Threadpool appdomain unload cleanup (#3996)
[mono.git] / mono / metadata / threadpool-ms.c
1 /*
2  * threadpool-ms.c: Microsoft threadpool runtime support
3  *
4  * Author:
5  *      Ludovic Henry (ludovic.henry@xamarin.com)
6  *
7  * Copyright 2015 Xamarin, Inc (http://www.xamarin.com)
8  * Licensed under the MIT license. See LICENSE file in the project root for full license information.
9  */
10
11 //
12 // Copyright (c) Microsoft. All rights reserved.
13 // Licensed under the MIT license. See LICENSE file in the project root for full license information.
14 //
15 // Files:
16 //  - src/vm/comthreadpool.cpp
17 //  - src/vm/win32threadpoolcpp
18 //  - src/vm/threadpoolrequest.cpp
19 //  - src/vm/hillclimbing.cpp
20 //
21 // Ported from C++ to C and adjusted to Mono runtime
22
23 #include <stdlib.h>
24 #define _USE_MATH_DEFINES // needed by MSVC to define math constants
25 #include <math.h>
26 #include <config.h>
27 #include <glib.h>
28
29 #include <mono/metadata/class-internals.h>
30 #include <mono/metadata/exception.h>
31 #include <mono/metadata/gc-internals.h>
32 #include <mono/metadata/object.h>
33 #include <mono/metadata/object-internals.h>
34 #include <mono/metadata/threadpool-ms.h>
35 #include <mono/metadata/threadpool-ms-io.h>
36 #include <mono/metadata/w32event.h>
37 #include <mono/utils/atomic.h>
38 #include <mono/utils/mono-compiler.h>
39 #include <mono/utils/mono-complex.h>
40 #include <mono/utils/mono-lazy-init.h>
41 #include <mono/utils/mono-logger.h>
42 #include <mono/utils/mono-logger-internals.h>
43 #include <mono/utils/mono-proclib.h>
44 #include <mono/utils/mono-threads.h>
45 #include <mono/utils/mono-time.h>
46 #include <mono/utils/mono-rand.h>
47
48 #define CPU_USAGE_LOW 80
49 #define CPU_USAGE_HIGH 95
50
51 #define MONITOR_INTERVAL 500 // ms
52 #define MONITOR_MINIMAL_LIFETIME 60 * 1000 // ms
53
54 #define WORKER_CREATION_MAX_PER_SEC 10
55
56 /* The exponent to apply to the gain. 1.0 means to use linear gain,
57  * higher values will enhance large moves and damp small ones.
58  * default: 2.0 */
59 #define HILL_CLIMBING_GAIN_EXPONENT 2.0
60
61 /* The 'cost' of a thread. 0 means drive for increased throughput regardless
62  * of thread count, higher values bias more against higher thread counts.
63  * default: 0.15 */
64 #define HILL_CLIMBING_BIAS 0.15
65
66 #define HILL_CLIMBING_WAVE_PERIOD 4
67 #define HILL_CLIMBING_MAX_WAVE_MAGNITUDE 20
68 #define HILL_CLIMBING_WAVE_MAGNITUDE_MULTIPLIER 1.0
69 #define HILL_CLIMBING_WAVE_HISTORY_SIZE 8
70 #define HILL_CLIMBING_TARGET_SIGNAL_TO_NOISE_RATIO 3.0
71 #define HILL_CLIMBING_MAX_CHANGE_PER_SECOND 4
72 #define HILL_CLIMBING_MAX_CHANGE_PER_SAMPLE 20
73 #define HILL_CLIMBING_SAMPLE_INTERVAL_LOW 10
74 #define HILL_CLIMBING_SAMPLE_INTERVAL_HIGH 200
75 #define HILL_CLIMBING_ERROR_SMOOTHING_FACTOR 0.01
76 #define HILL_CLIMBING_MAX_SAMPLE_ERROR_PERCENT 0.15
77
78 typedef union {
79         struct {
80                 gint16 max_working; /* determined by heuristic */
81                 gint16 active; /* executing worker_thread */
82                 gint16 working; /* actively executing worker_thread, not parked */
83                 gint16 parked; /* parked */
84         } _;
85         gint64 as_gint64;
86 } ThreadPoolCounter;
87
88 typedef struct {
89         MonoDomain *domain;
90         /* Number of outstanding jobs */
91         gint32 outstanding_request;
92         /* Number of currently executing jobs */
93         int     threadpool_jobs;
94         /* Signalled when threadpool_jobs + outstanding_request is 0 */
95         /* Protected by threadpool->domains_lock */
96         MonoCoopCond cleanup_cond;
97 } ThreadPoolDomain;
98
99 typedef MonoInternalThread ThreadPoolWorkingThread;
100
101 typedef struct {
102         gint32 wave_period;
103         gint32 samples_to_measure;
104         gdouble target_throughput_ratio;
105         gdouble target_signal_to_noise_ratio;
106         gdouble max_change_per_second;
107         gdouble max_change_per_sample;
108         gint32 max_thread_wave_magnitude;
109         gint32 sample_interval_low;
110         gdouble thread_magnitude_multiplier;
111         gint32 sample_interval_high;
112         gdouble throughput_error_smoothing_factor;
113         gdouble gain_exponent;
114         gdouble max_sample_error;
115
116         gdouble current_control_setting;
117         gint64 total_samples;
118         gint16 last_thread_count;
119         gdouble elapsed_since_last_change;
120         gdouble completions_since_last_change;
121
122         gdouble average_throughput_noise;
123
124         gdouble *samples;
125         gdouble *thread_counts;
126
127         guint32 current_sample_interval;
128         gpointer random_interval_generator;
129
130         gint32 accumulated_completion_count;
131         gdouble accumulated_sample_duration;
132 } ThreadPoolHillClimbing;
133
134 typedef struct {
135         ThreadPoolCounter counters;
136
137         GPtrArray *domains; // ThreadPoolDomain* []
138         MonoCoopMutex domains_lock;
139
140         GPtrArray *working_threads; // ThreadPoolWorkingThread* []
141         gint32 parked_threads_count;
142         MonoCoopCond parked_threads_cond;
143         MonoCoopMutex active_threads_lock; /* protect access to working_threads and parked_threads */
144
145         guint32 worker_creation_current_second;
146         guint32 worker_creation_current_count;
147         MonoCoopMutex worker_creation_lock;
148
149         gint32 heuristic_completions;
150         gint64 heuristic_sample_start;
151         gint64 heuristic_last_dequeue; // ms
152         gint64 heuristic_last_adjustment; // ms
153         gint64 heuristic_adjustment_interval; // ms
154         ThreadPoolHillClimbing heuristic_hill_climbing;
155         MonoCoopMutex heuristic_lock;
156
157         gint32 limit_worker_min;
158         gint32 limit_worker_max;
159         gint32 limit_io_min;
160         gint32 limit_io_max;
161
162         MonoCpuUsageState *cpu_usage_state;
163         gint32 cpu_usage;
164
165         /* suspended by the debugger */
166         gboolean suspended;
167 } ThreadPool;
168
169 typedef enum {
170         TRANSITION_WARMUP,
171         TRANSITION_INITIALIZING,
172         TRANSITION_RANDOM_MOVE,
173         TRANSITION_CLIMBING_MOVE,
174         TRANSITION_CHANGE_POINT,
175         TRANSITION_STABILIZING,
176         TRANSITION_STARVATION,
177         TRANSITION_THREAD_TIMED_OUT,
178         TRANSITION_UNDEFINED,
179 } ThreadPoolHeuristicStateTransition;
180
181 static mono_lazy_init_t status = MONO_LAZY_INIT_STATUS_NOT_INITIALIZED;
182
183 enum {
184         MONITOR_STATUS_REQUESTED,
185         MONITOR_STATUS_WAITING_FOR_REQUEST,
186         MONITOR_STATUS_NOT_RUNNING,
187 };
188
189 static gint32 monitor_status = MONITOR_STATUS_NOT_RUNNING;
190
191 static ThreadPool* threadpool;
192
193 #define COUNTER_CHECK(counter) \
194         do { \
195                 g_assert (counter._.max_working > 0); \
196                 g_assert (counter._.working >= 0); \
197                 g_assert (counter._.active >= 0); \
198         } while (0)
199
200 #define COUNTER_READ() (InterlockedRead64 (&threadpool->counters.as_gint64))
201
202 #define COUNTER_ATOMIC(var,block) \
203         do { \
204                 ThreadPoolCounter __old; \
205                 do { \
206                         g_assert (threadpool); \
207                         __old.as_gint64 = COUNTER_READ (); \
208                         (var) = __old; \
209                         { block; } \
210                         COUNTER_CHECK (var); \
211                 } while (InterlockedCompareExchange64 (&threadpool->counters.as_gint64, (var).as_gint64, __old.as_gint64) != __old.as_gint64); \
212         } while (0)
213
214 #define COUNTER_TRY_ATOMIC(res,var,block) \
215         do { \
216                 ThreadPoolCounter __old; \
217                 do { \
218                         g_assert (threadpool); \
219                         __old.as_gint64 = COUNTER_READ (); \
220                         (var) = __old; \
221                         (res) = FALSE; \
222                         { block; } \
223                         COUNTER_CHECK (var); \
224                         (res) = InterlockedCompareExchange64 (&threadpool->counters.as_gint64, (var).as_gint64, __old.as_gint64) == __old.as_gint64; \
225                 } while (0); \
226         } while (0)
227
228 static inline void
229 domains_lock (void)
230 {
231         mono_coop_mutex_lock (&threadpool->domains_lock);
232 }
233
234 static inline void
235 domains_unlock (void)
236 {
237         mono_coop_mutex_unlock (&threadpool->domains_lock);
238 }
239
240 static gpointer
241 rand_create (void)
242 {
243         mono_rand_open ();
244         return mono_rand_init (NULL, 0);
245 }
246
247 static guint32
248 rand_next (gpointer *handle, guint32 min, guint32 max)
249 {
250         MonoError error;
251         guint32 val;
252         mono_rand_try_get_uint32 (handle, &val, min, max, &error);
253         // FIXME handle error
254         mono_error_assert_ok (&error);
255         return val;
256 }
257
258 static void
259 rand_free (gpointer handle)
260 {
261         mono_rand_close (handle);
262 }
263
264 static void
265 initialize (void)
266 {
267         ThreadPoolHillClimbing *hc;
268         const char *threads_per_cpu_env;
269         gint threads_per_cpu;
270         gint threads_count;
271
272         g_assert (!threadpool);
273         threadpool = g_new0 (ThreadPool, 1);
274         g_assert (threadpool);
275
276         threadpool->domains = g_ptr_array_new ();
277         mono_coop_mutex_init (&threadpool->domains_lock);
278
279         threadpool->parked_threads_count = 0;
280         mono_coop_cond_init (&threadpool->parked_threads_cond);
281         threadpool->working_threads = g_ptr_array_new ();
282         mono_coop_mutex_init (&threadpool->active_threads_lock);
283
284         threadpool->worker_creation_current_second = -1;
285         mono_coop_mutex_init (&threadpool->worker_creation_lock);
286
287         threadpool->heuristic_adjustment_interval = 10;
288         mono_coop_mutex_init (&threadpool->heuristic_lock);
289
290         mono_rand_open ();
291
292         hc = &threadpool->heuristic_hill_climbing;
293
294         hc->wave_period = HILL_CLIMBING_WAVE_PERIOD;
295         hc->max_thread_wave_magnitude = HILL_CLIMBING_MAX_WAVE_MAGNITUDE;
296         hc->thread_magnitude_multiplier = (gdouble) HILL_CLIMBING_WAVE_MAGNITUDE_MULTIPLIER;
297         hc->samples_to_measure = hc->wave_period * HILL_CLIMBING_WAVE_HISTORY_SIZE;
298         hc->target_throughput_ratio = (gdouble) HILL_CLIMBING_BIAS;
299         hc->target_signal_to_noise_ratio = (gdouble) HILL_CLIMBING_TARGET_SIGNAL_TO_NOISE_RATIO;
300         hc->max_change_per_second = (gdouble) HILL_CLIMBING_MAX_CHANGE_PER_SECOND;
301         hc->max_change_per_sample = (gdouble) HILL_CLIMBING_MAX_CHANGE_PER_SAMPLE;
302         hc->sample_interval_low = HILL_CLIMBING_SAMPLE_INTERVAL_LOW;
303         hc->sample_interval_high = HILL_CLIMBING_SAMPLE_INTERVAL_HIGH;
304         hc->throughput_error_smoothing_factor = (gdouble) HILL_CLIMBING_ERROR_SMOOTHING_FACTOR;
305         hc->gain_exponent = (gdouble) HILL_CLIMBING_GAIN_EXPONENT;
306         hc->max_sample_error = (gdouble) HILL_CLIMBING_MAX_SAMPLE_ERROR_PERCENT;
307         hc->current_control_setting = 0;
308         hc->total_samples = 0;
309         hc->last_thread_count = 0;
310         hc->average_throughput_noise = 0;
311         hc->elapsed_since_last_change = 0;
312         hc->accumulated_completion_count = 0;
313         hc->accumulated_sample_duration = 0;
314         hc->samples = g_new0 (gdouble, hc->samples_to_measure);
315         hc->thread_counts = g_new0 (gdouble, hc->samples_to_measure);
316         hc->random_interval_generator = rand_create ();
317         hc->current_sample_interval = rand_next (&hc->random_interval_generator, hc->sample_interval_low, hc->sample_interval_high);
318
319         if (!(threads_per_cpu_env = g_getenv ("MONO_THREADS_PER_CPU")))
320                 threads_per_cpu = 1;
321         else
322                 threads_per_cpu = CLAMP (atoi (threads_per_cpu_env), 1, 50);
323
324         threads_count = mono_cpu_count () * threads_per_cpu;
325
326         threadpool->limit_worker_min = threadpool->limit_io_min = threads_count;
327
328 #if defined (PLATFORM_ANDROID) || defined (HOST_IOS)
329         threadpool->limit_worker_max = threadpool->limit_io_max = CLAMP (threads_count * 100, MIN (threads_count, 200), MAX (threads_count, 200));
330 #else
331         threadpool->limit_worker_max = threadpool->limit_io_max = threads_count * 100;
332 #endif
333
334         threadpool->counters._.max_working = threadpool->limit_worker_min;
335
336         threadpool->cpu_usage_state = g_new0 (MonoCpuUsageState, 1);
337
338         threadpool->suspended = FALSE;
339 }
340
341 static void worker_kill (ThreadPoolWorkingThread *thread);
342
343 static void
344 cleanup (void)
345 {
346         guint i;
347
348         /* we make the assumption along the code that we are
349          * cleaning up only if the runtime is shutting down */
350         g_assert (mono_runtime_is_shutting_down ());
351
352         while (monitor_status != MONITOR_STATUS_NOT_RUNNING)
353                 mono_thread_info_sleep (1, NULL);
354
355         mono_coop_mutex_lock (&threadpool->active_threads_lock);
356
357         /* stop all threadpool->working_threads */
358         for (i = 0; i < threadpool->working_threads->len; ++i)
359                 worker_kill ((ThreadPoolWorkingThread*) g_ptr_array_index (threadpool->working_threads, i));
360
361         /* unpark all threadpool->parked_threads */
362         mono_coop_cond_broadcast (&threadpool->parked_threads_cond);
363
364         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
365 }
366
367 gboolean
368 mono_threadpool_ms_enqueue_work_item (MonoDomain *domain, MonoObject *work_item, MonoError *error)
369 {
370         static MonoClass *threadpool_class = NULL;
371         static MonoMethod *unsafe_queue_custom_work_item_method = NULL;
372         MonoDomain *current_domain;
373         MonoBoolean f;
374         gpointer args [2];
375
376         mono_error_init (error);
377         g_assert (work_item);
378
379         if (!threadpool_class)
380                 threadpool_class = mono_class_load_from_name (mono_defaults.corlib, "System.Threading", "ThreadPool");
381
382         if (!unsafe_queue_custom_work_item_method)
383                 unsafe_queue_custom_work_item_method = mono_class_get_method_from_name (threadpool_class, "UnsafeQueueCustomWorkItem", 2);
384         g_assert (unsafe_queue_custom_work_item_method);
385
386         f = FALSE;
387
388         args [0] = (gpointer) work_item;
389         args [1] = (gpointer) &f;
390
391         current_domain = mono_domain_get ();
392         if (current_domain == domain) {
393                 mono_runtime_invoke_checked (unsafe_queue_custom_work_item_method, NULL, args, error);
394                 return_val_if_nok (error, FALSE);
395         } else {
396                 mono_thread_push_appdomain_ref (domain);
397                 if (mono_domain_set (domain, FALSE)) {
398                         mono_runtime_invoke_checked (unsafe_queue_custom_work_item_method, NULL, args, error);
399                         if (!is_ok (error)) {
400                                 mono_thread_pop_appdomain_ref ();
401                                 return FALSE;
402                         }
403                         mono_domain_set (current_domain, TRUE);
404                 }
405                 mono_thread_pop_appdomain_ref ();
406         }
407         return TRUE;
408 }
409
410 /* LOCKING: domains_lock must be held */
411 static void
412 tpdomain_add (ThreadPoolDomain *tpdomain)
413 {
414         guint i, len;
415
416         g_assert (tpdomain);
417
418         len = threadpool->domains->len;
419         for (i = 0; i < len; ++i) {
420                 if (g_ptr_array_index (threadpool->domains, i) == tpdomain)
421                         break;
422         }
423
424         if (i == len)
425                 g_ptr_array_add (threadpool->domains, tpdomain);
426 }
427
428 /* LOCKING: domains_lock must be held. */
429 static gboolean
430 tpdomain_remove (ThreadPoolDomain *tpdomain)
431 {
432         g_assert (tpdomain);
433         return g_ptr_array_remove (threadpool->domains, tpdomain);
434 }
435
436 /* LOCKING: domains_lock must be held */
437 static ThreadPoolDomain *
438 tpdomain_get (MonoDomain *domain, gboolean create)
439 {
440         guint i;
441         ThreadPoolDomain *tpdomain;
442
443         g_assert (domain);
444
445         for (i = 0; i < threadpool->domains->len; ++i) {
446                 ThreadPoolDomain *tpdomain;
447
448                 tpdomain = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i);
449                 if (tpdomain->domain == domain)
450                         return tpdomain;
451         }
452
453         if (!create)
454                 return NULL;
455
456         tpdomain = g_new0 (ThreadPoolDomain, 1);
457         tpdomain->domain = domain;
458         mono_coop_cond_init (&tpdomain->cleanup_cond);
459
460         tpdomain_add (tpdomain);
461
462         return tpdomain;
463 }
464
465 static void
466 tpdomain_free (ThreadPoolDomain *tpdomain)
467 {
468         g_free (tpdomain);
469 }
470
471 /* LOCKING: domains_lock must be held */
472 static gboolean
473 domain_any_has_request (void)
474 {
475         guint i;
476
477         for (i = 0; i < threadpool->domains->len; ++i) {
478                 ThreadPoolDomain *tmp = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i);
479                 if (tmp->outstanding_request > 0)
480                         return TRUE;
481         }
482
483         return FALSE;
484 }
485
486 /* LOCKING: domains_lock must be held */
487 static ThreadPoolDomain *
488 tpdomain_get_next (ThreadPoolDomain *current)
489 {
490         ThreadPoolDomain *tpdomain = NULL;
491         guint len;
492
493         len = threadpool->domains->len;
494         if (len > 0) {
495                 guint i, current_idx = -1;
496                 if (current) {
497                         for (i = 0; i < len; ++i) {
498                                 if (current == g_ptr_array_index (threadpool->domains, i)) {
499                                         current_idx = i;
500                                         break;
501                                 }
502                         }
503                         g_assert (current_idx != (guint)-1);
504                 }
505                 for (i = current_idx + 1; i < len + current_idx + 1; ++i) {
506                         ThreadPoolDomain *tmp = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i % len);
507                         if (tmp->outstanding_request > 0) {
508                                 tpdomain = tmp;
509                                 break;
510                         }
511                 }
512         }
513
514         return tpdomain;
515 }
516
517 static void
518 worker_wait_interrupt (gpointer data)
519 {
520         mono_coop_mutex_lock (&threadpool->active_threads_lock);
521         mono_coop_cond_signal (&threadpool->parked_threads_cond);
522         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
523 }
524
525 /* return TRUE if timeout, FALSE otherwise (worker unpark or interrupt) */
526 static gboolean
527 worker_park (void)
528 {
529         gboolean timeout = FALSE;
530
531         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] current worker parking", mono_native_thread_id_get ());
532
533         mono_gc_set_skip_thread (TRUE);
534
535         mono_coop_mutex_lock (&threadpool->active_threads_lock);
536
537         if (!mono_runtime_is_shutting_down ()) {
538                 static gpointer rand_handle = NULL;
539                 MonoInternalThread *thread_internal;
540                 gboolean interrupted = FALSE;
541
542                 if (!rand_handle)
543                         rand_handle = rand_create ();
544                 g_assert (rand_handle);
545
546                 thread_internal = mono_thread_internal_current ();
547                 g_assert (thread_internal);
548
549                 threadpool->parked_threads_count += 1;
550                 g_ptr_array_remove_fast (threadpool->working_threads, thread_internal);
551
552                 mono_thread_info_install_interrupt (worker_wait_interrupt, NULL, &interrupted);
553                 if (interrupted)
554                         goto done;
555
556                 if (mono_coop_cond_timedwait (&threadpool->parked_threads_cond, &threadpool->active_threads_lock, rand_next (&rand_handle, 5 * 1000, 60 * 1000)) != 0)
557                         timeout = TRUE;
558
559                 mono_thread_info_uninstall_interrupt (&interrupted);
560
561 done:
562                 g_ptr_array_add (threadpool->working_threads, thread_internal);
563                 threadpool->parked_threads_count -= 1;
564         }
565
566         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
567
568         mono_gc_set_skip_thread (FALSE);
569
570         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] current worker unparking, timeout? %s", mono_native_thread_id_get (), timeout ? "yes" : "no");
571
572         return timeout;
573 }
574
575 static gboolean
576 worker_try_unpark (void)
577 {
578         gboolean res = FALSE;
579
580         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try unpark worker", mono_native_thread_id_get ());
581
582         mono_coop_mutex_lock (&threadpool->active_threads_lock);
583         if (threadpool->parked_threads_count > 0) {
584                 mono_coop_cond_signal (&threadpool->parked_threads_cond);
585                 res = TRUE;
586         }
587         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
588
589         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try unpark worker, success? %s", mono_native_thread_id_get (), res ? "yes" : "no");
590
591         return res;
592 }
593
594 static void
595 worker_kill (ThreadPoolWorkingThread *thread)
596 {
597         if (thread == mono_thread_internal_current ())
598                 return;
599
600         mono_thread_internal_stop ((MonoInternalThread*) thread);
601 }
602
603 static void
604 worker_thread (gpointer data)
605 {
606         MonoError error;
607         MonoInternalThread *thread;
608         ThreadPoolDomain *tpdomain, *previous_tpdomain;
609         ThreadPoolCounter counter;
610         gboolean retire = FALSE;
611
612         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] worker starting", mono_native_thread_id_get ());
613
614         g_assert (threadpool);
615
616         thread = mono_thread_internal_current ();
617         g_assert (thread);
618
619         mono_thread_set_name_internal (thread, mono_string_new (mono_get_root_domain (), "Threadpool worker"), FALSE, &error);
620         mono_error_assert_ok (&error);
621
622         mono_coop_mutex_lock (&threadpool->active_threads_lock);
623         g_ptr_array_add (threadpool->working_threads, thread);
624         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
625
626         previous_tpdomain = NULL;
627
628         domains_lock ();
629
630         while (!mono_runtime_is_shutting_down ()) {
631                 tpdomain = NULL;
632
633                 if ((thread->state & (ThreadState_StopRequested | ThreadState_SuspendRequested)) != 0) {
634                         domains_unlock ();
635                         mono_thread_interruption_checkpoint ();
636                         domains_lock ();
637                 }
638
639                 if (retire || !(tpdomain = tpdomain_get_next (previous_tpdomain))) {
640                         gboolean timeout;
641
642                         COUNTER_ATOMIC (counter, {
643                                 counter._.working --;
644                                 counter._.parked ++;
645                         });
646
647                         domains_unlock ();
648                         timeout = worker_park ();
649                         domains_lock ();
650
651                         COUNTER_ATOMIC (counter, {
652                                 counter._.working ++;
653                                 counter._.parked --;
654                         });
655
656                         if (timeout)
657                                 break;
658
659                         if (retire)
660                                 retire = FALSE;
661
662                         /* The tpdomain->domain might have unloaded, while this thread was parked */
663                         previous_tpdomain = NULL;
664
665                         continue;
666                 }
667
668                 tpdomain->outstanding_request --;
669                 g_assert (tpdomain->outstanding_request >= 0);
670
671                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] worker running in domain %p (outstanding requests %d) ",
672                         mono_native_thread_id_get (), tpdomain->domain, tpdomain->outstanding_request);
673
674                 g_assert (tpdomain->domain);
675                 g_assert (tpdomain->threadpool_jobs >= 0);
676                 tpdomain->threadpool_jobs ++;
677
678                 domains_unlock ();
679
680                 mono_thread_push_appdomain_ref (tpdomain->domain);
681                 if (mono_domain_set (tpdomain->domain, FALSE)) {
682                         MonoObject *exc = NULL, *res;
683
684                         res = mono_runtime_try_invoke (mono_defaults.threadpool_perform_wait_callback_method, NULL, NULL, &exc, &error);
685                         if (exc || !mono_error_ok(&error)) {
686                                 if (exc == NULL)
687                                         exc = (MonoObject *) mono_error_convert_to_exception (&error);
688                                 else
689                                         mono_error_cleanup (&error);
690                                 mono_thread_internal_unhandled_exception (exc);
691                         } else if (res && *(MonoBoolean*) mono_object_unbox (res) == FALSE)
692                                 retire = TRUE;
693
694                         mono_thread_clr_state (thread, (MonoThreadState)~ThreadState_Background);
695                         if (!mono_thread_test_state (thread , ThreadState_Background))
696                                 ves_icall_System_Threading_Thread_SetState (thread, ThreadState_Background);
697
698                         mono_domain_set (mono_get_root_domain (), TRUE);
699                 }
700                 mono_thread_pop_appdomain_ref ();
701
702                 domains_lock ();
703
704                 tpdomain->threadpool_jobs --;
705                 g_assert (tpdomain->threadpool_jobs >= 0);
706
707                 if (tpdomain->outstanding_request + tpdomain->threadpool_jobs == 0 && mono_domain_is_unloading (tpdomain->domain)) {
708                         gboolean removed;
709
710                         removed = tpdomain_remove (tpdomain);
711                         g_assert (removed);
712
713                         mono_coop_cond_signal (&tpdomain->cleanup_cond);
714                         tpdomain = NULL;
715                 }
716
717                 previous_tpdomain = tpdomain;
718         }
719
720         domains_unlock ();
721
722         mono_coop_mutex_lock (&threadpool->active_threads_lock);
723         g_ptr_array_remove_fast (threadpool->working_threads, thread);
724         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
725
726         COUNTER_ATOMIC (counter, {
727                 counter._.working--;
728                 counter._.active --;
729         });
730
731         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] worker finishing", mono_native_thread_id_get ());
732 }
733
734 static gboolean
735 worker_try_create (void)
736 {
737         ThreadPoolCounter counter;
738         MonoInternalThread *thread;
739         gint64 current_ticks;
740         gint32 now;
741
742         mono_coop_mutex_lock (&threadpool->worker_creation_lock);
743
744         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker", mono_native_thread_id_get ());
745         current_ticks = mono_100ns_ticks ();
746         now = current_ticks / (10 * 1000 * 1000);
747         if (0 == current_ticks) {
748                 g_warning ("failed to get 100ns ticks");
749         } else {
750                 if (threadpool->worker_creation_current_second != now) {
751                         threadpool->worker_creation_current_second = now;
752                         threadpool->worker_creation_current_count = 0;
753                 } else {
754                         g_assert (threadpool->worker_creation_current_count <= WORKER_CREATION_MAX_PER_SEC);
755                         if (threadpool->worker_creation_current_count == WORKER_CREATION_MAX_PER_SEC) {
756                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: maximum number of worker created per second reached, current count = %d",
757                                         mono_native_thread_id_get (), threadpool->worker_creation_current_count);
758                                 mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
759                                 return FALSE;
760                         }
761                 }
762         }
763
764         COUNTER_ATOMIC (counter, {
765                 if (counter._.working >= counter._.max_working) {
766                         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: maximum number of working threads reached",
767                                 mono_native_thread_id_get ());
768                         mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
769                         return FALSE;
770                 }
771                 counter._.working ++;
772                 counter._.active ++;
773         });
774
775         MonoError error;
776         if ((thread = mono_thread_create_internal (mono_get_root_domain (), worker_thread, NULL, TRUE, 0, &error)) != NULL) {
777                 threadpool->worker_creation_current_count += 1;
778
779                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, created %p, now = %d count = %d", mono_native_thread_id_get (), GUINT_TO_POINTER(thread->tid), now, threadpool->worker_creation_current_count);
780                 mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
781                 return TRUE;
782         }
783
784         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: could not create thread due to %s", mono_native_thread_id_get (), mono_error_get_message (&error));
785         mono_error_cleanup (&error);
786
787         COUNTER_ATOMIC (counter, {
788                 counter._.working --;
789                 counter._.active --;
790         });
791
792         mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
793         return FALSE;
794 }
795
796 static void monitor_ensure_running (void);
797
798 static gboolean
799 worker_request (MonoDomain *domain)
800 {
801         ThreadPoolDomain *tpdomain;
802
803         g_assert (domain);
804         g_assert (threadpool);
805
806         if (mono_runtime_is_shutting_down ())
807                 return FALSE;
808
809         domains_lock ();
810
811         /* synchronize check with worker_thread */
812         if (mono_domain_is_unloading (domain)) {
813                 domains_unlock ();
814                 return FALSE;
815         }
816
817         tpdomain = tpdomain_get (domain, TRUE);
818         g_assert (tpdomain);
819         tpdomain->outstanding_request ++;
820
821         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, domain = %p, outstanding_request = %d",
822                 mono_native_thread_id_get (), tpdomain->domain, tpdomain->outstanding_request);
823
824         domains_unlock ();
825
826         if (threadpool->suspended)
827                 return FALSE;
828
829         monitor_ensure_running ();
830
831         if (worker_try_unpark ()) {
832                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, unparked", mono_native_thread_id_get ());
833                 return TRUE;
834         }
835
836         if (worker_try_create ()) {
837                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, created", mono_native_thread_id_get ());
838                 return TRUE;
839         }
840
841         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, failed", mono_native_thread_id_get ());
842         return FALSE;
843 }
844
845 static gboolean
846 monitor_should_keep_running (void)
847 {
848         static gint64 last_should_keep_running = -1;
849
850         g_assert (monitor_status == MONITOR_STATUS_WAITING_FOR_REQUEST || monitor_status == MONITOR_STATUS_REQUESTED);
851
852         if (InterlockedExchange (&monitor_status, MONITOR_STATUS_WAITING_FOR_REQUEST) == MONITOR_STATUS_WAITING_FOR_REQUEST) {
853                 gboolean should_keep_running = TRUE, force_should_keep_running = FALSE;
854
855                 if (mono_runtime_is_shutting_down ()) {
856                         should_keep_running = FALSE;
857                 } else {
858                         domains_lock ();
859                         if (!domain_any_has_request ())
860                                 should_keep_running = FALSE;
861                         domains_unlock ();
862
863                         if (!should_keep_running) {
864                                 if (last_should_keep_running == -1 || mono_100ns_ticks () - last_should_keep_running < MONITOR_MINIMAL_LIFETIME * 1000 * 10) {
865                                         should_keep_running = force_should_keep_running = TRUE;
866                                 }
867                         }
868                 }
869
870                 if (should_keep_running) {
871                         if (last_should_keep_running == -1 || !force_should_keep_running)
872                                 last_should_keep_running = mono_100ns_ticks ();
873                 } else {
874                         last_should_keep_running = -1;
875                         if (InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_NOT_RUNNING, MONITOR_STATUS_WAITING_FOR_REQUEST) == MONITOR_STATUS_WAITING_FOR_REQUEST)
876                                 return FALSE;
877                 }
878         }
879
880         g_assert (monitor_status == MONITOR_STATUS_WAITING_FOR_REQUEST || monitor_status == MONITOR_STATUS_REQUESTED);
881
882         return TRUE;
883 }
884
885 static gboolean
886 monitor_sufficient_delay_since_last_dequeue (void)
887 {
888         gint64 threshold;
889
890         g_assert (threadpool);
891
892         if (threadpool->cpu_usage < CPU_USAGE_LOW) {
893                 threshold = MONITOR_INTERVAL;
894         } else {
895                 ThreadPoolCounter counter;
896                 counter.as_gint64 = COUNTER_READ();
897                 threshold = counter._.max_working * MONITOR_INTERVAL * 2;
898         }
899
900         return mono_msec_ticks () >= threadpool->heuristic_last_dequeue + threshold;
901 }
902
903 static void hill_climbing_force_change (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition);
904
905 static void
906 monitor_thread (void)
907 {
908         MonoInternalThread *current_thread = mono_thread_internal_current ();
909         guint i;
910
911         mono_cpu_usage (threadpool->cpu_usage_state);
912
913         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, started", mono_native_thread_id_get ());
914
915         do {
916                 ThreadPoolCounter counter;
917                 gboolean limit_worker_max_reached;
918                 gint32 interval_left = MONITOR_INTERVAL;
919                 gint32 awake = 0; /* number of spurious awakes we tolerate before doing a round of rebalancing */
920
921                 g_assert (monitor_status != MONITOR_STATUS_NOT_RUNNING);
922
923                 mono_gc_set_skip_thread (TRUE);
924
925                 do {
926                         gint64 ts;
927                         gboolean alerted = FALSE;
928
929                         if (mono_runtime_is_shutting_down ())
930                                 break;
931
932                         ts = mono_msec_ticks ();
933                         if (mono_thread_info_sleep (interval_left, &alerted) == 0)
934                                 break;
935                         interval_left -= mono_msec_ticks () - ts;
936
937                         mono_gc_set_skip_thread (FALSE);
938                         if ((current_thread->state & (ThreadState_StopRequested | ThreadState_SuspendRequested)) != 0)
939                                 mono_thread_interruption_checkpoint ();
940                         mono_gc_set_skip_thread (TRUE);
941                 } while (interval_left > 0 && ++awake < 10);
942
943                 mono_gc_set_skip_thread (FALSE);
944
945                 if (threadpool->suspended)
946                         continue;
947
948                 if (mono_runtime_is_shutting_down ())
949                         continue;
950
951                 domains_lock ();
952                 if (!domain_any_has_request ()) {
953                         domains_unlock ();
954                         continue;
955                 }
956                 domains_unlock ();
957
958                 threadpool->cpu_usage = mono_cpu_usage (threadpool->cpu_usage_state);
959
960                 if (!monitor_sufficient_delay_since_last_dequeue ())
961                         continue;
962
963                 limit_worker_max_reached = FALSE;
964
965                 COUNTER_ATOMIC (counter, {
966                         if (counter._.max_working >= threadpool->limit_worker_max) {
967                                 limit_worker_max_reached = TRUE;
968                                 break;
969                         }
970                         counter._.max_working ++;
971                 });
972
973                 if (limit_worker_max_reached)
974                         continue;
975
976                 hill_climbing_force_change (counter._.max_working, TRANSITION_STARVATION);
977
978                 for (i = 0; i < 5; ++i) {
979                         if (mono_runtime_is_shutting_down ())
980                                 break;
981
982                         if (worker_try_unpark ()) {
983                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, unparked", mono_native_thread_id_get ());
984                                 break;
985                         }
986
987                         if (worker_try_create ()) {
988                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, created", mono_native_thread_id_get ());
989                                 break;
990                         }
991                 }
992         } while (monitor_should_keep_running ());
993
994         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, finished", mono_native_thread_id_get ());
995 }
996
997 static void
998 monitor_ensure_running (void)
999 {
1000         MonoError error;
1001         for (;;) {
1002                 switch (monitor_status) {
1003                 case MONITOR_STATUS_REQUESTED:
1004                         return;
1005                 case MONITOR_STATUS_WAITING_FOR_REQUEST:
1006                         InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_REQUESTED, MONITOR_STATUS_WAITING_FOR_REQUEST);
1007                         break;
1008                 case MONITOR_STATUS_NOT_RUNNING:
1009                         if (mono_runtime_is_shutting_down ())
1010                                 return;
1011                         if (InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_REQUESTED, MONITOR_STATUS_NOT_RUNNING) == MONITOR_STATUS_NOT_RUNNING) {
1012                                 if (!mono_thread_create_internal (mono_get_root_domain (), monitor_thread, NULL, TRUE, SMALL_STACK, &error)) {
1013                                         monitor_status = MONITOR_STATUS_NOT_RUNNING;
1014                                         mono_error_cleanup (&error);
1015                                 }
1016                                 return;
1017                         }
1018                         break;
1019                 default: g_assert_not_reached ();
1020                 }
1021         }
1022 }
1023
1024 static void
1025 hill_climbing_change_thread_count (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition)
1026 {
1027         ThreadPoolHillClimbing *hc;
1028
1029         g_assert (threadpool);
1030
1031         hc = &threadpool->heuristic_hill_climbing;
1032
1033         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] hill climbing, change max number of threads %d", mono_native_thread_id_get (), new_thread_count);
1034
1035         hc->last_thread_count = new_thread_count;
1036         hc->current_sample_interval = rand_next (&hc->random_interval_generator, hc->sample_interval_low, hc->sample_interval_high);
1037         hc->elapsed_since_last_change = 0;
1038         hc->completions_since_last_change = 0;
1039 }
1040
1041 static void
1042 hill_climbing_force_change (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition)
1043 {
1044         ThreadPoolHillClimbing *hc;
1045
1046         g_assert (threadpool);
1047
1048         hc = &threadpool->heuristic_hill_climbing;
1049
1050         if (new_thread_count != hc->last_thread_count) {
1051                 hc->current_control_setting += new_thread_count - hc->last_thread_count;
1052                 hill_climbing_change_thread_count (new_thread_count, transition);
1053         }
1054 }
1055
1056 static double_complex
1057 hill_climbing_get_wave_component (gdouble *samples, guint sample_count, gdouble period)
1058 {
1059         ThreadPoolHillClimbing *hc;
1060         gdouble w, cosine, sine, coeff, q0, q1, q2;
1061         guint i;
1062
1063         g_assert (threadpool);
1064         g_assert (sample_count >= period);
1065         g_assert (period >= 2);
1066
1067         hc = &threadpool->heuristic_hill_climbing;
1068
1069         w = 2.0 * M_PI / period;
1070         cosine = cos (w);
1071         sine = sin (w);
1072         coeff = 2.0 * cosine;
1073         q0 = q1 = q2 = 0;
1074
1075         for (i = 0; i < sample_count; ++i) {
1076                 q0 = coeff * q1 - q2 + samples [(hc->total_samples - sample_count + i) % hc->samples_to_measure];
1077                 q2 = q1;
1078                 q1 = q0;
1079         }
1080
1081         return mono_double_complex_scalar_div (mono_double_complex_make (q1 - q2 * cosine, (q2 * sine)), ((gdouble)sample_count));
1082 }
1083
1084 static gint16
1085 hill_climbing_update (gint16 current_thread_count, guint32 sample_duration, gint32 completions, gint64 *adjustment_interval)
1086 {
1087         ThreadPoolHillClimbing *hc;
1088         ThreadPoolHeuristicStateTransition transition;
1089         gdouble throughput;
1090         gdouble throughput_error_estimate;
1091         gdouble confidence;
1092         gdouble move;
1093         gdouble gain;
1094         gint sample_index;
1095         gint sample_count;
1096         gint new_thread_wave_magnitude;
1097         gint new_thread_count;
1098         double_complex thread_wave_component;
1099         double_complex throughput_wave_component;
1100         double_complex ratio;
1101
1102         g_assert (threadpool);
1103         g_assert (adjustment_interval);
1104
1105         hc = &threadpool->heuristic_hill_climbing;
1106
1107         /* If someone changed the thread count without telling us, update our records accordingly. */
1108         if (current_thread_count != hc->last_thread_count)
1109                 hill_climbing_force_change (current_thread_count, TRANSITION_INITIALIZING);
1110
1111         /* Update the cumulative stats for this thread count */
1112         hc->elapsed_since_last_change += sample_duration;
1113         hc->completions_since_last_change += completions;
1114
1115         /* Add in any data we've already collected about this sample */
1116         sample_duration += hc->accumulated_sample_duration;
1117         completions += hc->accumulated_completion_count;
1118
1119         /* We need to make sure we're collecting reasonably accurate data. Since we're just counting the end
1120          * of each work item, we are goinng to be missing some data about what really happened during the
1121          * sample interval. The count produced by each thread includes an initial work item that may have
1122          * started well before the start of the interval, and each thread may have been running some new
1123          * work item for some time before the end of the interval, which did not yet get counted. So
1124          * our count is going to be off by +/- threadCount workitems.
1125          *
1126          * The exception is that the thread that reported to us last time definitely wasn't running any work
1127          * at that time, and the thread that's reporting now definitely isn't running a work item now. So
1128          * we really only need to consider threadCount-1 threads.
1129          *
1130          * Thus the percent error in our count is +/- (threadCount-1)/numCompletions.
1131          *
1132          * We cannot rely on the frequency-domain analysis we'll be doing later to filter out this error, because
1133          * of the way it accumulates over time. If this sample is off by, say, 33% in the negative direction,
1134          * then the next one likely will be too. The one after that will include the sum of the completions
1135          * we missed in the previous samples, and so will be 33% positive. So every three samples we'll have
1136          * two "low" samples and one "high" sample. This will appear as periodic variation right in the frequency
1137          * range we're targeting, which will not be filtered by the frequency-domain translation. */
1138         if (hc->total_samples > 0 && ((current_thread_count - 1.0) / completions) >= hc->max_sample_error) {
1139                 /* Not accurate enough yet. Let's accumulate the data so
1140                  * far, and tell the ThreadPool to collect a little more. */
1141                 hc->accumulated_sample_duration = sample_duration;
1142                 hc->accumulated_completion_count = completions;
1143                 *adjustment_interval = 10;
1144                 return current_thread_count;
1145         }
1146
1147         /* We've got enouugh data for our sample; reset our accumulators for next time. */
1148         hc->accumulated_sample_duration = 0;
1149         hc->accumulated_completion_count = 0;
1150
1151         /* Add the current thread count and throughput sample to our history. */
1152         throughput = ((gdouble) completions) / sample_duration;
1153
1154         sample_index = hc->total_samples % hc->samples_to_measure;
1155         hc->samples [sample_index] = throughput;
1156         hc->thread_counts [sample_index] = current_thread_count;
1157         hc->total_samples ++;
1158
1159         /* Set up defaults for our metrics. */
1160         thread_wave_component = mono_double_complex_make(0, 0);
1161         throughput_wave_component = mono_double_complex_make(0, 0);
1162         throughput_error_estimate = 0;
1163         ratio = mono_double_complex_make(0, 0);
1164         confidence = 0;
1165
1166         transition = TRANSITION_WARMUP;
1167
1168         /* How many samples will we use? It must be at least the three wave periods we're looking for, and it must also
1169          * be a whole multiple of the primary wave's period; otherwise the frequency we're looking for will fall between
1170          * two frequency bands in the Fourier analysis, and we won't be able to measure it accurately. */
1171         sample_count = ((gint) MIN (hc->total_samples - 1, hc->samples_to_measure) / hc->wave_period) * hc->wave_period;
1172
1173         if (sample_count > hc->wave_period) {
1174                 guint i;
1175                 gdouble average_throughput;
1176                 gdouble average_thread_count;
1177                 gdouble sample_sum = 0;
1178                 gdouble thread_sum = 0;
1179
1180                 /* Average the throughput and thread count samples, so we can scale the wave magnitudes later. */
1181                 for (i = 0; i < sample_count; ++i) {
1182                         guint j = (hc->total_samples - sample_count + i) % hc->samples_to_measure;
1183                         sample_sum += hc->samples [j];
1184                         thread_sum += hc->thread_counts [j];
1185                 }
1186
1187                 average_throughput = sample_sum / sample_count;
1188                 average_thread_count = thread_sum / sample_count;
1189
1190                 if (average_throughput > 0 && average_thread_count > 0) {
1191                         gdouble noise_for_confidence, adjacent_period_1, adjacent_period_2;
1192
1193                         /* Calculate the periods of the adjacent frequency bands we'll be using to
1194                          * measure noise levels. We want the two adjacent Fourier frequency bands. */
1195                         adjacent_period_1 = sample_count / (((gdouble) sample_count) / ((gdouble) hc->wave_period) + 1);
1196                         adjacent_period_2 = sample_count / (((gdouble) sample_count) / ((gdouble) hc->wave_period) - 1);
1197
1198                         /* Get the the three different frequency components of the throughput (scaled by average
1199                          * throughput). Our "error" estimate (the amount of noise that might be present in the
1200                          * frequency band we're really interested in) is the average of the adjacent bands. */
1201                         throughput_wave_component = mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->samples, sample_count, hc->wave_period), average_throughput);
1202                         throughput_error_estimate = cabs (mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->samples, sample_count, adjacent_period_1), average_throughput));
1203
1204                         if (adjacent_period_2 <= sample_count) {
1205                                 throughput_error_estimate = MAX (throughput_error_estimate, cabs (mono_double_complex_scalar_div (hill_climbing_get_wave_component (
1206                                         hc->samples, sample_count, adjacent_period_2), average_throughput)));
1207                         }
1208
1209                         /* Do the same for the thread counts, so we have something to compare to. We don't
1210                          * measure thread count noise, because there is none; these are exact measurements. */
1211                         thread_wave_component = mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->thread_counts, sample_count, hc->wave_period), average_thread_count);
1212
1213                         /* Update our moving average of the throughput noise. We'll use this
1214                          * later as feedback to determine the new size of the thread wave. */
1215                         if (hc->average_throughput_noise == 0) {
1216                                 hc->average_throughput_noise = throughput_error_estimate;
1217                         } else {
1218                                 hc->average_throughput_noise = (hc->throughput_error_smoothing_factor * throughput_error_estimate)
1219                                         + ((1.0 + hc->throughput_error_smoothing_factor) * hc->average_throughput_noise);
1220                         }
1221
1222                         if (cabs (thread_wave_component) > 0) {
1223                                 /* Adjust the throughput wave so it's centered around the target wave,
1224                                  * and then calculate the adjusted throughput/thread ratio. */
1225                                 ratio = mono_double_complex_div (mono_double_complex_sub (throughput_wave_component, mono_double_complex_scalar_mul(thread_wave_component, hc->target_throughput_ratio)), thread_wave_component);
1226                                 transition = TRANSITION_CLIMBING_MOVE;
1227                         } else {
1228                                 ratio = mono_double_complex_make (0, 0);
1229                                 transition = TRANSITION_STABILIZING;
1230                         }
1231
1232                         noise_for_confidence = MAX (hc->average_throughput_noise, throughput_error_estimate);
1233                         if (noise_for_confidence > 0) {
1234                                 confidence = cabs (thread_wave_component) / noise_for_confidence / hc->target_signal_to_noise_ratio;
1235                         } else {
1236                                 /* there is no noise! */
1237                                 confidence = 1.0;
1238                         }
1239                 }
1240         }
1241
1242         /* We use just the real part of the complex ratio we just calculated. If the throughput signal
1243          * is exactly in phase with the thread signal, this will be the same as taking the magnitude of
1244          * the complex move and moving that far up. If they're 180 degrees out of phase, we'll move
1245          * backward (because this indicates that our changes are having the opposite of the intended effect).
1246          * If they're 90 degrees out of phase, we won't move at all, because we can't tell wether we're
1247          * having a negative or positive effect on throughput. */
1248         move = creal (ratio);
1249         move = CLAMP (move, -1.0, 1.0);
1250
1251         /* Apply our confidence multiplier. */
1252         move *= CLAMP (confidence, -1.0, 1.0);
1253
1254         /* Now apply non-linear gain, such that values around zero are attenuated, while higher values
1255          * are enhanced. This allows us to move quickly if we're far away from the target, but more slowly
1256         * if we're getting close, giving us rapid ramp-up without wild oscillations around the target. */
1257         gain = hc->max_change_per_second * sample_duration;
1258         move = pow (fabs (move), hc->gain_exponent) * (move >= 0.0 ? 1 : -1) * gain;
1259         move = MIN (move, hc->max_change_per_sample);
1260
1261         /* If the result was positive, and CPU is > 95%, refuse the move. */
1262         if (move > 0.0 && threadpool->cpu_usage > CPU_USAGE_HIGH)
1263                 move = 0.0;
1264
1265         /* Apply the move to our control setting. */
1266         hc->current_control_setting += move;
1267
1268         /* Calculate the new thread wave magnitude, which is based on the moving average we've been keeping of the
1269          * throughput error.  This average starts at zero, so we'll start with a nice safe little wave at first. */
1270         new_thread_wave_magnitude = (gint)(0.5 + (hc->current_control_setting * hc->average_throughput_noise
1271                 * hc->target_signal_to_noise_ratio * hc->thread_magnitude_multiplier * 2.0));
1272         new_thread_wave_magnitude = CLAMP (new_thread_wave_magnitude, 1, hc->max_thread_wave_magnitude);
1273
1274         /* Make sure our control setting is within the ThreadPool's limits. */
1275         hc->current_control_setting = CLAMP (hc->current_control_setting, threadpool->limit_worker_min, threadpool->limit_worker_max - new_thread_wave_magnitude);
1276
1277         /* Calculate the new thread count (control setting + square wave). */
1278         new_thread_count = (gint)(hc->current_control_setting + new_thread_wave_magnitude * ((hc->total_samples / (hc->wave_period / 2)) % 2));
1279
1280         /* Make sure the new thread count doesn't exceed the ThreadPool's limits. */
1281         new_thread_count = CLAMP (new_thread_count, threadpool->limit_worker_min, threadpool->limit_worker_max);
1282
1283         if (new_thread_count != current_thread_count)
1284                 hill_climbing_change_thread_count (new_thread_count, transition);
1285
1286         if (creal (ratio) < 0.0 && new_thread_count == threadpool->limit_worker_min)
1287                 *adjustment_interval = (gint)(0.5 + hc->current_sample_interval * (10.0 * MAX (-1.0 * creal (ratio), 1.0)));
1288         else
1289                 *adjustment_interval = hc->current_sample_interval;
1290
1291         return new_thread_count;
1292 }
1293
1294 static void
1295 heuristic_notify_work_completed (void)
1296 {
1297         g_assert (threadpool);
1298
1299         InterlockedIncrement (&threadpool->heuristic_completions);
1300         threadpool->heuristic_last_dequeue = mono_msec_ticks ();
1301 }
1302
1303 static gboolean
1304 heuristic_should_adjust (void)
1305 {
1306         g_assert (threadpool);
1307
1308         if (threadpool->heuristic_last_dequeue > threadpool->heuristic_last_adjustment + threadpool->heuristic_adjustment_interval) {
1309                 ThreadPoolCounter counter;
1310                 counter.as_gint64 = COUNTER_READ();
1311                 if (counter._.working <= counter._.max_working)
1312                         return TRUE;
1313         }
1314
1315         return FALSE;
1316 }
1317
1318 static void
1319 heuristic_adjust (void)
1320 {
1321         g_assert (threadpool);
1322
1323         if (mono_coop_mutex_trylock (&threadpool->heuristic_lock) == 0) {
1324                 gint32 completions = InterlockedExchange (&threadpool->heuristic_completions, 0);
1325                 gint64 sample_end = mono_msec_ticks ();
1326                 gint64 sample_duration = sample_end - threadpool->heuristic_sample_start;
1327
1328                 if (sample_duration >= threadpool->heuristic_adjustment_interval / 2) {
1329                         ThreadPoolCounter counter;
1330                         gint16 new_thread_count;
1331
1332                         counter.as_gint64 = COUNTER_READ ();
1333                         new_thread_count = hill_climbing_update (counter._.max_working, sample_duration, completions, &threadpool->heuristic_adjustment_interval);
1334
1335                         COUNTER_ATOMIC (counter, { counter._.max_working = new_thread_count; });
1336
1337                         if (new_thread_count > counter._.max_working)
1338                                 worker_request (mono_domain_get ());
1339
1340                         threadpool->heuristic_sample_start = sample_end;
1341                         threadpool->heuristic_last_adjustment = mono_msec_ticks ();
1342                 }
1343
1344                 mono_coop_mutex_unlock (&threadpool->heuristic_lock);
1345         }
1346 }
1347
1348 void
1349 mono_threadpool_ms_cleanup (void)
1350 {
1351 #ifndef DISABLE_SOCKETS
1352         mono_threadpool_ms_io_cleanup ();
1353 #endif
1354         mono_lazy_cleanup (&status, cleanup);
1355 }
1356
1357 MonoAsyncResult *
1358 mono_threadpool_ms_begin_invoke (MonoDomain *domain, MonoObject *target, MonoMethod *method, gpointer *params, MonoError *error)
1359 {
1360         static MonoClass *async_call_klass = NULL;
1361         MonoMethodMessage *message;
1362         MonoAsyncResult *async_result;
1363         MonoAsyncCall *async_call;
1364         MonoDelegate *async_callback = NULL;
1365         MonoObject *state = NULL;
1366
1367         if (!async_call_klass)
1368                 async_call_klass = mono_class_load_from_name (mono_defaults.corlib, "System", "MonoAsyncCall");
1369
1370         mono_lazy_initialize (&status, initialize);
1371
1372         mono_error_init (error);
1373
1374         message = mono_method_call_message_new (method, params, mono_get_delegate_invoke (method->klass), (params != NULL) ? (&async_callback) : NULL, (params != NULL) ? (&state) : NULL, error);
1375         return_val_if_nok (error, NULL);
1376
1377         async_call = (MonoAsyncCall*) mono_object_new_checked (domain, async_call_klass, error);
1378         return_val_if_nok (error, NULL);
1379
1380         MONO_OBJECT_SETREF (async_call, msg, message);
1381         MONO_OBJECT_SETREF (async_call, state, state);
1382
1383         if (async_callback) {
1384                 MONO_OBJECT_SETREF (async_call, cb_method, mono_get_delegate_invoke (((MonoObject*) async_callback)->vtable->klass));
1385                 MONO_OBJECT_SETREF (async_call, cb_target, async_callback);
1386         }
1387
1388         async_result = mono_async_result_new (domain, NULL, async_call->state, NULL, (MonoObject*) async_call, error);
1389         return_val_if_nok (error, NULL);
1390         MONO_OBJECT_SETREF (async_result, async_delegate, target);
1391
1392         mono_threadpool_ms_enqueue_work_item (domain, (MonoObject*) async_result, error);
1393         return_val_if_nok (error, NULL);
1394
1395         return async_result;
1396 }
1397
1398 MonoObject *
1399 mono_threadpool_ms_end_invoke (MonoAsyncResult *ares, MonoArray **out_args, MonoObject **exc, MonoError *error)
1400 {
1401         MonoAsyncCall *ac;
1402
1403         mono_error_init (error);
1404         g_assert (exc);
1405         g_assert (out_args);
1406
1407         *exc = NULL;
1408         *out_args = NULL;
1409
1410         /* check if already finished */
1411         mono_monitor_enter ((MonoObject*) ares);
1412
1413         if (ares->endinvoke_called) {
1414                 mono_error_set_invalid_operation(error, "Delegate EndInvoke method called more than once");
1415                 mono_monitor_exit ((MonoObject*) ares);
1416                 return NULL;
1417         }
1418
1419         ares->endinvoke_called = 1;
1420
1421         /* wait until we are really finished */
1422         if (ares->completed) {
1423                 mono_monitor_exit ((MonoObject *) ares);
1424         } else {
1425                 gpointer wait_event;
1426                 if (ares->handle) {
1427                         wait_event = mono_wait_handle_get_handle ((MonoWaitHandle*) ares->handle);
1428                 } else {
1429                         wait_event = mono_w32event_create (TRUE, FALSE);
1430                         g_assert(wait_event);
1431                         MonoWaitHandle *wait_handle = mono_wait_handle_new (mono_object_domain (ares), wait_event, error);
1432                         if (!is_ok (error)) {
1433                                 CloseHandle (wait_event);
1434                                 return NULL;
1435                         }
1436                         MONO_OBJECT_SETREF (ares, handle, (MonoObject*) wait_handle);
1437                 }
1438                 mono_monitor_exit ((MonoObject*) ares);
1439                 MONO_ENTER_GC_SAFE;
1440                 WaitForSingleObjectEx (wait_event, INFINITE, TRUE);
1441                 MONO_EXIT_GC_SAFE;
1442         }
1443
1444         ac = (MonoAsyncCall*) ares->object_data;
1445         g_assert (ac);
1446
1447         *exc = ac->msg->exc; /* FIXME: GC add write barrier */
1448         *out_args = ac->out_args;
1449         return ac->res;
1450 }
1451
1452 gboolean
1453 mono_threadpool_ms_remove_domain_jobs (MonoDomain *domain, int timeout)
1454 {
1455         gint64 end;
1456         ThreadPoolDomain *tpdomain;
1457         gboolean ret;
1458
1459         g_assert (domain);
1460         g_assert (timeout >= -1);
1461
1462         g_assert (mono_domain_is_unloading (domain));
1463
1464         if (timeout != -1)
1465                 end = mono_msec_ticks () + timeout;
1466
1467 #ifndef DISABLE_SOCKETS
1468         mono_threadpool_ms_io_remove_domain_jobs (domain);
1469         if (timeout != -1) {
1470                 if (mono_msec_ticks () > end)
1471                         return FALSE;
1472         }
1473 #endif
1474
1475         /*
1476          * Wait for all threads which execute jobs in the domain to exit.
1477          * The is_unloading () check in worker_request () ensures that
1478          * no new jobs are added after we enter the lock below.
1479          */
1480         mono_lazy_initialize (&status, initialize);
1481         domains_lock ();
1482
1483         tpdomain = tpdomain_get (domain, FALSE);
1484         if (!tpdomain) {
1485                 domains_unlock ();
1486                 return TRUE;
1487         }
1488
1489         ret = TRUE;
1490
1491         while (tpdomain->outstanding_request + tpdomain->threadpool_jobs > 0) {
1492                 if (timeout == -1) {
1493                         mono_coop_cond_wait (&tpdomain->cleanup_cond, &threadpool->domains_lock);
1494                 } else {
1495                         gint64 now;
1496                         gint res;
1497
1498                         now = mono_msec_ticks();
1499                         if (now > end) {
1500                                 ret = FALSE;
1501                                 break;
1502                         }
1503
1504                         res = mono_coop_cond_timedwait (&tpdomain->cleanup_cond, &threadpool->domains_lock, end - now);
1505                         if (res != 0) {
1506                                 ret = FALSE;
1507                                 break;
1508                         }
1509                 }
1510         }
1511
1512         /* Remove from the list the worker threads look at */
1513         tpdomain_remove (tpdomain);
1514
1515         domains_unlock ();
1516
1517         mono_coop_cond_destroy (&tpdomain->cleanup_cond);
1518         tpdomain_free (tpdomain);
1519
1520         return ret;
1521 }
1522
1523 void
1524 mono_threadpool_ms_suspend (void)
1525 {
1526         if (threadpool)
1527                 threadpool->suspended = TRUE;
1528 }
1529
1530 void
1531 mono_threadpool_ms_resume (void)
1532 {
1533         if (threadpool)
1534                 threadpool->suspended = FALSE;
1535 }
1536
1537 void
1538 ves_icall_System_Threading_ThreadPool_GetAvailableThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1539 {
1540         ThreadPoolCounter counter;
1541
1542         if (!worker_threads || !completion_port_threads)
1543                 return;
1544
1545         mono_lazy_initialize (&status, initialize);
1546
1547         counter.as_gint64 = COUNTER_READ ();
1548
1549         *worker_threads = MAX (0, threadpool->limit_worker_max - counter._.active);
1550         *completion_port_threads = threadpool->limit_io_max;
1551 }
1552
1553 void
1554 ves_icall_System_Threading_ThreadPool_GetMinThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1555 {
1556         if (!worker_threads || !completion_port_threads)
1557                 return;
1558
1559         mono_lazy_initialize (&status, initialize);
1560
1561         *worker_threads = threadpool->limit_worker_min;
1562         *completion_port_threads = threadpool->limit_io_min;
1563 }
1564
1565 void
1566 ves_icall_System_Threading_ThreadPool_GetMaxThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1567 {
1568         if (!worker_threads || !completion_port_threads)
1569                 return;
1570
1571         mono_lazy_initialize (&status, initialize);
1572
1573         *worker_threads = threadpool->limit_worker_max;
1574         *completion_port_threads = threadpool->limit_io_max;
1575 }
1576
1577 MonoBoolean
1578 ves_icall_System_Threading_ThreadPool_SetMinThreadsNative (gint32 worker_threads, gint32 completion_port_threads)
1579 {
1580         mono_lazy_initialize (&status, initialize);
1581
1582         if (worker_threads <= 0 || worker_threads > threadpool->limit_worker_max)
1583                 return FALSE;
1584         if (completion_port_threads <= 0 || completion_port_threads > threadpool->limit_io_max)
1585                 return FALSE;
1586
1587         threadpool->limit_worker_min = worker_threads;
1588         threadpool->limit_io_min = completion_port_threads;
1589
1590         return TRUE;
1591 }
1592
1593 MonoBoolean
1594 ves_icall_System_Threading_ThreadPool_SetMaxThreadsNative (gint32 worker_threads, gint32 completion_port_threads)
1595 {
1596         gint cpu_count = mono_cpu_count ();
1597
1598         mono_lazy_initialize (&status, initialize);
1599
1600         if (worker_threads < threadpool->limit_worker_min || worker_threads < cpu_count)
1601                 return FALSE;
1602         if (completion_port_threads < threadpool->limit_io_min || completion_port_threads < cpu_count)
1603                 return FALSE;
1604
1605         threadpool->limit_worker_max = worker_threads;
1606         threadpool->limit_io_max = completion_port_threads;
1607
1608         return TRUE;
1609 }
1610
1611 void
1612 ves_icall_System_Threading_ThreadPool_InitializeVMTp (MonoBoolean *enable_worker_tracking)
1613 {
1614         if (enable_worker_tracking) {
1615                 // TODO implement some kind of switch to have the possibily to use it
1616                 *enable_worker_tracking = FALSE;
1617         }
1618
1619         mono_lazy_initialize (&status, initialize);
1620 }
1621
1622 MonoBoolean
1623 ves_icall_System_Threading_ThreadPool_NotifyWorkItemComplete (void)
1624 {
1625         ThreadPoolCounter counter;
1626
1627         if (mono_domain_is_unloading (mono_domain_get ()) || mono_runtime_is_shutting_down ())
1628                 return FALSE;
1629
1630         heuristic_notify_work_completed ();
1631
1632         if (heuristic_should_adjust ())
1633                 heuristic_adjust ();
1634
1635         counter.as_gint64 = COUNTER_READ ();
1636         return counter._.working <= counter._.max_working;
1637 }
1638
1639 void
1640 ves_icall_System_Threading_ThreadPool_NotifyWorkItemProgressNative (void)
1641 {
1642         heuristic_notify_work_completed ();
1643
1644         if (heuristic_should_adjust ())
1645                 heuristic_adjust ();
1646 }
1647
1648 void
1649 ves_icall_System_Threading_ThreadPool_ReportThreadStatus (MonoBoolean is_working)
1650 {
1651         // TODO
1652         MonoError error;
1653         mono_error_set_not_implemented (&error, "");
1654         mono_error_set_pending_exception (&error);
1655 }
1656
1657 MonoBoolean
1658 ves_icall_System_Threading_ThreadPool_RequestWorkerThread (void)
1659 {
1660         return worker_request (mono_domain_get ());
1661 }
1662
1663 MonoBoolean G_GNUC_UNUSED
1664 ves_icall_System_Threading_ThreadPool_PostQueuedCompletionStatus (MonoNativeOverlapped *native_overlapped)
1665 {
1666         /* This copy the behavior of the current Mono implementation */
1667         MonoError error;
1668         mono_error_set_not_implemented (&error, "");
1669         mono_error_set_pending_exception (&error);
1670         return FALSE;
1671 }
1672
1673 MonoBoolean G_GNUC_UNUSED
1674 ves_icall_System_Threading_ThreadPool_BindIOCompletionCallbackNative (gpointer file_handle)
1675 {
1676         /* This copy the behavior of the current Mono implementation */
1677         return TRUE;
1678 }
1679
1680 MonoBoolean G_GNUC_UNUSED
1681 ves_icall_System_Threading_ThreadPool_IsThreadPoolHosted (void)
1682 {
1683         return FALSE;
1684 }