Refactor copy_and_run so that it uses a single code base instead of
[coreboot.git] / src / boot / selfboot.c
1 /*
2  * This file is part of the coreboot project.
3  *
4  * Copyright (C) 2003 Eric W. Biederman <ebiederm@xmission.com>
5  * Copyright (C) 2009 Ron Minnich <rminnich@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; version 2 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
19  */
20
21 #include <console/console.h>
22 #include <part/fallback_boot.h>
23 #include <boot/elf.h>
24 #include <boot/elf_boot.h>
25 #include <boot/coreboot_tables.h>
26 #include <ip_checksum.h>
27 #include <stream/read_bytes.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <cbfs.h>
32
33 #ifndef CONFIG_BIG_ENDIAN
34 #define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
35                 ((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
36 #else
37 #define ntohl(x) (x)
38 #endif
39
40 /* Maximum physical address we can use for the coreboot bounce buffer.
41  */
42 #ifndef MAX_ADDR
43 #define MAX_ADDR -1UL
44 #endif
45
46 extern unsigned char _ram_seg;
47 extern unsigned char _eram_seg;
48
49 struct segment {
50         struct segment *next;
51         struct segment *prev;
52         struct segment *phdr_next;
53         struct segment *phdr_prev;
54         unsigned long s_dstaddr;
55         unsigned long s_srcaddr;
56         unsigned long s_memsz;
57         unsigned long s_filesz;
58         int compression;
59 };
60
61 struct verify_callback {
62         struct verify_callback *next;
63         int (*callback)(struct verify_callback *vcb, 
64                 Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head);
65         unsigned long desc_offset;
66         unsigned long desc_addr;
67 };
68
69 struct ip_checksum_vcb {
70         struct verify_callback data;
71         unsigned short ip_checksum;
72 };
73
74 /* The problem:  
75  * Static executables all want to share the same addresses
76  * in memory because only a few addresses are reliably present on
77  * a machine, and implementing general relocation is hard.
78  *
79  * The solution:
80  * - Allocate a buffer twice the size of the coreboot image.
81  * - Anything that would overwrite coreboot copy into the lower half of
82  *   the buffer. 
83  * - After loading an ELF image copy coreboot to the upper half of the
84  *   buffer.
85  * - Then jump to the loaded image.
86  * 
87  * Benefits:
88  * - Nearly arbitrary standalone executables can be loaded.
89  * - Coreboot is preserved, so it can be returned to.
90  * - The implementation is still relatively simple,
91  *   and much simpler then the general case implemented in kexec.
92  * 
93  */
94
95 static unsigned long get_bounce_buffer(struct lb_memory *mem)
96 {
97         unsigned long lb_size;
98         unsigned long mem_entries;
99         unsigned long buffer;
100         int i;
101         lb_size = (unsigned long)(&_eram_seg - &_ram_seg);
102         /* Double coreboot size so I have somewhere to place a copy to return to */
103         lb_size = lb_size + lb_size;
104         mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
105         buffer = 0;
106         for(i = 0; i < mem_entries; i++) {
107                 unsigned long mstart, mend;
108                 unsigned long msize;
109                 unsigned long tbuffer;
110                 if (mem->map[i].type != LB_MEM_RAM)
111                         continue;
112                 if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
113                         continue;
114                 if (unpack_lb64(mem->map[i].size) < lb_size)
115                         continue;
116                 mstart = unpack_lb64(mem->map[i].start);
117                 msize = MAX_ADDR - mstart +1;
118                 if (msize > unpack_lb64(mem->map[i].size))
119                         msize = unpack_lb64(mem->map[i].size);
120                 mend = mstart + msize;
121                 tbuffer = mend - lb_size;
122                 if (tbuffer < buffer) 
123                         continue;
124                 buffer = tbuffer;
125         }
126         return buffer;
127 }
128
129 static int valid_area(struct lb_memory *mem, unsigned long buffer,
130         unsigned long start, unsigned long len)
131 {
132         /* Check through all of the memory segments and ensure
133          * the segment that was passed in is completely contained
134          * in RAM.
135          */
136         int i;
137         unsigned long end = start + len;
138         unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
139
140         /* See if I conflict with the bounce buffer */
141         if (end >= buffer) {
142                 return 0;
143         }
144
145         /* Walk through the table of valid memory ranges and see if I
146          * have a match.
147          */
148         for(i = 0; i < mem_entries; i++) {
149                 uint64_t mstart, mend;
150                 uint32_t mtype;
151                 mtype = mem->map[i].type;
152                 mstart = unpack_lb64(mem->map[i].start);
153                 mend = mstart + unpack_lb64(mem->map[i].size);
154                 if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) {
155                         break;
156                 }
157                 if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) {
158                         printk_err("Payload is overwriting Coreboot tables.\n");
159                         break;
160                 }
161         }
162         if (i == mem_entries) {
163                 printk_err("No matching ram area found for range:\n");
164                 printk_err("  [0x%016lx, 0x%016lx)\n", start, end);
165                 printk_err("Ram areas\n");
166                 for(i = 0; i < mem_entries; i++) {
167                         uint64_t mstart, mend;
168                         uint32_t mtype;
169                         mtype = mem->map[i].type;
170                         mstart = unpack_lb64(mem->map[i].start);
171                         mend = mstart + unpack_lb64(mem->map[i].size);
172                         printk_err("  [0x%016lx, 0x%016lx) %s\n",
173                                 (unsigned long)mstart, 
174                                 (unsigned long)mend, 
175                                 (mtype == LB_MEM_RAM)?"RAM":"Reserved");
176                         
177                 }
178                 return 0;
179         }
180         return 1;
181 }
182
183 static void relocate_segment(unsigned long buffer, struct segment *seg)
184 {
185         /* Modify all segments that want to load onto coreboot
186          * to load onto the bounce buffer instead.
187          */
188         unsigned long lb_start = (unsigned long)&_ram_seg;
189         unsigned long lb_end = (unsigned long)&_eram_seg;
190         unsigned long start, middle, end;
191
192         printk_spew("lb: [0x%016lx, 0x%016lx)\n", 
193                 lb_start, lb_end);
194
195         start = seg->s_dstaddr;
196         middle = start + seg->s_filesz;
197         end = start + seg->s_memsz;
198         /* I don't conflict with coreboot so get out of here */
199         if ((end <= lb_start) || (start >= lb_end))
200                 return;
201
202         printk_spew("segment: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
203                 start, middle, end);
204
205         if (seg->compression == CBFS_COMPRESS_NONE) {
206                 /* Slice off a piece at the beginning
207                  * that doesn't conflict with coreboot.
208                  */
209                 if (start < lb_start) {
210                         struct segment *new;
211                         unsigned long len = lb_start - start;
212                         new = malloc(sizeof(*new));
213                         *new = *seg;
214                         new->s_memsz = len;
215                         seg->s_memsz -= len;
216                         seg->s_dstaddr += len;
217                         seg->s_srcaddr += len;
218                         if (seg->s_filesz > len) {
219                                 new->s_filesz = len;
220                                 seg->s_filesz -= len;
221                         } else {
222                                 seg->s_filesz = 0;
223                         }
224
225                         /* Order by stream offset */
226                         new->next = seg;
227                         new->prev = seg->prev;
228                         seg->prev->next = new;
229                         seg->prev = new;
230                         /* Order by original program header order */
231                         new->phdr_next = seg;
232                         new->phdr_prev = seg->phdr_prev;
233                         seg->phdr_prev->phdr_next = new;
234                         seg->phdr_prev = new;
235
236                         /* compute the new value of start */
237                         start = seg->s_dstaddr;
238                         
239                         printk_spew("   early: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
240                                 new->s_dstaddr, 
241                                 new->s_dstaddr + new->s_filesz,
242                                 new->s_dstaddr + new->s_memsz);
243                         }
244                         
245                         /* Slice off a piece at the end 
246                  * that doesn't conflict with coreboot 
247                  */
248                 if (end > lb_end) {
249                         unsigned long len = lb_end - start;
250                         struct segment *new;
251                         new = malloc(sizeof(*new));
252                         *new = *seg;
253                         seg->s_memsz = len;
254                         new->s_memsz -= len;
255                         new->s_dstaddr += len;
256                         new->s_srcaddr += len;
257                         if (seg->s_filesz > len) {
258                                 seg->s_filesz = len;
259                                 new->s_filesz -= len;
260                         } else {
261                                 new->s_filesz = 0;
262                         }
263                         /* Order by stream offset */
264                         new->next = seg->next;
265                         new->prev = seg;
266                         seg->next->prev = new;
267                         seg->next = new;
268                         /* Order by original program header order */
269                         new->phdr_next = seg->phdr_next;
270                         new->phdr_prev = seg;
271                         seg->phdr_next->phdr_prev = new;
272                         seg->phdr_next = new;
273
274                         /* compute the new value of end */
275                         end = start + len;
276                         
277                         printk_spew("   late: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
278                                 new->s_dstaddr, 
279                                 new->s_dstaddr + new->s_filesz,
280                                 new->s_dstaddr + new->s_memsz);
281                         
282                 }
283         }
284         /* Now retarget this segment onto the bounce buffer */
285         /* sort of explanation: the buffer is a 1:1 mapping to coreboot. 
286          * so you will make the dstaddr be this buffer, and it will get copied
287          * later to where coreboot lives.
288          */
289         seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
290
291         printk_spew(" bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
292                 seg->s_dstaddr, 
293                 seg->s_dstaddr + seg->s_filesz, 
294                 seg->s_dstaddr + seg->s_memsz);
295 }
296
297
298 static int build_self_segment_list(
299         struct segment *head, 
300         unsigned long bounce_buffer, struct lb_memory *mem,
301         struct cbfs_payload *payload, u32 *entry)
302 {
303         struct segment *new;
304         struct segment *ptr;
305         u8 *data;
306         int datasize;
307         struct cbfs_payload_segment *segment, *first_segment;
308         memset(head, 0, sizeof(*head));
309         head->phdr_next = head->phdr_prev = head;
310         head->next = head->prev = head;
311         first_segment = segment = &payload->segments;
312
313         while(1) {
314                 printk_debug("Segment %p\n", segment);
315                 switch(segment->type) {
316                 default: printk_emerg("Bad segment type %x\n", segment->type);
317                         return -1;
318                 case PAYLOAD_SEGMENT_PARAMS:
319                         printk_info("found param section\n");
320                         segment++;
321                         continue;
322                 case PAYLOAD_SEGMENT_CODE:
323                 case PAYLOAD_SEGMENT_DATA:
324                         printk_info( "%s: ", segment->type == PAYLOAD_SEGMENT_CODE ? 
325                                 "code" : "data");
326                 new = malloc(sizeof(*new));
327                 new->s_dstaddr = ntohl((u32) segment->load_addr);
328                 new->s_memsz = ntohl(segment->mem_len);
329                 new->compression = ntohl(segment->compression);
330
331                 datasize = ntohl(segment->len);
332                 new->s_srcaddr = (u32) ((unsigned char *) first_segment) + ntohl(segment->offset);
333                 new->s_filesz = ntohl(segment->len);
334                 printk_debug("New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
335                         new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
336                 /* Clean up the values */
337                 if (new->s_filesz > new->s_memsz)  {
338                         new->s_filesz = new->s_memsz;
339                 }
340                 printk_debug("(cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
341                         new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
342                 break;
343                 case PAYLOAD_SEGMENT_BSS:
344                         printk_info("BSS %p/%d\n", (void *) ntohl((u32) segment->load_addr),
345                                  ntohl(segment->mem_len));
346                         new = malloc(sizeof(*new));
347                         new->s_filesz = 0;
348                         new->s_dstaddr = ntohl((u32) segment->load_addr);
349                         new->s_memsz = ntohl(segment->mem_len);
350
351                         break;
352
353                 case PAYLOAD_SEGMENT_ENTRY:
354                         printk_info("Entry %p\n", (void *) ntohl((u32) segment->load_addr));
355                         *entry =  (void *) ntohl((u32) segment->load_addr);
356                         return 1;
357                 }
358                 segment++;
359                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
360                         if (new->s_srcaddr < ntohl((u32) segment->load_addr))
361                                 break;
362                 }
363                 /* Order by stream offset */
364                 new->next = ptr;
365                 new->prev = ptr->prev;
366                 ptr->prev->next = new;
367                 ptr->prev = new;
368                 /* Order by original program header order */
369                 new->phdr_next = head;
370                 new->phdr_prev = head->phdr_prev;
371                 head->phdr_prev->phdr_next  = new;
372                 head->phdr_prev = new;
373
374                 /* Verify the memory addresses in the segment are valid */
375                 if (!valid_area(mem, bounce_buffer, new->s_dstaddr, new->s_memsz)) 
376                         goto out;
377
378                 /* Modify the segment to load onto the bounce_buffer if necessary.
379                  */
380                 relocate_segment(bounce_buffer, new);
381         }
382         return 1;
383  out:
384         return 0;
385 }
386
387 static int load_self_segments(
388         struct segment *head, struct cbfs_payload *payload)
389 {
390         unsigned long offset;
391         struct segment *ptr;
392         
393         offset = 0;
394         for(ptr = head->next; ptr != head; ptr = ptr->next) {
395                 unsigned long skip_bytes, read_bytes;
396                 unsigned char *dest, *middle, *end, *src;
397                 byte_offset_t result;
398                 printk_debug("Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
399                         ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
400                 
401                 /* Compute the boundaries of the segment */
402                 dest = (unsigned char *)(ptr->s_dstaddr);
403                 src = ptr->s_srcaddr;
404                 
405                 /* Copy data from the initial buffer */
406                 if (ptr->s_filesz) {
407                         size_t len;
408                         len = ptr->s_filesz;
409                         switch(ptr->compression) {
410 #if CONFIG_COMPRESSED_PAYLOAD_LZMA==1
411                                 case CBFS_COMPRESS_LZMA: {
412                                         printk_debug("using LZMA\n");
413                                         unsigned long ulzma(unsigned char *src, unsigned char *dst);            
414                                         len = ulzma(src, dest);
415                                         break;
416                                 }
417 #endif
418 #if CONFIG_COMPRESSED_PAYLOAD_NRV2B==1
419                                 case CBFS_COMPRESS_NRV2B: {
420                                         printk_debug("using NRV2B\n");
421                                         unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
422                                         unsigned long tmp;
423                                         len = unrv2b(src, dest, &tmp);
424                                         break;
425                                 }
426 #endif
427                                 case CBFS_COMPRESS_NONE: {
428                                         printk_debug("it's not compressed!\n");
429                                         memcpy(dest, src, len);
430                                         break;
431                                 }
432                                 default:
433                                         printk_info( "CBFS:  Unknown compression type %d\n", ptr->compression);
434                                         return -1;
435                         }
436                         end = dest + ptr->s_memsz;
437                         middle = dest + len;
438                         printk_spew("[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n",
439                                 (unsigned long)dest,
440                                 (unsigned long)middle,
441                                 (unsigned long)end,
442                                 (unsigned long)src);
443                 }
444                 /* Zero the extra bytes between middle & end */
445                 if (middle < end) {
446                         printk_debug("Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
447                                 (unsigned long)middle, (unsigned long)(end - middle));
448                         
449                         /* Zero the extra bytes */
450                         memset(middle, 0, end - middle);
451                 }
452         }
453         return 1;
454  out:
455         return 0;
456 }
457
458 int selfboot(struct lb_memory *mem, struct cbfs_payload *payload)
459 {
460         void *entry;
461         struct segment head;
462         unsigned long bounce_buffer;
463
464         /* Find a bounce buffer so I can load to coreboot's current location */
465         bounce_buffer = get_bounce_buffer(mem);
466         if (!bounce_buffer) {
467                 printk_err("Could not find a bounce buffer...\n");
468                 goto out;
469         }
470
471         /* Preprocess the self segments */
472         if (!build_self_segment_list(&head, bounce_buffer, mem, payload, &entry))
473                 goto out;
474
475         /* Load the segments */
476         if (!load_self_segments(&head, payload))
477                 goto out;
478
479         printk_spew("Loaded segments\n");
480
481         /* Reset to booting from this image as late as possible */
482         boot_successful();
483
484         printk_debug("Jumping to boot code at %p\n", entry);
485         post_code(0xfe);
486
487         /* Jump to kernel */
488         jmp_to_elf_entry(entry, bounce_buffer);
489         return 1;
490
491  out:
492         return 0;
493 }
494