Merge pull request #2535 from lambdageek/monoerror-reflection-bubble
[mono.git] / mono / profiler / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 #include "mono/utils/mono-compiler.h"
22
23 /*
24  * User-space ABI bits:
25  */
26
27 /*
28  * attr.type
29  */
30 enum perf_type_id {
31         PERF_TYPE_HARDWARE                      = 0,
32         PERF_TYPE_SOFTWARE                      = 1,
33         PERF_TYPE_TRACEPOINT                    = 2,
34         PERF_TYPE_HW_CACHE                      = 3,
35         PERF_TYPE_RAW                           = 4,
36         PERF_TYPE_BREAKPOINT                    = 5,
37
38         PERF_TYPE_MAX,                          /* non-ABI */
39 };
40
41 /*
42  * Generalized performance event event_id types, used by the
43  * attr.event_id parameter of the sys_perf_event_open()
44  * syscall:
45  */
46 enum perf_hw_id {
47         /*
48          * Common hardware events, generalized by the kernel:
49          */
50         PERF_COUNT_HW_CPU_CYCLES                = 0,
51         PERF_COUNT_HW_INSTRUCTIONS              = 1,
52         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
53         PERF_COUNT_HW_CACHE_MISSES              = 3,
54         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
55         PERF_COUNT_HW_BRANCH_MISSES             = 5,
56         PERF_COUNT_HW_BUS_CYCLES                = 6,
57
58         PERF_COUNT_HW_MAX,                      /* non-ABI */
59 };
60
61 /*
62  * Generalized hardware cache events:
63  *
64  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
65  *       { read, write, prefetch } x
66  *       { accesses, misses }
67  */
68 enum perf_hw_cache_id {
69         PERF_COUNT_HW_CACHE_L1D                 = 0,
70         PERF_COUNT_HW_CACHE_L1I                 = 1,
71         PERF_COUNT_HW_CACHE_LL                  = 2,
72         PERF_COUNT_HW_CACHE_DTLB                = 3,
73         PERF_COUNT_HW_CACHE_ITLB                = 4,
74         PERF_COUNT_HW_CACHE_BPU                 = 5,
75
76         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
77 };
78
79 enum perf_hw_cache_op_id {
80         PERF_COUNT_HW_CACHE_OP_READ             = 0,
81         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
82         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
83
84         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
85 };
86
87 enum perf_hw_cache_op_result_id {
88         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
89         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
90
91         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
92 };
93
94 /*
95  * Special "software" events provided by the kernel, even if the hardware
96  * does not support performance events. These events measure various
97  * physical and sw events of the kernel (and allow the profiling of them as
98  * well):
99  */
100 enum perf_sw_ids {
101         PERF_COUNT_SW_CPU_CLOCK                 = 0,
102         PERF_COUNT_SW_TASK_CLOCK                = 1,
103         PERF_COUNT_SW_PAGE_FAULTS               = 2,
104         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
105         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
106         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
107         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
108         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
109         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
110
111         PERF_COUNT_SW_MAX,                      /* non-ABI */
112 };
113
114 /*
115  * Bits that can be set in attr.sample_type to request information
116  * in the overflow packets.
117  */
118 enum perf_event_sample_format {
119         PERF_SAMPLE_IP                          = 1U << 0,
120         PERF_SAMPLE_TID                         = 1U << 1,
121         PERF_SAMPLE_TIME                        = 1U << 2,
122         PERF_SAMPLE_ADDR                        = 1U << 3,
123         PERF_SAMPLE_READ                        = 1U << 4,
124         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
125         PERF_SAMPLE_ID                          = 1U << 6,
126         PERF_SAMPLE_CPU                         = 1U << 7,
127         PERF_SAMPLE_PERIOD                      = 1U << 8,
128         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
129         PERF_SAMPLE_RAW                         = 1U << 10,
130
131         PERF_SAMPLE_MAX = 1U << 11,             /* non-ABI */
132 };
133
134 /*
135  * The format of the data returned by read() on a perf event fd,
136  * as specified by attr.read_format:
137  *
138  * struct read_format {
139  *      { u64           value;
140  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
141  *        { u64         time_running; } && PERF_FORMAT_RUNNING
142  *        { u64         id;           } && PERF_FORMAT_ID
143  *      } && !PERF_FORMAT_GROUP
144  *
145  *      { u64           nr;
146  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
147  *        { u64         time_running; } && PERF_FORMAT_RUNNING
148  *        { u64         value;
149  *          { u64       id;           } && PERF_FORMAT_ID
150  *        }             cntr[nr];
151  *      } && PERF_FORMAT_GROUP
152  * };
153  */
154 enum perf_event_read_format {
155         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
156         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
157         PERF_FORMAT_ID                          = 1U << 2,
158         PERF_FORMAT_GROUP                       = 1U << 3,
159
160         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
161 };
162
163 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
164
165 /*
166  * Hardware event_id to monitor via a performance monitoring event:
167  */
168 struct perf_event_attr {
169
170         /*
171          * Major type: hardware/software/tracepoint/etc.
172          */
173         __u32                   type;
174
175         /*
176          * Size of the attr structure, for fwd/bwd compat.
177          */
178         __u32                   size;
179
180         /*
181          * Type specific configuration information.
182          */
183         __u64                   config;
184
185         union {
186                 __u64           sample_period;
187                 __u64           sample_freq;
188         };
189
190         __u64                   sample_type;
191         __u64                   read_format;
192
193         __u64                   disabled       :  1, /* off by default        */
194                                 inherit        :  1, /* children inherit it   */
195                                 pinned         :  1, /* must always be on PMU */
196                                 exclusive      :  1, /* only group on PMU     */
197                                 exclude_user   :  1, /* don't count user      */
198                                 exclude_kernel :  1, /* ditto kernel          */
199                                 exclude_hv     :  1, /* ditto hypervisor      */
200                                 exclude_idle   :  1, /* don't count when idle */
201                                 mmap           :  1, /* include mmap data     */
202                                 comm           :  1, /* include comm data     */
203                                 freq           :  1, /* use freq, not period  */
204                                 inherit_stat   :  1, /* per task counts       */
205                                 enable_on_exec :  1, /* next exec enables     */
206                                 task           :  1, /* trace fork/exit       */
207                                 watermark      :  1, /* wakeup_watermark      */
208                                 /*
209                                  * precise_ip:
210                                  *
211                                  *  0 - SAMPLE_IP can have arbitrary skid
212                                  *  1 - SAMPLE_IP must have constant skid
213                                  *  2 - SAMPLE_IP requested to have 0 skid
214                                  *  3 - SAMPLE_IP must have 0 skid
215                                  *
216                                  *  See also PERF_RECORD_MISC_EXACT_IP
217                                  */
218                                 precise_ip     :  2, /* skid constraint       */
219                                 mmap_data      :  1, /* non-exec mmap data    */
220
221                                 __reserved_1   : 46;
222
223         union {
224                 __u32           wakeup_events;    /* wakeup every n events */
225                 __u32           wakeup_watermark; /* bytes before wakeup   */
226         };
227
228         __u32                   bp_type;
229         __u64                   bp_addr;
230         __u64                   bp_len;
231 };
232
233 /*
234  * Ioctls that can be done on a perf event fd:
235  */
236 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
237 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
238 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
239 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
240 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
241 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
242 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
243
244 enum perf_event_ioc_flags {
245         PERF_IOC_FLAG_GROUP             = 1U << 0,
246 };
247
248 /*
249  * Structure of the page that can be mapped via mmap
250  */
251 struct perf_event_mmap_page {
252         __u32   version;                /* version number of this structure */
253         __u32   compat_version;         /* lowest version this is compat with */
254
255         /*
256          * Bits needed to read the hw events in user-space.
257          *
258          *   u32 seq;
259          *   s64 count;
260          *
261          *   do {
262          *     seq = pc->lock;
263          *
264          *     barrier()
265          *     if (pc->index) {
266          *       count = pmc_read(pc->index - 1);
267          *       count += pc->offset;
268          *     } else
269          *       goto regular_read;
270          *
271          *     barrier();
272          *   } while (pc->lock != seq);
273          *
274          * NOTE: for obvious reason this only works on self-monitoring
275          *       processes.
276          */
277         __u32   lock;                   /* seqlock for synchronization */
278         __u32   index;                  /* hardware event identifier */
279         __s64   offset;                 /* add to hardware event value */
280         __u64   time_enabled;           /* time event active */
281         __u64   time_running;           /* time event on cpu */
282
283                 /*
284                  * Hole for extension of the self monitor capabilities
285                  */
286
287         __u64   __reserved[123];        /* align to 1k */
288
289         /*
290          * Control data for the mmap() data buffer.
291          *
292          * User-space reading the @data_head value should issue an rmb(), on
293          * SMP capable platforms, after reading this value -- see
294          * perf_event_wakeup().
295          *
296          * When the mapping is PROT_WRITE the @data_tail value should be
297          * written by userspace to reflect the last read data. In this case
298          * the kernel will not over-write unread data.
299          */
300         __u64   data_head;              /* head in the data section */
301         __u64   data_tail;              /* user-space written tail */
302 };
303
304 #define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
305 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
306 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
307 #define PERF_RECORD_MISC_USER                   (2 << 0)
308 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
309 #define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
310 #define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
311
312 /*
313  * Indicates that the content of PERF_SAMPLE_IP points to
314  * the actual instruction that triggered the event. See also
315  * perf_event_attr::precise_ip.
316  */
317 #define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
318 /*
319  * Reserve the last bit to indicate some extended misc field
320  */
321 #define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
322
323 struct perf_event_header {
324         __u32   type;
325         __u16   misc;
326         __u16   size;
327 };
328
329 enum perf_event_type {
330
331         /*
332          * The MMAP events record the PROT_EXEC mappings so that we can
333          * correlate userspace IPs to code. They have the following structure:
334          *
335          * struct {
336          *      struct perf_event_header        header;
337          *
338          *      u32                             pid, tid;
339          *      u64                             addr;
340          *      u64                             len;
341          *      u64                             pgoff;
342          *      char                            filename[];
343          * };
344          */
345         PERF_RECORD_MMAP                        = 1,
346
347         /*
348          * struct {
349          *      struct perf_event_header        header;
350          *      u64                             id;
351          *      u64                             lost;
352          * };
353          */
354         PERF_RECORD_LOST                        = 2,
355
356         /*
357          * struct {
358          *      struct perf_event_header        header;
359          *
360          *      u32                             pid, tid;
361          *      char                            comm[];
362          * };
363          */
364         PERF_RECORD_COMM                        = 3,
365
366         /*
367          * struct {
368          *      struct perf_event_header        header;
369          *      u32                             pid, ppid;
370          *      u32                             tid, ptid;
371          *      u64                             time;
372          * };
373          */
374         PERF_RECORD_EXIT                        = 4,
375
376         /*
377          * struct {
378          *      struct perf_event_header        header;
379          *      u64                             time;
380          *      u64                             id;
381          *      u64                             stream_id;
382          * };
383          */
384         PERF_RECORD_THROTTLE                    = 5,
385         PERF_RECORD_UNTHROTTLE                  = 6,
386
387         /*
388          * struct {
389          *      struct perf_event_header        header;
390          *      u32                             pid, ppid;
391          *      u32                             tid, ptid;
392          *      u64                             time;
393          * };
394          */
395         PERF_RECORD_FORK                        = 7,
396
397         /*
398          * struct {
399          *      struct perf_event_header        header;
400          *      u32                             pid, tid;
401          *
402          *      struct read_format              values;
403          * };
404          */
405         PERF_RECORD_READ                        = 8,
406
407         /*
408          * struct {
409          *      struct perf_event_header        header;
410          *
411          *      { u64                   ip;       } && PERF_SAMPLE_IP
412          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
413          *      { u64                   time;     } && PERF_SAMPLE_TIME
414          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
415          *      { u64                   id;       } && PERF_SAMPLE_ID
416          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
417          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
418          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
419          *
420          *      { struct read_format    values;   } && PERF_SAMPLE_READ
421          *
422          *      { u64                   nr,
423          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
424          *
425          *      #
426          *      # The RAW record below is opaque data wrt the ABI
427          *      #
428          *      # That is, the ABI doesn't make any promises wrt to
429          *      # the stability of its content, it may vary depending
430          *      # on event, hardware, kernel version and phase of
431          *      # the moon.
432          *      #
433          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
434          *      #
435          *
436          *      { u32                   size;
437          *        char                  data[size];}&& PERF_SAMPLE_RAW
438          * };
439          */
440         PERF_RECORD_SAMPLE                      = 9,
441
442         PERF_RECORD_MAX,                        /* non-ABI */
443 };
444
445 enum perf_callchain_context {
446         PERF_CONTEXT_HV                 = (__u64)-32,
447         PERF_CONTEXT_KERNEL             = (__u64)-128,
448         PERF_CONTEXT_USER               = (__u64)-512,
449
450         PERF_CONTEXT_GUEST              = (__u64)-2048,
451         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
452         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
453
454         PERF_CONTEXT_MAX                = (__u64)-4095,
455 };
456
457 #define PERF_FLAG_FD_NO_GROUP   (1U << 0)
458 #define PERF_FLAG_FD_OUTPUT     (1U << 1)
459
460 #ifdef __KERNEL__
461 /*
462  * Kernel-internal data types and definitions:
463  */
464
465 #ifdef CONFIG_PERF_EVENTS
466 # include <asm/perf_event.h>
467 # include <asm/local64.h>
468 #endif
469
470 struct perf_guest_info_callbacks {
471         int (*is_in_guest) (void);
472         int (*is_user_mode) (void);
473         unsigned long (*get_guest_ip) (void);
474 };
475
476 #ifdef CONFIG_HAVE_HW_BREAKPOINT
477 #include <asm/hw_breakpoint.h>
478 #endif
479
480 #include <linux/list.h>
481 #include <linux/mutex.h>
482 #include <linux/rculist.h>
483 #include <linux/rcupdate.h>
484 #include <linux/spinlock.h>
485 #include <linux/hrtimer.h>
486 #include <linux/fs.h>
487 #include <linux/pid_namespace.h>
488 #include <linux/workqueue.h>
489 #include <linux/ftrace.h>
490 #include <linux/cpu.h>
491 #include <linux/irq_work.h>
492 #include <linux/jump_label_ref.h>
493 #include <asm/atomic.h>
494 #include <asm/local.h>
495
496 #define PERF_MAX_STACK_DEPTH            255
497
498 struct perf_callchain_entry {
499         __u64                           nr;
500         __u64                           ip[PERF_MAX_STACK_DEPTH];
501 };
502
503 struct perf_raw_record {
504         u32                             size;
505         void                            *data;
506 };
507
508 struct perf_branch_entry {
509         __u64                           from;
510         __u64                           to;
511         __u64                           flags;
512 };
513
514 struct perf_branch_stack {
515         __u64                           nr;
516         struct perf_branch_entry        entries[0];
517 };
518
519 struct task_struct;
520
521 /**
522  * struct hw_perf_event - performance event hardware details:
523  */
524 struct hw_perf_event {
525 #ifdef CONFIG_PERF_EVENTS
526         union {
527                 struct { /* hardware */
528                         u64             config;
529                         u64             last_tag;
530                         unsigned long   config_base;
531                         unsigned long   event_base;
532                         int             idx;
533                         int             last_cpu;
534                 };
535                 struct { /* software */
536                         struct hrtimer  hrtimer;
537                 };
538 #ifdef CONFIG_HAVE_HW_BREAKPOINT
539                 struct { /* breakpoint */
540                         struct arch_hw_breakpoint       info;
541                         struct list_head                bp_list;
542                         /*
543                          * Crufty hack to avoid the chicken and egg
544                          * problem hw_breakpoint has with context
545                          * creation and event initalization.
546                          */
547                         struct task_struct              *bp_target;
548                 };
549 #endif
550         };
551         int                             state;
552         local64_t                       prev_count;
553         u64                             sample_period;
554         u64                             last_period;
555         local64_t                       period_left;
556         u64                             interrupts;
557
558         u64                             freq_time_stamp;
559         u64                             freq_count_stamp;
560 #endif
561 };
562
563 /*
564  * hw_perf_event::state flags
565  */
566 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
567 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
568 #define PERF_HES_ARCH           0x04
569
570 struct perf_event;
571
572 /*
573  * Common implementation detail of pmu::{start,commit,cancel}_txn
574  */
575 #define PERF_EVENT_TXN 0x1
576
577 /**
578  * struct pmu - generic performance monitoring unit
579  */
580 struct pmu {
581         struct list_head                entry;
582
583         int * __percpu                  pmu_disable_count;
584         struct perf_cpu_context * __percpu pmu_cpu_context;
585         int                             task_ctx_nr;
586
587         /*
588          * Fully disable/enable this PMU, can be used to protect from the PMI
589          * as well as for lazy/batch writing of the MSRs.
590          */
591         void (*pmu_enable)              (struct pmu *pmu); /* optional */
592         void (*pmu_disable)             (struct pmu *pmu); /* optional */
593
594         /*
595          * Try and initialize the event for this PMU.
596          * Should return -ENOENT when the @event doesn't match this PMU.
597          */
598         int (*event_init)               (struct perf_event *event);
599
600 #define PERF_EF_START   0x01            /* start the counter when adding    */
601 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
602 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
603
604         /*
605          * Adds/Removes a counter to/from the PMU, can be done inside
606          * a transaction, see the ->*_txn() methods.
607          */
608         int  (*add)                     (struct perf_event *event, int flags);
609         void (*del)                     (struct perf_event *event, int flags);
610
611         /*
612          * Starts/Stops a counter present on the PMU. The PMI handler
613          * should stop the counter when perf_event_overflow() returns
614          * !0. ->start() will be used to continue.
615          */
616         void (*start)                   (struct perf_event *event, int flags);
617         void (*stop)                    (struct perf_event *event, int flags);
618
619         /*
620          * Updates the counter value of the event.
621          */
622         void (*read)                    (struct perf_event *event);
623
624         /*
625          * Group events scheduling is treated as a transaction, add
626          * group events as a whole and perform one schedulability test.
627          * If the test fails, roll back the whole group
628          *
629          * Start the transaction, after this ->add() doesn't need to
630          * do schedulability tests.
631          */
632         void (*start_txn)       (struct pmu *pmu); /* optional */
633         /*
634          * If ->start_txn() disabled the ->add() schedulability test
635          * then ->commit_txn() is required to perform one. On success
636          * the transaction is closed. On error the transaction is kept
637          * open until ->cancel_txn() is called.
638          */
639         int  (*commit_txn)      (struct pmu *pmu); /* optional */
640         /*
641          * Will cancel the transaction, assumes ->del() is called
642          * for each successfull ->add() during the transaction.
643          */
644         void (*cancel_txn)      (struct pmu *pmu); /* optional */
645 };
646
647 /**
648  * enum perf_event_active_state - the states of a event
649  */
650 enum perf_event_active_state {
651         PERF_EVENT_STATE_ERROR          = -2,
652         PERF_EVENT_STATE_OFF            = -1,
653         PERF_EVENT_STATE_INACTIVE       =  0,
654         PERF_EVENT_STATE_ACTIVE         =  1,
655 };
656
657 struct file;
658
659 #define PERF_BUFFER_WRITABLE            0x01
660
661 struct perf_buffer {
662         atomic_t                        refcount;
663         struct rcu_head                 rcu_head;
664 #ifdef CONFIG_PERF_USE_VMALLOC
665         struct work_struct              work;
666         int                             page_order;     /* allocation order  */
667 #endif
668         int                             nr_pages;       /* nr of data pages  */
669         int                             writable;       /* are we writable   */
670
671         atomic_t                        poll;           /* POLL_ for wakeups */
672
673         local_t                         head;           /* write position    */
674         local_t                         nest;           /* nested writers    */
675         local_t                         events;         /* event limit       */
676         local_t                         wakeup;         /* wakeup stamp      */
677         local_t                         lost;           /* nr records lost   */
678
679         long                            watermark;      /* wakeup watermark  */
680
681         struct perf_event_mmap_page     *user_page;
682         void                            *data_pages[0];
683 };
684
685 struct perf_sample_data;
686
687 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
688                                         struct perf_sample_data *,
689                                         struct pt_regs *regs);
690
691 enum perf_group_flag {
692         PERF_GROUP_SOFTWARE = 0x1,
693 };
694
695 #define SWEVENT_HLIST_BITS      8
696 #define SWEVENT_HLIST_SIZE      (1 << SWEVENT_HLIST_BITS)
697
698 struct swevent_hlist {
699         struct hlist_head       heads[SWEVENT_HLIST_SIZE];
700         struct rcu_head         rcu_head;
701 };
702
703 #define PERF_ATTACH_CONTEXT     0x01
704 #define PERF_ATTACH_GROUP       0x02
705 #define PERF_ATTACH_TASK        0x04
706
707 /**
708  * struct perf_event - performance event kernel representation:
709  */
710 struct perf_event {
711 #ifdef CONFIG_PERF_EVENTS
712         struct list_head                group_entry;
713         struct list_head                event_entry;
714         struct list_head                sibling_list;
715         struct hlist_node               hlist_entry;
716         int                             nr_siblings;
717         int                             group_flags;
718         struct perf_event               *group_leader;
719         struct pmu                      *pmu;
720
721         enum perf_event_active_state    state;
722         unsigned int                    attach_state;
723         local64_t                       count;
724         atomic64_t                      child_count;
725
726         /*
727          * These are the total time in nanoseconds that the event
728          * has been enabled (i.e. eligible to run, and the task has
729          * been scheduled in, if this is a per-task event)
730          * and running (scheduled onto the CPU), respectively.
731          *
732          * They are computed from tstamp_enabled, tstamp_running and
733          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
734          */
735         u64                             total_time_enabled;
736         u64                             total_time_running;
737
738         /*
739          * These are timestamps used for computing total_time_enabled
740          * and total_time_running when the event is in INACTIVE or
741          * ACTIVE state, measured in nanoseconds from an arbitrary point
742          * in time.
743          * tstamp_enabled: the notional time when the event was enabled
744          * tstamp_running: the notional time when the event was scheduled on
745          * tstamp_stopped: in INACTIVE state, the notional time when the
746          *      event was scheduled off.
747          */
748         u64                             tstamp_enabled;
749         u64                             tstamp_running;
750         u64                             tstamp_stopped;
751
752         struct perf_event_attr          attr;
753         struct hw_perf_event            hw;
754
755         struct perf_event_context       *ctx;
756         struct file                     *filp;
757
758         /*
759          * These accumulate total time (in nanoseconds) that children
760          * events have been enabled and running, respectively.
761          */
762         atomic64_t                      child_total_time_enabled;
763         atomic64_t                      child_total_time_running;
764
765         /*
766          * Protect attach/detach and child_list:
767          */
768         struct mutex                    child_mutex;
769         struct list_head                child_list;
770         struct perf_event               *parent;
771
772         int                             oncpu;
773         int                             cpu;
774
775         struct list_head                owner_entry;
776         struct task_struct              *owner;
777
778         /* mmap bits */
779         struct mutex                    mmap_mutex;
780         atomic_t                        mmap_count;
781         int                             mmap_locked;
782         struct user_struct              *mmap_user;
783         struct perf_buffer              *buffer;
784
785         /* poll related */
786         wait_queue_head_t               waitq;
787         struct fasync_struct            *fasync;
788
789         /* delayed work for NMIs and such */
790         int                             pending_wakeup;
791         int                             pending_kill;
792         int                             pending_disable;
793         struct irq_work                 pending;
794
795         atomic_t                        event_limit;
796
797         void (*destroy)(struct perf_event *);
798         struct rcu_head                 rcu_head;
799
800         struct pid_namespace            *ns;
801         u64                             id;
802
803         perf_overflow_handler_t         overflow_handler;
804
805 #ifdef CONFIG_EVENT_TRACING
806         struct ftrace_event_call        *tp_event;
807         struct event_filter             *filter;
808 #endif
809
810 #endif /* CONFIG_PERF_EVENTS */
811 };
812
813 enum perf_event_context_type {
814         task_context,
815         cpu_context,
816 };
817
818 /**
819  * struct perf_event_context - event context structure
820  *
821  * Used as a container for task events and CPU events as well:
822  */
823 struct perf_event_context {
824         enum perf_event_context_type    type;
825         struct pmu                      *pmu;
826         /*
827          * Protect the states of the events in the list,
828          * nr_active, and the list:
829          */
830         raw_spinlock_t                  lock;
831         /*
832          * Protect the list of events.  Locking either mutex or lock
833          * is sufficient to ensure the list doesn't change; to change
834          * the list you need to lock both the mutex and the spinlock.
835          */
836         struct mutex                    mutex;
837
838         struct list_head                pinned_groups;
839         struct list_head                flexible_groups;
840         struct list_head                event_list;
841         int                             nr_events;
842         int                             nr_active;
843         int                             is_active;
844         int                             nr_stat;
845         atomic_t                        refcount;
846         struct task_struct              *task;
847
848         /*
849          * Context clock, runs when context enabled.
850          */
851         u64                             time;
852         u64                             timestamp;
853
854         /*
855          * These fields let us detect when two contexts have both
856          * been cloned (inherited) from a common ancestor.
857          */
858         struct perf_event_context       *parent_ctx;
859         u64                             parent_gen;
860         u64                             generation;
861         int                             pin_count;
862         struct rcu_head                 rcu_head;
863 };
864
865 /*
866  * Number of contexts where an event can trigger:
867  *      task, softirq, hardirq, nmi.
868  */
869 #define PERF_NR_CONTEXTS        4
870
871 /**
872  * struct perf_event_cpu_context - per cpu event context structure
873  */
874 struct perf_cpu_context {
875         struct perf_event_context       ctx;
876         struct perf_event_context       *task_ctx;
877         int                             active_oncpu;
878         int                             exclusive;
879         struct list_head                rotation_list;
880         int                             jiffies_interval;
881 };
882
883 struct perf_output_handle {
884         struct perf_event               *event;
885         struct perf_buffer              *buffer;
886         unsigned long                   wakeup;
887         unsigned long                   size;
888         void                            *addr;
889         int                             page;
890         int                             nmi;
891         int                             sample;
892 };
893
894 #ifdef CONFIG_PERF_EVENTS
895
896 extern int perf_pmu_register(struct pmu *pmu);
897 extern void perf_pmu_unregister(struct pmu *pmu);
898
899 extern int perf_num_counters(void);
900 extern const char *perf_pmu_name(void);
901 extern void __perf_event_task_sched_in(struct task_struct *task);
902 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
903
904 extern atomic_t perf_task_events;
905
906 static inline void perf_event_task_sched_in(struct task_struct *task)
907 {
908         COND_STMT(&perf_task_events, __perf_event_task_sched_in(task));
909 }
910
911 static inline
912 void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
913 {
914         COND_STMT(&perf_task_events, __perf_event_task_sched_out(task, next));
915 }
916
917 extern int perf_event_init_task(struct task_struct *child);
918 extern void perf_event_exit_task(struct task_struct *child);
919 extern void perf_event_free_task(struct task_struct *task);
920 extern void perf_event_delayed_put(struct task_struct *task);
921 extern void perf_event_print_debug(void);
922 extern void perf_pmu_disable(struct pmu *pmu);
923 extern void perf_pmu_enable(struct pmu *pmu);
924 extern int perf_event_task_disable(void);
925 extern int perf_event_task_enable(void);
926 extern void perf_event_update_userpage(struct perf_event *event);
927 extern int perf_event_release_kernel(struct perf_event *event);
928 extern struct perf_event *
929 perf_event_create_kernel_counter(struct perf_event_attr *attr,
930                                 int cpu,
931                                 struct task_struct *task,
932                                 perf_overflow_handler_t callback);
933 extern u64 perf_event_read_value(struct perf_event *event,
934                                  u64 *enabled, u64 *running);
935
936 struct perf_sample_data {
937         u64                             type;
938
939         u64                             ip;
940         struct {
941                 u32     pid;
942                 u32     tid;
943         }                               tid_entry;
944         u64                             time;
945         u64                             addr;
946         u64                             id;
947         u64                             stream_id;
948         struct {
949                 u32     cpu;
950                 u32     reserved;
951         }                               cpu_entry;
952         u64                             period;
953         struct perf_callchain_entry     *callchain;
954         struct perf_raw_record          *raw;
955 };
956
957 static inline
958 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
959 {
960         data->addr = addr;
961         data->raw  = NULL;
962 }
963
964 extern void perf_output_sample(struct perf_output_handle *handle,
965                                struct perf_event_header *header,
966                                struct perf_sample_data *data,
967                                struct perf_event *event);
968 extern void perf_prepare_sample(struct perf_event_header *header,
969                                 struct perf_sample_data *data,
970                                 struct perf_event *event,
971                                 struct pt_regs *regs);
972
973 extern int perf_event_overflow(struct perf_event *event, int nmi,
974                                  struct perf_sample_data *data,
975                                  struct pt_regs *regs);
976
977 /*
978  * Return 1 for a software event, 0 for a hardware event
979  */
980 static inline int is_software_event(struct perf_event *event)
981 {
982         return event->pmu->task_ctx_nr == perf_sw_context;
983 }
984
985 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
986
987 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
988
989 #ifndef perf_arch_fetch_caller_regs
990 static inline void
991 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
992 #endif
993
994 /*
995  * Take a snapshot of the regs. Skip ip and frame pointer to
996  * the nth caller. We only need a few of the regs:
997  * - ip for PERF_SAMPLE_IP
998  * - cs for user_mode() tests
999  * - bp for callchains
1000  * - eflags, for future purposes, just in case
1001  */
1002 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1003 {
1004         memset(regs, 0, sizeof(*regs));
1005
1006         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1007 }
1008
1009 static MONO_ALWAYS_INLINE void
1010 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
1011 {
1012         struct pt_regs hot_regs;
1013
1014         JUMP_LABEL(&perf_swevent_enabled[event_id], have_event);
1015         return;
1016
1017 have_event:
1018         if (!regs) {
1019                 perf_fetch_caller_regs(&hot_regs);
1020                 regs = &hot_regs;
1021         }
1022         __perf_sw_event(event_id, nr, nmi, regs, addr);
1023 }
1024
1025 extern void perf_event_mmap(struct vm_area_struct *vma);
1026 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1027 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1028 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1029
1030 extern void perf_event_comm(struct task_struct *tsk);
1031 extern void perf_event_fork(struct task_struct *tsk);
1032
1033 /* Callchains */
1034 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1035
1036 extern void perf_callchain_user(struct perf_callchain_entry *entry,
1037                                 struct pt_regs *regs);
1038 extern void perf_callchain_kernel(struct perf_callchain_entry *entry,
1039                                   struct pt_regs *regs);
1040
1041
1042 static inline void
1043 perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1044 {
1045         if (entry->nr < PERF_MAX_STACK_DEPTH)
1046                 entry->ip[entry->nr++] = ip;
1047 }
1048
1049 extern int sysctl_perf_event_paranoid;
1050 extern int sysctl_perf_event_mlock;
1051 extern int sysctl_perf_event_sample_rate;
1052
1053 static inline bool perf_paranoid_tracepoint_raw(void)
1054 {
1055         return sysctl_perf_event_paranoid > -1;
1056 }
1057
1058 static inline bool perf_paranoid_cpu(void)
1059 {
1060         return sysctl_perf_event_paranoid > 0;
1061 }
1062
1063 static inline bool perf_paranoid_kernel(void)
1064 {
1065         return sysctl_perf_event_paranoid > 1;
1066 }
1067
1068 extern void perf_event_init(void);
1069 extern void perf_tp_event(u64 addr, u64 count, void *record,
1070                           int entry_size, struct pt_regs *regs,
1071                           struct hlist_head *head, int rctx);
1072 extern void perf_bp_event(struct perf_event *event, void *data);
1073
1074 #ifndef perf_misc_flags
1075 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_RECORD_MISC_USER : \
1076                                  PERF_RECORD_MISC_KERNEL)
1077 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
1078 #endif
1079
1080 extern int perf_output_begin(struct perf_output_handle *handle,
1081                              struct perf_event *event, unsigned int size,
1082                              int nmi, int sample);
1083 extern void perf_output_end(struct perf_output_handle *handle);
1084 extern void perf_output_copy(struct perf_output_handle *handle,
1085                              const void *buf, unsigned int len);
1086 extern int perf_swevent_get_recursion_context(void);
1087 extern void perf_swevent_put_recursion_context(int rctx);
1088 extern void perf_event_enable(struct perf_event *event);
1089 extern void perf_event_disable(struct perf_event *event);
1090 extern void perf_event_task_tick(void);
1091 #else
1092 static inline void
1093 perf_event_task_sched_in(struct task_struct *task)                      { }
1094 static inline void
1095 perf_event_task_sched_out(struct task_struct *task,
1096                             struct task_struct *next)                   { }
1097 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1098 static inline void perf_event_exit_task(struct task_struct *child)      { }
1099 static inline void perf_event_free_task(struct task_struct *task)       { }
1100 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1101 static inline void perf_event_print_debug(void)                         { }
1102 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1103 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1104
1105 static inline void
1106 perf_sw_event(u32 event_id, u64 nr, int nmi,
1107                      struct pt_regs *regs, u64 addr)                    { }
1108 static inline void
1109 perf_bp_event(struct perf_event *event, void *data)                     { }
1110
1111 static inline int perf_register_guest_info_callbacks
1112 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1113 static inline int perf_unregister_guest_info_callbacks
1114 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1115
1116 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1117 static inline void perf_event_comm(struct task_struct *tsk)             { }
1118 static inline void perf_event_fork(struct task_struct *tsk)             { }
1119 static inline void perf_event_init(void)                                { }
1120 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1121 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1122 static inline void perf_event_enable(struct perf_event *event)          { }
1123 static inline void perf_event_disable(struct perf_event *event)         { }
1124 static inline void perf_event_task_tick(void)                           { }
1125 #endif
1126
1127 #define perf_output_put(handle, x) \
1128         perf_output_copy((handle), &(x), sizeof(x))
1129
1130 /*
1131  * This has to have a higher priority than migration_notifier in sched.c.
1132  */
1133 #define perf_cpu_notifier(fn)                                   \
1134 do {                                                            \
1135         static struct notifier_block fn##_nb __cpuinitdata =    \
1136                 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1137         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,             \
1138                 (void *)(unsigned long)smp_processor_id());     \
1139         fn(&fn##_nb, (unsigned long)CPU_STARTING,               \
1140                 (void *)(unsigned long)smp_processor_id());     \
1141         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                 \
1142                 (void *)(unsigned long)smp_processor_id());     \
1143         register_cpu_notifier(&fn##_nb);                        \
1144 } while (0)
1145
1146 #endif /* __KERNEL__ */
1147 #endif /* _LINUX_PERF_EVENT_H */