Attached patch moves the CBFS payload loader to selfboot.c as it's
[coreboot.git] / src / boot / selfboot.c
1 /*
2  * This file is part of the coreboot project.
3  *
4  * Copyright (C) 2003 Eric W. Biederman <ebiederm@xmission.com>
5  * Copyright (C) 2009 Ron Minnich <rminnich@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; version 2 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
19  */
20
21 #include <console/console.h>
22 #include <part/fallback_boot.h>
23 #include <boot/elf.h>
24 #include <boot/elf_boot.h>
25 #include <boot/coreboot_tables.h>
26 #include <ip_checksum.h>
27 #include <stream/read_bytes.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <cbfs.h>
32
33 #ifndef CONFIG_BIG_ENDIAN
34 #define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
35                 ((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
36 #else
37 #define ntohl(x) (x)
38 #endif
39
40 /* Maximum physical address we can use for the coreboot bounce buffer.
41  */
42 #ifndef MAX_ADDR
43 #define MAX_ADDR -1UL
44 #endif
45
46 extern unsigned char _ram_seg;
47 extern unsigned char _eram_seg;
48
49 struct segment {
50         struct segment *next;
51         struct segment *prev;
52         struct segment *phdr_next;
53         struct segment *phdr_prev;
54         unsigned long s_dstaddr;
55         unsigned long s_srcaddr;
56         unsigned long s_memsz;
57         unsigned long s_filesz;
58         int compression;
59 };
60
61 struct verify_callback {
62         struct verify_callback *next;
63         int (*callback)(struct verify_callback *vcb, 
64                 Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head);
65         unsigned long desc_offset;
66         unsigned long desc_addr;
67 };
68
69 struct ip_checksum_vcb {
70         struct verify_callback data;
71         unsigned short ip_checksum;
72 };
73
74 void * cbfs_load_payload(struct lb_memory *lb_mem, const char *name)
75 {
76         int selfboot(struct lb_memory *mem, struct cbfs_payload *payload);
77         struct cbfs_payload *payload = (struct cbfs_payload *)
78                 cbfs_find_file(name, CBFS_TYPE_PAYLOAD);
79
80         struct cbfs_payload_segment *segment, *first_segment;
81
82         if (payload == NULL)
83                 return (void *) -1;
84         printk_debug("Got a payload\n");
85         first_segment = segment = &payload->segments;
86         selfboot(lb_mem, payload);
87         printk_emerg("SELFBOOT RETURNED!\n");
88
89         return (void *) -1;
90 }
91
92 /* The problem:  
93  * Static executables all want to share the same addresses
94  * in memory because only a few addresses are reliably present on
95  * a machine, and implementing general relocation is hard.
96  *
97  * The solution:
98  * - Allocate a buffer twice the size of the coreboot image.
99  * - Anything that would overwrite coreboot copy into the lower half of
100  *   the buffer. 
101  * - After loading an ELF image copy coreboot to the upper half of the
102  *   buffer.
103  * - Then jump to the loaded image.
104  * 
105  * Benefits:
106  * - Nearly arbitrary standalone executables can be loaded.
107  * - Coreboot is preserved, so it can be returned to.
108  * - The implementation is still relatively simple,
109  *   and much simpler then the general case implemented in kexec.
110  * 
111  */
112
113 static unsigned long bounce_size, bounce_buffer;
114
115 static void get_bounce_buffer(struct lb_memory *mem, unsigned long bounce_size)
116 {
117         unsigned long lb_size;
118         unsigned long mem_entries;
119         unsigned long buffer;
120         int i;
121         lb_size = (unsigned long)(&_eram_seg - &_ram_seg);
122         /* Double coreboot size so I have somewhere to place a copy to return to */
123         lb_size = bounce_size + lb_size;
124         mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
125         buffer = 0;
126         for(i = 0; i < mem_entries; i++) {
127                 unsigned long mstart, mend;
128                 unsigned long msize;
129                 unsigned long tbuffer;
130                 if (mem->map[i].type != LB_MEM_RAM)
131                         continue;
132                 if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
133                         continue;
134                 if (unpack_lb64(mem->map[i].size) < lb_size)
135                         continue;
136                 mstart = unpack_lb64(mem->map[i].start);
137                 msize = MAX_ADDR - mstart +1;
138                 if (msize > unpack_lb64(mem->map[i].size))
139                         msize = unpack_lb64(mem->map[i].size);
140                 mend = mstart + msize;
141                 tbuffer = mend - lb_size;
142                 if (tbuffer < buffer) 
143                         continue;
144                 buffer = tbuffer;
145         }
146         bounce_buffer = buffer;
147 }
148
149 static int valid_area(struct lb_memory *mem, unsigned long buffer,
150         unsigned long start, unsigned long len)
151 {
152         /* Check through all of the memory segments and ensure
153          * the segment that was passed in is completely contained
154          * in RAM.
155          */
156         int i;
157         unsigned long end = start + len;
158         unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
159
160         /* See if I conflict with the bounce buffer */
161         if (end >= buffer) {
162                 return 0;
163         }
164
165         /* Walk through the table of valid memory ranges and see if I
166          * have a match.
167          */
168         for(i = 0; i < mem_entries; i++) {
169                 uint64_t mstart, mend;
170                 uint32_t mtype;
171                 mtype = mem->map[i].type;
172                 mstart = unpack_lb64(mem->map[i].start);
173                 mend = mstart + unpack_lb64(mem->map[i].size);
174                 if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) {
175                         break;
176                 }
177                 if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) {
178                         printk_err("Payload is overwriting Coreboot tables.\n");
179                         break;
180                 }
181         }
182         if (i == mem_entries) {
183                 printk_err("No matching ram area found for range:\n");
184                 printk_err("  [0x%016lx, 0x%016lx)\n", start, end);
185                 printk_err("Ram areas\n");
186                 for(i = 0; i < mem_entries; i++) {
187                         uint64_t mstart, mend;
188                         uint32_t mtype;
189                         mtype = mem->map[i].type;
190                         mstart = unpack_lb64(mem->map[i].start);
191                         mend = mstart + unpack_lb64(mem->map[i].size);
192                         printk_err("  [0x%016lx, 0x%016lx) %s\n",
193                                 (unsigned long)mstart, 
194                                 (unsigned long)mend, 
195                                 (mtype == LB_MEM_RAM)?"RAM":"Reserved");
196                         
197                 }
198                 return 0;
199         }
200         return 1;
201 }
202
203 static const unsigned long lb_start = (unsigned long)&_ram_seg;
204 static const unsigned long lb_end = (unsigned long)&_eram_seg;
205
206 static int overlaps_coreboot(struct segment *seg)
207 {
208         unsigned long start, end;
209         start = seg->s_dstaddr;
210         end = start + seg->s_memsz;
211         return !((end <= lb_start) || (start >= lb_end));
212 }
213
214 static void relocate_segment(unsigned long buffer, struct segment *seg)
215 {
216         /* Modify all segments that want to load onto coreboot
217          * to load onto the bounce buffer instead.
218          */
219         unsigned long start, middle, end;
220
221         printk_spew("lb: [0x%016lx, 0x%016lx)\n", 
222                 lb_start, lb_end);
223
224         /* I don't conflict with coreboot so get out of here */
225         if (!overlaps_coreboot(seg))
226                 return;
227
228         start = seg->s_dstaddr;
229         middle = start + seg->s_filesz;
230         end = start + seg->s_memsz;
231
232         printk_spew("segment: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
233                 start, middle, end);
234
235         if (seg->compression == CBFS_COMPRESS_NONE) {
236                 /* Slice off a piece at the beginning
237                  * that doesn't conflict with coreboot.
238                  */
239                 if (start < lb_start) {
240                         struct segment *new;
241                         unsigned long len = lb_start - start;
242                         new = malloc(sizeof(*new));
243                         *new = *seg;
244                         new->s_memsz = len;
245                         seg->s_memsz -= len;
246                         seg->s_dstaddr += len;
247                         seg->s_srcaddr += len;
248                         if (seg->s_filesz > len) {
249                                 new->s_filesz = len;
250                                 seg->s_filesz -= len;
251                         } else {
252                                 seg->s_filesz = 0;
253                         }
254
255                         /* Order by stream offset */
256                         new->next = seg;
257                         new->prev = seg->prev;
258                         seg->prev->next = new;
259                         seg->prev = new;
260                         /* Order by original program header order */
261                         new->phdr_next = seg;
262                         new->phdr_prev = seg->phdr_prev;
263                         seg->phdr_prev->phdr_next = new;
264                         seg->phdr_prev = new;
265
266                         /* compute the new value of start */
267                         start = seg->s_dstaddr;
268                         
269                         printk_spew("   early: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
270                                 new->s_dstaddr, 
271                                 new->s_dstaddr + new->s_filesz,
272                                 new->s_dstaddr + new->s_memsz);
273                         }
274                         
275                         /* Slice off a piece at the end 
276                  * that doesn't conflict with coreboot 
277                  */
278                 if (end > lb_end) {
279                         unsigned long len = lb_end - start;
280                         struct segment *new;
281                         new = malloc(sizeof(*new));
282                         *new = *seg;
283                         seg->s_memsz = len;
284                         new->s_memsz -= len;
285                         new->s_dstaddr += len;
286                         new->s_srcaddr += len;
287                         if (seg->s_filesz > len) {
288                                 seg->s_filesz = len;
289                                 new->s_filesz -= len;
290                         } else {
291                                 new->s_filesz = 0;
292                         }
293                         /* Order by stream offset */
294                         new->next = seg->next;
295                         new->prev = seg;
296                         seg->next->prev = new;
297                         seg->next = new;
298                         /* Order by original program header order */
299                         new->phdr_next = seg->phdr_next;
300                         new->phdr_prev = seg;
301                         seg->phdr_next->phdr_prev = new;
302                         seg->phdr_next = new;
303
304                         /* compute the new value of end */
305                         end = start + len;
306                         
307                         printk_spew("   late: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
308                                 new->s_dstaddr, 
309                                 new->s_dstaddr + new->s_filesz,
310                                 new->s_dstaddr + new->s_memsz);
311                         
312                 }
313         }
314         /* Now retarget this segment onto the bounce buffer */
315         /* sort of explanation: the buffer is a 1:1 mapping to coreboot. 
316          * so you will make the dstaddr be this buffer, and it will get copied
317          * later to where coreboot lives.
318          */
319         seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
320
321         printk_spew(" bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
322                 seg->s_dstaddr, 
323                 seg->s_dstaddr + seg->s_filesz, 
324                 seg->s_dstaddr + seg->s_memsz);
325 }
326
327
328 static int build_self_segment_list(
329         struct segment *head, 
330         struct lb_memory *mem,
331         struct cbfs_payload *payload, u32 *entry)
332 {
333         struct segment *new;
334         struct segment *ptr;
335         int datasize;
336         struct cbfs_payload_segment *segment, *first_segment;
337         memset(head, 0, sizeof(*head));
338         head->phdr_next = head->phdr_prev = head;
339         head->next = head->prev = head;
340         first_segment = segment = &payload->segments;
341
342         while(1) {
343                 printk_debug("Segment %p\n", segment);
344                 switch(segment->type) {
345                 default: printk_emerg("Bad segment type %x\n", segment->type);
346                         return -1;
347                 case PAYLOAD_SEGMENT_PARAMS:
348                         printk_info("found param section\n");
349                         segment++;
350                         continue;
351                 case PAYLOAD_SEGMENT_CODE:
352                 case PAYLOAD_SEGMENT_DATA:
353                         printk_info( "%s: ", segment->type == PAYLOAD_SEGMENT_CODE ? 
354                                 "code" : "data");
355                 new = malloc(sizeof(*new));
356                 new->s_dstaddr = ntohl((u32) segment->load_addr);
357                 new->s_memsz = ntohl(segment->mem_len);
358                 new->compression = ntohl(segment->compression);
359
360                 datasize = ntohl(segment->len);
361                 new->s_srcaddr = (u32) ((unsigned char *) first_segment) + ntohl(segment->offset);
362                 new->s_filesz = ntohl(segment->len);
363                 printk_debug("New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
364                         new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
365                 /* Clean up the values */
366                 if (new->s_filesz > new->s_memsz)  {
367                         new->s_filesz = new->s_memsz;
368                 }
369                 printk_debug("(cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
370                         new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
371                 break;
372                 case PAYLOAD_SEGMENT_BSS:
373                         printk_info("BSS %p/%d\n", (void *) ntohl((u32) segment->load_addr),
374                                  ntohl(segment->mem_len));
375                         new = malloc(sizeof(*new));
376                         new->s_filesz = 0;
377                         new->s_dstaddr = ntohl((u32) segment->load_addr);
378                         new->s_memsz = ntohl(segment->mem_len);
379
380                         break;
381
382                 case PAYLOAD_SEGMENT_ENTRY:
383                         printk_info("Entry %p\n", (void *) ntohl((u32) segment->load_addr));
384                         *entry =  ntohl((u32) segment->load_addr);
385                         return 1;
386                 }
387                 segment++;
388                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
389                         if (new->s_srcaddr < ntohl((u32) segment->load_addr))
390                                 break;
391                 }
392                 /* Order by stream offset */
393                 new->next = ptr;
394                 new->prev = ptr->prev;
395                 ptr->prev->next = new;
396                 ptr->prev = new;
397                 /* Order by original program header order */
398                 new->phdr_next = head;
399                 new->phdr_prev = head->phdr_prev;
400                 head->phdr_prev->phdr_next  = new;
401                 head->phdr_prev = new;
402         }
403         return 1;
404 }
405
406 static int load_self_segments(
407         struct segment *head,
408         struct lb_memory *mem,
409         struct cbfs_payload *payload)
410 {
411         unsigned long offset;
412         struct segment *ptr;
413         
414         offset = 0;
415         unsigned long required_bounce_size = lb_end - lb_start;
416         for(ptr = head->next; ptr != head; ptr = ptr->next) {
417                 if (!overlaps_coreboot(ptr)) continue;
418                 unsigned long bounce = ptr->s_dstaddr + ptr->s_memsz - lb_start;
419                 if (bounce > required_bounce_size) required_bounce_size = bounce;
420         }
421         get_bounce_buffer(mem, required_bounce_size);
422         if (!bounce_buffer) {
423                 printk_err("Could not find a bounce buffer...\n");
424                 return 0;
425         }
426         for(ptr = head->next; ptr != head; ptr = ptr->next) {
427                 /* Verify the memory addresses in the segment are valid */
428                 if (!valid_area(mem, bounce_buffer, ptr->s_dstaddr, ptr->s_memsz))
429                         return 0;
430         }
431         for(ptr = head->next; ptr != head; ptr = ptr->next) {
432                 unsigned char *dest,*src;
433                 printk_debug("Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
434                         ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
435                 
436                 /* Modify the segment to load onto the bounce_buffer if necessary.
437                  */
438                 relocate_segment(bounce_buffer, ptr);
439
440                 printk_debug("Post relocation: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
441                         ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
442
443                 /* Compute the boundaries of the segment */
444                 dest = (unsigned char *)(ptr->s_dstaddr);
445                 src = (unsigned char *)(ptr->s_srcaddr);
446                 
447                 /* Copy data from the initial buffer */
448                 if (ptr->s_filesz) {
449                         unsigned char *middle, *end;
450                         size_t len;
451                         len = ptr->s_filesz;
452                         switch(ptr->compression) {
453 #if CONFIG_COMPRESSED_PAYLOAD_LZMA==1
454                                 case CBFS_COMPRESS_LZMA: {
455                                         printk_debug("using LZMA\n");
456                                         unsigned long ulzma(unsigned char *src, unsigned char *dst);            
457                                         len = ulzma(src, dest);
458                                         break;
459                                 }
460 #endif
461 #if CONFIG_COMPRESSED_PAYLOAD_NRV2B==1
462                                 case CBFS_COMPRESS_NRV2B: {
463                                         printk_debug("using NRV2B\n");
464                                         unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
465                                         unsigned long tmp;
466                                         len = unrv2b(src, dest, &tmp);
467                                         break;
468                                 }
469 #endif
470                                 case CBFS_COMPRESS_NONE: {
471                                         printk_debug("it's not compressed!\n");
472                                         memcpy(dest, src, len);
473                                         break;
474                                 }
475                                 default:
476                                         printk_info( "CBFS:  Unknown compression type %d\n", ptr->compression);
477                                         return -1;
478                         }
479                         end = dest + ptr->s_memsz;
480                         middle = dest + len;
481                         printk_spew("[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n",
482                                 (unsigned long)dest,
483                                 (unsigned long)middle,
484                                 (unsigned long)end,
485                                 (unsigned long)src);
486
487                         /* Zero the extra bytes between middle & end */
488                         if (middle < end) {
489                                 printk_debug("Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
490                                         (unsigned long)middle, (unsigned long)(end - middle));
491                         
492                                 /* Zero the extra bytes */
493                                 memset(middle, 0, end - middle);
494                         }
495                 }
496         }
497         return 1;
498 }
499
500 int selfboot(struct lb_memory *mem, struct cbfs_payload *payload)
501 {
502         u32 entry=0;
503         struct segment head;
504
505         /* Preprocess the self segments */
506         if (!build_self_segment_list(&head, mem, payload, &entry))
507                 goto out;
508
509         /* Load the segments */
510         if (!load_self_segments(&head, mem, payload))
511                 goto out;
512
513         printk_spew("Loaded segments\n");
514
515         /* Reset to booting from this image as late as possible */
516         boot_successful();
517
518         printk_debug("Jumping to boot code at %x\n", entry);
519         post_code(0xfe);
520
521         /* Jump to kernel */
522         jmp_to_elf_entry((void*)entry, bounce_buffer, bounce_size);
523         return 1;
524
525  out:
526         return 0;
527 }
528