Merge pull request #2379 from xmcclure/babysitter-contd
[mono.git] / mono / metadata / threadpool-ms.c
1 /*
2  * threadpool-ms.c: Microsoft threadpool runtime support
3  *
4  * Author:
5  *      Ludovic Henry (ludovic.henry@xamarin.com)
6  *
7  * Copyright 2015 Xamarin, Inc (http://www.xamarin.com)
8  */
9
10 //
11 // Copyright (c) Microsoft. All rights reserved.
12 // Licensed under the MIT license. See LICENSE file in the project root for full license information.
13 //
14 // Files:
15 //  - src/vm/comthreadpool.cpp
16 //  - src/vm/win32threadpoolcpp
17 //  - src/vm/threadpoolrequest.cpp
18 //  - src/vm/hillclimbing.cpp
19 //
20 // Ported from C++ to C and adjusted to Mono runtime
21
22 #include <stdlib.h>
23 #define _USE_MATH_DEFINES // needed by MSVC to define math constants
24 #include <math.h>
25 #include <config.h>
26 #include <glib.h>
27
28 #include <mono/metadata/class-internals.h>
29 #include <mono/metadata/exception.h>
30 #include <mono/metadata/gc-internals.h>
31 #include <mono/metadata/object.h>
32 #include <mono/metadata/object-internals.h>
33 #include <mono/metadata/threadpool-ms.h>
34 #include <mono/metadata/threadpool-ms-io.h>
35 #include <mono/utils/atomic.h>
36 #include <mono/utils/mono-compiler.h>
37 #include <mono/utils/mono-complex.h>
38 #include <mono/utils/mono-lazy-init.h>
39 #include <mono/utils/mono-logger.h>
40 #include <mono/utils/mono-logger-internals.h>
41 #include <mono/utils/mono-proclib.h>
42 #include <mono/utils/mono-threads.h>
43 #include <mono/utils/mono-time.h>
44 #include <mono/utils/mono-rand.h>
45
46 #define CPU_USAGE_LOW 80
47 #define CPU_USAGE_HIGH 95
48
49 #define MONITOR_INTERVAL 100 // ms
50 #define MONITOR_MINIMAL_LIFETIME 60 * 1000 // ms
51
52 #define WORKER_CREATION_MAX_PER_SEC 10
53
54 /* The exponent to apply to the gain. 1.0 means to use linear gain,
55  * higher values will enhance large moves and damp small ones.
56  * default: 2.0 */
57 #define HILL_CLIMBING_GAIN_EXPONENT 2.0
58
59 /* The 'cost' of a thread. 0 means drive for increased throughput regardless
60  * of thread count, higher values bias more against higher thread counts.
61  * default: 0.15 */
62 #define HILL_CLIMBING_BIAS 0.15
63
64 #define HILL_CLIMBING_WAVE_PERIOD 4
65 #define HILL_CLIMBING_MAX_WAVE_MAGNITUDE 20
66 #define HILL_CLIMBING_WAVE_MAGNITUDE_MULTIPLIER 1.0
67 #define HILL_CLIMBING_WAVE_HISTORY_SIZE 8
68 #define HILL_CLIMBING_TARGET_SIGNAL_TO_NOISE_RATIO 3.0
69 #define HILL_CLIMBING_MAX_CHANGE_PER_SECOND 4
70 #define HILL_CLIMBING_MAX_CHANGE_PER_SAMPLE 20
71 #define HILL_CLIMBING_SAMPLE_INTERVAL_LOW 10
72 #define HILL_CLIMBING_SAMPLE_INTERVAL_HIGH 200
73 #define HILL_CLIMBING_ERROR_SMOOTHING_FACTOR 0.01
74 #define HILL_CLIMBING_MAX_SAMPLE_ERROR_PERCENT 0.15
75
76 typedef union {
77         struct {
78                 gint16 max_working; /* determined by heuristic */
79                 gint16 active; /* executing worker_thread */
80                 gint16 working; /* actively executing worker_thread, not parked */
81                 gint16 parked; /* parked */
82         } _;
83         gint64 as_gint64;
84 } ThreadPoolCounter;
85
86 typedef struct {
87         MonoDomain *domain;
88         gint32 outstanding_request;
89 } ThreadPoolDomain;
90
91 typedef MonoInternalThread ThreadPoolWorkingThread;
92
93 typedef struct {
94         gint32 wave_period;
95         gint32 samples_to_measure;
96         gdouble target_throughput_ratio;
97         gdouble target_signal_to_noise_ratio;
98         gdouble max_change_per_second;
99         gdouble max_change_per_sample;
100         gint32 max_thread_wave_magnitude;
101         gint32 sample_interval_low;
102         gdouble thread_magnitude_multiplier;
103         gint32 sample_interval_high;
104         gdouble throughput_error_smoothing_factor;
105         gdouble gain_exponent;
106         gdouble max_sample_error;
107
108         gdouble current_control_setting;
109         gint64 total_samples;
110         gint16 last_thread_count;
111         gdouble elapsed_since_last_change;
112         gdouble completions_since_last_change;
113
114         gdouble average_throughput_noise;
115
116         gdouble *samples;
117         gdouble *thread_counts;
118
119         guint32 current_sample_interval;
120         gpointer random_interval_generator;
121
122         gint32 accumulated_completion_count;
123         gdouble accumulated_sample_duration;
124 } ThreadPoolHillClimbing;
125
126 typedef struct {
127         ThreadPoolCounter counters;
128
129         GPtrArray *domains; // ThreadPoolDomain* []
130         MonoCoopMutex domains_lock;
131
132         GPtrArray *working_threads; // ThreadPoolWorkingThread* []
133         gint32 parked_threads_count;
134         MonoCoopCond parked_threads_cond;
135         MonoCoopMutex active_threads_lock; /* protect access to working_threads and parked_threads */
136
137         guint32 worker_creation_current_second;
138         guint32 worker_creation_current_count;
139         MonoCoopMutex worker_creation_lock;
140
141         gint32 heuristic_completions;
142         guint32 heuristic_sample_start;
143         guint32 heuristic_last_dequeue; // ms
144         guint32 heuristic_last_adjustment; // ms
145         guint32 heuristic_adjustment_interval; // ms
146         ThreadPoolHillClimbing heuristic_hill_climbing;
147         MonoCoopMutex heuristic_lock;
148
149         gint32 limit_worker_min;
150         gint32 limit_worker_max;
151         gint32 limit_io_min;
152         gint32 limit_io_max;
153
154         MonoCpuUsageState *cpu_usage_state;
155         gint32 cpu_usage;
156
157         /* suspended by the debugger */
158         gboolean suspended;
159 } ThreadPool;
160
161 typedef enum {
162         TRANSITION_WARMUP,
163         TRANSITION_INITIALIZING,
164         TRANSITION_RANDOM_MOVE,
165         TRANSITION_CLIMBING_MOVE,
166         TRANSITION_CHANGE_POINT,
167         TRANSITION_STABILIZING,
168         TRANSITION_STARVATION,
169         TRANSITION_THREAD_TIMED_OUT,
170         TRANSITION_UNDEFINED,
171 } ThreadPoolHeuristicStateTransition;
172
173 static mono_lazy_init_t status = MONO_LAZY_INIT_STATUS_NOT_INITIALIZED;
174
175 enum {
176         MONITOR_STATUS_REQUESTED,
177         MONITOR_STATUS_WAITING_FOR_REQUEST,
178         MONITOR_STATUS_NOT_RUNNING,
179 };
180
181 static gint32 monitor_status = MONITOR_STATUS_NOT_RUNNING;
182
183 static ThreadPool* threadpool;
184
185 #define COUNTER_CHECK(counter) \
186         do { \
187                 g_assert (counter._.max_working > 0); \
188                 g_assert (counter._.working >= 0); \
189                 g_assert (counter._.active >= 0); \
190         } while (0)
191
192 #define COUNTER_READ() (InterlockedRead64 (&threadpool->counters.as_gint64))
193
194 #define COUNTER_ATOMIC(var,block) \
195         do { \
196                 ThreadPoolCounter __old; \
197                 do { \
198                         g_assert (threadpool); \
199                         __old.as_gint64 = COUNTER_READ (); \
200                         (var) = __old; \
201                         { block; } \
202                         COUNTER_CHECK (var); \
203                 } while (InterlockedCompareExchange64 (&threadpool->counters.as_gint64, (var).as_gint64, __old.as_gint64) != __old.as_gint64); \
204         } while (0)
205
206 #define COUNTER_TRY_ATOMIC(res,var,block) \
207         do { \
208                 ThreadPoolCounter __old; \
209                 do { \
210                         g_assert (threadpool); \
211                         __old.as_gint64 = COUNTER_READ (); \
212                         (var) = __old; \
213                         (res) = FALSE; \
214                         { block; } \
215                         COUNTER_CHECK (var); \
216                         (res) = InterlockedCompareExchange64 (&threadpool->counters.as_gint64, (var).as_gint64, __old.as_gint64) == __old.as_gint64; \
217                 } while (0); \
218         } while (0)
219
220 static gpointer
221 rand_create (void)
222 {
223         mono_rand_open ();
224         return mono_rand_init (NULL, 0);
225 }
226
227 static guint32
228 rand_next (gpointer *handle, guint32 min, guint32 max)
229 {
230         guint32 val;
231         if (!mono_rand_try_get_uint32 (handle, &val, min, max)) {
232                 // FIXME handle error
233                 g_assert_not_reached ();
234         }
235         return val;
236 }
237
238 static void
239 rand_free (gpointer handle)
240 {
241         mono_rand_close (handle);
242 }
243
244 static void
245 initialize (void)
246 {
247         ThreadPoolHillClimbing *hc;
248         const char *threads_per_cpu_env;
249         gint threads_per_cpu;
250         gint threads_count;
251
252         g_assert (!threadpool);
253         threadpool = g_new0 (ThreadPool, 1);
254         g_assert (threadpool);
255
256         threadpool->domains = g_ptr_array_new ();
257         mono_coop_mutex_init (&threadpool->domains_lock);
258
259         threadpool->parked_threads_count = 0;
260         mono_coop_cond_init (&threadpool->parked_threads_cond);
261         threadpool->working_threads = g_ptr_array_new ();
262         mono_coop_mutex_init (&threadpool->active_threads_lock);
263
264         threadpool->worker_creation_current_second = -1;
265         mono_coop_mutex_init (&threadpool->worker_creation_lock);
266
267         threadpool->heuristic_adjustment_interval = 10;
268         mono_coop_mutex_init (&threadpool->heuristic_lock);
269
270         mono_rand_open ();
271
272         hc = &threadpool->heuristic_hill_climbing;
273
274         hc->wave_period = HILL_CLIMBING_WAVE_PERIOD;
275         hc->max_thread_wave_magnitude = HILL_CLIMBING_MAX_WAVE_MAGNITUDE;
276         hc->thread_magnitude_multiplier = (gdouble) HILL_CLIMBING_WAVE_MAGNITUDE_MULTIPLIER;
277         hc->samples_to_measure = hc->wave_period * HILL_CLIMBING_WAVE_HISTORY_SIZE;
278         hc->target_throughput_ratio = (gdouble) HILL_CLIMBING_BIAS;
279         hc->target_signal_to_noise_ratio = (gdouble) HILL_CLIMBING_TARGET_SIGNAL_TO_NOISE_RATIO;
280         hc->max_change_per_second = (gdouble) HILL_CLIMBING_MAX_CHANGE_PER_SECOND;
281         hc->max_change_per_sample = (gdouble) HILL_CLIMBING_MAX_CHANGE_PER_SAMPLE;
282         hc->sample_interval_low = HILL_CLIMBING_SAMPLE_INTERVAL_LOW;
283         hc->sample_interval_high = HILL_CLIMBING_SAMPLE_INTERVAL_HIGH;
284         hc->throughput_error_smoothing_factor = (gdouble) HILL_CLIMBING_ERROR_SMOOTHING_FACTOR;
285         hc->gain_exponent = (gdouble) HILL_CLIMBING_GAIN_EXPONENT;
286         hc->max_sample_error = (gdouble) HILL_CLIMBING_MAX_SAMPLE_ERROR_PERCENT;
287         hc->current_control_setting = 0;
288         hc->total_samples = 0;
289         hc->last_thread_count = 0;
290         hc->average_throughput_noise = 0;
291         hc->elapsed_since_last_change = 0;
292         hc->accumulated_completion_count = 0;
293         hc->accumulated_sample_duration = 0;
294         hc->samples = g_new0 (gdouble, hc->samples_to_measure);
295         hc->thread_counts = g_new0 (gdouble, hc->samples_to_measure);
296         hc->random_interval_generator = rand_create ();
297         hc->current_sample_interval = rand_next (&hc->random_interval_generator, hc->sample_interval_low, hc->sample_interval_high);
298
299         if (!(threads_per_cpu_env = g_getenv ("MONO_THREADS_PER_CPU")))
300                 threads_per_cpu = 1;
301         else
302                 threads_per_cpu = CLAMP (atoi (threads_per_cpu_env), 1, 50);
303
304         threads_count = mono_cpu_count () * threads_per_cpu;
305
306         threadpool->limit_worker_min = threadpool->limit_io_min = threads_count;
307
308 #if defined (PLATFORM_ANDROID) || defined (HOST_IOS)
309         threadpool->limit_worker_max = threadpool->limit_io_max = CLAMP (threads_count * 100, MIN (threads_count, 200), MAX (threads_count, 200));
310 #else
311         threadpool->limit_worker_max = threadpool->limit_io_max = threads_count * 100;
312 #endif
313
314         threadpool->counters._.max_working = threadpool->limit_worker_min;
315
316         threadpool->cpu_usage_state = g_new0 (MonoCpuUsageState, 1);
317
318         threadpool->suspended = FALSE;
319 }
320
321 static void worker_kill (ThreadPoolWorkingThread *thread);
322
323 static void
324 cleanup (void)
325 {
326         guint i;
327
328         /* we make the assumption along the code that we are
329          * cleaning up only if the runtime is shutting down */
330         g_assert (mono_runtime_is_shutting_down ());
331
332         while (monitor_status != MONITOR_STATUS_NOT_RUNNING)
333                 mono_thread_info_sleep (1, NULL);
334
335         mono_coop_mutex_lock (&threadpool->active_threads_lock);
336
337         /* stop all threadpool->working_threads */
338         for (i = 0; i < threadpool->working_threads->len; ++i)
339                 worker_kill ((ThreadPoolWorkingThread*) g_ptr_array_index (threadpool->working_threads, i));
340
341         /* unpark all threadpool->parked_threads */
342         mono_coop_cond_broadcast (&threadpool->parked_threads_cond);
343
344         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
345 }
346
347 void
348 mono_threadpool_ms_enqueue_work_item (MonoDomain *domain, MonoObject *work_item)
349 {
350         static MonoClass *threadpool_class = NULL;
351         static MonoMethod *unsafe_queue_custom_work_item_method = NULL;
352         MonoDomain *current_domain;
353         MonoBoolean f;
354         gpointer args [2];
355
356         g_assert (work_item);
357
358         if (!threadpool_class)
359                 threadpool_class = mono_class_from_name (mono_defaults.corlib, "System.Threading", "ThreadPool");
360         g_assert (threadpool_class);
361
362         if (!unsafe_queue_custom_work_item_method)
363                 unsafe_queue_custom_work_item_method = mono_class_get_method_from_name (threadpool_class, "UnsafeQueueCustomWorkItem", 2);
364         g_assert (unsafe_queue_custom_work_item_method);
365
366         f = FALSE;
367
368         args [0] = (gpointer) work_item;
369         args [1] = (gpointer) &f;
370
371         current_domain = mono_domain_get ();
372         if (current_domain == domain) {
373                 mono_runtime_invoke (unsafe_queue_custom_work_item_method, NULL, args, NULL);
374         } else {
375                 mono_thread_push_appdomain_ref (domain);
376                 if (mono_domain_set (domain, FALSE)) {
377                         mono_runtime_invoke (unsafe_queue_custom_work_item_method, NULL, args, NULL);
378                         mono_domain_set (current_domain, TRUE);
379                 }
380                 mono_thread_pop_appdomain_ref ();
381         }
382 }
383
384 /* LOCKING: threadpool->domains_lock must be held */
385 static void
386 domain_add (ThreadPoolDomain *tpdomain)
387 {
388         guint i, len;
389
390         g_assert (tpdomain);
391
392         len = threadpool->domains->len;
393         for (i = 0; i < len; ++i) {
394                 if (g_ptr_array_index (threadpool->domains, i) == tpdomain)
395                         break;
396         }
397
398         if (i == len)
399                 g_ptr_array_add (threadpool->domains, tpdomain);
400 }
401
402 /* LOCKING: threadpool->domains_lock must be held */
403 static gboolean
404 domain_remove (ThreadPoolDomain *tpdomain)
405 {
406         g_assert (tpdomain);
407         return g_ptr_array_remove (threadpool->domains, tpdomain);
408 }
409
410 /* LOCKING: threadpool->domains_lock must be held */
411 static ThreadPoolDomain *
412 domain_get (MonoDomain *domain, gboolean create)
413 {
414         ThreadPoolDomain *tpdomain = NULL;
415         guint i;
416
417         g_assert (domain);
418
419         for (i = 0; i < threadpool->domains->len; ++i) {
420                 tpdomain = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i);
421                 if (tpdomain->domain == domain)
422                         return tpdomain;
423         }
424
425         if (create) {
426                 tpdomain = g_new0 (ThreadPoolDomain, 1);
427                 tpdomain->domain = domain;
428                 domain_add (tpdomain);
429         }
430
431         return tpdomain;
432 }
433
434 static void
435 domain_free (ThreadPoolDomain *tpdomain)
436 {
437         g_free (tpdomain);
438 }
439
440 /* LOCKING: threadpool->domains_lock must be held */
441 static gboolean
442 domain_any_has_request (void)
443 {
444         guint i;
445
446         for (i = 0; i < threadpool->domains->len; ++i) {
447                 ThreadPoolDomain *tmp = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i);
448                 if (tmp->outstanding_request > 0)
449                         return TRUE;
450         }
451
452         return FALSE;
453 }
454
455 /* LOCKING: threadpool->domains_lock must be held */
456 static ThreadPoolDomain *
457 domain_get_next (ThreadPoolDomain *current)
458 {
459         ThreadPoolDomain *tpdomain = NULL;
460         guint len;
461
462         len = threadpool->domains->len;
463         if (len > 0) {
464                 guint i, current_idx = -1;
465                 if (current) {
466                         for (i = 0; i < len; ++i) {
467                                 if (current == g_ptr_array_index (threadpool->domains, i)) {
468                                         current_idx = i;
469                                         break;
470                                 }
471                         }
472                         g_assert (current_idx >= 0);
473                 }
474                 for (i = current_idx + 1; i < len + current_idx + 1; ++i) {
475                         ThreadPoolDomain *tmp = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i % len);
476                         if (tmp->outstanding_request > 0) {
477                                 tpdomain = tmp;
478                                 break;
479                         }
480                 }
481         }
482
483         return tpdomain;
484 }
485
486 static void
487 worker_wait_interrupt (gpointer data)
488 {
489         mono_coop_mutex_lock (&threadpool->active_threads_lock);
490         mono_coop_cond_signal (&threadpool->parked_threads_cond);
491         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
492 }
493
494 /* return TRUE if timeout, FALSE otherwise (worker unpark or interrupt) */
495 static gboolean
496 worker_park (void)
497 {
498         gboolean timeout = FALSE;
499
500         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] current worker parking", mono_native_thread_id_get ());
501
502         mono_gc_set_skip_thread (TRUE);
503
504         mono_coop_mutex_lock (&threadpool->active_threads_lock);
505
506         if (!mono_runtime_is_shutting_down ()) {
507                 static gpointer rand_handle = NULL;
508                 MonoInternalThread *thread_internal;
509                 gboolean interrupted = FALSE;
510
511                 if (!rand_handle)
512                         rand_handle = rand_create ();
513                 g_assert (rand_handle);
514
515                 thread_internal = mono_thread_internal_current ();
516                 g_assert (thread_internal);
517
518                 threadpool->parked_threads_count += 1;
519                 g_ptr_array_remove_fast (threadpool->working_threads, thread_internal);
520
521                 mono_thread_info_install_interrupt (worker_wait_interrupt, NULL, &interrupted);
522                 if (interrupted)
523                         goto done;
524
525                 if (mono_coop_cond_timedwait (&threadpool->parked_threads_cond, &threadpool->active_threads_lock, rand_next ((void **)rand_handle, 5 * 1000, 60 * 1000)) != 0)
526                         timeout = TRUE;
527
528                 mono_thread_info_uninstall_interrupt (&interrupted);
529
530 done:
531                 g_ptr_array_add (threadpool->working_threads, thread_internal);
532                 threadpool->parked_threads_count -= 1;
533         }
534
535         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
536
537         mono_gc_set_skip_thread (FALSE);
538
539         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] current worker unparking, timeout? %s", mono_native_thread_id_get (), timeout ? "yes" : "no");
540
541         return timeout;
542 }
543
544 static gboolean
545 worker_try_unpark (void)
546 {
547         gboolean res = FALSE;
548
549         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try unpark worker", mono_native_thread_id_get ());
550
551         mono_coop_mutex_lock (&threadpool->active_threads_lock);
552         if (threadpool->parked_threads_count > 0) {
553                 mono_coop_cond_signal (&threadpool->parked_threads_cond);
554                 res = TRUE;
555         }
556         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
557
558         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try unpark worker, success? %s", mono_native_thread_id_get (), res ? "yes" : "no");
559
560         return res;
561 }
562
563 static void
564 worker_kill (ThreadPoolWorkingThread *thread)
565 {
566         if (thread == mono_thread_internal_current ())
567                 return;
568
569         mono_thread_internal_stop ((MonoInternalThread*) thread);
570 }
571
572 static void
573 worker_thread (gpointer data)
574 {
575         MonoInternalThread *thread;
576         ThreadPoolDomain *tpdomain, *previous_tpdomain;
577         ThreadPoolCounter counter;
578         gboolean retire = FALSE;
579
580         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] worker starting", mono_native_thread_id_get ());
581
582         g_assert (threadpool);
583
584         thread = mono_thread_internal_current ();
585         g_assert (thread);
586
587         mono_thread_set_name_internal (thread, mono_string_new (mono_domain_get (), "Threadpool worker"), FALSE);
588
589         mono_coop_mutex_lock (&threadpool->active_threads_lock);
590         g_ptr_array_add (threadpool->working_threads, thread);
591         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
592
593         previous_tpdomain = NULL;
594
595         mono_coop_mutex_lock (&threadpool->domains_lock);
596
597         while (!mono_runtime_is_shutting_down ()) {
598                 tpdomain = NULL;
599
600                 if ((thread->state & (ThreadState_StopRequested | ThreadState_SuspendRequested)) != 0) {
601                         mono_coop_mutex_unlock (&threadpool->domains_lock);
602                         mono_thread_interruption_checkpoint ();
603                         mono_coop_mutex_lock (&threadpool->domains_lock);
604                 }
605
606                 if (retire || !(tpdomain = domain_get_next (previous_tpdomain))) {
607                         gboolean timeout;
608
609                         COUNTER_ATOMIC (counter, {
610                                 counter._.working --;
611                                 counter._.parked ++;
612                         });
613
614                         mono_coop_mutex_unlock (&threadpool->domains_lock);
615                         timeout = worker_park ();
616                         mono_coop_mutex_lock (&threadpool->domains_lock);
617
618                         COUNTER_ATOMIC (counter, {
619                                 counter._.working ++;
620                                 counter._.parked --;
621                         });
622
623                         if (timeout)
624                                 break;
625
626                         if (retire)
627                                 retire = FALSE;
628
629                         continue;
630                 }
631
632                 tpdomain->outstanding_request --;
633                 g_assert (tpdomain->outstanding_request >= 0);
634
635                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] worker running in domain %p",
636                         mono_native_thread_id_get (), tpdomain->domain, tpdomain->outstanding_request);
637
638                 g_assert (tpdomain->domain);
639                 g_assert (tpdomain->domain->threadpool_jobs >= 0);
640                 tpdomain->domain->threadpool_jobs ++;
641
642                 mono_coop_mutex_unlock (&threadpool->domains_lock);
643
644                 mono_thread_push_appdomain_ref (tpdomain->domain);
645                 if (mono_domain_set (tpdomain->domain, FALSE)) {
646                         MonoObject *exc = NULL;
647                         MonoObject *res = mono_runtime_invoke (mono_defaults.threadpool_perform_wait_callback_method, NULL, NULL, &exc);
648                         if (exc)
649                                 mono_thread_internal_unhandled_exception (exc);
650                         else if (res && *(MonoBoolean*) mono_object_unbox (res) == FALSE)
651                                 retire = TRUE;
652
653                         mono_thread_clr_state (thread, (MonoThreadState)~ThreadState_Background);
654                         if (!mono_thread_test_state (thread , ThreadState_Background))
655                                 ves_icall_System_Threading_Thread_SetState (thread, ThreadState_Background);
656
657                         mono_domain_set (mono_get_root_domain (), TRUE);
658                 }
659                 mono_thread_pop_appdomain_ref ();
660
661                 mono_coop_mutex_lock (&threadpool->domains_lock);
662
663                 tpdomain->domain->threadpool_jobs --;
664                 g_assert (tpdomain->domain->threadpool_jobs >= 0);
665
666                 if (tpdomain->domain->threadpool_jobs == 0 && mono_domain_is_unloading (tpdomain->domain)) {
667                         gboolean removed = domain_remove (tpdomain);
668                         g_assert (removed);
669                         if (tpdomain->domain->cleanup_semaphore)
670                                 ReleaseSemaphore (tpdomain->domain->cleanup_semaphore, 1, NULL);
671                         domain_free (tpdomain);
672                         tpdomain = NULL;
673                 }
674
675                 previous_tpdomain = tpdomain;
676         }
677
678         mono_coop_mutex_unlock (&threadpool->domains_lock);
679
680         mono_coop_mutex_lock (&threadpool->active_threads_lock);
681         g_ptr_array_remove_fast (threadpool->working_threads, thread);
682         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
683
684         COUNTER_ATOMIC (counter, {
685                 counter._.working--;
686                 counter._.active --;
687         });
688
689         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] worker finishing", mono_native_thread_id_get ());
690 }
691
692 static gboolean
693 worker_try_create (void)
694 {
695         ThreadPoolCounter counter;
696         MonoInternalThread *thread;
697         gint32 now;
698
699         mono_coop_mutex_lock (&threadpool->worker_creation_lock);
700
701         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker", mono_native_thread_id_get ());
702
703         if ((now = mono_100ns_ticks () / 10 / 1000 / 1000) == 0) {
704                 g_warning ("failed to get 100ns ticks");
705         } else {
706                 if (threadpool->worker_creation_current_second != now) {
707                         threadpool->worker_creation_current_second = now;
708                         threadpool->worker_creation_current_count = 0;
709                 } else {
710                         g_assert (threadpool->worker_creation_current_count <= WORKER_CREATION_MAX_PER_SEC);
711                         if (threadpool->worker_creation_current_count == WORKER_CREATION_MAX_PER_SEC) {
712                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: maximum number of worker created per second reached, current count = %d",
713                                         mono_native_thread_id_get (), threadpool->worker_creation_current_count);
714                                 mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
715                                 return FALSE;
716                         }
717                 }
718         }
719
720         COUNTER_ATOMIC (counter, {
721                 if (counter._.working >= counter._.max_working) {
722                         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: maximum number of working threads reached",
723                                 mono_native_thread_id_get ());
724                         mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
725                         return FALSE;
726                 }
727                 counter._.working ++;
728                 counter._.active ++;
729         });
730
731         if ((thread = mono_thread_create_internal (mono_get_root_domain (), worker_thread, NULL, TRUE, 0)) != NULL) {
732                 threadpool->worker_creation_current_count += 1;
733
734                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, created %p, now = %d count = %d", mono_native_thread_id_get (), thread->tid, now, threadpool->worker_creation_current_count);
735                 mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
736                 return TRUE;
737         }
738
739         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: could not create thread", mono_native_thread_id_get ());
740
741         COUNTER_ATOMIC (counter, {
742                 counter._.working --;
743                 counter._.active --;
744         });
745
746         mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
747         return FALSE;
748 }
749
750 static void monitor_ensure_running (void);
751
752 static gboolean
753 worker_request (MonoDomain *domain)
754 {
755         ThreadPoolDomain *tpdomain;
756
757         g_assert (domain);
758         g_assert (threadpool);
759
760         if (mono_runtime_is_shutting_down ())
761                 return FALSE;
762
763         mono_coop_mutex_lock (&threadpool->domains_lock);
764
765         /* synchronize check with worker_thread */
766         if (mono_domain_is_unloading (domain)) {
767                 mono_coop_mutex_unlock (&threadpool->domains_lock);
768                 return FALSE;
769         }
770
771         tpdomain = domain_get (domain, TRUE);
772         g_assert (tpdomain);
773         tpdomain->outstanding_request ++;
774
775         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, domain = %p, outstanding_request = %d",
776                 mono_native_thread_id_get (), tpdomain->domain, tpdomain->outstanding_request);
777
778         mono_coop_mutex_unlock (&threadpool->domains_lock);
779
780         if (threadpool->suspended)
781                 return FALSE;
782
783         monitor_ensure_running ();
784
785         if (worker_try_unpark ()) {
786                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, unparked", mono_native_thread_id_get ());
787                 return TRUE;
788         }
789
790         if (worker_try_create ()) {
791                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, created", mono_native_thread_id_get ());
792                 return TRUE;
793         }
794
795         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, failed", mono_native_thread_id_get ());
796         return FALSE;
797 }
798
799 static gboolean
800 monitor_should_keep_running (void)
801 {
802         static gint64 last_should_keep_running = -1;
803
804         g_assert (monitor_status == MONITOR_STATUS_WAITING_FOR_REQUEST || monitor_status == MONITOR_STATUS_REQUESTED);
805
806         if (InterlockedExchange (&monitor_status, MONITOR_STATUS_WAITING_FOR_REQUEST) == MONITOR_STATUS_WAITING_FOR_REQUEST) {
807                 gboolean should_keep_running = TRUE, force_should_keep_running = FALSE;
808
809                 if (mono_runtime_is_shutting_down ()) {
810                         should_keep_running = FALSE;
811                 } else {
812                         mono_coop_mutex_lock (&threadpool->domains_lock);
813                         if (!domain_any_has_request ())
814                                 should_keep_running = FALSE;
815                         mono_coop_mutex_unlock (&threadpool->domains_lock);
816
817                         if (!should_keep_running) {
818                                 if (last_should_keep_running == -1 || mono_100ns_ticks () - last_should_keep_running < MONITOR_MINIMAL_LIFETIME * 1000 * 10) {
819                                         should_keep_running = force_should_keep_running = TRUE;
820                                 }
821                         }
822                 }
823
824                 if (should_keep_running) {
825                         if (last_should_keep_running == -1 || !force_should_keep_running)
826                                 last_should_keep_running = mono_100ns_ticks ();
827                 } else {
828                         last_should_keep_running = -1;
829                         if (InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_NOT_RUNNING, MONITOR_STATUS_WAITING_FOR_REQUEST) == MONITOR_STATUS_WAITING_FOR_REQUEST)
830                                 return FALSE;
831                 }
832         }
833
834         g_assert (monitor_status == MONITOR_STATUS_WAITING_FOR_REQUEST || monitor_status == MONITOR_STATUS_REQUESTED);
835
836         return TRUE;
837 }
838
839 static gboolean
840 monitor_sufficient_delay_since_last_dequeue (void)
841 {
842         guint32 threshold;
843
844         g_assert (threadpool);
845
846         if (threadpool->cpu_usage < CPU_USAGE_LOW) {
847                 threshold = MONITOR_INTERVAL;
848         } else {
849                 ThreadPoolCounter counter;
850                 counter.as_gint64 = COUNTER_READ();
851                 threshold = counter._.max_working * MONITOR_INTERVAL * 2;
852         }
853
854         return mono_msec_ticks () >= threadpool->heuristic_last_dequeue + threshold;
855 }
856
857 static void hill_climbing_force_change (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition);
858
859 static void
860 monitor_thread (void)
861 {
862         MonoInternalThread *current_thread = mono_thread_internal_current ();
863         guint i;
864
865         mono_cpu_usage (threadpool->cpu_usage_state);
866
867         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, started", mono_native_thread_id_get ());
868
869         do {
870                 MonoInternalThread *thread;
871                 gboolean all_waitsleepjoin = TRUE;
872                 gint32 interval_left = MONITOR_INTERVAL;
873                 gint32 awake = 0; /* number of spurious awakes we tolerate before doing a round of rebalancing */
874
875                 g_assert (monitor_status != MONITOR_STATUS_NOT_RUNNING);
876
877                 mono_gc_set_skip_thread (TRUE);
878
879                 do {
880                         guint32 ts;
881                         gboolean alerted = FALSE;
882
883                         if (mono_runtime_is_shutting_down ())
884                                 break;
885
886                         ts = mono_msec_ticks ();
887                         if (mono_thread_info_sleep (interval_left, &alerted) == 0)
888                                 break;
889                         interval_left -= mono_msec_ticks () - ts;
890
891                         mono_gc_set_skip_thread (FALSE);
892                         if ((current_thread->state & (ThreadState_StopRequested | ThreadState_SuspendRequested)) != 0)
893                                 mono_thread_interruption_checkpoint ();
894                         mono_gc_set_skip_thread (TRUE);
895                 } while (interval_left > 0 && ++awake < 10);
896
897                 mono_gc_set_skip_thread (FALSE);
898
899                 if (threadpool->suspended)
900                         continue;
901
902                 if (mono_runtime_is_shutting_down ())
903                         continue;
904
905                 mono_coop_mutex_lock (&threadpool->domains_lock);
906                 if (!domain_any_has_request ()) {
907                         mono_coop_mutex_unlock (&threadpool->domains_lock);
908                         continue;
909                 }
910                 mono_coop_mutex_unlock (&threadpool->domains_lock);
911
912
913                 mono_coop_mutex_lock (&threadpool->active_threads_lock);
914                 for (i = 0; i < threadpool->working_threads->len; ++i) {
915                         thread = (MonoInternalThread *)g_ptr_array_index (threadpool->working_threads, i);
916                         if ((thread->state & ThreadState_WaitSleepJoin) == 0) {
917                                 all_waitsleepjoin = FALSE;
918                                 break;
919                         }
920                 }
921                 mono_coop_mutex_unlock (&threadpool->active_threads_lock);
922
923                 if (all_waitsleepjoin) {
924                         ThreadPoolCounter counter;
925                         gboolean limit_worker_max_reached = FALSE;
926
927                         COUNTER_ATOMIC (counter, {
928                                 if (counter._.max_working >= threadpool->limit_worker_max) {
929                                         limit_worker_max_reached = TRUE;
930                                         break;
931                                 }
932                                 counter._.max_working ++;
933                         });
934
935                         if (!limit_worker_max_reached)
936                                 hill_climbing_force_change (counter._.max_working, TRANSITION_STARVATION);
937                 }
938
939                 threadpool->cpu_usage = mono_cpu_usage (threadpool->cpu_usage_state);
940
941                 if (monitor_sufficient_delay_since_last_dequeue ()) {
942                         for (i = 0; i < 5; ++i) {
943                                 if (mono_runtime_is_shutting_down ())
944                                         break;
945
946                                 if (worker_try_unpark ()) {
947                                         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, unparked", mono_native_thread_id_get ());
948                                         break;
949                                 }
950
951                                 if (worker_try_create ()) {
952                                         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, created", mono_native_thread_id_get ());
953                                         break;
954                                 }
955                         }
956                 }
957         } while (monitor_should_keep_running ());
958
959         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, finished", mono_native_thread_id_get ());
960 }
961
962 static void
963 monitor_ensure_running (void)
964 {
965         for (;;) {
966                 switch (monitor_status) {
967                 case MONITOR_STATUS_REQUESTED:
968                         return;
969                 case MONITOR_STATUS_WAITING_FOR_REQUEST:
970                         InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_REQUESTED, MONITOR_STATUS_WAITING_FOR_REQUEST);
971                         break;
972                 case MONITOR_STATUS_NOT_RUNNING:
973                         if (mono_runtime_is_shutting_down ())
974                                 return;
975                         if (InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_REQUESTED, MONITOR_STATUS_NOT_RUNNING) == MONITOR_STATUS_NOT_RUNNING) {
976                                 if (!mono_thread_create_internal (mono_get_root_domain (), monitor_thread, NULL, TRUE, SMALL_STACK))
977                                         monitor_status = MONITOR_STATUS_NOT_RUNNING;
978                                 return;
979                         }
980                         break;
981                 default: g_assert_not_reached ();
982                 }
983         }
984 }
985
986 static void
987 hill_climbing_change_thread_count (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition)
988 {
989         ThreadPoolHillClimbing *hc;
990
991         g_assert (threadpool);
992
993         hc = &threadpool->heuristic_hill_climbing;
994
995         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] hill climbing, change max number of threads %d", mono_native_thread_id_get (), new_thread_count);
996
997         hc->last_thread_count = new_thread_count;
998         hc->current_sample_interval = rand_next (&hc->random_interval_generator, hc->sample_interval_low, hc->sample_interval_high);
999         hc->elapsed_since_last_change = 0;
1000         hc->completions_since_last_change = 0;
1001 }
1002
1003 static void
1004 hill_climbing_force_change (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition)
1005 {
1006         ThreadPoolHillClimbing *hc;
1007
1008         g_assert (threadpool);
1009
1010         hc = &threadpool->heuristic_hill_climbing;
1011
1012         if (new_thread_count != hc->last_thread_count) {
1013                 hc->current_control_setting += new_thread_count - hc->last_thread_count;
1014                 hill_climbing_change_thread_count (new_thread_count, transition);
1015         }
1016 }
1017
1018 static double_complex
1019 hill_climbing_get_wave_component (gdouble *samples, guint sample_count, gdouble period)
1020 {
1021         ThreadPoolHillClimbing *hc;
1022         gdouble w, cosine, sine, coeff, q0, q1, q2;
1023         guint i;
1024
1025         g_assert (threadpool);
1026         g_assert (sample_count >= period);
1027         g_assert (period >= 2);
1028
1029         hc = &threadpool->heuristic_hill_climbing;
1030
1031         w = 2.0 * M_PI / period;
1032         cosine = cos (w);
1033         sine = sin (w);
1034         coeff = 2.0 * cosine;
1035         q0 = q1 = q2 = 0;
1036
1037         for (i = 0; i < sample_count; ++i) {
1038                 q0 = coeff * q1 - q2 + samples [(hc->total_samples - sample_count + i) % hc->samples_to_measure];
1039                 q2 = q1;
1040                 q1 = q0;
1041         }
1042
1043         return mono_double_complex_scalar_div (mono_double_complex_make (q1 - q2 * cosine, (q2 * sine)), ((gdouble)sample_count));
1044 }
1045
1046 static gint16
1047 hill_climbing_update (gint16 current_thread_count, guint32 sample_duration, gint32 completions, guint32 *adjustment_interval)
1048 {
1049         ThreadPoolHillClimbing *hc;
1050         ThreadPoolHeuristicStateTransition transition;
1051         gdouble throughput;
1052         gdouble throughput_error_estimate;
1053         gdouble confidence;
1054         gdouble move;
1055         gdouble gain;
1056         gint sample_index;
1057         gint sample_count;
1058         gint new_thread_wave_magnitude;
1059         gint new_thread_count;
1060         double_complex thread_wave_component;
1061         double_complex throughput_wave_component;
1062         double_complex ratio;
1063
1064         g_assert (threadpool);
1065         g_assert (adjustment_interval);
1066
1067         hc = &threadpool->heuristic_hill_climbing;
1068
1069         /* If someone changed the thread count without telling us, update our records accordingly. */
1070         if (current_thread_count != hc->last_thread_count)
1071                 hill_climbing_force_change (current_thread_count, TRANSITION_INITIALIZING);
1072
1073         /* Update the cumulative stats for this thread count */
1074         hc->elapsed_since_last_change += sample_duration;
1075         hc->completions_since_last_change += completions;
1076
1077         /* Add in any data we've already collected about this sample */
1078         sample_duration += hc->accumulated_sample_duration;
1079         completions += hc->accumulated_completion_count;
1080
1081         /* We need to make sure we're collecting reasonably accurate data. Since we're just counting the end
1082          * of each work item, we are goinng to be missing some data about what really happened during the
1083          * sample interval. The count produced by each thread includes an initial work item that may have
1084          * started well before the start of the interval, and each thread may have been running some new
1085          * work item for some time before the end of the interval, which did not yet get counted. So
1086          * our count is going to be off by +/- threadCount workitems.
1087          *
1088          * The exception is that the thread that reported to us last time definitely wasn't running any work
1089          * at that time, and the thread that's reporting now definitely isn't running a work item now. So
1090          * we really only need to consider threadCount-1 threads.
1091          *
1092          * Thus the percent error in our count is +/- (threadCount-1)/numCompletions.
1093          *
1094          * We cannot rely on the frequency-domain analysis we'll be doing later to filter out this error, because
1095          * of the way it accumulates over time. If this sample is off by, say, 33% in the negative direction,
1096          * then the next one likely will be too. The one after that will include the sum of the completions
1097          * we missed in the previous samples, and so will be 33% positive. So every three samples we'll have
1098          * two "low" samples and one "high" sample. This will appear as periodic variation right in the frequency
1099          * range we're targeting, which will not be filtered by the frequency-domain translation. */
1100         if (hc->total_samples > 0 && ((current_thread_count - 1.0) / completions) >= hc->max_sample_error) {
1101                 /* Not accurate enough yet. Let's accumulate the data so
1102                  * far, and tell the ThreadPool to collect a little more. */
1103                 hc->accumulated_sample_duration = sample_duration;
1104                 hc->accumulated_completion_count = completions;
1105                 *adjustment_interval = 10;
1106                 return current_thread_count;
1107         }
1108
1109         /* We've got enouugh data for our sample; reset our accumulators for next time. */
1110         hc->accumulated_sample_duration = 0;
1111         hc->accumulated_completion_count = 0;
1112
1113         /* Add the current thread count and throughput sample to our history. */
1114         throughput = ((gdouble) completions) / sample_duration;
1115
1116         sample_index = hc->total_samples % hc->samples_to_measure;
1117         hc->samples [sample_index] = throughput;
1118         hc->thread_counts [sample_index] = current_thread_count;
1119         hc->total_samples ++;
1120
1121         /* Set up defaults for our metrics. */
1122         thread_wave_component = mono_double_complex_make(0, 0);
1123         throughput_wave_component = mono_double_complex_make(0, 0);
1124         throughput_error_estimate = 0;
1125         ratio = mono_double_complex_make(0, 0);
1126         confidence = 0;
1127
1128         transition = TRANSITION_WARMUP;
1129
1130         /* How many samples will we use? It must be at least the three wave periods we're looking for, and it must also
1131          * be a whole multiple of the primary wave's period; otherwise the frequency we're looking for will fall between
1132          * two frequency bands in the Fourier analysis, and we won't be able to measure it accurately. */
1133         sample_count = ((gint) MIN (hc->total_samples - 1, hc->samples_to_measure) / hc->wave_period) * hc->wave_period;
1134
1135         if (sample_count > hc->wave_period) {
1136                 guint i;
1137                 gdouble average_throughput;
1138                 gdouble average_thread_count;
1139                 gdouble sample_sum = 0;
1140                 gdouble thread_sum = 0;
1141
1142                 /* Average the throughput and thread count samples, so we can scale the wave magnitudes later. */
1143                 for (i = 0; i < sample_count; ++i) {
1144                         guint j = (hc->total_samples - sample_count + i) % hc->samples_to_measure;
1145                         sample_sum += hc->samples [j];
1146                         thread_sum += hc->thread_counts [j];
1147                 }
1148
1149                 average_throughput = sample_sum / sample_count;
1150                 average_thread_count = thread_sum / sample_count;
1151
1152                 if (average_throughput > 0 && average_thread_count > 0) {
1153                         gdouble noise_for_confidence, adjacent_period_1, adjacent_period_2;
1154
1155                         /* Calculate the periods of the adjacent frequency bands we'll be using to
1156                          * measure noise levels. We want the two adjacent Fourier frequency bands. */
1157                         adjacent_period_1 = sample_count / (((gdouble) sample_count) / ((gdouble) hc->wave_period) + 1);
1158                         adjacent_period_2 = sample_count / (((gdouble) sample_count) / ((gdouble) hc->wave_period) - 1);
1159
1160                         /* Get the the three different frequency components of the throughput (scaled by average
1161                          * throughput). Our "error" estimate (the amount of noise that might be present in the
1162                          * frequency band we're really interested in) is the average of the adjacent bands. */
1163                         throughput_wave_component = mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->samples, sample_count, hc->wave_period), average_throughput);
1164                         throughput_error_estimate = cabs (mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->samples, sample_count, adjacent_period_1), average_throughput));
1165
1166                         if (adjacent_period_2 <= sample_count) {
1167                                 throughput_error_estimate = MAX (throughput_error_estimate, cabs (mono_double_complex_scalar_div (hill_climbing_get_wave_component (
1168                                         hc->samples, sample_count, adjacent_period_2), average_throughput)));
1169                         }
1170
1171                         /* Do the same for the thread counts, so we have something to compare to. We don't
1172                          * measure thread count noise, because there is none; these are exact measurements. */
1173                         thread_wave_component = mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->thread_counts, sample_count, hc->wave_period), average_thread_count);
1174
1175                         /* Update our moving average of the throughput noise. We'll use this
1176                          * later as feedback to determine the new size of the thread wave. */
1177                         if (hc->average_throughput_noise == 0) {
1178                                 hc->average_throughput_noise = throughput_error_estimate;
1179                         } else {
1180                                 hc->average_throughput_noise = (hc->throughput_error_smoothing_factor * throughput_error_estimate)
1181                                         + ((1.0 + hc->throughput_error_smoothing_factor) * hc->average_throughput_noise);
1182                         }
1183
1184                         if (cabs (thread_wave_component) > 0) {
1185                                 /* Adjust the throughput wave so it's centered around the target wave,
1186                                  * and then calculate the adjusted throughput/thread ratio. */
1187                                 ratio = mono_double_complex_div (mono_double_complex_sub (throughput_wave_component, mono_double_complex_scalar_mul(thread_wave_component, hc->target_throughput_ratio)), thread_wave_component);
1188                                 transition = TRANSITION_CLIMBING_MOVE;
1189                         } else {
1190                                 ratio = mono_double_complex_make (0, 0);
1191                                 transition = TRANSITION_STABILIZING;
1192                         }
1193
1194                         noise_for_confidence = MAX (hc->average_throughput_noise, throughput_error_estimate);
1195                         if (noise_for_confidence > 0) {
1196                                 confidence = cabs (thread_wave_component) / noise_for_confidence / hc->target_signal_to_noise_ratio;
1197                         } else {
1198                                 /* there is no noise! */
1199                                 confidence = 1.0;
1200                         }
1201                 }
1202         }
1203
1204         /* We use just the real part of the complex ratio we just calculated. If the throughput signal
1205          * is exactly in phase with the thread signal, this will be the same as taking the magnitude of
1206          * the complex move and moving that far up. If they're 180 degrees out of phase, we'll move
1207          * backward (because this indicates that our changes are having the opposite of the intended effect).
1208          * If they're 90 degrees out of phase, we won't move at all, because we can't tell wether we're
1209          * having a negative or positive effect on throughput. */
1210         move = creal (ratio);
1211         move = CLAMP (move, -1.0, 1.0);
1212
1213         /* Apply our confidence multiplier. */
1214         move *= CLAMP (confidence, -1.0, 1.0);
1215
1216         /* Now apply non-linear gain, such that values around zero are attenuated, while higher values
1217          * are enhanced. This allows us to move quickly if we're far away from the target, but more slowly
1218         * if we're getting close, giving us rapid ramp-up without wild oscillations around the target. */
1219         gain = hc->max_change_per_second * sample_duration;
1220         move = pow (fabs (move), hc->gain_exponent) * (move >= 0.0 ? 1 : -1) * gain;
1221         move = MIN (move, hc->max_change_per_sample);
1222
1223         /* If the result was positive, and CPU is > 95%, refuse the move. */
1224         if (move > 0.0 && threadpool->cpu_usage > CPU_USAGE_HIGH)
1225                 move = 0.0;
1226
1227         /* Apply the move to our control setting. */
1228         hc->current_control_setting += move;
1229
1230         /* Calculate the new thread wave magnitude, which is based on the moving average we've been keeping of the
1231          * throughput error.  This average starts at zero, so we'll start with a nice safe little wave at first. */
1232         new_thread_wave_magnitude = (gint)(0.5 + (hc->current_control_setting * hc->average_throughput_noise
1233                 * hc->target_signal_to_noise_ratio * hc->thread_magnitude_multiplier * 2.0));
1234         new_thread_wave_magnitude = CLAMP (new_thread_wave_magnitude, 1, hc->max_thread_wave_magnitude);
1235
1236         /* Make sure our control setting is within the ThreadPool's limits. */
1237         hc->current_control_setting = CLAMP (hc->current_control_setting, threadpool->limit_worker_min, threadpool->limit_worker_max - new_thread_wave_magnitude);
1238
1239         /* Calculate the new thread count (control setting + square wave). */
1240         new_thread_count = (gint)(hc->current_control_setting + new_thread_wave_magnitude * ((hc->total_samples / (hc->wave_period / 2)) % 2));
1241
1242         /* Make sure the new thread count doesn't exceed the ThreadPool's limits. */
1243         new_thread_count = CLAMP (new_thread_count, threadpool->limit_worker_min, threadpool->limit_worker_max);
1244
1245         if (new_thread_count != current_thread_count)
1246                 hill_climbing_change_thread_count (new_thread_count, transition);
1247
1248         if (creal (ratio) < 0.0 && new_thread_count == threadpool->limit_worker_min)
1249                 *adjustment_interval = (gint)(0.5 + hc->current_sample_interval * (10.0 * MAX (-1.0 * creal (ratio), 1.0)));
1250         else
1251                 *adjustment_interval = hc->current_sample_interval;
1252
1253         return new_thread_count;
1254 }
1255
1256 static void
1257 heuristic_notify_work_completed (void)
1258 {
1259         g_assert (threadpool);
1260
1261         InterlockedIncrement (&threadpool->heuristic_completions);
1262         threadpool->heuristic_last_dequeue = mono_msec_ticks ();
1263 }
1264
1265 static gboolean
1266 heuristic_should_adjust (void)
1267 {
1268         g_assert (threadpool);
1269
1270         if (threadpool->heuristic_last_dequeue > threadpool->heuristic_last_adjustment + threadpool->heuristic_adjustment_interval) {
1271                 ThreadPoolCounter counter;
1272                 counter.as_gint64 = COUNTER_READ();
1273                 if (counter._.working <= counter._.max_working)
1274                         return TRUE;
1275         }
1276
1277         return FALSE;
1278 }
1279
1280 static void
1281 heuristic_adjust (void)
1282 {
1283         g_assert (threadpool);
1284
1285         if (mono_coop_mutex_trylock (&threadpool->heuristic_lock) == 0) {
1286                 gint32 completions = InterlockedExchange (&threadpool->heuristic_completions, 0);
1287                 guint32 sample_end = mono_msec_ticks ();
1288                 guint32 sample_duration = sample_end - threadpool->heuristic_sample_start;
1289
1290                 if (sample_duration >= threadpool->heuristic_adjustment_interval / 2) {
1291                         ThreadPoolCounter counter;
1292                         gint16 new_thread_count;
1293
1294                         counter.as_gint64 = COUNTER_READ ();
1295                         new_thread_count = hill_climbing_update (counter._.max_working, sample_duration, completions, &threadpool->heuristic_adjustment_interval);
1296
1297                         COUNTER_ATOMIC (counter, { counter._.max_working = new_thread_count; });
1298
1299                         if (new_thread_count > counter._.max_working)
1300                                 worker_request (mono_domain_get ());
1301
1302                         threadpool->heuristic_sample_start = sample_end;
1303                         threadpool->heuristic_last_adjustment = mono_msec_ticks ();
1304                 }
1305
1306                 mono_coop_mutex_unlock (&threadpool->heuristic_lock);
1307         }
1308 }
1309
1310 void
1311 mono_threadpool_ms_cleanup (void)
1312 {
1313         #ifndef DISABLE_SOCKETS
1314                 mono_threadpool_ms_io_cleanup ();
1315         #endif
1316         mono_lazy_cleanup (&status, cleanup);
1317 }
1318
1319 MonoAsyncResult *
1320 mono_threadpool_ms_begin_invoke (MonoDomain *domain, MonoObject *target, MonoMethod *method, gpointer *params)
1321 {
1322         static MonoClass *async_call_klass = NULL;
1323         MonoMethodMessage *message;
1324         MonoAsyncResult *async_result;
1325         MonoAsyncCall *async_call;
1326         MonoDelegate *async_callback = NULL;
1327         MonoObject *state = NULL;
1328
1329         if (!async_call_klass)
1330                 async_call_klass = mono_class_from_name (mono_defaults.corlib, "System", "MonoAsyncCall");
1331         g_assert (async_call_klass);
1332
1333         mono_lazy_initialize (&status, initialize);
1334
1335         message = mono_method_call_message_new (method, params, mono_get_delegate_invoke (method->klass), (params != NULL) ? (&async_callback) : NULL, (params != NULL) ? (&state) : NULL);
1336
1337         async_call = (MonoAsyncCall*) mono_object_new (domain, async_call_klass);
1338         MONO_OBJECT_SETREF (async_call, msg, message);
1339         MONO_OBJECT_SETREF (async_call, state, state);
1340
1341         if (async_callback) {
1342                 MONO_OBJECT_SETREF (async_call, cb_method, mono_get_delegate_invoke (((MonoObject*) async_callback)->vtable->klass));
1343                 MONO_OBJECT_SETREF (async_call, cb_target, async_callback);
1344         }
1345
1346         async_result = mono_async_result_new (domain, NULL, async_call->state, NULL, (MonoObject*) async_call);
1347         MONO_OBJECT_SETREF (async_result, async_delegate, target);
1348
1349         mono_threadpool_ms_enqueue_work_item (domain, (MonoObject*) async_result);
1350
1351         return async_result;
1352 }
1353
1354 MonoObject *
1355 mono_threadpool_ms_end_invoke (MonoAsyncResult *ares, MonoArray **out_args, MonoObject **exc)
1356 {
1357         MonoAsyncCall *ac;
1358
1359         g_assert (exc);
1360         g_assert (out_args);
1361
1362         *exc = NULL;
1363         *out_args = NULL;
1364
1365         /* check if already finished */
1366         mono_monitor_enter ((MonoObject*) ares);
1367
1368         if (ares->endinvoke_called) {
1369                 *exc = (MonoObject*) mono_get_exception_invalid_operation (NULL);
1370                 mono_monitor_exit ((MonoObject*) ares);
1371                 return NULL;
1372         }
1373
1374         ares->endinvoke_called = 1;
1375
1376         /* wait until we are really finished */
1377         if (ares->completed) {
1378                 mono_monitor_exit ((MonoObject *) ares);
1379         } else {
1380                 gpointer wait_event;
1381                 if (ares->handle) {
1382                         wait_event = mono_wait_handle_get_handle ((MonoWaitHandle*) ares->handle);
1383                 } else {
1384                         wait_event = CreateEvent (NULL, TRUE, FALSE, NULL);
1385                         g_assert(wait_event);
1386                         MONO_OBJECT_SETREF (ares, handle, (MonoObject*) mono_wait_handle_new (mono_object_domain (ares), wait_event));
1387                 }
1388                 mono_monitor_exit ((MonoObject*) ares);
1389                 MONO_PREPARE_BLOCKING;
1390                 WaitForSingleObjectEx (wait_event, INFINITE, TRUE);
1391                 MONO_FINISH_BLOCKING;
1392         }
1393
1394         ac = (MonoAsyncCall*) ares->object_data;
1395         g_assert (ac);
1396
1397         *exc = ac->msg->exc; /* FIXME: GC add write barrier */
1398         *out_args = ac->out_args;
1399         return ac->res;
1400 }
1401
1402 gboolean
1403 mono_threadpool_ms_remove_domain_jobs (MonoDomain *domain, int timeout)
1404 {
1405         gboolean res = TRUE;
1406         guint32 start;
1407         gpointer sem;
1408
1409         g_assert (domain);
1410         g_assert (timeout >= -1);
1411
1412         g_assert (mono_domain_is_unloading (domain));
1413
1414         if (timeout != -1)
1415                 start = mono_msec_ticks ();
1416
1417 #ifndef DISABLE_SOCKETS
1418         mono_threadpool_ms_io_remove_domain_jobs (domain);
1419         if (timeout != -1) {
1420                 timeout -= mono_msec_ticks () - start;
1421                 if (timeout < 0)
1422                         return FALSE;
1423         }
1424 #endif
1425
1426         /*
1427          * There might be some threads out that could be about to execute stuff from the given domain.
1428          * We avoid that by setting up a semaphore to be pulsed by the thread that reaches zero.
1429          */
1430         sem = domain->cleanup_semaphore = CreateSemaphore (NULL, 0, 1, NULL);
1431
1432         /*
1433          * The memory barrier here is required to have global ordering between assigning to cleanup_semaphone
1434          * and reading threadpool_jobs. Otherwise this thread could read a stale version of threadpool_jobs
1435          * and wait forever.
1436          */
1437         mono_memory_write_barrier ();
1438
1439         while (domain->threadpool_jobs) {
1440                 MONO_PREPARE_BLOCKING;
1441                 WaitForSingleObject (sem, timeout);
1442                 MONO_FINISH_BLOCKING;
1443                 if (timeout != -1) {
1444                         timeout -= mono_msec_ticks () - start;
1445                         if (timeout <= 0) {
1446                                 res = FALSE;
1447                                 break;
1448                         }
1449                 }
1450         }
1451
1452         domain->cleanup_semaphore = NULL;
1453         CloseHandle (sem);
1454
1455         return res;
1456 }
1457
1458 void
1459 mono_threadpool_ms_suspend (void)
1460 {
1461         if (threadpool)
1462                 threadpool->suspended = TRUE;
1463 }
1464
1465 void
1466 mono_threadpool_ms_resume (void)
1467 {
1468         if (threadpool)
1469                 threadpool->suspended = FALSE;
1470 }
1471
1472 void
1473 ves_icall_System_Threading_ThreadPool_GetAvailableThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1474 {
1475         ThreadPoolCounter counter;
1476
1477         if (!worker_threads || !completion_port_threads)
1478                 return;
1479
1480         mono_lazy_initialize (&status, initialize);
1481
1482         counter.as_gint64 = COUNTER_READ ();
1483
1484         *worker_threads = MAX (0, threadpool->limit_worker_max - counter._.active);
1485         *completion_port_threads = threadpool->limit_io_max;
1486 }
1487
1488 void
1489 ves_icall_System_Threading_ThreadPool_GetMinThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1490 {
1491         if (!worker_threads || !completion_port_threads)
1492                 return;
1493
1494         mono_lazy_initialize (&status, initialize);
1495
1496         *worker_threads = threadpool->limit_worker_min;
1497         *completion_port_threads = threadpool->limit_io_min;
1498 }
1499
1500 void
1501 ves_icall_System_Threading_ThreadPool_GetMaxThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1502 {
1503         if (!worker_threads || !completion_port_threads)
1504                 return;
1505
1506         mono_lazy_initialize (&status, initialize);
1507
1508         *worker_threads = threadpool->limit_worker_max;
1509         *completion_port_threads = threadpool->limit_io_max;
1510 }
1511
1512 MonoBoolean
1513 ves_icall_System_Threading_ThreadPool_SetMinThreadsNative (gint32 worker_threads, gint32 completion_port_threads)
1514 {
1515         mono_lazy_initialize (&status, initialize);
1516
1517         if (worker_threads <= 0 || worker_threads > threadpool->limit_worker_max)
1518                 return FALSE;
1519         if (completion_port_threads <= 0 || completion_port_threads > threadpool->limit_io_max)
1520                 return FALSE;
1521
1522         threadpool->limit_worker_min = worker_threads;
1523         threadpool->limit_io_min = completion_port_threads;
1524
1525         return TRUE;
1526 }
1527
1528 MonoBoolean
1529 ves_icall_System_Threading_ThreadPool_SetMaxThreadsNative (gint32 worker_threads, gint32 completion_port_threads)
1530 {
1531         gint cpu_count = mono_cpu_count ();
1532
1533         mono_lazy_initialize (&status, initialize);
1534
1535         if (worker_threads < threadpool->limit_worker_min || worker_threads < cpu_count)
1536                 return FALSE;
1537         if (completion_port_threads < threadpool->limit_io_min || completion_port_threads < cpu_count)
1538                 return FALSE;
1539
1540         threadpool->limit_worker_max = worker_threads;
1541         threadpool->limit_io_max = completion_port_threads;
1542
1543         return TRUE;
1544 }
1545
1546 void
1547 ves_icall_System_Threading_ThreadPool_InitializeVMTp (MonoBoolean *enable_worker_tracking)
1548 {
1549         if (enable_worker_tracking) {
1550                 // TODO implement some kind of switch to have the possibily to use it
1551                 *enable_worker_tracking = FALSE;
1552         }
1553
1554         mono_lazy_initialize (&status, initialize);
1555 }
1556
1557 MonoBoolean
1558 ves_icall_System_Threading_ThreadPool_NotifyWorkItemComplete (void)
1559 {
1560         ThreadPoolCounter counter;
1561
1562         if (mono_domain_is_unloading (mono_domain_get ()) || mono_runtime_is_shutting_down ())
1563                 return FALSE;
1564
1565         heuristic_notify_work_completed ();
1566
1567         if (heuristic_should_adjust ())
1568                 heuristic_adjust ();
1569
1570         counter.as_gint64 = COUNTER_READ ();
1571         return counter._.working <= counter._.max_working;
1572 }
1573
1574 void
1575 ves_icall_System_Threading_ThreadPool_NotifyWorkItemProgressNative (void)
1576 {
1577         heuristic_notify_work_completed ();
1578
1579         if (heuristic_should_adjust ())
1580                 heuristic_adjust ();
1581 }
1582
1583 void
1584 ves_icall_System_Threading_ThreadPool_ReportThreadStatus (MonoBoolean is_working)
1585 {
1586         // TODO
1587         mono_raise_exception (mono_get_exception_not_implemented (NULL));
1588 }
1589
1590 MonoBoolean
1591 ves_icall_System_Threading_ThreadPool_RequestWorkerThread (void)
1592 {
1593         return worker_request (mono_domain_get ());
1594 }
1595
1596 MonoBoolean G_GNUC_UNUSED
1597 ves_icall_System_Threading_ThreadPool_PostQueuedCompletionStatus (MonoNativeOverlapped *native_overlapped)
1598 {
1599         /* This copy the behavior of the current Mono implementation */
1600         mono_raise_exception (mono_get_exception_not_implemented (NULL));
1601         return FALSE;
1602 }
1603
1604 MonoBoolean G_GNUC_UNUSED
1605 ves_icall_System_Threading_ThreadPool_BindIOCompletionCallbackNative (gpointer file_handle)
1606 {
1607         /* This copy the behavior of the current Mono implementation */
1608         return TRUE;
1609 }
1610
1611 MonoBoolean G_GNUC_UNUSED
1612 ves_icall_System_Threading_ThreadPool_IsThreadPoolHosted (void)
1613 {
1614         return FALSE;
1615 }