urs F oo i E --------------------- - .
B I oo NP L R gt N) e o RTCRNO: Y T o Thlm ol

"'E I ke o | i ::J

A i A i
NN T b B = . =+ = N BN N

£2s . s -la . -

¢ AL g d b oy EE RS R R R LN LS e R N :

i i v e - .

i B et BN S e T
---------- ‘ii 1Eaaly [el i o bl - e Al e -~ LT :- ” !

Hardware Modeling

VHDL - Architectures

Vienna University of Technology
Department of Computer Engineering
ECS Group

Contents

Structural Modeling
= Instantiation of Components

Behavioral Modeling
m Processes
= Concurrent Signal Assignments

#» Mixed Modeling

W 52 mm ektme s

Ways of Modeling a Circuit

architecture xyz of abc 1s
begin

end architecture xyz;

.E?:_ﬂlll:l:ﬂzllr-l

Ways of Modeling a Circuit

architecture xyz of abc 1s
begin

Behavioral Structural

iIfF A= "1 then D <=
B <= B+1 RAM Register
else F <= oo E P H .
B <= B ;
A

end if C <=

end architecture xyz;

Structural Modeling

Behavioral

Instantiation of components

Either graphically (Schematic) or
textually (VHDL, Verilog, ...)

Connections between components
created by wires (graphically) or
port maps

Geometry

vendor specific libraries!

Possibility of getting
dependent on a certain technology or

Instantiation of Components

Component Declaration

Describes the component's interface
(best to be done within a package, but also
possible in the declaration part of an

architecture or block)

Component Instantiation

Assignment of signals to the component interface

Component Configuration

Functionality selection for each component

Declaration of a Component

Architec f;re

Package

_ARRRETTTRRRRA

architecture struct of abc

component one

generic
(
DEPTH : integer :
);
port
(
a, b : 1n bit;
C > out bit
);

end component one;
begin

end architecture struct;

package my pkg 1is
component one
generic

(

DEPTH : i1nteger :

);
port

¢
a, b : In bit;
C - out bit
)

end component one;

end package my_ pkg;

nnnnnnnnnnn

: E:_Ii-“*l

| Instantiation of a Component (1'”)."“:‘:

Three important terms:

= formals Ports and generics of the
instantiated entity

= locals Ports and generics of the component
declaration

= actuals Signals (parameters) within the

architecture

#» When instantiated: Locals get connected to
actuals (= port map, generic map)

- Instantiation of a Component (25:‘:

P ins’rances/
of one \

use work.my pkg.all;

architecture struct of xyz 1is
signal sl1, s2, s3, s4: bit;
begin
-—-named association
one_instl : one
generic map(DEPTH => 10)
port map(a => sl1, b => s2,
C => 59);
—-—-positional association
one_inst2 : one
~ generic map(10)
port map(s3, s2, s4);
end architecture struct;

e

sl

S2

_ARRRTTRIRRRRORE

=~ 3
. e
..........

he ot |
e
L

Default value is
replaced by 10

one_instl

one_inst2 —S4

Conditional Instantiation

if-generate statement

1T boolean expression generate

end generate;

10

: % E:_I*l-*l

Parallel Instantiation (1)

for-generate statement

-- s1, s2 and s3 are declared as:
-— bit_vector(0 to 4)
for 1 In O to 4 generate

11

Parallel Instantiation (2)

12

-- s1, s2 and s3 are declared as:
—— bit _vector(0 to 4)
for 1 In O to 4 generate
signal tmp : bit;
begin

tmp

tmp

end generate;

Component Configuration

13

Implicit configuration, if only one
architecture for the component exists

Explicit configuration done in the design
unit's configuration:

configuration xyz cfg of xyz 1is
for struct
for one_iInstl : one use work.one(struct);
for one_iInst2 : one use work.one(beh);
end for;
end configuration xyz cfg;

or directly at instantiation:

one_instl : entity work.one(struct)
generic map ...

Component Configuration

14

Implicit configuration, if only one
architecture for the component exists

Explicit configuration done in the design
unit's configuration:

configuration xyz cfg of xyz 1is
for struct
for one_iInstl : one use work.one(struct);
for one_iInst2 : one use work.one(beh);
end for;
end configuration xyz cfg;

» or directly at instantiation:
one_instl : entiiy work.one(struct)
generic marn __.

k E:_Ii-“-il

Structural Modeling - Summary

#» Three steps
= Component declaration
= Component instantiation
= Component configuration

Connections between components are
modeled using port mapping

Parameters are set through generic
mapping

Possibility for conditional and parallel
instantiation

15

" % Sz i etme s

Contents

Structural Modeling
= Instantiation of Components

Behavioral Modeling
= Processes
= Concurrent Signal Assignments

#» Mixed Modeling

16

Behavioral Modeling

» How to model the behavior of
hardware?

= Hardware may work parallel or
sequential

= Input changes may trigger output
changes at arbitrary ftimes

= How to model time and delay?

17

Geometry

k 3 E:_]u-w&

nnnnnnnnn

Structural

Behavioral Architecture

architecture beh of abc is

begin
0
X
. (\S
T
Qi
.\/
(o)
(0)
S =
Cy
2
Q’f‘ C&Se
I W
G end architecture beh; hen

18

Label

(optional)

N |

—

Loop

Processes (1)

Sensitivity list
(optional)

19

name : process(sl, s2)
begin

Sequential statements

end process name,

Statements within a
process are executed
sequentially

Execution ,comparable® to
an infinite loop

Execution controlled by
the sensitivity list or wait
statements

A single architecture may
have multiple, concurrent
processes

Processes (2)

Processes interchange information using
signals.

#» Assignments on signals are not done
immediately, but at the next wait statement

— Required for modeling parallel executions

Signal assignments may trigger additional
process executions

20

uuuuuuu

‘ Wait Statements

A single process may have multiple wait
statements (simulation)

or must have exactly a single wait statement
(synthesis)

21

architecture beh of abc 1s

signal sl1, s2, s3 : bit;

begin
pl: process
begin
s2 <= sl;
s3 <= s2;
wait on sl, s2;
end process;
end architecture beh;

Simulation of Processes

» Execute all statements until a wait statement
or the end of the process is reached

#» If the end is reached, continue at the start
of the process

#» If a wait statement is reached suspend the
execution of the process
= If there is an active process
Resume that process
= Otherwise
Increment simulation time

22

‘ Sensitivity List

23

Special form of the wait on statement (at the
end of the process)|

architecture beh of abc is

signal sl1, s2, s3 - bit;

begin
pl: process
begin
s2 <= s1;
s3 <= sZ;

end process;
end architecture beh;

nnnnnnnnn

Sensitivity List

Wait on at the end of a process is very
common for synthesizable VHDL code!

Therefore when writing synthesizable VHDL
code, only sensitivity lists and no wait
statements are normally used.

For simulation of synthesizable VHDL code,
the sensitivity list must contain all signals
which are read by the process.

Synthesis tools ignore the sensitivity list
(only warning, if not complete).

24

uuuuuuu

Example Execution of a Process

architecture beh of abc is
signal s1, s2, s3 : bit;

begin
pl - process(sl)
begin
s2 <= sl;
S3 <= s2;

A 4

end process;

A 4

end architecture beh;

v

_ARRRTTRIRRRRORE

A -,
nnnnnnnnnn

Assumptions:

Before starting the simulation all
signals have the value O.

» s1 changes from O to 1 — Process is started

s2 is marked to become 1 (sl's value)

s3 is marked to become O (s2's old value!)
Implicit wait on statement (sensitivity list)
The new values are assigned to s2 and s3
=> s2 becomes 1, s3 stays O!

= s2 and s3 have different values after the execution of the process!

25

Example Execution of a Process

architecture beh of abc is
signal s1, s2, s3 : bit;

begin
pl - process(sl))
begin
s2 <= sl;
S3 <= s2;

A 4

end process;

A 4

end architecture beh;

v

_ARRRTTRIRRRRORE

A -,
nnnnnnnnnn

Assumptions:

Before starting the simulation all
signals have the value O.

» s1 changes from O to 1 — Process is started

s2 is marked to become 1 (sl's value)

s3 is marked to become O (s2's old value!)
Implicit wait on statement (sensitivity list)
The new values are assigned to s2 and s3
=> s2 becomes 1, s3 stays O!

= s2 and s3 have different values after the execution of the process!

26

27

architecture beh of abc 1s
signal sl1, s2, s3, s4: bit;
begin

andl : process(sl, s2)
iIT s1 ="1 and s2 = "1 then

< s3 <= "17;
=

S| else

§- s3 <= "0 ;
v end i1f;

end process andl;

and2 : process(s2, s3)
iIT s2 = 1" and s3 = "1 then

< s4 <= "17;
=

§ else o
ol s4 <= 0 ;
o end i1f;

end process and2;

end architecture beh;

N\

Parallel

_ARRRTTRIRRRRORE

Sl

S2

andl

and2

—s4

sas
T

Architecture with 2 Processes

Manual Simulation

28

architecture beh of abc is
signal sl1, s2, s3, s4: bit;
begin
andl : process(sl, s2)
iITf s1 = 1 and s2 = "1 then
s3 <= "17;
else
s3 <= 0 ;
end 1f;
end process andl;

and2 : process(s2, s3)
iIf s2 = 1" and s3 = "1 then

s4 <= "1 ;
else

s4 <= "0 ;
end 1f;

end process and2;
end architecture beh;

Assumptions:
s1=0
s2=1
—s3:=0
—=s4=0

_ARRRTTRIRRRRORE

nnnnnnnnnnn

Manual Simulation

29

architecture beh of abc is
signal sl1, s2, s3, s4: bit;
begin
andl : process(sl, s2)
iITf s1 = 1 and s2 = "1 then
s3 <= "17;
else
s3 <= 0 ;
end 1f;
end process andl;

and2 : process(s2, s3)
iIf s2 = 1" and s3 = "1 then

s4 <= "1 ;
else

s4 <= "0 ;
end 1f;

end process and2;
end architecture beh;

Assumptions:
s1=0
s2=1
—s3:=0
—=s4=0

s:0->1

_ARRRTTRIRRRRORE

nnnnnnnnnnn

Manual Simulation

30

architecture beh of abc is
signal sl1, s2, s3, s4: bit;
begin
andl : process(sl, s2)
iITf s1 = 1 and s2 = "1 then
s3 <= "17;
else
s3 <= 0 ;
end 1f;
end process andl;

and2 : process(s2, s3)
iIf s2 = 1" and s3 = "1 then

s4 <= "1 ;
else

s4 <= "0 ;
end 1f;

end process and2;
end architecture beh;

Assumptions:
s1=0
s2=1
—s3:=0
—=s4=0

s:0->1

—=583:0->1

_ARRRTTRIRRRRORE

nnnnnnnnnnn

Manual Simulation

31

architecture beh of abc is
signal sl1, s2, s3, s4: bit;
begin
andl : process(sl, s2)
iITf s1 = 1 and s2 = "1 then
s3 <= "17;
else
s3 <= 0 ;
end 1f;
end process andl;

and2 : process(s2, s3)
iIf s2 = 1" and s3 = "1 then

s4 <= "1 ;
else

s4 <= "0 ;
end 1f;

end process and2;
end architecture beh;

Assumptions:
s1=0
s2=1
—s3:=0
—=s4=0

s:. 01
—=583:0->1

—=s4:0->1

_ARRRTTRIRRRRORE

nnnnnnnnnnn

‘ Another Example

entity abc 1s

port
(
A, B, C - In bit;
Z, R : out bit
);

end entity abc;

architecture beh of abc
signal X, Y : bit;
begin
process(A, B, C)
begin
X <= A;
<= B;
<= X and Y;
<= C;
<= X and Y;
. end process;

0 < N <

3

fend architecture beh;

_ARRRTTRIRRRRORE

nnnnnnnnnnn

Which values are assigned to Z
and R?

_ARRRTTRIRRRRORE

nnnnnnnnnn

Another Example

entity abc 1s

port
¢
A, B, C : In bit;
Z, R - out bit
)

end entity abc;

architecture beh of abc 1s
signal X, Y : bit;

begin
process(A, B, C)
begin
X <= A;
Y <= B;
Z <= X and Y;
Y <= C;
R <= X and Y;

end process;

3end architecture beh;

Which values are assigned to Z
and R?

After a single process execution
Z and R are set to X_old and Y_old.

After
(adding X and Y), a second execution of
the process is triggered.

R and Z are set to A and C after the
second iteration.

b : E:_]v-l.-»&

A -,
nnnnnnnn

‘ Simple Signal Assignment Ex “mple"‘

Simple signal assignment is much foo
complicated:

assign : process(sl, s2)
s3 <= s1 and s2;
end process assign;

#» Is there an easier way?
» Yes:

Short form for signal assignment (named
concurrent signal assignment):

s3 <= sl and s2;

34

‘ Concurrent Signal Assignments

A 2 I 2 2

35

Outside of a process

Possibi
Possibi
Possibi
Paralle

ity for specifying a delay

ity for conditional assignments

ity for selective assignments
execution (short form of a process

declaration)

nnnnnnnnn

Concurrent Signal Assignments

Unconditional assignment

Selective Assignment

architecture beh of abc is

signal sl1, s2, s3, s4, s5: bit;
begin

andl : s3 <= sl and s2;

inverter : with s4 select

output <= "1 when 0,
"0 when "1 ;

end architecture beh;

36

sl
S2

andl

and2

§£{::x>-35

‘ Signal Delay

37

Delays are modeled as follows:

s3 <= sl1 and s2

= Applicable only in Behavioral Simulation!

#» Not synthesizable, ignored by the
synthesis tool.

#» After technology mapping, real hardware
delays added to simulation netlist.

b 3 E:_]u-w&

nnnnnnnnn

Behavioral Modeling - Summary

38

Based on processes
#» Multiple processes per architecture
#» Multiple processes executed concurrently
» Processes executed sequentially
Controlled by wait statements (simulation)
Simplifications:

= Sensitivity list instead of wait on

= Concurrent signal assignments

Contents

Structural Modeling
= Instantiation of Components

Behavioral Modeling
m Processes
m Concurrent Signal Assignments

#» Mixed Modeling

39

| Mixed Modeling (1)

Behavioral- and structural Descriptions may
be mixed in the same architecture

Descriptions on different layers of
abstraction may be mixed

S
S .. Structural Description / \
B .. Behavioral Description
S/B Mixed Behavioral/ B S 5
Structural Description / \
B B B

40

41

Mixed Modeling (1)

Behavioral- and structural Descriptions may
be mixed in the same architecture

Descriptions on different layers of

abstraction may be mixed

Example of a CPU

Break down into subsystems

/'

CPU

I

Pipel

Pipe2

Pipe3

= Integration of subsystems as / \
P | [ROM

components |

‘Decod

nnnnnnnnn

Mixed Modell (2)

architecture beh of abc is
signal sl1, s2, s3, s4, s5 : bit;
begin
Behavioral S5 <= sl xor s4;
Logic level
42 end architecture beh;

S1——

S2

andl

nnnnnnnnn

XOor

s5

llr-l

L

L

__;'?J.ﬁ“ _'

Summary

architecture xyz of abc 1s
begin

Behavioral Structural

iIT A= "1 then D <=
B <= B+1 RAM -Register
else F <= = P H c
B <= B :
A

end if C <=

end architecture xyz;

Summary

architecture xyz of abc
begin

Behavioral

Processes

* Processes are running in parallel

o Statements of a process are executed
sequentially

«Controlled by wait statements

Simplifications
 Concurrent signal assignments
eUnconditional, conditional, selective

*Qutside of Processes
«Sensitivity lists

44

end architecture xyz;

(I

ﬁ‘Il "y

IS

Structural

Components
* Declaration
sPackage or architecture
* Instantiation
*Port mapping, generic mapping
 Configuration
«Configuration file

	�� Hardware Modeling ��VHDL – Architectures
	Contents
	Ways of Modeling a Circuit
	Ways of Modeling a Circuit
	Structural Modeling
	Instantiation of Components
	Declaration of a Component
	Instantiation of a Component (1)
	Instantiation of a Component (2)
	Conditional Instantiation
	Parallel Instantiation (1)
	Parallel Instantiation (2)
	Component Configuration
	Component Configuration
	Structural Modeling - Summary
	Contents
	Behavioral Modeling
	Behavioral Architecture
	Processes (1)
	Processes (2)
	Wait Statements
	Simulation of Processes
	Sensitivity List
	Sensitivity List
	Example Execution of a Process
	Example Execution of a Process
	Architecture with 2 Processes
	Manual Simulation
	Manual Simulation
	Manual Simulation
	Manual Simulation
	Another Example
	Another Example
	Simple Signal Assignment Example
	Concurrent Signal Assignments
	Concurrent Signal Assignments
	Signal Delay
	Behavioral Modeling - Summary
	Contents
	Mixed Modeling (1)
	Mixed Modeling (1)
	Mixed Modell (2)
	Summary
	Summary

