THE DESIGNER'S GUIDE TO

VHDL

THIRD EDITION
PETER J. ASHENDEN -~ JIM LEWIS

To my wife Katrina

Preface

VHDL is a language for describing digital electronic systems. It arose out of the United
States government’s Very High Speed Integrated Circuits (VHSIC) program. In the course
of this program, it became clear that there was a need for a standard language for describ-
ing the structure and function of integrated circuits (ICs). Hence the VHSIC Hardware De-
scription Language (VHDL) was developed. It was subsequently developed further under
the auspices of the Institute of Electrical and Electronic Engineers (IEEE) and adopted in
the form of the IEEE Standard 1076, Standard VHDL Language Reference Manual, in 1987.
This first standard version of the language is often referred to as VHDL-87.

Like all IEEE standards, the VHDL standard is subject to review from time to time.
Comments and suggestions from users of the 1987 standard were analyzed by the IEEE
working group responsible for VHDL, and in 1992 a revised version of the standard was
proposed. This was eventually adopted in 1993, giving us VHDL-93. A second round of
revision of the standard was started in 1998. That process was completed in 2001, giving
us VHDL-2002. After that, further development took place in the IEEE working group and
in a technical committee of an organization, Accellera, whose charter is to promote stan-
dards for electronics design. These efforts led to the current version of the language,
VHDL-2008, described in this book.

VHDL is designed to fill a number of needs in the design process. First, it allows de-
scription of the structure of a system, that is, how it is decomposed into subsystems and
how those subsystems are interconnected. Second, it allows the specification of the func-
tion of a system using familiar programming language forms. Third, as a result, it allows
the design of a system to be simulated before being manufactured, so that designers can
quickly compare alternatives and test for correctness without the delay and expense of
hardware prototyping. Fourth, it allows the detailed structure of a design to be synthesized
from a more abstract specification, allowing designers to concentrate on more strategic
design decisions and reducing time to market.

This book presents a structured guide to the modeling facilities offered by the VHDL
language, showing how they can be used for the design of digital systems. The book does
not purport to teach digital design, since that topic is large enough by itself to warrant
several textbooks covering its various aspects. Instead, the book assumes that the reader
has at least a basic grasp of digital design concepts, such as might be gained from a first
course in digital design in an engineering degree program. Some exposure to computer
programming and to concepts of computer organization will also be beneficial. This book
is suitable for use in a course in digital or computer design and will also serve practicing
engineers who need to acquire VHDL fluency as part of their changing job requirements.

One pervasive theme running through the presentation in this book is that modeling
a system using a hardware description language is essentially a software design exercise.
This implies that good software engineering practice should be applied. Hence the treat-
ment in this book draws directly from experience in software engineering. There are nu-

Xvii

xXviii

Preface

merous hints and techniques from small-scale and large-scale software engineering
presented throughout the book, with the sincere intention that they might be of use to
readers.

I am particularly pleased to be able to include this book in the Morgan Kaufmann Se-
ries in Systems on Silicon. Modeling for simulation and synthesis is a vital part of a design
methodology for large-scale systems. VHDL allows models to be expressed at a range of
levels of abstraction, from gate-level up to algorithmic and architectural levels. It will con-
tinue to play an important role in the design of silicon-based systems for some time to
come.

Structure of the Book

The Designer’s Guide to VHDL is organized so that it can be read linearly from front to
back. This path offers a graduated development, with each chapter building on ideas in-
troduced in the preceding chapters. Each chapter introduces a number of related concepts
or language facilities and illustrates each one with examples. Scattered throughout the
book are three case studies, which bring together preceding material in the form of ex-
tended worked examples.

Chapter 1 introduces the idea of a hardware description language and outlines the
reasons for its use and the benefits that ensue. It then proceeds to introduce the basic con-
cepts underlying VHDL, so that they can serve as a basis for examples in subsequent chap-
ters. The next three chapters cover the aspects of VHDL that are most like conventional
programming languages. These may be used to describe the behavior of a system in algo-
rithmic terms. Chapter 2 explains the basic type system of the language and introduces
the scalar data types. Chapter 3 describes the sequential control structures, and Chapter 4
covers composite data structures used to represent collections of data elements. In Chapter
5, the main facilities of VHDL used for modeling hardware are covered in detail. These
include facilities for modeling the basic behavioral elements in a design, the signals that
interconnect them and the hierarchical structure of the design.

The next group of chapters extends this basic set of facilities with language features
that make modeling of large systems more tractable. Chapter 6 introduces procedures and
functions, which can be used to encapsulate behavioral aspects of a design. Chapter 7 in-
troduces the package as a means of collecting together related parts of a design or of cre-
ating modules that can be reused in a number of designs. Chapter 8 deals with the
important topic of resolved signals, and Chapter 9 describes a number of predefined and
standard packages for use in VHDL designs. The combination of facilities described in
these early chapters is sufficient for many modeling tasks, so Chapter 10 brings them to-
gether in the first case study, in which a multiplier/accumulator circuit is designed.

The third group of chapters covers advanced modeling features in VHDL. Chapter 11
covers aliases as a way of managing the large number of names that arise in a large model.
Chapter 12 describes generics as a means of parameterizing the behavior and structure of
a design and enhancing the resusability of designs. This leads to a discussion of abstract
data types as a means of managing the complexity associated with large designs. Chapter
13 deals with the topics of component instantiation and configuration. These features are
important in large real-world models, but they can be difficult to understand. Hence this
book introduces structural modeling through the mechanism of direct instantiation in ear-

Preface

XixX

lier chapters and leaves the more general case of component instantiation and configura-
tion until this later chapter. In Chapter 14, generated regular structures are covered.

The fourth group of chapters covers language facilities generally used for system-level
modeling. Chapter 15 introduces the notion of access types (or pointers) and uses them
to develop linked data structures. The topic of abstract data types is revisited in the context
of container data types. Chapter 16 covers the language facilities for input and output us-
ing files, including binary files and text files. Chapter 17 is a case study in which a package
for designing memories is developed. The package draws upon features described in the
third and fourth groups of chapters.

In the fifth group of chapters, we introduce language features for advanced design
and verification. Chapter 18 deals with features for test bench support and verification. It
describes how specifications written in the IEEE standard Property Specification Language
(PSL) can be embedded in VHDL models. Chapter 19 covers protected types and their use
as a means of concurrency control. Chapter 20 describes how we can annotate items in a
design with attributes to specify information to be used by design automation tools. This
leads into Chapter 21, which covers guidelines for writing synthesizable models. This
group of chapters is drawn together in a further case study, Chapter 22, showing devel-
opment of a synthesizable processor core and its use in a small embedded system, a digital
alarm clock.

The final chapter, Chapter 23, is a miscellany of advanced topics not covered in the
previous chapters. It includes a discussion of blocks and guarded signals, which are not
as widely used in modern designs as previously. Nonetheless, we describe them here for
completeness. The chapter also covers use of features for encrypting the source text of
models as a means of protecting intellectual property (IP), and use of features of the VHDL
Procedureall Interface (VHPI) for incorporating models and applications written in non-
VHDL programming languages.

Each chapter in the book is followed by a set of exercises designed to help the reader
develop understanding of the material. Where an exercise relates to a particular topic de-
scribed in the chapter, the section number is included in square brackets. An approximate
“difficulty” rating is also provided, expressed using the following symbols:

(1] quiz-style exercise, testing basic understanding

(2] basic modeling exercise—10 minutes to half an hour effort
(3] advanced modeling exercise—one half to two hours effort
(4] modeling project—half a day or more effort

Answers for the first category of exercises are provided in Appendix C. The remaining
categories involve developing VHDL models. Readers are encouraged to test correctness
of their models by running them on a VHDL simulator. This is a much more effective learn-
ing exercise than comparing paper models with paper solutions.

Changes in the Second and Third Editions

The first edition of this book was published in 1995, just as VHDL-93 was gaining accep-
tance. The second edition was updated to reflect the changes in VHDL-2002. Many of the

XX

Preface

changes in the language standard corrected ambiguities in the previous standard that
caused incompatibility between VHDL tools from different vendors. There were also
changes that enhanced the usability of the language. The text and examples in the second
edition were revised where necessary to reflect the changes in the language. Furthermore,
following publication of the first edition, a number of VHDL-related standards were pub-
lished and gained widespread acceptance. The second edition added descriptions of the
IEEE 1076.3 synthesis and IEEE 1076.2 math packages, and was revised to cover the IEEE
1076.6 Synthesis Interoperability Standard.

The latest revision of the language, VHDL-2008, adds a number of significant new lan-
guage features, making this edition of The Designer’s Guide to VHDL significantly bigger
than its predecessors. VHDL-2008 also specifies numerous minor new features and
changes to existing features to enhance the usability of the language. This edition inte-
grates descriptions of all of the new and revised features into the text. The differences
between the various versions are highlighted in call-outs within the text, headed with
“VHDL-2002,” “VHDL-93,” or “VHDL-87,” as appropriate. In addition, some of the material
has been removed or rearranged. The case study on a package for arithmetic on bit-vector
operands has been deleted because the standard numeric packages have now become
widespread. The first case study in this book is a revised version of the MAC case study
in previous editions, and shows how the standard packages can be used. The chapter on
blocks and guarded signals has been contracted and moved to a section in the last chapter,
since the features are now little used in practice. There is a greater emphasis on synthesis
in this edition. What was an appendix on the topic in previous editions has been substan-
tially revised and promoted to full chapter status. The large case study showing develop-
ment of a 32-bit processor model has been revised to show a smaller synthesizable model
of an 8-bit microcontroller core and its use in an embedded system. This is much more
relevant, both for educational purposes and professional practice. Finally, this edition in-
cludes a listing of all of the VHDL standard packages as an appendix for reference.

Resources for Help and Information

Although this book attempts to be comprehensive in its coverage of VHDL, there will no
doubt be questions that it does not answer. For these, the reader will need to seek other
resources. A valuable source of experience and advice, often overlooked, is one’s col-
leagues, either at the workplace or in user groups. User groups generally hold regular
meetings that either formally or informally include a time for questions and answers. Many
also run e-mail lists and on-line discussion groups for problem solving.

Accellera is one of a number of organizations that sponsors the EDA Industry Working
Groups Web server (www.eda.org). The server has links to Web pages and repositories of
several VHDL standards groups and user groups.

Readers who have access to the Usenet electronic news network will find the news
group comp.lang.vhdl a valuable resource. This discussion group is a source of announce-
ments, sample models, questions and answers and useful software. Participants include
VHDL users and people actively involved in the language standard working group and in
VHDL tool development. The “frequently asked questions” (FAQ) file for this group is a
mine of useful pointers to books, products and other information. It is archived at
www.eda.org.

www.eda.org
www.eda.org

Preface

xXxi

One resource that must be mentioned is IEEE Standard 1076, IEEE Standard VHDL
Language Reference Manual, sometimes referred to as the “VHDL Bible.” It is the author-
itative source of information about VHDL. However, since it is a definitional document,
not a tutorial, it is written in a complex legalistic style. This makes it very difficult to use
to answer the usual questions that arise when writing VHDL models. It should only be
used once you are somewhat familiar with VHDL. It can be ordered from the IEEE at
standards.ieee.org.

This book contains numerous examples of VHDL models that may also serve as a re-
source for resolving questions. The VHDL source code for these examples and the case
studies, as well as other related information, is available on the companion website for the
book at books.elsevier.com/companions/9780120887859.

Although I have been careful to avoid errors in the example code, there are no doubt
some that I have missed. I would be pleased to hear about them, so that I can correct them
in the on-line code and in future printings of this book. Errata and general comments can
be e-mailed to me at vhdl-book@ashenden.com.au.

Acknowledgments

The seeds for this book go back to 1990 when I developed a brief set of notes, 7The VHDL
Cookbook, for my computer architecture class at the University of Adelaide. At the time,
there were few books on VHDL available, so I made my booklet available for on-line ac-
cess. News of its availability spread quickly around the world, and within days, my e-mail
in-box was bursting. At the time of writing this, nearly 20 years later, I still regularly receive
messages about the Cookbook. Many of the respondents urged me to write a full textbook
version. With that encouragement, I embarked upon the exercise that led to the first edi-
tion of The Designer’s Guide to VHDL. Two years after publication of The Designer’s Guide,
the need for a book specifically for students became evident. That led to publication of
the first edition of The Student’s Guide to VHDL. 1 am grateful to the many engineers, stu-
dents and teachers around the world who gave me the impetus to write these books and
who made them such a success. I hope this new edition will continue to meet the need
for a comprehensive guide to VHDL.

In the previous editions of The Designer’s Guide and The Student’s Guide, I had the
opportunity to extend thanks to the many people who assisted in development of the
books. They included my colleagues at the University of Adelaide; my research collabo-
rators, Phil Wilsey at the University of Cincinnati and Perry Alexander at the University of
Kansas; the staff at Morgan Kaufmann Publishers, including, in particular, Denise Penrose;
the reviewers of the manuscript for the first edition, namely, Poras Balsara of the Univer-
sity of Texas, Paul Menchini of Menchini & Associates, David Pitts of GTE Labs and the
University of Lowell and Philip Wilsey of the University of Cincinnati; David Bishop for
his contribution to the material on synthesis in the first edition of The Designer’s Guide,
and Mentor Graphics Corporation, for use of their ModelSim simulator to check the exam-
ple models. I remain grateful to all of these people and organizations for their valuable
contributions to the earlier editions and to this edition.

For the current edition, I would also like to thank Jim Lewis, who collaborated on a
recent book, VHDL-2008: Just the New Stuff. Much of the material from that book has
found its way into this book in one form or another. Thanks also to Mentor Graphics Cor-

vhdl-book@ashenden.com.au

XXii

Preface

poration for continued use of the ModelSim simulator to check the example code. I con-
tinue to enjoy an excellent working relationship with the staff at Morgan Kaufmann
Publishers and their parent company, Elsevier. Thanks to Chuck Glaser, Senior Acquisi-
tions Editor, for his support in the continued development of these VHDL books; to Dawn-
marie Simpson, Senior Project Manager in the Production Department, for her meticulous
attention to detail; and to Denise Penrose, Publisher, for her longstanding support of my
writing endeavors.

The previous editions of The Designer’s Guide to VHDL were dedicated to my wife
Katrina. As I said in the first edition preface, I used to think that authors dedicating their
books to their partners was somewhat contrived, but that Katrina’s understanding, encour-
agement and support taught me otherwise. I remain deeply grateful for her continued sup-
port and am honored to also dedicate this third edition to her.

1.1

Chapter 1

Fundamental Concepts

In this introductory chapter, we describe what we mean by digital system modeling and
see why modeling and simulation are an important part of the design process. We see how
the hardware description language VHDL can be used to model digital systems and intro-
duce some of the basic concepts underlying the language. We complete this chapter with
a description of the basic lexical and syntactic elements of the language, to form a basis
for the detailed descriptions of language features that follow in later chapters.

Modeling Digital Systems

If we are to discuss the topic of modeling digital systems, we first need to agree on what
a digital system is. Different engineers would come up with different definitions, depend-
ing on their background and the field in which they were working. Some may consider a
single VLSI circuit to be a self-contained digital system. Others might take a larger view
and think of a complete computer, packaged in a cabinet with peripheral controllers and
other interfaces.

For the purposes of this book, we include any digital circuit that processes or stores
information as a digital system. We thus consider both the system as a whole and the var-
ious parts from which it is constructed. Therefore, our discussions cover a range of systems
from the low-level gates that make up the components to the top-level functional units.

If we are to encompass this range of views of digital systems, we must recognize the
complexity with which we are dealing. It is not humanly possible to comprehend such
complex systems in their entirety. We need to find methods of dealing with the complex-
ity, so that we can, with some degree of confidence, design components and systems that
meet their requirements.

The most important way of meeting this challenge is to adopt a systematic methodol-
ogy of design. If we start with a requirements document for the system, we can design an
abstract structure that meets the requirements. We can then decompose this structure into
a collection of components that interact to perform the same function. Each of these com-
ponents can in turn be decomposed until we get to a level where we have some ready-
made, primitive components that perform a required function. The result of this process
is a hierarchically composed system, built from the primitive elements.

Chapter 1 — Fundamental Concepts

The advantage of this methodology is that each subsystem can be designed indepen-
dently of others. When we use a subsystem, we can think of it as an abstraction rather
than having to consider its detailed composition. So at any particular stage in the design
process, we only need to pay attention to the small amount of information relevant to the
current focus of design. We are saved from being overwhelmed by masses of detail.

We use the term model to mean our understanding of a system. The model represents
that information which is relevant and abstracts away from irrelevant detail. The implica-
tion of this is that there may be several models of the same system, since different infor-
mation is relevant in different contexts. One kind of model might concentrate on
representing the function of the system, whereas another kind might represent the way in
which the system is composed of subsystems. We will come back to this idea in more de-
tail in the next section.

There are a number of important motivations for formalizing this idea of a model.
First, when a digital system is needed, the requirements of the system must be specified.
The job of the engineers is to design a system that meets these requirements. To do that,
they must be given an understanding of the requirements, hopefully in a way that leaves
them free to explore alternative implementations and to choose the best according to
some criteria. One of the problems that often arises is that requirements are incompletely
and ambiguously spelled out, and the customer and the design engineers disagree on
what is meant by the requirements document. This problem can be avoided by using a
formal model to communicate requirements.

A second reason for using formal models is to communicate understanding of the
function of a system to a user. The designer cannot always predict every possible way in
which a system may be used, and so is not able to enumerate all possible behaviors. If
the designer provides a model, the user can check it against any given set of inputs and
determine how the system behaves in that context. Thus a formal model is an invaluable
tool for documenting a system.

A third motivation for modeling is to allow testing and verification of a design using
simulation. If we start with a requirements model that defines the behavior of a system,
we can simulate the behavior using test inputs and note the resultant outputs of the sys-
tem. According to our design methodology, we can then design a circuit from subsystems,
each with its own model of behavior. We can simulate this composite system with the
same test inputs and compare the outputs with those of the previous simulation. If they
are the same, we know that the composite system meets the requirements for the cases
tested. Otherwise we know that some revision of the design is needed. We can continue
this process until we reach the bottom level in our design hierarchy, where the compo-
nents are real devices whose behavior we know. Subsequently, when the design is man-
ufactured, the test inputs and outputs from simulation can be used to verify that the
physical circuit functions correctly. This approach to testing and verification of course as-
sumes that the test inputs cover all of the circumstances in which the final circuit will be
used. The issue of test coverage is a complex problem in itself and is an active area of
research.

A fourth motivation for modeling is to allow formal verification of the correctness of
a design. Formal verification requires a mathematical statement of the required function
of a system. This statement may be expressed in the notation of a formal logic system,
such as temporal logic. Formal verification also requires a mathematical definition of the
meaning of the modeling language or notation used to describe a design. The process of

1.2 Domains and Levels of Modeling 3

1.2

1.2.1

verification involves application of the rules of inference of the logic system to prove that
the design implies the required function. While formal verification is not yet in everyday
use, it is steadily becoming a more important part of the design process. There have al-
ready been significant demonstrations of formal verification techniques in real design
projects, and the promise for the future is bright.

One final, but equally important, motivation for modeling is to allow automatic syn-
thesis of circuits. If we can formally specify the function required of a system, it is in theory
possible to translate that specification into a circuit that performs the function. The advan-
tage of this approach is that the human cost of design is reduced, and engineers are free
to explore alternatives rather than being bogged down in design detail. Also, there is less
scope for errors being introduced into a design and not being detected. If we automate
the translation from specification to implementation, we can be more confident that the
resulting circuit is correct.

The unifying factor behind all of these arguments is that we want to achieve maximum
reliability in the design process for minimum cost and design time. We need to ensure that
requirements are clearly specified and understood, that subsystems are used correctly and
that designs meet the requirements. A major contributor to excessive cost is having to re-
vise a design after manufacture to correct errors. By avoiding errors, and by providing bet-
ter tools for the design process, costs and delays can be contained.

Domains and Levels of Modeling

In the previous section, we mentioned that there may be different models of a system,
each focusing on different aspects. We can classify these models into three domains: func-
tion, structure and geometry. The functional domain is concerned with the operations per-
formed by the system. In a sense, this is the most abstract domain of description, since it
does not indicate how the function is implemented. The structural domain deals with how
the system is composed of interconnected subsystems. The geometric domain deals with
how the system is laid out in physical space.

Each of these domains can also be divided into levels of abstraction. At the top level,
we consider an overview of function, structure or geometry, and at lower levels we intro-
duce successively finer detail. Figure 1.1 (devised by Gajski and Kuhn, see reference [8])
represents the domains for digital systems on three independent axes and represents the
levels of abstraction by the concentric circles crossing each of the axes.

Let us look at this classification in more detail, showing how at each level we can cre-
ate models in each domain. As an example, we consider a single-chip microcontroller sys-
tem used as the controller for some measurement instrument, with data input connections
and some form of display outputs.

Modeling Example

At the most abstract level, the function of the entire system may be described in terms of
an algorithm, much like an algorithm for a computer program. This level of functional
modeling is often called bebavioral modeling, a term we shall adopt when presenting ab-
stract descriptions of a system’s function. A possible algorithm for our instrument control-

4 Chapter 1 — Fundamental Concepts

FIGURE 1.1

Structural Functional

Algorithm |

| Processor-Memory-Switch

Register-Transfer Language |

| Register-Transfer
\

| Gate Boolean Equation |
\ 1
| iF1ralnsi;t0r Differential Equation |
L
| Polygons
NN

| Sticks

| Standard Cells

| Floor Plan

y
Geometric

Domains and levels of abstraction. The radial axes show the three different domains of model-
ing. The concentric rings show the levels of abstraction, with the more abstract levels on the out-
side and more detailed levels toward the center.

ler is shown below. This model describes how the controller repeatedly scans each data
input and writes a scaled display of the input value.

Toop
for each data input Toop
read the value on this input;
scale the value using the current scale factor
for this input;
convert the scaled value to a decimal string;
write the string to the display output corresponding
to this input;
end Toop;
wait for 10 ms;
end Toop;

At this top level of abstraction, the structure of a system may be described as an in-
terconnection of such components as processors, memories and input/output devices.
This level is sometimes called the Processor Memory Switch (PMS) level, named after the
notation used by Bell and Newell (see reference [3]). Figure 1.2 shows a structural model
of the instrument controller drawn using this notation. It consists of a processor connected

1.2 Domains and Levels of Modeling 5

FIGURE 1.2
p S M
Kio inputs
Kio outputs

A PMS model of the controller structure. It is constructed from a processor (P), a memory (M),
an interconnection switch (S) and two input/output controllers (Kio).

via a switch to a memory component and to controllers for the data inputs and display
outputs.

In the geometric domain at this top level of abstraction, a system to be implemented
as a VLSI circuit may be modeled using a floor plan. This shows how the components
described in the structural model are arranged on the silicon die. Figure 1.3 shows a pos-
sible floor plan for the instrument controller chip. There are analogous geometric descrip-
tions for systems integrated in other media. For example, a personal computer system
might be modeled at the top level in the geometric domain by an assembly diagram show-
ing the positions of the motherboard and plug-in expansion boards in the desktop cabinet.

The next level of abstraction in modeling, depicted by the second ring in Figure 1.1,
describes the system in terms of units of data storage and transformation. In the structural
domain, this is often called the register-transfer level (RTL), composed of a data path and
a control section. The data path contains data storage registers, and data is transferred be-
tween them through transformation units. The control section sequences operation of the
data path components. For example, a register-transfer-level structural model of the pro-
cessor in our controller is shown in Figure 1.4.

FIGURE 1.3
Pad Frame
Kio (in)
P S M
Kio (out)

A floor plan model of the controller geometry.

Chapter 1 — Fundamental Concepts

FIGURE 1.4

Control

Section GPR

(0 to 31)
Temp
PC
IR MAR
MDR

Bus Drivers

A register-transfer-level structural model of the controller processor. It consists of a general-
purpose register (GPR) file; registers for the program counter (PC), memory address (MAR),
memory data (MDR), temporary values (Temp) and fetched instructions (IR); an arithmetic unit;
bus drivers and the control section.

In the functional domain, a register-transfer language is often used to specify the op-
eration of a system at this level. Storage of data is represented using register variables, and
transformations are represented by arithmetic and logical operators. For example, an RTL
model for the processor in our example controller might include the following description:

MAR « PC, memory_read « 1
PC « PC + 1

wait until ready = 1

IR <« memory_data
memory_read « 0

This section of the model describes the operations involved in fetching an instruction
from memory. The contents of the PC register are transferred to the memory address reg-
ister, and the memory_read signal is asserted. Then the value from the PC register is trans-
formed (incremented in this case) and transferred back to the PC register. When the ready
input from the memory is asserted, the value on the memory data input is transferred to
the instruction register. Finally, the memory_read signal is negated.

In the geometric domain, the kind of model used depends on the physical medium.
In our example, standard library cells might be used to implement the registers and data
transformation units, and these must be placed in the areas allocated in the chip floor plan.

1.3 Modeling Languages 7

1.3

1.4

The third level of abstraction shown in Figure 1.1 is the conventional logic level. At
this level, structure is modeled using interconnections of gates, and function is modeled
by Boolean equations or truth tables. In the physical medium of a custom integrated cir-
cuit, geometry may be modeled using a virtual grid, or “sticks,” notation.

At the most detailed level of abstraction, we can model structure using individual tran-
sistors, function using the differential equations that relate voltage and current in the cir-
cuit, and geometry using polygons for each mask layer of an integrated circuit. Most
designers do not need to work at this detailed level, as design tools are available to auto-
mate translation from a higher level.

Modeling Languages

In the previous section, we saw that different kinds of models can be devised to represent
the various levels of function, structure and physical arrangement of a system. There are
also different ways of expressing these models, depending on the use made of the model.

As an example, consider the ways in which a structural model may be expressed. One
common form is a circuit schematic. Graphical symbols are used to represent subsystems,
and instances of these are connected using lines that represent wires. This graphical form
is generally the one preferred by designers. However, the same structural information can
be represented textually in the form of a net list.

When we move into the functional domain, we usually see textual notations used for
modeling. Some of these are intended for use as specification languages, to meet the need
for describing the operation of a system without indicating how it might be implemented.
These notations are usually based on formal mathematical methods, such as temporal
logic or abstract state machines. Other notations are intended for simulating the system
for test and verification purposes and are typically based on conventional programming
languages. Yet other notations are oriented toward hardware synthesis and usually have
a more restricted set of modeling facilities, since some programming language constructs
are difficult to translate into hardware.

The purpose of this book is to describe the modeling language VHDL. VHDL includes
facilities for describing structure and function at a number of levels, from the most abstract
down to the gate level. It also provides an attribute mechanism that can be used to anno-
tate a model with information in the geometric domain. VHDL is intended, among other
things, as a modeling language for specification and simulation. We can also use it for
hardware synthesis if we restrict ourselves to a subset that can be automatically translated
into hardware.

VHDL Modeling Concepts

In Section 1.2, we looked at the three domains of modeling: function, structure and ge-
ometry. In this section, we look at the basic modeling concepts in each of these domains
and introduce the corresponding VHDL elements for describing them. This will provide a
feel for VHDL and a basis from which to work in later chapters.

8 Chapter 1 — Fundamental Concepts

EXAMPLE 1.1 A four-bit register design

Figure 1.5 shows a schematic symbol for a four-bit register. Using VHDL terminology,
we call the module reg4 a design entity, and the inputs and outputs are ports.

FIGURE 1.5
reg4

—{do qo0 |—
—{d1 ql —
—{d2 q2 |—
—{d3 a3 |—
—en

—>> clk

A four-bit register module. The register is named reg4 and has six inputs, d0, d1, d2, d3, en and
clk, and four outputs, q0, ql1, q2 and q3.

We write a VHDL description of the interface to this entity as follows:

entity reg4 is
port (dO, d1, d2, d3, en, clk : 1in bit;
q0, g1, g2, g3 : out bit);
end entity reg4;

This is an example of an entity declaration. It introduces a name for the entity
and lists the input and output ports, specifying that they carry bit values (‘0’ or ‘1) into
and out of the entity. From this we see that an entity declaration describes the external
view of the entity.

1.4.1 EFElements of Behavior

In VHDL, a description of the internal implementation of an entity is called an architecture
body of the entity. There may be a number of different architecture bodies of the one in-
terface to an entity, corresponding to alternative implementations that perform the same
function. We can write a bebavioral architecture body of an entity, which describes the
function in an abstract way. Such an architecture body includes only process statements,
which are collections of actions to be executed in sequence. These actions are called se-
quential statements and are much like the kinds of statements we see in a conventional
programming language. The types of actions that can be performed include evaluating ex-
pressions, assigning values to variables, conditional execution, repeated execution and
subprogram calls. In addition, there is a sequential statement that is unique to hardware

1.4 VHDL Modeling Concepts 9

modeling languages, the signal assignment statement. This is similar to variable assign-
ment, except that it causes the value on a signal to be updated at some future time.

EXAMPLE 1.2 Behavioral architecture for the four-bit register

To illustrate these ideas, let us look at a behavioral architecture body for the reg4 en-
tity of Example 1.1:

architecture behav of reg4 is
begin

storage : process is

variable stored_dO, stored_dl, stored_d2, stored_d3 : bit;
begin

wait until clk;

if en then

stored_d0 := dO;
stored_dl := di;
stored_d2 := d2;
stored_d3 := d3;
end if;
g0 <= stored_d0 after 5 ns;
gl <= stored_dl after 5 ns;
g2 <= stored_d2 after 5 ns;
g3 <= stored_d3 after 5 ns;

end process storage;

end architecture behav;

In this architecture body, the part after the first begin keyword includes one process
statement, which describes how the register behaves. It starts with the process name,
storage, and finishes with the keywords end process.

The process statement defines a sequence of actions that are to take place when
the system is simulated. These actions control how the values on the entity’s ports
change over time; that is, they control the behavior of the entity. This process can
modify the values of the entity’s ports using signal assignment statements.

The way this process works is as follows. When the simulation is started, the sig-
nal values are set to ‘0’, and the process is activated. The process’s variables (listed
after the keyword variable) are initialized to ‘0’, then the statements are executed in
order. The first statement is a wait statement that causes the process to suspend, that
is, to become inactive. It stays suspended until one of the signals to which it is sernsi-
tive changes value. In this case, the process is sensitive only to the signal clk, since
that is the only one named in the wait statement. When that signal changes value, the
process is resumed and continues executing statements. The next statement is a con-
dition that tests whether the value of the en signal is ‘1". If it is, the statements between
the keywords then and end if are executed, updating the process’s variables using
the values on the input signals. After the conditional if statement, there are four signal
assignment statements that cause the output signals to be updated 5 ns later.

10 Chapter 1 — Fundamental Concepts

When all of these statements in the process have been executed, the process starts
again from the keyword begin, and the cycle repeats. Notice that while the process
is suspended, the values in the process’s variables are not lost. This is how the process
can represent the state of a system.

1.4.2 FElements of Structure

An alternative way of describing the implementation of an entity is to specify how it is
composed of subsystems. We can give a structural description of the entity’s implementa-
tion. An architecture body that is composed only of interconnected subsystems is called a
structural architecture body.

EXAMPLE 1.3 Structural architecture for the four-bit register

Figure 1.6 shows how the reg4 entity might be composed of flipflops and gates.

FIGURE 1.6
bit0
d_ff
do d q qo0
clk
bitl
d_ff
di d q ql
clk
bit2
d_ff
d2 d q q2
clk
bit3
d_ff
d3 d q a3
gate clk
en aand2y int_clk
clk b

A structural composition of the reg4 entity.

1.4 VHDL Modeling Concepts 11

If we are to describe this in VHDL, we will need entity declarations and architec-
ture bodies for the subsystems. For the flipflops, the entity and architecture are

entity d_ff is
port (d, clk : in bit; g : out bit);
end d_ff;

architecture basic of d_ff 1is
begin

ff_behavior : process is
begin

wait until clk;

g <= d after 2 ns;
end process ff_behavior;

end architecture basic;

For the two-input and gate, the entity and architecture are

entity and?2 is
port (a, b : in bit; y : out bit);
end and2;

architecture basic of and2 is
begin

and2_behavior : process is
begin
y <= a and b after 2 ns;
wait on a, b;
end process and2_behavior;

end architecture basic;

We can now proceed to a VHDL architecture body declaration that describes the
reg4 structure shown in Figure 1.6:

architecture struct of reg4 is
signal int_clk : bit;
begin

bit0 : entity work.d_ff(basic)
port map (d0, int_clk, q0);
bitl : entity work.d_ff(basic)
port map (dl, int_clk, ql);
bit2 : entity work.d_ff(basic)
port map (d2, int_clk, q2);
bit3 : entity work.d_ff(basic)
port map (d3, int_clk, q3);

12

1.4.3

Chapter 1 — Fundamental Concepts

gate : entity work.and2(basic)
port map (en, clk, int_clk);

end architecture struct;

The signal declaration, before the keyword begin, defines the internal signals of
the architecture. In this example, the signal int_clk is declared to carry a bit value (‘0’
or ‘1). In general, VHDL signals can be declared to carry arbitrarily complex values.
Within the architecture body the ports of the entity are also treated as signals.

In the second part of the architecture body, a number of component instances are
created, representing the subsystems from which the reg4 entity is composed. Each
component instance is a copy of the entity representing the subsystem, using the cor-
responding basic architecture body. (The name work refers to the current working
library, in which all of the entity and architecture body descriptions are assumed to
be held.)

The port map specifies the connection of the ports of each component instance
to signals within the enclosing architecture body. For example, bit0, an instance of
the d_ff entity, has its port d connected to the signal dO, its port clk connected to the
signal int_clk and its port q connected to the signal qO.

Mixed Structural and Behavioral Models

Models need not be purely structural or purely behavioral. Often it is useful to specify a
model with some parts composed of interconnected component instances, and other parts
described using processes. We use signals as the means of joining component instances
and processes. A signal can be associated with a port of a component instance and can
also be assigned to or read in a process.

We can write such a hybrid model by including both component instance and process
statements in the body of an architecture. These statements are collectively called concur-
rent statements, since the corresponding processes all execute concurrently when the
model is simulated.

EXAMPLE 1.4 A mixed structural and bebavioral model for a multiplier

A sequential multiplier consists of a data path and a control section. An outline of a
mixed structural and behavioral model for the multiplier is:

entity multiplier is
port (clk, reset : 1in bit;
multiplicand, multiplier : 1in integer;
product : out integer);
end entity multiplier;

architecture mixed of multiplier is

1.4 VHDL Modeling Concepts

signal partial_product, full_product : integer;
signal arith_control, result_en, mult_bit, mult_load : bit;

begin -- mixed

arith_unit : entity work.shift_adder(behavior)
port map (addend => multiplicand, augend => full_product,
sum => partial_product,
add_control => arith_control);

result : entity work.reg(behavior)
port map (d => partial_product, q => full_product,
en => result_en, reset => reset);

multiplier_sr : entity work.shift_reg(behavior)
port map (d => multiplier, g => mult_bit,
Joad => mult_Tload, clk => clk);

product <= full_product;

control_section : process is
-- variable declarations for control_section

begin -- control section

13

-- sequential statements to assign values to control signals

wait on clk, reset;
end process control_section;

end architecture mixed;

The data path is described structurally, using a number of component instances.
The control section is described behaviorally, using a process that assigns to the con-

trol signals for the data path.

1.4.4 Test Benches

In our introductory discussion, we mentioned testing through simulation as an important
motivation for modeling. We often test a VHDL model using an enclosing model called a
test bench. The name comes from the analogy with a real hardware test bench, on which
a device under test is stimulated with signal generators and observed with signal probes.
A VHDL test bench consists of an architecture body containing an instance of the compo-
nent to be tested and processes that generate sequences of values on signals connected
to the component instance. The architecture body may also contain processes that test that
the component instance produces the expected values on its output signals. Alternatively,

we may use the monitoring facilities of a simulator to observe the outputs.

14 Chapter 1 — Fundamental Concepts

EXAMPLE 1.5 Test bench for the four-bit register

A test bench model for the behavioral implementation of the reg4 register is:

entity test_bench is
end entity test_bench;

architecture test_reg4 of test_bench is
signal dO, d1, d2, d3, en, clk, q0, gl, g2, g3 : bit;
begin

dut : entity work.reg4(behav)
port map (dO, di, d2, d3, en, clk, q0, g1, g2, g3);

stimulus : process is

begin
d0 <= '1'; dl <= "1l'; d2 <= '1l'; d3 <= '1"';
en <= '0'; clk <= '0';
wait for 20 ns;

en <= '"1'; wait for 20 ns;

clk <= '1'; wait for 20 ns;

do <= '0"'; dl <= '0'; d2 <= '0"'; d3 <= '0'; wait for 20 ns;
en <= '0'; wait for 20 ns;

wait;

end process stimulus;

end architecture test_reg4;

The entity declaration has no port list, since the test bench is entirely self-
contained. The architecture body contains signals that are connected to the input and
output ports of the component instance dut, the device under test. The process
labeled stimulus provides a sequence of test values on the input signals by perform-
ing signal assignment statements, interspersed with wait statements. Each wait state-
ment specifies a 20 ns pause during which the register device determines its output
values. We can use a simulator to observe the values on the signals q0 to q3 to verify
that the register operates correctly. When all of the stimulus values have been applied,
the stimulus process waits indefinitely, thus completing the simulation.

1.4.5 Analysis, Elaboration and Execution

One of the main reasons for writing a model of a system is to enable us to simulate it. This
involves three stages: analysis, elaboration and execution. Analysis and elaboration are
also required in preparation for other uses of the model, such as logic synthesis.

In the first stage, analysis, the VHDL description of a system is checked for various
kinds of errors. Like most programming languages, VHDL has rigidly defined syntax and
semantics. The syntax is the set of grammatical rules that govern how a model is written.

1.4 VHDL Modeling Concepts 15

The rules of semantics govern the meaning of a program. For example, it makes sense to
perform an addition operation on two numbers but not on two processes.

During the analysis phase, the VHDL description is examined, and syntactic and static
semantic errors are located. The whole model of a system need not be analyzed at once.
Instead, it is possible to analyze design units, such as entity and architecture body decla-
rations, separately. If the analyzer finds no errors in a design unit, it creates an intermedi-
ate representation of the unit and stores it in a library. The exact mechanism varies
between VHDL tools.

The second stage in simulating a model, elaboration, is the act of working through
the design hierarchy and creating all of the objects defined in declarations. The ultimate
product of design elaboration is a collection of signals and processes, with each process
possibly containing variables. A model must be reducible to a collection of signals and
processes in order to simulate it.

We can see how elaboration achieves this reduction by starting at the top level of a
model, namely, an entity, and choosing an architecture of the entity to simulate. The ar-
chitecture comprises signals, processes and component instances. Each component in-
stance is a copy of an entity and an architecture that also comprises signals, processes and
component instances. Instances of those signals and processes are created, corresponding
to the component instance, and then the elaboration operation is repeated for the sub-
component instances. Ultimately, a component instance is reached that is a copy of an
entity with a purely behavioral architecture, containing only processes. This corresponds
to a primitive component for the level of design being simulated. Figure 1.7 shows how
elaboration proceeds for the structural architecture body of the reg4 entity from Example
1.3. As each instance of a process is created, its variables are created and given initial val-
ues. We can think of each process instance as corresponding to one instance of a compo-
nent.

The third stage of simulation is the execution of the model. The passage of time is
simulated in discrete steps, depending on when events occur. Hence the term discrete
event simulation is used. At some simulation time, a process may be stimulated by chang-
ing the value on a signal to which it is sensitive. The process is resumed and may schedule
new values to be given to signals at some later simulated time. This is called scheduling
a transaction on that signal. If the new value is different from the previous value on the
signal, an event occurs, and other processes sensitive to the signal may be resumed.

The simulation starts with an initialization phase, followed by repetitive execution of
a simulation cycle. During the initialization phase, each signal is given an initial value, de-
pending on its type. The simulation time is set to zero, then each process instance is acti-
vated and its sequential statements executed. Usually, a process will include a signal
assignment statement to schedule a transaction on a signal at some later simulation time.
Execution of a process continues until it reaches a wait statement, which causes the pro-
cess to be suspended.

During the simulation cycle, the simulation time is first advanced to the next time at
which a transaction on a signal has been scheduled. Second, all the transactions scheduled
for that time are performed. This may cause some events to occur on some signals. Third,
all processes that are sensitive to those events are resumed and are allowed to continue
until they reach a wait statement and suspend. Again, the processes usually execute signal
assignments to schedule further transactions on signals. When all the processes have sus-
pended again, the simulation cycle is repeated. When the simulation gets to the stage

16

1.5

FIGURE 1.7

Chapter 1 — Fundamental Concepts

do

reg4(struct)

bit0
d_ff(basic)
d q| a0

dl

e

bit1
d_ff(basic)
d q| ai

d2

e

bit2
d_ff(basic)
d ql g2

d3

e

bit3
d_ff(basic)

en

gate

and2(basic)
1

clk

y

int_clk

d |—1| q| g3
e

P

process with variables
and statements

The elaboration of the reg4 entity using the structural architecture body. Each instance of the
d_ff and and2 entities is replaced with the contents of the corresponding basic architecture.
These each consist of a process with its variables and statements.

where there are no further transactions scheduled, it stops, since the simulation is then

complete.

Learning a New Language: Lexical Elements and Syntax

When we learn a new natural language, such as Greek, Chinese or English, we start by
learning the alphabet of symbols used in the language, then form these symbols into
words. Next, we learn the way to put the words together to form sentences and learn the

1.5 Learning a New Language: Lexical Elements and Syntax 17

1.5.1

meaning of these combinations of words. We reach fluency in a language when we can
easily express what we need to say using correctly formed sentences.

The same ideas apply when we need to learn a new special-purpose language, such
as VHDL for describing digital systems. We can borrow a few terms from language theory
to describe what we need to learn. First, we need to learn the alphabet with which the
language is written. The VHDL alphabet consists of all of the characters in the ISO 8859
Latin-1 8-bit character set. This includes uppercase and lowercase letters (including letters
with diacritical marks, such as “a”, “4” and so forth), digits 0 to 9, punctuation and other
special characters. Second, we need to learn the lexical elements of the language. In
VHDL, these are the identifiers, reserved words, special symbols and literals. Third, we
need to learn the syntax of the language. This is the grammar that determines what com-
binations of lexical elements make up legal VHDL descriptions. Fourth, we need to learn
the semantics, or meaning, of VHDL descriptions. It is the semantics that allow a collection
of symbols to describe a digital design. Fifth, we need to learn how to develop our own
VHDL descriptions to describe a design we are working with. This is the creative part of
modeling, and fluency in this part will greatly enhance our design skills.

In the remainder of this chapter, we describe the lexical elements used in VHDL and
introduce the notation we use to describe the syntax rules. Then in subsequent chapters,
we introduce the different facilities available in the language. For each of these, we show
the syntax rules, describe the corresponding semantics and give examples of how they are
used to model particular parts of a digital system. We also include some exercises at the
end of each chapter to provide practice in the fifth stage of learning described above.

VHDL-87

VHDL-87 uses the ASCII character set, rather than the full ISO character set. ASCII is
a subset of the ISO character set, consisting of just the first 128 characters. This in-
cludes all of the unaccented letters, but excludes letters with diacritical marks.

Lexical Elements

In the following section, we discuss the lexical elements of VHDL: comments, identifiers,
reserved words, special symbols, numbers, characters, strings and bit strings.

Comments

When we are writing a hardware model in VHDL, it is important to annotate the code with
comments. The reason for doing this is to help readers understand the structure and logic
behind the model. Tt is important to realize that although we only write a model once, it
may subsequently be read and modified many times, both by its author and by other en-
gineers. Any assistance we can give to understanding the model is worth the effort. In this
book, we set comments in slanted text to make them visually distinct.

A VHDL model consists of a number of lines of text. One form of comment, called a
single-line comment, can be added to a line by writing two hypens together, followed by
the comment text. For example:

18 Chapter 1 — Fundamental Concepts

a line of VHDL code ... -- a descriptive comment

The comment extends from the two hyphens to the end of the line and may include
any text we wish, since it is not formally part of the VHDL model. The code of a model
can include blank lines and lines that only contain comments, starting with two hyphens.
We can write long comments on successive lines, each line starting with two hyphens, for
example:

-- The following code models
-- the control section of the system
some VHDL code

Another form of comment, called a delimited comment, starts with the characters “/*”
and extends to the closing characters “*/”. The opening and closing characters can be on
different lines, or can be on the same line. Moreover, there can be further VHDL code on
the line after the closing characters. Some examples are:

/* This is a comment header that describes
the purpose of the design unit. It contains
all you ever wanted to know, plus more.

:':/

entity thingumy is
port (clk : 1in bit; -- keeps it going
reset : in bit /* start over */
/* other ports to be added later */);
end entity thingumy;

Since the text in comments is ignored, it may contain comment delimiters. Mixing
comment styles can be quite useful. For example, if we use delimited comments in a sec-
tion of code, and we want to “comment out” the section, we can use single-line comments:

-- This section commented out because it doesn't work
-- /* Process to do a complicated computation

-- involving lots of digital signal processing.

- :’.-/

-- dsp_stuff : process is

-- begin

-- end process dsp_stuff;

However, we should be aware that comments do not nest. For example, the following
is ill-formed:

-- Here is the start of the comment: /* A comment extending
over two lines */

1.5 Learning a New Language: Lexical Elements and Syntax 19

3

The opening “/*” characters occur in a single-line comment, and so are ignored. Sim-
ilarly, we cannot reliably use delimited comments to comment out a section of code, since
the section might already contain a delimited comment:

/* Comment out the following code:
signal count_en : bit; /* counter enable */

”/

In this case, the occurrence of the characters “*/” on the second line closes the com-
ment started on the first line, making the orphaned delimiter “*/” on the third line illegal.
Provided we avoid pitfalls such as these, single-line and delimited comments are useful
language features.

VHDL-87, -93, and -2002

These versions of VHDL only allow single-line comments, not delimited comments.

Identifiers

Identifiers are used to name items in a VHDL model. It is good practice to use names that
indicate the purpose of the item, so VHDL allows names to be arbitrarily long. However,
there are some rules about how identifiers may be formed. A basic identifier

e may only contain alphabetic letters (‘A’ to ‘Z’ and ‘a’ to ‘z"), decimal digits (‘0" to ‘9")
and the underline character (‘_");

e must start with an alphabetic letter;

e may not end with an underline character; and

e may not include two successive underline characters.
Some examples of valid basic identifiers are

A X0 counter Next_Value generate_read_cycle

Some examples of invalid basic identifiers are

Tast@value -- contains an illegal character for an identifier
S5bit_counter -- starts with a non-alphabetic character

_AO -- starts with an underline

AO_ -- ends with an underline

clock__pulse -- two successive underlines

Note that the case of letters is not considered significant, so the identifiers cat and Cat
are the same. Underline characters in identifiers are significant, so This_Name and This-
Name are different identifiers.

In addition to the basic identifiers, VHDL allows extended identifiers, which can con-
tain any sequence of characters. Extended identifiers are included to allow communication

20

Chapter 1 — Fundamental Concepts

between computer-aided engineering tools for processing VHDL descriptions and other
tools that use different rules for identifiers. An extended identifier is written by enclosing
the characters of the identifier between ‘\’ characters. For example:

\data bus\ \global.clock\ \923\ \d#1\ \start__\

If we need to include a ‘\’ character in an extended identifier, we do so by doubling the
character, for example:

\A:\\hame\ -- contains a '\' between the ':' and the 'n'

Note that the case of letters is significant in extended identifiers and that all extended iden-
tifiers are distinct from all basic identifiers. So the following are all distinct identifiers:

name \name\ \Name\ \NAME\

VHDL-87

VHDL-87 only allows basic identifiers, not extended identifiers. The rules for forming
basic identifiers are the same as those for VHDL-93 and VHDL-2002.

Reserved Words

Some identifiers, called reserved words or keywords, are reserved for special use in VHDL.
They are used to denote specific constructs that form a model, so we cannot use them as
identifiers for items we define. The full list of reserved words is shown in Table 1.1. Often,
when a VHDL program is typeset, reserved words are printed in boldface. This convention
is followed in this book.

VHDL-2002

The following identifiers are not used as reserved words in VHDL-2002. They may be
used as identifiers for other purposes, although it is not advisable to do so, as this may
cause difficulties in porting the models to VHDL-2008.

assert fairness restrict_guarantee
assume force sequence
assume_guarantee parameter strong

context property vmode

cover release vprop

default restrict vunit

1.5 Learning a New Language: Lexical Elements and Syntax

TABLE 1.1 VHDL reserved words

21

abs

access

after

alias

all

and
architecture
array

assert
assume
assume_guarantee
attribute

begin
block
body
buffer
bus

case
component
configuration
constant
context

cover

default
disconnect
downto

else
elsif
end
entity
exit

fairness
file

for
force
function

generate
generic
group
guarded

if
impure
in
inertial
inout
is

Tabel
Tibrary
Tinkage
Titeral
Toop

map
mod

nand
new
next
nor
not
null

of

on
open
or
others
out

package
parameter
port
postponed
procedure
process
property
protected
pure

range
record

register

reject

release

rem

report

restrict
restrict_guarantee
return

rol

ror

select
sequence
severity
shared
signal

sla

s11

sra

srl
strong
subtype

then

to
transport
type

unaffected
units
until

use

variable
vmode
vprop
vunit

wait
when
while
with

xXnor
xor

VHDL-93

In addition to those listed for VHDL-2002, the identifier protected is not used as a
reserved word in VHDL-93.

VHDL-87

In addition to those listed for VHDL-2002 and VHDL-93, the following identifiers are
not used as reserved words in VHDL-87:

group protected ror sra

impure pure shared srl
inertial reject sla unaffected
Titeral rol s11 xnor

postponed

22

Chapter 1 — Fundamental Concepts

Special Symbols

VHDL uses a number of special symbols to denote operators, to delimit parts of language
constructs and as punctuation. Some of these special symbols consist of just one character.
They are

..#&u()=&+_’_/:;<=>?@[]‘|

Other special symbols consist of pairs of characters. The two characters must be typed
next to each other, with no intervening space. These symbols are

= ** = [= >= <= <> ?? 7= ?/= ?> ?< ?>= 7<= << >>

Numbers

There are two forms of numbers that can be written in VHDL code: integer literals and
real literals. An integer literal simply represents a whole number and consists of digits
without a decimal point. Real literals, on the other hand, can represent fractional numbers.
They always include a decimal point, which is preceded by at least one digit and followed
by at least one digit. Real literals represent an approximation to real numbers.

Some examples of decimal integer literals are

23 0 146

Note that —10, for example, is not an integer literal. It is actually a combination of a nega-
tion operator and the integer literal 10.
Some examples of real literals are

23.1 0.0 3.14159

Both integer and real literals can also use exponential notation, in which the number
is followed by the letter ‘E’ or ‘e’, and an exponent value. This indicates a power of 10 by
which the number is multiplied. For integer literals, the exponent must not be negative,
whereas for real literals, it may be either positive or negative. Some examples of integer
literals using exponential notation are

46E5 1E+12 19e00

Some examples of real literals using exponential notation are

1.234E09 98.6E+21 34.0e-08

Integer and real literals may also be expressed in a base other than base 10. In fact,
the base can be any integer between 2 and 16. To do this, we write the number
surrounded by sharp characters (‘#"), preceded by the base. For bases greater than 10, the
letters ‘A’ through ‘F’ (or ‘a’ through ‘f") are used to represent the digits 10 through 15. For
example, several ways of writing the value 253 are as follows:

2#11111101# 16#FD# 16#0fd# 8#0375#

1.5 Learning a New Language: Lexical Elements and Syntax 23

Similarly, the value 0.5 can be represented as
2#0.100# 8#0.4# 12#0.6#

Note that in all these cases, the base itself is expressed in decimal.

Based literals can also use exponential notation. In this case, the exponent, expressed
in decimal, is appended to the based number after the closing sharp character. The expo-
nent represents the power of the base by which the number is multiplied. For example,
the number 1024 could be represented by the integer literals:

2#1#E10 16#4#E2 10#1024#E+00

Finally, as an aid to readability of long numbers, we can include underline characters
as separators between digits. The rules for including underline characters are similar to
those for identifiers; that is, they may not appear at the beginning or end of a number, nor
may two appear in succession. Some examples are

123_456 3.141.592_6 2#1111 1100_0000_0000#

Characters

A character literal can be written in VHDL code by enclosing it in single quotation marks.
Any of the printable characters in the standard character set (including a space character)
can be written in this way. Some examples are

'A' -- uppercase letter

z -- Towercase letter

, -- the punctuation character comma

-- the punctuation character single quote
-- the separator character space

Strings

A string literal represents a sequence of characters and is written by enclosing the charac-
ters in double quotation marks. The string may include any number of characters (includ-
ing zero), but it must fit entirely on one line. Some examples are

"A string"
"A string can include any printing characters (e.g., &%@A*)."
"000011117777"

""" -- empty string

If we need to include a double quotation mark character in a string, we write two
double quotation mark characters together. The pair is interpreted as just one character in
the string. For example:

"A string in a string: A string"".

24

Chapter 1 — Fundamental Concepts

If we need to write a string that is longer than will fit on one line, we can use the
concatenation operator (“&”) to join two substrings together. (This operator is discussed
in Chapter 4.) For example:

"If a string will not fit on one line,
& "then we can break it into parts on separate lines."

Bit Strings

VHDL includes values that represent bits (binary digits), which can be either ‘0’ or ‘1’. A
bit-string literal represents a string of these bit values. It is represented by a string of digits,
enclosed by double quotation marks and preceded by a character that specifies the base
of the digits. The base specifier can be one of the following:

¢ B for binary,

e O for octal (base 8) and

e X for hexadecimal (base 106).
e D for decimal (base 10).

For example, some bit-string literals specified in binary are
B"0100011" B"10" b"1111 0010_0001" B""

Notice that we can include underline characters in bit-string literals to separate adja-
cent digits. The underline characters do not affect the meaning of the literal; they simply
make the literal more readable. The base specifier can be in uppercase or lowercase. The
last of the examples above denotes an empty bit string.

If the base specifier is octal, the digits ‘0’ through 7’ can be used. Each digit represents
exactly three bits in the bit string. Some examples are

0"372" -- equivalent to B"011_111 010"
0"00" -- equivalent to B"000_000"

If the base specifier is hexadecimal, the digits ‘0’ through ‘9" and ‘A’ through ‘F’ or ‘@’
through ‘f” (representing 10 through 15) can be used. In hexadecimal, each digit represents
exactly four bits. Some examples are

X"FA" -- equivalent to B"1111_1010"
x"0d" -- equivalent to B"0000_1101"

Notice that 0"372" is not the same as X"FA", since the former is a string of nine bits, where-
as the latter is a string of eight bits.

If the base specifier is decimal, the digits ‘0’ through ‘9’ can be used. The digits in the
literal are interpreted as a decimal number and are converted to the equivalent binary
value. The number of bits in the string is the minimal number needed to represent the
value. Some examples are

1.5 Learning a New Language: Lexical Elements and Syntax 25

D"23" -- equivalent to B"10111"
D"64" -- equivalent to B"1000000"
D"0003" -- equivalent to B"11"

In some cases, it is convenient to include characters other than digits in bit string lit-
erals. As we will see later, many VHDL models use characters such as ‘Z’, ‘X', and -~ to
represent high-impedance states, unknown values, and don’t-care conditions. Models may
use other characters for similar purposes. We can include such non-binary characters in
bit-string literals. In an octal literal, any non-octal-digit character is expanded to three oc-
currences of that character in the bit string. Similarly, in a hexadecimal literal any non-
hexadecimal-digit character is expanded to four occurrences of the character. In a binary
literal, any non-bit character just represents itself in the vector. Some examples are:

0"3Xz4" -- equivalent to B"011XXXZZzZ100"
X"A3--" -- equivalent to B"10100011-------- "
X"O#?F" -- equivalent to B"0000####7?7?771111"
B"0O0OUU" -- equivalent to B"00OUU"

While allowing this for binary literals might seem vacuous at first, the benefit will be-
come clear shortly. Note that expansion of non-digit characters does not extend to em-
bedded underscores, which we might add for readability. Thus, 0"3_X" represents
"0TT1XXX", not "011___XXX". Also, non-digit characters are not allowed in decimal literals,
since it would be unclear which bits of the resulting string correspond to the non-digit
characters. Thus, the literal D"2379" is illegal.

In all of the preceding cases, the number of bits in the string is determined from the
base specifier and the number of characters in the literal. We can, however, specify the
exact length of bit string that we require from a literal. This allows us to specify strings
whose length is not a multiple or three (for octal) or four (for hexadecimal). We do so by
writing the length immediately before the base specifier, with no intervening space. Some
examples are:

7X"3C" -- equivalent to B"0111100"
80"5" -- equivalent to B"00000101"
10B"X" -- equivalent to B"000000000X"

If the final length of the string is longer than that implied by the digits, the string is
padded on the left with ‘0’ bits. If the final length is less than that implied by the digits,
the left-most elements of the string are truncated, provided they are all ‘0’. An error occurs
if any non-‘0’ bits are truncated, as they would be in the literal 8X"90F".

A further feature of bit-string literals is provision for specifying whether the literal rep-
resents an unsigned or signed number. We represent an unsigned number using one of
the base specifiers UB, UO, or UX. These are the same as the ordinary base specifiers B,
O, and X. When a sized unsigned literal is extended, it is padded with ‘0’ bits, and when
bits are truncated, they must be all ‘0’. Decimal literals are always interpreted as unsigned,
so D is the only base specifier for decimal. We can extend a decimal literal by padding
with ‘0’ bits. However, we cannot truncate a decimal literal from its default size, since the
default size always gives a ‘1’ as the leftmost bit, which must not be truncated.

26

1.5.2

Chapter 1 — Fundamental Concepts

We represent a signed number using one of the base specifiers SB, SO, or SX. The
rules for extension and truncation are based on those for sign extension and truncation of
2s-complement binary numbers. When a sized signed literal is extended, each bit of pad-
ding on the left is a replication of the leftmost bit prior to padding. For example:

10Sx"71" -- equivalent to B"0001110001"
10SX"88" -- equivalent to B"1110001000"
10SX"wo" -- equivalent to B"WWWWWW0000"

When a sized signed literal is truncated, all of the bits removed at the left must be the
same as the leftmost remaining bit. For example:

6SX"16" -- equivalent to B"010110"
6SX"E8" -- equivalent to B"101000"
6SX"H3" -- equivalent to B"HH0011"

However, 6SX"28" is invalid, since, prior to truncation, the bit string would be
"00101000". The two leftmost bits removed are each ‘0’, which differ from the leftmost
remaining ‘1’ bit. The literal would have to be written as 6SX"E8" for this reason. The ra-
tionale for this rule is that it prevents the signed numeric value represented by the literal
being inadvertently changed by the truncation.

VHDL-87, -93, and -2002

These versions of VHDL only allow the base specifiers B, O, and X. They do not allow
unsigned and signed specifiers UB, UO, UX, SB, SO, and SX; nor do they allow the
decimal specifier D. They do not allow the size to be specified; thus, octal literals are
always a multiple of three in length, and hexidecimal literals are always a multiple of
four in length. Finally, non-digit characters, other than underlines for readability, are
not allowed.

Syntax Descriptions

In the remainder of this book, we describe rules of syntax using a notation based on the
Extended Backus-Naur Form (EBNF). These rules govern how we may combine lexical
elements to form valid VHDL descriptions. It is useful to have a good working knowledge
of the syntax rules, since VHDL analyzers expect valid VHDL descriptions as input. The
error messages they otherwise produce may in some cases appear cryptic if we are un-
aware of the syntax rules.

The idea behind EBNF is to divide the language into syntactic categories. For each
syntactic category we write a rule that describes how to build a VHDL clause of that cat-
egory by combining lexical elements and clauses of other categories. These rules are anal-
ogous to the rules of English grammar. For example, there are rules that describe a
sentence in terms of a subject and a predicate, and that describe a predicate in terms of a
verb and an object phrase. In the rules for English grammar, “sentence”, “subject”, “pred-
icate”, and so on, are the syntactic categories.

1.5 Learning a New Language: Lexical Elements and Syntax 27

In EBNF, we write a rule with the syntactic category we are defining on the left of a
“<" sign (read as “is defined to be”), and a pattern on the right. The simplest kind of pat-
tern is a collection of items in sequence, for example:

variable_assignment <= target := expression ;

This rule indicates that a VHDL clause in the category “variable_assignment” is defined

to be a clause in the category “target”, followed by the symbol “:=", followed by a clause
in the category “expression”, followed by the symbol “;”. To find out whether the VHDL
clause

do := 25 + 6;

is syntactically valid, we would have to check the rules for “target” and “expression”. As
it happens, “d0” and “25+6” are valid subclauses, so the whole clause conforms to the
pattern in the rule and is thus a valid variable assignment. On the other hand, the clause

25 fred := x if :=

cannot possibly be a valid variable assignment, since it doesn’t match the pattern on the
right side of the rule.

The next kind of rule to consider is one that allows for an optional component in a
clause. We indicate the optional part by enclosing it between the symbols “[” and “]”. For
example:

function_call <= name [(association_list)]

This indicates that a function call consists of a name that may be followed by an associa-
tion list in parentheses. Note the use of the outline symbols for writing the pattern in the
rule, as opposed to the normal solid symbols that are lexical elements of VHDL.

In many rules, we need to specify that a clause is optional, but if present, it may be
repeated as many times as needed. For example, in this simplified rule for a process state-
ment:

process_statement <
process is
{ process_declarative_item }
begin
{ sequential_statement }
end process ;

the curly braces specify that a process may include zero or more process declarative items
and zero or more sequential statements. A case that arises frequently in the rules of VHDL
is a pattern consisting of some category followed by zero or more repetitions of that cat-
egory. In this case, we use dots within the braces to represent the repeated category, rather
than writing it out again in full. For example, the rule

case_statement <
case expression is

28

Chapter 1 — Fundamental Concepts

case_statement_alternative

oo}

end case;

indicates that a case statement must contain at least one case statement alternative, but
may contain an arbitrary number of additional case statement alternatives as required. If
there is a sequence of categories and symbols preceding the braces, the dots represent
only the last element of the sequence. Thus, in the example above, the dots represent only
the case statement alternative, not the sequence “case expression Iis
case_statement_alternative”.

We also use the dots notation where a list of one or more repetitions of a clause is
required, but some delimiter symbol is needed between repetitions. For example, the rule

identifier_list < identifier {, .. }

specifies that an identifier list consists of one or more identifiers, and that if there is more
than one, they are separated by comma symbols. Note that the dots always represent a
repetition of the category immediately preceding the left brace symbol. Thus, in the above
rule, it is the identifier that is repeated with comma delimiters; it is not just the comma that
is repeated.

Many syntax rules allow a category to be composed of one of a number of alterna-
tives. One way to represent this is to have a number of separate rules for the category,
one for each alternative. However, it is often more convenient to combine alternatives us-
ing the “I” symbol. For example, the rule

mode < in [out [inout

specifies that the category “mode” can be formed from a clause consisting of one of the
reserved words chosen from the alternatives listed.

The final notation we use in our syntax rules is parenthetic grouping, using the sym-
bols “(“ and “)”. These simply serve to group part of a pattern, so that we can avoid any
ambiguity that might otherwise arise. For example, the inclusion of parentheses in the rule

term < factor { (* 1/ | mod [rem) factor }

makes it clear that a factor may be followed by one of the operator symbols, and then
another factor. Without the parentheses, the rule would be

term < factor { *[/| mod [rem factor }

indicating that a factor may be followed by one of the operators “*”, “/” or mod alone, or
by the operator rem and then another factor. This is certainly not what is intended. The
reason for this incorrect interpretation is that there is a precedence, or order of priority, in
the EBNF notation we are using. In the absence of parentheses, a sequence of pattern
components following one after the other is considered as a group with higher prece-
dence than components separated by “I” symbols.

This EBNF notation is sufficient to describe the complete grammar of VHDL. However,
there are often further constraints on a VHDL description that relate to the meaning of the
lexical elements used. For example, a description specifying connection of a signal to a

Exercises 29

named object that identifies a component instead of a port is incorrect, even though it may
conform to the syntax rules. To avoid such problems, many rules include additional infor-
mation relating to the meaning of a language feature. For example, the rule shown above
describing how a function call is formed is augmented thus:

function_call <= function_name [(parameter_association_list)]

The italicized prefix on a syntactic category in the pattern simply provides semantic infor-
mation. This rule indicates that the name cannot be just any name, but must be the name
of a function. Similarly, the association list must describe the parameters supplied to the
function. (We will describe the meaning of functions and parameters in a later chapter.)
The semantic information is for our benefit as designers reading the rule, to help us un-
derstand the intended semantics. So far as the syntax is concerned, the rule is equivalent
to the original rule without the italicized parts.

In the following chapters, we will introduce each new feature of VHDL by describing
its syntax using EBNF rules, and then we will describe the meaning and use of the feature
through examples. In many cases, we will start with a simplified version of the syntax to
make the description easier to learn and come back to the full details in a later chapter.
For reference, Appendix B contains a complete listing of VHDL syntax in EBNF notation.

Exercises

1. [@ 1.4] Briefly outline the purposes of the following VHDL modeling constructs: entity
declaration, behavioral architecture body, structural architecture body, process state-
ment, signal assignment statement and port map.

2. [@ 1.5] Single-line comment symbols are often used to make lines of a model tempo-
rarily ineffective. The symbol is added at the front of the line, turning the line into a
comment. The comment symbol can be simply removed to reactivate the statement.
The following process statement includes a line to assign a value to a test signal, to
help debug the model. Modify the process to make the assignment ineffective.

apply_transform : process is

begin
d_out <= transform(d_in) after 200 ps;
debug_test <= transform(d_in);
wait on enable, d_in;

end process apply_transform;

3. [@ 1.5] Which of the following are valid VHDL basic identifiers? Which are reserved
words? Of the invalid identifiers, why are they invalid?

Tast_item prev item value-1 buffer

element#5 _control 93_999 entry_

4. [@ 1.5] Rewrite the following decimal literals as hexadecimal literals.

1 34 256.0 0.5

30

10.

11.

Chapter 1 — Fundamental Concepts

[@ 1.5] What decimal numbers are represented by the following literals?

8#14# 2#1000_0100# 16#2C#
2.5E5 2#1#E15 2#0.101#

[@ 1.5] What is the difference between the literals 16#23DF# and X"23DF"?

[@ 1.5] Express the following octal and hexadecimal bit strings as binary bit-string lit-
erals.

0"747" 0"377" 0"1_345"

X"F2" X"0014" X"0000_0001"
[@ 1.5] Express the following octal and hexadecimal bit strings as binary bit-string lit-
erals, or, if they are illegal, say why.

10U0"747" 10UO0"377" 10UO0"1_345"

10S0"747" 10S0"377" 10S0"1_345"

12UX"F2" 12SX"F2" 10UX"F2" 10SX"F2"
[@ 1.5] Express the following decimal bit strings as binary bit-string literals, or, if they
are illegal, say why.

D"24" 12D"24" 4D"24"

[® 1.4] Write an entity declaration and a behavioral architecture body for a two-input
multiplexer, with input ports a, b and sel and an output port z. If the sel input is ‘0’,
the value of a should be copied to z, otherwise the value of b should be copied to z.
Write a test bench for the multiplexer model, and test it using a VHDL simulator.

[@ 1.4] Write an entity declaration and a structural architecture body for a 4-bit-wide
multiplexer, using instances of the 2-bit multiplexer from Exercise 10. The input ports
are a0, al, a2, a3, b0, b1, b2, b3 and sel, and the output ports are z0, z1, z2 and z3.
When sel is ‘0’, the inputs a0 to a3 are copied to the outputs, otherwise the inputs b0
to b3 are copied to the outputs. Write a test bench for the multiplexer model, and test
it using a VHDL simulator.

2.1

2.1.1

Chapter 2

Scalar Data Types
and Operations

The concept of type is very important when describing data in a VHDL model. The type
of a data object defines the set of values that the object can assume, as well as the set of
operations that can be performed on those values. A scalar type consists of single, indi-
visible values. In this chapter we look at the basic scalar types provided by VHDL and see
how they can be used to define data objects that model the internal state of a module.

Constants and Variables

An object is a named item in a VHDL model that has a value of a specified type. There
are four classes of objects: constants, variables, signals and files. In this chapter, we look
at constants and variables; signals are described fully in Chapter 5, and files in Chapter 16.
Constants and variables are objects in which data can be stored for use in a model. The
difference between them is that the value of a constant cannot be changed after it is cre-
ated, whereas a variable’s value can be changed as many times as necessary using variable
assignment statements.

Constant and Variable Declarations

Both constants and variables need to be declared before they can be used in a model. A
declaration simply introduces the name of the object, defines its type and may give it an
initial value. The syntax rule for a constant declaration is

constant_declaration <
constant identifier {, ... } : subtype_indication [:= expression] ;

The identifiers listed are the names of the constants being defined (one per name),
and the subtype indication specifies the type of all of the constants. We look at ways of
specifying the type in detail in subsequent sections of this chapter. The optional part
shown in the syntax rule is an expression that specifies the value that each constant as-

31

32

Chapter 2— Scalar Data Types and Operations

sumes. This part can only be omitted in certain cases that we discuss in Chapter 7. Until
then, we always include it in examples. Here are some examples of constant declarations:

constant number_of_bytes : integer := 4;

constant number_of_bits : integer := 8 * number_of_bytes;
constant e : real := 2.718281828;

constant prop_delay : time := 3 ns;

constant size_limit, count_limit : integer := 255;

The reason for using a constant is to have a name and an explicitly defined type for
a value, rather than just writing the value as a literal. This makes the model more intelli-
gible to the reader, since the name and type convey much more information about the
intended use of the object than the literal value alone. Furthermore, if we need to change
the value as the model evolves, we only need to update the declaration. This is much eas-
ier and more reliable than trying to find and update all instances of a literal value through-
out a model. It is good practice to use constants rather than writing literal values within a
model.

The form of a variable declaration is similar to a constant declaration. The syntax rule

variable_declaration <
variable identifier {, ... } : subtype_indication [:= expression] ;

Here also the initialization expression is optional. If we omit it, the default initial value
assumed by the variable when it is created depends on the type. For scalar types, the de-
fault initial value is the leftmost value of the type. For example, for integers it is the small-
est representable integer. Some examples of variable declarations are

variable index : integer := 0;
variable sum, average, Tlargest : real;
variable start, finish : time := 0 ns;

If we include more than one identifier in a variable declaration, it is the same as hav-
ing separate declarations for each identifier. For example, the last declaration above is the
same as the two declarations

variable start : time := 0 ns;
variable finish : time := 0 ns;

This is not normally significant unless the initialization expression is such that it potentially
produces different values on two successive evaluations. The only time this may occur is
if the initialization expression contains a call to a function with side effects (see Chapter 6).

Constant and variable declarations can appear in a number of places in a VHDL
model, including in the declaration parts of processes. In this case, the declared object can
be used only within the process. One restriction on where a variable declaration may oc-
cur is that it may not be placed so that the variable would be accessible to more than one
process. This is to prevent the strange effects that might otherwise occur if the processes
were to modify the variable in indeterminate order. The exception to this rule is if a vari-

2.1

2.1.2

Constants and Variables 33

able is declared specially as a shared variable. We will leave discussion of shared variables
until Chapter 19.

EXAMPLE 2.1 Constants and variables in an architecture

The following outline of an architecture body shows how constant and variable dec-
larations may be included in a VHDL model. It includes declarations of a constant pi
and a variable counter.

entity ent is

end entity ent;

architecture sample of ent is
constant pi : real := 3.14159;

begin

process is

variable counter : integer;
begin

-— ... -- statements using pi and counter
end process;

end architecture sample;

Variable Assignment

Once a variable has been declared, its value can be modified by an assignment statement.
The syntax of a variable assignment statement is given by the rule

variable_assignment_statement <= [label :] name := expression ;

The optional label provides a means of identifying the assignment statement. We will
discuss reasons for labeling statements in Chapter 20. Until then, we will simply omit the
label in our examples. The name in a variable assignment statement identifies the variable
to be changed, and the expression is evaluated to produce the new value. The type of this
value must match the type of the variable. The full details of how an expression is formed
are covered in the rest of this chapter. For now, just think of expressions as the usual com-
binations of identifiers and literals with operators. Here are some examples of assignment
statements:

program_counter := 0;
index := index + 1;

The first assignment sets the value of the variable program_counter to zero, overwriting
any previous value. The second example increments the value of index by one.

It is important to note the difference between a variable assignment statement, shown
here, and a signal assignment statement, introduced in Chapter 1. A variable assignment

34

2.2

2.2.1

Chapter 2— Scalar Data Types and Operations

immediately overwrites the variable with a new value. A signal assignment, on the other
hand, schedules a new value to be applied to a signal at some later time. We will return
to signal assignments in Chapter 5. Because of the significant difference between the two
kinds of assignment, VHDL uses distinct symbols: “:=” for variable assignment and “<="
for signal assignment.

VHDL-87

Variable assignment statements may not be labeled in VHDL-87.

Scalar Types

The notion of #pe is very important in VHDL. We say that VHDL is a strongly typed lan-
guage, meaning that every object may only assume values of its nominated type. Further-
more, the definition of each operation includes the types of values to which the operation
may be applied. The aim of strong typing is to allow detection of errors at an early stage
of the design process, namely, when a model is analyzed.

In this section, we show how a new type is declared. We then show how to define
different scalar types. A scalar type is one whose values are indivisible. In Chapter 4 we
will show how to declare types whose values are composed of collections of element val-
ues.

Type Declarations

We introduce new types into a VHDL model by using type declarations. The declaration
names a type and specifies which values may be stored in objects of the type. The syntax
rule for a type declaration is

type_declaration < type identifier is type_definition ;

One important point to note is that if two types are declared separately with identical
type definitions, they are nevertheless distinct and incompatible types. For example, if we
have two type declarations:

type apples is range 0 to 100;
type oranges is range 0 to 100;

we may not assign a value of type apples to a variable of type oranges, since they are of
different types.

An important use of types is to specify the allowed values for ports of an entity. In the
examples in Chapter 1, we saw the type name bit used to specify that ports may take only
the values ‘0’ and ‘1'. If we define our own types for ports, the type names must be de-
clared in a package, so that they are visible in the entity declaration. We will describe pack-
ages in more detail in Chapter 7; we introduce them here to enable us to write entity
declarations using types of our own devising. For example, suppose we wish to define an

2.2 Scalar Types 35

2.2.2

adder entity that adds small integers in the range 0 to 255. We write a package containing
the type declaration, as follows:

package int_types is
type small_int is range 0 to 255;

end package int_types;

This defines a package named int_types, which provides the type named small_int. The
package is a separate design unit and is analyzed before any entity declaration that needs
to use the type it provides. We can use the type by preceding an entity declaration with a
use clause, for example:

use work.int_types.all;

entity small_adder s
port (a, b : in small_int; s : out small_int);
end entity small_adder;

When we discuss packages in Chapter 7, we will explain the precise meaning of use
clauses such as this. For now, we treat it as “magic” needed to declare types for use in
entity declarations.

Integer Types

In VHDL, integer types have values that are whole numbers. An example of an integer
type is the predefined type integer, which includes all the whole numbers representable
on a particular host computer. The language standard requires that the type integer in-
clude at least the numbers —2,147,483,647 to +2,147,483,647 (=231 + 1 to +231 — 1), but
VHDL implementations may extend the range.

We can define a new integer type using a range-constraint type definition. The sim-
plified syntax rule for an integer type definition is

integer_type_definition <
range simple_expression (to [downto) simple_expression

which defines the set of integers between (and including) the values given by the two
expressions. The expressions must evaluate to integer values. If we use the keyword to,
we are defining an ascending range, in which values are ordered from the smallest on the
left to the largest on the right. On the other hand, using the keyword downto defines a
descending range, in which values are ordered left to right from largest to smallest. The
reasons for distinguishing between ascending and descending ranges will become clear
later.
An an example, here are two integer type declarations:

type day_of _month is range 0 to 31;
type year 1is range 0 to 2100;

36

Chapter 2— Scalar Data Types and Operations

These two types are quite distinct, even though they include some values in common.
Thus if we declare variables of these types:

variable today : day_of_month := 9;
variable start_year : year := 1987;

it would be illegal to make the assignment
start_year := today;

Even though the number 9 is a member of the type year, in context it is treated as being
of type day_of _month, which is incompatible with type year. This type rule helps us to
avoid inadvertently mixing numbers that represent different kinds of things.

If we wish to use an arithmetic expression to specify the bounds of the range, the
values used in the expression must be locally static; that is, they must be known when the
model is analyzed. For example, we can use constant values in an expression as part of a
range definition:

constant number_of_bits : integer := 32;
type bit_index is range 0 to number_of bits - 1;

The operations that can be performed on values of integer types include the familiar
arithmetic operations:

+ addition, or identity

- subtraction, or negation

* multiplication

/ division

mod modulo

rem remainder

abs absolute value

il exponentiation

The result of an operation is an integer of the same type as the operand or operands.
For the binary operators (those that take two operands), the operands must be of the same
type. The right operand of the exponentiation operator must be a non-negative integer.

The identity and negation operators are unary, meaning that they only take a single,
right operand. The result of the identity operator is its operand unchanged, while the ne-
gation operator produces zero minus the operand. So, for example, the following all pro-
duce the same result:

A + (-B) A - (+B) A-B

The division operator produces an integer that is the result of dividing, with any frac-
tional part truncated toward zero. The remainder operator is defined such that the relation

2.2 Scalar Types 37

A = (A/B) *B+ (A remB)

is satisfied. The result of A rem B is the remainder left over from division of A by B. It has
the same sign as A and has absolute value less than the absolute value of B. For example:

5 rem 3 =2 (-5) rem 3 = -2
5 rem (-3) =2 (-5 rem (-3) = -2

Note that in these expressions, the parentheses are required by the grammar of VHDL.
The two operators, rem and negation, may not be written side by side. The modulo op-
erator conforms to the mathematical definition satisfying the relation

A = B*N + (A mod B) -- for some integer N

The result of A mod B has the same sign as B and has absolute value less than the
absolute value of B. For example:

5 mod 3 =2 (-5) mod 3 =1
5 mod (-3) = -1 (-5) mod (-3) = -2

In addition to these operations, VHDL defines operations to find the larger (maxi-
mum) and the smaller (minimum) of two integers. For example

maximum(3, 20) = 20 minimum(3, 20) = 3
While we could use an if statement for this purpose, such as the following:

if A > B then

greater := A;
else

greater := B;
end 1if;

using the maximum or minimum operation is much more convenient:
greater := maximum(A, B);

When a variable is declared to be of an integer type, the default initial value is the
leftmost value in the range of the type. For ascending ranges, this will be the least value,
and for descending ranges, it will be the greatest value. If we have these declarations:

type set_index_range is range 21 downto 11;
type mode_pos_range is range 5 to 7;
variable set_index : set_index_range;
variable mode_pos : mode_pos_range;

the initial value of set_index is 21, and that of mode_pos is 5. The initial value of a variable
of type integer is —2,147,483,647 or less, since this type is predefined as an ascending
range that must include —2,147,483,647.

38

2.2.3

Chapter 2— Scalar Data Types and Operations

VHDL-87’ '93’ and '2002

The maximum and minimum operations are not predefined in these versions of
VHDL.

Floating-Point Types

Floating-point types in VHDL are used to represent real numbers. Mathematically speak-
ing, there is an infinite number of real numbers within any interval, so it is not possible
to represent real numbers exactly on a computer. Hence floating-point types are only an
approximation to real numbers. The term “floating point” refers to the fact that they are
represented using a mantissa part and an exponent part. This is similar to the way in which
we represent numbers in scientific notation.

Floating-point types in VHDL conform to IEEE Standard 754 or 854 for floating-point
computation and are represented using at least 64 bits. This gives approximately 15 deci-
mal digits of precision, and a range of approximately —1.8E+308 to +1.8E+308. An imple-
mentation may choose to use a larger representation, providing correspondingly greater
precision or range. There is a predefined floating-point type called real, which includes
the greatest range allowed by the implementation’s floating-point representation. In most
implementations, this will be the range of the IEEE 64-bit double-precision representation.

We define a new floating-point type using a range-constraint type definition. The sim-
plified syntax rule for a floating-point type definition is

floating_type_definition <
range simple_expression (to [downto) simple_expression

This is similar to the way in which an integer type is declared, except that the bounds must
evaluate to floating-point numbers. Some examples of floating-point type declarations are

type input_level is range -10.0 to +10.0;
type probability is range 0.0 to 1.0;

The operations that can be performed on floating-point values include the arithmetic
operations addition and identity (“+”), subtraction and negation (“=”), multiplication (“*”),
division (“/”), absolute value (abs), exponentiation (“**”), maximum, and minimum. The
result of an operation is of the same floating-point type as the operand or operands. For
the binary operators (those that take two operands), the operands must be of the same
type. The exception is that the right operand of the exponentiation operator must be an
integer. The identity and negation operators are unary (meaning that they only take a sin-
gle, right operand).

Variables that are declared to be of a floating-point type have a default initial value
that is the leftmost value in the range of the type. So if we declare a variable to be of the
type input_level shown above:

variable input_A : input_level;

its initial value is —10.0.

2.2 Scalar Types 39

2.2.4

VHDL-87, '937 and -2002

The maximum and minimum operations are not predefined in these versions of
VHDL.

VHDL-87 and VHDL-93

In VHDL-87 and VHDL-93, the precision of floating-point types is only guaranteed to
be at least six decimal digits, and the range at least —1.0E+38 to +1.0E+38. This corre-
sponds to IEEE 32-bit single-precision representation. Implementations are allowed to
use larger representations. The predefined type real is only guaranteed to have at least
six digits precision and a range of at least —1.0E+38 to +1.0E+38, regardless of the size
of the representation chosen by the implementation.

Physical Types

The remaining numeric types in VHDL are physical types. They are used to represent real-
world physical quantities, such as length, mass, time and current. The definition of a phys-
ical type includes the primary unit of measure and may also include some secondary
units, which are integral multiples of the primary unit. The simplified syntax rule for a
physical type definition is

physical_type_definition <
range simple_expression (to | downto) simple_expression
units
identifier ;
{ identifier = physical_literal ; }
end units [identifier]

physical_literal <= [decimal_literal [| based_literal] unit_name

A physical type definition is like an integer type definition, but with the units defini-
tion part added. The primary unit (the first identifier after the units keyword) is the small-
est unit that is represented. We may then define a number of secondary units, as we shall
see in a moment. The range specifies the multiples of the primary unit that are included
in the type. If the identifier is included at the end of the units definition part, it must repeat
the name of the type being defined.

To illustrate, here is a declaration of a physical type representing electrical resistance:

type resistance is range 0 to 1E9
units
ohm;
end units resistance;

Literal values of this type are written as a numeric literal followed by the unit name,
for example:

40

Chapter 2— Scalar Data Types and Operations

5 ohm 22 ohm 471_000 ohm

Notice that we must include a space before the unit name. Also, if the number is the
literal 1, it can be omitted, leaving just the unit name. So the following two literals repre-
sent the same value:

ohm 1 ohm

Note that values such as -5 ohm and 1E16 ohm are not included in the type resis-
tance, since the values -5 and 1E16 lie outside of the range of the type.

Now that we have seen how to write physical literals, we can look at how to specify
secondary units in a physical type declaration. We do this by indicating how many primary
units comprise a secondary unit. Our declaration for the resistance type can now be ex-
tended:

type resistance is range 0 to 1E9
units
ohm;
kohm 1000 ohm;
Mohm = 1000 kohm;
end units resistance;

Notice that once one secondary unit is defined, it can be used to specify further sec-
ondary units. Of course, the secondary units do not have to be powers of 10 times the
primary unit; however, the multiplier must be an integer. For example, a physical type for
length might be declared as

type length 1is range 0 to 1E9

units
um; -- primary unit: micron
mm = 1000 um; -- metric units
m = 1000 mm;
inch = 25400 um; -- imperial units

foot = 12 1inch;
end units Tlength;

We can write physical literals of this type using the secondary units, for example:
23 mm 2 foot 9 1inch

When we write physical literals, we can write non-integral multiples of primary or sec-
ondary units. If the value we write is not an exact multiple of the primary unit, it is
rounded down to the nearest multiple. For example, we might write the following literals
of type length, each of which represents the same value:

0.1 inch 2.54 mm 2.540528 mm

The last of these is rounded down to 2540 um, since the primary unit for length is um. If
we write the physical literal 6.8 um, it is rounded down to the value 6 um.

2.2 Scalar Types 41

Many of the arithmetic operators can be applied to physical types, but with some re-
strictions. The addition, subtraction, identity, negation, abs, mod, rem, maximum, and
minimum operations can be applied to values of physical types, in which case they yield
results that are of the same type as the operand or operands. In the case of mod and rem,
the operations are based on the number of primary units in each of the operand values,
for example:

20 mm rem 6 mm = 2 mm
1m rem 300 m = 100 mm

A value of a physical type can be multiplied by a number of type integer or real to
yield a value of the same physical type, for example:

5mm * 6 = 30 mm

A value of a physical type can be divided by a number of type integer or real to yield
a value of the same physical type. Furthermore, two values of the same physical type can
be divided to yield an integer, for example:

18 kohm / 2.0 9 kohm
33 kohm / 22 ohm = 1500

Also, the abs operator may be applied to a value of a physical type to yield a value
of the same type, for example:

abs 2 foot = 2 foot
abs (-2 foot) 2 foot

The restrictions make sense when we consider that physical types represent actual
physical quantities, and arithmetic should be done so as to produce results of the correct
dimensions. It doesn’t make sense to multiply two lengths together to yield a length; the
result should logically be an area. So VHDL does not allow direct multiplication of two
physical types. Instead, we must convert the values to abstract integers to do the calcula-
tion, then convert the result back to the final physical type. (See the discussion of the 'pos
and 'val attributes in Section 2.4.)

A variable that is declared to be of a physical type has a default initial value that is the
leftmost value in the range of the type. For example, the default initial values for the types
declared above are 0 ohm for resistance and 0 um for length.

VHDL-87, -93, and -2002

The maximum and minimum operations are not predefined in these versions of
VHDL. Moreover, the mod and rem operations are not applicable to values of
physical types in these versions.

42 Chapter 2— Scalar Data Types and Operations

VHDL-87

A physical type definition in VHDL-87 may not repeat the type name after the
keywords end units.

Time

The predefined physical type time is very important in VHDL, as it is used extensively to
specify delays. Its definition is

type time is range implementation defined

units
fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;

sec = 1000 ms;

min = 60 sec;

hr = 60 min;
end units;

EXAMPLE 2.2 Waveform generation

We can use the mod operator on values of type time to simplify generation of a pe-
riodic waveform. For example, the following process creates a triangle wave on the
real signal triangle_wave. The constant t_period_wave defines the period of the
output wave, t_offset defines the offset within the triangle wave, and t_period_sample
defines how many points are in the waveform. The value now defines the current time
as simulation progresses.

signal triangle_wave : real;

wave_proc : process is
variable phase : time;
begin
phase := (now + t_offset) mod t_period_wave;
if phase <= t_period_wave/2 then
triangle_wave <= 4.0 * real(phase/t_period_wave) - 1.0;
else
triangle_wave <= 3.0 - 4.0 * real(phase/t_period_wave);
end 1if;
wait for tperiod_sample;
end process wave_proc;

2.2 Scalar Types 43

2.2.5

By default, the primary unit fs is the resolution limit used when a model is simulated.
Time values smaller than the resolution limit are rounded down to zero units. A simulator
may allow us to select a secondary unit of time as the resolution limit. In this case, the
unit of all physical literals of type time in the model must not be less than the resolution
limit. When the model is executed, the resolution limit is used to determine the precision
with which time values are represented. The reason for allowing reduced precision in this
way is to allow a greater range of time values to be represented. This may allow a model
to be simulated for a longer period of simulation time.

Enumeration Types

Often when writing models of hardware at an abstract level, it is useful to use a set of
names for the encoded values of some signals, rather than committing to a bit-level en-
coding straightaway. VHDL enumeration types allow us to do this. For example, suppose
we are modeling a processor, and we want to define names for the function codes for the
arithmetic unit. A suitable type declaration is

type alu_function is
(disable, pass, add, subtract, multiply, divide);

Such a type is called an enumeration, because the literal values used are enumerated in a
list. The syntax rule for enumeration type definitions in general is

enumeration_type_definition < ((identifier [character_literal)) {, «c0 })

There must be at least one value in the type, and each value may be either an iden-
tifier, as in the above example, or a character literal. An example of this latter case is

type octal_digit is ('0', '1', '2', '3', "'4', '5', '6', '7');
Given the above two type declarations, we could declare variables:

variable alu_op : alu_function;
variable last_digit : octal_digit := '0';

and make assignments to them:

alu_op := subtract;
Tast_digit := '7";

Different enumeration types may include the same identifier as a literal (called over-
loading), so the context of use must make it clear which type is meant. To illustrate this,
consider the following declarations:

type logic_Tlevel 1is (unknown, Tlow, undriven, high);
variable control : logic_level;

type water_level 1is (dangerously_low, Tow, ok);
variable water_sensor : water_Tlevel;

44

Chapter 2— Scalar Data Types and Operations

Here, the literal low is overloaded, since it is a member of both types. However, the
assignments

control := Tow;
water_sensor := low;

are both acceptable, since the types of the variables are sufficient to determine which low
is being referred to.

When a variable of an enumeration type is declared, the default initial value is the
leftmost element in the enumeration list. So unknown is the default initial value for type
logic_level, and dangerously_low is that for type water_level.

There are three predefined enumeration types defined as

type severity_level is

(note, warning, error, failure);
type file_open_status is

(open_ok, status_error, name_error, mode_error);
type file_open_kind is

(read_mode, write_mode, append_mode);

The type severity_level is used in assertion statements, which we will discuss in Chap-
ter 3, and the types file_open_status and file_open_kind are used for file operations,
which we will discuss in Chapter 16. For the remainder of this section, we look at the
other predefined enumeration types and the operations applicable to them.

VHDL-87

The types file_open_status and file_open_kind are not predefined in VHDL-87.

Characters

In Chapter 1 we saw how to write literal character values. These values are members of
the predefined enumeration type character, which includes all of the characters in the ISO
8859 Latin-1 8-bit character set. The type definition is shown below. Note that this type is

an example of an enumeration type containing a mixture of identifiers and character lit-
erals as elements.

type character is (

nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, 1f, vt, ff, cr, so, si,
dle, dcl, dc2, dc3, dc4, nak, syn, ethb,
can, em, sub, esc, fsp, gsp, rsp, usp,
vy ry e "#', '$', %', '&', try
', DY, TR "+, R - LY, A
'0', 1, 2", '3, 4", '5', 'e', ‘7',
'8', '9', B i, '<', =", 'S, ',
'@a', 'A', 'B', 'c', 'D', 'E', 'F', 'G',

2.2 Scalar Types 45

"H', "', 'J', "K', L', 'M", "N, '0',
'P', 'Q', 'R, 'S, 'T', 'u', V', "W,
XL,z e, N, T, A,
Y 'a', 'b', 'c', 'd', 'e', £, 'g',
'h', i, "', k', ", 'm', 'n', 'o',
'p', 'q', 'r', 's', "t', 'u', 'v', 'w',
Lyt T, T, e, e,

cl28, «¢129, «c130, «c131, c132, «c133, «cl134, c135,
cl36, «c137, «c138, «c139, c140, cl41, cl42, cl43,
cl44, cl145, cl46, cl47, c148, cl49, c150, c151,

' " 'l'! '¢'! '£'! 'II', '¥'! ':l; '§'!
ey 'o', rart '«', - -t et 'ty
B '+, 2, '3, Y, u', ", B
U, ey tor "»', %' B, "%, el
A, AN, AN R, AN, AN E, O,
AN S S S SRS S DS O
'Y, R, ver, ton, 0, v, t0n, k!,
o, U, cUn, On, 0, Y, e, R,
'a', 'a', 'a', 'a', 'a', 'a', 'a2', '¢',
e, over, e, e, i, v, A, e,
'8, 'R', ‘o', ‘e, 'e', &', '8, '+,
'g" 'l:l', 'U', 'I:I', 'U', 'y" 'p|’ 'Y')y

The first 128 characters in this enumeration are the ASCII characters, which form a
subset of the Latin-1 character set. The identifiers from nul to usp and del are the non-
printable ASCII control characters. Characters ¢128 to c159 do not have any standard
names, so VHDL just gives them nondescript names based on their position in the char-
acter set. The character at position 160 is a non-breaking space character, distinct from the
ordinary space character, and the character at position 173 is a soft hyphen.

To illustrate the use of the character type, we declare variables as follows:

variable cmd_char, terminator : character;
and then make the assignments

cmd_char := 'P';
terminator := cr;

VHDL-87

Since VHDL-87 uses the ASCII character set, the predefined type character includes
only the first 128 characters shown above.

46

Chapter 2— Scalar Data Types and Operations

Booleans

One of the most important predefined enumeration types in VHDL is the type boolean,
defined as

type boolean is (false, true);

This type is used to represent condition values, which can control execution of a behav-
ioral model. There are a number of operators that we can apply to values of different types
to yield Boolean values, namely, the relational and logical operators. The relational oper-
ators equality (“=") and inequality (“/=") can be applied to operands of any type (except
files), including the composite types that we will see later in this chapter. The operands
must both be of the same type, and the result is a Boolean value. For example, the ex-
pressions

123 = 123 'A' = A’ 7 ns =7ns

all yield the value true, and the expressions

123 = 456 'At = 'Z' 7 ns = 2 us

yield the value false.

The relational operators that test ordering are the less-than (“<”), less-than-or-equal-
to (“<="), greater-than (“>”) and greater-than-or-equal-to (“>=") operators. These can only
be applied to values of types that are ordered, including all of the scalar types described
in this chapter. As with the equality and inequality operators, the operands must be of the
same type, and the result is a Boolean value. For example, the expressions

123 < 456 789 ps <= 789 ps '1' > '0’

all result in true, and the expressions

96 >= 102 2 us < 4 ns X' < 'X!
all result in false.

The logical operators and, or, nand, nor, xor, xnor and not take operands that are
Boolean values and produce Boolean results. Table 2.1 shows the results produced by the
binary logical operators. The result of the unary not operator is true if the operand is false,
and false if the operand is true. The operators and, or, nand and nor are called “short-

TABLE 2.1 The truth table for binary logical operators

A B Aand B |A nand B |A or B A nor B |A xor B |A xnor B
false false false true false true false true
false true false true true false true false
true false false true true false true false
true true true false true false false true

2.2 Scalar Types 47

circuit” operators, as they only evaluate the right operand if the left operand does not de-
termine the result. For example, if the left operand of the and operator is false, we know
that the result is false, so we do not need to consider the other operand. This is useful
where the left operand is a test that guards against the right operand causing an error.
Consider the expression

(b /= 0) and (a/b > 1)

If b were zero and we evaluated the right-hand operand, we would cause an error
due to dividing by zero. However, because and is a short-circuit operator, if b were zero,
the left-hand operand would evaluate to false, so the right-hand operand would not be
evaluated. For the nand operator, the right-hand operand is similarly not evaluated if the
left-hand is false. For or and nor, the right-hand operand is not evaluated if the left-hand
is true.

VHDL-87

The logical operator xnor is not provided in VHDL-87.

Bits

Since VHDL is used to model digital systems, it is useful to have a data type to represent
bit values. The predefined enumeration type bit serves this purpose. It is defined as

type bit is ('0', '1"');

Notice that the characters ‘0’ and ‘1’ are overloaded, since they are members of both bit
and character. Where ‘0’ or ‘1’ occurs in a model, the context is used to determine which
type is being used.

The logical operators that we mentioned for Boolean values can also be applied to
values of type bit, and they produce results of type bit. The value ‘0’ corresponds to false,
and ‘1’ corresponds to true. So, for example:

'0" and '1' = '0', '1l' xor '1' = '0'
The operands must still be of the same type as each other. Thus it is not legal to write

'0' and true

The difference between the types boolean and bit is that boolean values are used to
model abstract conditions, whereas bit values are used to model hardware logic levels.
Thus, ‘0’ represents a low logic level and ‘1’ represents a high logic level. The logical op-
erators, when applied to bit values, are defined in terms of positive logic, with ‘0’ repre-
senting the negated state and ‘1’ representing the asserted state. If we need to deal with
negative logic, we need to take care when writing logical expressions to get the correct
logic sense. For example, if write_enable_n, select_reg_n and write_reg_n are negative
logic bit variables, we perform the assignment

48

Chapter 2— Scalar Data Types and Operations

write_reg_n := not (not write_enable_n and not select_reg_n);

The variable write_reg_n is asserted (‘0) only if write_enable_n is asserted and
select_reg_n is asserted. Otherwise it is negated (‘1").

Standard Logic

Since VHDL is designed for modeling digital hardware, it is necessary to include types to
represent digitally encoded values. The predefined type bit shown above can be used for
this in more abstract models, where we are not concerned about the details of electrical
signals. However, as we refine our models to include more detail, we need to take account
of the electrical properties when representing signals. There are many ways we can define
data types to do this, but the IEEE has standardized one way in a package called
std_logic_1164. The full details of the package are included in Appendix A. One of the
types defined in this package is an enumeration type called std_ulogic, defined as

type std_ulogic is ('U', -- Uninitialized
X', -- Forcing Unknown
'0', -- Forcing zero
'1', -- Forcing one
'Z', -- High Impedance
W', -- Weak Unknown
'L', -- Weak zero
'H', -- Weak one
=), -- Don't care

This type can be used to represent signals driven by active drivers (forcing strength),
resistive drivers such as pull-ups and pull-downs (weak strength) or three-state drivers in-
cluding a high-impedance state. Each kind of driver may drive a “zero,” “one” or “un-
known” value. An “unknown” value is driven by a model when it is unable to determine
whether the signal should be “zero” or “one.” For example, the output of an and gate is
unknown when its inputs are driven by high-impedance drivers. In addition to these val-
ues, the leftmost value in the type represents an “uninitialized” value. If we declare signals
of std_ulogic type, by default they take on ‘U’ as their initial value. If a model tries