWB xmm,
xmm

1 1 2 2 0.5 1 2 2

PADDB/PADDW/PA
DDD xmm, xmm

1 1 1 1 0.5 0.5 0.33 1

PADDSB/PADDSW/
PADDUSB/PADDUS
W
xmm, xmm

1 1 1 1 0.5 0.5 0.33 1

PADDQ mm, mm 1 2 2 2 1 1 1 1

PSUBQ mm, mm 1 2 2 2 1 1 1 1

PADDQ/ PSUBQ3
xmm, xmm

1 2 2 3 1 1 1 2

PAND xmm, xmm 1 1 1 1 0.33 0.33 0.33 1

PANDN xmm, xmm 1 1 1 0.33 0.33 0.33 1

PAVGB/PAVGW
xmm, xmm

1 1 1 1 0.5 0.5 0.5 1

PCMPEQB/PCMPEQ
D/
PCMPEQW xmm,
xmm

1 1 1 1 0.5 0.5 0.33 1

PCMPGTB/PCMPGT
D/PCMPGTW xmm,
xmm

1 1 1 1 0.5 0.5 0.33 1

Table C-6a. Streaming SIMD Extension 2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput

CPUID

06_1A
/1E/1F
/2E

06_17H,
06_1DH

06_0F
H

06_0E
H

06_1A
/1E/1F
/2E

06_17H,
06_1DH

06_0F
H

06_0E
H

 C-11

INSTRUCTION LATENCY AND THROUGHPUT
PEXTRW r32, xmm,
imm8

3 2 3 1 1 1 2

PINSRW xmm, r32,
imm8

2 3 2 1 1 1 2

PMADDWD xmm,
xmm

3 3 3 4 1 1 1 2

PMADDUBSW xmm,
xmm

3 1

PMAX xmm, xmm 1 1 1 1 0.5 0.5 0.5 1

PMIN xmm, xmm 1 1 1 1 0.5 0.5 0.5 1

PMOVMSKB3 r32,
xmm

1 1 1 1 1 1

PMULHUW/PMULH
W/
PMULLW xmm, xmm

3 3 3 4 1 1 1 2

PMULUDQ mm, mm 3 3 3 4 1 1 1 1

PMULUDQ xmm,
xmm

3 3 3 8 1 1 1 2

POR xmm, xmm 1 1 1 1 0.33 0.33 0.33 1

PSADBW xmm, xmm 3 3 3 7 1 1 1 2

PSHUFD xmm, xmm,
imm8

1 1 2 2 0.5 1 1 2

PSHUFHW xmm,
xmm, imm8

1 1 1 1 0.5 1 1 1

PSHUFLW xmm,
xmm, imm8

1 1 1 1 0.5 1 1 1

PSLLDQ xmm, imm8 1 1 3 4 0.5 1 2 3

PSLLW/PSLLD/PSLL
Q xmm, imm8

1 1 2 2 1 1 1 2

PSLL/PSRL xmm,
xmm

2 1

PSRAW/PSRAD
xmm, imm8

1 1 2 2 1 1 1 2

Table C-6a. Streaming SIMD Extension 2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput

CPUID

06_1A
/1E/1F
/2E

06_17H,
06_1DH

06_0F
H

06_0E
H

06_1A
/1E/1F
/2E

06_17H,
06_1DH

06_0F
H

06_0E
H

C-12

INSTRUCTION LATENCY AND THROUGHPUT
PSRAW/PSRAD
xmm, xmm

2 1

PSRLDQ xmm, imm8 1 1 2 0.5 1 1

PSRLW/PSRLD/PSR
LQ xmm, imm8

1 1 2 2 1 1 1 2

PSUBB/PSUBW/PSU
BD xmm, xmm

1 1 1 1 0.5 0.5 0.33 1

PSUBSB/PSUBSW/P
SUBUSB/PSUBUSW
xmm, xmm

1 1 1 1 0.5 0.5 0.33 1

PUNPCKHBW/PUNP
CKHWD/PUNPCKHD
Q xmm, xmm

1 1 2 2 0.5 1 2 2

PUNPCKHQDQ
xmm, xmm

1 1 1 1 0.5 1 1 1

PUNPCKLBW/PUNP
CKLWD/PUNPCKLD
Q xmm, xmm

1 1 2 2 0.5 1 2 2

PUNPCKLQDQ xmm,
xmm

1 1 1 1 0.5 1 1 1

PXOR xmm, xmm 1 1 1 1 0.33 0.33 0.33 1

Table C-7. Streaming SIMD Extension 2 Double-precision
Floating-point Instructions

Instruction Latency1 Throughput Execution Unit 2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H

ADDPD xmm, xmm 5 4 2 2 FP_ADD

ADDSD xmm, xmm 5 4 2 2 FP_ADD

ANDNPD3 xmm, xmm 4 4 2 2 MMX_ALU

ANDPD3 xmm, xmm 4 4 2 2 MMX_ALU

CMPPD xmm, xmm, imm8 5 4 2 2 FP_ADD

Table C-6a. Streaming SIMD Extension 2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput

CPUID

06_1A
/1E/1F
/2E

06_17H,
06_1DH

06_0F
H

06_0E
H

06_1A
/1E/1F
/2E

06_17H,
06_1DH

06_0F
H

06_0E
H

 C-13

INSTRUCTION LATENCY AND THROUGHPUT
CMPSD xmm, xmm, imm8 5 4 2 2 FP_ADD

COMISD xmm, xmm 7 6 2 2 FP_ADD,
FP_MISC

CVTDQ2PD xmm, xmm 8 8 3 3 FP_ADD,
MMX_SHFT

CVTPD2PI mm, xmm 12 11 3 3 FP_ADD,
MMX_SHFT,
MMX_ALU

CVTPD2DQ xmm, xmm 10 9 2 2 FP_ADD,
MMX_SHFT

CVTPD2PS3 xmm, xmm 11 10 2 2 FP_ADD,
MMX_SHFT

CVTPI2PD xmm, mm 12 11 2 4 FP_ADD,
MMX_SHFT,
MMX_ALU

CVTPS2PD3 xmm, xmm 3 2 2 FP_ADD,
MMX_SHFT,
MMX_ALU

CVTSD2SI r32, xmm 9 8 2 2 FP_ADD,
FP_MISC

CVTSD2SS3 xmm, xmm 17 16 2 4 FP_ADD,
MMX_SHFT

CVTSI2SD3 xmm, r32 16 15 2 3 FP_ADD,
MMX_SHFT,
MMX_MISC

CVTSS2SD3 xmm, xmm 9 8 2 2

CVTTPD2PI mm, xmm 12 11 3 3 FP_ADD,
MMX_SHFT,
MMX_ALU

CVTTPD2DQ xmm, xmm 10 9 2 2 FP_ADD,
MMX_SHFT

CVTTSD2SI r32, xmm 8 8 2 2 FP_ADD,
FP_MISC

DIVPD xmm, xmm 70 69 70 69 FP_DIV

DIVSD xmm, xmm 39 38 39 38 FP_DIV

MAXPD xmm, xmm 5 4 2 2 FP_ADD

Table C-7. Streaming SIMD Extension 2 Double-precision
Floating-point Instructions (Contd.)

Instruction Latency1 Throughput Execution Unit 2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H
C-14

INSTRUCTION LATENCY AND THROUGHPUT
MAXSD xmm, xmm 5 4 2 2 FP_ADD

MINPD xmm, xmm 5 4 2 2 FP_ADD

MINSD xmm, xmm 5 4 2 2 FP_ADD

MOVAPD xmm, xmm 6 6 1 1 FP_MOVE

MOVMSKPD r32, xmm 6 6 2 2 FP_MISC

MOVSD xmm, xmm 6 6 2 2 MMX_SHFT

MOVUPD xmm, xmm 6 6 1 1 FP_MOVE

MULPD xmm, xmm 7 6 2 2 FP_MUL

MULSD xmm, xmm 7 6 2 2 FP_MUL

ORPD3 xmm, xmm 4 4 2 2 MMX_ALU

SHUFPD3 xmm, xmm, imm8 6 6 2 2 MMX_SHFT

SQRTPD xmm, xmm 70 69 70 69 FP_DIV

SQRTSD xmm, xmm 39 38 39 38 FP_DIV

SUBPD xmm, xmm 5 4 2 2 FP_ADD

SUBSD xmm, xmm 5 4 2 2 FP_ADD

UCOMISD xmm, xmm 7 6 2 2 FP_ADD,
FP_MISC

UNPCKHPD xmm, xmm 6 6 2 2 MMX_SHFT

UNPCKLPD3 xmm, xmm 4 4 2 2 MMX_SHFT

XORPD3 xmm, xmm 4 4 2 2 MMX_ALU

See Appendix C.3.2, “Table Footnotes”

Table C-7a. Streaming SIMD Extension 2 Double-precision
Floating-point Instructions

Instruction Latency1 Throughput

CPUID 06_1A/
1E/1F/
2E

06_17/
1DH

06_0F
H

06_0E
H

06_1A/
1E/1F/
2E

06_17/
1DH

06_0F
H

06_0E
H

ADDPD xmm, xmm 3 3 3 4 1 1 1 2

ADDSD xmm, xmm 3 3 3 3 1 1 1 1

ANDNPD xmm, xmm 1 1 1 1 0.33 0.33 1 1

Table C-7. Streaming SIMD Extension 2 Double-precision
Floating-point Instructions (Contd.)

Instruction Latency1 Throughput Execution Unit 2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H
 C-15

INSTRUCTION LATENCY AND THROUGHPUT
ANDPD xmm, xmm 1 1 1 1 0.33 0.33 1 1

CMPPD xmm, xmm,
imm8

3 3 3 4 1 1 1 2

CMPSD xmm, xmm,
imm8

3 3 3 3 1 1 1 1

COMISD xmm, xmm 1 1 1 1 1 1 1 1

CVTDQ2PD xmm,
xmm

4 4 1 1 1

CVTDQ2PS xmm, xmm 3 3 4 1 1 1

CVTPD2PI mm, xmm 9 7 1 1 1

CVTPD2DQ xmm,
xmm

4 4 4 1 1 1

CVTPD2PS xmm, xmm 4 4 4 5 1 1 1 2

CVTPI2PD xmm, mm 4 4 5 1

CVT[T]PS2DQ xmm,
xmm

3 3 1

CVTPS2PD xmm, xmm 2 2 2 3 1 2 2 3

CVTSD2SI r32, xmm 3 3 4 1 1 1 1

CVT[T]SD2SI r64,
xmm

3 3 N/A 1 1 N/A

CVTSD2SS xmm, xmm 4 4 4 4 1 1 1 1

CVTSI2SD xmm, r32 3 4 1 3 1 1

CVTSI2SD xmm, r64 3 4 N/A 1 1 N/A

CVTSS2SD xmm, xmm 1 2 2 2 1 2 2 2

CVTTPD2PI mm, xmm 4 5 1 1

CVTTPD2DQ xmm,
xmm

4 4 4 1 1 1

CVTTSD2SI r32, xmm 3 3 4 1 1 1 1

DIVPD xmm, xmm1 <24 <32 <35 63 <20 <26 <30 62

DIVSD xmm, xmm <24 <32 <35 32 <20 <26 <30 31

MAXPD xmm, xmm 3 3 3 4 1 1 1 2

Table C-7a. Streaming SIMD Extension 2 Double-precision
Floating-point Instructions (Contd.)

Instruction Latency1 Throughput

CPUID 06_1A/
1E/1F/
2E

06_17/
1DH

06_0F
H

06_0E
H

06_1A/
1E/1F/
2E

06_17/
1DH

06_0F
H

06_0E
H

C-16

INSTRUCTION LATENCY AND THROUGHPUT
MAXSD xmm, xmm 3 3 3 3 1 1 1 1

MINPD xmm, xmm 3 3 3 4 1 1 1 2

MINSD xmm, xmm 3 3 3 3 1 1 1 1

MOVAPD xmm, xmm 1 1 1 1 0.33 0.33 0.33 1

MOVMSKPD r32, xmm 1 1 1 1 1 1

MOVMSKPD r64, xmm 1 1 N/A 1 1 N/A

MOVSD xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.5

MOVUPD xmm, xmm 1 1 1 1 0.33 0.33 0.5 1

MULPD xmm, xmm 5 5 5 7 1 1 1 4

MULSD xmm, xmm 5 5 5 5 1 1 1 2

ORPD xmm, xmm 1 1 1 1 0.33 0.33 1 1

SHUFPD xmm, xmm,
imm8

1 1 1 2 1 1 1 2

SQRTPD xmm, xmm2 <34 <31 <60 115 <30 <25 <57 114

SQRTSD xmm, xmm <34 <31 <60 58 <30 <25 <57 57

SUBPD xmm, xmm 3 3 3 4 1 1 1 2

SUBSD xmm, xmm 3 3 3 3 1 1 1 1

UCOMISD xmm, xmm 1 1 1 1 1

UNPCKHPD xmm,
xmm

1 1 1 1 1 1 1

UNPCKLPD xmm, xmm 1 1 1 1 1 1 1

XORPD3 xmm, xmm 1 1 1 0.33 0.33 1 1

NOTES:
1. The latency and throughput of DIVPD/DIVSD can vary with input values. For certain values, hard-

ware can complete quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain
input values may be as low as less than 10 cycles.

2. The latency throughput of SQRTPD/SQRTSD can vary with input value. For certain values, hard-
ware can complete quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain
input values may be as low as less than10 cycles.

Table C-7a. Streaming SIMD Extension 2 Double-precision
Floating-point Instructions (Contd.)

Instruction Latency1 Throughput

CPUID 06_1A/
1E/1F/
2E

06_17/
1DH

06_0F
H

06_0E
H

06_1A/
1E/1F/
2E

06_17/
1DH

06_0F
H

06_0E
H

 C-17

INSTRUCTION LATENCY AND THROUGHPUT
Table C-8. Streaming SIMD Extension Single-precision
Floating-point Instructions

Instruction Latency1 Throughput Execution Unit 2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H

ADDPS xmm, xmm 5 4 2 2 FP_ADD

ADDSS xmm, xmm 5 4 2 2 FP_ADD

ANDNPS3 xmm, xmm 4 4 2 2 MMX_ALU

ANDPS3 xmm, xmm 4 4 2 2 MMX_ALU

CMPPS xmm, xmm 5 4 2 2 FP_ADD

CMPSS xmm, xmm 5 4 2 2 FP_ADD

COMISS xmm, xmm 7 6 2 2 FP_ADD,FP_
MISC

CVTPI2PS xmm, mm 12 11 2 4 MMX_ALU,FP_
ADD,MMX_
SHFT

CVTPS2PI mm, xmm 8 7 2 2 FP_ADD,MMX_
ALU

CVTSI2SS3 xmm, r32 12 11 2 2 FP_ADD,MMX_
SHFT, MMX_MISC

CVTSS2SI r32, xmm 9 8 2 2 FP_ADD,FP_
MISC

CVTTPS2PI mm, xmm 8 7 2 2 FP_ADD,MMX_
ALU

CVTTSS2SI r32, xmm 9 8 2 2 FP_ADD,FP_
MISC

DIVPS xmm, xmm 40 39 40 39 FP_DIV

DIVSS xmm, xmm 32 23 32 23 FP_DIV

MAXPS xmm, xmm 5 4 2 2 FP_ADD

MAXSS xmm, xmm 5 4 2 2 FP_ADD

MINPS xmm, xmm 5 4 2 2 FP_ADD

MINSS xmm, xmm 5 4 2 2 FP_ADD

MOVAPS xmm, xmm 6 6 1 1 FP_MOVE

MOVHLPS3 xmm,
xmm

6 6 2 2 MMX_SHFT

MOVLHPS3 xmm,
xmm

4 4 2 2 MMX_SHFT
C-18

INSTRUCTION LATENCY AND THROUGHPUT
MOVMSKPS r32, xmm 6 6 2 2 FP_MISC

MOVSS xmm, xmm 4 4 2 2 MMX_SHFT

MOVUPS xmm, xmm 6 6 1 1 FP_MOVE

MULPS xmm, xmm 7 6 2 2 FP_MUL

MULSS xmm, xmm 7 6 2 2 FP_MUL

ORPS3 xmm, xmm 4 4 2 2 MMX_ALU

RCPPS3 xmm, xmm 6 6 4 4 MMX_MISC

RCPSS3 xmm, xmm 6 6 2 2 MMX_MISC,
MMX_SHFT

RSQRTPS3 xmm, xmm 6 6 4 4 MMX_MISC

RSQRTSS3 xmm, xmm 6 6 4 4 MMX_MISC,
MMX_SHFT

SHUFPS3 xmm, xmm,
imm8

6 6 2 2 MMX_SHFT

SQRTPS xmm, xmm 40 39 40 39 FP_DIV

SQRTSS xmm, xmm 32 23 32 23 FP_DIV

SUBPS xmm, xmm 5 4 2 2 FP_ADD

SUBSS xmm, xmm 5 4 2 2 FP_ADD

UCOMISS xmm, xmm 7 6 2 2 FP_ADD, FP_MISC

UNPCKHPS3 xmm,
xmm

6 6 2 2 MMX_SHFT

UNPCKLPS3 xmm,
xmm

4 4 2 2 MMX_SHFT

XORPS3 xmm, xmm 4 4 2 2 MMX_ALU

FXRSTOR 150

FXSAVE 100

See Appendix C.3.2

Table C-8. Streaming SIMD Extension Single-precision
Floating-point Instructions (Contd.)

Instruction Latency1 Throughput Execution Unit 2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H
 C-19

INSTRUCTION LATENCY AND THROUGHPUT
Table C-8a. Streaming SIMD Extension Single-precision
Floating-point Instructions

Instruction Latency1 Throughput

CPUID

06_1A/
1E/1F/
2EH

06_17H

06_1DH

06_0F
H

06_0E
H

06_1A/
1E/1F/
2E

06_17H

06_1DH

06_0F
H

06_0E
H

ADDPS xmm, xmm 3 3 3 4 1 1 1 2

ADDSS xmm, xmm 3 3 3 3 1 1 1 1

ANDNPS xmm, xmm 1 1 1 0.33 0.33 1

ANDPS xmm, xmm 1 1 1 0.33 0.33 1

CMPPS xmm, xmm 3 3 3 4 1 1 1 2

CMPSS xmm, xmm 3 3 3 3 1 1 1 1

COMISS xmm, xmm 1 1 1 1 1 1 1 1

CVTPI2PS xmm, mm 3 3 3 1 1 1

CVTPS2PI mm, xmm 3 3 1 1

CVTSI2SS xmm, r32 3 6 4 1 3 1

CVTSS2SI r32, xmm 3 6 3 4 1 1 1 1

CVT[T]SS2SI r64,
xmm

3 4 N/A 1 1 N/A

CVTTPS2PI mm, xmm 3 3 3 1 1 1

CVTTSS2SI r32, xmm 3 6 3 4 1 1 1 1

DIVPS xmm, xmm1 <16 <21 <21 35 <12 <14 <16 34

DIVSS xmm, xmm <16 <21 <21 18 <12 <14 <16 17

MAXPS xmm, xmm 3 3 3 4 1 1 1 2

MAXSS xmm, xmm 3 3 3 3 1 1 1 1

MINPS xmm, xmm 3 3 3 4 1 1 1 2

MINSS xmm, xmm 3 3 3 3 1 1 1 1

MOVAPS xmm, xmm 1 1 1 1 0.33 0.33 0.33 1

MOVHLPS xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.5

MOVLHPS xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.5

MOVMSKPS r32,
xmm

1 1 1 1 1 1

MOVMSKPS r64,
xmm

1 1 N/A 1 1 N/A

MOVSS xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.5
C-20

INSTRUCTION LATENCY AND THROUGHPUT
MOVUPS xmm, xmm 1 1 1 1 0.33 0.33 0.5 1

MULPS xmm, xmm 4 4 4 5 1 1 1 2

MULSS xmm, xmm 4 4 4 4 1 1 1 1

ORPS xmm, xmm 1 1 1 0.33 0.33 0.33

RCPPS xmm, xmm 3 3 3 2 2 1

RCPSS xmm, xmm 3 3 3 3 3 1

RSQRTPS xmm, xmm 3 3 3 2 2 2

RSQRTSS xmm, xmm 3 3 3 3 3 2

SHUFPS xmm, xmm,
imm8

1 1 2 1 1 1

SQRTPS xmm, xmm2 <20 <21 <32 <16 <14 <27

SQRTSS xmm, xmm <20 <21 <32 <16 <14 <27

SUBPS xmm, xmm 3 3 3 1 1 1

SUBSS xmm, xmm 3 3 3 1 1 1

UCOMISS xmm, xmm 1 1

UNPCKHPS xmm,
xmm

1 1 2 1 1 1

UNPCKLPS xmm,
xmm

1 1 2 1 1 1

XORPS xmm, xmm 1 1 1 0.33 0.33 0.33

FXRSTOR

FXSAVE

NOTES:
1. The latency and throughput of DIVPS/DIVSS can vary with input values. For certain values,

hardware can complete quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for
certain input values may be as low as less than 10 cycles.

2. The latency and throughput of SQRTPS/SQRTSS can vary with input values. For certain values,
hardware can complete quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for
certain input values may be as low as less than 10 cycles

Table C-8a. Streaming SIMD Extension Single-precision
Floating-point Instructions (Contd.)

Instruction Latency1 Throughput

CPUID

06_1A/
1E/1F/
2EH

06_17H

06_1DH

06_0F
H

06_0E
H

06_1A/
1E/1F/
2E

06_17H

06_1DH

06_0F
H

06_0E
H

 C-21

INSTRUCTION LATENCY AND THROUGHPUT
Table C-9. Streaming SIMD Extension 64-bit Integer Instructions
Instruction Latency1 Throughput Execution Unit

CPUID
0F_3
H

0F_2
H

0F_3
H

0F_2
H 0F_2H

PAVGB/PAVGW mm, mm 2 2 1 1 MMX_ALU

PEXTRW r32, mm, imm8 7 7 2 2 MMX_SHFT,
FP_MISC

PINSRW mm, r32, imm8 4 4 1 1 MMX_SHFT,
MMX_MISC

PMAX mm, mm 2 2 1 1 MMX_ALU

PMIN mm, mm 2 2 1 1 MMX_ALU

PMOVMSKB3 r32, mm 7 7 2 2 FP_MISC

PMULHUW3 mm, mm 9 8 1 1 FP_MUL

PSADBW mm, mm 4 4 1 1 MMX_ALU

PSHUFW mm, mm, imm8 2 2 1 1 MMX_SHFT

See Appendix C.3.2, “Table Footnotes”

Table C-9a. Streaming SIMD Extension 64-bit Integer Instructions
Instruction Latency1 Throughput

CPUID
06_17
H

06_0F
H

06_0E
H

06_0D
H

06_17
H

06_0F
H

06_0EH 06_0D
H

MASKMOVQ mm,
mm

3 1

PAVGB/PAVGW mm,
mm

1 1 1 1 0.5 0.5 0.5 0.5

PEXTRW r32, mm,
imm8

2* 2 2 1 1 1 1

PINSRW mm, r32,
imm8

1 1 1 1 1 1 1

PMAX mm, mm 1 1 1 1 0.5 0.5 0.5 0.5

PMIN mm, mm 1 1 1 1 0.5 0.5 0.5 0.5

PMOVMSKB r32,
mm

1 1 1 1 1 1

PMULHUW mm, mm 3 3 3 3 1 1 1 1

PSADBW mm, mm 3 3 5 5 1 1 2 2
C-22

INSTRUCTION LATENCY AND THROUGHPUT
PSHUFW mm, mm,
imm8

1 1 1 1 1 1 1 1

See Appendix C.3.2, “Table Footnotes”

Table C-10. MMX Technology 64-bit Instructions
Instruction Latency1 Throughput Execution

Unit2

CPUID 0F_3
H

0F_2H 0F_3
H

0F_2
H

0F_2H

MOVD mm, r32 2 2 1 1 MMX_ALU

MOVD3 r32, mm 5 5 1 1 FP_MISC

MOVQ mm, mm 6 6 1 1 FP_MOV

PACKSSWB/PACKSSDW/PA
CKUSWB mm, mm

2 2 1 1 MMX_SHFT

PADDB/PADDW/PADDD
mm, mm

2 2 1 1 MMX_ALU

PADDSB/PADDSW
/PADDUSB/PADDUSW mm,
mm

2 2 1 1 MMX_ALU

PAND mm, mm 2 2 1 1 MMX_ALU

PANDN mm, mm 2 2 1 1 MMX_ALU

PCMPEQB/PCMPEQD
PCMPEQW mm, mm

2 2 1 1 MMX_ALU

PCMPGTB/PCMPGTD/
PCMPGTW mm, mm

2 2 1 1 MMX_ALU

PMADDWD3 mm, mm 9 8 1 1 FP_MUL

PMULHW/PMULLW3
mm, mm

9 8 1 1 FP_MUL

POR mm, mm 2 2 1 1 MMX_ALU

PSLLQ/PSLLW/
PSLLD mm, mm/imm8

2 2 1 1 MMX_SHFT

PSRAW/PSRAD mm,
mm/imm8

2 2 1 1 MMX_SHFT

Table C-9a. Streaming SIMD Extension 64-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput

CPUID
06_17
H

06_0F
H

06_0E
H

06_0D
H

06_17
H

06_0F
H

06_0EH 06_0D
H

 C-23

INSTRUCTION LATENCY AND THROUGHPUT
PSRLQ/PSRLW/PSRLD
mm, mm/imm8

2 2 1 1 MMX_SHFT

PSUBB/PSUBW/PSUBD
mm, mm

2 2 1 1 MMX_ALU

PSUBSB/PSUBSW/PSUBU
SB/PSUBUSW mm, mm

2 2 1 1 MMX_ALU

PUNPCKHBW/PUNPCKHW
D/PUNPCKHDQ mm, mm

2 2 1 1 MMX_SHFT

PUNPCKLBW/PUNPCKLWD
/PUNPCKLDQ mm, mm

2 2 1 1 MMX_SHFT

PXOR mm, mm 2 2 1 1 MMX_ALU

EMMS1 12 12

See Appendix C.3.2, “Table Footnotes”

Table C-11. MMX Technology 64-bit Instructions
Instruction Latency1 Throughput

CPUID
06_17
H

06_0F
H

06_0E
H

06_0D
H

06_17
H

06_0F
H

06_0EH 06_0D
H

MOVD mm, r32 1 1 1 0.5 0.5 0.5

MOVD r32, mm 1 1 1 0.33 0.5 0.5

MOVQ mm, mm 1 1 1 1 0.33 0.5 0.5 0.5

PACKSSWB/PACKSSDW
/PACKUSWB mm, mm

1 1 1 1 1 1 1 1

PADDB/PADDW/PADD
D mm, mm

1 1 1 1 0.5 0.33 1 1

PADDSB/PADDSW
/PADDUSB/PADDUSW
mm, mm

1 1 1 1 0.5 0.33 1 1

PAND mm, mm 1 1 1 1 0.33 0.33 0.5 0.5

PANDN mm, mm 1 1 1 1 0.33 0.33 0.5 0.5

PCMPEQB/PCMPEQD
PCMPEQW mm, mm

0.5 1 1 1 0.5 0.33 0.5 0.5

Table C-10. MMX Technology 64-bit Instructions (Contd.)
Instruction Latency1 Throughput Execution

Unit2

CPUID 0F_3
H

0F_2H 0F_3
H

0F_2
H

0F_2H
C-24

INSTRUCTION LATENCY AND THROUGHPUT
PCMPGTB/PCMPGTD/
PCMPGTW mm, mm

0.5 1 1 1 0.5 0.33 0.5 0.5

PMADDWD mm, mm 3 3 3 3 1 1 1 1

PMULHW/PMULLW3
mm, mm

3 3 3 3 1 1 1 1

POR mm, mm 1 1 1 1 0.33 0.33 0.5 0.5

PSLLQ/PSLLW/
PSLLD mm, mm/imm8

1 1 1 1 1 1 1 1

PSRAW/PSRAD mm,
mm/imm8

1 1 1 1 1 1 1 1

PSRLQ/PSRLW/PSRLD
mm, mm/imm8

1 1 1 1 1 1 1 1

PSUBB/PSUBW/PSUBD
mm, mm

0.5 1 1 1 0.5 0.33 0.5 0.5

PSUBSB/PSUBSW/PSU
BUSB/PSUBUSW mm,
mm

0.5 1 1 1 0.5 0.33 0.5 0.5

PUNPCKHBW/PUNPCK
HWD/PUNPCKHDQ
mm, mm

1 1 1 1 1 1 1 1

PUNPCKLBW/PUNPCKL
WD/PUNPCKLDQ mm,
mm

1 1 1 1 1 1 1 1

PXOR mm, mm 0.33 1 1 1 0.33 0.33 0.5 0.5

EMMS1 6 6 6 5 5

See Appendix C.3.2, “Table Footnotes”

Table C-12. x87 Floating-point Instructions
Instruction Latency1 Throughput Execution Unit 2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H

FABS 3 2 1 1 FP_MISC

FADD 6 5 1 1 FP_ADD

FSUB 6 5 1 1 FP_ADD

Table C-11. MMX Technology 64-bit Instructions (Contd.)
Instruction Latency1 Throughput

CPUID
06_17
H

06_0F
H

06_0E
H

06_0D
H

06_17
H

06_0F
H

06_0EH 06_0D
H

 C-25

INSTRUCTION LATENCY AND THROUGHPUT
FMUL 8 7 2 2 FP_MUL

FCOM 3 2 1 1 FP_MISC

FCHS 3 2 1 1 FP_MISC

FDIV Single Precision 30 23 30 23 FP_DIV

FDIV Double Precision 40 38 40 38 FP_DIV

FDIV Extended Precision 44 43 44 43 FP_DIV

FSQRT SP 30 23 30 23 FP_DIV

FSQRT DP 40 38 40 38 FP_DIV

FSQRT EP 44 43 44 43 FP_DIV

F2XM14 100-
200

90-
150

60

FCOS4 180-
280

190-
240

130

FPATAN4 220-
300

150-
300

140

FPTAN4 240-
300

225-
250

170

FSIN4 160-
200

160-
180

130

FSINCOS4 170-
250

160-
220

140

FYL2X4 100-
250

140-
190

85

FYL2XP14 140-
190

85

FSCALE4 60 7

FRNDINT4 30 11

FXCH5 0 1 FP_MOVE

FLDZ6 0

FINCSTP/FDECSTP6 0

See Appendix C.3.2, “Table Footnotes”

Table C-12. x87 Floating-point Instructions (Contd.)
Instruction Latency1 Throughput Execution Unit 2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H
C-26

INSTRUCTION LATENCY AND THROUGHPUT
Table C-12a. x87 Floating-point Instructions
Instruction Latency1 Throughput

CPUID
06_17
H

06_0F
H

06_0EH 06_0D
H

06_17
H

06_0FH 06_0E
H

06_0D
H

FABS 1 1 1 1 1 1 1

FADD 3 3 3 3 1 1 1

FSUB 3 3 3 3 1 1 1 1

FMUL 5 5 5 5 2 2 2 2

FCOM 1 1 1 1 1 1

FCHS 1 0

FDIV Single
Precision

6 32 5 32

FDIV Double
Precision

6 32 5 32

FDIV Extended
Precision

FSQRT 6 58 58 58 58 58 58

F2XM14 45 69 69 67 67

FCOS4 97 119 119 117 117

FPATAN4 147 147 147 147

FPTAN4 123 123 83 83

FSIN4 82 119 119 116 116

FSINCOS4 119 119 85 85

FYL2X4 96 96 92 92

FYL2XP14 98 98 93 93

FSCALE4 17 17 15 15

FRNDINT4 21 21 21 20 20

FXCH5 1

FLDZ6 1 1 1 1 1 1

FINCSTP/

FDECSTP6
1 1 1 1

See Appendix C.3.2, “Table Footnotes”
 C-27

INSTRUCTION LATENCY AND THROUGHPUT
Table C-13. General Purpose Instructions
Instruction Latency1 Throughput Execution Unit

2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H

ADC/SBB reg, reg 8 8 3 3

ADC/SBB reg, imm 8 6 2 2 ALU

ADD/SUB 1 0.5 0.5 0.5 ALU

AND/OR/XOR 1 0.5 0.5 0.5 ALU

BSF/BSR 16 8 2 4

BSWAP 1 7 0.5 1 ALU

BTC/BTR/BTS 8-9 1

CLI 26

CMP/TEST 1 0.5 0.5 0.5 ALU

DEC/INC 1 1 0.5 0.5 ALU

IMUL r32 10 14 1 3 FP_MUL

IMUL imm32 14 1 3 FP_MUL

IMUL 15-18 5

IDIV 66-80 56-70 30 23

IN/OUT1 <225 40

Jcc7 Not App-
licable

0.5 ALU

LOOP 8 1.5 ALU

MOV 1 0.5 0.5 0.5 ALU

MOVSB/MOVSW 1 0.5 0.5 0.5 ALU

MOVZB/MOVZW 1 0.5 0.5 0.5 ALU

NEG/NOT/NOP 1 0.5 0.5 0.5 ALU

POP r32 1.5 1 MEM_LOAD,
ALU

PUSH 1.5 1 MEM_STORE,
ALU

RCL/RCR reg, 18 6 4 1 1

ROL/ROR 1 4 0.5 1

RET 8 1 MEM_LOAD,
ALU

SAHF 1 0.5 0.5 0.5 ALU
C-28

INSTRUCTION LATENCY AND THROUGHPUT
SAL/SAR/SHL/SHR 1 4 0.5 1

SCAS 4 1.5 ALU,MEM_
LOAD

SETcc 5 1.5 ALU

STI 36

STOSB 5 2 ALU,MEM_
STORE

XCHG 1.5 1.5 1 1 ALU

CALL 5 1 ALU,MEM_
STORE

MUL 10 14-18 1 5

DIV 66-80 56-70 30 23

See Appendix C.3.2, “Table Footnotes”

Table C-13a. General Purpose Instructions
Instruction Latency1 Throughput

CPUID 06_1A/
1E/1F/
2EH

06_17H

06_1DH

06_0F
H

06_0EH 06_1A/
1E/1F/
2EH

06_17H

06_1DH

06_0FH 06_0EH

ADC/SBB reg, reg 2 2 2 2 0.33 2

ADC/SBB reg, imm 2 2 2 1 0.33 0.5

ADD/SUB 1 1 1 1 0.33 0.33 0.33 0.5

AND/OR/XOR 1 1 1 1 0.33 0.33 0.33 0.5

BSF/BSR 3 1 2 2 1 1 1 1

BSWAP 3 4 2 2 1 1 0.5 1

BT 1 1 1 0.5 1 0.33

BTC/BTR/BTS 1 1 1 1 0.5 1 0.33 0.5

CBW 1 1 1 0.33 0.33

CDQE 1 NA 0.33 NA

CLC/CMC 1 1 0.33 0.33 0.33

CLI 9 11 9 11

CLFLUSH 4

Table C-13. General Purpose Instructions (Contd.)
Instruction Latency1 Throughput Execution Unit

2

CPUID 0F_3H 0F_2H 0F_3H 0F_2H 0F_2H
 C-29

INSTRUCTION LATENCY AND THROUGHPUT
C.3.2 Table Footnotes
The following footnotes refer to all tables in this appendix.

1. Latency information for many instructions that are complex (> 4 μops) are
estimates based on conservative (worst-case) estimates. Actual performance of
these instructions by the out-of-order core execution unit can range from

CMOV 2 2 2 1 1 0.5

CMP/TEST 1 1 1 1 0.33 0.33 0.33 0.5

CPUID (EAX = 0) ~200 ~200 ~190 ~170

CMPXCHG 5

DEC/INC 1 1 1 1 0.33 0.33 0.33 0.5

IMUL r32 3 3 3 4 1 1 0.5 1

IMUL imm32 3 3 3 4 1 1 0.5 1

IDIV 11-219 13-239 17-
4110

22 5-139 5-149 12-
3610

22

MOVSB/MOVSW 1 1 0.33 0.5

MOVZB/MOVZW 1 1 0.33 0.5

NEG/NOT/NOP 1 1 0.33 0.5

PUSH 3 3 1 1

RCL/RCR 4 4 4 4

RDTSC ~31 ~31 ~65 ~100

ROL/ROR 1 1 1 1 0.33 0.33 0.33 1

SAHF 1 1 1 1 0.33 0.33 0.33 0.5

SAL/SAR/SHL/

SHR

1 1 1 0.33 0.33 0.33

SETcc 1 1 1 1 0.33 0.33 0.33 0.5

XADD 3

XCHG 2.5 3 2 1 1 1 1

See Appendix C.3.2, “Table Footnotes”

Table C-13a. General Purpose Instructions (Contd.)
Instruction Latency1 Throughput

CPUID 06_1A/
1E/1F/
2EH

06_17H

06_1DH

06_0F
H

06_0EH 06_1A/
1E/1F/
2EH

06_17H

06_1DH

06_0FH 06_0EH
C-30

INSTRUCTION LATENCY AND THROUGHPUT
somewhat faster to significantly faster than the latency data shown in these
tables.

2. The names of execution units apply to processor implementations of the Intel
NetBurst microarchitecture with a CPUID signature of family 15, model encoding
= 0, 1, 2. They include: ALU, FP_EXECUTE, FPMOVE, MEM_LOAD, MEM_STORE.
See Figure 2-9 for execution units and ports in the out-of-order core. Note the
following:

— The FP_EXECUTE unit is actually a cluster of execution units, roughly
consisting of seven separate execution units.

— The FP_ADD unit handles x87 and SIMD floating-point add and subtract
operation.

— The FP_MUL unit handles x87 and SIMD floating-point multiply operation.

— The FP_DIV unit handles x87 and SIMD floating-point divide square-root
operations.

— The MMX_SHFT unit handles shift and rotate operations.

— The MMX_ALU unit handles SIMD integer ALU operations.

— The MMX_MISC unit handles reciprocal MMX computations and some integer
operations.

— The FP_MISC designates other execution units in port 1 that are separated
from the six units listed above.

3. It may be possible to construct repetitive calls to some Intel 64 and IA-32
instructions in code sequences to achieve latency that is one or two clock cycles
faster than the more realistic number listed in this table.

4. Latency and Throughput of transcendental instructions can vary substantially in a
dynamic execution environment. Only an approximate value or a range of values
are given for these instructions.

5. The FXCH instruction has 0 latency in code sequences. However, it is limited to an
issue rate of one instruction per clock cycle.

6. The load constant instructions, FINCSTP, and FDECSTP have 0 latency in code
sequences.

7. Selection of conditional jump instructions should be based on the recommen-
dation of section Section 3.4.1, “Branch Prediction Optimization,” to improve the
predictability of branches. When branches are predicted successfully, the latency
of jcc is effectively zero.

8. RCL/RCR with shift count of 1 are optimized. Using RCL/RCR with shift count
other than 1 will be executed more slowly. This applies to the Pentium 4 and Intel
Xeon processors.

9. The latency and throughput of IDIV in Enhanced Intel Core microarchitecture
varies with operand sizes and with the number of significant digits of the quotient
of the division. If the quotient is zero, the minimum latency can be 13 cycles, and
 C-31

INSTRUCTION LATENCY AND THROUGHPUT
the minimum throughput can be 5 cycles. Latency and throughput of IDIV
increases with the number of significant digit of the quotient. The latency and
throughput of IDIV with 64-bit operand are significantly slower than those with
32-bit operand. Latency of DIV is similar to IDIV. Generally, the latency of DIV
may be one cycle less.

10. The latency and throughput of IDIV in Intel Core microarchitecture varies with
the number of significant digits of the quotient of the division. Latency and
throughput of IDIV may increases with the number of significant digit of the
quotient. The latency and throughput of IDIV with 64-bit operand are signifi-
cantly slower than those with 32-bit operand.

C.3.3 Instructions with Memory Operands
The latency of an Instruction with memory operand can vary greatly due to a number
of factors, including data locality in the memory/cache hierarchy and characteristics
that are unique to each microarchitecture. Generally, software can approach tuning
for locality and instruction selection independently. Thus Table C-2 through Table
C-13 can be used for the purpose of instruction selection. Latency and throughput of
data movement in the cache/memory hierarchy can be dealt with independent of
instruction latency and throughput. Latency data for the cache hierarchy can be
found in Chapter 2.
C-32

APPENDIX D
STACK ALIGNMENT

This appendix details on the alignment of the stacks of data for Streaming SIMD
Extensions and Streaming SIMD Extensions 2.

D.4 STACK FRAMES
This section describes the stack alignment conventions for both ESP-based (normal),
and EDP-based (debug) stack frames. A stack frame is a contiguous block of memory
allocated to a function for its local memory needs. It contains space for the function’s
parameters, return address, local variables, register spills, parameters needing to be
passed to other functions that a stack frame may call, and possibly others. It is typi-
cally delineated in memory by a stack frame pointer (ESP) that points to the base of
the frame for the function and from which all data are referenced via appropriate
offsets. The convention on Intel 64 and IA-32 is to use the ESP register as the stack
frame pointer for normal optimized code, and to use EDP in place of ESP when debug
information must be kept. Debuggers use the EDP register to find the information
about the function via the stack frame.

It is important to ensure that the stack frame is aligned to a 16-byte boundary upon
function entry to keep local __m128 data, parameters, and XMM register spill loca-
tions aligned throughout a function invocation.The Intel C++ Compiler for Win32*
Systems supports conventions presented here help to prevent memory references
from incurring penalties due to misaligned data by keeping them aligned to 16-byte
boundaries. In addition, this scheme supports improved alignment for __m64 and
double type data by enforcing that these 64-bit data items are at least eight-byte
aligned (they will now be 16-byte aligned).

For variables allocated in the stack frame, the compiler cannot guarantee the base of
the variable is aligned unless it also ensures that the stack frame itself is 16-byte
aligned. Previous software conventions, as implemented in most compilers, only
ensure that individual stack frames are 4-byte aligned. Therefore, a function called
from a Microsoft-compiled function, for example, can only assume that the frame
pointer it used is 4-byte aligned.

Earlier versions of the Intel C++ Compiler for Win32 Systems have attempted to
provide 8-byte aligned stack frames by dynamically adjusting the stack frame
pointer in the prologue of main and preserving 8-byte alignment of the functions it
compiles. This technique is limited in its applicability for the following reasons:

• The main function must be compiled by the Intel C++ Compiler.

• There may be no functions in the call tree compiled by some other compiler (as
might be the case for routines registered as callbacks).

• Support is not provided for proper alignment of parameters.
D-1

STACK ALIGNMENT
The solution to this problem is to have the function’s entry point assume only 4-byte
alignment. If the function has a need for 8-byte or 16-byte alignment, then code can
be inserted to dynamically align the stack appropriately, resulting in one of the stack
frames shown in Figure D-1.

As an optimization, an alternate entry point can be created that can be called when
proper stack alignment is provided by the caller. Using call graph profiling of the
VTune analyzer, calls to the normal (unaligned) entry point can be optimized into
calls to the (alternate) aligned entry point when the stack can be proven to be prop-
erly aligned. Furthermore, a function alignment requirement attribute can be modi-
fied throughout the call graph so as to cause the least number of calls to unaligned
entry points.

As an example of this, suppose function F has only a stack alignment requirement of
4, but it calls function G at many call sites, and in a loop. If G’s alignment require-
ment is 16, then by promoting F’s alignment requirement to 16, and making all calls
to G go to its aligned entry point, the compiler can minimize the number of times that
control passes through the unaligned entry points. Example D-1 and Example D-2 in
the following sections illustrate this technique. Note the entry points foo and
foo.aligned; the latter is the alternate aligned entry point.

Figure D-1. Stack Frames Based on Alignment Type

Parameter
Pointer

EBP

ESP

EBP-based Aligned Frame

Parameters

Return Address

Padding

Previous EBP

Local Variables and
Spill Slots

Parameter Passing
Space

EBP-frame Saved
Register Area

Return Address 1

SEH/CEH Record

Parameter
Pointer

ESP

ESP-based Aligned Frame

Parameters

Return Address

Padding

Register Save Area

Local Variables and
Spill Slots

__cdecl Parameter
Passing Space

__stdcall Parameter
Passing Space
D-2

STACK ALIGNMENT
D.4.1 Aligned ESP-Based Stack Frames
This section discusses data and parameter alignment and the declspec(align)
extended attribute, which can be used to request alignment in C and C++ code. In
creating ESP-based stack frames, the compiler adds padding between the return
address and the register save area as shown in Example 4-10. This frame can be
used only when debug information is not requested, there is no need for exception
handling support, inlined assembly is not used, and there are no calls to alloca within
the function.

If the above conditions are not met, an aligned EDP-based frame must be used.
When using this type of frame, the sum of the sizes of the return address, saved
registers, local variables, register spill slots, and parameter space must be a multiple
of 16 bytes. This causes the base of the parameter space to be 16-byte aligned. In
addition, any space reserved for passing parameters for stdcall functions also must
be a multiple of 16 bytes. This means that the caller needs to clean up some of the
stack space when the size of the parameters pushed for a call to a stdcall function is
not a multiple of 16. If the caller does not do this, the stack pointer is not restored to
its pre-call value.

In Example D-1, we have 12 bytes on the stack after the point of alignment from the
caller: the return pointer, EBX and EDX. Thus, we need to add four more to the stack
pointer to achieve alignment. Assuming 16 bytes of stack space are needed for local
variables, the compiler adds 16 + 4 = 20 bytes to ESP, making ESP aligned to a 0
mod 16 address.

Example D-1. Aligned esp-Based Stack Frame

void _cdecl foo (int k)
{
 int j;
 foo: // See Note A below
 push ebx
 mov ebx, esp

sub esp, 0x00000008
 and esp, 0xfffffff0
 add esp, 0x00000008
 jmp common
foo.aligned:

push ebx
mov ebx, esp
D-3

STACK ALIGNMENT
D.4.2 Aligned EDP-Based Stack Frames
In EDP-based frames, padding is also inserted immediately before the return
address. However, this frame is slightly unusual in that the return address may actu-
ally reside in two different places in the stack. This occurs whenever padding must be
added and exception handling is in effect for the function. Example D-2 shows the
code generated for this type of frame. The stack location of the return address is
aligned 12 mod 16. This means that the value of EDP always satisfies the condition
(EDP & 0x0f) == 0x08. In this case, the sum of the sizes of the return address, the
previous EDP, the exception handling record, the local variables, and the spill area
must be a multiple of 16 bytes. In addition, the parameter passing space must be a
multiple of 16 bytes. For a call to a stdcall function, it is necessary for the caller to

common: // See Note B below
push edx
sub esp, 20
j = k;
mov edx, [ebx + 8]
mov [esp + 16], edx

foo(5);
mov [esp], 5
call foo.aligned

return j;
mov eax, [esp + 16]
add esp, 20
pop edx
mov esp, ebx
pop ebx
ret

// NOTES:
// (A) Aligned entry points assume that parameter block beginnings are aligned. This places the
// stack pointer at a 12 mod 16 boundary, as the return pointer has been pushed. Thus, the
// unaligned entry point must force the stack pointer to this boundary
// (B) The code at the common label assumes the stack is at an 8 mod 16 boundary, and adds
// sufficient space to the stack so that the stack pointer is aligned to a 0 mod 16 boundary.

Example D-1. Aligned esp-Based Stack Frame (Contd.)
D-4

STACK ALIGNMENT
reserve some stack space if the size of the parameter block being pushed is not a
multiple of 16.

Example D-2. Aligned ebp-based Stack Frames

void _stdcall foo (int k)
{
 int j;
 foo:
 push ebx

mov ebx, esp
sub esp, 0x00000008
and esp, 0xfffffff0
add esp, 0x00000008 // esp is (8 mod 16) after add
jmp common

 foo.aligned:
push ebx // esp is (8 mod 16) after push
mov ebx, esp

 common:
 push ebp // this slot will be used for

// duplicate return pt
push ebp // esp is (0 mod 16) after push

// (rtn,ebx,ebp,ebp)
mov ebp, [ebx + 4] // fetch return pointer and store
mov [esp + 4], ebp // relative to ebp

// (rtn,ebx,rtn,ebp)
mov ebp, esp // ebp is (0 mod 16)
sub esp, 28 // esp is (4 mod 16)

// see Note A below
push edx // esp is (0 mod 16) after push

// goal is to make esp and ebp
// (0 mod 16) here

j = k;
mov edx, [ebx + 8] // k is (0 mod 16) if caller

// aligned its stack
mov [ebp - 16], edx // J is (0 mod 16)

foo(5);
add esp, -4 // normal call sequence to
 // unaligned entry
mov [esp],5
call foo // for stdcall, callee

// cleans up stack
D-5

STACK ALIGNMENT
D.4.3 Stack Frame Optimizations
The Intel C++ Compiler provides certain optimizations that may improve the way
aligned frames are set up and used. These optimizations are as follows:

• If a procedure is defined to leave the stack frame 16-byte-aligned and it calls
another procedure that requires 16-byte alignment, then the callee’s aligned
entry point is called, bypassing all of the unnecessary aligning code.

• If a static function requires 16-byte alignment, and it can be proven to be called
only by other functions that require 16-byte alignment, then that function will not
have any alignment code in it. That is, the compiler will not use EBX to point to
the argument block and it will not have alternate entry points, because this
function will never be entered with an unaligned frame.

foo.aligned(5);
add esp,-16 // aligned entry, this should
 // be a multiple of 16
mov [esp],5
call foo.aligned
add esp,12 // see Note B below

return j;
mov eax,[ebp-16]
pop edx
mov esp,ebp
pop ebp
mov esp,ebx
pop ebx

ret 4
}

// NOTES:
// (A) Here we allow for local variables. However, this value should be adjusted so that, after
// pushing the saved registers, esp is 0 mod 16.
// (B) Just prior to the call, esp is 0 mod 16. To maintain alignment, esp should be adjusted by 16.
// When a callee uses the stdcall calling sequence, the stack pointer is restored by the callee. The
// final addition of 12 compensates for the fact that only 4 bytes were passed, rather than
// 16, and thus the caller must account for the remaining adjustment.

Example D-2. Aligned ebp-based Stack Frames (Contd.)
D-6

STACK ALIGNMENT
D.5 INLINED ASSEMBLY AND EBX
When using aligned frames, the EBX register generally should not be modified in
inlined assembly blocks since EBX is used to keep track of the argument block.
Programmers may modify EBX only if they do not need to access the arguments and
provided they save EBX and restore it before the end of the function (since ESP is
restored relative to EBX in the function’s epilog).

NOTE
Do not use the EBX register in inline assembly functions that use
dynamic stack alignment for double, __m64, and __m128 local
variables unless you save and restore EBX each time you use it. The
Intel C++ Compiler uses the EBX register to control alignment of
variables of these types, so the use of EBX, without preserving it, will
cause unexpected program execution.
D-7

STACK ALIGNMENT
D-8

APPENDIX E
SUMMARY OF RULES AND SUGGESTIONS

This appendix summarizes the rules and suggestions specified in this manual. Please
be reminded that coding recommendations are ranked in importance according to
these two criteria:

• Local impact (referred to earlier as “impact”) – the difference that a recommen-
dation makes to performance for a given instance.

• Generality – how frequently such instances occur across all application domains.

Again, understand that this ranking is intentionally very approximate, and can vary
depending on coding style, application domain, and other factors. Throughout the
chapter you observed references to these criteria using the high, medium and low
priorities for each recommendation. In places where there was no priority assigned,
the local impact or generality has been determined not to be applicable.

E.1 ASSEMBLY/COMPILER CODING RULES
Assembler/Compiler Coding Rule 1. (MH impact, M generality) Arrange code

to make basic blocks contiguous and eliminate unnecessary branches.3-7

Assembler/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC
and CMOV instructions to eliminate unpredictable conditional branches where
possible. Do not do this for predictable branches. Do not use these instructions to
eliminate all unpredictable conditional branches (because using these instructions
will incur execution overhead due to the requirement for executing both paths of
a conditional branch). In addition, converting a conditional branch to SETCC or
CMOV trades off control flow dependence for data dependence and restricts the
capability of the out-of-order engine. When tuning, note that all Intel 64 and
IA-32 processors usually have very high branch prediction rates. Consistently
mispredicted branches are generally rare. Use these instructions only if the
increase in computation time is less than the expected cost of a mispredicted
branch...3-7

Assembler/Compiler Coding Rule 3. (M impact, H generality) Arrange code to
be consistent with the static branch prediction algorithm: make the fall-through
code following a conditional branch be the likely target for a branch with a forward
target, and make the fall-through code following a conditional branch be the
unlikely target for a branch with a backward target. 3-10

Assembler/Compiler Coding Rule 4. (MH impact, MH generality) Near calls
must be matched with near returns, and far calls must be matched with far
E-1

SUMMARY OF RULES AND SUGGESTIONS
returns. Pushing the return address on the stack and jumping to the routine to be
called is not recommended since it creates a mismatch in calls and returns. 3-12

Assembler/Compiler Coding Rule 5. (MH impact, MH generality) Selectively
inline a function if doing so decreases code size or if the function is small and the
call site is frequently executed. ...3-12

Assembler/Compiler Coding Rule 6. (H impact, H generality) Do not inline a
function if doing so increases the working set size beyond what will fit in the trace
cache. ...3-12

Assembler/Compiler Coding Rule 7. (ML impact, ML generality) If there are
more than 16 nested calls and returns in rapid succession; consider transforming
the program with inline to reduce the call depth.3-12

Assembler/Compiler Coding Rule 8. (ML impact, ML generality) Favor inlining
small functions that contain branches with poor prediction rates. If a branch
misprediction results in a RETURN being prematurely predicted as taken, a
performance penalty may be incurred.)..3-12

Assembler/Compiler Coding Rule 9. (L impact, L generality) If the last
statement in a function is a call to another function, consider converting the call
to a jump. This will save the call/return overhead as well as an entry in the return
stack buffer. ...3-12

Assembler/Compiler Coding Rule 10. (M impact, L generality) Do not put
more than four branches in a 16-byte chunk...3-12

Assembler/Compiler Coding Rule 11. (M impact, L generality) Do not put
more than two end loop branches in a 16-byte chunk...............................3-12

Assembler/Compiler Coding Rule 12. (M impact, H generality) All branch
targets should be 16-byte aligned. ..3-13

Assembler/Compiler Coding Rule 13. (M impact, H generality) If the body of
a conditional is not likely to be executed, it should be placed in another part of
the program. If it is highly unlikely to be executed and code locality is an issue,
it should be placed on a different code page. ..3-13

Assembler/Compiler Coding Rule 14. (M impact, L generality) When indirect
branches are present, try to put the most likely target of an indirect branch
immediately following the indirect branch. Alternatively, if indirect branches are
common but they cannot be predicted by branch prediction hardware, then follow
the indirect branch with a UD2 instruction, which will stop the processor from
decoding down the fall-through path..3-13

Assembler/Compiler Coding Rule 15. (H impact, M generality) Unroll small
loops until the overhead of the branch and induction variable accounts (generally)
for less than 10% of the execution time of the loop.3-16

Assembler/Compiler Coding Rule 16. (H impact, M generality) Avoid unrolling
loops excessively; this may thrash the trace cache or instruction cache.3-16

Assembler/Compiler Coding Rule 17. (M impact, M generality) Unroll loops
that are frequently executed and have a predictable number of iterations to
reduce the number of iterations to 16 or fewer. Do this unless it increases code
size so that the working set no longer fits in the trace or instruction cache. If the
E-2

SUMMARY OF RULES AND SUGGESTIONS
loop body contains more than one conditional branch, then unroll so that the
number of iterations is 16/(# conditional branches)................................. 3-16

Assembler/Compiler Coding Rule 18. (ML impact, M generality) For improving
fetch/decode throughput, Give preference to memory flavor of an instruction over
the register-only flavor of the same instruction, if such instruction can benefit
from micro-fusion. .. 3-17

Assembler/Compiler Coding Rule 19. (M impact, ML generality) Employ
macro-fusion where possible using instruction pairs that support macro-fusion.
Prefer TEST over CMP if possible. Use unsigned variables and unsigned jumps
when possible. Try to logically verify that a variable is non-negative at the time
of comparison. Avoid CMP or TEST of MEM-IMM flavor when possible. However,
do not add other instructions to avoid using the MEM-IMM flavor. 3-19

Assembler/Compiler Coding Rule 20. (M impact, ML generality) Software can
enable macro fusion when it can be logically determined that a variable is non-
negative at the time of comparison; use TEST appropriately to enable macro-
fusion when comparing a variable with 0. ... 3-21

Assembler/Compiler Coding Rule 21. (MH impact, MH generality) Favor
generating code using imm8 or imm32 values instead of imm16 values...... 3-22

Assembler/Compiler Coding Rule 22. (M impact, ML generality) Ensure
instructions using 0xF7 opcode byte does not start at offset 14 of a fetch line; and
avoid using these instruction to operate on 16-bit data, upcast short data to 32
bits. .. 3-23

Assembler/Compiler Coding Rule 23. (MH impact, MH generality) Break up
a loop long sequence of instructions into loops of shorter instruction blocks of no
more than the size of LSD. ... 3-24

Assembler/Compiler Coding Rule 24. (MH impact, M generality) Avoid
unrolling loops containing LCP stalls, if the unrolled block exceeds the size of LSD.
3-24

Assembler/Compiler Coding Rule 25. (M impact, M generality) Avoid putting
explicit references to ESP in a sequence of stack operations (POP, PUSH, CALL,
RET). .. 3-24

Assembler/Compiler Coding Rule 26. (ML impact, L generality) Use simple
instructions that are less than eight bytes in length. 3-24

Assembler/Compiler Coding Rule 27. (M impact, MH generality) Avoid using
prefixes to change the size of immediate and displacement. 3-24

Assembler/Compiler Coding Rule 28. (M impact, H generality) Favor single-
micro-operation instructions. Also favor instruction with shorter latencies. .. 3-25

Assembler/Compiler Coding Rule 29. (M impact, L generality) Avoid prefixes,
especially multiple non-0F-prefixed opcodes. .. 3-25

Assembler/Compiler Coding Rule 30. (M impact, L generality) Do not use
many segment registers. ... 3-25

Assembler/Compiler Coding Rule 31. (ML impact, M generality) Avoid using
complex instructions (for example, enter, leave, or loop) that have more than
E-3

SUMMARY OF RULES AND SUGGESTIONS
four µops and require multiple cycles to decode. Use sequences of simple
instructions instead. ..3-26

Assembler/Compiler Coding Rule 32. (M impact, H generality) INC and DEC
instructions should be replaced with ADD or SUB instructions, because ADD and
SUB overwrite all flags, whereas INC and DEC do not, therefore creating false
dependencies on earlier instructions that set the flags..............................3-26

Assembler/Compiler Coding Rule 33. (ML impact, L generality) If an LEA
instruction using the scaled index is on the critical path, a sequence with ADDs
may be better. If code density and bandwidth out of the trace cache are the
critical factor, then use the LEA instruction. ..3-27

Assembler/Compiler Coding Rule 34. (ML impact, L generality) Avoid ROTATE
by register or ROTATE by immediate instructions. If possible, replace with a
ROTATE by 1 instruction...3-27

Assembler/Compiler Coding Rule 35. (M impact, ML generality) Use
dependency-breaking-idiom instructions to set a register to 0, or to break a false
dependence chain resulting from re-use of registers. In contexts where the
condition codes must be preserved, move 0 into the register instead. This
requires more code space than using XOR and SUB, but avoids setting the
condition codes...3-28

Assembler/Compiler Coding Rule 36. (M impact, MH generality) Break
dependences on portions of registers between instructions by operating on 32-bit
registers instead of partial registers. For moves, this can be accomplished with
32-bit moves or by using MOVZX. ...3-29

Assembler/Compiler Coding Rule 37. (M impact, M generality) Try to use zero
extension or operate on 32-bit operands instead of using moves with sign
extension. ..3-30

Assembler/Compiler Coding Rule 38. (ML impact, L generality) Avoid placing
instructions that use 32-bit immediates which cannot be encoded as sign-
extended 16-bit immediates near each other. Try to schedule µops that have no
immediate immediately before or after µops with 32-bit immediates.3-30

Assembler/Compiler Coding Rule 39. (ML impact, M generality) Use the TEST
instruction instead of AND when the result of the logical AND is not used. This
saves µops in execution. Use a TEST if a register with itself instead of a CMP of
the register to zero, this saves the need to encode the zero and saves encoding
space. Avoid comparing a constant to a memory operand. It is preferable to load
the memory operand and compare the constant to a register.3-30

Assembler/Compiler Coding Rule 40. (ML impact, M generality) Eliminate
unnecessary compare with zero instructions by using the appropriate conditional
jump instruction when the flags are already set by a preceding arithmetic
instruction. If necessary, use a TEST instruction instead of a compare. Be certain
E-4

SUMMARY OF RULES AND SUGGESTIONS
that any code transformations made do not introduce problems with overflow.3-
31

Assembler/Compiler Coding Rule 41. (H impact, MH generality) For small
loops, placing loop invariants in memory is better than spilling loop-carried
dependencies. .. 3-32

Assembler/Compiler Coding Rule 42. (M impact, ML generality) Avoid
introducing dependences with partial floating point register writes, e.g. from the
MOVSD XMMREG1, XMMREG2 instruction. Use the MOVAPD XMMREG1, XMMREG2
instruction instead. ... 3-38

Assembler/Compiler Coding Rule 43. (ML impact, L generality) Instead of
using MOVUPD XMMREG1, MEM for a unaligned 128-bit load, use MOVSD
XMMREG1, MEM; MOVSD XMMREG2, MEM+8; UNPCKLPD XMMREG1, XMMREG2.
If the additional register is not available, then use MOVSD XMMREG1, MEM;
MOVHPD XMMREG1, MEM+8... 3-38

Assembler/Compiler Coding Rule 44. (M impact, ML generality) Instead of
using MOVUPD MEM, XMMREG1 for a store, use MOVSD MEM, XMMREG1;
UNPCKHPD XMMREG1, XMMREG1; MOVSD MEM+8, XMMREG1 instead....... 3-38

Assembler/Compiler Coding Rule 45. (H impact, H generality) Align data on
natural operand size address boundaries. If the data will be accessed with vector
instruction loads and stores, align the data on 16-byte boundaries. 3-48

Assembler/Compiler Coding Rule 46. (H impact, M generality) Pass
parameters in registers instead of on the stack where possible. Passing
arguments on the stack requires a store followed by a reload. While this sequence
is optimized in hardware by providing the value to the load directly from the
memory order buffer without the need to access the data cache if permitted by
store-forwarding restrictions, floating point values incur a significant latency in
forwarding. Passing floating point arguments in (preferably XMM) registers should
save this long latency operation. ... 3-50

Assembler/Compiler Coding Rule 47. (H impact, M generality) A load that
forwards from a store must have the same address start point and therefore the
same alignment as the store data. .. 3-52

Assembler/Compiler Coding Rule 48. (H impact, M generality) The data of a
load which is forwarded from a store must be completely contained within the
store data. ... 3-52

Assembler/Compiler Coding Rule 49. (H impact, ML generality) If it is
necessary to extract a non-aligned portion of stored data, read out the smallest
aligned portion that completely contains the data and shift/mask the data as
necessary. This is better than incurring the penalties of a failed store-forward.3-
52

Assembler/Compiler Coding Rule 50. (MH impact, ML generality) Avoid
several small loads after large stores to the same area of memory by using a
single large read and register copies as needed....................................... 3-52

Assembler/Compiler Coding Rule 51. (H impact, MH generality) Where it is
possible to do so without incurring other penalties, prioritize the allocation of
E-5

SUMMARY OF RULES AND SUGGESTIONS
variables to registers, as in register allocation and for parameter passing, to
minimize the likelihood and impact of store-forwarding problems. Try not to
store-forward data generated from a long latency instruction - for example, MUL
or DIV. Avoid store-forwarding data for variables with the shortest store-load
distance. Avoid store-forwarding data for variables with many and/or long
dependence chains, and especially avoid including a store forward on a loop-
carried dependence chain. ..3-56

Assembler/Compiler Coding Rule 52. (M impact, MH generality) Calculate
store addresses as early as possible to avoid having stores block loads.3-56

Assembler/Compiler Coding Rule 53. (H impact, M generality) Try to arrange
data structures such that they permit sequential access.3-58

Assembler/Compiler Coding Rule 54. (H impact, M generality) If 64-bit data
is ever passed as a parameter or allocated on the stack, make sure that the stack
is aligned to an 8-byte boundary. ..3-59

Assembler/Compiler Coding Rule 55. (H impact, M generality) Avoid having a
store followed by a non-dependent load with addresses that differ by a multiple
of 4 KBytes. Also, lay out data or order computation to avoid having cache lines
that have linear addresses that are a multiple of 64 KBytes apart in the same
working set. Avoid having more than 4 cache lines that are some multiple of 2
KBytes apart in the same first-level cache working set, and avoid having more
than 8 cache lines that are some multiple of 4 KBytes apart in the same first-level
cache working set. ..3-62

Assembler/Compiler Coding Rule 56. (M impact, L generality) If (hopefully
read-only) data must occur on the same page as code, avoid placing it
immediately after an indirect jump. For example, follow an indirect jump with its
mostly likely target, and place the data after an unconditional branch.3-63

Assembler/Compiler Coding Rule 57. (H impact, L generality) Always put code
and data on separate pages. Avoid self-modifying code wherever possible. If code
is to be modified, try to do it all at once and make sure the code that performs
the modifications and the code being modified are on separate 4-KByte pages or
on separate aligned 1-KByte subpages. ..3-64

Assembler/Compiler Coding Rule 58. (H impact, L generality) If an inner loop
writes to more than four arrays (four distinct cache lines), apply loop fission to
break up the body of the loop such that only four arrays are being written to in
each iteration of each of the resulting loops. ...3-65

Assembler/Compiler Coding Rule 59. (H impact, M generality) Minimize
changes to bits 8-12 of the floating point control word. Changes for more than
two values (each value being a combination of the following bits: precision,
rounding and infinity control, and the rest of bits in FCW) leads to delays that are
on the order of the pipeline depth..3-81

Assembler/Compiler Coding Rule 60. (H impact, L generality) Minimize the
number of changes to the rounding mode. Do not use changes in the rounding
E-6

SUMMARY OF RULES AND SUGGESTIONS
mode to implement the floor and ceiling functions if this involves a total of more
than two values of the set of rounding, precision, and infinity bits. 3-83

Assembler/Compiler Coding Rule 61. (H impact, L generality) Minimize the
number of changes to the precision mode. ... 3-84

Assembler/Compiler Coding Rule 62. (M impact, M generality) Use FXCH only
where necessary to increase the effective name space. 3-84

Assembler/Compiler Coding Rule 63. (M impact, M generality) Use Streaming
SIMD Extensions 2 or Streaming SIMD Extensions unless you need an x87
feature. Most SSE2 arithmetic operations have shorter latency then their X87
counterpart and they eliminate the overhead associated with the management of
the X87 register stack. .. 3-85

Assembler/Compiler Coding Rule 64. (M impact, L generality) Try to use
32-bit operands rather than 16-bit operands for FILD. However, do not do so at
the expense of introducing a store-forwarding problem by writing the two halves
of the 32-bit memory operand separately... 3-86

Assembler/Compiler Coding Rule 65. (H impact, M generality) Use the 32-bit
versions of instructions in 64-bit mode to reduce code size unless the 64-bit
version is necessary to access 64-bit data or additional registers.9-2

Assembler/Compiler Coding Rule 66. (M impact, MH generality) When they
are needed to reduce register pressure, use the 8 extra general purpose registers
for integer code and 8 extra XMM registers for floating-point or SIMD code...9-2

Assembler/Compiler Coding Rule 67. (ML impact, M generality) Prefer 64-bit
by 64-bit integer multiplies that produce 64-bit results over multiplies that
produce 128-bit results..9-2

Assembler/Compiler Coding Rule 68. (ML impact, M generality) Use the
64-bit versions of multiply for 32-bit integer multiplies that require a 64 bit result.
9-4

Assembler/Compiler Coding Rule 69. (ML impact, M generality) Use the
64-bit versions of add for 64-bit adds. ...9-4

Assembler/Compiler Coding Rule 70. (L impact, L generality) If software
prefetch instructions are necessary, use the prefetch instructions provided by
SSE...9-5

E.2 USER/SOURCE CODING RULES
User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has

two or more common taken targets and at least one of those targets is correlated
with branch history leading up to the branch, then convert the indirect branch to
a tree where one or more indirect branches are preceded by conditional branches
to those targets. Apply this “peeling” procedure to the common target of an
indirect branch that correlates to branch history 3-14

User/Source Coding Rule 2. (H impact, M generality) Use the smallest possible
floating-point or SIMD data type, to enable more parallelism with the use of a
E-7

SUMMARY OF RULES AND SUGGESTIONS
(longer) SIMD vector. For example, use single precision instead of double
precision where possible. ...3-39

User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of
loops so that the innermost nesting level is free of inter-iteration dependencies.
Especially avoid the case where the store of data in an earlier iteration happens
lexically after the load of that data in a future iteration, something which is called
a lexically backward dependence. ...3-39

User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of
conditional branches inside loops and consider using SSE instructions to eliminate
branches ...3-39

User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop)
variable expressions simple ...3-39

User/Source Coding Rule 6. (H impact, M generality) Pad data structures
defined in the source code so that every data element is aligned to a natural
operand size address boundary ..3-56

User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing
within a cache line (64 bytes) and within a sector of 128 bytes on processors
based on Intel NetBurst microarchitecture ...3-59

User/Source Coding Rule 8. (H impact, ML generality) Consider using a special
memory allocation library with address offset capability to avoid aliasing. ..3-62

User/Source Coding Rule 9. (M impact, M generality) When padding variable
declarations to avoid aliasing, the greatest benefit comes from avoiding aliasing
on second-level cache lines, suggesting an offset of 128 bytes or more3-62

User/Source Coding Rule 10. (H impact, H generality) Optimization techniques
such as blocking, loop interchange, loop skewing, and packing are best done by
the compiler. Optimize data structures either to fit in one-half of the first-level
cache or in the second-level cache; turn on loop optimizations in the compiler to
enhance locality for nested loops ..3-66

User/Source Coding Rule 11. (M impact, ML generality) If there is a blend of
reads and writes on the bus, changing the code to separate these bus
transactions into read phases and write phases can help performance3-67

User/Source Coding Rule 12. (H impact, H generality) To achieve effective
amortization of bus latency, software should favor data access patterns that
result in higher concentrations of cache miss patterns, with cache miss strides
that are significantly smaller than half the hardware prefetch trigger threshold .
3-67

User/Source Coding Rule 13. (M impact, M generality) Enable the compiler’s
use of SSE, SSE2 or SSE3 instructions with appropriate switches3-77

User/Source Coding Rule 14. (H impact, ML generality) Make sure your
application stays in range to avoid denormal values, underflows.3-78

User/Source Coding Rule 15. (M impact, ML generality) Do not use double
precision unless necessary. Set the precision control (PC) field in the x87 FPU
control word to “Single Precision”. This allows single precision (32-bit)
computation to complete faster on some operations (for example, divides due to
E-8

SUMMARY OF RULES AND SUGGESTIONS
early out). However, be careful of introducing more than a total of two values for
the floating point control word, or there will be a large performance penalty. See
Section 3.8.3 ... 3-78

User/Source Coding Rule 16. (H impact, ML generality) Use fast float-to-int
routines, FISTTP, or SSE2 instructions. If coding these routines, use the FISTTP
instruction if SSE3 is available, or the CVTTSS2SI and CVTTSD2SI instructions if
coding with Streaming SIMD Extensions 2. .. 3-78

User/Source Coding Rule 17. (M impact, ML generality) Removing data
dependence enables the out-of-order engine to extract more ILP from the code.
When summing up the elements of an array, use partial sums instead of a single
accumulator. ... 3-78

User/Source Coding Rule 18. (M impact, ML generality) Usually, math libraries
take advantage of the transcendental instructions (for example, FSIN) when
evaluating elementary functions. If there is no critical need to evaluate the
transcendental functions using the extended precision of 80 bits, applications
should consider an alternate, software-based approach, such as a look-up-table-
based algorithm using interpolation techniques. It is possible to improve
transcendental performance with these techniques by choosing the desired
numeric precision and the size of the look-up table, and by taking advantage of
the parallelism of the SSE and the SSE2 instructions. 3-78

User/Source Coding Rule 19. (H impact, ML generality) Denormalized floating-
point constants should be avoided as much as possible 3-79

User/Source Coding Rule 20. (M impact, H generality) Insert the PAUSE
instruction in fast spin loops and keep the number of loop repetitions to a
minimum to improve overall system performance. 8-17

User/Source Coding Rule 21. (M impact, L generality) Replace a spin lock that
may be acquired by multiple threads with pipelined locks such that no more than
two threads have write accesses to one lock. If only one thread needs to write to
a variable shared by two threads, there is no need to use a lock. 8-18

User/Source Coding Rule 22. (H impact, M generality) Use a thread-blocking
API in a long idle loop to free up the processor 8-19

User/Source Coding Rule 23. (H impact, M generality) Beware of false sharing
within a cache line (64 bytes on Intel Pentium 4, Intel Xeon, Pentium M, Intel
Core Duo processors), and within a sector (128 bytes on Pentium 4 and Intel Xeon
processors) ... 8-21

User/Source Coding Rule 24. (M impact, ML generality) Place each
synchronization variable alone, separated by 128 bytes or in a separate cache
line. ... 8-22

User/Source Coding Rule 25. (H impact, L generality) Do not place any spin
lock variable to span a cache line boundary ... 8-22

User/Source Coding Rule 26. (M impact, H generality) Improve data and code
locality to conserve bus command bandwidth. .. 8-24

User/Source Coding Rule 27. (M impact, L generality) Avoid excessive use of
software prefetch instructions and allow automatic hardware prefetcher to work.
E-9

SUMMARY OF RULES AND SUGGESTIONS
Excessive use of software prefetches can significantly and unnecessarily increase
bus utilization if used inappropriately. ...8-25

User/Source Coding Rule 28. (M impact, M generality) Consider using
overlapping multiple back-to-back memory reads to improve effective cache miss
latencies. ..8-26

User/Source Coding Rule 29. (M impact, M generality) Consider adjusting the
sequencing of memory references such that the distribution of distances of
successive cache misses of the last level cache peaks towards 64 bytes.8-26

User/Source Coding Rule 30. (M impact, M generality) Use full write
transactions to achieve higher data throughput.8-26

User/Source Coding Rule 31. (H impact, H generality) Use cache blocking to
improve locality of data access. Target one quarter to one half of the cache size
when targeting Intel processors supporting HT Technology or target a block size
that allow all the logical processors serviced by a cache to share that cache
simultaneously. ..8-27

User/Source Coding Rule 32. (H impact, M generality) Minimize the sharing of
data between threads that execute on different bus agents sharing a common
bus. The situation of a platform consisting of multiple bus domains should also
minimize data sharing across bus domains ..8-28

User/Source Coding Rule 33. (H impact, H generality) Minimize data access
patterns that are offset by multiples of 64 KBytes in each thread.8-30

User/Source Coding Rule 34. (M impact, L generality) Avoid excessive loop
unrolling to ensure the LSD is operating efficiently.8-30

E.3 TUNING SUGGESTIONS
Tuning Suggestion 1. In rare cases, a performance problem may be caused by

executing data on a code page as instructions. This is very likely to happen when
execution is following an indirect branch that is not resident in the trace cache. If
this is clearly causing a performance problem, try moving the data elsewhere, or
inserting an illegal opcode or a pause instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some
circumstances. ...3-63

Tuning Suggestion 2. If a load is found to miss frequently, either insert a prefetch
before it or (if issue bandwidth is a concern) move the load up to execute earlier.
3-70

Tuning Suggestion 3. Optimize single threaded code to maximize execution
throughput first. ...8-35

Tuning Suggestion 4. Employ efficient threading model, leverage available tools
(such as Intel Threading Building Block, Intel Thread Checker, Intel Thread
E-10

SUMMARY OF RULES AND SUGGESTIONS
Profiler) to achieve optimal processor scaling with respect to the number of
physical processors or processor cores. ... 8-35

E.4 SSE4.2 CODING RULES
SSE4.2 Coding Rule 1. (H impact, H generality) Loop-carry dependency that

depends on the ECX result of PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM
for address adjustment must be minimized. Isolate code paths that expect ECX
result will be 16 (bytes) or 8 (words), replace these values of ECX with constants
in address adjustment expressions to take advantage of memory disambiguation
hardware. ... 10-12

E.5 ASSEMBLY/COMPILER CODING RULES FOR THE
INTEL® ATOM™ PROCESSOR

Assembly/Compiler Coding Rule 1. (MH impact, ML generality) For Intel Atom
processors, minimize the presence of complex instructions requiring MSROM to
take advantage the optimal decode bandwidth provided by the two decode units.
12-4

Assembly/Compiler Coding Rule 2. (M impact, H generality) For Intel Atom
processors, keeping the instruction working set footprint small will help the front
end to take advantage the optimal decode bandwidth provided by the two decode
units. ... 12-4

Assembly/Compiler Coding Rule 3. (MH impact, ML generality) For Intel Atom
processors, avoiding back-to-back X87 instructions will help the front end to take
advantage the optimal decode bandwidth provided by the two decode units. 12-
4

Assembly/Compiler Coding Rule 4. (M impact, H generality) For Intel Atom
processors, place a MOV instruction between a flag producer instruction and a flag
consumer instruction that would have incurred a two-cycle delay. This will
prevent partial flag dependency. .. 12-7

Assembly/Compiler Coding Rule 5. (MH impact, H generality) For Intel Atom
processors, LEA should be used for address manipulation; but software should
avoid the following situations which creates dependencies from ALU to AGU: an
ALU instruction (instead of LEA) for address manipulation or ESP updates; a LEA
for ternary addition or non-destructive writes which do not feed address
E-11

SUMMARY OF RULES AND SUGGESTIONS
generation. Alternatively, hoist producer instruction more than 3 cycles above the
consumer instruction that uses the AGU. ...12-8

Assembly/Compiler Coding Rule 6. (M impact, M generality) For Intel Atom
processors, sequence an independent FP or integer multiply after an integer
multiply instruction to take advantage of pipelined IMUL execution.12-9

Assembly/Compiler Coding Rule 7. (M impact, M generality) For Intel Atom
processors, hoist the producer instruction for the implicit register count of an
integer shift instruction before the shift instruction by at least two cycles. ..12-9

Assembly/Compiler Coding Rule 8. (M impact, MH generality) For Intel Atom
processors, LEA, simple loads and POP are slower if the input is smaller than 4
bytes. ...12-9

Assembly/Compiler Coding Rule 9. (MH impact, H generality) For Intel Atom
processors, prefer SIMD instructions operating on XMM register over X87
instructions using FP stack. Use Packed single-precision instructions where
possible. Replace packed double-precision instruction with scalar double-
precision instructions. ... 12-11

Assembly/Compiler Coding Rule 10. (M impact, ML generality) For Intel Atom
processors, library software performing sophisticated math operations like
transcendental functions should use SIMD instructions operating on XMM register
instead of native X87 instructions. .. 12-11

Assembly/Compiler Coding Rule 11. (M impact, M generality) For Intel Atom
processors, enable DAZ and FTZ whenever possible. 12-11

Assembly/Compiler Coding Rule 12. (H impact, L generality) For Intel Atom
processors, use divide instruction only when it is absolutely necessary, and pay
attention to use the smallest data size operand. 12-12

Assembly/Compiler Coding Rule 13. (MH impact, M generality) For Intel Atom
processors, prefer a sequence MOVAPS+PALIGN over MOVUPS. Similarly,
MOVDQA+PALIGNR is preferred over MOVDQU. 12-12

Assembly/Compiler Coding Rule 14. (MH impact, H generality) For Intel Atom
processors, ensure data are aligned in memory to its natural size. For example,
4-byte data should be aligned to 4-byte boundary, etc. Additionally, smaller
access (less than 4 bytes) within a chunk may experience delay if they touch
different bytes. .. 12-13

Assembly/Compiler Coding Rule 15. (H impact, ML generality) For Intel Atom
processors, use segments with base set to 0 whenever possible; avoid non-zero
E-12

SUMMARY OF RULES AND SUGGESTIONS
segment base address that is not aligned to cache line boundary at all cost. 12-
14

Assembly/Compiler Coding Rule 16. (H impact, L generality) For Intel Atom
processors, when using non-zero segment bases, Use DS, FS, GS; string
operation should use implicit ES. .. 12-14

Assembly/Compiler Coding Rule 17. (M impact, ML generality) For Intel Atom
processors, favor using ES, DS, SS over FS, GS with zero segment base. 12-14

Assembly/Compiler Coding Rule 18. (MH impact, M generality) For Intel Atom
processors, “bool“ and “char“ value should be passed onto and read off the stack
as 32-bit data. ... 12-15

Assembly/Compiler Coding Rule 19. (MH impact, M generality) For Intel Atom
processors, favor register form of PUSH/POP and avoid using LEAVE; Use LEA to
adjust ESP instead of ADD/SUB. ... 12-15
E-13

SUMMARY OF RULES AND SUGGESTIONS
E-14

INDEX
Numerics
64-bit mode

arithmetic, 9-3
coding guidelines, 9-1
compiler settings, A-2
CVTSI2SD instruction, 9-4
CVTSI2SS instruction, 9-4
default operand size, 9-1
introduction, 2-60
legacy instructions, 9-1
multiplication notes, 9-2
register usage, 9-2, 9-3
REX prefix, 9-1
sign-extension, 9-2
software prefetch, 9-5

A
absolute difference of signed numbers, 5-21
absolute difference of unsigned numbers, 5-20
absolute value, 5-21
active power, 11-1
ADDSUBPD instruction, 6-14
ADDSUBPS instruction, 6-14, 6-16
algorithm to avoid changing the rounding mode, 3-82
alignment

arrays, 3-56
code, 3-12
stack, 3-59
structures, 3-56

Amdahl’s law, 8-2
AoS format, 4-21
application performance tools, A-1
arrays

aligning, 3-56
assembler/compiler coding rules, E-1
automatic vectorization, 4-13, 4-14

B
battery life

guidelines for extending, 11-5
mobile optimization, 11-1
OS APIs, 11-6
quality trade-offs, 11-5

branch prediction
choosing types, 3-13
code examples, 3-8
eliminating branches, 3-7
optimizing, 3-6
unrolling loops, 3-15

C
C4-state, 11-4
cache management

blocking techniques, 7-23
cache level, 7-5
CLFLUSH instruction, 7-12
coding guidelines, 7-1
compiler choices, 7-2
compiler intrinsics, 7-2
CPUID instruction, 3-5, 7-38
function leaf, 3-5
optimizing, 7-1
simple memory copy, 7-33
smart cache, 2-50
video decoder, 7-32
video encoder, 7-32
See also: optimizing cache utilization

call graph profiling, A-12
CD/DVD, 11-7
changing the rounding mode, 3-82
classes (C/C++), 4-12
CLFLUSH instruction, 7-12
clipping to an arbitrary signed range, 5-25
clipping to an arbitrary unsigned range, 5-27
coding techniques, 4-8, 8-23

64-bit guidelines, 9-1
absolute difference of signed numbers, 5-21
absolute difference of unsigned numbers, 5-20
absolute value, 5-21
clipping to an arbitrary signed range, 5-25
clipping to an arbitrary unsigned range, 5-27
conserving power, 11-7
data in segment, 3-63
generating constants, 5-19
interleaved pack with saturation, 5-8
interleaved pack without saturation, 5-10
latency and throughput, C-1
methodologies, 4-9
non-interleaved unpack, 5-10
optimization options, A-2
rules, 3-5, E-1
signed unpack, 5-7
simplified clip to arbitrary signed range, 5-26
sleep transitions, 11-7
suggestions, 3-5, E-1
summary of rules, E-1
tuning hints, 3-5, E-1
unsigned unpack, 5-6
See also: floating-point code

coherent requests, 7-9
command-line options

floating-point arithmetic precision, A-6
inline expansion of library functions, A-6
Index-1

INDEX
rounding control, A-6
vectorizer switch, A-5

comparing register values, 3-28, 3-30
compatibility mode, 9-1
compatibility model, 2-60
compiler intrinsics

_mm_load, 7-2, 7-32
_mm_prefetch, 7-2, 7-32
_mm_stream, 7-2, 7-32

compilers
branch prediction support, 3-16
documentation, 1-4
general recommendations, 3-2
plug-ins, A-2
supported alignment options, 4-17
See also: Intel C++ Compiler & Intel Fortran

Compiler
computation

intensive code, 4-7
converting 64-bit to 128-bit SIMD integers, 5-43
converting code to MMX technology, 4-5
CPUID instruction

AP-485, 1-4
cache parameters, 7-38
function leaf, 7-38
function leaf 4, 3-5
Intel compilers, 3-4
MMX support, 4-2
SSE support, 4-2
SSE2 support, 4-3
SSE3 support, 4-3
SSSE3 support, 4-4
strategy for use, 3-4

C-states, 11-1, 11-3
CVTSI2SD instruction, 9-4
CVTSI2SS instruction, 9-4
CVTTPS2PI instruction, 6-13
CVTTSS2SI instruction, 6-13

D
data

access pattern of array, 3-58
aligning arrays, 3-56
aligning structures, 3-56
alignment, 4-14
arrangement, 6-3
code segment and, 3-63
deswizzling, 6-9
prefetching, 2-51
swizzling, 6-6
swizzling using intrinsics, 6-7

declspec(align), D-3
deeper sleep, 11-4
denormals-are-zero (DAZ), 6-13
deterministic cache parameters

cache sharing, 7-38, 7-40
multicore, 7-40

overview, 7-38
prefetch stride, 7-40

domain decomposition, 8-5
Dual-core Intel Xeon processors, 2-1
Dynamic execution, 2-21

E
EDP-based stack frames, D-4
eliminating branches, 3-9
EMMS instruction, 5-2, 5-3

guidelines for using, 5-3
Enhanced Intel SpeedStep Technology

description of, 11-8
multicore processors, 11-11
usage scenario, 11-2

ESP-based stack frames, D-3
extract word instruction, 5-12

F
fencing operations, 7-7

LFENCE instruction, 7-11
MFENCE instruction, 7-12

FIST instruction, 3-82
FLDCW instruction, 3-82
floating-point code

arithmetic precision options, A-6
data arrangement, 6-3
data deswizzling, 6-9
data swizzling using intrinsics, 6-7
guidelines for optimizing, 3-77
horizontal ADD, 6-11
improving parallelism, 3-84
memory access stall information, 3-53
operations with integer operands, 3-86
operations, integer operands, 3-86
optimizing, 3-77
planning considerations, 6-1
rules and suggestions, 6-1
scalar code, 6-2
transcendental functions, 3-86
unrolling loops, 3-15
vertical versus horizontal computation, 6-3
See also: coding techniques

flush-to-zero (FTZ), 6-13
front end

branching ratios, B-49
characterizing mispredictions, B-50
key practices, 8-13
loop unrolling, 8-13, 8-30
optimization, 3-6
Pentium M processor, 3-24
trace cache, 8-13

functional decomposition, 8-5
FXCH instruction, 3-85, 6-2
Index-2

INDEX
G
generating constants, 5-19
GetActivePwrScheme, 11-6
GetSystemPowerStatus, 11-6

H
HADDPD instruction, 6-14
HADDPS instruction, 6-14, 6-18
hardware multithreading

support for, 3-5
hardware prefetch

cache blocking techniques, 7-27
description of, 7-3
latency reduction, 7-14
memory optimization, 7-13
operation, 7-13

horizontal computations, 6-10
hotspots

definition of, 4-7
identifying, 4-7
VTune analyzer, 4-7

HSUBPD instruction, 6-14
HSUBPS instruction, 6-14, 6-18
Hyper-Threading Technology

avoid excessive software prefetches, 8-25
bus optimization, 8-12
cache blocking technique, 8-27
conserve bus command bandwidth, 8-23
eliminate 64-K-aliased data accesses, 8-29
excessive loop unrolling, 8-30
front-end optimization, 8-30
full write transactions, 8-26
functional decomposition, 8-5
improve effective latency of cache misses, 8-25
memory optimization, 8-26
minimize data sharing between physical

processors, 8-27
multitasking environment, 8-3
optimization, 8-1
optimization guidelines, 8-11
optimization with spin-locks, 8-18
overview, 2-52
parallel programming models, 8-5
pipeline, 2-55
placement of shared synchronization variable,

8-21
prevent false-sharing of data, 8-21
processor resources, 2-53
shared execution resources, 8-35
shared-memory optimization, 8-27
synchronization for longer periods, 8-18
synchronization for short periods, 8-16
system bus optimization, 8-23
thread sync practices, 8-12
thread synchronization, 8-14
tools for creating multithreaded applications, 8-10

I
IA-32e mode, 2-60
IA32_PERFEVSELx MSR, B-48
increasing bandwidth

memory fills, 5-39
video fills, 5-39

indirect branch, 3-13
inline assembly, 5-4
inline expansion library functions option, A-6
inlined-asm, 4-10
insert word instruction, 5-13
instruction latency/throughput

overview, C-1
instruction scheduling, 3-63
Intel 64 and IA-32 processors, 2-1
Intel 64 architecture

and IA-32 processors, 2-60
features of, 2-60
IA-32e mode, 2-60

Intel Advanced Digital Media Boost, 2-3
Intel Advanced Memory Access, 2-13
Intel Advanced Smart Cache, 2-2, 2-18
Intel Core Duo processors, 2-1, 2-50

128-bit integers, 5-44
data prefetching, 2-51
front end, 2-51
microarchitecture, 2-50
packed FP performance, 6-18
performance events, B-39
prefetch mechanism, 7-3
processor perspectives, 3-3
shared cache, 2-58
SIMD support, 4-1
special programming models, 8-6
static prediction, 3-9

Intel Core microarchitecture, 2-1, 2-2
advanced smart cache, 2-18
branch prediction unit, 2-6
event ratios, B-47
execution core, 2-9

execution units, 2-10
issue ports, 2-10

front end, 2-4
instruction decode, 2-8
instruction fetch unit, 2-6
instruction queue, 2-7

advanced memory access, 2-13
micro-fusion, 2-9
pipeline overview, 2-3
special programming models, 8-6
stack pointer tracker, 2-8
static prediction, 3-11

Intel Core Solo processors, 2-1
128-bit SIMD integers, 5-44
data prefetching, 2-51
front end, 2-51
microarchitecture, 2-50
performance events, B-39
Index-3

INDEX
prefetch mechanism, 7-3
processor perspectives, 3-3
SIMD support, 4-1
static prediction, 3-9

Intel Core2 Duo processors, 2-1
processor perspectives, 3-3

Intel C++ Compiler, 3-1
64-bit mode settings, A-2
branch prediction support, 3-16
description, A-1
IA-32 settings, A-2
multithreading support, A-5
OpenMP, A-5
optimization settings, A-2
related Information, 1-3
stack frame support, D-1

Intel Debugger
description, A-1

Intel developer link, 1-4
Intel Enhanced Deeper Sleep

C-state numbers, 11-3
enabling, 11-10
multiple-cores, 11-13

Intel Fortran Compiler
description, A-1
multithreading support, A-5
OpenMP, A-5
optimization settings, A-2
related information, 1-3

Intel Integrated Performance Primitives
for Linux, A-14
for Windows, A-14

Intel Math Kernel Library for Linux, A-13
Intel Math Kernel Library for Windows, A-13
Intel Mobile Platform SDK, 11-6
Intel NetBurst microarchitecture, 2-1

core, 2-37, 2-40
design goals, 2-34
front end, 2-36
introduction, 2-21, 2-33
out-of-order core, 2-40
pipeline, 2-35, 2-38
prefetch characteristics, 7-3
processor perspectives, 3-3
retirement, 2-37
trace cache, 3-11

Intel Pentium D processors, 2-1, 2-56
Intel Pentium M processors, 2-1

core, 2-50
data prefetching, 2-49
front end, 2-48
microarchitecture, 2-47
retirement, 2-50

Intel Performance Libraries, A-13
benefits, A-14, A-18
optimizations, A-14

Intel performance libraries
description, A-1

Intel Performance Tools, 3-1, A-1
Intel Smart Cache, 2-50
Intel Smart Memory Access, 2-2
Intel software network link, 1-4
Intel Thread Checker, 8-11

example output, A-15, A-16, A-17
Intel Thread Profiler

Intel Threading Tools, 8-11
Intel Threading Tools, A-15, A-17
Intel VTune Performance Analyzer

call graph, A-12
code coach, 4-7
coverage, 3-2
description, A-1
related information, 1-4

Intel Wide Dynamic Execution, 2-2, 2-3, 2-21
interleaved pack with saturation, 5-8
interleaved pack without saturation, 5-10
interprocedural optimization, A-6
introduction

chapter summaries, 1-2
optimization features, 2-1
processors covered, 1-1
references, 1-3

IPO. See interprocedural optimization

L
large load stalls, 3-54
latency, 7-4, 7-16
legacy mode, 9-1
LFENCE Instruction, 7-11
links to web data, 1-3
load instructions and prefetch, 7-6
loading-storing to-from same DRAM page, 5-40
loop

blocking, 4-24
unrolling, 7-21, A-5

M
MASKMOVDQU instruction, 7-7
memory bank conflicts, 7-2
memory optimizations

loading-storing to-from same DRAM page, 5-40
overview, 5-35
partial memory accesses, 5-36, 5-40
performance, 4-19
reference instructions, 3-27
using aligned stores, 5-40
using prefetch, 7-13

MFENCE instruction, 7-12
micro-op fusion, 2-51
misaligned data access, 4-14
misalignment in the FIR filter, 4-16
mobile computing

ACPI standard, 11-1, 11-3
active power, 11-1
Index-4

INDEX
battery life, 11-1, 11-5, 11-6
C4-state, 11-4
CD/DVD, WLAN, WiFi, 11-7
C-states, 11-1, 11-3
deep sleep transitions, 11-7
deeper sleep, 11-4, 11-10
Intel Mobil Platform SDK, 11-6
OS APIs, 11-6
OS changes processor frequency, 11-2
OS synchronization APIs, 11-6
overview, 11-1, 12-1
performance options, 11-5
platform optimizations, 11-7
P-states, 11-1
Speedstep technology, 11-8
spin-loops, 11-6
state transitions, 11-2
static power, 11-1
WM_POWERBROADCAST message, 11-8

MOVAPD instruction, 6-3
MOVAPS instruction, 6-3
MOVDDUP instruction, 6-14
move byte mask to integer, 5-15
MOVHLPS instruction, 6-11
MOVLHPS instruction, 6-11
MOVNTDQ instruction, 7-7
MOVNTI instruction, 7-7
MOVNTPD instruction, 7-7
MOVNTPS instruction, 7-7
MOVNTQ instruction, 7-7
MOVQ Instruction, 5-39
MOVSHDUP instruction, 6-14, 6-16
MOVSLDUP instruction, 6-14, 6-16
MOVUPD instruction, 6-3
MOVUPS instruction, 6-3
multicore processors

architecture, 2-1
C-state considerations, 11-12
energy considerations, 11-10
features of, 2-56
functional example, 2-56
pipeline and core, 2-58
SpeedStep technology, 11-11
thread migration, 11-11

multiprocessor systems
dual-core processors, 8-1
HT Technology, 8-1
optimization techniques, 8-1
See also: multithreading & Hyper-Threading

Technology
multithreading

Amdahl’s law, 8-2
application tools, 8-10
bus optimization, 8-12
compiler support, A-5
dual-core technology, 3-5
environment description, 8-1
guidelines, 8-11

hardware support, 3-5
HT technology, 3-5
Intel Core microarchitecture, 8-6
parallel & sequential tasks, 8-2
programming models, 8-4
shared execution resources, 8-35
specialized models, 8-6
thread sync practices, 8-12
See Hyper-Threading Technology

N
Newton-Raphson iteration, 6-1
non-coherent requests, 7-9
non-interleaved unpack, 5-10
non-temporal stores, 7-8, 7-31
NOP, 3-31

O
OpenMP compiler directives, 8-10, A-5
optimization

branch prediction, 3-6
branch type selection, 3-13
eliminating branches, 3-7
features, 2-1
general techniques, 3-1
spin-wait and idle loops, 3-9
static prediction, 3-9
unrolling loops, 3-15

optimizing cache utilization
cache management, 7-32
examples, 7-11
non-temporal store instructions, 7-7, 7-10
prefetch and load, 7-6
prefetch instructions, 7-5
prefetching, 7-5
SFENCE instruction, 7-11, 7-12
streaming, non-temporal stores, 7-7
See also: cache management

OS APIs, 11-6

P
pack instructions, 5-8
packed average byte or word), 5-29
packed multiply high unsigned, 5-28
packed shuffle word, 5-16
packed signed integer word maximum, 5-28
packed sum of absolute differences, 5-28, 5-29
parallelism, 4-8, 8-5
partial memory accesses, 5-36
PAUSE instruction, 3-9, 8-12
PAVGB instruction, 5-29
PAVGW instruction, 5-29
PeekMessage(), 11-6
Pentium 4 processors

inner loop iterations, 3-15
static prediction, 3-9
Index-5

INDEX
Pentium M processors
prefetch mechanisms, 7-3
processor perspectives, 3-3
static prediction, 3-9

Pentium Processor Extreme Edition, 2-1, 2-56
performance models

Amdahl’s law, 8-2
multithreading, 8-2
parallelism, 8-1
usage, 8-1

performance monitoring events
analysis techniques, B-42
Bus_Not_In_Use, B-42
Bus_Snoops, B-42
DCU_Snoop_to_Share, B-42
drill-down techniques, B-42
event ratios, B-47
Intel Core Duo processors, B-39
Intel Core Solo processors, B-39
Intel Netburst architecture, B-1
Intel Xeon processors, B-1
L1_Pref_Req, B-41
L2_No_Request_Cycles, B-41
L2_Reject_Cycles, B-41
Pentium 4 processor, B-1
performance counter, B-40
ratio interpretation, B-40
See also: clock ticks
Serial_Execution_Cycles, B-41
Unhalted_Core_Cycles, B-41
Unhalted_Ref_Cycles, B-41

performance tools, 3-1
PEXTRW instruction, 5-12
PGO. See profile-guided optimization
PINSRW instruction, 5-13
PMINSW instruction, 5-28
PMINUB instruction, 5-28
PMOVMSKB instruction, 5-15
PMULHUW instruction, 5-28
predictable memory access patterns, 7-5
prefetch

64-bit mode, 9-5
coding guidelines, 7-2
compiler intrinsics, 7-2
concatenation, 7-20
deterministic cache parameters, 7-38
hardware mechanism, 7-3

characteristics, 7-13
latency, 7-14

how instructions designed, 7-5
innermost loops, 7-5
instruction considerations

cache block techniques, 7-23
checklist, 7-17
concatenation, 7-19
hint mechanism, 7-4
minimizing number, 7-20
scheduling distance, 7-18

single-pass execution, 7-2, 7-28
spread with computations, 7-22
strip-mining, 7-25
summary of, 7-4

instruction variants, 7-5
latency hiding/reduction, 7-16
load Instructions, 7-6
memory access patterns, 7-5
memory optimization with, 7-13
minimizing number of, 7-20
scheduling distance, 7-2, 7-18
software data, 7-4
spreading, 7-23
when introduced, 7-1

PREFETCHNT0 instruction, 7-6
PREFETCHNT1 instruction, 7-6
PREFETCHNT2 instruction, 7-6
PREFETCHNTA instruction, 7-6, 7-25

usage guideline, 7-2
PREFETCHT0 instruction, 7-25

usage guideline, 7-2
producer-consumer model, 8-6
profile-guided optimization, A-6
PSADBW instruction, 5-28
PSHUF instruction, 5-16
P-states, 11-1

Q
-Qparallel, 8-10

R
ratios, B-47

branching and front end, B-49
references, 1-3
releases of, 2-63
rounding control option, A-6
rules, E-1

S
sampling

event-based, A-12
scheduling distance (PSD), 7-18
Self-modifying code, 3-63
SFENCE Instruction, 7-11
SHUFPS instruction, 6-3
signed unpack, 5-7
SIMD

auto-vectorization, 4-13
cache instructions, 7-1
classes, 4-12
coding techniques, 4-8
data alignment for MMX, 4-17
data and stack alignment, 4-14
data alignment for 128-bits, 4-17
example computation, 2-60
history, 2-60
Index-6

INDEX
identifying hotspots, 4-7
instruction selection, 4-26
loop blocking, 4-24
memory utilization, 4-19
microarchitecture differences, 4-28
MMX technology support, 4-2
padding to align data, 4-15
parallelism, 4-8
SSE support, 4-2
SSE2 support, 4-3
SSE3 support, 4-3
SSSE3 support, 4-4
stack alignment for 128-bits, 4-16
strip-mining, 4-23
using arrays, 4-15
vectorization, 4-8
VTune capabilities, 4-7

SIMD floating-point instructions
data arrangement, 6-3
data deswizzling, 6-9
data swizzling, 6-6
different microarchitectures, 6-14
general rules, 6-1
horizontal ADD, 6-10
Intel Core Duo processors, 6-18
Intel Core Solo processors, 6-18
planning considerations, 6-1
reciprocal instructions, 6-1
scalar code, 6-2
SSE3 complex math, 6-15
SSE3 FP programming, 6-14
using

ADDSUBPS, 6-16
CVTTPS2PI, 6-13
CVTTSS2SI, 6-13
FXCH, 6-2
HADDPS, 6-18
HSUBPS, 6-18
MOVAPD, 6-3
MOVAPS, 6-3
MOVHLPS, 6-11
MOVLHPS, 6-11
MOVSHDUP, 6-16
MOVSLDUP, 6-16
MOVUPD, 6-3
MOVUPS, 6-3
SHUFPS, 6-3

vertical vs horizontal computation, 6-3
with x87 FP instructions, 6-2

SIMD technology, 2-63
SIMD-integer instructions

64-bits to 128-bits, 5-43
data alignment, 5-4
data movement techniques, 5-6
extract word, 5-12
integer intensive, 5-1
memory optimizations, 5-35
move byte mask to integer, 5-15

optimization by architecture, 5-44
packed average byte or word), 5-29
packed multiply high unsigned, 5-28
packed shuffle word, 5-16
packed signed integer word maximum, 5-28
packed sum of absolute differences, 5-28
rules, 5-2
signed unpack, 5-7
unsigned unpack, 5-6
using

EMMS, 5-2
MOVDQ, 5-39
MOVQ2DQ, 5-19
PABSW, 5-21
PACKSSDW, 5-8
PADDQ, 5-30
PALIGNR, 5-5
PAVGB, 5-29
PAVGW, 5-29
PEXTRW, 5-12
PINSRW, 5-13
PMADDWD, 5-30
PMAXSW, 5-28
PMAXUB, 5-28
PMINSW, 5-28
PMINUB, 5-28
PMOVMSKB, 5-15
PMULHUW, 5-28
PMULHW, 5-28
PMULUDQ, 5-28
PSADBW, 5-28
PSHUF, 5-16
PSHUFB, 5-22, 5-24
PSHUFLW, 5-17
PSLLDQ, 5-31
PSRLDQ, 5-31
PSUBQ, 5-30
PUNPCHQDQ, 5-18
PUNPCKLQDQ, 5-18

simplified 3D geometry pipeline, 7-16
simplified clipping to an arbitrary signed range, 5-27
single vs multi-pass execution, 7-28
sleep transitions, 11-7
smart cache, 2-50
SoA format, 4-21
software write-combining, 7-31
spin-loops, 11-6

optimization, 3-9
PAUSE instruction, 3-9
related information, 1-3

SSE, 2-63
SSE2, 2-63
SSE3, 2-64
SSSE3, 2-64, 2-65
stack

aligned EDP-based frames, D-4
aligned ESP-based frames, D-3
alignment 128-bit SIMD, 4-16
Index-7

INDEX
alignment stack, 3-59
dynamic alignment, 3-59
frame optimizations, D-6
inlined assembly & EBX, D-7
Intel C++ Compiler support for, D-1
overview, D-1

state transitions, 11-2
static branch prediction algorithm, 3-10
static power, 11-1
static prediction, 3-9
streaming stores, 7-7

coherent requests, 7-9
improving performance, 7-7
non-coherent requests, 7-9

strip-mining, 4-23, 4-24, 7-25, 7-26
prefetch considerations, 7-27

structures
aligning, 3-56

suggestions, E-1
summary of coding rules, E-1
system bus optimization, 8-23

T
time-based sampling, A-12
time-consuming innermost loops, 7-5
TLB. See transaction lookaside buffer
transaction lookaside buffer, 7-33
transcendental functions, 3-86

U
unpack instructions, 5-10
unrolling loops

benefits of, 3-15
code examples, 3-16
limitation of, 3-15

unsigned unpack, 5-6
using MMX code for copy, shuffling, 6-10

V
vector class library, 4-13
vectorized code

auto generation, A-7
automatic vectorization, 4-13
high-level examples, A-7
parallelism, 4-8
SIMD architecture, 4-8
switch options, A-5

vertical vs horizontal computation, 6-3

W
WaitForSingleObject(), 11-6
WaitMessage(), 11-6
weakly ordered stores, 7-7
WiFi, 11-7
WLAN, 11-7

workload characterization
retirement throughput, A-12

write-combining
buffer, 7-31
memory, 7-31
semantics, 7-8

X
XCHG EAX,EAX, support for, 3-31

Z
, A-1
Index-8

	Chapter 1 Introduction
	1.1 Tuning Your Application
	1.2 About This Manual
	1.3 Related Information

	Chapter 2 Intel® 64 and IA-32 Processor Architectures
	2.1 Intel® Core™ Microarchitecture and Enhanced Intel Core Microarchitecture
	2.1.1 Intel® Core™ Microarchitecture Pipeline Overview
	2.1.2 Front End
	2.1.2.1 Branch Prediction Unit
	2.1.2.2 Instruction Fetch Unit
	2.1.2.3 Instruction Queue (IQ)
	2.1.2.4 Instruction Decode
	2.1.2.5 Stack Pointer Tracker
	2.1.2.6 Micro-fusion

	2.1.3 Execution Core
	2.1.3.1 Issue Ports and Execution Units

	2.1.4 Intel® Advanced Memory Access
	2.1.4.1 Loads and Stores
	2.1.4.2 Data Prefetch to L1 caches
	2.1.4.3 Data Prefetch Logic
	2.1.4.4 Store Forwarding
	2.1.4.5 Memory Disambiguation

	2.1.5 Intel® Advanced Smart Cache
	2.1.5.1 Loads
	2.1.5.2 Stores

	2.2 Intel® Microarchitecture (Nehalem)
	2.2.1 Microarchitecture Pipeline
	2.2.2 Front End Overview
	2.2.3 Execution Engine
	2.2.3.1 Issue Ports and Execution Units

	2.2.4 Cache and Memory Subsystem
	2.2.5 Load and Store Operation Enhancements
	2.2.5.1 Efficient Handling of Alignment Hazards
	2.2.5.2 Store Forwarding Enhancement

	2.2.6 REP String Enhancement
	2.2.7 Enhancements for System Software
	2.2.8 Efficiency Enhancements for Power Consumption
	2.2.9 Hyper-Threading Technology Support in Intel Microarchitecture (Nehalem)

	2.3 Intel NetBurst® Microarchitecture
	2.3.1 Design Goals
	2.3.2 Pipeline
	2.3.2.1 Front End
	2.3.2.2 Out-of-order Core
	2.3.2.3 Retirement

	2.3.3 Front End Pipeline Detail
	2.3.3.1 Prefetching
	2.3.3.2 Decoder
	2.3.3.3 Execution Trace Cache
	2.3.3.4 Branch Prediction

	2.3.4 Execution Core Detail
	2.3.4.1 Instruction Latency and Throughput
	2.3.4.2 Execution Units and Issue Ports
	2.3.4.3 Caches
	2.3.4.4 Data Prefetch
	2.3.4.5 Loads and Stores
	2.3.4.6 Store Forwarding

	2.4 Intel® Pentium® M Processor Microarchitecture
	2.4.1 Front End
	2.4.2 Data Prefetching
	2.4.3 Out-of-Order Core
	2.4.4 In-Order Retirement

	2.5 Microarchitecture of Intel® Core™ Solo and Intel® Core™ Duo Processors
	2.5.1 Front End
	2.5.2 Data Prefetching

	2.6 Intel® Hyper-Threading Technology
	2.6.1 Processor Resources and HT Technology
	2.6.1.1 Replicated Resources
	2.6.1.2 Partitioned Resources
	2.6.1.3 Shared Resources

	2.6.2 Microarchitecture Pipeline and HT Technology
	2.6.3 Front End Pipeline
	2.6.4 Execution Core
	2.6.5 Retirement

	2.7 MultiCore Processors
	2.7.1 Microarchitecture Pipeline and MultiCore Processors
	2.7.2 Shared Cache in Intel® Core™ Duo Processors
	2.7.2.1 Load and Store Operations

	2.8 Intel® 64 Architecture
	2.9 SIMD Technology
	2.9.1 Summary of SIMD Technologies
	2.9.1.1 MMX™ Technology
	2.9.1.2 Streaming SIMD Extensions
	2.9.1.3 Streaming SIMD Extensions 2
	2.9.1.4 Streaming SIMD Extensions 3
	2.9.1.5 Supplemental Streaming SIMD Extensions 3
	2.9.1.6 SSE4.1
	2.9.1.7 SSE4.2

	Chapter 3 General Optimization Guidelines
	3.1 Performance Tools
	3.1.1 Intel® C++ and Fortran Compilers
	3.1.2 General Compiler Recommendations
	3.1.3 VTune™ Performance Analyzer

	3.2 Processor Perspectives
	3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy
	3.2.2 Transparent Cache-Parameter Strategy
	3.2.3 Threading Strategy and Hardware Multithreading Support

	3.3 Coding Rules, Suggestions and Tuning Hints
	3.4 Optimizing the Front End
	3.4.1 Branch Prediction Optimization
	3.4.1.1 Eliminating Branches
	3.4.1.2 Spin-Wait and Idle Loops
	3.4.1.3 Static Prediction
	3.4.1.4 Inlining, Calls and Returns
	3.4.1.5 Code Alignment
	3.4.1.6 Branch Type Selection
	3.4.1.7 Loop Unrolling
	3.4.1.8 Compiler Support for Branch Prediction

	3.4.2 Fetch and Decode Optimization
	3.4.2.1 Optimizing for Micro-fusion
	3.4.2.2 Optimizing for Macro-fusion
	3.4.2.3 Length-Changing Prefixes (LCP)
	3.4.2.4 Optimizing the Loop Stream Detector (LSD)
	3.4.2.5 Scheduling Rules for the Pentium 4 Processor Decoder
	3.4.2.6 Scheduling Rules for the Pentium M Processor Decoder
	3.4.2.7 Other Decoding Guidelines

	3.5 Optimizing the Execution Core
	3.5.1 Instruction Selection
	3.5.1.1 Use of the INC and DEC Instructions
	3.5.1.2 Integer Divide
	3.5.1.3 Using LEA
	3.5.1.4 Using SHIFT and ROTATE
	3.5.1.5 Address Calculations
	3.5.1.6 Clearing Registers and Dependency Breaking Idioms
	3.5.1.7 Compares
	3.5.1.8 Using NOPs
	3.5.1.9 Mixing SIMD Data Types
	3.5.1.10 Spill Scheduling

	3.5.2 Avoiding Stalls in Execution Core
	3.5.2.1 ROB Read Port Stalls
	3.5.2.2 Bypass between Execution Domains
	3.5.2.3 Partial Register Stalls
	3.5.2.4 Partial XMM Register Stalls
	3.5.2.5 Partial Flag Register Stalls
	3.5.2.6 Floating Point/SIMD Operands in Intel NetBurst microarchitecture

	3.5.3 Vectorization
	3.5.4 Optimization of Partially Vectorizable Code
	3.5.4.1 Alternate Packing Techniques
	3.5.4.2 Simplifying Result Passing
	3.5.4.3 Stack Optimization
	3.5.4.4 Tuning Considerations

	3.6 Optimizing Memory Accesses
	3.6.1 Load and Store Execution Bandwidth
	3.6.2 Enhance Speculative Execution and Memory Disambiguation
	3.6.3 Alignment
	3.6.4 Store Forwarding
	3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment
	3.6.4.2 Store-forwarding Restriction on Data Availability

	3.6.5 Data Layout Optimizations
	3.6.6 Stack Alignment
	3.6.7 Capacity Limits and Aliasing in Caches
	3.6.7.1 Capacity Limits in Set-Associative Caches
	3.6.7.2 Aliasing Cases in Processors Based on Intel NetBurst Microarchitecture
	3.6.7.3 Aliasing Cases in the Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo and Intel® Core™ 2 Duo Processors

	3.6.8 Mixing Code and Data
	3.6.8.1 Self-modifying Code

	3.6.9 Write Combining
	3.6.10 Locality Enhancement
	3.6.11 Minimizing Bus Latency
	3.6.12 Non-Temporal Store Bus Traffic

	3.7 Prefetching
	3.7.1 Hardware Instruction Fetching and Software Prefetching
	3.7.2 Software and Hardware Prefetching in Prior Microarchitectures
	3.7.3 Hardware Prefetching for First-Level Data Cache
	3.7.4 Hardware Prefetching for Second-Level Cache
	3.7.5 Cacheability Instructions
	3.7.6 REP Prefix and Data Movement

	3.8 Floating-point Considerations
	3.8.1 Guidelines for Optimizing Floating-point Code
	3.8.2 Floating-point Modes and Exceptions
	3.8.2.1 Floating-point Exceptions
	3.8.2.2 Dealing with floating-point exceptions in x87 FPU code
	3.8.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code

	3.8.3 Floating-point Modes
	3.8.3.1 Rounding Mode
	3.8.3.2 Precision
	3.8.3.3 Improving Parallelism and the Use of FXCH

	3.8.4 x87 vs. Scalar SIMD Floating-point Trade-offs
	3.8.4.1 Scalar SSE/SSE2 Performance on Intel® Core™ Solo and Intel® Core™ Duo Processors
	3.8.4.2 x87 Floating-point Operations with Integer Operands
	3.8.4.3 x87 Floating-point Comparison Instructions
	3.8.4.4 Transcendental Functions

	3.9 Maximizing PCIe Performance

	Chapter 4 Coding for SIMD Architectures
	4.1 Checking for Processor Support of SIMD Technologies
	4.1.1 Checking for MMX Technology Support
	4.1.2 Checking for Streaming SIMD Extensions Support
	4.1.3 Checking for Streaming SIMD Extensions 2 Support
	4.1.4 Checking for Streaming SIMD Extensions 3 Support
	4.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support
	4.1.6 Checking for SSE4.1 Support

	4.2 Considerations for Code Conversion to SIMD Programming
	4.2.1 Identifying Hot Spots
	4.2.2 Determine If Code Benefits by Conversion to SIMD Execution

	4.3 Coding Techniques
	4.3.1 Coding Methodologies
	4.3.1.1 Assembly
	4.3.1.2 Intrinsics
	4.3.1.3 Classes
	4.3.1.4 Automatic Vectorization

	4.4 Stack and Data Alignment
	4.4.1 Alignment and Contiguity of Data Access Patterns
	4.4.1.1 Using Padding to Align Data
	4.4.1.2 Using Arrays to Make Data Contiguous

	4.4.2 Stack Alignment For 128-bit SIMD Technologies
	4.4.3 Data Alignment for MMX Technology
	4.4.4 Data Alignment for 128-bit data
	4.4.4.1 Compiler-Supported Alignment

	4.5 Improving Memory Utilization
	4.5.1 Data Structure Layout
	4.5.2 Strip-Mining
	4.5.3 Loop Blocking

	4.6 Instruction Selection
	4.6.1 SIMD Optimizations and Microarchitectures

	4.7 Tuning the Final Application

	Chapter 5 Optimizing for SIMD Integer Applications
	5.1 General Rules on SIMD Integer Code
	5.2 Using SIMD Integer with x87 Floating-point
	5.2.1 Using the EMMS Instruction
	5.2.2 Guidelines for Using EMMS Instruction

	5.3 Data Alignment
	5.4 Data Movement Coding Techniques
	5.4.1 Unsigned Unpack
	5.4.2 Signed Unpack
	5.4.3 Interleaved Pack with Saturation
	5.4.4 Interleaved Pack without Saturation
	5.4.5 Non-Interleaved Unpack
	5.4.6 Extract Data Element
	5.4.7 Insert Data Element
	5.4.8 Non-Unit Stride Data Movement
	5.4.9 Move Byte Mask to Integer
	5.4.10 Packed Shuffle Word for 64-bit Registers
	5.4.11 Packed Shuffle Word for 128-bit Registers
	5.4.12 Shuffle Bytes
	5.4.13 Conditional Data Movement
	5.4.14 Unpacking/interleaving 64-bit Data in 128-bit Registers
	5.4.15 Data Movement
	5.4.16 Conversion Instructions

	5.5 Generating Constants
	5.6 Building Blocks
	5.6.1 Absolute Difference of Unsigned Numbers
	5.6.2 Absolute Difference of Signed Numbers
	5.6.3 Absolute Value
	5.6.4 Pixel Format Conversion
	5.6.5 Endian Conversion
	5.6.6 Clipping to an Arbitrary Range [High, Low]
	5.6.6.1 Highly Efficient Clipping
	5.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low]

	5.6.7 Packed Max/Min of Byte, Word and Dword
	5.6.8 Packed Multiply Integers
	5.6.9 Packed Sum of Absolute Differences
	5.6.10 MPSADBW and PHMINPOSUW
	5.6.11 Packed Average (Byte/Word)
	5.6.12 Complex Multiply by a Constant
	5.6.13 Packed 64-bit Add/Subtract
	5.6.14 128-bit Shifts
	5.6.15 PTEST and Conditional Branch
	5.6.16 Vectorization of Heterogeneous Computations across Loop Iterations
	5.6.17 Vectorization of Control Flows in Nested Loops

	5.7 Memory Optimizations
	5.7.1 Partial Memory Accesses
	5.7.1.1 Supplemental Techniques for Avoiding Cache Line Splits

	5.7.2 Increasing Bandwidth of Memory Fills and Video Fills
	5.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction
	5.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM Page
	5.7.2.3 Increasing UC and WC Store Bandwidth by Using Aligned Stores

	5.7.3 Reverse Memory Copy

	5.8 Converting from 64-bit to 128-bit SIMD Integers
	5.8.1 SIMD Optimizations and Microarchitectures
	5.8.1.1 Packed SSE2 Integer versus MMX Instructions
	5.8.1.2 Work-around for False Dependency Issue

	5.9 Tuning Partially Vectorizable Code

	Chapter 6 Optimizing for SIMD Floating-point Applications
	6.1 General Rules for SIMD Floating-point Code
	6.2 Planning Considerations
	6.3 Using SIMD Floating-point with x87 Floating- point
	6.4 Scalar Floating-point Code
	6.5 Data Alignment
	6.5.1 Data Arrangement
	6.5.1.1 Vertical versus Horizontal Computation
	6.5.1.2 Data Swizzling
	6.5.1.3 Data Deswizzling
	6.5.1.4 Horizontal ADD Using SSE

	6.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions
	6.5.3 Flush-to-Zero and Denormals-are-Zero Modes

	6.6 SIMD Optimizations and Microarchitectures
	6.6.1 SIMD Floating-point Programming Using SSE3
	6.6.1.1 SSE3 and Complex Arithmetics
	6.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor

	6.6.2 Dot Product and Horizontal SIMD Instructions
	6.6.3 Vector Normalization
	6.6.4 Using Horizontal SIMD Instruction Sets and Data Layout
	6.6.4.1 SOA and Vector Matrix Multiplication

	Chapter 7 Optimizing Cache Usage
	7.1 General Prefetch Coding Guidelines
	7.2 Hardware Prefetching of Data
	7.3 Prefetch and Cacheability Instructions
	7.4 Prefetch
	7.4.1 Software Data Prefetch
	7.4.2 Prefetch Instructions - Pentium® 4 Processor Implementation
	7.4.3 Prefetch and Load Instructions

	7.5 Cacheability Control
	7.5.1 The Non-temporal Store Instructions
	7.5.1.1 Fencing
	7.5.1.2 Streaming Non-temporal Stores
	7.5.1.3 Memory Type and Non-temporal Stores
	7.5.1.4 Write-Combining

	7.5.2 Streaming Store Usage Models
	7.5.2.1 Coherent Requests
	7.5.2.2 Non-coherent requests

	7.5.3 Streaming Store Instruction Descriptions
	7.5.4 The Streaming Load Instruction
	7.5.5 FENCE Instructions
	7.5.5.1 SFENCE Instruction
	7.5.5.2 LFENCE Instruction
	7.5.5.3 MFENCE Instruction

	7.5.6 CLFLUSH Instruction

	7.6 Memory Optimization Using Prefetch
	7.6.1 Software-Controlled Prefetch
	7.6.2 Hardware Prefetch
	7.6.3 Example of Effective Latency Reduction with Hardware Prefetch
	7.6.4 Example of Latency Hiding with S/W Prefetch Instruction
	7.6.5 Software Prefetching Usage Checklist
	7.6.6 Software Prefetch Scheduling Distance
	7.6.7 Software Prefetch Concatenation
	7.6.8 Minimize Number of Software Prefetches
	7.6.9 Mix Software Prefetch with Computation Instructions
	7.6.10 Software Prefetch and Cache Blocking Techniques
	7.6.11 Hardware Prefetching and Cache Blocking Techniques
	7.6.12 Single-pass versus Multi-pass Execution

	7.7 Memory Optimization using Non-Temporal Stores
	7.7.1 Non-temporal Stores and Software Write-Combining
	7.7.2 Cache Management
	7.7.2.1 Video Encoder
	7.7.2.2 Video Decoder
	7.7.2.3 Conclusions from Video Encoder and Decoder Implementation
	7.7.2.4 Optimizing Memory Copy Routines
	7.7.2.5 TLB Priming
	7.7.2.6 Using the 8-byte Streaming Stores and Software Prefetch
	7.7.2.7 Using 16-byte Streaming Stores and Hardware Prefetch
	7.7.2.8 Performance Comparisons of Memory Copy Routines

	7.7.3 Deterministic Cache Parameters
	7.7.3.1 Cache Sharing Using Deterministic Cache Parameters
	7.7.3.2 Cache Sharing in Single-Core or Multicore
	7.7.3.3 Determine Prefetch Stride

	Chapter 8 Multicore and Hyper-Threading Technology
	8.1 Performance and Usage Models
	8.1.1 Multithreading
	8.1.2 Multitasking Environment

	8.2 Programming Models and Multithreading
	8.2.1 Parallel Programming Models
	8.2.1.1 Domain Decomposition

	8.2.2 Functional Decomposition
	8.2.3 Specialized Programming Models
	8.2.3.1 Producer-Consumer Threading Models

	8.2.4 Tools for Creating Multithreaded Applications
	8.2.4.1 Programming with OpenMP Directives
	8.2.4.2 Automatic Parallelization of Code
	8.2.4.3 Supporting Development Tools
	8.2.4.4 Intel® Thread Checker
	8.2.4.5 Intel® Thread Profiler
	8.2.4.6 Intel® Threading Building Block

	8.3 Optimization Guidelines
	8.3.1 Key Practices of Thread Synchronization
	8.3.2 Key Practices of System Bus Optimization
	8.3.3 Key Practices of Memory Optimization
	8.3.4 Key Practices of Front-end Optimization
	8.3.5 Key Practices of Execution Resource Optimization
	8.3.6 Generality and Performance Impact

	8.4 Thread Synchronization
	8.4.1 Choice of Synchronization Primitives
	8.4.2 Synchronization for Short Periods
	8.4.3 Optimization with Spin-Locks
	8.4.4 Synchronization for Longer Periods
	8.4.4.1 Avoid Coding Pitfalls in Thread Synchronization

	8.4.5 Prevent Sharing of Modified Data and False-Sharing
	8.4.6 Placement of Shared Synchronization Variable

	8.5 System Bus Optimization
	8.5.1 Conserve Bus Bandwidth
	8.5.2 Understand the Bus and Cache Interactions
	8.5.3 Avoid Excessive Software Prefetches
	8.5.4 Improve Effective Latency of Cache Misses
	8.5.5 Use Full Write Transactions to Achieve Higher Data Rate

	8.6 Memory Optimization
	8.6.1 Cache Blocking Technique
	8.6.2 Shared-Memory Optimization
	8.6.2.1 Minimize Sharing of Data between Physical Processors
	8.6.2.2 Batched Producer-Consumer Model

	8.6.3 Eliminate 64-KByte Aliased Data Accesses

	8.7 Front-end Optimization
	8.7.1 Avoid Excessive Loop Unrolling

	8.8 Affinities and Managing Shared Platform Resources
	8.8.1 Topology Enumeration of Shared Resources
	8.8.2 Non-Uniform Memory Access

	8.9 Optimization of Other Shared Resources
	8.9.1 Expanded Opportunity for HT Optimization

	Chapter 9 64-bit Mode Coding Guidelines
	9.1 Introduction
	9.2 Coding Rules Affecting 64-bit Mode
	9.2.1 Use Legacy 32-Bit Instructions When Data Size Is 32 Bits
	9.2.2 Use Extra Registers to Reduce Register Pressure
	9.2.3 Use 64-Bit by 64-Bit Multiplies To Produce 128-Bit Results Only When Necessary
	9.2.4 Sign Extension to Full 64-Bits

	9.3 Alternate Coding Rules for 64-Bit Mode
	9.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers for 64-Bit Arithmetic
	9.3.2 CVTSI2SS and CVTSI2SD
	9.3.3 Using Software Prefetch

	Chapter 10 SSE4.2 and SIMD Programming For Text-Processing/LexING/Parsing
	10.1 SSE4.2 String and Text Instructions
	10.1.1 CRC32

	10.2 Using SSE4.2 String and Text Instructions
	10.2.1 Unaligned Memory Access and Buffer Size Management
	10.2.2 Unaligned Memory Access and String Library

	10.3 SSE4.2 Application Coding Guideline and Examples
	10.3.1 Null Character Identification (Strlen equivalent)
	10.3.2 White-Space-Like Character Identification
	10.3.3 Substring Searches
	10.3.4 String Token Extraction and Case Handling
	10.3.5 Unicode Processing and PCMPxSTRy
	10.3.6 Replacement String Library Function Using SSE4.2

	10.4 SSE4.2 Enabled Numerical and Lexical Computation

	Chapter 11 Power Optimization for Mobile Usages
	11.1 Overview
	11.2 Mobile Usage Scenarios
	11.3 ACPI C-States
	11.3.1 Processor-Specific C4 and Deep C4 States

	11.4 Guidelines for Extending Battery Life
	11.4.1 Adjust Performance to Meet Quality of Features
	11.4.2 Reducing Amount of Work
	11.4.3 Platform-Level Optimizations
	11.4.4 Handling Sleep State Transitions
	11.4.5 Using Enhanced Intel SpeedStep® Technology
	11.4.6 Enabling Intel® Enhanced Deeper Sleep
	11.4.7 Multicore Considerations
	11.4.7.1 Enhanced Intel SpeedStep® Technology
	11.4.7.2 Thread Migration Considerations
	11.4.7.3 Multicore Considerations for C-States

	Chapter 12 Intel® AtomTM Microarchitecture and Software Optimization
	12.1 Overview
	12.2 Intel® Atom™ Microarchitecture
	12.2.1 Hyper-Threading Technology Support in Intel® Atom™ Microarchitecture

	12.3 Coding Recommendations for Intel® Atom™ Microarchitecture
	12.3.1 Optimization for Front End of Intel® Atom™ Microarchitecture
	12.3.2 Optimizing the Execution Core
	12.3.2.1 Integer Instruction Selection
	12.3.2.2 Address Generation
	12.3.2.3 Integer Multiply
	12.3.2.4 Integer Shift Instructions
	12.3.2.5 Partial Register Access
	12.3.2.6 FP/SIMD Instruction Selection

	12.3.3 Optimizing Memory Access
	12.3.3.1 Store Forwarding
	12.3.3.2 First-level Data Cache
	12.3.3.3 Segment Base
	12.3.3.4 String Moves
	12.3.3.5 Parameter Passing
	12.3.3.6 Function Calls
	12.3.3.7 Optimization of Multiply/Add Dependent Chains
	12.3.3.8 Position Independent Code

	12.4 Instruction Latency

	Appendix A Application Performance Tools
	A.1 Compilers
	A.1.1 Recommended Optimization Settings for Intel® 64 and IA-32 Processors
	A.1.2 Vectorization and Loop Optimization
	A.1.2.1 Multithreading with OpenMP*
	A.1.2.2 Automatic Multithreading

	A.1.3 Inline Expansion of Library Functions (/Oi, /Oi-)
	A.1.4 Floating-point Arithmetic Precision (/Op, /Op-, /Qprec, /Qprec_div, /Qpc, /Qlong_double)
	A.1.5 Rounding Control Option (/Qrcr, /Qrcd)
	A.1.6 Interprocedural and Profile-Guided Optimizations
	A.1.6.1 Interprocedural Optimization (IPO)
	A.1.6.2 Profile-Guided Optimization (PGO)

	A.1.7 Auto-Generation of Vectorized Code

	A.2 Intel® VTune™ Performance Analyzer
	A.2.1 Sampling
	A.2.1.1 Time-based Sampling
	A.2.1.2 Event-based Sampling
	A.2.1.3 Workload Characterization

	A.2.2 Call Graph
	A.2.3 Counter Monitor

	A.3 Intel® Performance Libraries
	A.3.1 Benefits Summary
	A.3.2 Optimizations with the Intel® Performance Libraries

	A.4 Intel® Threading Analysis Tools
	A.4.1 Intel® Thread Checker 3.0
	A.4.2 Intel® Thread Profiler 3.0
	A.4.3 Intel® Threading Building Blocks 1.0

	A.5 Intel® Cluster Tools
	A.5.1 Intel® MPI Library 3.1
	A.5.2 Intel® Trace Analyzer and Collector 7.1
	A.5.3 Intel® MPI Benchmarks 3.1
	A.5.4 Benefits Summary
	A.5.4.1 Multiple usability improvements
	A.5.4.2 Improved application performance
	A.5.4.3 Extended interoperability

	A.6 Intel® XML Products
	A.6.1 Intel® XML Software Suite 1.0
	A.6.1.1 Intel® XSLT Accelerator
	A.6.1.2 Intel® XPath Accelerator
	A.6.1.3 Intel® XML Schema Accelerator
	A.6.1.4 Intel® XML Parsing Accelerator

	A.6.2 Intel® SOA Security Toolkit 1.0 Beta for Axis2
	A.6.2.1 High Performance
	A.6.2.2 Standards Compliant
	A.6.2.3 Easy Integration

	A.6.3 Intel® XSLT Accelerator 1.1 for Java* Environments on Linux* and Windows* Operating Systems
	A.6.3.1 High Performance Transformations
	A.6.3.2 Large XML File Transformations
	A.6.3.3 Standards Compliant
	A.6.3.4 Thread-Safe

	A.7 Intel® Software College

	Appendix B Using Performance Monitoring Events
	B.1 Intel® Xeon® processor 5500 Series
	B.2 Performance Analysis Techniques for Intel® Xeon® Processor 5500 Series
	B.2.1 Cycle Accounting and Uop Flow Analysis
	B.2.1.1 Cycle Drill Down and Branch Mispredictions
	B.2.1.2 Basic Block Drill Down

	B.2.2 Stall Cycle Decomposition and Core Memory Accesses
	B.2.2.1 Measuring Costs of Microarchitectural Conditions

	B.2.3 Core PMU Precise Events
	B.2.3.1 Precise Memory Access Events
	B.2.3.2 Load Latency Event
	B.2.3.3 Precise Execution Events
	B.2.3.4 Last Branch Record (LBR)
	B.2.3.5 Measuring Core Memory Access Latency
	B.2.3.6 Measuring Per-Core Bandwidth
	B.2.3.7 Miscellaneous L1 and L2 Events for Cache Misses
	B.2.3.8 TLB Misses
	B.2.3.9 L1 Data Cache

	B.2.4 Front End Monitoring Events
	B.2.4.1 Branch Mispredictions
	B.2.4.2 Front End Code Generation Metrics

	B.2.5 Uncore Performance Monitoring Events
	B.2.5.1 Global Queue Occupancy
	B.2.5.2 Global Queue Port Events
	B.2.5.3 Global Queue Snoop Events
	B.2.5.4 L3 Events

	B.2.6 Intel QuickPath Interconnect Home Logic (QHL)
	B.2.7 Measuring Bandwidth From the Uncore

	B.3 Using Performance Events of Intel® Core™ Solo and Intel® Core™ Duo processors
	B.3.1 Understanding the Results in a Performance Counter
	B.3.2 Ratio Interpretation
	B.3.3 Notes on Selected Events

	B.4 Drill-Down Techniques for Performance Analysis
	B.4.1 Cycle Composition at Issue Port
	B.4.2 Cycle Composition of OOO Execution
	B.4.3 Drill-Down on Performance Stalls

	B.5 Event ratios for Intel Core microarchitecture
	B.5.1 Clocks Per Instructions Retired Ratio (CPI)
	B.5.2 Front-end Ratios
	B.5.2.1 Code Locality
	B.5.2.2 Branching and Front-end
	B.5.2.3 Stack Pointer Tracker
	B.5.2.4 Macro-fusion
	B.5.2.5 Length Changing Prefix (LCP) Stalls
	B.5.2.6 Self Modifying Code Detection

	B.5.3 Branch Prediction Ratios
	B.5.3.1 Branch Mispredictions
	B.5.3.2 Virtual Tables and Indirect Calls
	B.5.3.3 Mispredicted Returns

	B.5.4 Execution Ratios
	B.5.4.1 Resource Stalls
	B.5.4.2 ROB Read Port Stalls
	B.5.4.3 Partial Register Stalls
	B.5.4.4 Partial Flag Stalls
	B.5.4.5 Bypass Between Execution Domains
	B.5.4.6 Floating Point Performance Ratios

	B.5.5 Memory Sub-System - Access Conflicts Ratios
	B.5.5.1 Loads Blocked by the L1 Data Cache
	B.5.5.2 4K Aliasing and Store Forwarding Block Detection
	B.5.5.3 Load Block by Preceding Stores
	B.5.5.4 Memory Disambiguation
	B.5.5.5 Load Operation Address Translation

	B.5.6 Memory Sub-System - Cache Misses Ratios
	B.5.6.1 Locating Cache Misses in the Code
	B.5.6.2 L1 Data Cache Misses
	B.5.6.3 L2 Cache Misses

	B.5.7 Memory Sub-system - Prefetching
	B.5.7.1 L1 Data Prefetching
	B.5.7.2 L2 Hardware Prefetching
	B.5.7.3 Software Prefetching

	B.5.8 Memory Sub-system - TLB Miss Ratios
	B.5.9 Memory Sub-system - Core Interaction
	B.5.9.1 Modified Data Sharing
	B.5.9.2 Fast Synchronization Penalty
	B.5.9.3 Simultaneous Extensive Stores and Load Misses

	B.5.10 Memory Sub-system - Bus Characterization
	B.5.10.1 Bus Utilization
	B.5.10.2 Modified Cache Lines Eviction

	Appendix C Instruction Latency and Throughput
	C.1 Overview
	C.2 Definitions
	C.3 Latency and Throughput
	C.3.1 Latency and Throughput with Register Operands
	C.3.2 Table Footnotes
	C.3.3 Instructions with Memory Operands

	Appendix D Stack Alignment
	D.4 Stack Frames
	D.4.1 Aligned ESP-Based Stack Frames
	D.4.2 Aligned EDP-Based Stack Frames
	D.4.3 Stack Frame Optimizations

	D.5 Inlined Assembly and EBX

	Appendix E Summary of Rules and Suggestions
	E.1 Assembly/Compiler Coding Rules
	E.2 User/Source Coding Rules
	E.3 Tuning Suggestions
	E.4 SSE4.2 Coding Rules
	E.5 Assembly/Compiler Coding Rules for the Intel® ATom™ Processor

