2008-11-17 Rodrigo Kumpera <rkumpera@novell.com>
[mono.git] / mono / mini / mini-x86.c
1 /*
2  * mini-x86.c: x86 backend for the Mono code generator
3  *
4  * Authors:
5  *   Paolo Molaro (lupus@ximian.com)
6  *   Dietmar Maurer (dietmar@ximian.com)
7  *   Patrik Torstensson
8  *
9  * (C) 2003 Ximian, Inc.
10  */
11 #include "mini.h"
12 #include <string.h>
13 #include <math.h>
14 #ifdef HAVE_UNISTD_H
15 #include <unistd.h>
16 #endif
17
18 #include <mono/metadata/appdomain.h>
19 #include <mono/metadata/debug-helpers.h>
20 #include <mono/metadata/threads.h>
21 #include <mono/metadata/profiler-private.h>
22 #include <mono/metadata/mono-debug.h>
23 #include <mono/utils/mono-math.h>
24 #include <mono/utils/mono-counters.h>
25
26 #include "trace.h"
27 #include "mini-x86.h"
28 #include "cpu-x86.h"
29 #include "ir-emit.h"
30
31 /* On windows, these hold the key returned by TlsAlloc () */
32 static gint lmf_tls_offset = -1;
33 static gint lmf_addr_tls_offset = -1;
34 static gint appdomain_tls_offset = -1;
35 static gint thread_tls_offset = -1;
36
37 #ifdef MONO_XEN_OPT
38 static gboolean optimize_for_xen = TRUE;
39 #else
40 #define optimize_for_xen 0
41 #endif
42
43 #ifdef PLATFORM_WIN32
44 static gboolean is_win32 = TRUE;
45 #else
46 static gboolean is_win32 = FALSE;
47 #endif
48
49 /* This mutex protects architecture specific caches */
50 #define mono_mini_arch_lock() EnterCriticalSection (&mini_arch_mutex)
51 #define mono_mini_arch_unlock() LeaveCriticalSection (&mini_arch_mutex)
52 static CRITICAL_SECTION mini_arch_mutex;
53
54 #define ALIGN_TO(val,align) ((((guint64)val) + ((align) - 1)) & ~((align) - 1))
55
56 #define ARGS_OFFSET 8
57
58 #ifdef PLATFORM_WIN32
59 /* Under windows, the default pinvoke calling convention is stdcall */
60 #define CALLCONV_IS_STDCALL(sig) ((((sig)->call_convention) == MONO_CALL_STDCALL) || ((sig)->pinvoke && ((sig)->call_convention) == MONO_CALL_DEFAULT))
61 #else
62 #define CALLCONV_IS_STDCALL(sig) (((sig)->call_convention) == MONO_CALL_STDCALL)
63 #endif
64
65 MonoBreakpointInfo
66 mono_breakpoint_info [MONO_BREAKPOINT_ARRAY_SIZE];
67
68 const char*
69 mono_arch_regname (int reg)
70 {
71         switch (reg) {
72         case X86_EAX: return "%eax";
73         case X86_EBX: return "%ebx";
74         case X86_ECX: return "%ecx";
75         case X86_EDX: return "%edx";
76         case X86_ESP: return "%esp";    
77         case X86_EBP: return "%ebp";
78         case X86_EDI: return "%edi";
79         case X86_ESI: return "%esi";
80         }
81         return "unknown";
82 }
83
84 const char*
85 mono_arch_fregname (int reg)
86 {
87         switch (reg) {
88         case 0:
89                 return "%fr0";
90         case 1:
91                 return "%fr1";
92         case 2:
93                 return "%fr2";
94         case 3:
95                 return "%fr3";
96         case 4:
97                 return "%fr4";
98         case 5:
99                 return "%fr5";
100         case 6:
101                 return "%fr6";
102         case 7:
103                 return "%fr7";
104         default:
105                 return "unknown";
106         }
107 }
108
109 const char *
110 mono_arch_xregname (int reg)
111 {
112         switch (reg) {
113         case 0:
114                 return "%xmm0";
115         case 1:
116                 return "%xmm1";
117         case 2:
118                 return "%xmm2";
119         case 3:
120                 return "%xmm3";
121         case 4:
122                 return "%xmm4";
123         case 5:
124                 return "%xmm5";
125         case 6:
126                 return "%xmm6";
127         case 7:
128                 return "%xmm7";
129         default:
130                 return "unknown";
131         }
132 }
133
134
135 typedef enum {
136         ArgInIReg,
137         ArgInFloatSSEReg,
138         ArgInDoubleSSEReg,
139         ArgOnStack,
140         ArgValuetypeInReg,
141         ArgOnFloatFpStack,
142         ArgOnDoubleFpStack,
143         ArgNone
144 } ArgStorage;
145
146 typedef struct {
147         gint16 offset;
148         gint8  reg;
149         ArgStorage storage;
150
151         /* Only if storage == ArgValuetypeInReg */
152         ArgStorage pair_storage [2];
153         gint8 pair_regs [2];
154 } ArgInfo;
155
156 typedef struct {
157         int nargs;
158         guint32 stack_usage;
159         guint32 reg_usage;
160         guint32 freg_usage;
161         gboolean need_stack_align;
162         guint32 stack_align_amount;
163         ArgInfo ret;
164         ArgInfo sig_cookie;
165         ArgInfo args [1];
166 } CallInfo;
167
168 #define PARAM_REGS 0
169
170 #define FLOAT_PARAM_REGS 0
171
172 static X86_Reg_No param_regs [] = { 0 };
173
174 #if defined(PLATFORM_WIN32) || defined(__APPLE__) || defined(__FreeBSD__)
175 #define SMALL_STRUCTS_IN_REGS
176 static X86_Reg_No return_regs [] = { X86_EAX, X86_EDX };
177 #endif
178
179 static void inline
180 add_general (guint32 *gr, guint32 *stack_size, ArgInfo *ainfo)
181 {
182     ainfo->offset = *stack_size;
183
184     if (*gr >= PARAM_REGS) {
185                 ainfo->storage = ArgOnStack;
186                 (*stack_size) += sizeof (gpointer);
187     }
188     else {
189                 ainfo->storage = ArgInIReg;
190                 ainfo->reg = param_regs [*gr];
191                 (*gr) ++;
192     }
193 }
194
195 static void inline
196 add_general_pair (guint32 *gr, guint32 *stack_size, ArgInfo *ainfo)
197 {
198         ainfo->offset = *stack_size;
199
200         g_assert (PARAM_REGS == 0);
201         
202         ainfo->storage = ArgOnStack;
203         (*stack_size) += sizeof (gpointer) * 2;
204 }
205
206 static void inline
207 add_float (guint32 *gr, guint32 *stack_size, ArgInfo *ainfo, gboolean is_double)
208 {
209     ainfo->offset = *stack_size;
210
211     if (*gr >= FLOAT_PARAM_REGS) {
212                 ainfo->storage = ArgOnStack;
213                 (*stack_size) += is_double ? 8 : 4;
214     }
215     else {
216                 /* A double register */
217                 if (is_double)
218                         ainfo->storage = ArgInDoubleSSEReg;
219                 else
220                         ainfo->storage = ArgInFloatSSEReg;
221                 ainfo->reg = *gr;
222                 (*gr) += 1;
223     }
224 }
225
226
227 static void
228 add_valuetype (MonoGenericSharingContext *gsctx, MonoMethodSignature *sig, ArgInfo *ainfo, MonoType *type,
229                gboolean is_return,
230                guint32 *gr, guint32 *fr, guint32 *stack_size)
231 {
232         guint32 size;
233         MonoClass *klass;
234
235         klass = mono_class_from_mono_type (type);
236         size = mini_type_stack_size_full (gsctx, &klass->byval_arg, NULL, sig->pinvoke);
237
238 #ifdef SMALL_STRUCTS_IN_REGS
239         if (sig->pinvoke && is_return) {
240                 MonoMarshalType *info;
241
242                 /*
243                  * the exact rules are not very well documented, the code below seems to work with the 
244                  * code generated by gcc 3.3.3 -mno-cygwin.
245                  */
246                 info = mono_marshal_load_type_info (klass);
247                 g_assert (info);
248
249                 ainfo->pair_storage [0] = ainfo->pair_storage [1] = ArgNone;
250
251                 /* Special case structs with only a float member */
252                 if ((info->native_size == 8) && (info->num_fields == 1) && (info->fields [0].field->type->type == MONO_TYPE_R8)) {
253                         ainfo->storage = ArgValuetypeInReg;
254                         ainfo->pair_storage [0] = ArgOnDoubleFpStack;
255                         return;
256                 }
257                 if ((info->native_size == 4) && (info->num_fields == 1) && (info->fields [0].field->type->type == MONO_TYPE_R4)) {
258                         ainfo->storage = ArgValuetypeInReg;
259                         ainfo->pair_storage [0] = ArgOnFloatFpStack;
260                         return;
261                 }               
262                 if ((info->native_size == 1) || (info->native_size == 2) || (info->native_size == 4) || (info->native_size == 8)) {
263                         ainfo->storage = ArgValuetypeInReg;
264                         ainfo->pair_storage [0] = ArgInIReg;
265                         ainfo->pair_regs [0] = return_regs [0];
266                         if (info->native_size > 4) {
267                                 ainfo->pair_storage [1] = ArgInIReg;
268                                 ainfo->pair_regs [1] = return_regs [1];
269                         }
270                         return;
271                 }
272         }
273 #endif
274
275         ainfo->offset = *stack_size;
276         ainfo->storage = ArgOnStack;
277         *stack_size += ALIGN_TO (size, sizeof (gpointer));
278 }
279
280 /*
281  * get_call_info:
282  *
283  *  Obtain information about a call according to the calling convention.
284  * For x86 ELF, see the "System V Application Binary Interface Intel386 
285  * Architecture Processor Supplment, Fourth Edition" document for more
286  * information.
287  * For x86 win32, see ???.
288  */
289 static CallInfo*
290 get_call_info (MonoGenericSharingContext *gsctx, MonoMemPool *mp, MonoMethodSignature *sig, gboolean is_pinvoke)
291 {
292         guint32 i, gr, fr;
293         MonoType *ret_type;
294         int n = sig->hasthis + sig->param_count;
295         guint32 stack_size = 0;
296         CallInfo *cinfo;
297
298         if (mp)
299                 cinfo = mono_mempool_alloc0 (mp, sizeof (CallInfo) + (sizeof (ArgInfo) * n));
300         else
301                 cinfo = g_malloc0 (sizeof (CallInfo) + (sizeof (ArgInfo) * n));
302
303         gr = 0;
304         fr = 0;
305
306         /* return value */
307         {
308                 ret_type = mini_type_get_underlying_type (gsctx, sig->ret);
309                 switch (ret_type->type) {
310                 case MONO_TYPE_BOOLEAN:
311                 case MONO_TYPE_I1:
312                 case MONO_TYPE_U1:
313                 case MONO_TYPE_I2:
314                 case MONO_TYPE_U2:
315                 case MONO_TYPE_CHAR:
316                 case MONO_TYPE_I4:
317                 case MONO_TYPE_U4:
318                 case MONO_TYPE_I:
319                 case MONO_TYPE_U:
320                 case MONO_TYPE_PTR:
321                 case MONO_TYPE_FNPTR:
322                 case MONO_TYPE_CLASS:
323                 case MONO_TYPE_OBJECT:
324                 case MONO_TYPE_SZARRAY:
325                 case MONO_TYPE_ARRAY:
326                 case MONO_TYPE_STRING:
327                         cinfo->ret.storage = ArgInIReg;
328                         cinfo->ret.reg = X86_EAX;
329                         break;
330                 case MONO_TYPE_U8:
331                 case MONO_TYPE_I8:
332                         cinfo->ret.storage = ArgInIReg;
333                         cinfo->ret.reg = X86_EAX;
334                         break;
335                 case MONO_TYPE_R4:
336                         cinfo->ret.storage = ArgOnFloatFpStack;
337                         break;
338                 case MONO_TYPE_R8:
339                         cinfo->ret.storage = ArgOnDoubleFpStack;
340                         break;
341                 case MONO_TYPE_GENERICINST:
342                         if (!mono_type_generic_inst_is_valuetype (sig->ret)) {
343                                 cinfo->ret.storage = ArgInIReg;
344                                 cinfo->ret.reg = X86_EAX;
345                                 break;
346                         }
347                         /* Fall through */
348                 case MONO_TYPE_VALUETYPE: {
349                         guint32 tmp_gr = 0, tmp_fr = 0, tmp_stacksize = 0;
350
351                         add_valuetype (gsctx, sig, &cinfo->ret, sig->ret, TRUE, &tmp_gr, &tmp_fr, &tmp_stacksize);
352                         if (cinfo->ret.storage == ArgOnStack)
353                                 /* The caller passes the address where the value is stored */
354                                 add_general (&gr, &stack_size, &cinfo->ret);
355                         break;
356                 }
357                 case MONO_TYPE_TYPEDBYREF:
358                         /* Same as a valuetype with size 24 */
359                         add_general (&gr, &stack_size, &cinfo->ret);
360                         ;
361                         break;
362                 case MONO_TYPE_VOID:
363                         cinfo->ret.storage = ArgNone;
364                         break;
365                 default:
366                         g_error ("Can't handle as return value 0x%x", sig->ret->type);
367                 }
368         }
369
370         /* this */
371         if (sig->hasthis)
372                 add_general (&gr, &stack_size, cinfo->args + 0);
373
374         if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (n == 0)) {
375                 gr = PARAM_REGS;
376                 fr = FLOAT_PARAM_REGS;
377                 
378                 /* Emit the signature cookie just before the implicit arguments */
379                 add_general (&gr, &stack_size, &cinfo->sig_cookie);
380         }
381
382         for (i = 0; i < sig->param_count; ++i) {
383                 ArgInfo *ainfo = &cinfo->args [sig->hasthis + i];
384                 MonoType *ptype;
385
386                 if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (i == sig->sentinelpos)) {
387                         /* We allways pass the sig cookie on the stack for simplicity */
388                         /* 
389                          * Prevent implicit arguments + the sig cookie from being passed 
390                          * in registers.
391                          */
392                         gr = PARAM_REGS;
393                         fr = FLOAT_PARAM_REGS;
394
395                         /* Emit the signature cookie just before the implicit arguments */
396                         add_general (&gr, &stack_size, &cinfo->sig_cookie);
397                 }
398
399                 if (sig->params [i]->byref) {
400                         add_general (&gr, &stack_size, ainfo);
401                         continue;
402                 }
403                 ptype = mini_type_get_underlying_type (gsctx, sig->params [i]);
404                 switch (ptype->type) {
405                 case MONO_TYPE_BOOLEAN:
406                 case MONO_TYPE_I1:
407                 case MONO_TYPE_U1:
408                         add_general (&gr, &stack_size, ainfo);
409                         break;
410                 case MONO_TYPE_I2:
411                 case MONO_TYPE_U2:
412                 case MONO_TYPE_CHAR:
413                         add_general (&gr, &stack_size, ainfo);
414                         break;
415                 case MONO_TYPE_I4:
416                 case MONO_TYPE_U4:
417                         add_general (&gr, &stack_size, ainfo);
418                         break;
419                 case MONO_TYPE_I:
420                 case MONO_TYPE_U:
421                 case MONO_TYPE_PTR:
422                 case MONO_TYPE_FNPTR:
423                 case MONO_TYPE_CLASS:
424                 case MONO_TYPE_OBJECT:
425                 case MONO_TYPE_STRING:
426                 case MONO_TYPE_SZARRAY:
427                 case MONO_TYPE_ARRAY:
428                         add_general (&gr, &stack_size, ainfo);
429                         break;
430                 case MONO_TYPE_GENERICINST:
431                         if (!mono_type_generic_inst_is_valuetype (sig->params [i])) {
432                                 add_general (&gr, &stack_size, ainfo);
433                                 break;
434                         }
435                         /* Fall through */
436                 case MONO_TYPE_VALUETYPE:
437                         add_valuetype (gsctx, sig, ainfo, sig->params [i], FALSE, &gr, &fr, &stack_size);
438                         break;
439                 case MONO_TYPE_TYPEDBYREF:
440                         stack_size += sizeof (MonoTypedRef);
441                         ainfo->storage = ArgOnStack;
442                         break;
443                 case MONO_TYPE_U8:
444                 case MONO_TYPE_I8:
445                         add_general_pair (&gr, &stack_size, ainfo);
446                         break;
447                 case MONO_TYPE_R4:
448                         add_float (&fr, &stack_size, ainfo, FALSE);
449                         break;
450                 case MONO_TYPE_R8:
451                         add_float (&fr, &stack_size, ainfo, TRUE);
452                         break;
453                 default:
454                         g_error ("unexpected type 0x%x", ptype->type);
455                         g_assert_not_reached ();
456                 }
457         }
458
459         if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (n > 0) && (sig->sentinelpos == sig->param_count)) {
460                 gr = PARAM_REGS;
461                 fr = FLOAT_PARAM_REGS;
462                 
463                 /* Emit the signature cookie just before the implicit arguments */
464                 add_general (&gr, &stack_size, &cinfo->sig_cookie);
465         }
466
467         if (mono_do_x86_stack_align && (stack_size % MONO_ARCH_FRAME_ALIGNMENT) != 0) {
468                 cinfo->need_stack_align = TRUE;
469                 cinfo->stack_align_amount = MONO_ARCH_FRAME_ALIGNMENT - (stack_size % MONO_ARCH_FRAME_ALIGNMENT);
470                 stack_size += cinfo->stack_align_amount;
471         }
472
473         cinfo->stack_usage = stack_size;
474         cinfo->reg_usage = gr;
475         cinfo->freg_usage = fr;
476         return cinfo;
477 }
478
479 /*
480  * mono_arch_get_argument_info:
481  * @csig:  a method signature
482  * @param_count: the number of parameters to consider
483  * @arg_info: an array to store the result infos
484  *
485  * Gathers information on parameters such as size, alignment and
486  * padding. arg_info should be large enought to hold param_count + 1 entries. 
487  *
488  * Returns the size of the argument area on the stack.
489  */
490 int
491 mono_arch_get_argument_info (MonoMethodSignature *csig, int param_count, MonoJitArgumentInfo *arg_info)
492 {
493         int k, args_size = 0;
494         int size, pad;
495         guint32 align;
496         int offset = 8;
497         CallInfo *cinfo;
498
499         cinfo = get_call_info (NULL, NULL, csig, FALSE);
500
501         if (MONO_TYPE_ISSTRUCT (csig->ret) && (cinfo->ret.storage == ArgOnStack)) {
502                 args_size += sizeof (gpointer);
503                 offset += 4;
504         }
505
506         arg_info [0].offset = offset;
507
508         if (csig->hasthis) {
509                 args_size += sizeof (gpointer);
510                 offset += 4;
511         }
512
513         arg_info [0].size = args_size;
514
515         for (k = 0; k < param_count; k++) {
516                 size = mini_type_stack_size_full (NULL, csig->params [k], &align, csig->pinvoke);
517
518                 /* ignore alignment for now */
519                 align = 1;
520
521                 args_size += pad = (align - (args_size & (align - 1))) & (align - 1);   
522                 arg_info [k].pad = pad;
523                 args_size += size;
524                 arg_info [k + 1].pad = 0;
525                 arg_info [k + 1].size = size;
526                 offset += pad;
527                 arg_info [k + 1].offset = offset;
528                 offset += size;
529         }
530
531         if (mono_do_x86_stack_align && !CALLCONV_IS_STDCALL (csig))
532                 align = MONO_ARCH_FRAME_ALIGNMENT;
533         else
534                 align = 4;
535         args_size += pad = (align - (args_size & (align - 1))) & (align - 1);
536         arg_info [k].pad = pad;
537
538         g_free (cinfo);
539
540         return args_size;
541 }
542
543 static const guchar cpuid_impl [] = {
544         0x55,                           /* push   %ebp */
545         0x89, 0xe5,                     /* mov    %esp,%ebp */
546         0x53,                           /* push   %ebx */
547         0x8b, 0x45, 0x08,               /* mov    0x8(%ebp),%eax */
548         0x0f, 0xa2,                     /* cpuid   */
549         0x50,                           /* push   %eax */
550         0x8b, 0x45, 0x10,               /* mov    0x10(%ebp),%eax */
551         0x89, 0x18,                     /* mov    %ebx,(%eax) */
552         0x8b, 0x45, 0x14,               /* mov    0x14(%ebp),%eax */
553         0x89, 0x08,                     /* mov    %ecx,(%eax) */
554         0x8b, 0x45, 0x18,               /* mov    0x18(%ebp),%eax */
555         0x89, 0x10,                     /* mov    %edx,(%eax) */
556         0x58,                           /* pop    %eax */
557         0x8b, 0x55, 0x0c,               /* mov    0xc(%ebp),%edx */
558         0x89, 0x02,                     /* mov    %eax,(%edx) */
559         0x5b,                           /* pop    %ebx */
560         0xc9,                           /* leave   */
561         0xc3,                           /* ret     */
562 };
563
564 typedef void (*CpuidFunc) (int id, int* p_eax, int* p_ebx, int* p_ecx, int* p_edx);
565
566 static int 
567 cpuid (int id, int* p_eax, int* p_ebx, int* p_ecx, int* p_edx)
568 {
569         int have_cpuid = 0;
570 #ifndef _MSC_VER
571         __asm__  __volatile__ (
572                 "pushfl\n"
573                 "popl %%eax\n"
574                 "movl %%eax, %%edx\n"
575                 "xorl $0x200000, %%eax\n"
576                 "pushl %%eax\n"
577                 "popfl\n"
578                 "pushfl\n"
579                 "popl %%eax\n"
580                 "xorl %%edx, %%eax\n"
581                 "andl $0x200000, %%eax\n"
582                 "movl %%eax, %0"
583                 : "=r" (have_cpuid)
584                 :
585                 : "%eax", "%edx"
586         );
587 #else
588         __asm {
589                 pushfd
590                 pop eax
591                 mov edx, eax
592                 xor eax, 0x200000
593                 push eax
594                 popfd
595                 pushfd
596                 pop eax
597                 xor eax, edx
598                 and eax, 0x200000
599                 mov have_cpuid, eax
600         }
601 #endif
602         if (have_cpuid) {
603                 /* Have to use the code manager to get around WinXP DEP */
604                 static CpuidFunc func = NULL;
605                 void *ptr;
606                 if (!func) {
607                         ptr = mono_global_codeman_reserve (sizeof (cpuid_impl));
608                         memcpy (ptr, cpuid_impl, sizeof (cpuid_impl));
609                         func = (CpuidFunc)ptr;
610                 }
611                 func (id, p_eax, p_ebx, p_ecx, p_edx);
612
613                 /*
614                  * We use this approach because of issues with gcc and pic code, see:
615                  * http://gcc.gnu.org/cgi-bin/gnatsweb.pl?cmd=view%20audit-trail&database=gcc&pr=7329
616                 __asm__ __volatile__ ("cpuid"
617                         : "=a" (*p_eax), "=b" (*p_ebx), "=c" (*p_ecx), "=d" (*p_edx)
618                         : "a" (id));
619                 */
620                 return 1;
621         }
622         return 0;
623 }
624
625 /*
626  * Initialize the cpu to execute managed code.
627  */
628 void
629 mono_arch_cpu_init (void)
630 {
631         /* spec compliance requires running with double precision */
632 #ifndef _MSC_VER
633         guint16 fpcw;
634
635         __asm__  __volatile__ ("fnstcw %0\n": "=m" (fpcw));
636         fpcw &= ~X86_FPCW_PRECC_MASK;
637         fpcw |= X86_FPCW_PREC_DOUBLE;
638         __asm__  __volatile__ ("fldcw %0\n": : "m" (fpcw));
639         __asm__  __volatile__ ("fnstcw %0\n": "=m" (fpcw));
640 #else
641         _control87 (_PC_53, MCW_PC);
642 #endif
643 }
644
645 /*
646  * Initialize architecture specific code.
647  */
648 void
649 mono_arch_init (void)
650 {
651         InitializeCriticalSection (&mini_arch_mutex);
652 }
653
654 /*
655  * Cleanup architecture specific code.
656  */
657 void
658 mono_arch_cleanup (void)
659 {
660         DeleteCriticalSection (&mini_arch_mutex);
661 }
662
663 /*
664  * This function returns the optimizations supported on this cpu.
665  */
666 guint32
667 mono_arch_cpu_optimizazions (guint32 *exclude_mask)
668 {
669         int eax, ebx, ecx, edx;
670         guint32 opts = 0;
671         
672         *exclude_mask = 0;
673         /* Feature Flags function, flags returned in EDX. */
674         if (cpuid (1, &eax, &ebx, &ecx, &edx)) {
675                 if (edx & (1 << 15)) {
676                         opts |= MONO_OPT_CMOV;
677                         if (edx & 1)
678                                 opts |= MONO_OPT_FCMOV;
679                         else
680                                 *exclude_mask |= MONO_OPT_FCMOV;
681                 } else
682                         *exclude_mask |= MONO_OPT_CMOV;
683                 if (edx & (1 << 26))
684                         opts |= MONO_OPT_SSE2;
685                 else
686                         *exclude_mask |= MONO_OPT_SSE2;
687
688 #ifdef MONO_ARCH_SIMD_INTRINSICS
689                 /*SIMD intrinsics require at least SSE2.*/
690                 if (!(opts & MONO_OPT_SSE2))
691                         *exclude_mask |= MONO_OPT_SIMD;
692 #endif
693         }
694         return opts;
695 }
696
697 /*
698  * This function test for all SSE functions supported.
699  *
700  * Returns a bitmask corresponding to all supported versions.
701  * 
702  * TODO detect other versions like SSE4a.
703  */
704 guint32
705 mono_arch_cpu_enumerate_simd_versions (void)
706 {
707         int eax, ebx, ecx, edx;
708         guint32 sse_opts = 0;
709
710         if (cpuid (1, &eax, &ebx, &ecx, &edx)) {
711                 if (edx & (1 << 25))
712                         sse_opts |= 1 << SIMD_VERSION_SSE1;
713                 if (edx & (1 << 26))
714                         sse_opts |= 1 << SIMD_VERSION_SSE2;
715                 if (ecx & (1 << 0))
716                         sse_opts |= 1 << SIMD_VERSION_SSE3;
717                 if (ecx & (1 << 9))
718                         sse_opts |= 1 << SIMD_VERSION_SSSE3;
719                 if (ecx & (1 << 19))
720                         sse_opts |= 1 << SIMD_VERSION_SSE41;
721                 if (ecx & (1 << 20))
722                         sse_opts |= 1 << SIMD_VERSION_SSE42;
723         }
724         return sse_opts;        
725 }
726
727 /*
728  * Determine whenever the trap whose info is in SIGINFO is caused by
729  * integer overflow.
730  */
731 gboolean
732 mono_arch_is_int_overflow (void *sigctx, void *info)
733 {
734         MonoContext ctx;
735         guint8* ip;
736
737         mono_arch_sigctx_to_monoctx (sigctx, &ctx);
738
739         ip = (guint8*)ctx.eip;
740
741         if ((ip [0] == 0xf7) && (x86_modrm_mod (ip [1]) == 0x3) && (x86_modrm_reg (ip [1]) == 0x7)) {
742                 gint32 reg;
743
744                 /* idiv REG */
745                 switch (x86_modrm_rm (ip [1])) {
746                 case X86_EAX:
747                         reg = ctx.eax;
748                         break;
749                 case X86_ECX:
750                         reg = ctx.ecx;
751                         break;
752                 case X86_EDX:
753                         reg = ctx.edx;
754                         break;
755                 case X86_EBX:
756                         reg = ctx.ebx;
757                         break;
758                 case X86_ESI:
759                         reg = ctx.esi;
760                         break;
761                 case X86_EDI:
762                         reg = ctx.edi;
763                         break;
764                 default:
765                         g_assert_not_reached ();
766                         reg = -1;
767                 }
768
769                 if (reg == -1)
770                         return TRUE;
771         }
772                         
773         return FALSE;
774 }
775
776 GList *
777 mono_arch_get_allocatable_int_vars (MonoCompile *cfg)
778 {
779         GList *vars = NULL;
780         int i;
781
782         for (i = 0; i < cfg->num_varinfo; i++) {
783                 MonoInst *ins = cfg->varinfo [i];
784                 MonoMethodVar *vmv = MONO_VARINFO (cfg, i);
785
786                 /* unused vars */
787                 if (vmv->range.first_use.abs_pos >= vmv->range.last_use.abs_pos)
788                         continue;
789
790                 if ((ins->flags & (MONO_INST_IS_DEAD|MONO_INST_VOLATILE|MONO_INST_INDIRECT)) || 
791                     (ins->opcode != OP_LOCAL && ins->opcode != OP_ARG))
792                         continue;
793
794                 /* we dont allocate I1 to registers because there is no simply way to sign extend 
795                  * 8bit quantities in caller saved registers on x86 */
796                 if (mono_is_regsize_var (ins->inst_vtype) && (ins->inst_vtype->type != MONO_TYPE_I1)) {
797                         g_assert (MONO_VARINFO (cfg, i)->reg == -1);
798                         g_assert (i == vmv->idx);
799                         vars = g_list_prepend (vars, vmv);
800                 }
801         }
802
803         vars = mono_varlist_sort (cfg, vars, 0);
804
805         return vars;
806 }
807
808 GList *
809 mono_arch_get_global_int_regs (MonoCompile *cfg)
810 {
811         GList *regs = NULL;
812
813         /* we can use 3 registers for global allocation */
814         regs = g_list_prepend (regs, (gpointer)X86_EBX);
815         regs = g_list_prepend (regs, (gpointer)X86_ESI);
816         regs = g_list_prepend (regs, (gpointer)X86_EDI);
817
818         return regs;
819 }
820
821 /*
822  * mono_arch_regalloc_cost:
823  *
824  *  Return the cost, in number of memory references, of the action of 
825  * allocating the variable VMV into a register during global register
826  * allocation.
827  */
828 guint32
829 mono_arch_regalloc_cost (MonoCompile *cfg, MonoMethodVar *vmv)
830 {
831         MonoInst *ins = cfg->varinfo [vmv->idx];
832
833         if (cfg->method->save_lmf)
834                 /* The register is already saved */
835                 return (ins->opcode == OP_ARG) ? 1 : 0;
836         else
837                 /* push+pop+possible load if it is an argument */
838                 return (ins->opcode == OP_ARG) ? 3 : 2;
839 }
840  
841 /*
842  * Set var information according to the calling convention. X86 version.
843  * The locals var stuff should most likely be split in another method.
844  */
845 void
846 mono_arch_allocate_vars (MonoCompile *cfg)
847 {
848         MonoMethodSignature *sig;
849         MonoMethodHeader *header;
850         MonoInst *inst;
851         guint32 locals_stack_size, locals_stack_align;
852         int i, offset;
853         gint32 *offsets;
854         CallInfo *cinfo;
855
856         header = mono_method_get_header (cfg->method);
857         sig = mono_method_signature (cfg->method);
858
859         cinfo = get_call_info (cfg->generic_sharing_context, cfg->mempool, sig, FALSE);
860
861         cfg->frame_reg = X86_EBP;
862         offset = 0;
863
864         /* Reserve space to save LMF and caller saved registers */
865
866         if (cfg->method->save_lmf) {
867                 offset += sizeof (MonoLMF);
868         } else {
869                 if (cfg->used_int_regs & (1 << X86_EBX)) {
870                         offset += 4;
871                 }
872
873                 if (cfg->used_int_regs & (1 << X86_EDI)) {
874                         offset += 4;
875                 }
876
877                 if (cfg->used_int_regs & (1 << X86_ESI)) {
878                         offset += 4;
879                 }
880         }
881
882         switch (cinfo->ret.storage) {
883         case ArgValuetypeInReg:
884                 /* Allocate a local to hold the result, the epilog will copy it to the correct place */
885                 offset += 8;
886                 cfg->ret->opcode = OP_REGOFFSET;
887                 cfg->ret->inst_basereg = X86_EBP;
888                 cfg->ret->inst_offset = - offset;
889                 break;
890         default:
891                 break;
892         }
893
894         /* Allocate locals */
895         offsets = mono_allocate_stack_slots (cfg, &locals_stack_size, &locals_stack_align);
896         if (locals_stack_align) {
897                 offset += (locals_stack_align - 1);
898                 offset &= ~(locals_stack_align - 1);
899         }
900         /*
901          * EBP is at alignment 8 % MONO_ARCH_FRAME_ALIGNMENT, so if we
902          * have locals larger than 8 bytes we need to make sure that
903          * they have the appropriate offset.
904          */
905         if (MONO_ARCH_FRAME_ALIGNMENT > 8 && locals_stack_align > 8)
906                 offset += MONO_ARCH_FRAME_ALIGNMENT - sizeof (gpointer) * 2;
907         for (i = cfg->locals_start; i < cfg->num_varinfo; i++) {
908                 if (offsets [i] != -1) {
909                         MonoInst *inst = cfg->varinfo [i];
910                         inst->opcode = OP_REGOFFSET;
911                         inst->inst_basereg = X86_EBP;
912                         inst->inst_offset = - (offset + offsets [i]);
913                         //printf ("allocated local %d to ", i); mono_print_tree_nl (inst);
914                 }
915         }
916         offset += locals_stack_size;
917
918
919         /*
920          * Allocate arguments+return value
921          */
922
923         switch (cinfo->ret.storage) {
924         case ArgOnStack:
925                 if (MONO_TYPE_ISSTRUCT (sig->ret)) {
926                         /* 
927                          * In the new IR, the cfg->vret_addr variable represents the
928                          * vtype return value.
929                          */
930                         cfg->vret_addr->opcode = OP_REGOFFSET;
931                         cfg->vret_addr->inst_basereg = cfg->frame_reg;
932                         cfg->vret_addr->inst_offset = cinfo->ret.offset + ARGS_OFFSET;
933                         if (G_UNLIKELY (cfg->verbose_level > 1)) {
934                                 printf ("vret_addr =");
935                                 mono_print_ins (cfg->vret_addr);
936                         }
937                 } else {
938                         cfg->ret->opcode = OP_REGOFFSET;
939                         cfg->ret->inst_basereg = X86_EBP;
940                         cfg->ret->inst_offset = cinfo->ret.offset + ARGS_OFFSET;
941                 }
942                 break;
943         case ArgValuetypeInReg:
944                 break;
945         case ArgInIReg:
946                 cfg->ret->opcode = OP_REGVAR;
947                 cfg->ret->inst_c0 = cinfo->ret.reg;
948                 cfg->ret->dreg = cinfo->ret.reg;
949                 break;
950         case ArgNone:
951         case ArgOnFloatFpStack:
952         case ArgOnDoubleFpStack:
953                 break;
954         default:
955                 g_assert_not_reached ();
956         }
957
958         if (sig->call_convention == MONO_CALL_VARARG) {
959                 g_assert (cinfo->sig_cookie.storage == ArgOnStack);
960                 cfg->sig_cookie = cinfo->sig_cookie.offset + ARGS_OFFSET;
961         }
962
963         for (i = 0; i < sig->param_count + sig->hasthis; ++i) {
964                 ArgInfo *ainfo = &cinfo->args [i];
965                 inst = cfg->args [i];
966                 if (inst->opcode != OP_REGVAR) {
967                         inst->opcode = OP_REGOFFSET;
968                         inst->inst_basereg = X86_EBP;
969                 }
970                 inst->inst_offset = ainfo->offset + ARGS_OFFSET;
971         }
972
973         offset += (MONO_ARCH_FRAME_ALIGNMENT - 1);
974         offset &= ~(MONO_ARCH_FRAME_ALIGNMENT - 1);
975
976         cfg->stack_offset = offset;
977 }
978
979 void
980 mono_arch_create_vars (MonoCompile *cfg)
981 {
982         MonoMethodSignature *sig;
983         CallInfo *cinfo;
984
985         sig = mono_method_signature (cfg->method);
986
987         cinfo = get_call_info (cfg->generic_sharing_context, cfg->mempool, sig, FALSE);
988
989         if (cinfo->ret.storage == ArgValuetypeInReg)
990                 cfg->ret_var_is_local = TRUE;
991         if ((cinfo->ret.storage != ArgValuetypeInReg) && MONO_TYPE_ISSTRUCT (sig->ret)) {
992                 cfg->vret_addr = mono_compile_create_var (cfg, &mono_defaults.int_class->byval_arg, OP_ARG);
993         }
994 }
995
996 /*
997  * It is expensive to adjust esp for each individual fp argument pushed on the stack
998  * so we try to do it just once when we have multiple fp arguments in a row.
999  * We don't use this mechanism generally because for int arguments the generated code
1000  * is slightly bigger and new generation cpus optimize away the dependency chains
1001  * created by push instructions on the esp value.
1002  * fp_arg_setup is the first argument in the execution sequence where the esp register
1003  * is modified.
1004  */
1005 static G_GNUC_UNUSED int
1006 collect_fp_stack_space (MonoMethodSignature *sig, int start_arg, int *fp_arg_setup)
1007 {
1008         int fp_space = 0;
1009         MonoType *t;
1010
1011         for (; start_arg < sig->param_count; ++start_arg) {
1012                 t = mini_type_get_underlying_type (NULL, sig->params [start_arg]);
1013                 if (!t->byref && t->type == MONO_TYPE_R8) {
1014                         fp_space += sizeof (double);
1015                         *fp_arg_setup = start_arg;
1016                 } else {
1017                         break;
1018                 }
1019         }
1020         return fp_space;
1021 }
1022
1023 static void
1024 emit_sig_cookie (MonoCompile *cfg, MonoCallInst *call, CallInfo *cinfo)
1025 {
1026         MonoMethodSignature *tmp_sig;
1027
1028         /* FIXME: Add support for signature tokens to AOT */
1029         cfg->disable_aot = TRUE;
1030
1031         /*
1032          * mono_ArgIterator_Setup assumes the signature cookie is 
1033          * passed first and all the arguments which were before it are
1034          * passed on the stack after the signature. So compensate by 
1035          * passing a different signature.
1036          */
1037         tmp_sig = mono_metadata_signature_dup (call->signature);
1038         tmp_sig->param_count -= call->signature->sentinelpos;
1039         tmp_sig->sentinelpos = 0;
1040         memcpy (tmp_sig->params, call->signature->params + call->signature->sentinelpos, tmp_sig->param_count * sizeof (MonoType*));
1041
1042         MONO_EMIT_NEW_BIALU_IMM (cfg, OP_X86_PUSH_IMM, -1, -1, tmp_sig);
1043 }
1044
1045 void
1046 mono_arch_emit_call (MonoCompile *cfg, MonoCallInst *call)
1047 {
1048         MonoInst *arg, *in;
1049         MonoMethodSignature *sig;
1050         int i, n;
1051         CallInfo *cinfo;
1052         int sentinelpos = 0;
1053
1054         sig = call->signature;
1055         n = sig->param_count + sig->hasthis;
1056
1057         cinfo = get_call_info (cfg->generic_sharing_context, cfg->mempool, sig, FALSE);
1058
1059         if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG))
1060                 sentinelpos = sig->sentinelpos + (sig->hasthis ? 1 : 0);
1061
1062         if (cinfo->need_stack_align) {
1063                 MONO_INST_NEW (cfg, arg, OP_SUB_IMM);
1064                 arg->dreg = X86_ESP;
1065                 arg->sreg1 = X86_ESP;
1066                 arg->inst_imm = cinfo->stack_align_amount;
1067                 MONO_ADD_INS (cfg->cbb, arg);
1068         }
1069
1070         if (sig->ret && MONO_TYPE_ISSTRUCT (sig->ret)) {
1071                 MonoInst *vtarg;
1072
1073                 if (cinfo->ret.storage == ArgValuetypeInReg) {
1074                         if (cinfo->ret.pair_storage [0] == ArgInIReg && cinfo->ret.pair_storage [1] == ArgNone) {
1075                                 /*
1076                                  * Tell the JIT to use a more efficient calling convention: call using
1077                                  * OP_CALL, compute the result location after the call, and save the 
1078                                  * result there.
1079                                  */
1080                                 call->vret_in_reg = TRUE;
1081                         } else {
1082                                 /*
1083                                  * The valuetype is in EAX:EDX after the call, needs to be copied to
1084                                  * the stack. Save the address here, so the call instruction can
1085                                  * access it.
1086                                  */
1087                                 MONO_INST_NEW (cfg, vtarg, OP_X86_PUSH);
1088                                 vtarg->sreg1 = call->vret_var->dreg;
1089                                 MONO_ADD_INS (cfg->cbb, vtarg);
1090                         }
1091                 }
1092         }
1093
1094         /* Handle the case where there are no implicit arguments */
1095         if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (n == sentinelpos)) {
1096                 emit_sig_cookie (cfg, call, cinfo);
1097         }
1098
1099         /* Arguments are pushed in the reverse order */
1100         for (i = n - 1; i >= 0; i --) {
1101                 ArgInfo *ainfo = cinfo->args + i;
1102                 MonoType *t;
1103
1104                 if (i >= sig->hasthis)
1105                         t = sig->params [i - sig->hasthis];
1106                 else
1107                         t = &mono_defaults.int_class->byval_arg;
1108                 t = mini_type_get_underlying_type (cfg->generic_sharing_context, t);
1109
1110                 MONO_INST_NEW (cfg, arg, OP_X86_PUSH);
1111
1112                 in = call->args [i];
1113                 arg->cil_code = in->cil_code;
1114                 arg->sreg1 = in->dreg;
1115                 arg->type = in->type;
1116
1117                 g_assert (in->dreg != -1);
1118
1119                 if ((i >= sig->hasthis) && (MONO_TYPE_ISSTRUCT(t))) {
1120                         guint32 align;
1121                         guint32 size;
1122
1123                         g_assert (in->klass);
1124
1125                         if (t->type == MONO_TYPE_TYPEDBYREF) {
1126                                 size = sizeof (MonoTypedRef);
1127                                 align = sizeof (gpointer);
1128                         }
1129                         else {
1130                                 size = mini_type_stack_size_full (cfg->generic_sharing_context, &in->klass->byval_arg, &align, sig->pinvoke);
1131                         }
1132
1133                         if (size > 0) {
1134                                 arg->opcode = OP_OUTARG_VT;
1135                                 arg->sreg1 = in->dreg;
1136                                 arg->klass = in->klass;
1137                                 arg->backend.size = size;
1138
1139                                 MONO_ADD_INS (cfg->cbb, arg);
1140                         }
1141                 }
1142                 else {
1143                         switch (ainfo->storage) {
1144                         case ArgOnStack:
1145                                 arg->opcode = OP_X86_PUSH;
1146                                 if (!t->byref) {
1147                                         if (t->type == MONO_TYPE_R4) {
1148                                                 MONO_EMIT_NEW_BIALU_IMM (cfg, OP_SUB_IMM, X86_ESP, X86_ESP, 4);
1149                                                 arg->opcode = OP_STORER4_MEMBASE_REG;
1150                                                 arg->inst_destbasereg = X86_ESP;
1151                                                 arg->inst_offset = 0;
1152                                         } else if (t->type == MONO_TYPE_R8) {
1153                                                 MONO_EMIT_NEW_BIALU_IMM (cfg, OP_SUB_IMM, X86_ESP, X86_ESP, 8);
1154                                                 arg->opcode = OP_STORER8_MEMBASE_REG;
1155                                                 arg->inst_destbasereg = X86_ESP;
1156                                                 arg->inst_offset = 0;
1157                                         } else if (t->type == MONO_TYPE_I8 || t->type == MONO_TYPE_U8) {
1158                                                 arg->sreg1 ++;
1159                                                 MONO_EMIT_NEW_UNALU (cfg, OP_X86_PUSH, -1, in->dreg + 2);
1160                                         }
1161                                 }
1162                                 break;
1163                         default:
1164                                 g_assert_not_reached ();
1165                         }
1166                         
1167                         MONO_ADD_INS (cfg->cbb, arg);
1168                 }
1169
1170                 if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (i == sentinelpos)) {
1171                         /* Emit the signature cookie just before the implicit arguments */
1172                         emit_sig_cookie (cfg, call, cinfo);
1173                 }
1174         }
1175
1176         if (sig->ret && MONO_TYPE_ISSTRUCT (sig->ret)) {
1177                 MonoInst *vtarg;
1178
1179                 if (cinfo->ret.storage == ArgValuetypeInReg) {
1180                         /* Already done */
1181                 }
1182                 else if (cinfo->ret.storage == ArgInIReg) {
1183                         NOT_IMPLEMENTED;
1184                         /* The return address is passed in a register */
1185                         MONO_INST_NEW (cfg, vtarg, OP_MOVE);
1186                         vtarg->sreg1 = call->inst.dreg;
1187                         vtarg->dreg = mono_alloc_ireg (cfg);
1188                         MONO_ADD_INS (cfg->cbb, vtarg);
1189                                 
1190                         mono_call_inst_add_outarg_reg (cfg, call, vtarg->dreg, cinfo->ret.reg, FALSE);
1191                 } else {
1192                         MonoInst *vtarg;
1193                         MONO_INST_NEW (cfg, vtarg, OP_X86_PUSH);
1194                         vtarg->type = STACK_MP;
1195                         vtarg->sreg1 = call->vret_var->dreg;
1196                         MONO_ADD_INS (cfg->cbb, vtarg);
1197                 }
1198
1199                 /* if the function returns a struct, the called method already does a ret $0x4 */
1200                 cinfo->stack_usage -= 4;
1201         }
1202
1203         call->stack_usage = cinfo->stack_usage;
1204 }
1205
1206 void
1207 mono_arch_emit_outarg_vt (MonoCompile *cfg, MonoInst *ins, MonoInst *src)
1208 {
1209         MonoInst *arg;
1210         int size = ins->backend.size;
1211
1212         if (size <= 4) {
1213                 MONO_INST_NEW (cfg, arg, OP_X86_PUSH_MEMBASE);
1214                 arg->sreg1 = src->dreg;
1215
1216                 MONO_ADD_INS (cfg->cbb, arg);
1217         } else if (size <= 20) {        
1218                 MONO_EMIT_NEW_BIALU_IMM (cfg, OP_SUB_IMM, X86_ESP, X86_ESP, ALIGN_TO (size, 4));
1219                 mini_emit_memcpy (cfg, X86_ESP, 0, src->dreg, 0, size, 4);
1220         } else {
1221                 MONO_INST_NEW (cfg, arg, OP_X86_PUSH_OBJ);
1222                 arg->inst_basereg = src->dreg;
1223                 arg->inst_offset = 0;
1224                 arg->inst_imm = size;
1225                                         
1226                 MONO_ADD_INS (cfg->cbb, arg);
1227         }
1228 }
1229
1230 void
1231 mono_arch_emit_setret (MonoCompile *cfg, MonoMethod *method, MonoInst *val)
1232 {
1233         MonoType *ret = mini_type_get_underlying_type (cfg->generic_sharing_context, mono_method_signature (method)->ret);
1234
1235         if (!ret->byref) {
1236                 if (ret->type == MONO_TYPE_R4) {
1237                         /* Nothing to do */
1238                         return;
1239                 } else if (ret->type == MONO_TYPE_R8) {
1240                         /* Nothing to do */
1241                         return;
1242                 } else if (ret->type == MONO_TYPE_I8 || ret->type == MONO_TYPE_U8) {
1243                         MONO_EMIT_NEW_UNALU (cfg, OP_MOVE, X86_EAX, val->dreg + 1);
1244                         MONO_EMIT_NEW_UNALU (cfg, OP_MOVE, X86_EDX, val->dreg + 2);
1245                         return;
1246                 }
1247         }
1248                         
1249         MONO_EMIT_NEW_UNALU (cfg, OP_MOVE, cfg->ret->dreg, val->dreg);
1250 }
1251
1252 /*
1253  * Allow tracing to work with this interface (with an optional argument)
1254  */
1255 void*
1256 mono_arch_instrument_prolog (MonoCompile *cfg, void *func, void *p, gboolean enable_arguments)
1257 {
1258         guchar *code = p;
1259
1260         g_assert (MONO_ARCH_FRAME_ALIGNMENT >= 8);
1261         x86_alu_reg_imm (code, X86_SUB, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - 8);
1262
1263         /* if some args are passed in registers, we need to save them here */
1264         x86_push_reg (code, X86_EBP);
1265
1266         if (cfg->compile_aot) {
1267                 x86_push_imm (code, cfg->method);
1268                 x86_mov_reg_imm (code, X86_EAX, func);
1269                 x86_call_reg (code, X86_EAX);
1270         } else {
1271                 mono_add_patch_info (cfg, code-cfg->native_code, MONO_PATCH_INFO_METHODCONST, cfg->method);
1272                 x86_push_imm (code, cfg->method);
1273                 mono_add_patch_info (cfg, code-cfg->native_code, MONO_PATCH_INFO_ABS, func);
1274                 x86_call_code (code, 0);
1275         }
1276         x86_alu_reg_imm (code, X86_ADD, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT);
1277
1278         return code;
1279 }
1280
1281 enum {
1282         SAVE_NONE,
1283         SAVE_STRUCT,
1284         SAVE_EAX,
1285         SAVE_EAX_EDX,
1286         SAVE_FP
1287 };
1288
1289 void*
1290 mono_arch_instrument_epilog (MonoCompile *cfg, void *func, void *p, gboolean enable_arguments)
1291 {
1292         guchar *code = p;
1293         int arg_size = 0, save_mode = SAVE_NONE;
1294         MonoMethod *method = cfg->method;
1295         
1296         switch (mini_type_get_underlying_type (cfg->generic_sharing_context, mono_method_signature (method)->ret)->type) {
1297         case MONO_TYPE_VOID:
1298                 /* special case string .ctor icall */
1299                 if (strcmp (".ctor", method->name) && method->klass == mono_defaults.string_class)
1300                         save_mode = SAVE_EAX;
1301                 else
1302                         save_mode = SAVE_NONE;
1303                 break;
1304         case MONO_TYPE_I8:
1305         case MONO_TYPE_U8:
1306                 save_mode = SAVE_EAX_EDX;
1307                 break;
1308         case MONO_TYPE_R4:
1309         case MONO_TYPE_R8:
1310                 save_mode = SAVE_FP;
1311                 break;
1312         case MONO_TYPE_GENERICINST:
1313                 if (!mono_type_generic_inst_is_valuetype (mono_method_signature (method)->ret)) {
1314                         save_mode = SAVE_EAX;
1315                         break;
1316                 }
1317                 /* Fall through */
1318         case MONO_TYPE_VALUETYPE:
1319                 save_mode = SAVE_STRUCT;
1320                 break;
1321         default:
1322                 save_mode = SAVE_EAX;
1323                 break;
1324         }
1325
1326         switch (save_mode) {
1327         case SAVE_EAX_EDX:
1328                 x86_push_reg (code, X86_EDX);
1329                 x86_push_reg (code, X86_EAX);
1330                 if (enable_arguments) {
1331                         x86_push_reg (code, X86_EDX);
1332                         x86_push_reg (code, X86_EAX);
1333                         arg_size = 8;
1334                 }
1335                 break;
1336         case SAVE_EAX:
1337                 x86_push_reg (code, X86_EAX);
1338                 if (enable_arguments) {
1339                         x86_push_reg (code, X86_EAX);
1340                         arg_size = 4;
1341                 }
1342                 break;
1343         case SAVE_FP:
1344                 x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8);
1345                 x86_fst_membase (code, X86_ESP, 0, TRUE, TRUE);
1346                 if (enable_arguments) {
1347                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8);
1348                         x86_fst_membase (code, X86_ESP, 0, TRUE, TRUE);
1349                         arg_size = 8;
1350                 }
1351                 break;
1352         case SAVE_STRUCT:
1353                 if (enable_arguments) {
1354                         x86_push_membase (code, X86_EBP, 8);
1355                         arg_size = 4;
1356                 }
1357                 break;
1358         case SAVE_NONE:
1359         default:
1360                 break;
1361         }
1362
1363         if (cfg->compile_aot) {
1364                 x86_push_imm (code, method);
1365                 x86_mov_reg_imm (code, X86_EAX, func);
1366                 x86_call_reg (code, X86_EAX);
1367         } else {
1368                 mono_add_patch_info (cfg, code-cfg->native_code, MONO_PATCH_INFO_METHODCONST, method);
1369                 x86_push_imm (code, method);
1370                 mono_add_patch_info (cfg, code-cfg->native_code, MONO_PATCH_INFO_ABS, func);
1371                 x86_call_code (code, 0);
1372         }
1373         x86_alu_reg_imm (code, X86_ADD, X86_ESP, arg_size + 4);
1374
1375         switch (save_mode) {
1376         case SAVE_EAX_EDX:
1377                 x86_pop_reg (code, X86_EAX);
1378                 x86_pop_reg (code, X86_EDX);
1379                 break;
1380         case SAVE_EAX:
1381                 x86_pop_reg (code, X86_EAX);
1382                 break;
1383         case SAVE_FP:
1384                 x86_fld_membase (code, X86_ESP, 0, TRUE);
1385                 x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8);
1386                 break;
1387         case SAVE_NONE:
1388         default:
1389                 break;
1390         }
1391
1392         return code;
1393 }
1394
1395 #define EMIT_COND_BRANCH(ins,cond,sign) \
1396 if (ins->flags & MONO_INST_BRLABEL) { \
1397         if (ins->inst_i0->inst_c0) { \
1398                 x86_branch (code, cond, cfg->native_code + ins->inst_i0->inst_c0, sign); \
1399         } else { \
1400                 mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_LABEL, ins->inst_i0); \
1401                 if ((cfg->opt & MONO_OPT_BRANCH) && \
1402                     x86_is_imm8 (ins->inst_i0->inst_c1 - cpos)) \
1403                         x86_branch8 (code, cond, 0, sign); \
1404                 else \
1405                         x86_branch32 (code, cond, 0, sign); \
1406         } \
1407 } else { \
1408         if (ins->inst_true_bb->native_offset) { \
1409                 x86_branch (code, cond, cfg->native_code + ins->inst_true_bb->native_offset, sign); \
1410         } else { \
1411                 mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_BB, ins->inst_true_bb); \
1412                 if ((cfg->opt & MONO_OPT_BRANCH) && \
1413                     x86_is_imm8 (ins->inst_true_bb->max_offset - cpos)) \
1414                         x86_branch8 (code, cond, 0, sign); \
1415                 else \
1416                         x86_branch32 (code, cond, 0, sign); \
1417         } \
1418 }
1419
1420 /*  
1421  *      Emit an exception if condition is fail and
1422  *  if possible do a directly branch to target 
1423  */
1424 #define EMIT_COND_SYSTEM_EXCEPTION(cond,signed,exc_name)            \
1425         do {                                                        \
1426                 MonoInst *tins = mono_branch_optimize_exception_target (cfg, bb, exc_name); \
1427                 if (tins == NULL) {                                                                             \
1428                         mono_add_patch_info (cfg, code - cfg->native_code,   \
1429                                         MONO_PATCH_INFO_EXC, exc_name);  \
1430                         x86_branch32 (code, cond, 0, signed);               \
1431                 } else {        \
1432                         EMIT_COND_BRANCH (tins, cond, signed);  \
1433                 }                       \
1434         } while (0); 
1435
1436 #define EMIT_FPCOMPARE(code) do { \
1437         x86_fcompp (code); \
1438         x86_fnstsw (code); \
1439 } while (0); 
1440
1441
1442 static guint8*
1443 emit_call (MonoCompile *cfg, guint8 *code, guint32 patch_type, gconstpointer data)
1444 {
1445         mono_add_patch_info (cfg, code - cfg->native_code, patch_type, data);
1446         x86_call_code (code, 0);
1447
1448         return code;
1449 }
1450
1451 #define INST_IGNORES_CFLAGS(opcode) (!(((opcode) == OP_ADC) || ((opcode) == OP_IADC) || ((opcode) == OP_ADC_IMM) || ((opcode) == OP_IADC_IMM) || ((opcode) == OP_SBB) || ((opcode) == OP_ISBB) || ((opcode) == OP_SBB_IMM) || ((opcode) == OP_ISBB_IMM)))
1452
1453 /*
1454  * mono_peephole_pass_1:
1455  *
1456  *   Perform peephole opts which should/can be performed before local regalloc
1457  */
1458 void
1459 mono_arch_peephole_pass_1 (MonoCompile *cfg, MonoBasicBlock *bb)
1460 {
1461         MonoInst *ins, *n;
1462
1463         MONO_BB_FOR_EACH_INS_SAFE (bb, n, ins) {
1464                 MonoInst *last_ins = ins->prev;
1465
1466                 switch (ins->opcode) {
1467                 case OP_IADD_IMM:
1468                 case OP_ADD_IMM:
1469                         if ((ins->sreg1 < MONO_MAX_IREGS) && (ins->dreg >= MONO_MAX_IREGS)) {
1470                                 /* 
1471                                  * X86_LEA is like ADD, but doesn't have the
1472                                  * sreg1==dreg restriction.
1473                                  */
1474                                 ins->opcode = OP_X86_LEA_MEMBASE;
1475                                 ins->inst_basereg = ins->sreg1;
1476                         } else if ((ins->inst_imm == 1) && (ins->dreg == ins->sreg1))
1477                                 ins->opcode = OP_X86_INC_REG;
1478                         break;
1479                 case OP_SUB_IMM:
1480                 case OP_ISUB_IMM:
1481                         if ((ins->sreg1 < MONO_MAX_IREGS) && (ins->dreg >= MONO_MAX_IREGS)) {
1482                                 ins->opcode = OP_X86_LEA_MEMBASE;
1483                                 ins->inst_basereg = ins->sreg1;
1484                                 ins->inst_imm = -ins->inst_imm;
1485                         } else if ((ins->inst_imm == 1) && (ins->dreg == ins->sreg1))
1486                                 ins->opcode = OP_X86_DEC_REG;
1487                         break;
1488                 case OP_COMPARE_IMM:
1489                 case OP_ICOMPARE_IMM:
1490                         /* OP_COMPARE_IMM (reg, 0) 
1491                          * --> 
1492                          * OP_X86_TEST_NULL (reg) 
1493                          */
1494                         if (!ins->inst_imm)
1495                                 ins->opcode = OP_X86_TEST_NULL;
1496                         break;
1497                 case OP_X86_COMPARE_MEMBASE_IMM:
1498                         /* 
1499                          * OP_STORE_MEMBASE_REG reg, offset(basereg)
1500                          * OP_X86_COMPARE_MEMBASE_IMM offset(basereg), imm
1501                          * -->
1502                          * OP_STORE_MEMBASE_REG reg, offset(basereg)
1503                          * OP_COMPARE_IMM reg, imm
1504                          *
1505                          * Note: if imm = 0 then OP_COMPARE_IMM replaced with OP_X86_TEST_NULL
1506                          */
1507                         if (last_ins && (last_ins->opcode == OP_STOREI4_MEMBASE_REG) &&
1508                             ins->inst_basereg == last_ins->inst_destbasereg &&
1509                             ins->inst_offset == last_ins->inst_offset) {
1510                                         ins->opcode = OP_COMPARE_IMM;
1511                                         ins->sreg1 = last_ins->sreg1;
1512
1513                                         /* check if we can remove cmp reg,0 with test null */
1514                                         if (!ins->inst_imm)
1515                                                 ins->opcode = OP_X86_TEST_NULL;
1516                                 }
1517
1518                         break;                  
1519                 case OP_X86_PUSH_MEMBASE:
1520                         if (last_ins && (last_ins->opcode == OP_STOREI4_MEMBASE_REG ||
1521                                          last_ins->opcode == OP_STORE_MEMBASE_REG) &&
1522                             ins->inst_basereg == last_ins->inst_destbasereg &&
1523                             ins->inst_offset == last_ins->inst_offset) {
1524                                     ins->opcode = OP_X86_PUSH;
1525                                     ins->sreg1 = last_ins->sreg1;
1526                         }
1527                         break;
1528                 }
1529
1530                 mono_peephole_ins (bb, ins);
1531         }
1532 }
1533
1534 void
1535 mono_arch_peephole_pass_2 (MonoCompile *cfg, MonoBasicBlock *bb)
1536 {
1537         MonoInst *ins, *n;
1538
1539         MONO_BB_FOR_EACH_INS_SAFE (bb, n, ins) {
1540                 switch (ins->opcode) {
1541                 case OP_ICONST:
1542                         /* reg = 0 -> XOR (reg, reg) */
1543                         /* XOR sets cflags on x86, so we cant do it always */
1544                         if (ins->inst_c0 == 0 && (!ins->next || (ins->next && INST_IGNORES_CFLAGS (ins->next->opcode)))) {
1545                                 MonoInst *ins2;
1546
1547                                 ins->opcode = OP_IXOR;
1548                                 ins->sreg1 = ins->dreg;
1549                                 ins->sreg2 = ins->dreg;
1550
1551                                 /* 
1552                                  * Convert succeeding STORE_MEMBASE_IMM 0 ins to STORE_MEMBASE_REG 
1553                                  * since it takes 3 bytes instead of 7.
1554                                  */
1555                                 for (ins2 = ins->next; ins2; ins2 = ins2->next) {
1556                                         if ((ins2->opcode == OP_STORE_MEMBASE_IMM) && (ins2->inst_imm == 0)) {
1557                                                 ins2->opcode = OP_STORE_MEMBASE_REG;
1558                                                 ins2->sreg1 = ins->dreg;
1559                                         }
1560                                         else if ((ins2->opcode == OP_STOREI4_MEMBASE_IMM) && (ins2->inst_imm == 0)) {
1561                                                 ins2->opcode = OP_STOREI4_MEMBASE_REG;
1562                                                 ins2->sreg1 = ins->dreg;
1563                                         }
1564                                         else if ((ins2->opcode == OP_STOREI1_MEMBASE_IMM) || (ins2->opcode == OP_STOREI2_MEMBASE_IMM)) {
1565                                                 /* Continue iteration */
1566                                         }
1567                                         else
1568                                                 break;
1569                                 }
1570                         }
1571                         break;
1572                 case OP_IADD_IMM:
1573                 case OP_ADD_IMM:
1574                         if ((ins->inst_imm == 1) && (ins->dreg == ins->sreg1))
1575                                 ins->opcode = OP_X86_INC_REG;
1576                         break;
1577                 case OP_ISUB_IMM:
1578                 case OP_SUB_IMM:
1579                         if ((ins->inst_imm == 1) && (ins->dreg == ins->sreg1))
1580                                 ins->opcode = OP_X86_DEC_REG;
1581                         break;
1582                 }
1583
1584                 mono_peephole_ins (bb, ins);
1585         }
1586 }
1587
1588 /*
1589  * mono_arch_lowering_pass:
1590  *
1591  *  Converts complex opcodes into simpler ones so that each IR instruction
1592  * corresponds to one machine instruction.
1593  */
1594 void
1595 mono_arch_lowering_pass (MonoCompile *cfg, MonoBasicBlock *bb)
1596 {
1597         MonoInst *ins, *next;
1598
1599         /*
1600          * FIXME: Need to add more instructions, but the current machine 
1601          * description can't model some parts of the composite instructions like
1602          * cdq.
1603          */
1604         MONO_BB_FOR_EACH_INS_SAFE (bb, next, ins) {
1605                 switch (ins->opcode) {
1606                 case OP_IREM_IMM:
1607                 case OP_IDIV_IMM:
1608                 case OP_IDIV_UN_IMM:
1609                 case OP_IREM_UN_IMM:
1610                         /* 
1611                          * Keep the cases where we could generated optimized code, otherwise convert
1612                          * to the non-imm variant.
1613                          */
1614                         if ((ins->opcode == OP_IREM_IMM) && mono_is_power_of_two (ins->inst_imm) >= 0)
1615                                 break;
1616                         mono_decompose_op_imm (cfg, bb, ins);
1617                         break;
1618                 default:
1619                         break;
1620                 }
1621         }
1622
1623         bb->max_vreg = cfg->next_vreg;
1624 }
1625
1626 static const int 
1627 branch_cc_table [] = {
1628         X86_CC_EQ, X86_CC_GE, X86_CC_GT, X86_CC_LE, X86_CC_LT,
1629         X86_CC_NE, X86_CC_GE, X86_CC_GT, X86_CC_LE, X86_CC_LT,
1630         X86_CC_O, X86_CC_NO, X86_CC_C, X86_CC_NC
1631 };
1632
1633 /* Maps CMP_... constants to X86_CC_... constants */
1634 static const int
1635 cc_table [] = {
1636         X86_CC_EQ, X86_CC_NE, X86_CC_LE, X86_CC_GE, X86_CC_LT, X86_CC_GT,
1637         X86_CC_LE, X86_CC_GE, X86_CC_LT, X86_CC_GT
1638 };
1639
1640 static const int
1641 cc_signed_table [] = {
1642         TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
1643         FALSE, FALSE, FALSE, FALSE
1644 };
1645
1646 static unsigned char*
1647 emit_float_to_int (MonoCompile *cfg, guchar *code, int dreg, int size, gboolean is_signed)
1648 {
1649 #define XMM_TEMP_REG 0
1650         /*This SSE2 optimization must not be done which OPT_SIMD in place as it clobbers xmm0.*/
1651         /*The xmm pass decomposes OP_FCONV_ ops anyway anyway.*/
1652         if (cfg->opt & MONO_OPT_SSE2 && size < 8 && !(cfg->opt & MONO_OPT_SIMD)) {
1653                 /* optimize by assigning a local var for this use so we avoid
1654                  * the stack manipulations */
1655                 x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8);
1656                 x86_fst_membase (code, X86_ESP, 0, TRUE, TRUE);
1657                 x86_movsd_reg_membase (code, XMM_TEMP_REG, X86_ESP, 0);
1658                 x86_cvttsd2si (code, dreg, XMM_TEMP_REG);
1659                 x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8);
1660                 if (size == 1)
1661                         x86_widen_reg (code, dreg, dreg, is_signed, FALSE);
1662                 else if (size == 2)
1663                         x86_widen_reg (code, dreg, dreg, is_signed, TRUE);
1664                 return code;
1665         }
1666         x86_alu_reg_imm (code, X86_SUB, X86_ESP, 4);
1667         x86_fnstcw_membase(code, X86_ESP, 0);
1668         x86_mov_reg_membase (code, dreg, X86_ESP, 0, 2);
1669         x86_alu_reg_imm (code, X86_OR, dreg, 0xc00);
1670         x86_mov_membase_reg (code, X86_ESP, 2, dreg, 2);
1671         x86_fldcw_membase (code, X86_ESP, 2);
1672         if (size == 8) {
1673                 x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8);
1674                 x86_fist_pop_membase (code, X86_ESP, 0, TRUE);
1675                 x86_pop_reg (code, dreg);
1676                 /* FIXME: need the high register 
1677                  * x86_pop_reg (code, dreg_high);
1678                  */
1679         } else {
1680                 x86_push_reg (code, X86_EAX); // SP = SP - 4
1681                 x86_fist_pop_membase (code, X86_ESP, 0, FALSE);
1682                 x86_pop_reg (code, dreg);
1683         }
1684         x86_fldcw_membase (code, X86_ESP, 0);
1685         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4);
1686
1687         if (size == 1)
1688                 x86_widen_reg (code, dreg, dreg, is_signed, FALSE);
1689         else if (size == 2)
1690                 x86_widen_reg (code, dreg, dreg, is_signed, TRUE);
1691         return code;
1692 }
1693
1694 static unsigned char*
1695 mono_emit_stack_alloc (guchar *code, MonoInst* tree)
1696 {
1697         int sreg = tree->sreg1;
1698         int need_touch = FALSE;
1699
1700 #if defined(PLATFORM_WIN32) || defined(MONO_ARCH_SIGSEGV_ON_ALTSTACK)
1701         need_touch = TRUE;
1702 #endif
1703
1704         if (need_touch) {
1705                 guint8* br[5];
1706
1707                 /*
1708                  * Under Windows:
1709                  * If requested stack size is larger than one page,
1710                  * perform stack-touch operation
1711                  */
1712                 /*
1713                  * Generate stack probe code.
1714                  * Under Windows, it is necessary to allocate one page at a time,
1715                  * "touching" stack after each successful sub-allocation. This is
1716                  * because of the way stack growth is implemented - there is a
1717                  * guard page before the lowest stack page that is currently commited.
1718                  * Stack normally grows sequentially so OS traps access to the
1719                  * guard page and commits more pages when needed.
1720                  */
1721                 x86_test_reg_imm (code, sreg, ~0xFFF);
1722                 br[0] = code; x86_branch8 (code, X86_CC_Z, 0, FALSE);
1723
1724                 br[2] = code; /* loop */
1725                 x86_alu_reg_imm (code, X86_SUB, X86_ESP, 0x1000);
1726                 x86_test_membase_reg (code, X86_ESP, 0, X86_ESP);
1727
1728                 /* 
1729                  * By the end of the loop, sreg2 is smaller than 0x1000, so the init routine
1730                  * that follows only initializes the last part of the area.
1731                  */
1732                 /* Same as the init code below with size==0x1000 */
1733                 if (tree->flags & MONO_INST_INIT) {
1734                         x86_push_reg (code, X86_EAX);
1735                         x86_push_reg (code, X86_ECX);
1736                         x86_push_reg (code, X86_EDI);
1737                         x86_mov_reg_imm (code, X86_ECX, (0x1000 >> 2));
1738                         x86_alu_reg_reg (code, X86_XOR, X86_EAX, X86_EAX);                              
1739                         x86_lea_membase (code, X86_EDI, X86_ESP, 12);
1740                         x86_cld (code);
1741                         x86_prefix (code, X86_REP_PREFIX);
1742                         x86_stosl (code);
1743                         x86_pop_reg (code, X86_EDI);
1744                         x86_pop_reg (code, X86_ECX);
1745                         x86_pop_reg (code, X86_EAX);
1746                 }
1747
1748                 x86_alu_reg_imm (code, X86_SUB, sreg, 0x1000);
1749                 x86_alu_reg_imm (code, X86_CMP, sreg, 0x1000);
1750                 br[3] = code; x86_branch8 (code, X86_CC_AE, 0, FALSE);
1751                 x86_patch (br[3], br[2]);
1752                 x86_test_reg_reg (code, sreg, sreg);
1753                 br[4] = code; x86_branch8 (code, X86_CC_Z, 0, FALSE);
1754                 x86_alu_reg_reg (code, X86_SUB, X86_ESP, sreg);
1755
1756                 br[1] = code; x86_jump8 (code, 0);
1757
1758                 x86_patch (br[0], code);
1759                 x86_alu_reg_reg (code, X86_SUB, X86_ESP, sreg);
1760                 x86_patch (br[1], code);
1761                 x86_patch (br[4], code);
1762         }
1763         else
1764                 x86_alu_reg_reg (code, X86_SUB, X86_ESP, tree->sreg1);
1765
1766         if (tree->flags & MONO_INST_INIT) {
1767                 int offset = 0;
1768                 if (tree->dreg != X86_EAX && sreg != X86_EAX) {
1769                         x86_push_reg (code, X86_EAX);
1770                         offset += 4;
1771                 }
1772                 if (tree->dreg != X86_ECX && sreg != X86_ECX) {
1773                         x86_push_reg (code, X86_ECX);
1774                         offset += 4;
1775                 }
1776                 if (tree->dreg != X86_EDI && sreg != X86_EDI) {
1777                         x86_push_reg (code, X86_EDI);
1778                         offset += 4;
1779                 }
1780                 
1781                 x86_shift_reg_imm (code, X86_SHR, sreg, 2);
1782                 if (sreg != X86_ECX)
1783                         x86_mov_reg_reg (code, X86_ECX, sreg, 4);
1784                 x86_alu_reg_reg (code, X86_XOR, X86_EAX, X86_EAX);
1785                                 
1786                 x86_lea_membase (code, X86_EDI, X86_ESP, offset);
1787                 x86_cld (code);
1788                 x86_prefix (code, X86_REP_PREFIX);
1789                 x86_stosl (code);
1790                 
1791                 if (tree->dreg != X86_EDI && sreg != X86_EDI)
1792                         x86_pop_reg (code, X86_EDI);
1793                 if (tree->dreg != X86_ECX && sreg != X86_ECX)
1794                         x86_pop_reg (code, X86_ECX);
1795                 if (tree->dreg != X86_EAX && sreg != X86_EAX)
1796                         x86_pop_reg (code, X86_EAX);
1797         }
1798         return code;
1799 }
1800
1801
1802 static guint8*
1803 emit_move_return_value (MonoCompile *cfg, MonoInst *ins, guint8 *code)
1804 {
1805         CallInfo *cinfo;
1806         int quad;
1807
1808         /* Move return value to the target register */
1809         switch (ins->opcode) {
1810         case OP_CALL:
1811         case OP_CALL_REG:
1812         case OP_CALL_MEMBASE:
1813                 if (ins->dreg != X86_EAX)
1814                         x86_mov_reg_reg (code, ins->dreg, X86_EAX, 4);
1815                 break;
1816         case OP_VCALL:
1817         case OP_VCALL_REG:
1818         case OP_VCALL_MEMBASE:
1819         case OP_VCALL2:
1820         case OP_VCALL2_REG:
1821         case OP_VCALL2_MEMBASE:
1822                 cinfo = get_call_info (cfg->generic_sharing_context, cfg->mempool, ((MonoCallInst*)ins)->signature, FALSE);
1823                 if (cinfo->ret.storage == ArgValuetypeInReg) {
1824                         /* Pop the destination address from the stack */
1825                         x86_pop_reg (code, X86_ECX);
1826                         
1827                         for (quad = 0; quad < 2; quad ++) {
1828                                 switch (cinfo->ret.pair_storage [quad]) {
1829                                 case ArgInIReg:
1830                                         g_assert (cinfo->ret.pair_regs [quad] != X86_ECX);
1831                                         x86_mov_membase_reg (code, X86_ECX, (quad * sizeof (gpointer)), cinfo->ret.pair_regs [quad], sizeof (gpointer));
1832                                         break;
1833                                 case ArgNone:
1834                                         break;
1835                                 default:
1836                                         g_assert_not_reached ();
1837                                 }
1838                         }
1839                 }
1840                 break;
1841         case OP_FCALL: {
1842                 MonoCallInst *call = (MonoCallInst*)ins;
1843                 if (call->method && !mono_method_signature (call->method)->ret->byref && mono_method_signature (call->method)->ret->type == MONO_TYPE_R4) {
1844                         /* Avoid some precision issues by saving/reloading the return value */
1845                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8);
1846                         x86_fst_membase (code, X86_ESP, 0, FALSE, TRUE);
1847                         x86_fld_membase (code, X86_ESP, 0, FALSE);
1848                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8);
1849                 }
1850                 break;
1851         }
1852         default:
1853                 break;
1854         }
1855
1856         return code;
1857 }
1858
1859 /*
1860  * mono_x86_emit_tls_get:
1861  * @code: buffer to store code to
1862  * @dreg: hard register where to place the result
1863  * @tls_offset: offset info
1864  *
1865  * mono_x86_emit_tls_get emits in @code the native code that puts in
1866  * the dreg register the item in the thread local storage identified
1867  * by tls_offset.
1868  *
1869  * Returns: a pointer to the end of the stored code
1870  */
1871 guint8*
1872 mono_x86_emit_tls_get (guint8* code, int dreg, int tls_offset)
1873 {
1874 #ifdef PLATFORM_WIN32
1875         /* 
1876          * See the Under the Hood article in the May 1996 issue of Microsoft Systems 
1877          * Journal and/or a disassembly of the TlsGet () function.
1878          */
1879         g_assert (tls_offset < 64);
1880         x86_prefix (code, X86_FS_PREFIX);
1881         x86_mov_reg_mem (code, dreg, 0x18, 4);
1882         /* Dunno what this does but TlsGetValue () contains it */
1883         x86_alu_membase_imm (code, X86_AND, dreg, 0x34, 0);
1884         x86_mov_reg_membase (code, dreg, dreg, 3600 + (tls_offset * 4), 4);
1885 #else
1886         if (optimize_for_xen) {
1887                 x86_prefix (code, X86_GS_PREFIX);
1888                 x86_mov_reg_mem (code, dreg, 0, 4);
1889                 x86_mov_reg_membase (code, dreg, dreg, tls_offset, 4);
1890         } else {
1891                 x86_prefix (code, X86_GS_PREFIX);
1892                 x86_mov_reg_mem (code, dreg, tls_offset, 4);
1893         }
1894 #endif
1895         return code;
1896 }
1897
1898 /*
1899  * emit_load_volatile_arguments:
1900  *
1901  *  Load volatile arguments from the stack to the original input registers.
1902  * Required before a tail call.
1903  */
1904 static guint8*
1905 emit_load_volatile_arguments (MonoCompile *cfg, guint8 *code)
1906 {
1907         MonoMethod *method = cfg->method;
1908         MonoMethodSignature *sig;
1909         MonoInst *inst;
1910         CallInfo *cinfo;
1911         guint32 i;
1912
1913         /* FIXME: Generate intermediate code instead */
1914
1915         sig = mono_method_signature (method);
1916
1917         cinfo = get_call_info (cfg->generic_sharing_context, cfg->mempool, sig, FALSE);
1918         
1919         /* This is the opposite of the code in emit_prolog */
1920
1921         for (i = 0; i < sig->param_count + sig->hasthis; ++i) {
1922                 ArgInfo *ainfo = cinfo->args + i;
1923                 MonoType *arg_type;
1924                 inst = cfg->args [i];
1925
1926                 if (sig->hasthis && (i == 0))
1927                         arg_type = &mono_defaults.object_class->byval_arg;
1928                 else
1929                         arg_type = sig->params [i - sig->hasthis];
1930
1931                 /*
1932                  * On x86, the arguments are either in their original stack locations, or in
1933                  * global regs.
1934                  */
1935                 if (inst->opcode == OP_REGVAR) {
1936                         g_assert (ainfo->storage == ArgOnStack);
1937                         
1938                         x86_mov_membase_reg (code, X86_EBP, inst->inst_offset, inst->dreg, 4);
1939                 }
1940         }
1941
1942         return code;
1943 }
1944
1945 #define REAL_PRINT_REG(text,reg) \
1946 mono_assert (reg >= 0); \
1947 x86_push_reg (code, X86_EAX); \
1948 x86_push_reg (code, X86_EDX); \
1949 x86_push_reg (code, X86_ECX); \
1950 x86_push_reg (code, reg); \
1951 x86_push_imm (code, reg); \
1952 x86_push_imm (code, text " %d %p\n"); \
1953 x86_mov_reg_imm (code, X86_EAX, printf); \
1954 x86_call_reg (code, X86_EAX); \
1955 x86_alu_reg_imm (code, X86_ADD, X86_ESP, 3*4); \
1956 x86_pop_reg (code, X86_ECX); \
1957 x86_pop_reg (code, X86_EDX); \
1958 x86_pop_reg (code, X86_EAX);
1959
1960 /* benchmark and set based on cpu */
1961 #define LOOP_ALIGNMENT 8
1962 #define bb_is_loop_start(bb) ((bb)->loop_body_start && (bb)->nesting)
1963
1964 void
1965 mono_arch_output_basic_block (MonoCompile *cfg, MonoBasicBlock *bb)
1966 {
1967         MonoInst *ins;
1968         MonoCallInst *call;
1969         guint offset;
1970         guint8 *code = cfg->native_code + cfg->code_len;
1971         int max_len, cpos;
1972
1973         if (cfg->opt & MONO_OPT_LOOP) {
1974                 int pad, align = LOOP_ALIGNMENT;
1975                 /* set alignment depending on cpu */
1976                 if (bb_is_loop_start (bb) && (pad = (cfg->code_len & (align - 1)))) {
1977                         pad = align - pad;
1978                         /*g_print ("adding %d pad at %x to loop in %s\n", pad, cfg->code_len, cfg->method->name);*/
1979                         x86_padding (code, pad);
1980                         cfg->code_len += pad;
1981                         bb->native_offset = cfg->code_len;
1982                 }
1983         }
1984
1985         if (cfg->verbose_level > 2)
1986                 g_print ("Basic block %d starting at offset 0x%x\n", bb->block_num, bb->native_offset);
1987
1988         cpos = bb->max_offset;
1989
1990         if (cfg->prof_options & MONO_PROFILE_COVERAGE) {
1991                 MonoProfileCoverageInfo *cov = cfg->coverage_info;
1992                 g_assert (!cfg->compile_aot);
1993                 cpos += 6;
1994
1995                 cov->data [bb->dfn].cil_code = bb->cil_code;
1996                 /* this is not thread save, but good enough */
1997                 x86_inc_mem (code, &cov->data [bb->dfn].count); 
1998         }
1999
2000         offset = code - cfg->native_code;
2001
2002         mono_debug_open_block (cfg, bb, offset);
2003
2004         MONO_BB_FOR_EACH_INS (bb, ins) {
2005                 offset = code - cfg->native_code;
2006
2007                 max_len = ((guint8 *)ins_get_spec (ins->opcode))[MONO_INST_LEN];
2008
2009                 if (G_UNLIKELY (offset > (cfg->code_size - max_len - 16))) {
2010                         cfg->code_size *= 2;
2011                         cfg->native_code = g_realloc (cfg->native_code, cfg->code_size);
2012                         code = cfg->native_code + offset;
2013                         mono_jit_stats.code_reallocs++;
2014                 }
2015
2016                 if (cfg->debug_info)
2017                         mono_debug_record_line_number (cfg, ins, offset);
2018
2019                 switch (ins->opcode) {
2020                 case OP_BIGMUL:
2021                         x86_mul_reg (code, ins->sreg2, TRUE);
2022                         break;
2023                 case OP_BIGMUL_UN:
2024                         x86_mul_reg (code, ins->sreg2, FALSE);
2025                         break;
2026                 case OP_X86_SETEQ_MEMBASE:
2027                 case OP_X86_SETNE_MEMBASE:
2028                         x86_set_membase (code, ins->opcode == OP_X86_SETEQ_MEMBASE ? X86_CC_EQ : X86_CC_NE,
2029                                          ins->inst_basereg, ins->inst_offset, TRUE);
2030                         break;
2031                 case OP_STOREI1_MEMBASE_IMM:
2032                         x86_mov_membase_imm (code, ins->inst_destbasereg, ins->inst_offset, ins->inst_imm, 1);
2033                         break;
2034                 case OP_STOREI2_MEMBASE_IMM:
2035                         x86_mov_membase_imm (code, ins->inst_destbasereg, ins->inst_offset, ins->inst_imm, 2);
2036                         break;
2037                 case OP_STORE_MEMBASE_IMM:
2038                 case OP_STOREI4_MEMBASE_IMM:
2039                         x86_mov_membase_imm (code, ins->inst_destbasereg, ins->inst_offset, ins->inst_imm, 4);
2040                         break;
2041                 case OP_STOREI1_MEMBASE_REG:
2042                         x86_mov_membase_reg (code, ins->inst_destbasereg, ins->inst_offset, ins->sreg1, 1);
2043                         break;
2044                 case OP_STOREI2_MEMBASE_REG:
2045                         x86_mov_membase_reg (code, ins->inst_destbasereg, ins->inst_offset, ins->sreg1, 2);
2046                         break;
2047                 case OP_STORE_MEMBASE_REG:
2048                 case OP_STOREI4_MEMBASE_REG:
2049                         x86_mov_membase_reg (code, ins->inst_destbasereg, ins->inst_offset, ins->sreg1, 4);
2050                         break;
2051                 case OP_STORE_MEM_IMM:
2052                         x86_mov_mem_imm (code, ins->inst_p0, ins->inst_c0, 4);
2053                         break;
2054                 case OP_LOADU4_MEM:
2055                         x86_mov_reg_mem (code, ins->dreg, ins->inst_imm, 4);
2056                         break;
2057                 case OP_LOAD_MEM:
2058                 case OP_LOADI4_MEM:
2059                         /* These are created by the cprop pass so they use inst_imm as the source */
2060                         x86_mov_reg_mem (code, ins->dreg, ins->inst_imm, 4);
2061                         break;
2062                 case OP_LOADU1_MEM:
2063                         x86_widen_mem (code, ins->dreg, ins->inst_imm, FALSE, FALSE);
2064                         break;
2065                 case OP_LOADU2_MEM:
2066                         x86_widen_mem (code, ins->dreg, ins->inst_imm, FALSE, TRUE);
2067                         break;
2068                 case OP_LOAD_MEMBASE:
2069                 case OP_LOADI4_MEMBASE:
2070                 case OP_LOADU4_MEMBASE:
2071                         x86_mov_reg_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, 4);
2072                         break;
2073                 case OP_LOADU1_MEMBASE:
2074                         x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, FALSE, FALSE);
2075                         break;
2076                 case OP_LOADI1_MEMBASE:
2077                         x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, TRUE, FALSE);
2078                         break;
2079                 case OP_LOADU2_MEMBASE:
2080                         x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, FALSE, TRUE);
2081                         break;
2082                 case OP_LOADI2_MEMBASE:
2083                         x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, TRUE, TRUE);
2084                         break;
2085                 case OP_ICONV_TO_I1:
2086                 case OP_SEXT_I1:
2087                         x86_widen_reg (code, ins->dreg, ins->sreg1, TRUE, FALSE);
2088                         break;
2089                 case OP_ICONV_TO_I2:
2090                 case OP_SEXT_I2:
2091                         x86_widen_reg (code, ins->dreg, ins->sreg1, TRUE, TRUE);
2092                         break;
2093                 case OP_ICONV_TO_U1:
2094                         x86_widen_reg (code, ins->dreg, ins->sreg1, FALSE, FALSE);
2095                         break;
2096                 case OP_ICONV_TO_U2:
2097                         x86_widen_reg (code, ins->dreg, ins->sreg1, FALSE, TRUE);
2098                         break;
2099                 case OP_COMPARE:
2100                 case OP_ICOMPARE:
2101                         x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2);
2102                         break;
2103                 case OP_COMPARE_IMM:
2104                 case OP_ICOMPARE_IMM:
2105                         x86_alu_reg_imm (code, X86_CMP, ins->sreg1, ins->inst_imm);
2106                         break;
2107                 case OP_X86_COMPARE_MEMBASE_REG:
2108                         x86_alu_membase_reg (code, X86_CMP, ins->inst_basereg, ins->inst_offset, ins->sreg2);
2109                         break;
2110                 case OP_X86_COMPARE_MEMBASE_IMM:
2111                         x86_alu_membase_imm (code, X86_CMP, ins->inst_basereg, ins->inst_offset, ins->inst_imm);
2112                         break;
2113                 case OP_X86_COMPARE_MEMBASE8_IMM:
2114                         x86_alu_membase8_imm (code, X86_CMP, ins->inst_basereg, ins->inst_offset, ins->inst_imm);
2115                         break;
2116                 case OP_X86_COMPARE_REG_MEMBASE:
2117                         x86_alu_reg_membase (code, X86_CMP, ins->sreg1, ins->sreg2, ins->inst_offset);
2118                         break;
2119                 case OP_X86_COMPARE_MEM_IMM:
2120                         x86_alu_mem_imm (code, X86_CMP, ins->inst_offset, ins->inst_imm);
2121                         break;
2122                 case OP_X86_TEST_NULL:
2123                         x86_test_reg_reg (code, ins->sreg1, ins->sreg1);
2124                         break;
2125                 case OP_X86_ADD_MEMBASE_IMM:
2126                         x86_alu_membase_imm (code, X86_ADD, ins->inst_basereg, ins->inst_offset, ins->inst_imm);
2127                         break;
2128                 case OP_X86_ADD_REG_MEMBASE:
2129                         x86_alu_reg_membase (code, X86_ADD, ins->sreg1, ins->sreg2, ins->inst_offset);
2130                         break;
2131                 case OP_X86_SUB_MEMBASE_IMM:
2132                         x86_alu_membase_imm (code, X86_SUB, ins->inst_basereg, ins->inst_offset, ins->inst_imm);
2133                         break;
2134                 case OP_X86_SUB_REG_MEMBASE:
2135                         x86_alu_reg_membase (code, X86_SUB, ins->sreg1, ins->sreg2, ins->inst_offset);
2136                         break;
2137                 case OP_X86_AND_MEMBASE_IMM:
2138                         x86_alu_membase_imm (code, X86_AND, ins->inst_basereg, ins->inst_offset, ins->inst_imm);
2139                         break;
2140                 case OP_X86_OR_MEMBASE_IMM:
2141                         x86_alu_membase_imm (code, X86_OR, ins->inst_basereg, ins->inst_offset, ins->inst_imm);
2142                         break;
2143                 case OP_X86_XOR_MEMBASE_IMM:
2144                         x86_alu_membase_imm (code, X86_XOR, ins->inst_basereg, ins->inst_offset, ins->inst_imm);
2145                         break;
2146                 case OP_X86_ADD_MEMBASE_REG:
2147                         x86_alu_membase_reg (code, X86_ADD, ins->inst_basereg, ins->inst_offset, ins->sreg2);
2148                         break;
2149                 case OP_X86_SUB_MEMBASE_REG:
2150                         x86_alu_membase_reg (code, X86_SUB, ins->inst_basereg, ins->inst_offset, ins->sreg2);
2151                         break;
2152                 case OP_X86_AND_MEMBASE_REG:
2153                         x86_alu_membase_reg (code, X86_AND, ins->inst_basereg, ins->inst_offset, ins->sreg2);
2154                         break;
2155                 case OP_X86_OR_MEMBASE_REG:
2156                         x86_alu_membase_reg (code, X86_OR, ins->inst_basereg, ins->inst_offset, ins->sreg2);
2157                         break;
2158                 case OP_X86_XOR_MEMBASE_REG:
2159                         x86_alu_membase_reg (code, X86_XOR, ins->inst_basereg, ins->inst_offset, ins->sreg2);
2160                         break;
2161                 case OP_X86_INC_MEMBASE:
2162                         x86_inc_membase (code, ins->inst_basereg, ins->inst_offset);
2163                         break;
2164                 case OP_X86_INC_REG:
2165                         x86_inc_reg (code, ins->dreg);
2166                         break;
2167                 case OP_X86_DEC_MEMBASE:
2168                         x86_dec_membase (code, ins->inst_basereg, ins->inst_offset);
2169                         break;
2170                 case OP_X86_DEC_REG:
2171                         x86_dec_reg (code, ins->dreg);
2172                         break;
2173                 case OP_X86_MUL_REG_MEMBASE:
2174                         x86_imul_reg_membase (code, ins->sreg1, ins->sreg2, ins->inst_offset);
2175                         break;
2176                 case OP_X86_AND_REG_MEMBASE:
2177                         x86_alu_reg_membase (code, X86_AND, ins->sreg1, ins->sreg2, ins->inst_offset);
2178                         break;
2179                 case OP_X86_OR_REG_MEMBASE:
2180                         x86_alu_reg_membase (code, X86_OR, ins->sreg1, ins->sreg2, ins->inst_offset);
2181                         break;
2182                 case OP_X86_XOR_REG_MEMBASE:
2183                         x86_alu_reg_membase (code, X86_XOR, ins->sreg1, ins->sreg2, ins->inst_offset);
2184                         break;
2185                 case OP_BREAK:
2186                         x86_breakpoint (code);
2187                         break;
2188                 case OP_RELAXED_NOP:
2189                         x86_prefix (code, X86_REP_PREFIX);
2190                         x86_nop (code);
2191                         break;
2192                 case OP_HARD_NOP:
2193                         x86_nop (code);
2194                         break;
2195                 case OP_NOP:
2196                 case OP_DUMMY_USE:
2197                 case OP_DUMMY_STORE:
2198                 case OP_NOT_REACHED:
2199                 case OP_NOT_NULL:
2200                         break;
2201                 case OP_ADDCC:
2202                 case OP_IADDCC:
2203                 case OP_IADD:
2204                         x86_alu_reg_reg (code, X86_ADD, ins->sreg1, ins->sreg2);
2205                         break;
2206                 case OP_ADC:
2207                 case OP_IADC:
2208                         x86_alu_reg_reg (code, X86_ADC, ins->sreg1, ins->sreg2);
2209                         break;
2210                 case OP_ADDCC_IMM:
2211                 case OP_ADD_IMM:
2212                 case OP_IADD_IMM:
2213                         x86_alu_reg_imm (code, X86_ADD, ins->dreg, ins->inst_imm);
2214                         break;
2215                 case OP_ADC_IMM:
2216                 case OP_IADC_IMM:
2217                         x86_alu_reg_imm (code, X86_ADC, ins->dreg, ins->inst_imm);
2218                         break;
2219                 case OP_SUBCC:
2220                 case OP_ISUBCC:
2221                 case OP_ISUB:
2222                         x86_alu_reg_reg (code, X86_SUB, ins->sreg1, ins->sreg2);
2223                         break;
2224                 case OP_SBB:
2225                 case OP_ISBB:
2226                         x86_alu_reg_reg (code, X86_SBB, ins->sreg1, ins->sreg2);
2227                         break;
2228                 case OP_SUBCC_IMM:
2229                 case OP_SUB_IMM:
2230                 case OP_ISUB_IMM:
2231                         x86_alu_reg_imm (code, X86_SUB, ins->dreg, ins->inst_imm);
2232                         break;
2233                 case OP_SBB_IMM:
2234                 case OP_ISBB_IMM:
2235                         x86_alu_reg_imm (code, X86_SBB, ins->dreg, ins->inst_imm);
2236                         break;
2237                 case OP_IAND:
2238                         x86_alu_reg_reg (code, X86_AND, ins->sreg1, ins->sreg2);
2239                         break;
2240                 case OP_AND_IMM:
2241                 case OP_IAND_IMM:
2242                         x86_alu_reg_imm (code, X86_AND, ins->sreg1, ins->inst_imm);
2243                         break;
2244                 case OP_IDIV:
2245                 case OP_IREM:
2246                         /* 
2247                          * The code is the same for div/rem, the allocator will allocate dreg
2248                          * to RAX/RDX as appropriate.
2249                          */
2250                         if (ins->sreg2 == X86_EDX) {
2251                                 /* cdq clobbers this */
2252                                 x86_push_reg (code, ins->sreg2);
2253                                 x86_cdq (code);
2254                                 x86_div_membase (code, X86_ESP, 0, TRUE);
2255                                 x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4);                            
2256                         } else {
2257                                 x86_cdq (code);
2258                                 x86_div_reg (code, ins->sreg2, TRUE);
2259                         }
2260                         break;
2261                 case OP_IDIV_UN:
2262                 case OP_IREM_UN:
2263                         if (ins->sreg2 == X86_EDX) {
2264                                 x86_push_reg (code, ins->sreg2);
2265                                 x86_alu_reg_reg (code, X86_XOR, X86_EDX, X86_EDX);
2266                                 x86_div_membase (code, X86_ESP, 0, FALSE);
2267                                 x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4);                            
2268                         } else {
2269                                 x86_alu_reg_reg (code, X86_XOR, X86_EDX, X86_EDX);
2270                                 x86_div_reg (code, ins->sreg2, FALSE);
2271                         }
2272                         break;
2273                 case OP_DIV_IMM:
2274                         x86_mov_reg_imm (code, ins->sreg2, ins->inst_imm);
2275                         x86_cdq (code);
2276                         x86_div_reg (code, ins->sreg2, TRUE);
2277                         break;
2278                 case OP_IREM_IMM: {
2279                         int power = mono_is_power_of_two (ins->inst_imm);
2280
2281                         g_assert (ins->sreg1 == X86_EAX);
2282                         g_assert (ins->dreg == X86_EAX);
2283                         g_assert (power >= 0);
2284
2285                         if (power == 1) {
2286                                 /* Based on http://compilers.iecc.com/comparch/article/93-04-079 */
2287                                 x86_cdq (code);
2288                                 x86_alu_reg_imm (code, X86_AND, X86_EAX, 1);
2289                                 /* 
2290                                  * If the divident is >= 0, this does not nothing. If it is positive, it
2291                                  * it transforms %eax=0 into %eax=0, and %eax=1 into %eax=-1.
2292                                  */
2293                                 x86_alu_reg_reg (code, X86_XOR, X86_EAX, X86_EDX);
2294                                 x86_alu_reg_reg (code, X86_SUB, X86_EAX, X86_EDX);
2295                         } else {
2296                                 /* Based on gcc code */
2297
2298                                 /* Add compensation for negative dividents */
2299                                 x86_cdq (code);
2300                                 x86_shift_reg_imm (code, X86_SHR, X86_EDX, 32 - power);
2301                                 x86_alu_reg_reg (code, X86_ADD, X86_EAX, X86_EDX);
2302                                 /* Compute remainder */
2303                                 x86_alu_reg_imm (code, X86_AND, X86_EAX, (1 << power) - 1);
2304                                 /* Remove compensation */
2305                                 x86_alu_reg_reg (code, X86_SUB, X86_EAX, X86_EDX);
2306                         }
2307                         break;
2308                 }
2309                 case OP_IOR:
2310                         x86_alu_reg_reg (code, X86_OR, ins->sreg1, ins->sreg2);
2311                         break;
2312                 case OP_OR_IMM:
2313                 case OP_IOR_IMM:
2314                         x86_alu_reg_imm (code, X86_OR, ins->sreg1, ins->inst_imm);
2315                         break;
2316                 case OP_IXOR:
2317                         x86_alu_reg_reg (code, X86_XOR, ins->sreg1, ins->sreg2);
2318                         break;
2319                 case OP_XOR_IMM:
2320                 case OP_IXOR_IMM:
2321                         x86_alu_reg_imm (code, X86_XOR, ins->sreg1, ins->inst_imm);
2322                         break;
2323                 case OP_ISHL:
2324                         g_assert (ins->sreg2 == X86_ECX);
2325                         x86_shift_reg (code, X86_SHL, ins->dreg);
2326                         break;
2327                 case OP_ISHR:
2328                         g_assert (ins->sreg2 == X86_ECX);
2329                         x86_shift_reg (code, X86_SAR, ins->dreg);
2330                         break;
2331                 case OP_SHR_IMM:
2332                 case OP_ISHR_IMM:
2333                         x86_shift_reg_imm (code, X86_SAR, ins->dreg, ins->inst_imm);
2334                         break;
2335                 case OP_SHR_UN_IMM:
2336                 case OP_ISHR_UN_IMM:
2337                         x86_shift_reg_imm (code, X86_SHR, ins->dreg, ins->inst_imm);
2338                         break;
2339                 case OP_ISHR_UN:
2340                         g_assert (ins->sreg2 == X86_ECX);
2341                         x86_shift_reg (code, X86_SHR, ins->dreg);
2342                         break;
2343                 case OP_SHL_IMM:
2344                 case OP_ISHL_IMM:
2345                         x86_shift_reg_imm (code, X86_SHL, ins->dreg, ins->inst_imm);
2346                         break;
2347                 case OP_LSHL: {
2348                         guint8 *jump_to_end;
2349
2350                         /* handle shifts below 32 bits */
2351                         x86_shld_reg (code, ins->backend.reg3, ins->sreg1);
2352                         x86_shift_reg (code, X86_SHL, ins->sreg1);
2353
2354                         x86_test_reg_imm (code, X86_ECX, 32);
2355                         jump_to_end = code; x86_branch8 (code, X86_CC_EQ, 0, TRUE);
2356
2357                         /* handle shift over 32 bit */
2358                         x86_mov_reg_reg (code, ins->backend.reg3, ins->sreg1, 4);
2359                         x86_clear_reg (code, ins->sreg1);
2360                         
2361                         x86_patch (jump_to_end, code);
2362                         }
2363                         break;
2364                 case OP_LSHR: {
2365                         guint8 *jump_to_end;
2366
2367                         /* handle shifts below 32 bits */
2368                         x86_shrd_reg (code, ins->sreg1, ins->backend.reg3);
2369                         x86_shift_reg (code, X86_SAR, ins->backend.reg3);
2370
2371                         x86_test_reg_imm (code, X86_ECX, 32);
2372                         jump_to_end = code; x86_branch8 (code, X86_CC_EQ, 0, FALSE);
2373
2374                         /* handle shifts over 31 bits */
2375                         x86_mov_reg_reg (code, ins->sreg1, ins->backend.reg3, 4);
2376                         x86_shift_reg_imm (code, X86_SAR, ins->backend.reg3, 31);
2377                         
2378                         x86_patch (jump_to_end, code);
2379                         }
2380                         break;
2381                 case OP_LSHR_UN: {
2382                         guint8 *jump_to_end;
2383
2384                         /* handle shifts below 32 bits */
2385                         x86_shrd_reg (code, ins->sreg1, ins->backend.reg3);
2386                         x86_shift_reg (code, X86_SHR, ins->backend.reg3);
2387
2388                         x86_test_reg_imm (code, X86_ECX, 32);
2389                         jump_to_end = code; x86_branch8 (code, X86_CC_EQ, 0, FALSE);
2390
2391                         /* handle shifts over 31 bits */
2392                         x86_mov_reg_reg (code, ins->sreg1, ins->backend.reg3, 4);
2393                         x86_clear_reg (code, ins->backend.reg3);
2394                         
2395                         x86_patch (jump_to_end, code);
2396                         }
2397                         break;
2398                 case OP_LSHL_IMM:
2399                         if (ins->inst_imm >= 32) {
2400                                 x86_mov_reg_reg (code, ins->backend.reg3, ins->sreg1, 4);
2401                                 x86_clear_reg (code, ins->sreg1);
2402                                 x86_shift_reg_imm (code, X86_SHL, ins->backend.reg3, ins->inst_imm - 32);
2403                         } else {
2404                                 x86_shld_reg_imm (code, ins->backend.reg3, ins->sreg1, ins->inst_imm);
2405                                 x86_shift_reg_imm (code, X86_SHL, ins->sreg1, ins->inst_imm);
2406                         }
2407                         break;
2408                 case OP_LSHR_IMM:
2409                         if (ins->inst_imm >= 32) {
2410                                 x86_mov_reg_reg (code, ins->sreg1, ins->backend.reg3,  4);
2411                                 x86_shift_reg_imm (code, X86_SAR, ins->backend.reg3, 0x1f);
2412                                 x86_shift_reg_imm (code, X86_SAR, ins->sreg1, ins->inst_imm - 32);
2413                         } else {
2414                                 x86_shrd_reg_imm (code, ins->sreg1, ins->backend.reg3, ins->inst_imm);
2415                                 x86_shift_reg_imm (code, X86_SAR, ins->backend.reg3, ins->inst_imm);
2416                         }
2417                         break;
2418                 case OP_LSHR_UN_IMM:
2419                         if (ins->inst_imm >= 32) {
2420                                 x86_mov_reg_reg (code, ins->sreg1, ins->backend.reg3, 4);
2421                                 x86_clear_reg (code, ins->backend.reg3);
2422                                 x86_shift_reg_imm (code, X86_SHR, ins->sreg1, ins->inst_imm - 32);
2423                         } else {
2424                                 x86_shrd_reg_imm (code, ins->sreg1, ins->backend.reg3, ins->inst_imm);
2425                                 x86_shift_reg_imm (code, X86_SHR, ins->backend.reg3, ins->inst_imm);
2426                         }
2427                         break;
2428                 case OP_INOT:
2429                         x86_not_reg (code, ins->sreg1);
2430                         break;
2431                 case OP_INEG:
2432                         x86_neg_reg (code, ins->sreg1);
2433                         break;
2434
2435                 case OP_IMUL:
2436                         x86_imul_reg_reg (code, ins->sreg1, ins->sreg2);
2437                         break;
2438                 case OP_MUL_IMM:
2439                 case OP_IMUL_IMM:
2440                         switch (ins->inst_imm) {
2441                         case 2:
2442                                 /* MOV r1, r2 */
2443                                 /* ADD r1, r1 */
2444                                 if (ins->dreg != ins->sreg1)
2445                                         x86_mov_reg_reg (code, ins->dreg, ins->sreg1, 4);
2446                                 x86_alu_reg_reg (code, X86_ADD, ins->dreg, ins->dreg);
2447                                 break;
2448                         case 3:
2449                                 /* LEA r1, [r2 + r2*2] */
2450                                 x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 1);
2451                                 break;
2452                         case 5:
2453                                 /* LEA r1, [r2 + r2*4] */
2454                                 x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 2);
2455                                 break;
2456                         case 6:
2457                                 /* LEA r1, [r2 + r2*2] */
2458                                 /* ADD r1, r1          */
2459                                 x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 1);
2460                                 x86_alu_reg_reg (code, X86_ADD, ins->dreg, ins->dreg);
2461                                 break;
2462                         case 9:
2463                                 /* LEA r1, [r2 + r2*8] */
2464                                 x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 3);
2465                                 break;
2466                         case 10:
2467                                 /* LEA r1, [r2 + r2*4] */
2468                                 /* ADD r1, r1          */
2469                                 x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 2);
2470                                 x86_alu_reg_reg (code, X86_ADD, ins->dreg, ins->dreg);
2471                                 break;
2472                         case 12:
2473                                 /* LEA r1, [r2 + r2*2] */
2474                                 /* SHL r1, 2           */
2475                                 x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 1);
2476                                 x86_shift_reg_imm (code, X86_SHL, ins->dreg, 2);
2477                                 break;
2478                         case 25:
2479                                 /* LEA r1, [r2 + r2*4] */
2480                                 /* LEA r1, [r1 + r1*4] */
2481                                 x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 2);
2482                                 x86_lea_memindex (code, ins->dreg, ins->dreg, 0, ins->dreg, 2);
2483                                 break;
2484                         case 100:
2485                                 /* LEA r1, [r2 + r2*4] */
2486                                 /* SHL r1, 2           */
2487                                 /* LEA r1, [r1 + r1*4] */
2488                                 x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 2);
2489                                 x86_shift_reg_imm (code, X86_SHL, ins->dreg, 2);
2490                                 x86_lea_memindex (code, ins->dreg, ins->dreg, 0, ins->dreg, 2);
2491                                 break;
2492                         default:
2493                                 x86_imul_reg_reg_imm (code, ins->dreg, ins->sreg1, ins->inst_imm);
2494                                 break;
2495                         }
2496                         break;
2497                 case OP_IMUL_OVF:
2498                         x86_imul_reg_reg (code, ins->sreg1, ins->sreg2);
2499                         EMIT_COND_SYSTEM_EXCEPTION (X86_CC_O, FALSE, "OverflowException");
2500                         break;
2501                 case OP_IMUL_OVF_UN: {
2502                         /* the mul operation and the exception check should most likely be split */
2503                         int non_eax_reg, saved_eax = FALSE, saved_edx = FALSE;
2504                         /*g_assert (ins->sreg2 == X86_EAX);
2505                         g_assert (ins->dreg == X86_EAX);*/
2506                         if (ins->sreg2 == X86_EAX) {
2507                                 non_eax_reg = ins->sreg1;
2508                         } else if (ins->sreg1 == X86_EAX) {
2509                                 non_eax_reg = ins->sreg2;
2510                         } else {
2511                                 /* no need to save since we're going to store to it anyway */
2512                                 if (ins->dreg != X86_EAX) {
2513                                         saved_eax = TRUE;
2514                                         x86_push_reg (code, X86_EAX);
2515                                 }
2516                                 x86_mov_reg_reg (code, X86_EAX, ins->sreg1, 4);
2517                                 non_eax_reg = ins->sreg2;
2518                         }
2519                         if (ins->dreg == X86_EDX) {
2520                                 if (!saved_eax) {
2521                                         saved_eax = TRUE;
2522                                         x86_push_reg (code, X86_EAX);
2523                                 }
2524                         } else if (ins->dreg != X86_EAX) {
2525                                 saved_edx = TRUE;
2526                                 x86_push_reg (code, X86_EDX);
2527                         }
2528                         x86_mul_reg (code, non_eax_reg, FALSE);
2529                         /* save before the check since pop and mov don't change the flags */
2530                         if (ins->dreg != X86_EAX)
2531                                 x86_mov_reg_reg (code, ins->dreg, X86_EAX, 4);
2532                         if (saved_edx)
2533                                 x86_pop_reg (code, X86_EDX);
2534                         if (saved_eax)
2535                                 x86_pop_reg (code, X86_EAX);
2536                         EMIT_COND_SYSTEM_EXCEPTION (X86_CC_O, FALSE, "OverflowException");
2537                         break;
2538                 }
2539                 case OP_ICONST:
2540                         x86_mov_reg_imm (code, ins->dreg, ins->inst_c0);
2541                         break;
2542                 case OP_AOTCONST:
2543                         g_assert_not_reached ();
2544                         mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_i1, ins->inst_p0);
2545                         x86_mov_reg_imm (code, ins->dreg, 0);
2546                         break;
2547                 case OP_JUMP_TABLE:
2548                         mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_i1, ins->inst_p0);
2549                         x86_mov_reg_imm (code, ins->dreg, 0);
2550                         break;
2551                 case OP_LOAD_GOTADDR:
2552                         x86_call_imm (code, 0);
2553                         /* 
2554                          * The patch needs to point to the pop, since the GOT offset needs 
2555                          * to be added to that address.
2556                          */
2557                         mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_GOT_OFFSET, NULL);
2558                         x86_pop_reg (code, ins->dreg);
2559                         x86_alu_reg_imm (code, X86_ADD, ins->dreg, 0xf0f0f0f0);
2560                         break;
2561                 case OP_GOT_ENTRY:
2562                         mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_right->inst_i1, ins->inst_right->inst_p0);
2563                         x86_mov_reg_membase (code, ins->dreg, ins->inst_basereg, 0xf0f0f0f0, 4);
2564                         break;
2565                 case OP_X86_PUSH_GOT_ENTRY:
2566                         mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_right->inst_i1, ins->inst_right->inst_p0);
2567                         x86_push_membase (code, ins->inst_basereg, 0xf0f0f0f0);
2568                         break;
2569                 case OP_MOVE:
2570                         x86_mov_reg_reg (code, ins->dreg, ins->sreg1, 4);
2571                         break;
2572                 case OP_JMP: {
2573                         /*
2574                          * Note: this 'frame destruction' logic is useful for tail calls, too.
2575                          * Keep in sync with the code in emit_epilog.
2576                          */
2577                         int pos = 0;
2578
2579                         /* FIXME: no tracing support... */
2580                         if (cfg->prof_options & MONO_PROFILE_ENTER_LEAVE)
2581                                 code = mono_arch_instrument_epilog (cfg, mono_profiler_method_leave, code, FALSE);
2582                         /* reset offset to make max_len work */
2583                         offset = code - cfg->native_code;
2584
2585                         g_assert (!cfg->method->save_lmf);
2586
2587                         code = emit_load_volatile_arguments (cfg, code);
2588
2589                         if (cfg->used_int_regs & (1 << X86_EBX))
2590                                 pos -= 4;
2591                         if (cfg->used_int_regs & (1 << X86_EDI))
2592                                 pos -= 4;
2593                         if (cfg->used_int_regs & (1 << X86_ESI))
2594                                 pos -= 4;
2595                         if (pos)
2596                                 x86_lea_membase (code, X86_ESP, X86_EBP, pos);
2597         
2598                         if (cfg->used_int_regs & (1 << X86_ESI))
2599                                 x86_pop_reg (code, X86_ESI);
2600                         if (cfg->used_int_regs & (1 << X86_EDI))
2601                                 x86_pop_reg (code, X86_EDI);
2602                         if (cfg->used_int_regs & (1 << X86_EBX))
2603                                 x86_pop_reg (code, X86_EBX);
2604         
2605                         /* restore ESP/EBP */
2606                         x86_leave (code);
2607                         offset = code - cfg->native_code;
2608                         mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_METHOD_JUMP, ins->inst_p0);
2609                         x86_jump32 (code, 0);
2610
2611                         cfg->disable_aot = TRUE;
2612                         break;
2613                 }
2614                 case OP_CHECK_THIS:
2615                         /* ensure ins->sreg1 is not NULL
2616                          * note that cmp DWORD PTR [eax], eax is one byte shorter than
2617                          * cmp DWORD PTR [eax], 0
2618                          */
2619                         x86_alu_membase_reg (code, X86_CMP, ins->sreg1, 0, ins->sreg1);
2620                         break;
2621                 case OP_ARGLIST: {
2622                         int hreg = ins->sreg1 == X86_EAX? X86_ECX: X86_EAX;
2623                         x86_push_reg (code, hreg);
2624                         x86_lea_membase (code, hreg, X86_EBP, cfg->sig_cookie);
2625                         x86_mov_membase_reg (code, ins->sreg1, 0, hreg, 4);
2626                         x86_pop_reg (code, hreg);
2627                         break;
2628                 }
2629                 case OP_FCALL:
2630                 case OP_LCALL:
2631                 case OP_VCALL:
2632                 case OP_VCALL2:
2633                 case OP_VOIDCALL:
2634                 case OP_CALL:
2635                         call = (MonoCallInst*)ins;
2636                         if (ins->flags & MONO_INST_HAS_METHOD)
2637                                 code = emit_call (cfg, code, MONO_PATCH_INFO_METHOD, call->method);
2638                         else
2639                                 code = emit_call (cfg, code, MONO_PATCH_INFO_ABS, call->fptr);
2640                         if (call->stack_usage && !CALLCONV_IS_STDCALL (call->signature)) {
2641                                 /* a pop is one byte, while an add reg, imm is 3. So if there are 4 or 8
2642                                  * bytes to pop, we want to use pops. GCC does this (note it won't happen
2643                                  * for P4 or i686 because gcc will avoid using pop push at all. But we aren't
2644                                  * smart enough to do that optimization yet
2645                                  *
2646                                  * It turns out that on my P4, doing two pops for 8 bytes on the stack makes
2647                                  * mcs botstrap slow down. However, doing 1 pop for 4 bytes creates a small,
2648                                  * (most likely from locality benefits). People with other processors should
2649                                  * check on theirs to see what happens.
2650                                  */
2651                                 if (call->stack_usage == 4) {
2652                                         /* we want to use registers that won't get used soon, so use
2653                                          * ecx, as eax will get allocated first. edx is used by long calls,
2654                                          * so we can't use that.
2655                                          */
2656                                         
2657                                         x86_pop_reg (code, X86_ECX);
2658                                 } else {
2659                                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, call->stack_usage);
2660                                 }
2661                         }
2662                         code = emit_move_return_value (cfg, ins, code);
2663                         break;
2664                 case OP_FCALL_REG:
2665                 case OP_LCALL_REG:
2666                 case OP_VCALL_REG:
2667                 case OP_VCALL2_REG:
2668                 case OP_VOIDCALL_REG:
2669                 case OP_CALL_REG:
2670                         call = (MonoCallInst*)ins;
2671                         x86_call_reg (code, ins->sreg1);
2672                         if (call->stack_usage && !CALLCONV_IS_STDCALL (call->signature)) {
2673                                 if (call->stack_usage == 4)
2674                                         x86_pop_reg (code, X86_ECX);
2675                                 else
2676                                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, call->stack_usage);
2677                         }
2678                         code = emit_move_return_value (cfg, ins, code);
2679                         break;
2680                 case OP_FCALL_MEMBASE:
2681                 case OP_LCALL_MEMBASE:
2682                 case OP_VCALL_MEMBASE:
2683                 case OP_VCALL2_MEMBASE:
2684                 case OP_VOIDCALL_MEMBASE:
2685                 case OP_CALL_MEMBASE:
2686                         call = (MonoCallInst*)ins;
2687                         x86_call_membase (code, ins->sreg1, ins->inst_offset);
2688                         if (call->stack_usage && !CALLCONV_IS_STDCALL (call->signature)) {
2689                                 if (call->stack_usage == 4)
2690                                         x86_pop_reg (code, X86_ECX);
2691                                 else
2692                                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, call->stack_usage);
2693                         }
2694                         code = emit_move_return_value (cfg, ins, code);
2695                         break;
2696                 case OP_X86_PUSH:
2697                         x86_push_reg (code, ins->sreg1);
2698                         break;
2699                 case OP_X86_PUSH_IMM:
2700                         x86_push_imm (code, ins->inst_imm);
2701                         break;
2702                 case OP_X86_PUSH_MEMBASE:
2703                         x86_push_membase (code, ins->inst_basereg, ins->inst_offset);
2704                         break;
2705                 case OP_X86_PUSH_OBJ: 
2706                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, ins->inst_imm);
2707                         x86_push_reg (code, X86_EDI);
2708                         x86_push_reg (code, X86_ESI);
2709                         x86_push_reg (code, X86_ECX);
2710                         if (ins->inst_offset)
2711                                 x86_lea_membase (code, X86_ESI, ins->inst_basereg, ins->inst_offset);
2712                         else
2713                                 x86_mov_reg_reg (code, X86_ESI, ins->inst_basereg, 4);
2714                         x86_lea_membase (code, X86_EDI, X86_ESP, 12);
2715                         x86_mov_reg_imm (code, X86_ECX, (ins->inst_imm >> 2));
2716                         x86_cld (code);
2717                         x86_prefix (code, X86_REP_PREFIX);
2718                         x86_movsd (code);
2719                         x86_pop_reg (code, X86_ECX);
2720                         x86_pop_reg (code, X86_ESI);
2721                         x86_pop_reg (code, X86_EDI);
2722                         break;
2723                 case OP_X86_LEA:
2724                         x86_lea_memindex (code, ins->dreg, ins->sreg1, ins->inst_imm, ins->sreg2, ins->backend.shift_amount);
2725                         break;
2726                 case OP_X86_LEA_MEMBASE:
2727                         x86_lea_membase (code, ins->dreg, ins->sreg1, ins->inst_imm);
2728                         break;
2729                 case OP_X86_XCHG:
2730                         x86_xchg_reg_reg (code, ins->sreg1, ins->sreg2, 4);
2731                         break;
2732                 case OP_LOCALLOC:
2733                         /* keep alignment */
2734                         x86_alu_reg_imm (code, X86_ADD, ins->sreg1, MONO_ARCH_LOCALLOC_ALIGNMENT - 1);
2735                         x86_alu_reg_imm (code, X86_AND, ins->sreg1, ~(MONO_ARCH_LOCALLOC_ALIGNMENT - 1));
2736                         code = mono_emit_stack_alloc (code, ins);
2737                         x86_mov_reg_reg (code, ins->dreg, X86_ESP, 4);
2738                         break;
2739                 case OP_LOCALLOC_IMM: {
2740                         guint32 size = ins->inst_imm;
2741                         size = (size + (MONO_ARCH_FRAME_ALIGNMENT - 1)) & ~ (MONO_ARCH_FRAME_ALIGNMENT - 1);
2742
2743                         if (ins->flags & MONO_INST_INIT) {
2744                                 /* FIXME: Optimize this */
2745                                 x86_mov_reg_imm (code, ins->dreg, size);
2746                                 ins->sreg1 = ins->dreg;
2747
2748                                 code = mono_emit_stack_alloc (code, ins);
2749                                 x86_mov_reg_reg (code, ins->dreg, X86_ESP, 4);
2750                         } else {
2751                                 x86_alu_reg_imm (code, X86_SUB, X86_ESP, size);
2752                                 x86_mov_reg_reg (code, ins->dreg, X86_ESP, 4);
2753                         }
2754                         break;
2755                 }
2756                 case OP_THROW: {
2757                         x86_push_reg (code, ins->sreg1);
2758                         code = emit_call (cfg, code, MONO_PATCH_INFO_INTERNAL_METHOD, 
2759                                                           (gpointer)"mono_arch_throw_exception");
2760                         break;
2761                 }
2762                 case OP_RETHROW: {
2763                         x86_push_reg (code, ins->sreg1);
2764                         code = emit_call (cfg, code, MONO_PATCH_INFO_INTERNAL_METHOD, 
2765                                                           (gpointer)"mono_arch_rethrow_exception");
2766                         break;
2767                 }
2768                 case OP_CALL_HANDLER:
2769                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - 4);
2770                         mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_BB, ins->inst_target_bb);
2771                         x86_call_imm (code, 0);
2772                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - 4);
2773                         break;
2774                 case OP_START_HANDLER: {
2775                         MonoInst *spvar = mono_find_spvar_for_region (cfg, bb->region);
2776                         x86_mov_membase_reg (code, spvar->inst_basereg, spvar->inst_offset, X86_ESP, 4);
2777                         break;
2778                 }
2779                 case OP_ENDFINALLY: {
2780                         MonoInst *spvar = mono_find_spvar_for_region (cfg, bb->region);
2781                         x86_mov_reg_membase (code, X86_ESP, spvar->inst_basereg, spvar->inst_offset, 4);
2782                         x86_ret (code);
2783                         break;
2784                 }
2785                 case OP_ENDFILTER: {
2786                         MonoInst *spvar = mono_find_spvar_for_region (cfg, bb->region);
2787                         x86_mov_reg_membase (code, X86_ESP, spvar->inst_basereg, spvar->inst_offset, 4);
2788                         /* The local allocator will put the result into EAX */
2789                         x86_ret (code);
2790                         break;
2791                 }
2792
2793                 case OP_LABEL:
2794                         ins->inst_c0 = code - cfg->native_code;
2795                         break;
2796                 case OP_BR:
2797                         if (ins->flags & MONO_INST_BRLABEL) {
2798                                 if (ins->inst_i0->inst_c0) {
2799                                         x86_jump_code (code, cfg->native_code + ins->inst_i0->inst_c0);
2800                                 } else {
2801                                         mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_LABEL, ins->inst_i0);
2802                                         if ((cfg->opt & MONO_OPT_BRANCH) &&
2803                                             x86_is_imm8 (ins->inst_i0->inst_c1 - cpos))
2804                                                 x86_jump8 (code, 0);
2805                                         else 
2806                                                 x86_jump32 (code, 0);
2807                                 }
2808                         } else {
2809                                 if (ins->inst_target_bb->native_offset) {
2810                                         x86_jump_code (code, cfg->native_code + ins->inst_target_bb->native_offset); 
2811                                 } else {
2812                                         mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_BB, ins->inst_target_bb);
2813                                         if ((cfg->opt & MONO_OPT_BRANCH) &&
2814                                             x86_is_imm8 (ins->inst_target_bb->max_offset - cpos))
2815                                                 x86_jump8 (code, 0);
2816                                         else 
2817                                                 x86_jump32 (code, 0);
2818                                 } 
2819                         }
2820                         break;
2821                 case OP_BR_REG:
2822                         x86_jump_reg (code, ins->sreg1);
2823                         break;
2824                 case OP_CEQ:
2825                 case OP_CLT:
2826                 case OP_CLT_UN:
2827                 case OP_CGT:
2828                 case OP_CGT_UN:
2829                 case OP_CNE:
2830                 case OP_ICEQ:
2831                 case OP_ICLT:
2832                 case OP_ICLT_UN:
2833                 case OP_ICGT:
2834                 case OP_ICGT_UN:
2835                         x86_set_reg (code, cc_table [mono_opcode_to_cond (ins->opcode)], ins->dreg, cc_signed_table [mono_opcode_to_cond (ins->opcode)]);
2836                         x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE);
2837                         break;
2838                 case OP_COND_EXC_EQ:
2839                 case OP_COND_EXC_NE_UN:
2840                 case OP_COND_EXC_LT:
2841                 case OP_COND_EXC_LT_UN:
2842                 case OP_COND_EXC_GT:
2843                 case OP_COND_EXC_GT_UN:
2844                 case OP_COND_EXC_GE:
2845                 case OP_COND_EXC_GE_UN:
2846                 case OP_COND_EXC_LE:
2847                 case OP_COND_EXC_LE_UN:
2848                 case OP_COND_EXC_IEQ:
2849                 case OP_COND_EXC_INE_UN:
2850                 case OP_COND_EXC_ILT:
2851                 case OP_COND_EXC_ILT_UN:
2852                 case OP_COND_EXC_IGT:
2853                 case OP_COND_EXC_IGT_UN:
2854                 case OP_COND_EXC_IGE:
2855                 case OP_COND_EXC_IGE_UN:
2856                 case OP_COND_EXC_ILE:
2857                 case OP_COND_EXC_ILE_UN:
2858                         EMIT_COND_SYSTEM_EXCEPTION (cc_table [mono_opcode_to_cond (ins->opcode)], cc_signed_table [mono_opcode_to_cond (ins->opcode)], ins->inst_p1);
2859                         break;
2860                 case OP_COND_EXC_OV:
2861                 case OP_COND_EXC_NO:
2862                 case OP_COND_EXC_C:
2863                 case OP_COND_EXC_NC:
2864                         EMIT_COND_SYSTEM_EXCEPTION (branch_cc_table [ins->opcode - OP_COND_EXC_EQ], (ins->opcode < OP_COND_EXC_NE_UN), ins->inst_p1);
2865                         break;
2866                 case OP_COND_EXC_IOV:
2867                 case OP_COND_EXC_INO:
2868                 case OP_COND_EXC_IC:
2869                 case OP_COND_EXC_INC:
2870                         EMIT_COND_SYSTEM_EXCEPTION (branch_cc_table [ins->opcode - OP_COND_EXC_IEQ], (ins->opcode < OP_COND_EXC_INE_UN), ins->inst_p1);
2871                         break;
2872                 case OP_IBEQ:
2873                 case OP_IBNE_UN:
2874                 case OP_IBLT:
2875                 case OP_IBLT_UN:
2876                 case OP_IBGT:
2877                 case OP_IBGT_UN:
2878                 case OP_IBGE:
2879                 case OP_IBGE_UN:
2880                 case OP_IBLE:
2881                 case OP_IBLE_UN:
2882                         EMIT_COND_BRANCH (ins, cc_table [mono_opcode_to_cond (ins->opcode)], cc_signed_table [mono_opcode_to_cond (ins->opcode)]);
2883                         break;
2884
2885                 case OP_CMOV_IEQ:
2886                 case OP_CMOV_IGE:
2887                 case OP_CMOV_IGT:
2888                 case OP_CMOV_ILE:
2889                 case OP_CMOV_ILT:
2890                 case OP_CMOV_INE_UN:
2891                 case OP_CMOV_IGE_UN:
2892                 case OP_CMOV_IGT_UN:
2893                 case OP_CMOV_ILE_UN:
2894                 case OP_CMOV_ILT_UN:
2895                         g_assert (ins->dreg == ins->sreg1);
2896                         x86_cmov_reg (code, cc_table [mono_opcode_to_cond (ins->opcode)], cc_signed_table [mono_opcode_to_cond (ins->opcode)], ins->dreg, ins->sreg2);
2897                         break;
2898
2899                 /* floating point opcodes */
2900                 case OP_R8CONST: {
2901                         double d = *(double *)ins->inst_p0;
2902
2903                         if ((d == 0.0) && (mono_signbit (d) == 0)) {
2904                                 x86_fldz (code);
2905                         } else if (d == 1.0) {
2906                                 x86_fld1 (code);
2907                         } else {
2908                                 if (cfg->compile_aot) {
2909                                         guint32 *val = (guint32*)&d;
2910                                         x86_push_imm (code, val [1]);
2911                                         x86_push_imm (code, val [0]);
2912                                         x86_fld_membase (code, X86_ESP, 0, TRUE);
2913                                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8);
2914                                 }
2915                                 else {
2916                                         mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_R8, ins->inst_p0);
2917                                         x86_fld (code, NULL, TRUE);
2918                                 }
2919                         }
2920                         break;
2921                 }
2922                 case OP_R4CONST: {
2923                         float f = *(float *)ins->inst_p0;
2924
2925                         if ((f == 0.0) && (mono_signbit (f) == 0)) {
2926                                 x86_fldz (code);
2927                         } else if (f == 1.0) {
2928                                 x86_fld1 (code);
2929                         } else {
2930                                 if (cfg->compile_aot) {
2931                                         guint32 val = *(guint32*)&f;
2932                                         x86_push_imm (code, val);
2933                                         x86_fld_membase (code, X86_ESP, 0, FALSE);
2934                                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4);
2935                                 }
2936                                 else {
2937                                         mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_R4, ins->inst_p0);
2938                                         x86_fld (code, NULL, FALSE);
2939                                 }
2940                         }
2941                         break;
2942                 }
2943                 case OP_STORER8_MEMBASE_REG:
2944                         x86_fst_membase (code, ins->inst_destbasereg, ins->inst_offset, TRUE, TRUE);
2945                         break;
2946                 case OP_LOADR8_SPILL_MEMBASE:
2947                         x86_fld_membase (code, ins->inst_basereg, ins->inst_offset, TRUE);
2948                         x86_fxch (code, 1);
2949                         break;
2950                 case OP_LOADR8_MEMBASE:
2951                         x86_fld_membase (code, ins->inst_basereg, ins->inst_offset, TRUE);
2952                         break;
2953                 case OP_STORER4_MEMBASE_REG:
2954                         x86_fst_membase (code, ins->inst_destbasereg, ins->inst_offset, FALSE, TRUE);
2955                         break;
2956                 case OP_LOADR4_MEMBASE:
2957                         x86_fld_membase (code, ins->inst_basereg, ins->inst_offset, FALSE);
2958                         break;
2959                 case OP_ICONV_TO_R4: /* FIXME: change precision */
2960                 case OP_ICONV_TO_R8:
2961                         x86_push_reg (code, ins->sreg1);
2962                         x86_fild_membase (code, X86_ESP, 0, FALSE);
2963                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4);
2964                         break;
2965                 case OP_ICONV_TO_R_UN:
2966                         x86_push_imm (code, 0);
2967                         x86_push_reg (code, ins->sreg1);
2968                         x86_fild_membase (code, X86_ESP, 0, TRUE);
2969                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8);
2970                         break;
2971                 case OP_X86_FP_LOAD_I8:
2972                         x86_fild_membase (code, ins->inst_basereg, ins->inst_offset, TRUE);
2973                         break;
2974                 case OP_X86_FP_LOAD_I4:
2975                         x86_fild_membase (code, ins->inst_basereg, ins->inst_offset, FALSE);
2976                         break;
2977                 case OP_FCONV_TO_R4:
2978                         /* FIXME: nothing to do ?? */
2979                         break;
2980                 case OP_FCONV_TO_I1:
2981                         code = emit_float_to_int (cfg, code, ins->dreg, 1, TRUE);
2982                         break;
2983                 case OP_FCONV_TO_U1:
2984                         code = emit_float_to_int (cfg, code, ins->dreg, 1, FALSE);
2985                         break;
2986                 case OP_FCONV_TO_I2:
2987                         code = emit_float_to_int (cfg, code, ins->dreg, 2, TRUE);
2988                         break;
2989                 case OP_FCONV_TO_U2:
2990                         code = emit_float_to_int (cfg, code, ins->dreg, 2, FALSE);
2991                         break;
2992                 case OP_FCONV_TO_I4:
2993                 case OP_FCONV_TO_I:
2994                         code = emit_float_to_int (cfg, code, ins->dreg, 4, TRUE);
2995                         break;
2996                 case OP_FCONV_TO_I8:
2997                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, 4);
2998                         x86_fnstcw_membase(code, X86_ESP, 0);
2999                         x86_mov_reg_membase (code, ins->dreg, X86_ESP, 0, 2);
3000                         x86_alu_reg_imm (code, X86_OR, ins->dreg, 0xc00);
3001                         x86_mov_membase_reg (code, X86_ESP, 2, ins->dreg, 2);
3002                         x86_fldcw_membase (code, X86_ESP, 2);
3003                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8);
3004                         x86_fist_pop_membase (code, X86_ESP, 0, TRUE);
3005                         x86_pop_reg (code, ins->dreg);
3006                         x86_pop_reg (code, ins->backend.reg3);
3007                         x86_fldcw_membase (code, X86_ESP, 0);
3008                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4);
3009                         break;
3010                 case OP_LCONV_TO_R8_2:
3011                         x86_push_reg (code, ins->sreg2);
3012                         x86_push_reg (code, ins->sreg1);
3013                         x86_fild_membase (code, X86_ESP, 0, TRUE);
3014                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8);
3015                         break;
3016                 case OP_LCONV_TO_R4_2:
3017                         x86_push_reg (code, ins->sreg2);
3018                         x86_push_reg (code, ins->sreg1);
3019                         x86_fild_membase (code, X86_ESP, 0, TRUE);
3020                         /* Change precision */
3021                         x86_fst_membase (code, X86_ESP, 0, FALSE, TRUE);
3022                         x86_fld_membase (code, X86_ESP, 0, FALSE);
3023                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8);
3024                         break;
3025                 case OP_LCONV_TO_R_UN:
3026                 case OP_LCONV_TO_R_UN_2: { 
3027                         static guint8 mn[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x40 };
3028                         guint8 *br;
3029
3030                         /* load 64bit integer to FP stack */
3031                         x86_push_imm (code, 0);
3032                         x86_push_reg (code, ins->sreg2);
3033                         x86_push_reg (code, ins->sreg1);
3034                         x86_fild_membase (code, X86_ESP, 0, TRUE);
3035                         /* store as 80bit FP value */
3036                         x86_fst80_membase (code, X86_ESP, 0);
3037                         
3038                         /* test if lreg is negative */
3039                         x86_test_reg_reg (code, ins->sreg2, ins->sreg2);
3040                         br = code; x86_branch8 (code, X86_CC_GEZ, 0, TRUE);
3041         
3042                         /* add correction constant mn */
3043                         x86_fld80_mem (code, mn);
3044                         x86_fld80_membase (code, X86_ESP, 0);
3045                         x86_fp_op_reg (code, X86_FADD, 1, TRUE);
3046                         x86_fst80_membase (code, X86_ESP, 0);
3047
3048                         x86_patch (br, code);
3049
3050                         x86_fld80_membase (code, X86_ESP, 0);
3051                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 12);
3052
3053                         break;
3054                 }
3055                 case OP_LCONV_TO_OVF_I:
3056                 case OP_LCONV_TO_OVF_I4_2: {
3057                         guint8 *br [3], *label [1];
3058                         MonoInst *tins;
3059
3060                         /* 
3061                          * Valid ints: 0xffffffff:8000000 to 00000000:0x7f000000
3062                          */
3063                         x86_test_reg_reg (code, ins->sreg1, ins->sreg1);
3064
3065                         /* If the low word top bit is set, see if we are negative */
3066                         br [0] = code; x86_branch8 (code, X86_CC_LT, 0, TRUE);
3067                         /* We are not negative (no top bit set, check for our top word to be zero */
3068                         x86_test_reg_reg (code, ins->sreg2, ins->sreg2);
3069                         br [1] = code; x86_branch8 (code, X86_CC_EQ, 0, TRUE);
3070                         label [0] = code;
3071
3072                         /* throw exception */
3073                         tins = mono_branch_optimize_exception_target (cfg, bb, "OverflowException");
3074                         if (tins) {
3075                                 mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_BB, tins->inst_true_bb);
3076                                 if ((cfg->opt & MONO_OPT_BRANCH) && x86_is_imm8 (tins->inst_true_bb->max_offset - cpos))
3077                                         x86_jump8 (code, 0);
3078                                 else
3079                                         x86_jump32 (code, 0);
3080                         } else {
3081                                 mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_EXC, "OverflowException");
3082                                 x86_jump32 (code, 0);
3083                         }
3084         
3085         
3086                         x86_patch (br [0], code);
3087                         /* our top bit is set, check that top word is 0xfffffff */
3088                         x86_alu_reg_imm (code, X86_CMP, ins->sreg2, 0xffffffff);
3089                 
3090                         x86_patch (br [1], code);
3091                         /* nope, emit exception */
3092                         br [2] = code; x86_branch8 (code, X86_CC_NE, 0, TRUE);
3093                         x86_patch (br [2], label [0]);
3094
3095                         if (ins->dreg != ins->sreg1)
3096                                 x86_mov_reg_reg (code, ins->dreg, ins->sreg1, 4);
3097                         break;
3098                 }
3099                 case OP_FMOVE:
3100                         /* Not needed on the fp stack */
3101                         break;
3102                 case OP_FADD:
3103                         x86_fp_op_reg (code, X86_FADD, 1, TRUE);
3104                         break;
3105                 case OP_FSUB:
3106                         x86_fp_op_reg (code, X86_FSUB, 1, TRUE);
3107                         break;          
3108                 case OP_FMUL:
3109                         x86_fp_op_reg (code, X86_FMUL, 1, TRUE);
3110                         break;          
3111                 case OP_FDIV:
3112                         x86_fp_op_reg (code, X86_FDIV, 1, TRUE);
3113                         break;          
3114                 case OP_FNEG:
3115                         x86_fchs (code);
3116                         break;          
3117                 case OP_SIN:
3118                         x86_fsin (code);
3119                         x86_fldz (code);
3120                         x86_fp_op_reg (code, X86_FADD, 1, TRUE);
3121                         break;          
3122                 case OP_COS:
3123                         x86_fcos (code);
3124                         x86_fldz (code);
3125                         x86_fp_op_reg (code, X86_FADD, 1, TRUE);
3126                         break;          
3127                 case OP_ABS:
3128                         x86_fabs (code);
3129                         break;          
3130                 case OP_TAN: {
3131                         /* 
3132                          * it really doesn't make sense to inline all this code,
3133                          * it's here just to show that things may not be as simple 
3134                          * as they appear.
3135                          */
3136                         guchar *check_pos, *end_tan, *pop_jump;
3137                         x86_push_reg (code, X86_EAX);
3138                         x86_fptan (code);
3139                         x86_fnstsw (code);
3140                         x86_test_reg_imm (code, X86_EAX, X86_FP_C2);
3141                         check_pos = code;
3142                         x86_branch8 (code, X86_CC_NE, 0, FALSE);
3143                         x86_fstp (code, 0); /* pop the 1.0 */
3144                         end_tan = code;
3145                         x86_jump8 (code, 0);
3146                         x86_fldpi (code);
3147                         x86_fp_op (code, X86_FADD, 0);
3148                         x86_fxch (code, 1);
3149                         x86_fprem1 (code);
3150                         x86_fstsw (code);
3151                         x86_test_reg_imm (code, X86_EAX, X86_FP_C2);
3152                         pop_jump = code;
3153                         x86_branch8 (code, X86_CC_NE, 0, FALSE);
3154                         x86_fstp (code, 1);
3155                         x86_fptan (code);
3156                         x86_patch (pop_jump, code);
3157                         x86_fstp (code, 0); /* pop the 1.0 */
3158                         x86_patch (check_pos, code);
3159                         x86_patch (end_tan, code);
3160                         x86_fldz (code);
3161                         x86_fp_op_reg (code, X86_FADD, 1, TRUE);
3162                         x86_pop_reg (code, X86_EAX);
3163                         break;
3164                 }
3165                 case OP_ATAN:
3166                         x86_fld1 (code);
3167                         x86_fpatan (code);
3168                         x86_fldz (code);
3169                         x86_fp_op_reg (code, X86_FADD, 1, TRUE);
3170                         break;          
3171                 case OP_SQRT:
3172                         x86_fsqrt (code);
3173                         break;
3174                 case OP_IMIN:
3175                         g_assert (cfg->opt & MONO_OPT_CMOV);
3176                         g_assert (ins->dreg == ins->sreg1);
3177                         x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2);
3178                         x86_cmov_reg (code, X86_CC_GT, TRUE, ins->dreg, ins->sreg2);
3179                         break;
3180                 case OP_IMIN_UN:
3181                         g_assert (cfg->opt & MONO_OPT_CMOV);
3182                         g_assert (ins->dreg == ins->sreg1);
3183                         x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2);
3184                         x86_cmov_reg (code, X86_CC_GT, FALSE, ins->dreg, ins->sreg2);
3185                         break;
3186                 case OP_IMAX:
3187                         g_assert (cfg->opt & MONO_OPT_CMOV);
3188                         g_assert (ins->dreg == ins->sreg1);
3189                         x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2);
3190                         x86_cmov_reg (code, X86_CC_LT, TRUE, ins->dreg, ins->sreg2);
3191                         break;
3192                 case OP_IMAX_UN:
3193                         g_assert (cfg->opt & MONO_OPT_CMOV);
3194                         g_assert (ins->dreg == ins->sreg1);
3195                         x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2);
3196                         x86_cmov_reg (code, X86_CC_LT, FALSE, ins->dreg, ins->sreg2);
3197                         break;
3198                 case OP_X86_FPOP:
3199                         x86_fstp (code, 0);
3200                         break;
3201                 case OP_X86_FXCH:
3202                         x86_fxch (code, ins->inst_imm);
3203                         break;
3204                 case OP_FREM: {
3205                         guint8 *l1, *l2;
3206
3207                         x86_push_reg (code, X86_EAX);
3208                         /* we need to exchange ST(0) with ST(1) */
3209                         x86_fxch (code, 1);
3210
3211                         /* this requires a loop, because fprem somtimes 
3212                          * returns a partial remainder */
3213                         l1 = code;
3214                         /* looks like MS is using fprem instead of the IEEE compatible fprem1 */
3215                         /* x86_fprem1 (code); */
3216                         x86_fprem (code);
3217                         x86_fnstsw (code);
3218                         x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_C2);
3219                         l2 = code + 2;
3220                         x86_branch8 (code, X86_CC_NE, l1 - l2, FALSE);
3221
3222                         /* pop result */
3223                         x86_fstp (code, 1);
3224
3225                         x86_pop_reg (code, X86_EAX);
3226                         break;
3227                 }
3228                 case OP_FCOMPARE:
3229                         if (cfg->opt & MONO_OPT_FCMOV) {
3230                                 x86_fcomip (code, 1);
3231                                 x86_fstp (code, 0);
3232                                 break;
3233                         }
3234                         /* this overwrites EAX */
3235                         EMIT_FPCOMPARE(code);
3236                         x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK);
3237                         break;
3238                 case OP_FCEQ:
3239                         if (cfg->opt & MONO_OPT_FCMOV) {
3240                                 /* zeroing the register at the start results in 
3241                                  * shorter and faster code (we can also remove the widening op)
3242                                  */
3243                                 guchar *unordered_check;
3244                                 x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg);
3245                                 x86_fcomip (code, 1);
3246                                 x86_fstp (code, 0);
3247                                 unordered_check = code;
3248                                 x86_branch8 (code, X86_CC_P, 0, FALSE);
3249                                 x86_set_reg (code, X86_CC_EQ, ins->dreg, FALSE);
3250                                 x86_patch (unordered_check, code);
3251                                 break;
3252                         }
3253                         if (ins->dreg != X86_EAX) 
3254                                 x86_push_reg (code, X86_EAX);
3255
3256                         EMIT_FPCOMPARE(code);
3257                         x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK);
3258                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0x4000);
3259                         x86_set_reg (code, X86_CC_EQ, ins->dreg, TRUE);
3260                         x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE);
3261
3262                         if (ins->dreg != X86_EAX) 
3263                                 x86_pop_reg (code, X86_EAX);
3264                         break;
3265                 case OP_FCLT:
3266                 case OP_FCLT_UN:
3267                         if (cfg->opt & MONO_OPT_FCMOV) {
3268                                 /* zeroing the register at the start results in 
3269                                  * shorter and faster code (we can also remove the widening op)
3270                                  */
3271                                 x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg);
3272                                 x86_fcomip (code, 1);
3273                                 x86_fstp (code, 0);
3274                                 if (ins->opcode == OP_FCLT_UN) {
3275                                         guchar *unordered_check = code;
3276                                         guchar *jump_to_end;
3277                                         x86_branch8 (code, X86_CC_P, 0, FALSE);
3278                                         x86_set_reg (code, X86_CC_GT, ins->dreg, FALSE);
3279                                         jump_to_end = code;
3280                                         x86_jump8 (code, 0);
3281                                         x86_patch (unordered_check, code);
3282                                         x86_inc_reg (code, ins->dreg);
3283                                         x86_patch (jump_to_end, code);
3284                                 } else {
3285                                         x86_set_reg (code, X86_CC_GT, ins->dreg, FALSE);
3286                                 }
3287                                 break;
3288                         }
3289                         if (ins->dreg != X86_EAX) 
3290                                 x86_push_reg (code, X86_EAX);
3291
3292                         EMIT_FPCOMPARE(code);
3293                         x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK);
3294                         if (ins->opcode == OP_FCLT_UN) {
3295                                 guchar *is_not_zero_check, *end_jump;
3296                                 is_not_zero_check = code;
3297                                 x86_branch8 (code, X86_CC_NZ, 0, TRUE);
3298                                 end_jump = code;
3299                                 x86_jump8 (code, 0);
3300                                 x86_patch (is_not_zero_check, code);
3301                                 x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_CC_MASK);
3302
3303                                 x86_patch (end_jump, code);
3304                         }
3305                         x86_set_reg (code, X86_CC_EQ, ins->dreg, TRUE);
3306                         x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE);
3307
3308                         if (ins->dreg != X86_EAX) 
3309                                 x86_pop_reg (code, X86_EAX);
3310                         break;
3311                 case OP_FCGT:
3312                 case OP_FCGT_UN:
3313                         if (cfg->opt & MONO_OPT_FCMOV) {
3314                                 /* zeroing the register at the start results in 
3315                                  * shorter and faster code (we can also remove the widening op)
3316                                  */
3317                                 guchar *unordered_check;
3318                                 x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg);
3319                                 x86_fcomip (code, 1);
3320                                 x86_fstp (code, 0);
3321                                 if (ins->opcode == OP_FCGT) {
3322                                         unordered_check = code;
3323                                         x86_branch8 (code, X86_CC_P, 0, FALSE);
3324                                         x86_set_reg (code, X86_CC_LT, ins->dreg, FALSE);
3325                                         x86_patch (unordered_check, code);
3326                                 } else {
3327                                         x86_set_reg (code, X86_CC_LT, ins->dreg, FALSE);
3328                                 }
3329                                 break;
3330                         }
3331                         if (ins->dreg != X86_EAX) 
3332                                 x86_push_reg (code, X86_EAX);
3333
3334                         EMIT_FPCOMPARE(code);
3335                         x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK);
3336                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0);
3337                         if (ins->opcode == OP_FCGT_UN) {
3338                                 guchar *is_not_zero_check, *end_jump;
3339                                 is_not_zero_check = code;
3340                                 x86_branch8 (code, X86_CC_NZ, 0, TRUE);
3341                                 end_jump = code;
3342                                 x86_jump8 (code, 0);
3343                                 x86_patch (is_not_zero_check, code);
3344                                 x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_CC_MASK);
3345         
3346                                 x86_patch (end_jump, code);
3347                         }
3348                         x86_set_reg (code, X86_CC_EQ, ins->dreg, TRUE);
3349                         x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE);
3350
3351                         if (ins->dreg != X86_EAX) 
3352                                 x86_pop_reg (code, X86_EAX);
3353                         break;
3354                 case OP_FBEQ:
3355                         if (cfg->opt & MONO_OPT_FCMOV) {
3356                                 guchar *jump = code;
3357                                 x86_branch8 (code, X86_CC_P, 0, TRUE);
3358                                 EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE);
3359                                 x86_patch (jump, code);
3360                                 break;
3361                         }
3362                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0x4000);
3363                         EMIT_COND_BRANCH (ins, X86_CC_EQ, TRUE);
3364                         break;
3365                 case OP_FBNE_UN:
3366                         /* Branch if C013 != 100 */
3367                         if (cfg->opt & MONO_OPT_FCMOV) {
3368                                 /* branch if !ZF or (PF|CF) */
3369                                 EMIT_COND_BRANCH (ins, X86_CC_NE, FALSE);
3370                                 EMIT_COND_BRANCH (ins, X86_CC_P, FALSE);
3371                                 EMIT_COND_BRANCH (ins, X86_CC_B, FALSE);
3372                                 break;
3373                         }
3374                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C3);
3375                         EMIT_COND_BRANCH (ins, X86_CC_NE, FALSE);
3376                         break;
3377                 case OP_FBLT:
3378                         if (cfg->opt & MONO_OPT_FCMOV) {
3379                                 EMIT_COND_BRANCH (ins, X86_CC_GT, FALSE);
3380                                 break;
3381                         }
3382                         EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE);
3383                         break;
3384                 case OP_FBLT_UN:
3385                         if (cfg->opt & MONO_OPT_FCMOV) {
3386                                 EMIT_COND_BRANCH (ins, X86_CC_P, FALSE);
3387                                 EMIT_COND_BRANCH (ins, X86_CC_GT, FALSE);
3388                                 break;
3389                         }
3390                         if (ins->opcode == OP_FBLT_UN) {
3391                                 guchar *is_not_zero_check, *end_jump;
3392                                 is_not_zero_check = code;
3393                                 x86_branch8 (code, X86_CC_NZ, 0, TRUE);
3394                                 end_jump = code;
3395                                 x86_jump8 (code, 0);
3396                                 x86_patch (is_not_zero_check, code);
3397                                 x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_CC_MASK);
3398
3399                                 x86_patch (end_jump, code);
3400                         }
3401                         EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE);
3402                         break;
3403                 case OP_FBGT:
3404                 case OP_FBGT_UN:
3405                         if (cfg->opt & MONO_OPT_FCMOV) {
3406                                 if (ins->opcode == OP_FBGT) {
3407                                         guchar *br1;
3408
3409                                         /* skip branch if C1=1 */
3410                                         br1 = code;
3411                                         x86_branch8 (code, X86_CC_P, 0, FALSE);
3412                                         /* branch if (C0 | C3) = 1 */
3413                                         EMIT_COND_BRANCH (ins, X86_CC_LT, FALSE);
3414                                         x86_patch (br1, code);
3415                                 } else {
3416                                         EMIT_COND_BRANCH (ins, X86_CC_LT, FALSE);
3417                                 }
3418                                 break;
3419                         }
3420                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0);
3421                         if (ins->opcode == OP_FBGT_UN) {
3422                                 guchar *is_not_zero_check, *end_jump;
3423                                 is_not_zero_check = code;
3424                                 x86_branch8 (code, X86_CC_NZ, 0, TRUE);
3425                                 end_jump = code;
3426                                 x86_jump8 (code, 0);
3427                                 x86_patch (is_not_zero_check, code);
3428                                 x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_CC_MASK);
3429
3430                                 x86_patch (end_jump, code);
3431                         }
3432                         EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE);
3433                         break;
3434                 case OP_FBGE:
3435                         /* Branch if C013 == 100 or 001 */
3436                         if (cfg->opt & MONO_OPT_FCMOV) {
3437                                 guchar *br1;
3438
3439                                 /* skip branch if C1=1 */
3440                                 br1 = code;
3441                                 x86_branch8 (code, X86_CC_P, 0, FALSE);
3442                                 /* branch if (C0 | C3) = 1 */
3443                                 EMIT_COND_BRANCH (ins, X86_CC_BE, FALSE);
3444                                 x86_patch (br1, code);
3445                                 break;
3446                         }
3447                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0);
3448                         EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE);
3449                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C3);
3450                         EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE);
3451                         break;
3452                 case OP_FBGE_UN:
3453                         /* Branch if C013 == 000 */
3454                         if (cfg->opt & MONO_OPT_FCMOV) {
3455                                 EMIT_COND_BRANCH (ins, X86_CC_LE, FALSE);
3456                                 break;
3457                         }
3458                         EMIT_COND_BRANCH (ins, X86_CC_NE, FALSE);
3459                         break;
3460                 case OP_FBLE:
3461                         /* Branch if C013=000 or 100 */
3462                         if (cfg->opt & MONO_OPT_FCMOV) {
3463                                 guchar *br1;
3464
3465                                 /* skip branch if C1=1 */
3466                                 br1 = code;
3467                                 x86_branch8 (code, X86_CC_P, 0, FALSE);
3468                                 /* branch if C0=0 */
3469                                 EMIT_COND_BRANCH (ins, X86_CC_NB, FALSE);
3470                                 x86_patch (br1, code);
3471                                 break;
3472                         }
3473                         x86_alu_reg_imm (code, X86_AND, X86_EAX, (X86_FP_C0|X86_FP_C1));
3474                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0);
3475                         EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE);
3476                         break;
3477                 case OP_FBLE_UN:
3478                         /* Branch if C013 != 001 */
3479                         if (cfg->opt & MONO_OPT_FCMOV) {
3480                                 EMIT_COND_BRANCH (ins, X86_CC_P, FALSE);
3481                                 EMIT_COND_BRANCH (ins, X86_CC_GE, FALSE);
3482                                 break;
3483                         }
3484                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0);
3485                         EMIT_COND_BRANCH (ins, X86_CC_NE, FALSE);
3486                         break;
3487                 case OP_CKFINITE: {
3488                         guchar *br1;
3489                         x86_push_reg (code, X86_EAX);
3490                         x86_fxam (code);
3491                         x86_fnstsw (code);
3492                         x86_alu_reg_imm (code, X86_AND, X86_EAX, 0x4100);
3493                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0);
3494                         x86_pop_reg (code, X86_EAX);
3495
3496                         /* Have to clean up the fp stack before throwing the exception */
3497                         br1 = code;
3498                         x86_branch8 (code, X86_CC_NE, 0, FALSE);
3499
3500                         x86_fstp (code, 0);                     
3501                         EMIT_COND_SYSTEM_EXCEPTION (X86_CC_EQ, FALSE, "ArithmeticException");
3502
3503                         x86_patch (br1, code);
3504                         break;
3505                 }
3506                 case OP_TLS_GET: {
3507                         code = mono_x86_emit_tls_get (code, ins->dreg, ins->inst_offset);
3508                         break;
3509                 }
3510                 case OP_MEMORY_BARRIER: {
3511                         /* Not needed on x86 */
3512                         break;
3513                 }
3514                 case OP_ATOMIC_ADD_I4: {
3515                         int dreg = ins->dreg;
3516
3517                         if (dreg == ins->inst_basereg) {
3518                                 x86_push_reg (code, ins->sreg2);
3519                                 dreg = ins->sreg2;
3520                         } 
3521                         
3522                         if (dreg != ins->sreg2)
3523                                 x86_mov_reg_reg (code, ins->dreg, ins->sreg2, 4);
3524
3525                         x86_prefix (code, X86_LOCK_PREFIX);
3526                         x86_xadd_membase_reg (code, ins->inst_basereg, ins->inst_offset, dreg, 4);
3527
3528                         if (dreg != ins->dreg) {
3529                                 x86_mov_reg_reg (code, ins->dreg, dreg, 4);
3530                                 x86_pop_reg (code, dreg);
3531                         }
3532
3533                         break;
3534                 }
3535                 case OP_ATOMIC_ADD_NEW_I4: {
3536                         int dreg = ins->dreg;
3537
3538                         /* hack: limit in regalloc, dreg != sreg1 && dreg != sreg2 */
3539                         if (ins->sreg2 == dreg) {
3540                                 if (dreg == X86_EBX) {
3541                                         dreg = X86_EDI;
3542                                         if (ins->inst_basereg == X86_EDI)
3543                                                 dreg = X86_ESI;
3544                                 } else {
3545                                         dreg = X86_EBX;
3546                                         if (ins->inst_basereg == X86_EBX)
3547                                                 dreg = X86_EDI;
3548                                 }
3549                         } else if (ins->inst_basereg == dreg) {
3550                                 if (dreg == X86_EBX) {
3551                                         dreg = X86_EDI;
3552                                         if (ins->sreg2 == X86_EDI)
3553                                                 dreg = X86_ESI;
3554                                 } else {
3555                                         dreg = X86_EBX;
3556                                         if (ins->sreg2 == X86_EBX)
3557                                                 dreg = X86_EDI;
3558                                 }
3559                         }
3560
3561                         if (dreg != ins->dreg) {
3562                                 x86_push_reg (code, dreg);
3563                         }
3564
3565                         x86_mov_reg_reg (code, dreg, ins->sreg2, 4);
3566                         x86_prefix (code, X86_LOCK_PREFIX);
3567                         x86_xadd_membase_reg (code, ins->inst_basereg, ins->inst_offset, dreg, 4);
3568                         /* dreg contains the old value, add with sreg2 value */
3569                         x86_alu_reg_reg (code, X86_ADD, dreg, ins->sreg2);
3570                         
3571                         if (ins->dreg != dreg) {
3572                                 x86_mov_reg_reg (code, ins->dreg, dreg, 4);
3573                                 x86_pop_reg (code, dreg);
3574                         }
3575
3576                         break;
3577                 }
3578                 case OP_ATOMIC_EXCHANGE_I4:
3579                 case OP_ATOMIC_CAS_IMM_I4: {
3580                         guchar *br[2];
3581                         int sreg2 = ins->sreg2;
3582                         int breg = ins->inst_basereg;
3583
3584                         /* cmpxchg uses eax as comperand, need to make sure we can use it
3585                          * hack to overcome limits in x86 reg allocator 
3586                          * (req: dreg == eax and sreg2 != eax and breg != eax) 
3587                          */
3588                         g_assert (ins->dreg == X86_EAX);
3589                         
3590                         /* We need the EAX reg for the cmpxchg */
3591                         if (ins->sreg2 == X86_EAX) {
3592                                 x86_push_reg (code, X86_EDX);
3593                                 x86_mov_reg_reg (code, X86_EDX, X86_EAX, 4);
3594                                 sreg2 = X86_EDX;
3595                         }
3596
3597                         if (breg == X86_EAX) {
3598                                 x86_push_reg (code, X86_ESI);
3599                                 x86_mov_reg_reg (code, X86_ESI, X86_EAX, 4);
3600                                 breg = X86_ESI;
3601                         }
3602
3603                         if (ins->opcode == OP_ATOMIC_CAS_IMM_I4) {
3604                                 x86_mov_reg_imm (code, X86_EAX, ins->backend.data);
3605
3606                                 x86_prefix (code, X86_LOCK_PREFIX);
3607                                 x86_cmpxchg_membase_reg (code, breg, ins->inst_offset, sreg2);
3608                         } else {
3609                                 x86_mov_reg_membase (code, X86_EAX, breg, ins->inst_offset, 4);
3610
3611                                 br [0] = code; x86_prefix (code, X86_LOCK_PREFIX);
3612                                 x86_cmpxchg_membase_reg (code, breg, ins->inst_offset, sreg2);
3613                                 br [1] = code; x86_branch8 (code, X86_CC_NE, -1, FALSE);
3614                                 x86_patch (br [1], br [0]);
3615                         }
3616
3617                         if (breg != ins->inst_basereg)
3618                                 x86_pop_reg (code, X86_ESI);
3619
3620                         if (ins->sreg2 != sreg2)
3621                                 x86_pop_reg (code, X86_EDX);
3622
3623                         break;
3624                 }
3625 #ifdef MONO_ARCH_SIMD_INTRINSICS
3626                 case OP_ADDPS:
3627                         x86_sse_alu_ps_reg_reg (code, X86_SSE_ADD, ins->sreg1, ins->sreg2);
3628                         break;
3629                 case OP_DIVPS:
3630                         x86_sse_alu_ps_reg_reg (code, X86_SSE_DIV, ins->sreg1, ins->sreg2);
3631                         break;
3632                 case OP_MULPS:
3633                         x86_sse_alu_ps_reg_reg (code, X86_SSE_MUL, ins->sreg1, ins->sreg2);
3634                         break;
3635                 case OP_SUBPS:
3636                         x86_sse_alu_ps_reg_reg (code, X86_SSE_SUB, ins->sreg1, ins->sreg2);
3637                         break;
3638                 case OP_MAXPS:
3639                         x86_sse_alu_ps_reg_reg (code, X86_SSE_MAX, ins->sreg1, ins->sreg2);
3640                         break;
3641                 case OP_MINPS:
3642                         x86_sse_alu_ps_reg_reg (code, X86_SSE_MIN, ins->sreg1, ins->sreg2);
3643                         break;
3644                 case OP_COMPPS:
3645                         g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 7);
3646                         x86_sse_alu_ps_reg_reg_imm (code, X86_SSE_COMP, ins->sreg1, ins->sreg2, ins->inst_c0);
3647                         break;
3648                 case OP_ANDPS:
3649                         x86_sse_alu_ps_reg_reg (code, X86_SSE_AND, ins->sreg1, ins->sreg2);
3650                         break;
3651                 case OP_ANDNPS:
3652                         x86_sse_alu_ps_reg_reg (code, X86_SSE_ANDN, ins->sreg1, ins->sreg2);
3653                         break;
3654                 case OP_ORPS:
3655                         x86_sse_alu_ps_reg_reg (code, X86_SSE_OR, ins->sreg1, ins->sreg2);
3656                         break;
3657                 case OP_XORPS:
3658                         x86_sse_alu_ps_reg_reg (code, X86_SSE_XOR, ins->sreg1, ins->sreg2);
3659                         break;
3660                 case OP_SQRTPS:
3661                         x86_sse_alu_ps_reg_reg (code, X86_SSE_SQRT, ins->dreg, ins->sreg1);
3662                         break;
3663                 case OP_RSQRTPS:
3664                         x86_sse_alu_ps_reg_reg (code, X86_SSE_RSQRT, ins->dreg, ins->sreg1);
3665                         break;
3666                 case OP_RCPPS:
3667                         x86_sse_alu_ps_reg_reg (code, X86_SSE_RCP, ins->dreg, ins->sreg1);
3668                         break;
3669                 case OP_ADDSUBPS:
3670                         x86_sse_alu_sd_reg_reg (code, X86_SSE_ADDSUB, ins->sreg1, ins->sreg2);
3671                         break;
3672                 case OP_HADDPS:
3673                         x86_sse_alu_sd_reg_reg (code, X86_SSE_HADD, ins->sreg1, ins->sreg2);
3674                         break;
3675                 case OP_HSUBPS:
3676                         x86_sse_alu_sd_reg_reg (code, X86_SSE_HSUB, ins->sreg1, ins->sreg2);
3677                         break;
3678                 case OP_DUPPS_HIGH:
3679                         x86_sse_alu_ss_reg_reg (code, X86_SSE_MOVSHDUP, ins->dreg, ins->sreg1);
3680                         break;
3681                 case OP_DUPPS_LOW:
3682                         x86_sse_alu_ss_reg_reg (code, X86_SSE_MOVSLDUP, ins->dreg, ins->sreg1);
3683                         break;
3684
3685                 case OP_PSHUFLEW_HIGH:
3686                         g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 0xFF);
3687                         x86_pshufw_reg_reg (code, ins->dreg, ins->sreg1, ins->inst_c0, 1);
3688                         break;
3689                 case OP_PSHUFLEW_LOW:
3690                         g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 0xFF);
3691                         x86_pshufw_reg_reg (code, ins->dreg, ins->sreg1, ins->inst_c0, 0);
3692                         break;
3693                 case OP_PSHUFLED:
3694                         g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 0xFF);
3695                         x86_sse_shift_reg_imm (code, X86_SSE_PSHUFD, ins->dreg, ins->sreg1, ins->inst_c0);
3696                         break;
3697
3698                 case OP_ADDPD:
3699                         x86_sse_alu_pd_reg_reg (code, X86_SSE_ADD, ins->sreg1, ins->sreg2);
3700                         break;
3701                 case OP_DIVPD:
3702                         x86_sse_alu_pd_reg_reg (code, X86_SSE_DIV, ins->sreg1, ins->sreg2);
3703                         break;
3704                 case OP_MULPD:
3705                         x86_sse_alu_pd_reg_reg (code, X86_SSE_MUL, ins->sreg1, ins->sreg2);
3706                         break;
3707                 case OP_SUBPD:
3708                         x86_sse_alu_pd_reg_reg (code, X86_SSE_SUB, ins->sreg1, ins->sreg2);
3709                         break;
3710                 case OP_MAXPD:
3711                         x86_sse_alu_pd_reg_reg (code, X86_SSE_MAX, ins->sreg1, ins->sreg2);
3712                         break;
3713                 case OP_MINPD:
3714                         x86_sse_alu_pd_reg_reg (code, X86_SSE_MIN, ins->sreg1, ins->sreg2);
3715                         break;
3716                 case OP_COMPPD:
3717                         g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 7);
3718                         x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_COMP, ins->sreg1, ins->sreg2, ins->inst_c0);
3719                         break;
3720                 case OP_ANDPD:
3721                         x86_sse_alu_pd_reg_reg (code, X86_SSE_AND, ins->sreg1, ins->sreg2);
3722                         break;
3723                 case OP_ANDNPD:
3724                         x86_sse_alu_pd_reg_reg (code, X86_SSE_ANDN, ins->sreg1, ins->sreg2);
3725                         break;
3726                 case OP_ORPD:
3727                         x86_sse_alu_pd_reg_reg (code, X86_SSE_OR, ins->sreg1, ins->sreg2);
3728                         break;
3729                 case OP_XORPD:
3730                         x86_sse_alu_pd_reg_reg (code, X86_SSE_XOR, ins->sreg1, ins->sreg2);
3731                         break;
3732                 case OP_ADDSUBPD:
3733                         x86_sse_alu_pd_reg_reg (code, X86_SSE_ADDSUB, ins->sreg1, ins->sreg2);
3734                         break;
3735                 case OP_HADDPD:
3736                         x86_sse_alu_pd_reg_reg (code, X86_SSE_HADD, ins->sreg1, ins->sreg2);
3737                         break;
3738                 case OP_HSUBPD:
3739                         x86_sse_alu_pd_reg_reg (code, X86_SSE_HSUB, ins->sreg1, ins->sreg2);
3740                         break;
3741                 case OP_DUPPD:
3742                         x86_sse_alu_sd_reg_reg (code, X86_SSE_MOVDDUP, ins->dreg, ins->sreg1);
3743                         break;
3744                         
3745                 case OP_EXTRACT_MASK:
3746                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMOVMSKB, ins->dreg, ins->sreg1);
3747                         break;
3748         
3749                 case OP_PAND:
3750                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PAND, ins->sreg1, ins->sreg2);
3751                         break;
3752                 case OP_POR:
3753                         x86_sse_alu_pd_reg_reg (code, X86_SSE_POR, ins->sreg1, ins->sreg2);
3754                         break;
3755                 case OP_PXOR:
3756                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PXOR, ins->sreg1, ins->sreg2);
3757                         break;
3758
3759                 case OP_PADDB:
3760                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDB, ins->sreg1, ins->sreg2);
3761                         break;
3762                 case OP_PADDW:
3763                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDW, ins->sreg1, ins->sreg2);
3764                         break;
3765                 case OP_PADDD:
3766                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDD, ins->sreg1, ins->sreg2);
3767                         break;
3768                 case OP_PADDQ:
3769                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDQ, ins->sreg1, ins->sreg2);
3770                         break;
3771
3772                 case OP_PSUBB:
3773                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBB, ins->sreg1, ins->sreg2);
3774                         break;
3775                 case OP_PSUBW:
3776                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBW, ins->sreg1, ins->sreg2);
3777                         break;
3778                 case OP_PSUBD:
3779                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBD, ins->sreg1, ins->sreg2);
3780                         break;
3781                 case OP_PSUBQ:
3782                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBQ, ins->sreg1, ins->sreg2);
3783                         break;
3784
3785                 case OP_PMAXB_UN:
3786                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMAXUB, ins->sreg1, ins->sreg2);
3787                         break;
3788                 case OP_PMAXW_UN:
3789                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMAXUW, ins->sreg1, ins->sreg2);
3790                         break;
3791                 case OP_PMAXD_UN:
3792                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMAXUD, ins->sreg1, ins->sreg2);
3793                         break;
3794                 
3795                 case OP_PMAXB:
3796                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMAXSB, ins->sreg1, ins->sreg2);
3797                         break;
3798                 case OP_PMAXW:
3799                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMAXSW, ins->sreg1, ins->sreg2);
3800                         break;
3801                 case OP_PMAXD:
3802                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMAXSD, ins->sreg1, ins->sreg2);
3803                         break;
3804
3805                 case OP_PAVGB_UN:
3806                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PAVGB, ins->sreg1, ins->sreg2);
3807                         break;
3808                 case OP_PAVGW_UN:
3809                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PAVGW, ins->sreg1, ins->sreg2);
3810                         break;
3811
3812                 case OP_PMINB_UN:
3813                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMINUB, ins->sreg1, ins->sreg2);
3814                         break;
3815                 case OP_PMINW_UN:
3816                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMINUW, ins->sreg1, ins->sreg2);
3817                         break;
3818                 case OP_PMIND_UN:
3819                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMINUD, ins->sreg1, ins->sreg2);
3820                         break;
3821
3822                 case OP_PMINB:
3823                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMINSB, ins->sreg1, ins->sreg2);
3824                         break;
3825                 case OP_PMINW:
3826                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMINSW, ins->sreg1, ins->sreg2);
3827                         break;
3828                 case OP_PMIND:
3829                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMINSD, ins->sreg1, ins->sreg2);
3830                         break;
3831
3832                 case OP_PCMPEQB:
3833                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPEQB, ins->sreg1, ins->sreg2);
3834                         break;
3835                 case OP_PCMPEQW:
3836                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPEQW, ins->sreg1, ins->sreg2);
3837                         break;
3838                 case OP_PCMPEQD:
3839                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPEQD, ins->sreg1, ins->sreg2);
3840                         break;
3841                 case OP_PCMPEQQ:
3842                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PCMPEQQ, ins->sreg1, ins->sreg2);
3843                         break;
3844
3845                 case OP_PCMPGTB:
3846                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPGTB, ins->sreg1, ins->sreg2);
3847                         break;
3848                 case OP_PCMPGTW:
3849                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPGTW, ins->sreg1, ins->sreg2);
3850                         break;
3851                 case OP_PCMPGTD:
3852                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPGTD, ins->sreg1, ins->sreg2);
3853                         break;
3854                 case OP_PCMPGTQ:
3855                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PCMPGTQ, ins->sreg1, ins->sreg2);
3856                         break;
3857
3858                 case OP_PSUM_ABS_DIFF:
3859                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSADBW, ins->sreg1, ins->sreg2);
3860                         break;
3861
3862                 case OP_UNPACK_LOWB:
3863                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKLBW, ins->sreg1, ins->sreg2);
3864                         break;
3865                 case OP_UNPACK_LOWW:
3866                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKLWD, ins->sreg1, ins->sreg2);
3867                         break;
3868                 case OP_UNPACK_LOWD:
3869                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKLDQ, ins->sreg1, ins->sreg2);
3870                         break;
3871                 case OP_UNPACK_LOWQ:
3872                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKLQDQ, ins->sreg1, ins->sreg2);
3873                         break;
3874                 case OP_UNPACK_LOWPS:
3875                         x86_sse_alu_ps_reg_reg (code, X86_SSE_UNPCKL, ins->sreg1, ins->sreg2);
3876                         break;
3877                 case OP_UNPACK_LOWPD:
3878                         x86_sse_alu_pd_reg_reg (code, X86_SSE_UNPCKL, ins->sreg1, ins->sreg2);
3879                         break;
3880
3881                 case OP_UNPACK_HIGHB:
3882                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKHBW, ins->sreg1, ins->sreg2);
3883                         break;
3884                 case OP_UNPACK_HIGHW:
3885                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKHWD, ins->sreg1, ins->sreg2);
3886                         break;
3887                 case OP_UNPACK_HIGHD:
3888                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKHDQ, ins->sreg1, ins->sreg2);
3889                         break;
3890                 case OP_UNPACK_HIGHQ:
3891                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKHQDQ, ins->sreg1, ins->sreg2);
3892                         break;
3893                 case OP_UNPACK_HIGHPS:
3894                         x86_sse_alu_ps_reg_reg (code, X86_SSE_UNPCKH, ins->sreg1, ins->sreg2);
3895                         break;
3896                 case OP_UNPACK_HIGHPD:
3897                         x86_sse_alu_pd_reg_reg (code, X86_SSE_UNPCKH, ins->sreg1, ins->sreg2);
3898                         break;
3899
3900                 case OP_PACKW:
3901                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PACKSSWB, ins->sreg1, ins->sreg2);
3902                         break;
3903                 case OP_PACKD:
3904                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PACKSSDW, ins->sreg1, ins->sreg2);
3905                         break;
3906                 case OP_PACKW_UN:
3907                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PACKUSWB, ins->sreg1, ins->sreg2);
3908                         break;
3909                 case OP_PACKD_UN:
3910                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PACKUSDW, ins->sreg1, ins->sreg2);
3911                         break;
3912
3913                 case OP_PADDB_SAT_UN:
3914                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDUSB, ins->sreg1, ins->sreg2);
3915                         break;
3916                 case OP_PSUBB_SAT_UN:
3917                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBUSB, ins->sreg1, ins->sreg2);
3918                         break;
3919                 case OP_PADDW_SAT_UN:
3920                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDUSW, ins->sreg1, ins->sreg2);
3921                         break;
3922                 case OP_PSUBW_SAT_UN:
3923                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBUSW, ins->sreg1, ins->sreg2);
3924                         break;
3925
3926                 case OP_PADDB_SAT:
3927                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDSB, ins->sreg1, ins->sreg2);
3928                         break;
3929                 case OP_PSUBB_SAT:
3930                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBSB, ins->sreg1, ins->sreg2);
3931                         break;
3932                 case OP_PADDW_SAT:
3933                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDSW, ins->sreg1, ins->sreg2);
3934                         break;
3935                 case OP_PSUBW_SAT:
3936                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBSW, ins->sreg1, ins->sreg2);
3937                         break;
3938                         
3939                 case OP_PMULW:
3940                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMULLW, ins->sreg1, ins->sreg2);
3941                         break;
3942                 case OP_PMULD:
3943                         x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMULLD, ins->sreg1, ins->sreg2);
3944                         break;
3945                 case OP_PMULQ:
3946                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMULUDQ, ins->sreg1, ins->sreg2);
3947                         break;
3948                 case OP_PMULW_HIGH_UN:
3949                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMULHUW, ins->sreg1, ins->sreg2);
3950                         break;
3951                 case OP_PMULW_HIGH:
3952                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PMULHW, ins->sreg1, ins->sreg2);
3953                         break;
3954
3955                 case OP_PSHRW:
3956                         x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTW, X86_SSE_SHR, ins->dreg, ins->inst_imm);
3957                         break;
3958                 case OP_PSHRW_REG:
3959                         x86_sse_shift_reg_reg (code, X86_SSE_PSRLW_REG, ins->dreg, ins->sreg2);
3960                         break;
3961
3962                 case OP_PSARW:
3963                         x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTW, X86_SSE_SAR, ins->dreg, ins->inst_imm);
3964                         break;
3965                 case OP_PSARW_REG:
3966                         x86_sse_shift_reg_reg (code, X86_SSE_PSRAW_REG, ins->dreg, ins->sreg2);
3967                         break;
3968
3969                 case OP_PSHLW:
3970                         x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTW, X86_SSE_SHL, ins->dreg, ins->inst_imm);
3971                         break;
3972                 case OP_PSHLW_REG:
3973                         x86_sse_shift_reg_reg (code, X86_SSE_PSLLW_REG, ins->dreg, ins->sreg2);
3974                         break;
3975
3976                 case OP_PSHRD:
3977                         x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTD, X86_SSE_SHR, ins->dreg, ins->inst_imm);
3978                         break;
3979                 case OP_PSHRD_REG:
3980                         x86_sse_shift_reg_reg (code, X86_SSE_PSRLD_REG, ins->dreg, ins->sreg2);
3981                         break;
3982
3983                 case OP_PSARD:
3984                         x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTD, X86_SSE_SAR, ins->dreg, ins->inst_imm);
3985                         break;
3986                 case OP_PSARD_REG:
3987                         x86_sse_shift_reg_reg (code, X86_SSE_PSRAD_REG, ins->dreg, ins->sreg2);
3988                         break;
3989
3990                 case OP_PSHLD:
3991                         x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTD, X86_SSE_SHL, ins->dreg, ins->inst_imm);
3992                         break;
3993                 case OP_PSHLD_REG:
3994                         x86_sse_shift_reg_reg (code, X86_SSE_PSLLD_REG, ins->dreg, ins->sreg2);
3995                         break;
3996
3997                 case OP_PSHRQ:
3998                         x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTQ, X86_SSE_SHR, ins->dreg, ins->inst_imm);
3999                         break;
4000                 case OP_PSHRQ_REG:
4001                         x86_sse_shift_reg_reg (code, X86_SSE_PSRLQ_REG, ins->dreg, ins->sreg2);
4002                         break;
4003
4004                 case OP_PSHLQ:
4005                         x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTQ, X86_SSE_SHL, ins->dreg, ins->inst_imm);
4006                         break;
4007                 case OP_PSHLQ_REG:
4008                         x86_sse_shift_reg_reg (code, X86_SSE_PSLLQ_REG, ins->dreg, ins->sreg2);
4009                         break;          
4010                         
4011                 case OP_ICONV_TO_X:
4012                         x86_movd_xreg_reg (code, ins->dreg, ins->sreg1);
4013                         break;
4014                 case OP_EXTRACT_I4:
4015                         x86_movd_reg_xreg (code, ins->dreg, ins->sreg1);
4016                         break;
4017                 case OP_EXTRACT_I1:
4018                 case OP_EXTRACT_U1:
4019                         x86_movd_reg_xreg (code, ins->dreg, ins->sreg1);
4020                         if (ins->inst_c0)
4021                                 x86_shift_reg_imm (code, X86_SHR, ins->dreg, ins->inst_c0 * 8);
4022                         x86_widen_reg (code, ins->dreg, ins->dreg, ins->opcode == OP_EXTRACT_I1, FALSE);
4023                         break;
4024                 case OP_EXTRACT_I2:
4025                 case OP_EXTRACT_U2:
4026                         x86_movd_reg_xreg (code, ins->dreg, ins->sreg1);
4027                         if (ins->inst_c0)
4028                                 x86_shift_reg_imm (code, X86_SHR, ins->dreg, 16);
4029                         x86_widen_reg (code, ins->dreg, ins->dreg, ins->opcode == OP_EXTRACT_I2, TRUE);
4030                         break;
4031                 case OP_EXTRACT_R8:
4032                         if (ins->inst_c0)
4033                                 x86_sse_alu_pd_membase_reg (code, X86_SSE_MOVHPD_MEMBASE_REG, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, ins->sreg1);
4034                         else
4035                                 x86_movups_membase_reg (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, ins->sreg1);
4036                         x86_fld_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, TRUE);
4037                         break;
4038                         
4039                 case OP_STOREX_MEMBASE_REG:
4040                 case OP_STOREX_MEMBASE:
4041                         x86_movups_membase_reg (code, ins->dreg, ins->inst_offset, ins->sreg1);
4042                         break;
4043                 case OP_LOADX_MEMBASE:
4044                         x86_movups_reg_membase (code, ins->dreg, ins->sreg1, ins->inst_offset);
4045                         break;
4046                 case OP_LOADX_ALIGNED_MEMBASE:
4047                         x86_movaps_reg_membase (code, ins->dreg, ins->sreg1, ins->inst_offset);
4048                         break;
4049                 case OP_STOREX_ALIGNED_MEMBASE_REG:
4050                         x86_movaps_membase_reg (code, ins->dreg, ins->inst_offset, ins->sreg1);
4051                         break;
4052                 case OP_STOREX_NTA_MEMBASE_REG:
4053                         x86_sse_alu_reg_membase (code, X86_SSE_MOVNTPS, ins->dreg, ins->sreg1, ins->inst_offset);
4054                         break;
4055                 case OP_PREFETCH_MEMBASE:
4056                         x86_sse_alu_reg_membase (code, X86_SSE_PREFETCH, ins->backend.arg_info, ins->sreg1, ins->inst_offset);
4057
4058                         break;
4059                 case OP_XMOVE:
4060                         /*FIXME the peephole pass should have killed this*/
4061                         if (ins->dreg != ins->sreg1)
4062                                 x86_movaps_reg_reg (code, ins->dreg, ins->sreg1);
4063                         break;          
4064                 case OP_XZERO:
4065                         x86_sse_alu_pd_reg_reg (code, X86_SSE_PXOR, ins->dreg, ins->dreg);
4066                         break;
4067                 case OP_ICONV_TO_R8_RAW:
4068                         x86_mov_membase_reg (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, ins->sreg1, 4);
4069                         x86_fld_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, FALSE);
4070                         break;
4071
4072                 case OP_FCONV_TO_R8_X:
4073                         x86_fst_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, TRUE, TRUE);
4074                         x86_movsd_reg_membase (code, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset);
4075                         break;
4076
4077                 case OP_XCONV_R8_TO_I4:
4078                         x86_cvttsd2si (code, ins->dreg, ins->sreg1);
4079                         switch (ins->backend.source_opcode) {
4080                         case OP_FCONV_TO_I1:
4081                                 x86_widen_reg (code, ins->dreg, ins->dreg, TRUE, FALSE);
4082                                 break;
4083                         case OP_FCONV_TO_U1:
4084                                 x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE);
4085                                 break;
4086                         case OP_FCONV_TO_I2:
4087                                 x86_widen_reg (code, ins->dreg, ins->dreg, TRUE, TRUE);
4088                                 break;
4089                         case OP_FCONV_TO_U2:
4090                                 x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, TRUE);
4091                                 break;
4092                         }                       
4093                         break;
4094 #endif
4095                 default:
4096                         g_warning ("unknown opcode %s\n", mono_inst_name (ins->opcode));
4097                         g_assert_not_reached ();
4098                 }
4099
4100                 if (G_UNLIKELY ((code - cfg->native_code - offset) > max_len)) {
4101                         g_warning ("wrong maximal instruction length of instruction %s (expected %d, got %d)",
4102                                    mono_inst_name (ins->opcode), max_len, code - cfg->native_code - offset);
4103                         g_assert_not_reached ();
4104                 }
4105                
4106                 cpos += max_len;
4107         }
4108
4109         cfg->code_len = code - cfg->native_code;
4110 }
4111
4112 void
4113 mono_arch_register_lowlevel_calls (void)
4114 {
4115 }
4116
4117 void
4118 mono_arch_patch_code (MonoMethod *method, MonoDomain *domain, guint8 *code, MonoJumpInfo *ji, gboolean run_cctors)
4119 {
4120         MonoJumpInfo *patch_info;
4121         gboolean compile_aot = !run_cctors;
4122
4123         for (patch_info = ji; patch_info; patch_info = patch_info->next) {
4124                 unsigned char *ip = patch_info->ip.i + code;
4125                 const unsigned char *target;
4126
4127                 target = mono_resolve_patch_target (method, domain, code, patch_info, run_cctors);
4128
4129                 if (compile_aot) {
4130                         switch (patch_info->type) {
4131                         case MONO_PATCH_INFO_BB:
4132                         case MONO_PATCH_INFO_LABEL:
4133                                 break;
4134                         default:
4135                                 /* No need to patch these */
4136                                 continue;
4137                         }
4138                 }
4139
4140                 switch (patch_info->type) {
4141                 case MONO_PATCH_INFO_IP:
4142                         *((gconstpointer *)(ip)) = target;
4143                         break;
4144                 case MONO_PATCH_INFO_CLASS_INIT: {
4145                         guint8 *code = ip;
4146                         /* Might already been changed to a nop */
4147                         x86_call_code (code, 0);
4148                         x86_patch (ip, target);
4149                         break;
4150                 }
4151                 case MONO_PATCH_INFO_ABS:
4152                 case MONO_PATCH_INFO_METHOD:
4153                 case MONO_PATCH_INFO_METHOD_JUMP:
4154                 case MONO_PATCH_INFO_INTERNAL_METHOD:
4155                 case MONO_PATCH_INFO_BB:
4156                 case MONO_PATCH_INFO_LABEL:
4157                 case MONO_PATCH_INFO_RGCTX_FETCH:
4158                 case MONO_PATCH_INFO_GENERIC_CLASS_INIT:
4159                 case MONO_PATCH_INFO_MONITOR_ENTER:
4160                 case MONO_PATCH_INFO_MONITOR_EXIT:
4161                         x86_patch (ip, target);
4162                         break;
4163                 case MONO_PATCH_INFO_NONE:
4164                         break;
4165                 default: {
4166                         guint32 offset = mono_arch_get_patch_offset (ip);
4167                         *((gconstpointer *)(ip + offset)) = target;
4168                         break;
4169                 }
4170                 }
4171         }
4172 }
4173
4174 guint8 *
4175 mono_arch_emit_prolog (MonoCompile *cfg)
4176 {
4177         MonoMethod *method = cfg->method;
4178         MonoBasicBlock *bb;
4179         MonoMethodSignature *sig;
4180         MonoInst *inst;
4181         int alloc_size, pos, max_offset, i;
4182         guint8 *code;
4183
4184         cfg->code_size =  MAX (mono_method_get_header (method)->code_size * 4, 10240);
4185
4186         if (cfg->prof_options & MONO_PROFILE_ENTER_LEAVE)
4187                 cfg->code_size += 512;
4188
4189         code = cfg->native_code = g_malloc (cfg->code_size);
4190
4191         x86_push_reg (code, X86_EBP);
4192         x86_mov_reg_reg (code, X86_EBP, X86_ESP, 4);
4193
4194         alloc_size = cfg->stack_offset;
4195         pos = 0;
4196
4197         if (method->wrapper_type == MONO_WRAPPER_NATIVE_TO_MANAGED) {
4198                 /* Might need to attach the thread to the JIT  or change the domain for the callback */
4199                 if (appdomain_tls_offset != -1 && lmf_tls_offset != -1) {
4200                         guint8 *buf, *no_domain_branch;
4201
4202                         code = mono_x86_emit_tls_get (code, X86_EAX, appdomain_tls_offset);
4203                         x86_alu_reg_imm (code, X86_CMP, X86_EAX, GPOINTER_TO_UINT (cfg->domain));
4204                         no_domain_branch = code;
4205                         x86_branch8 (code, X86_CC_NE, 0, 0);
4206                         code = mono_x86_emit_tls_get ( code, X86_EAX, lmf_tls_offset);
4207                         x86_test_reg_reg (code, X86_EAX, X86_EAX);
4208                         buf = code;
4209                         x86_branch8 (code, X86_CC_NE, 0, 0);
4210                         x86_patch (no_domain_branch, code);
4211                         x86_push_imm (code, cfg->domain);
4212                         code = emit_call (cfg, code, MONO_PATCH_INFO_INTERNAL_METHOD, (gpointer)"mono_jit_thread_attach");
4213                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4);
4214                         x86_patch (buf, code);
4215 #ifdef PLATFORM_WIN32
4216                         /* The TLS key actually contains a pointer to the MonoJitTlsData structure */
4217                         /* FIXME: Add a separate key for LMF to avoid this */
4218                         x86_alu_reg_imm (code, X86_ADD, X86_EAX, G_STRUCT_OFFSET (MonoJitTlsData, lmf));
4219 #endif
4220                 }
4221                 else {
4222                         g_assert (!cfg->compile_aot);
4223                         x86_push_imm (code, cfg->domain);
4224                         code = emit_call (cfg, code, MONO_PATCH_INFO_INTERNAL_METHOD, (gpointer)"mono_jit_thread_attach");
4225                         x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4);
4226                 }
4227         }
4228
4229         if (method->save_lmf) {
4230                 pos += sizeof (MonoLMF);
4231
4232                 /* save the current IP */
4233                 mono_add_patch_info (cfg, code + 1 - cfg->native_code, MONO_PATCH_INFO_IP, NULL);
4234                 x86_push_imm_template (code);
4235
4236                 /* save all caller saved regs */
4237                 x86_push_reg (code, X86_EBP);
4238                 x86_push_reg (code, X86_ESI);
4239                 x86_push_reg (code, X86_EDI);
4240                 x86_push_reg (code, X86_EBX);
4241
4242                 if ((lmf_tls_offset != -1) && !is_win32 && !optimize_for_xen) {
4243                         /*
4244                          * Optimized version which uses the mono_lmf TLS variable instead of indirection
4245                          * through the mono_lmf_addr TLS variable.
4246                          */
4247                         /* %eax = previous_lmf */
4248                         x86_prefix (code, X86_GS_PREFIX);
4249                         x86_mov_reg_mem (code, X86_EAX, lmf_tls_offset, 4);
4250                         /* skip esp + method_info + lmf */
4251                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, 12);
4252                         /* push previous_lmf */
4253                         x86_push_reg (code, X86_EAX);
4254                         /* new lmf = ESP */
4255                         x86_prefix (code, X86_GS_PREFIX);
4256                         x86_mov_mem_reg (code, lmf_tls_offset, X86_ESP, 4);
4257                 } else {
4258                         /* get the address of lmf for the current thread */
4259                         /* 
4260                          * This is performance critical so we try to use some tricks to make
4261                          * it fast.
4262                          */                                                                        
4263
4264                         if (lmf_addr_tls_offset != -1) {
4265                                 /* Load lmf quicky using the GS register */
4266                                 code = mono_x86_emit_tls_get (code, X86_EAX, lmf_addr_tls_offset);
4267 #ifdef PLATFORM_WIN32
4268                                 /* The TLS key actually contains a pointer to the MonoJitTlsData structure */
4269                                 /* FIXME: Add a separate key for LMF to avoid this */
4270                                 x86_alu_reg_imm (code, X86_ADD, X86_EAX, G_STRUCT_OFFSET (MonoJitTlsData, lmf));
4271 #endif
4272                         } else {
4273                                 code = emit_call (cfg, code, MONO_PATCH_INFO_INTERNAL_METHOD, (gpointer)"mono_get_lmf_addr");
4274                         }
4275
4276                         /* Skip esp + method info */
4277                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8);
4278
4279                         /* push lmf */
4280                         x86_push_reg (code, X86_EAX); 
4281                         /* push *lfm (previous_lmf) */
4282                         x86_push_membase (code, X86_EAX, 0);
4283                         /* *(lmf) = ESP */
4284                         x86_mov_membase_reg (code, X86_EAX, 0, X86_ESP, 4);
4285                 }
4286         } else {
4287
4288                 if (cfg->used_int_regs & (1 << X86_EBX)) {
4289                         x86_push_reg (code, X86_EBX);
4290                         pos += 4;
4291                 }
4292
4293                 if (cfg->used_int_regs & (1 << X86_EDI)) {
4294                         x86_push_reg (code, X86_EDI);
4295                         pos += 4;
4296                 }
4297
4298                 if (cfg->used_int_regs & (1 << X86_ESI)) {
4299                         x86_push_reg (code, X86_ESI);
4300                         pos += 4;
4301                 }
4302         }
4303
4304         alloc_size -= pos;
4305
4306         /* the original alloc_size is already aligned: there is %ebp and retip pushed, so realign */
4307         if (mono_do_x86_stack_align) {
4308                 int tot = alloc_size + pos + 4 + 4; /* ret ip + ebp */
4309                 tot &= MONO_ARCH_FRAME_ALIGNMENT - 1;
4310                 alloc_size += MONO_ARCH_FRAME_ALIGNMENT - tot;
4311         }
4312
4313         if (alloc_size) {
4314                 /* See mono_emit_stack_alloc */
4315 #if defined(PLATFORM_WIN32) || defined(MONO_ARCH_SIGSEGV_ON_ALTSTACK)
4316                 guint32 remaining_size = alloc_size;
4317                 while (remaining_size >= 0x1000) {
4318                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, 0x1000);
4319                         x86_test_membase_reg (code, X86_ESP, 0, X86_ESP);
4320                         remaining_size -= 0x1000;
4321                 }
4322                 if (remaining_size)
4323                         x86_alu_reg_imm (code, X86_SUB, X86_ESP, remaining_size);
4324 #else
4325                 x86_alu_reg_imm (code, X86_SUB, X86_ESP, alloc_size);
4326 #endif
4327         }
4328
4329         if (cfg->method->wrapper_type == MONO_WRAPPER_NATIVE_TO_MANAGED ||
4330                         cfg->method->wrapper_type == MONO_WRAPPER_RUNTIME_INVOKE) {
4331                 x86_alu_reg_imm (code, X86_AND, X86_ESP, -MONO_ARCH_FRAME_ALIGNMENT);
4332         }
4333
4334 #if DEBUG_STACK_ALIGNMENT
4335         /* check the stack is aligned */
4336         if (method->wrapper_type == MONO_WRAPPER_NONE) {
4337                 x86_mov_reg_reg (code, X86_ECX, X86_ESP, 4);
4338                 x86_alu_reg_imm (code, X86_AND, X86_ECX, MONO_ARCH_FRAME_ALIGNMENT - 1);
4339                 x86_alu_reg_imm (code, X86_CMP, X86_ECX, 0);
4340                 x86_branch_disp (code, X86_CC_EQ, 3, FALSE);
4341                 x86_breakpoint (code);
4342         }
4343 #endif
4344
4345         /* compute max_offset in order to use short forward jumps */
4346         max_offset = 0;
4347         if (cfg->opt & MONO_OPT_BRANCH) {
4348                 for (bb = cfg->bb_entry; bb; bb = bb->next_bb) {
4349                         MonoInst *ins;
4350                         bb->max_offset = max_offset;
4351
4352                         if (cfg->prof_options & MONO_PROFILE_COVERAGE)
4353                                 max_offset += 6;
4354                         /* max alignment for loops */
4355                         if ((cfg->opt & MONO_OPT_LOOP) && bb_is_loop_start (bb))
4356                                 max_offset += LOOP_ALIGNMENT;
4357
4358                         MONO_BB_FOR_EACH_INS (bb, ins) {
4359                                 if (ins->opcode == OP_LABEL)
4360                                         ins->inst_c1 = max_offset;
4361                                 
4362                                 max_offset += ((guint8 *)ins_get_spec (ins->opcode))[MONO_INST_LEN];
4363                         }
4364                 }
4365         }
4366
4367         /* store runtime generic context */
4368         if (cfg->rgctx_var) {
4369                 g_assert (cfg->rgctx_var->opcode == OP_REGOFFSET && cfg->rgctx_var->inst_basereg == X86_EBP);
4370
4371                 x86_mov_membase_reg (code, X86_EBP, cfg->rgctx_var->inst_offset, MONO_ARCH_RGCTX_REG, 4);
4372         }
4373
4374         if (mono_jit_trace_calls != NULL && mono_trace_eval (method))
4375                 code = mono_arch_instrument_prolog (cfg, mono_trace_enter_method, code, TRUE);
4376
4377         /* load arguments allocated to register from the stack */
4378         sig = mono_method_signature (method);
4379         pos = 0;
4380
4381         for (i = 0; i < sig->param_count + sig->hasthis; ++i) {
4382                 inst = cfg->args [pos];
4383                 if (inst->opcode == OP_REGVAR) {
4384                         x86_mov_reg_membase (code, inst->dreg, X86_EBP, inst->inst_offset, 4);
4385                         if (cfg->verbose_level > 2)
4386                                 g_print ("Argument %d assigned to register %s\n", pos, mono_arch_regname (inst->dreg));
4387                 }
4388                 pos++;
4389         }
4390
4391         cfg->code_len = code - cfg->native_code;
4392
4393         g_assert (cfg->code_len < cfg->code_size);
4394
4395         return code;
4396 }
4397
4398 void
4399 mono_arch_emit_epilog (MonoCompile *cfg)
4400 {
4401         MonoMethod *method = cfg->method;
4402         MonoMethodSignature *sig = mono_method_signature (method);
4403         int quad, pos;
4404         guint32 stack_to_pop;
4405         guint8 *code;
4406         int max_epilog_size = 16;
4407         CallInfo *cinfo;
4408         
4409         if (cfg->method->save_lmf)
4410                 max_epilog_size += 128;
4411
4412         while (cfg->code_len + max_epilog_size > (cfg->code_size - 16)) {
4413                 cfg->code_size *= 2;
4414                 cfg->native_code = g_realloc (cfg->native_code, cfg->code_size);
4415                 mono_jit_stats.code_reallocs++;
4416         }
4417
4418         code = cfg->native_code + cfg->code_len;
4419
4420         if (mono_jit_trace_calls != NULL && mono_trace_eval (method))
4421                 code = mono_arch_instrument_epilog (cfg, mono_trace_leave_method, code, TRUE);
4422
4423         /* the code restoring the registers must be kept in sync with OP_JMP */
4424         pos = 0;
4425         
4426         if (method->save_lmf) {
4427                 gint32 prev_lmf_reg;
4428                 gint32 lmf_offset = -sizeof (MonoLMF);
4429
4430                 /* check if we need to restore protection of the stack after a stack overflow */
4431                 if (mono_get_jit_tls_offset () != -1) {
4432                         guint8 *patch;
4433                         code = mono_x86_emit_tls_get (code, X86_ECX, mono_get_jit_tls_offset ());
4434                         /* we load the value in a separate instruction: this mechanism may be
4435                          * used later as a safer way to do thread interruption
4436                          */
4437                         x86_mov_reg_membase (code, X86_ECX, X86_ECX, G_STRUCT_OFFSET (MonoJitTlsData, restore_stack_prot), 4);
4438                         x86_alu_reg_imm (code, X86_CMP, X86_ECX, 0);
4439                         patch = code;
4440                         x86_branch8 (code, X86_CC_Z, 0, FALSE);
4441                         /* note that the call trampoline will preserve eax/edx */
4442                         x86_call_reg (code, X86_ECX);
4443                         x86_patch (patch, code);
4444                 } else {
4445                         /* FIXME: maybe save the jit tls in the prolog */
4446                 }
4447                 if ((lmf_tls_offset != -1) && !is_win32 && !optimize_for_xen) {
4448                         /*
4449                          * Optimized version which uses the mono_lmf TLS variable instead of indirection
4450                          * through the mono_lmf_addr TLS variable.
4451                          */
4452                         /* reg = previous_lmf */
4453                         x86_mov_reg_membase (code, X86_ECX, X86_EBP, lmf_offset + G_STRUCT_OFFSET (MonoLMF, previous_lmf), 4);
4454
4455                         /* lmf = previous_lmf */
4456                         x86_prefix (code, X86_GS_PREFIX);
4457                         x86_mov_mem_reg (code, lmf_tls_offset, X86_ECX, 4);
4458                 } else {
4459                         /* Find a spare register */
4460                         switch (mini_type_get_underlying_type (cfg->generic_sharing_context, sig->ret)->type) {
4461                         case MONO_TYPE_I8:
4462                         case MONO_TYPE_U8:
4463                                 prev_lmf_reg = X86_EDI;
4464                                 cfg->used_int_regs |= (1 << X86_EDI);
4465                                 break;
4466                         default:
4467                                 prev_lmf_reg = X86_EDX;
4468                                 break;
4469                         }
4470
4471                         /* reg = previous_lmf */
4472                         x86_mov_reg_membase (code, prev_lmf_reg, X86_EBP, lmf_offset + G_STRUCT_OFFSET (MonoLMF, previous_lmf), 4);
4473
4474                         /* ecx = lmf */
4475                         x86_mov_reg_membase (code, X86_ECX, X86_EBP, lmf_offset + G_STRUCT_OFFSET (MonoLMF, lmf_addr), 4);
4476
4477                         /* *(lmf) = previous_lmf */
4478                         x86_mov_membase_reg (code, X86_ECX, 0, prev_lmf_reg, 4);
4479                 }
4480
4481                 /* restore caller saved regs */
4482                 if (cfg->used_int_regs & (1 << X86_EBX)) {
4483                         x86_mov_reg_membase (code, X86_EBX, X86_EBP, lmf_offset + G_STRUCT_OFFSET (MonoLMF, ebx), 4);
4484                 }
4485
4486                 if (cfg->used_int_regs & (1 << X86_EDI)) {
4487                         x86_mov_reg_membase (code, X86_EDI, X86_EBP, lmf_offset + G_STRUCT_OFFSET (MonoLMF, edi), 4);
4488                 }
4489                 if (cfg->used_int_regs & (1 << X86_ESI)) {
4490                         x86_mov_reg_membase (code, X86_ESI, X86_EBP, lmf_offset + G_STRUCT_OFFSET (MonoLMF, esi), 4);
4491                 }
4492
4493                 /* EBP is restored by LEAVE */
4494         } else {
4495                 if (cfg->used_int_regs & (1 << X86_EBX)) {
4496                         pos -= 4;
4497                 }
4498                 if (cfg->used_int_regs & (1 << X86_EDI)) {
4499                         pos -= 4;
4500                 }
4501                 if (cfg->used_int_regs & (1 << X86_ESI)) {
4502                         pos -= 4;
4503                 }
4504
4505                 if (pos)
4506                         x86_lea_membase (code, X86_ESP, X86_EBP, pos);
4507
4508                 if (cfg->used_int_regs & (1 << X86_ESI)) {
4509                         x86_pop_reg (code, X86_ESI);
4510                 }
4511                 if (cfg->used_int_regs & (1 << X86_EDI)) {
4512                         x86_pop_reg (code, X86_EDI);
4513                 }
4514                 if (cfg->used_int_regs & (1 << X86_EBX)) {
4515                         x86_pop_reg (code, X86_EBX);
4516                 }
4517         }
4518
4519         /* Load returned vtypes into registers if needed */
4520         cinfo = get_call_info (cfg->generic_sharing_context, cfg->mempool, sig, FALSE);
4521         if (cinfo->ret.storage == ArgValuetypeInReg) {
4522                 for (quad = 0; quad < 2; quad ++) {
4523                         switch (cinfo->ret.pair_storage [quad]) {
4524                         case ArgInIReg:
4525                                 x86_mov_reg_membase (code, cinfo->ret.pair_regs [quad], cfg->ret->inst_basereg, cfg->ret->inst_offset + (quad * sizeof (gpointer)), 4);
4526                                 break;
4527                         case ArgOnFloatFpStack:
4528                                 x86_fld_membase (code, cfg->ret->inst_basereg, cfg->ret->inst_offset + (quad * sizeof (gpointer)), FALSE);
4529                                 break;
4530                         case ArgOnDoubleFpStack:
4531                                 x86_fld_membase (code, cfg->ret->inst_basereg, cfg->ret->inst_offset + (quad * sizeof (gpointer)), TRUE);
4532                                 break;
4533                         case ArgNone:
4534                                 break;
4535                         default:
4536                                 g_assert_not_reached ();
4537                         }
4538                 }
4539         }
4540
4541         x86_leave (code);
4542
4543         if (CALLCONV_IS_STDCALL (sig)) {
4544                 MonoJitArgumentInfo *arg_info = alloca (sizeof (MonoJitArgumentInfo) * (sig->param_count + 1));
4545
4546                 stack_to_pop = mono_arch_get_argument_info (sig, sig->param_count, arg_info);
4547         } else if (MONO_TYPE_ISSTRUCT (mono_method_signature (cfg->method)->ret) && (cinfo->ret.storage == ArgOnStack))
4548                 stack_to_pop = 4;
4549         else
4550                 stack_to_pop = 0;
4551
4552         if (stack_to_pop)
4553                 x86_ret_imm (code, stack_to_pop);
4554         else
4555                 x86_ret (code);
4556
4557         cfg->code_len = code - cfg->native_code;
4558
4559         g_assert (cfg->code_len < cfg->code_size);
4560 }
4561
4562 void
4563 mono_arch_emit_exceptions (MonoCompile *cfg)
4564 {
4565         MonoJumpInfo *patch_info;
4566         int nthrows, i;
4567         guint8 *code;
4568         MonoClass *exc_classes [16];
4569         guint8 *exc_throw_start [16], *exc_throw_end [16];
4570         guint32 code_size;
4571         int exc_count = 0;
4572
4573         /* Compute needed space */
4574         for (patch_info = cfg->patch_info; patch_info; patch_info = patch_info->next) {
4575                 if (patch_info->type == MONO_PATCH_INFO_EXC)
4576                         exc_count++;
4577         }
4578
4579         /* 
4580          * make sure we have enough space for exceptions
4581          * 16 is the size of two push_imm instructions and a call
4582          */
4583         if (cfg->compile_aot)
4584                 code_size = exc_count * 32;
4585         else
4586                 code_size = exc_count * 16;
4587
4588         while (cfg->code_len + code_size > (cfg->code_size - 16)) {
4589                 cfg->code_size *= 2;
4590                 cfg->native_code = g_realloc (cfg->native_code, cfg->code_size);
4591                 mono_jit_stats.code_reallocs++;
4592         }
4593
4594         code = cfg->native_code + cfg->code_len;
4595
4596         nthrows = 0;
4597         for (patch_info = cfg->patch_info; patch_info; patch_info = patch_info->next) {
4598                 switch (patch_info->type) {
4599                 case MONO_PATCH_INFO_EXC: {
4600                         MonoClass *exc_class;
4601                         guint8 *buf, *buf2;
4602                         guint32 throw_ip;
4603
4604                         x86_patch (patch_info->ip.i + cfg->native_code, code);
4605
4606                         exc_class = mono_class_from_name (mono_defaults.corlib, "System", patch_info->data.name);
4607                         g_assert (exc_class);
4608                         throw_ip = patch_info->ip.i;
4609
4610                         /* Find a throw sequence for the same exception class */
4611                         for (i = 0; i < nthrows; ++i)
4612                                 if (exc_classes [i] == exc_class)
4613                                         break;
4614                         if (i < nthrows) {
4615                                 x86_push_imm (code, (exc_throw_end [i] - cfg->native_code) - throw_ip);
4616                                 x86_jump_code (code, exc_throw_start [i]);
4617                                 patch_info->type = MONO_PATCH_INFO_NONE;
4618                         }
4619                         else {
4620                                 guint32 size;
4621
4622                                 /* Compute size of code following the push <OFFSET> */
4623                                 size = 5 + 5;
4624
4625                                 if ((code - cfg->native_code) - throw_ip < 126 - size) {
4626                                         /* Use the shorter form */
4627                                         buf = buf2 = code;
4628                                         x86_push_imm (code, 0);
4629                                 }
4630                                 else {
4631                                         buf = code;
4632                                         x86_push_imm (code, 0xf0f0f0f0);
4633                                         buf2 = code;
4634                                 }
4635
4636                                 if (nthrows < 16) {
4637                                         exc_classes [nthrows] = exc_class;
4638                                         exc_throw_start [nthrows] = code;
4639                                 }
4640
4641                                 x86_push_imm (code, exc_class->type_token - MONO_TOKEN_TYPE_DEF);
4642                                 patch_info->data.name = "mono_arch_throw_corlib_exception";
4643                                 patch_info->type = MONO_PATCH_INFO_INTERNAL_METHOD;
4644                                 patch_info->ip.i = code - cfg->native_code;
4645                                 x86_call_code (code, 0);
4646                                 x86_push_imm (buf, (code - cfg->native_code) - throw_ip);
4647                                 while (buf < buf2)
4648                                         x86_nop (buf);
4649
4650                                 if (nthrows < 16) {
4651                                         exc_throw_end [nthrows] = code;
4652                                         nthrows ++;
4653                                 }
4654                         }
4655                         break;
4656                 }
4657                 default:
4658                         /* do nothing */
4659                         break;
4660                 }
4661         }
4662
4663         cfg->code_len = code - cfg->native_code;
4664
4665         g_assert (cfg->code_len < cfg->code_size);
4666 }
4667
4668 void
4669 mono_arch_flush_icache (guint8 *code, gint size)
4670 {
4671         /* not needed */
4672 }
4673
4674 void
4675 mono_arch_flush_register_windows (void)
4676 {
4677 }
4678
4679 gboolean 
4680 mono_arch_is_inst_imm (gint64 imm)
4681 {
4682         return TRUE;
4683 }
4684
4685 /*
4686  * Support for fast access to the thread-local lmf structure using the GS
4687  * segment register on NPTL + kernel 2.6.x.
4688  */
4689
4690 static gboolean tls_offset_inited = FALSE;
4691
4692 void
4693 mono_arch_setup_jit_tls_data (MonoJitTlsData *tls)
4694 {
4695         if (!tls_offset_inited) {
4696                 if (!getenv ("MONO_NO_TLS")) {
4697 #ifdef PLATFORM_WIN32
4698                         /* 
4699                          * We need to init this multiple times, since when we are first called, the key might not
4700                          * be initialized yet.
4701                          */
4702                         appdomain_tls_offset = mono_domain_get_tls_key ();
4703                         lmf_tls_offset = mono_get_jit_tls_key ();
4704                         thread_tls_offset = mono_thread_get_tls_key ();
4705
4706                         /* Only 64 tls entries can be accessed using inline code */
4707                         if (appdomain_tls_offset >= 64)
4708                                 appdomain_tls_offset = -1;
4709                         if (lmf_tls_offset >= 64)
4710                                 lmf_tls_offset = -1;
4711                         if (thread_tls_offset >= 64)
4712                                 thread_tls_offset = -1;
4713 #else
4714 #if MONO_XEN_OPT
4715                         optimize_for_xen = access ("/proc/xen", F_OK) == 0;
4716 #endif
4717                         tls_offset_inited = TRUE;
4718                         appdomain_tls_offset = mono_domain_get_tls_offset ();
4719                         lmf_tls_offset = mono_get_lmf_tls_offset ();
4720                         lmf_addr_tls_offset = mono_get_lmf_addr_tls_offset ();
4721                         thread_tls_offset = mono_thread_get_tls_offset ();
4722 #endif
4723                 }
4724         }               
4725 }
4726
4727 void
4728 mono_arch_free_jit_tls_data (MonoJitTlsData *tls)
4729 {
4730 }
4731
4732 #ifdef MONO_ARCH_HAVE_IMT
4733
4734 // Linear handler, the bsearch head compare is shorter
4735 //[2 + 4] x86_alu_reg_imm (code, X86_CMP, ins->sreg1, ins->inst_imm);
4736 //[1 + 1] x86_branch8(inst,cond,imm,is_signed)
4737 //        x86_patch(ins,target)
4738 //[1 + 5] x86_jump_mem(inst,mem)
4739
4740 #define CMP_SIZE 6
4741 #define BR_SMALL_SIZE 2
4742 #define BR_LARGE_SIZE 5
4743 #define JUMP_IMM_SIZE 6
4744 #define ENABLE_WRONG_METHOD_CHECK 0
4745
4746 static int
4747 imt_branch_distance (MonoIMTCheckItem **imt_entries, int start, int target)
4748 {
4749         int i, distance = 0;
4750         for (i = start; i < target; ++i)
4751                 distance += imt_entries [i]->chunk_size;
4752         return distance;
4753 }
4754
4755 /*
4756  * LOCKING: called with the domain lock held
4757  */
4758 gpointer
4759 mono_arch_build_imt_thunk (MonoVTable *vtable, MonoDomain *domain, MonoIMTCheckItem **imt_entries, int count,
4760         gpointer fail_tramp)
4761 {
4762         int i;
4763         int size = 0;
4764         guint8 *code, *start;
4765
4766         for (i = 0; i < count; ++i) {
4767                 MonoIMTCheckItem *item = imt_entries [i];
4768                 if (item->is_equals) {
4769                         if (item->check_target_idx) {
4770                                 if (!item->compare_done)
4771                                         item->chunk_size += CMP_SIZE;
4772                                 item->chunk_size += BR_SMALL_SIZE + JUMP_IMM_SIZE;
4773                         } else {
4774                                 if (fail_tramp) {
4775                                         item->chunk_size += CMP_SIZE + BR_SMALL_SIZE + JUMP_IMM_SIZE * 2;
4776                                 } else {
4777                                         item->chunk_size += JUMP_IMM_SIZE;
4778 #if ENABLE_WRONG_METHOD_CHECK
4779                                         item->chunk_size += CMP_SIZE + BR_SMALL_SIZE + 1;
4780 #endif
4781                                 }
4782                         }
4783                 } else {
4784                         item->chunk_size += CMP_SIZE + BR_LARGE_SIZE;
4785                         imt_entries [item->check_target_idx]->compare_done = TRUE;
4786                 }
4787                 size += item->chunk_size;
4788         }
4789         if (fail_tramp)
4790                 code = mono_method_alloc_generic_virtual_thunk (domain, size);
4791         else
4792                 code = mono_code_manager_reserve (domain->code_mp, size);
4793         start = code;
4794         for (i = 0; i < count; ++i) {
4795                 MonoIMTCheckItem *item = imt_entries [i];
4796                 item->code_target = code;
4797                 if (item->is_equals) {
4798                         if (item->check_target_idx) {
4799                                 if (!item->compare_done)
4800                                         x86_alu_reg_imm (code, X86_CMP, MONO_ARCH_IMT_REG, (guint32)item->key);
4801                                 item->jmp_code = code;
4802                                 x86_branch8 (code, X86_CC_NE, 0, FALSE);
4803                                 if (fail_tramp)
4804                                         x86_jump_code (code, item->value.target_code);
4805                                 else
4806                                         x86_jump_mem (code, & (vtable->vtable [item->value.vtable_slot]));
4807                         } else {
4808                                 if (fail_tramp) {
4809                                         x86_alu_reg_imm (code, X86_CMP, MONO_ARCH_IMT_REG, (guint32)item->key);
4810                                         item->jmp_code = code;
4811                                         x86_branch8 (code, X86_CC_NE, 0, FALSE);
4812                                         x86_jump_code (code, item->value.target_code);
4813                                         x86_patch (item->jmp_code, code);
4814                                         x86_jump_code (code, fail_tramp);
4815                                         item->jmp_code = NULL;
4816                                 } else {
4817                                         /* enable the commented code to assert on wrong method */
4818 #if ENABLE_WRONG_METHOD_CHECK
4819                                         x86_alu_reg_imm (code, X86_CMP, MONO_ARCH_IMT_REG, (guint32)item->key);
4820                                         item->jmp_code = code;
4821                                         x86_branch8 (code, X86_CC_NE, 0, FALSE);
4822 #endif
4823                                         x86_jump_mem (code, & (vtable->vtable [item->value.vtable_slot]));
4824 #if ENABLE_WRONG_METHOD_CHECK
4825                                         x86_patch (item->jmp_code, code);
4826                                         x86_breakpoint (code);
4827                                         item->jmp_code = NULL;
4828 #endif
4829                                 }
4830                         }
4831                 } else {
4832                         x86_alu_reg_imm (code, X86_CMP, MONO_ARCH_IMT_REG, (guint32)item->key);
4833                         item->jmp_code = code;
4834                         if (x86_is_imm8 (imt_branch_distance (imt_entries, i, item->check_target_idx)))
4835                                 x86_branch8 (code, X86_CC_GE, 0, FALSE);
4836                         else
4837                                 x86_branch32 (code, X86_CC_GE, 0, FALSE);
4838                 }
4839         }
4840         /* patch the branches to get to the target items */
4841         for (i = 0; i < count; ++i) {
4842                 MonoIMTCheckItem *item = imt_entries [i];
4843                 if (item->jmp_code) {
4844                         if (item->check_target_idx) {
4845                                 x86_patch (item->jmp_code, imt_entries [item->check_target_idx]->code_target);
4846                         }
4847                 }
4848         }
4849
4850         if (!fail_tramp)
4851                 mono_stats.imt_thunks_size += code - start;
4852         g_assert (code - start <= size);
4853         return start;
4854 }
4855
4856 MonoMethod*
4857 mono_arch_find_imt_method (gpointer *regs, guint8 *code)
4858 {
4859         return (MonoMethod*) regs [MONO_ARCH_IMT_REG];
4860 }
4861
4862 MonoObject*
4863 mono_arch_find_this_argument (gpointer *regs, MonoMethod *method, MonoGenericSharingContext *gsctx)
4864 {
4865         MonoMethodSignature *sig = mono_method_signature (method);
4866         CallInfo *cinfo = get_call_info (gsctx, NULL, sig, FALSE);
4867         int this_argument_offset;
4868         MonoObject *this_argument;
4869
4870         /* 
4871          * this is the offset of the this arg from esp as saved at the start of 
4872          * mono_arch_create_trampoline_code () in tramp-x86.c.
4873          */
4874         this_argument_offset = 5;
4875         if (MONO_TYPE_ISSTRUCT (sig->ret) && (cinfo->ret.storage == ArgOnStack))
4876                 this_argument_offset++;
4877
4878         this_argument = * (MonoObject**) (((guint8*) regs [X86_ESP]) + this_argument_offset * sizeof (gpointer));
4879
4880         g_free (cinfo);
4881         return this_argument;
4882 }
4883 #endif
4884
4885 MonoVTable*
4886 mono_arch_find_static_call_vtable (gpointer *regs, guint8 *code)
4887 {
4888         return (MonoVTable*) regs [MONO_ARCH_RGCTX_REG];
4889 }
4890
4891 MonoInst*
4892 mono_arch_emit_inst_for_method (MonoCompile *cfg, MonoMethod *cmethod, MonoMethodSignature *fsig, MonoInst **args)
4893 {
4894         MonoInst *ins = NULL;
4895         int opcode = 0;
4896
4897         if (cmethod->klass == mono_defaults.math_class) {
4898                 if (strcmp (cmethod->name, "Sin") == 0) {
4899                         opcode = OP_SIN;
4900                 } else if (strcmp (cmethod->name, "Cos") == 0) {
4901                         opcode = OP_COS;
4902                 } else if (strcmp (cmethod->name, "Tan") == 0) {
4903                         opcode = OP_TAN;
4904                 } else if (strcmp (cmethod->name, "Atan") == 0) {
4905                         opcode = OP_ATAN;
4906                 } else if (strcmp (cmethod->name, "Sqrt") == 0) {
4907                         opcode = OP_SQRT;
4908                 } else if (strcmp (cmethod->name, "Abs") == 0 && fsig->params [0]->type == MONO_TYPE_R8) {
4909                         opcode = OP_ABS;
4910                 }
4911                 
4912                 if (opcode) {
4913                         MONO_INST_NEW (cfg, ins, opcode);
4914                         ins->type = STACK_R8;
4915                         ins->dreg = mono_alloc_freg (cfg);
4916                         ins->sreg1 = args [0]->dreg;
4917                         MONO_ADD_INS (cfg->cbb, ins);
4918                 }
4919
4920                 if (cfg->opt & MONO_OPT_CMOV) {
4921                         int opcode = 0;
4922
4923                         if (strcmp (cmethod->name, "Min") == 0) {
4924                                 if (fsig->params [0]->type == MONO_TYPE_I4)
4925                                         opcode = OP_IMIN;
4926                         } else if (strcmp (cmethod->name, "Max") == 0) {
4927                                 if (fsig->params [0]->type == MONO_TYPE_I4)
4928                                         opcode = OP_IMAX;
4929                         }               
4930
4931                         if (opcode) {
4932                                 MONO_INST_NEW (cfg, ins, opcode);
4933                                 ins->type = STACK_I4;
4934                                 ins->dreg = mono_alloc_ireg (cfg);
4935                                 ins->sreg1 = args [0]->dreg;
4936                                 ins->sreg2 = args [1]->dreg;
4937                                 MONO_ADD_INS (cfg->cbb, ins);
4938                         }
4939                 }
4940
4941 #if 0
4942                 /* OP_FREM is not IEEE compatible */
4943                 else if (strcmp (cmethod->name, "IEEERemainder") == 0) {
4944                         MONO_INST_NEW (cfg, ins, OP_FREM);
4945                         ins->inst_i0 = args [0];
4946                         ins->inst_i1 = args [1];
4947                 }
4948 #endif
4949         }
4950
4951         return ins;
4952 }
4953
4954 gboolean
4955 mono_arch_print_tree (MonoInst *tree, int arity)
4956 {
4957         return 0;
4958 }
4959
4960 MonoInst* mono_arch_get_domain_intrinsic (MonoCompile* cfg)
4961 {
4962         MonoInst* ins;
4963
4964         return NULL;
4965
4966         if (appdomain_tls_offset == -1)
4967                 return NULL;
4968
4969         MONO_INST_NEW (cfg, ins, OP_TLS_GET);
4970         ins->inst_offset = appdomain_tls_offset;
4971         return ins;
4972 }
4973
4974 MonoInst* mono_arch_get_thread_intrinsic (MonoCompile* cfg)
4975 {
4976         MonoInst* ins;
4977
4978         if (thread_tls_offset == -1)
4979                 return NULL;
4980
4981         MONO_INST_NEW (cfg, ins, OP_TLS_GET);
4982         ins->inst_offset = thread_tls_offset;
4983         return ins;
4984 }
4985
4986 guint32
4987 mono_arch_get_patch_offset (guint8 *code)
4988 {
4989         if ((code [0] == 0x8b) && (x86_modrm_mod (code [1]) == 0x2))
4990                 return 2;
4991         else if ((code [0] == 0xba))
4992                 return 1;
4993         else if ((code [0] == 0x68))
4994                 /* push IMM */
4995                 return 1;
4996         else if ((code [0] == 0xff) && (x86_modrm_reg (code [1]) == 0x6))
4997                 /* push <OFFSET>(<REG>) */
4998                 return 2;
4999         else if ((code [0] == 0xff) && (x86_modrm_reg (code [1]) == 0x2))
5000                 /* call *<OFFSET>(<REG>) */
5001                 return 2;
5002         else if ((code [0] == 0xdd) || (code [0] == 0xd9))
5003                 /* fldl <ADDR> */
5004                 return 2;
5005         else if ((code [0] == 0x58) && (code [1] == 0x05))
5006                 /* pop %eax; add <OFFSET>, %eax */
5007                 return 2;
5008         else if ((code [0] >= 0x58) && (code [0] <= 0x58 + X86_NREG) && (code [1] == 0x81))
5009                 /* pop <REG>; add <OFFSET>, <REG> */
5010                 return 3;
5011         else if ((code [0] >= 0xb8) && (code [0] < 0xb8 + 8))
5012                 /* mov <REG>, imm */
5013                 return 1;
5014         else {
5015                 g_assert_not_reached ();
5016                 return -1;
5017         }
5018 }
5019
5020 /**
5021  * mono_breakpoint_clean_code:
5022  *
5023  * Copy @size bytes from @code - @offset to the buffer @buf. If the debugger inserted software
5024  * breakpoints in the original code, they are removed in the copy.
5025  *
5026  * Returns TRUE if no sw breakpoint was present.
5027  */
5028 gboolean
5029 mono_breakpoint_clean_code (guint8 *method_start, guint8 *code, int offset, guint8 *buf, int size)
5030 {
5031         int i;
5032         gboolean can_write = TRUE;
5033         /*
5034          * If method_start is non-NULL we need to perform bound checks, since we access memory
5035          * at code - offset we could go before the start of the method and end up in a different
5036          * page of memory that is not mapped or read incorrect data anyway. We zero-fill the bytes
5037          * instead.
5038          */
5039         if (!method_start || code - offset >= method_start) {
5040                 memcpy (buf, code - offset, size);
5041         } else {
5042                 int diff = code - method_start;
5043                 memset (buf, 0, size);
5044                 memcpy (buf + offset - diff, method_start, diff + size - offset);
5045         }
5046         code -= offset;
5047         for (i = 0; i < MONO_BREAKPOINT_ARRAY_SIZE; ++i) {
5048                 int idx = mono_breakpoint_info_index [i];
5049                 guint8 *ptr;
5050                 if (idx < 1)
5051                         continue;
5052                 ptr = mono_breakpoint_info [idx].address;
5053                 if (ptr >= code && ptr < code + size) {
5054                         guint8 saved_byte = mono_breakpoint_info [idx].saved_byte;
5055                         can_write = FALSE;
5056                         /*g_print ("patching %p with 0x%02x (was: 0x%02x)\n", ptr, saved_byte, buf [ptr - code]);*/
5057                         buf [ptr - code] = saved_byte;
5058                 }
5059         }
5060         return can_write;
5061 }
5062
5063 gpointer
5064 mono_arch_get_vcall_slot (guint8 *code, gpointer *regs, int *displacement)
5065 {
5066         guint8 buf [8];
5067         guint8 reg = 0;
5068         gint32 disp = 0;
5069
5070         mono_breakpoint_clean_code (NULL, code, 8, buf, sizeof (buf));
5071         code = buf + 8;
5072
5073         *displacement = 0;
5074
5075         /* go to the start of the call instruction
5076          *
5077          * address_byte = (m << 6) | (o << 3) | reg
5078          * call opcode: 0xff address_byte displacement
5079          * 0xff m=1,o=2 imm8
5080          * 0xff m=2,o=2 imm32
5081          */
5082         code -= 6;
5083
5084         /* 
5085          * A given byte sequence can match more than case here, so we have to be
5086          * really careful about the ordering of the cases. Longer sequences
5087          * come first.
5088          */
5089         if ((code [-2] == 0x8b) && (x86_modrm_mod (code [-1]) == 0x2) && (code [4] == 0xff) && (x86_modrm_reg (code [5]) == 0x2) && (x86_modrm_mod (code [5]) == 0x0)) {
5090                 /*
5091                  * This is an interface call
5092                  * 8b 80 0c e8 ff ff       mov    0xffffe80c(%eax),%eax
5093                  * ff 10                   call   *(%eax)
5094                  */
5095                 reg = x86_modrm_rm (code [5]);
5096                 disp = 0;
5097 #ifdef MONO_ARCH_HAVE_IMT
5098         } else if ((code [-2] == 0xba) && (code [3] == 0xff) && (x86_modrm_mod (code [4]) == 1) && (x86_modrm_reg (code [4]) == 2) && ((signed char)code [5] < 0)) {
5099                 /* IMT-based interface calls: with MONO_ARCH_IMT_REG == edx
5100                  * ba 14 f8 28 08          mov    $0x828f814,%edx
5101                  * ff 50 fc                call   *0xfffffffc(%eax)
5102                  */
5103                 reg = code [4] & 0x07;
5104                 disp = (signed char)code [5];
5105 #endif
5106         } else if ((code [1] != 0xe8) && (code [3] == 0xff) && ((code [4] & 0x18) == 0x10) && ((code [4] >> 6) == 1)) {
5107                 reg = code [4] & 0x07;
5108                 disp = (signed char)code [5];
5109         } else {
5110                 if ((code [0] == 0xff) && ((code [1] & 0x18) == 0x10) && ((code [1] >> 6) == 2)) {
5111                         reg = code [1] & 0x07;
5112                         disp = *((gint32*)(code + 2));
5113                 } else if ((code [1] == 0xe8)) {
5114                         return NULL;
5115                 } else if ((code [4] == 0xff) && (((code [5] >> 6) & 0x3) == 0) && (((code [5] >> 3) & 0x7) == 2)) {
5116                         /*
5117                          * This is a interface call
5118                          * 8b 40 30   mov    0x30(%eax),%eax
5119                          * ff 10      call   *(%eax)
5120                          */
5121                         disp = 0;
5122                         reg = code [5] & 0x07;
5123                 }
5124                 else
5125                         return NULL;
5126         }
5127
5128         *displacement = disp;
5129         return regs [reg];
5130 }
5131
5132 gpointer*
5133 mono_arch_get_vcall_slot_addr (guint8 *code, gpointer *regs)
5134 {
5135         gpointer vt;
5136         int displacement;
5137         vt = mono_arch_get_vcall_slot (code, regs, &displacement);
5138         if (!vt)
5139                 return NULL;
5140         return (gpointer*)((char*)vt + displacement);
5141 }
5142
5143 gpointer
5144 mono_arch_get_this_arg_from_call (MonoGenericSharingContext *gsctx, MonoMethodSignature *sig,
5145                 gssize *regs, guint8 *code)
5146 {
5147         guint32 esp = regs [X86_ESP];
5148         CallInfo *cinfo;
5149         gpointer res;
5150
5151         if (!gsctx && code)
5152                 gsctx = mono_get_generic_context_from_code (code);
5153         cinfo = get_call_info (gsctx, NULL, sig, FALSE);
5154
5155         /*
5156          * The stack looks like:
5157          * <other args>
5158          * <this=delegate>
5159          * <possible vtype return address>
5160          * <return addr>
5161          * <4 pointers pushed by mono_arch_create_trampoline_code ()>
5162          */
5163         res = (((MonoObject**)esp) [5 + (cinfo->args [0].offset / 4)]);
5164         g_free (cinfo);
5165         return res;
5166 }
5167
5168 #define MAX_ARCH_DELEGATE_PARAMS 10
5169
5170 gpointer
5171 mono_arch_get_delegate_invoke_impl (MonoMethodSignature *sig, gboolean has_target)
5172 {
5173         guint8 *code, *start;
5174
5175         if (sig->param_count > MAX_ARCH_DELEGATE_PARAMS)
5176                 return NULL;
5177
5178         /* FIXME: Support more cases */
5179         if (MONO_TYPE_ISSTRUCT (sig->ret))
5180                 return NULL;
5181
5182         /*
5183          * The stack contains:
5184          * <delegate>
5185          * <return addr>
5186          */
5187
5188         if (has_target) {
5189                 static guint8* cached = NULL;
5190                 if (cached)
5191                         return cached;
5192                 
5193                 start = code = mono_global_codeman_reserve (64);
5194
5195                 /* Replace the this argument with the target */
5196                 x86_mov_reg_membase (code, X86_EAX, X86_ESP, 4, 4);
5197                 x86_mov_reg_membase (code, X86_ECX, X86_EAX, G_STRUCT_OFFSET (MonoDelegate, target), 4);
5198                 x86_mov_membase_reg (code, X86_ESP, 4, X86_ECX, 4);
5199                 x86_jump_membase (code, X86_EAX, G_STRUCT_OFFSET (MonoDelegate, method_ptr));
5200
5201                 g_assert ((code - start) < 64);
5202
5203                 mono_debug_add_delegate_trampoline (start, code - start);
5204
5205                 mono_memory_barrier ();
5206
5207                 cached = start;
5208         } else {
5209                 static guint8* cache [MAX_ARCH_DELEGATE_PARAMS + 1] = {NULL};
5210                 int i = 0;
5211                 /* 8 for mov_reg and jump, plus 8 for each parameter */
5212                 int code_reserve = 8 + (sig->param_count * 8);
5213
5214                 for (i = 0; i < sig->param_count; ++i)
5215                         if (!mono_is_regsize_var (sig->params [i]))
5216                                 return NULL;
5217
5218                 code = cache [sig->param_count];
5219                 if (code)
5220                         return code;
5221
5222                 /*
5223                  * The stack contains:
5224                  * <args in reverse order>
5225                  * <delegate>
5226                  * <return addr>
5227                  *
5228                  * and we need:
5229                  * <args in reverse order>
5230                  * <return addr>
5231                  * 
5232                  * without unbalancing the stack.
5233                  * So move each arg up a spot in the stack (overwriting un-needed 'this' arg)
5234                  * and leaving original spot of first arg as placeholder in stack so
5235                  * when callee pops stack everything works.
5236                  */
5237
5238                 start = code = mono_global_codeman_reserve (code_reserve);
5239
5240                 /* store delegate for access to method_ptr */
5241                 x86_mov_reg_membase (code, X86_ECX, X86_ESP, 4, 4);
5242
5243                 /* move args up */
5244                 for (i = 0; i < sig->param_count; ++i) {
5245                         x86_mov_reg_membase (code, X86_EAX, X86_ESP, (i+2)*4, 4);
5246                         x86_mov_membase_reg (code, X86_ESP, (i+1)*4, X86_EAX, 4);
5247                 }
5248
5249                 x86_jump_membase (code, X86_ECX, G_STRUCT_OFFSET (MonoDelegate, method_ptr));
5250
5251                 g_assert ((code - start) < code_reserve);
5252
5253                 mono_debug_add_delegate_trampoline (start, code - start);
5254
5255                 mono_memory_barrier ();
5256
5257                 cache [sig->param_count] = start;
5258         }
5259
5260         return start;
5261 }
5262
5263 gpointer
5264 mono_arch_context_get_int_reg (MonoContext *ctx, int reg)
5265 {
5266         switch (reg) {
5267         case X86_ECX: return (gpointer)ctx->ecx;
5268         case X86_EDX: return (gpointer)ctx->edx;
5269         case X86_EBP: return (gpointer)ctx->ebp;
5270         case X86_ESP: return (gpointer)ctx->esp;
5271         default: return ((gpointer)(&ctx->eax)[reg]);
5272         }
5273 }
5274
5275 #ifdef MONO_ARCH_SIMD_INTRINSICS
5276
5277 static MonoInst*
5278 get_float_to_x_spill_area (MonoCompile *cfg)
5279 {
5280         if (!cfg->fconv_to_r8_x_var) {
5281                 cfg->fconv_to_r8_x_var = mono_compile_create_var (cfg, &mono_defaults.double_class->byval_arg, OP_LOCAL);
5282                 cfg->fconv_to_r8_x_var->flags |= MONO_INST_VOLATILE; /*FIXME, use the don't regalloc flag*/
5283         }       
5284         return cfg->fconv_to_r8_x_var;
5285 }
5286
5287 /*
5288  * Convert all fconv opts that MONO_OPT_SSE2 would get wrong. 
5289  */
5290 void
5291 mono_arch_decompose_opts (MonoCompile *cfg, MonoInst *ins)
5292 {
5293         MonoInst *fconv;
5294         int dreg, src_opcode;
5295
5296         if (!(cfg->opt & MONO_OPT_SSE2) || !(cfg->opt & MONO_OPT_SIMD))
5297                 return;
5298
5299         switch (src_opcode = ins->opcode) {
5300         case OP_FCONV_TO_I1:
5301         case OP_FCONV_TO_U1:
5302         case OP_FCONV_TO_I2:
5303         case OP_FCONV_TO_U2:
5304         case OP_FCONV_TO_I4:
5305         case OP_FCONV_TO_I:
5306                 break;
5307         default:
5308                 return;
5309         }
5310
5311         /* dreg is the IREG and sreg1 is the FREG */
5312         MONO_INST_NEW (cfg, fconv, OP_FCONV_TO_R8_X);
5313         fconv->klass = NULL; /*FIXME, what can I use here as the Mono.Simd lib might not be loaded yet*/
5314         fconv->sreg1 = ins->sreg1;
5315         fconv->dreg = mono_alloc_ireg (cfg);
5316         fconv->type = STACK_VTYPE;
5317         fconv->backend.spill_var = get_float_to_x_spill_area (cfg);
5318
5319         mono_bblock_insert_before_ins (cfg->cbb, ins, fconv);
5320
5321         dreg = ins->dreg;
5322         NULLIFY_INS (ins);
5323         ins->opcode = OP_XCONV_R8_TO_I4;
5324
5325         ins->klass = mono_defaults.int32_class;
5326         ins->sreg1 = fconv->dreg;
5327         ins->dreg = dreg;
5328         ins->type = STACK_I4;
5329         ins->backend.source_opcode = src_opcode;
5330 }
5331
5332 void
5333 mono_arch_decompose_long_opts (MonoCompile *cfg, MonoInst *long_ins)
5334 {
5335         MonoInst *ins;
5336         int vreg;
5337         if (!(cfg->opt & MONO_OPT_SIMD) || long_ins->opcode != OP_EXTRACT_I8)
5338                 return;
5339         /*TODO move this to simd-intrinsic.c once we support sse 4.1 dword extractors since we need the runtime caps info */ 
5340
5341         vreg = long_ins->sreg1;
5342
5343         if (long_ins->inst_c0) {
5344                 MONO_INST_NEW (cfg, ins, OP_PSHUFLED);
5345                 ins->klass = long_ins->klass;
5346                 ins->sreg1 = long_ins->sreg1;
5347                 ins->inst_c0 = 2;
5348                 ins->type = STACK_VTYPE;
5349                 ins->dreg = vreg = alloc_ireg (cfg);
5350                 MONO_ADD_INS (cfg->cbb, ins);
5351         }
5352
5353         MONO_INST_NEW (cfg, ins, OP_EXTRACT_I4);
5354         ins->klass = mono_defaults.int32_class;
5355         ins->sreg1 = vreg;
5356         ins->type = STACK_I4;
5357         ins->dreg = long_ins->dreg + 1;
5358         MONO_ADD_INS (cfg->cbb, ins);
5359
5360         MONO_INST_NEW (cfg, ins, OP_PSHUFLED);
5361         ins->klass = long_ins->klass;
5362         ins->sreg1 = long_ins->sreg1;
5363         ins->inst_c0 = long_ins->inst_c0 ? 3 : 1;
5364         ins->type = STACK_VTYPE;
5365         ins->dreg = vreg = alloc_ireg (cfg);
5366         MONO_ADD_INS (cfg->cbb, ins);
5367
5368         MONO_INST_NEW (cfg, ins, OP_EXTRACT_I4);
5369         ins->klass = mono_defaults.int32_class;
5370         ins->sreg1 = vreg;
5371         ins->type = STACK_I4;
5372         ins->dreg = long_ins->dreg + 2;
5373         MONO_ADD_INS (cfg->cbb, ins);
5374
5375         long_ins->opcode = OP_NOP;
5376 }
5377 #endif
5378