Resolve "you are registering twice the same counter address" warning on Windows Relea...
[mono.git] / mono / metadata / threadpool-ms.c
1 /*
2  * threadpool-ms.c: Microsoft threadpool runtime support
3  *
4  * Author:
5  *      Ludovic Henry (ludovic.henry@xamarin.com)
6  *
7  * Copyright 2015 Xamarin, Inc (http://www.xamarin.com)
8  * Licensed under the MIT license. See LICENSE file in the project root for full license information.
9  */
10
11 //
12 // Copyright (c) Microsoft. All rights reserved.
13 // Licensed under the MIT license. See LICENSE file in the project root for full license information.
14 //
15 // Files:
16 //  - src/vm/comthreadpool.cpp
17 //  - src/vm/win32threadpoolcpp
18 //  - src/vm/threadpoolrequest.cpp
19 //  - src/vm/hillclimbing.cpp
20 //
21 // Ported from C++ to C and adjusted to Mono runtime
22
23 #include <stdlib.h>
24 #define _USE_MATH_DEFINES // needed by MSVC to define math constants
25 #include <math.h>
26 #include <config.h>
27 #include <glib.h>
28
29 #include <mono/metadata/class-internals.h>
30 #include <mono/metadata/exception.h>
31 #include <mono/metadata/gc-internals.h>
32 #include <mono/metadata/object.h>
33 #include <mono/metadata/object-internals.h>
34 #include <mono/metadata/threadpool-ms.h>
35 #include <mono/metadata/threadpool-ms-io.h>
36 #include <mono/metadata/w32event.h>
37 #include <mono/utils/atomic.h>
38 #include <mono/utils/mono-compiler.h>
39 #include <mono/utils/mono-complex.h>
40 #include <mono/utils/mono-lazy-init.h>
41 #include <mono/utils/mono-logger.h>
42 #include <mono/utils/mono-logger-internals.h>
43 #include <mono/utils/mono-proclib.h>
44 #include <mono/utils/mono-threads.h>
45 #include <mono/utils/mono-time.h>
46 #include <mono/utils/mono-rand.h>
47
48 #define CPU_USAGE_LOW 80
49 #define CPU_USAGE_HIGH 95
50
51 #define MONITOR_INTERVAL 500 // ms
52 #define MONITOR_MINIMAL_LIFETIME 60 * 1000 // ms
53
54 #define WORKER_CREATION_MAX_PER_SEC 10
55
56 /* The exponent to apply to the gain. 1.0 means to use linear gain,
57  * higher values will enhance large moves and damp small ones.
58  * default: 2.0 */
59 #define HILL_CLIMBING_GAIN_EXPONENT 2.0
60
61 /* The 'cost' of a thread. 0 means drive for increased throughput regardless
62  * of thread count, higher values bias more against higher thread counts.
63  * default: 0.15 */
64 #define HILL_CLIMBING_BIAS 0.15
65
66 #define HILL_CLIMBING_WAVE_PERIOD 4
67 #define HILL_CLIMBING_MAX_WAVE_MAGNITUDE 20
68 #define HILL_CLIMBING_WAVE_MAGNITUDE_MULTIPLIER 1.0
69 #define HILL_CLIMBING_WAVE_HISTORY_SIZE 8
70 #define HILL_CLIMBING_TARGET_SIGNAL_TO_NOISE_RATIO 3.0
71 #define HILL_CLIMBING_MAX_CHANGE_PER_SECOND 4
72 #define HILL_CLIMBING_MAX_CHANGE_PER_SAMPLE 20
73 #define HILL_CLIMBING_SAMPLE_INTERVAL_LOW 10
74 #define HILL_CLIMBING_SAMPLE_INTERVAL_HIGH 200
75 #define HILL_CLIMBING_ERROR_SMOOTHING_FACTOR 0.01
76 #define HILL_CLIMBING_MAX_SAMPLE_ERROR_PERCENT 0.15
77
78 typedef union {
79         struct {
80                 gint16 max_working; /* determined by heuristic */
81                 gint16 active; /* executing worker_thread */
82                 gint16 working; /* actively executing worker_thread, not parked */
83                 gint16 parked; /* parked */
84         } _;
85         gint64 as_gint64;
86 } ThreadPoolCounter;
87
88 typedef struct {
89         MonoDomain *domain;
90         gint32 outstanding_request;
91 } ThreadPoolDomain;
92
93 typedef MonoInternalThread ThreadPoolWorkingThread;
94
95 typedef struct {
96         gint32 wave_period;
97         gint32 samples_to_measure;
98         gdouble target_throughput_ratio;
99         gdouble target_signal_to_noise_ratio;
100         gdouble max_change_per_second;
101         gdouble max_change_per_sample;
102         gint32 max_thread_wave_magnitude;
103         gint32 sample_interval_low;
104         gdouble thread_magnitude_multiplier;
105         gint32 sample_interval_high;
106         gdouble throughput_error_smoothing_factor;
107         gdouble gain_exponent;
108         gdouble max_sample_error;
109
110         gdouble current_control_setting;
111         gint64 total_samples;
112         gint16 last_thread_count;
113         gdouble elapsed_since_last_change;
114         gdouble completions_since_last_change;
115
116         gdouble average_throughput_noise;
117
118         gdouble *samples;
119         gdouble *thread_counts;
120
121         guint32 current_sample_interval;
122         gpointer random_interval_generator;
123
124         gint32 accumulated_completion_count;
125         gdouble accumulated_sample_duration;
126 } ThreadPoolHillClimbing;
127
128 typedef struct {
129         ThreadPoolCounter counters;
130
131         GPtrArray *domains; // ThreadPoolDomain* []
132         MonoCoopMutex domains_lock;
133
134         GPtrArray *working_threads; // ThreadPoolWorkingThread* []
135         gint32 parked_threads_count;
136         MonoCoopCond parked_threads_cond;
137         MonoCoopMutex active_threads_lock; /* protect access to working_threads and parked_threads */
138
139         guint32 worker_creation_current_second;
140         guint32 worker_creation_current_count;
141         MonoCoopMutex worker_creation_lock;
142
143         gint32 heuristic_completions;
144         gint64 heuristic_sample_start;
145         gint64 heuristic_last_dequeue; // ms
146         gint64 heuristic_last_adjustment; // ms
147         gint64 heuristic_adjustment_interval; // ms
148         ThreadPoolHillClimbing heuristic_hill_climbing;
149         MonoCoopMutex heuristic_lock;
150
151         gint32 limit_worker_min;
152         gint32 limit_worker_max;
153         gint32 limit_io_min;
154         gint32 limit_io_max;
155
156         MonoCpuUsageState *cpu_usage_state;
157         gint32 cpu_usage;
158
159         /* suspended by the debugger */
160         gboolean suspended;
161 } ThreadPool;
162
163 typedef struct {
164         gint32 ref;
165         MonoCoopSem sem;
166 } ThreadPoolDomainCleanupSemaphore;
167
168 typedef enum {
169         TRANSITION_WARMUP,
170         TRANSITION_INITIALIZING,
171         TRANSITION_RANDOM_MOVE,
172         TRANSITION_CLIMBING_MOVE,
173         TRANSITION_CHANGE_POINT,
174         TRANSITION_STABILIZING,
175         TRANSITION_STARVATION,
176         TRANSITION_THREAD_TIMED_OUT,
177         TRANSITION_UNDEFINED,
178 } ThreadPoolHeuristicStateTransition;
179
180 static mono_lazy_init_t status = MONO_LAZY_INIT_STATUS_NOT_INITIALIZED;
181
182 enum {
183         MONITOR_STATUS_REQUESTED,
184         MONITOR_STATUS_WAITING_FOR_REQUEST,
185         MONITOR_STATUS_NOT_RUNNING,
186 };
187
188 static gint32 monitor_status = MONITOR_STATUS_NOT_RUNNING;
189
190 static ThreadPool* threadpool;
191
192 #define COUNTER_CHECK(counter) \
193         do { \
194                 g_assert (counter._.max_working > 0); \
195                 g_assert (counter._.working >= 0); \
196                 g_assert (counter._.active >= 0); \
197         } while (0)
198
199 #define COUNTER_READ() (InterlockedRead64 (&threadpool->counters.as_gint64))
200
201 #define COUNTER_ATOMIC(var,block) \
202         do { \
203                 ThreadPoolCounter __old; \
204                 do { \
205                         g_assert (threadpool); \
206                         __old.as_gint64 = COUNTER_READ (); \
207                         (var) = __old; \
208                         { block; } \
209                         COUNTER_CHECK (var); \
210                 } while (InterlockedCompareExchange64 (&threadpool->counters.as_gint64, (var).as_gint64, __old.as_gint64) != __old.as_gint64); \
211         } while (0)
212
213 #define COUNTER_TRY_ATOMIC(res,var,block) \
214         do { \
215                 ThreadPoolCounter __old; \
216                 do { \
217                         g_assert (threadpool); \
218                         __old.as_gint64 = COUNTER_READ (); \
219                         (var) = __old; \
220                         (res) = FALSE; \
221                         { block; } \
222                         COUNTER_CHECK (var); \
223                         (res) = InterlockedCompareExchange64 (&threadpool->counters.as_gint64, (var).as_gint64, __old.as_gint64) == __old.as_gint64; \
224                 } while (0); \
225         } while (0)
226
227 static gpointer
228 rand_create (void)
229 {
230         mono_rand_open ();
231         return mono_rand_init (NULL, 0);
232 }
233
234 static guint32
235 rand_next (gpointer *handle, guint32 min, guint32 max)
236 {
237         MonoError error;
238         guint32 val;
239         mono_rand_try_get_uint32 (handle, &val, min, max, &error);
240         // FIXME handle error
241         mono_error_assert_ok (&error);
242         return val;
243 }
244
245 static void
246 rand_free (gpointer handle)
247 {
248         mono_rand_close (handle);
249 }
250
251 static void
252 initialize (void)
253 {
254         ThreadPoolHillClimbing *hc;
255         const char *threads_per_cpu_env;
256         gint threads_per_cpu;
257         gint threads_count;
258
259         g_assert (!threadpool);
260         threadpool = g_new0 (ThreadPool, 1);
261         g_assert (threadpool);
262
263         threadpool->domains = g_ptr_array_new ();
264         mono_coop_mutex_init (&threadpool->domains_lock);
265
266         threadpool->parked_threads_count = 0;
267         mono_coop_cond_init (&threadpool->parked_threads_cond);
268         threadpool->working_threads = g_ptr_array_new ();
269         mono_coop_mutex_init (&threadpool->active_threads_lock);
270
271         threadpool->worker_creation_current_second = -1;
272         mono_coop_mutex_init (&threadpool->worker_creation_lock);
273
274         threadpool->heuristic_adjustment_interval = 10;
275         mono_coop_mutex_init (&threadpool->heuristic_lock);
276
277         mono_rand_open ();
278
279         hc = &threadpool->heuristic_hill_climbing;
280
281         hc->wave_period = HILL_CLIMBING_WAVE_PERIOD;
282         hc->max_thread_wave_magnitude = HILL_CLIMBING_MAX_WAVE_MAGNITUDE;
283         hc->thread_magnitude_multiplier = (gdouble) HILL_CLIMBING_WAVE_MAGNITUDE_MULTIPLIER;
284         hc->samples_to_measure = hc->wave_period * HILL_CLIMBING_WAVE_HISTORY_SIZE;
285         hc->target_throughput_ratio = (gdouble) HILL_CLIMBING_BIAS;
286         hc->target_signal_to_noise_ratio = (gdouble) HILL_CLIMBING_TARGET_SIGNAL_TO_NOISE_RATIO;
287         hc->max_change_per_second = (gdouble) HILL_CLIMBING_MAX_CHANGE_PER_SECOND;
288         hc->max_change_per_sample = (gdouble) HILL_CLIMBING_MAX_CHANGE_PER_SAMPLE;
289         hc->sample_interval_low = HILL_CLIMBING_SAMPLE_INTERVAL_LOW;
290         hc->sample_interval_high = HILL_CLIMBING_SAMPLE_INTERVAL_HIGH;
291         hc->throughput_error_smoothing_factor = (gdouble) HILL_CLIMBING_ERROR_SMOOTHING_FACTOR;
292         hc->gain_exponent = (gdouble) HILL_CLIMBING_GAIN_EXPONENT;
293         hc->max_sample_error = (gdouble) HILL_CLIMBING_MAX_SAMPLE_ERROR_PERCENT;
294         hc->current_control_setting = 0;
295         hc->total_samples = 0;
296         hc->last_thread_count = 0;
297         hc->average_throughput_noise = 0;
298         hc->elapsed_since_last_change = 0;
299         hc->accumulated_completion_count = 0;
300         hc->accumulated_sample_duration = 0;
301         hc->samples = g_new0 (gdouble, hc->samples_to_measure);
302         hc->thread_counts = g_new0 (gdouble, hc->samples_to_measure);
303         hc->random_interval_generator = rand_create ();
304         hc->current_sample_interval = rand_next (&hc->random_interval_generator, hc->sample_interval_low, hc->sample_interval_high);
305
306         if (!(threads_per_cpu_env = g_getenv ("MONO_THREADS_PER_CPU")))
307                 threads_per_cpu = 1;
308         else
309                 threads_per_cpu = CLAMP (atoi (threads_per_cpu_env), 1, 50);
310
311         threads_count = mono_cpu_count () * threads_per_cpu;
312
313         threadpool->limit_worker_min = threadpool->limit_io_min = threads_count;
314
315 #if defined (PLATFORM_ANDROID) || defined (HOST_IOS)
316         threadpool->limit_worker_max = threadpool->limit_io_max = CLAMP (threads_count * 100, MIN (threads_count, 200), MAX (threads_count, 200));
317 #else
318         threadpool->limit_worker_max = threadpool->limit_io_max = threads_count * 100;
319 #endif
320
321         threadpool->counters._.max_working = threadpool->limit_worker_min;
322
323         threadpool->cpu_usage_state = g_new0 (MonoCpuUsageState, 1);
324
325         threadpool->suspended = FALSE;
326 }
327
328 static void worker_kill (ThreadPoolWorkingThread *thread);
329
330 static void
331 cleanup (void)
332 {
333         guint i;
334
335         /* we make the assumption along the code that we are
336          * cleaning up only if the runtime is shutting down */
337         g_assert (mono_runtime_is_shutting_down ());
338
339         while (monitor_status != MONITOR_STATUS_NOT_RUNNING)
340                 mono_thread_info_sleep (1, NULL);
341
342         mono_coop_mutex_lock (&threadpool->active_threads_lock);
343
344         /* stop all threadpool->working_threads */
345         for (i = 0; i < threadpool->working_threads->len; ++i)
346                 worker_kill ((ThreadPoolWorkingThread*) g_ptr_array_index (threadpool->working_threads, i));
347
348         /* unpark all threadpool->parked_threads */
349         mono_coop_cond_broadcast (&threadpool->parked_threads_cond);
350
351         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
352 }
353
354 gboolean
355 mono_threadpool_ms_enqueue_work_item (MonoDomain *domain, MonoObject *work_item, MonoError *error)
356 {
357         static MonoClass *threadpool_class = NULL;
358         static MonoMethod *unsafe_queue_custom_work_item_method = NULL;
359         MonoDomain *current_domain;
360         MonoBoolean f;
361         gpointer args [2];
362
363         mono_error_init (error);
364         g_assert (work_item);
365
366         if (!threadpool_class)
367                 threadpool_class = mono_class_load_from_name (mono_defaults.corlib, "System.Threading", "ThreadPool");
368
369         if (!unsafe_queue_custom_work_item_method)
370                 unsafe_queue_custom_work_item_method = mono_class_get_method_from_name (threadpool_class, "UnsafeQueueCustomWorkItem", 2);
371         g_assert (unsafe_queue_custom_work_item_method);
372
373         f = FALSE;
374
375         args [0] = (gpointer) work_item;
376         args [1] = (gpointer) &f;
377
378         current_domain = mono_domain_get ();
379         if (current_domain == domain) {
380                 mono_runtime_invoke_checked (unsafe_queue_custom_work_item_method, NULL, args, error);
381                 return_val_if_nok (error, FALSE);
382         } else {
383                 mono_thread_push_appdomain_ref (domain);
384                 if (mono_domain_set (domain, FALSE)) {
385                         mono_runtime_invoke_checked (unsafe_queue_custom_work_item_method, NULL, args, error);
386                         if (!is_ok (error)) {
387                                 mono_thread_pop_appdomain_ref ();
388                                 return FALSE;
389                         }
390                         mono_domain_set (current_domain, TRUE);
391                 }
392                 mono_thread_pop_appdomain_ref ();
393         }
394         return TRUE;
395 }
396
397 /* LOCKING: threadpool->domains_lock must be held */
398 static void
399 domain_add (ThreadPoolDomain *tpdomain)
400 {
401         guint i, len;
402
403         g_assert (tpdomain);
404
405         len = threadpool->domains->len;
406         for (i = 0; i < len; ++i) {
407                 if (g_ptr_array_index (threadpool->domains, i) == tpdomain)
408                         break;
409         }
410
411         if (i == len)
412                 g_ptr_array_add (threadpool->domains, tpdomain);
413 }
414
415 /* LOCKING: threadpool->domains_lock must be held */
416 static gboolean
417 domain_remove (ThreadPoolDomain *tpdomain)
418 {
419         g_assert (tpdomain);
420         return g_ptr_array_remove (threadpool->domains, tpdomain);
421 }
422
423 /* LOCKING: threadpool->domains_lock must be held */
424 static ThreadPoolDomain *
425 domain_get (MonoDomain *domain, gboolean create)
426 {
427         ThreadPoolDomain *tpdomain = NULL;
428         guint i;
429
430         g_assert (domain);
431
432         for (i = 0; i < threadpool->domains->len; ++i) {
433                 tpdomain = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i);
434                 if (tpdomain->domain == domain)
435                         return tpdomain;
436         }
437
438         if (create) {
439                 ThreadPoolDomainCleanupSemaphore *cleanup_semaphore;
440                 cleanup_semaphore = g_new0 (ThreadPoolDomainCleanupSemaphore, 1);
441                 cleanup_semaphore->ref = 2;
442                 mono_coop_sem_init (&cleanup_semaphore->sem, 0);
443
444                 g_assert(!domain->cleanup_semaphore);
445                 domain->cleanup_semaphore = cleanup_semaphore;
446
447                 tpdomain = g_new0 (ThreadPoolDomain, 1);
448                 tpdomain->domain = domain;
449                 domain_add (tpdomain);
450         }
451
452         return tpdomain;
453 }
454
455 static void
456 domain_free (ThreadPoolDomain *tpdomain)
457 {
458         g_free (tpdomain);
459 }
460
461 /* LOCKING: threadpool->domains_lock must be held */
462 static gboolean
463 domain_any_has_request (void)
464 {
465         guint i;
466
467         for (i = 0; i < threadpool->domains->len; ++i) {
468                 ThreadPoolDomain *tmp = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i);
469                 if (tmp->outstanding_request > 0)
470                         return TRUE;
471         }
472
473         return FALSE;
474 }
475
476 /* LOCKING: threadpool->domains_lock must be held */
477 static ThreadPoolDomain *
478 domain_get_next (ThreadPoolDomain *current)
479 {
480         ThreadPoolDomain *tpdomain = NULL;
481         guint len;
482
483         len = threadpool->domains->len;
484         if (len > 0) {
485                 guint i, current_idx = -1;
486                 if (current) {
487                         for (i = 0; i < len; ++i) {
488                                 if (current == g_ptr_array_index (threadpool->domains, i)) {
489                                         current_idx = i;
490                                         break;
491                                 }
492                         }
493                         g_assert (current_idx != (guint)-1);
494                 }
495                 for (i = current_idx + 1; i < len + current_idx + 1; ++i) {
496                         ThreadPoolDomain *tmp = (ThreadPoolDomain *)g_ptr_array_index (threadpool->domains, i % len);
497                         if (tmp->outstanding_request > 0) {
498                                 tpdomain = tmp;
499                                 break;
500                         }
501                 }
502         }
503
504         return tpdomain;
505 }
506
507 static void
508 worker_wait_interrupt (gpointer data)
509 {
510         mono_coop_mutex_lock (&threadpool->active_threads_lock);
511         mono_coop_cond_signal (&threadpool->parked_threads_cond);
512         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
513 }
514
515 /* return TRUE if timeout, FALSE otherwise (worker unpark or interrupt) */
516 static gboolean
517 worker_park (void)
518 {
519         gboolean timeout = FALSE;
520
521         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] current worker parking", mono_native_thread_id_get ());
522
523         mono_gc_set_skip_thread (TRUE);
524
525         mono_coop_mutex_lock (&threadpool->active_threads_lock);
526
527         if (!mono_runtime_is_shutting_down ()) {
528                 static gpointer rand_handle = NULL;
529                 MonoInternalThread *thread_internal;
530                 gboolean interrupted = FALSE;
531
532                 if (!rand_handle)
533                         rand_handle = rand_create ();
534                 g_assert (rand_handle);
535
536                 thread_internal = mono_thread_internal_current ();
537                 g_assert (thread_internal);
538
539                 threadpool->parked_threads_count += 1;
540                 g_ptr_array_remove_fast (threadpool->working_threads, thread_internal);
541
542                 mono_thread_info_install_interrupt (worker_wait_interrupt, NULL, &interrupted);
543                 if (interrupted)
544                         goto done;
545
546                 if (mono_coop_cond_timedwait (&threadpool->parked_threads_cond, &threadpool->active_threads_lock, rand_next (&rand_handle, 5 * 1000, 60 * 1000)) != 0)
547                         timeout = TRUE;
548
549                 mono_thread_info_uninstall_interrupt (&interrupted);
550
551 done:
552                 g_ptr_array_add (threadpool->working_threads, thread_internal);
553                 threadpool->parked_threads_count -= 1;
554         }
555
556         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
557
558         mono_gc_set_skip_thread (FALSE);
559
560         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] current worker unparking, timeout? %s", mono_native_thread_id_get (), timeout ? "yes" : "no");
561
562         return timeout;
563 }
564
565 static gboolean
566 worker_try_unpark (void)
567 {
568         gboolean res = FALSE;
569
570         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try unpark worker", mono_native_thread_id_get ());
571
572         mono_coop_mutex_lock (&threadpool->active_threads_lock);
573         if (threadpool->parked_threads_count > 0) {
574                 mono_coop_cond_signal (&threadpool->parked_threads_cond);
575                 res = TRUE;
576         }
577         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
578
579         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try unpark worker, success? %s", mono_native_thread_id_get (), res ? "yes" : "no");
580
581         return res;
582 }
583
584 static void
585 worker_kill (ThreadPoolWorkingThread *thread)
586 {
587         if (thread == mono_thread_internal_current ())
588                 return;
589
590         mono_thread_internal_stop ((MonoInternalThread*) thread);
591 }
592
593 static void
594 worker_thread (gpointer data)
595 {
596         MonoError error;
597         MonoInternalThread *thread;
598         ThreadPoolDomain *tpdomain, *previous_tpdomain;
599         ThreadPoolCounter counter;
600         gboolean retire = FALSE;
601
602         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] worker starting", mono_native_thread_id_get ());
603
604         g_assert (threadpool);
605
606         thread = mono_thread_internal_current ();
607         g_assert (thread);
608
609         mono_thread_set_name_internal (thread, mono_string_new (mono_get_root_domain (), "Threadpool worker"), FALSE, &error);
610         mono_error_assert_ok (&error);
611
612         mono_coop_mutex_lock (&threadpool->active_threads_lock);
613         g_ptr_array_add (threadpool->working_threads, thread);
614         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
615
616         previous_tpdomain = NULL;
617
618         mono_coop_mutex_lock (&threadpool->domains_lock);
619
620         while (!mono_runtime_is_shutting_down ()) {
621                 tpdomain = NULL;
622
623                 if ((thread->state & (ThreadState_StopRequested | ThreadState_SuspendRequested)) != 0) {
624                         mono_coop_mutex_unlock (&threadpool->domains_lock);
625                         mono_thread_interruption_checkpoint ();
626                         mono_coop_mutex_lock (&threadpool->domains_lock);
627                 }
628
629                 if (retire || !(tpdomain = domain_get_next (previous_tpdomain))) {
630                         gboolean timeout;
631
632                         COUNTER_ATOMIC (counter, {
633                                 counter._.working --;
634                                 counter._.parked ++;
635                         });
636
637                         mono_coop_mutex_unlock (&threadpool->domains_lock);
638                         timeout = worker_park ();
639                         mono_coop_mutex_lock (&threadpool->domains_lock);
640
641                         COUNTER_ATOMIC (counter, {
642                                 counter._.working ++;
643                                 counter._.parked --;
644                         });
645
646                         if (timeout)
647                                 break;
648
649                         if (retire)
650                                 retire = FALSE;
651
652                         /* The tpdomain->domain might have unloaded, while this thread was parked */
653                         previous_tpdomain = NULL;
654
655                         continue;
656                 }
657
658                 tpdomain->outstanding_request --;
659                 g_assert (tpdomain->outstanding_request >= 0);
660
661                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] worker running in domain %p",
662                         mono_native_thread_id_get (), tpdomain->domain, tpdomain->outstanding_request);
663
664                 g_assert (tpdomain->domain);
665                 g_assert (tpdomain->domain->threadpool_jobs >= 0);
666                 tpdomain->domain->threadpool_jobs ++;
667
668                 mono_coop_mutex_unlock (&threadpool->domains_lock);
669
670                 mono_thread_push_appdomain_ref (tpdomain->domain);
671                 if (mono_domain_set (tpdomain->domain, FALSE)) {
672                         MonoObject *exc = NULL, *res;
673
674                         res = mono_runtime_try_invoke (mono_defaults.threadpool_perform_wait_callback_method, NULL, NULL, &exc, &error);
675                         if (exc || !mono_error_ok(&error)) {
676                                 if (exc == NULL)
677                                         exc = (MonoObject *) mono_error_convert_to_exception (&error);
678                                 else
679                                         mono_error_cleanup (&error);
680                                 mono_thread_internal_unhandled_exception (exc);
681                         } else if (res && *(MonoBoolean*) mono_object_unbox (res) == FALSE)
682                                 retire = TRUE;
683
684                         mono_thread_clr_state (thread, (MonoThreadState)~ThreadState_Background);
685                         if (!mono_thread_test_state (thread , ThreadState_Background))
686                                 ves_icall_System_Threading_Thread_SetState (thread, ThreadState_Background);
687
688                         mono_domain_set (mono_get_root_domain (), TRUE);
689                 }
690                 mono_thread_pop_appdomain_ref ();
691
692                 mono_coop_mutex_lock (&threadpool->domains_lock);
693
694                 tpdomain->domain->threadpool_jobs --;
695                 g_assert (tpdomain->domain->threadpool_jobs >= 0);
696
697                 if (tpdomain->domain->threadpool_jobs == 0 && mono_domain_is_unloading (tpdomain->domain)) {
698                         ThreadPoolDomainCleanupSemaphore *cleanup_semaphore;
699                         gboolean removed;
700
701                         removed = domain_remove(tpdomain);
702                         g_assert (removed);
703
704                         cleanup_semaphore = (ThreadPoolDomainCleanupSemaphore*) tpdomain->domain->cleanup_semaphore;
705
706                         g_assert(cleanup_semaphore);
707                         mono_coop_sem_post (&cleanup_semaphore->sem);
708                         if (InterlockedDecrement (&cleanup_semaphore->ref) == 0) {
709                                 mono_coop_sem_destroy (&cleanup_semaphore->sem);
710                                 g_free (cleanup_semaphore);
711                                 tpdomain->domain->cleanup_semaphore = NULL;
712                         }
713
714                         domain_free (tpdomain);
715                         tpdomain = NULL;
716                 }
717
718                 previous_tpdomain = tpdomain;
719         }
720
721         mono_coop_mutex_unlock (&threadpool->domains_lock);
722
723         mono_coop_mutex_lock (&threadpool->active_threads_lock);
724         g_ptr_array_remove_fast (threadpool->working_threads, thread);
725         mono_coop_mutex_unlock (&threadpool->active_threads_lock);
726
727         COUNTER_ATOMIC (counter, {
728                 counter._.working--;
729                 counter._.active --;
730         });
731
732         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] worker finishing", mono_native_thread_id_get ());
733 }
734
735 static gboolean
736 worker_try_create (void)
737 {
738         ThreadPoolCounter counter;
739         MonoInternalThread *thread;
740         gint64 current_ticks;
741         gint32 now;
742
743         mono_coop_mutex_lock (&threadpool->worker_creation_lock);
744
745         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker", mono_native_thread_id_get ());
746         current_ticks = mono_100ns_ticks ();
747         now = current_ticks / (10 * 1000 * 1000);
748         if (0 == current_ticks) {
749                 g_warning ("failed to get 100ns ticks");
750         } else {
751                 if (threadpool->worker_creation_current_second != now) {
752                         threadpool->worker_creation_current_second = now;
753                         threadpool->worker_creation_current_count = 0;
754                 } else {
755                         g_assert (threadpool->worker_creation_current_count <= WORKER_CREATION_MAX_PER_SEC);
756                         if (threadpool->worker_creation_current_count == WORKER_CREATION_MAX_PER_SEC) {
757                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: maximum number of worker created per second reached, current count = %d",
758                                         mono_native_thread_id_get (), threadpool->worker_creation_current_count);
759                                 mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
760                                 return FALSE;
761                         }
762                 }
763         }
764
765         COUNTER_ATOMIC (counter, {
766                 if (counter._.working >= counter._.max_working) {
767                         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: maximum number of working threads reached",
768                                 mono_native_thread_id_get ());
769                         mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
770                         return FALSE;
771                 }
772                 counter._.working ++;
773                 counter._.active ++;
774         });
775
776         MonoError error;
777         if ((thread = mono_thread_create_internal (mono_get_root_domain (), worker_thread, NULL, TRUE, 0, &error)) != NULL) {
778                 threadpool->worker_creation_current_count += 1;
779
780                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, created %p, now = %d count = %d", mono_native_thread_id_get (), thread->tid, now, threadpool->worker_creation_current_count);
781                 mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
782                 return TRUE;
783         }
784
785         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: could not create thread due to %s", mono_native_thread_id_get (), mono_error_get_message (&error));
786         mono_error_cleanup (&error);
787
788         COUNTER_ATOMIC (counter, {
789                 counter._.working --;
790                 counter._.active --;
791         });
792
793         mono_coop_mutex_unlock (&threadpool->worker_creation_lock);
794         return FALSE;
795 }
796
797 static void monitor_ensure_running (void);
798
799 static gboolean
800 worker_request (MonoDomain *domain)
801 {
802         ThreadPoolDomain *tpdomain;
803
804         g_assert (domain);
805         g_assert (threadpool);
806
807         if (mono_runtime_is_shutting_down ())
808                 return FALSE;
809
810         mono_coop_mutex_lock (&threadpool->domains_lock);
811
812         /* synchronize check with worker_thread */
813         if (mono_domain_is_unloading (domain)) {
814                 mono_coop_mutex_unlock (&threadpool->domains_lock);
815                 return FALSE;
816         }
817
818         tpdomain = domain_get (domain, TRUE);
819         g_assert (tpdomain);
820         tpdomain->outstanding_request ++;
821
822         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, domain = %p, outstanding_request = %d",
823                 mono_native_thread_id_get (), tpdomain->domain, tpdomain->outstanding_request);
824
825         mono_coop_mutex_unlock (&threadpool->domains_lock);
826
827         if (threadpool->suspended)
828                 return FALSE;
829
830         monitor_ensure_running ();
831
832         if (worker_try_unpark ()) {
833                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, unparked", mono_native_thread_id_get ());
834                 return TRUE;
835         }
836
837         if (worker_try_create ()) {
838                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, created", mono_native_thread_id_get ());
839                 return TRUE;
840         }
841
842         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, failed", mono_native_thread_id_get ());
843         return FALSE;
844 }
845
846 static gboolean
847 monitor_should_keep_running (void)
848 {
849         static gint64 last_should_keep_running = -1;
850
851         g_assert (monitor_status == MONITOR_STATUS_WAITING_FOR_REQUEST || monitor_status == MONITOR_STATUS_REQUESTED);
852
853         if (InterlockedExchange (&monitor_status, MONITOR_STATUS_WAITING_FOR_REQUEST) == MONITOR_STATUS_WAITING_FOR_REQUEST) {
854                 gboolean should_keep_running = TRUE, force_should_keep_running = FALSE;
855
856                 if (mono_runtime_is_shutting_down ()) {
857                         should_keep_running = FALSE;
858                 } else {
859                         mono_coop_mutex_lock (&threadpool->domains_lock);
860                         if (!domain_any_has_request ())
861                                 should_keep_running = FALSE;
862                         mono_coop_mutex_unlock (&threadpool->domains_lock);
863
864                         if (!should_keep_running) {
865                                 if (last_should_keep_running == -1 || mono_100ns_ticks () - last_should_keep_running < MONITOR_MINIMAL_LIFETIME * 1000 * 10) {
866                                         should_keep_running = force_should_keep_running = TRUE;
867                                 }
868                         }
869                 }
870
871                 if (should_keep_running) {
872                         if (last_should_keep_running == -1 || !force_should_keep_running)
873                                 last_should_keep_running = mono_100ns_ticks ();
874                 } else {
875                         last_should_keep_running = -1;
876                         if (InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_NOT_RUNNING, MONITOR_STATUS_WAITING_FOR_REQUEST) == MONITOR_STATUS_WAITING_FOR_REQUEST)
877                                 return FALSE;
878                 }
879         }
880
881         g_assert (monitor_status == MONITOR_STATUS_WAITING_FOR_REQUEST || monitor_status == MONITOR_STATUS_REQUESTED);
882
883         return TRUE;
884 }
885
886 static gboolean
887 monitor_sufficient_delay_since_last_dequeue (void)
888 {
889         gint64 threshold;
890
891         g_assert (threadpool);
892
893         if (threadpool->cpu_usage < CPU_USAGE_LOW) {
894                 threshold = MONITOR_INTERVAL;
895         } else {
896                 ThreadPoolCounter counter;
897                 counter.as_gint64 = COUNTER_READ();
898                 threshold = counter._.max_working * MONITOR_INTERVAL * 2;
899         }
900
901         return mono_msec_ticks () >= threadpool->heuristic_last_dequeue + threshold;
902 }
903
904 static void hill_climbing_force_change (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition);
905
906 static void
907 monitor_thread (void)
908 {
909         MonoInternalThread *current_thread = mono_thread_internal_current ();
910         guint i;
911
912         mono_cpu_usage (threadpool->cpu_usage_state);
913
914         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, started", mono_native_thread_id_get ());
915
916         do {
917                 ThreadPoolCounter counter;
918                 gboolean limit_worker_max_reached;
919                 gint32 interval_left = MONITOR_INTERVAL;
920                 gint32 awake = 0; /* number of spurious awakes we tolerate before doing a round of rebalancing */
921
922                 g_assert (monitor_status != MONITOR_STATUS_NOT_RUNNING);
923
924                 mono_gc_set_skip_thread (TRUE);
925
926                 do {
927                         gint64 ts;
928                         gboolean alerted = FALSE;
929
930                         if (mono_runtime_is_shutting_down ())
931                                 break;
932
933                         ts = mono_msec_ticks ();
934                         if (mono_thread_info_sleep (interval_left, &alerted) == 0)
935                                 break;
936                         interval_left -= mono_msec_ticks () - ts;
937
938                         mono_gc_set_skip_thread (FALSE);
939                         if ((current_thread->state & (ThreadState_StopRequested | ThreadState_SuspendRequested)) != 0)
940                                 mono_thread_interruption_checkpoint ();
941                         mono_gc_set_skip_thread (TRUE);
942                 } while (interval_left > 0 && ++awake < 10);
943
944                 mono_gc_set_skip_thread (FALSE);
945
946                 if (threadpool->suspended)
947                         continue;
948
949                 if (mono_runtime_is_shutting_down ())
950                         continue;
951
952                 mono_coop_mutex_lock (&threadpool->domains_lock);
953                 if (!domain_any_has_request ()) {
954                         mono_coop_mutex_unlock (&threadpool->domains_lock);
955                         continue;
956                 }
957                 mono_coop_mutex_unlock (&threadpool->domains_lock);
958
959                 threadpool->cpu_usage = mono_cpu_usage (threadpool->cpu_usage_state);
960
961                 if (!monitor_sufficient_delay_since_last_dequeue ())
962                         continue;
963
964                 limit_worker_max_reached = FALSE;
965
966                 COUNTER_ATOMIC (counter, {
967                         if (counter._.max_working >= threadpool->limit_worker_max) {
968                                 limit_worker_max_reached = TRUE;
969                                 break;
970                         }
971                         counter._.max_working ++;
972                 });
973
974                 if (limit_worker_max_reached)
975                         continue;
976
977                 hill_climbing_force_change (counter._.max_working, TRANSITION_STARVATION);
978
979                 for (i = 0; i < 5; ++i) {
980                         if (mono_runtime_is_shutting_down ())
981                                 break;
982
983                         if (worker_try_unpark ()) {
984                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, unparked", mono_native_thread_id_get ());
985                                 break;
986                         }
987
988                         if (worker_try_create ()) {
989                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, created", mono_native_thread_id_get ());
990                                 break;
991                         }
992                 }
993         } while (monitor_should_keep_running ());
994
995         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, finished", mono_native_thread_id_get ());
996 }
997
998 static void
999 monitor_ensure_running (void)
1000 {
1001         MonoError error;
1002         for (;;) {
1003                 switch (monitor_status) {
1004                 case MONITOR_STATUS_REQUESTED:
1005                         return;
1006                 case MONITOR_STATUS_WAITING_FOR_REQUEST:
1007                         InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_REQUESTED, MONITOR_STATUS_WAITING_FOR_REQUEST);
1008                         break;
1009                 case MONITOR_STATUS_NOT_RUNNING:
1010                         if (mono_runtime_is_shutting_down ())
1011                                 return;
1012                         if (InterlockedCompareExchange (&monitor_status, MONITOR_STATUS_REQUESTED, MONITOR_STATUS_NOT_RUNNING) == MONITOR_STATUS_NOT_RUNNING) {
1013                                 if (!mono_thread_create_internal (mono_get_root_domain (), monitor_thread, NULL, TRUE, SMALL_STACK, &error)) {
1014                                         monitor_status = MONITOR_STATUS_NOT_RUNNING;
1015                                         mono_error_cleanup (&error);
1016                                 }
1017                                 return;
1018                         }
1019                         break;
1020                 default: g_assert_not_reached ();
1021                 }
1022         }
1023 }
1024
1025 static void
1026 hill_climbing_change_thread_count (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition)
1027 {
1028         ThreadPoolHillClimbing *hc;
1029
1030         g_assert (threadpool);
1031
1032         hc = &threadpool->heuristic_hill_climbing;
1033
1034         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] hill climbing, change max number of threads %d", mono_native_thread_id_get (), new_thread_count);
1035
1036         hc->last_thread_count = new_thread_count;
1037         hc->current_sample_interval = rand_next (&hc->random_interval_generator, hc->sample_interval_low, hc->sample_interval_high);
1038         hc->elapsed_since_last_change = 0;
1039         hc->completions_since_last_change = 0;
1040 }
1041
1042 static void
1043 hill_climbing_force_change (gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition)
1044 {
1045         ThreadPoolHillClimbing *hc;
1046
1047         g_assert (threadpool);
1048
1049         hc = &threadpool->heuristic_hill_climbing;
1050
1051         if (new_thread_count != hc->last_thread_count) {
1052                 hc->current_control_setting += new_thread_count - hc->last_thread_count;
1053                 hill_climbing_change_thread_count (new_thread_count, transition);
1054         }
1055 }
1056
1057 static double_complex
1058 hill_climbing_get_wave_component (gdouble *samples, guint sample_count, gdouble period)
1059 {
1060         ThreadPoolHillClimbing *hc;
1061         gdouble w, cosine, sine, coeff, q0, q1, q2;
1062         guint i;
1063
1064         g_assert (threadpool);
1065         g_assert (sample_count >= period);
1066         g_assert (period >= 2);
1067
1068         hc = &threadpool->heuristic_hill_climbing;
1069
1070         w = 2.0 * M_PI / period;
1071         cosine = cos (w);
1072         sine = sin (w);
1073         coeff = 2.0 * cosine;
1074         q0 = q1 = q2 = 0;
1075
1076         for (i = 0; i < sample_count; ++i) {
1077                 q0 = coeff * q1 - q2 + samples [(hc->total_samples - sample_count + i) % hc->samples_to_measure];
1078                 q2 = q1;
1079                 q1 = q0;
1080         }
1081
1082         return mono_double_complex_scalar_div (mono_double_complex_make (q1 - q2 * cosine, (q2 * sine)), ((gdouble)sample_count));
1083 }
1084
1085 static gint16
1086 hill_climbing_update (gint16 current_thread_count, guint32 sample_duration, gint32 completions, gint64 *adjustment_interval)
1087 {
1088         ThreadPoolHillClimbing *hc;
1089         ThreadPoolHeuristicStateTransition transition;
1090         gdouble throughput;
1091         gdouble throughput_error_estimate;
1092         gdouble confidence;
1093         gdouble move;
1094         gdouble gain;
1095         gint sample_index;
1096         gint sample_count;
1097         gint new_thread_wave_magnitude;
1098         gint new_thread_count;
1099         double_complex thread_wave_component;
1100         double_complex throughput_wave_component;
1101         double_complex ratio;
1102
1103         g_assert (threadpool);
1104         g_assert (adjustment_interval);
1105
1106         hc = &threadpool->heuristic_hill_climbing;
1107
1108         /* If someone changed the thread count without telling us, update our records accordingly. */
1109         if (current_thread_count != hc->last_thread_count)
1110                 hill_climbing_force_change (current_thread_count, TRANSITION_INITIALIZING);
1111
1112         /* Update the cumulative stats for this thread count */
1113         hc->elapsed_since_last_change += sample_duration;
1114         hc->completions_since_last_change += completions;
1115
1116         /* Add in any data we've already collected about this sample */
1117         sample_duration += hc->accumulated_sample_duration;
1118         completions += hc->accumulated_completion_count;
1119
1120         /* We need to make sure we're collecting reasonably accurate data. Since we're just counting the end
1121          * of each work item, we are goinng to be missing some data about what really happened during the
1122          * sample interval. The count produced by each thread includes an initial work item that may have
1123          * started well before the start of the interval, and each thread may have been running some new
1124          * work item for some time before the end of the interval, which did not yet get counted. So
1125          * our count is going to be off by +/- threadCount workitems.
1126          *
1127          * The exception is that the thread that reported to us last time definitely wasn't running any work
1128          * at that time, and the thread that's reporting now definitely isn't running a work item now. So
1129          * we really only need to consider threadCount-1 threads.
1130          *
1131          * Thus the percent error in our count is +/- (threadCount-1)/numCompletions.
1132          *
1133          * We cannot rely on the frequency-domain analysis we'll be doing later to filter out this error, because
1134          * of the way it accumulates over time. If this sample is off by, say, 33% in the negative direction,
1135          * then the next one likely will be too. The one after that will include the sum of the completions
1136          * we missed in the previous samples, and so will be 33% positive. So every three samples we'll have
1137          * two "low" samples and one "high" sample. This will appear as periodic variation right in the frequency
1138          * range we're targeting, which will not be filtered by the frequency-domain translation. */
1139         if (hc->total_samples > 0 && ((current_thread_count - 1.0) / completions) >= hc->max_sample_error) {
1140                 /* Not accurate enough yet. Let's accumulate the data so
1141                  * far, and tell the ThreadPool to collect a little more. */
1142                 hc->accumulated_sample_duration = sample_duration;
1143                 hc->accumulated_completion_count = completions;
1144                 *adjustment_interval = 10;
1145                 return current_thread_count;
1146         }
1147
1148         /* We've got enouugh data for our sample; reset our accumulators for next time. */
1149         hc->accumulated_sample_duration = 0;
1150         hc->accumulated_completion_count = 0;
1151
1152         /* Add the current thread count and throughput sample to our history. */
1153         throughput = ((gdouble) completions) / sample_duration;
1154
1155         sample_index = hc->total_samples % hc->samples_to_measure;
1156         hc->samples [sample_index] = throughput;
1157         hc->thread_counts [sample_index] = current_thread_count;
1158         hc->total_samples ++;
1159
1160         /* Set up defaults for our metrics. */
1161         thread_wave_component = mono_double_complex_make(0, 0);
1162         throughput_wave_component = mono_double_complex_make(0, 0);
1163         throughput_error_estimate = 0;
1164         ratio = mono_double_complex_make(0, 0);
1165         confidence = 0;
1166
1167         transition = TRANSITION_WARMUP;
1168
1169         /* How many samples will we use? It must be at least the three wave periods we're looking for, and it must also
1170          * be a whole multiple of the primary wave's period; otherwise the frequency we're looking for will fall between
1171          * two frequency bands in the Fourier analysis, and we won't be able to measure it accurately. */
1172         sample_count = ((gint) MIN (hc->total_samples - 1, hc->samples_to_measure) / hc->wave_period) * hc->wave_period;
1173
1174         if (sample_count > hc->wave_period) {
1175                 guint i;
1176                 gdouble average_throughput;
1177                 gdouble average_thread_count;
1178                 gdouble sample_sum = 0;
1179                 gdouble thread_sum = 0;
1180
1181                 /* Average the throughput and thread count samples, so we can scale the wave magnitudes later. */
1182                 for (i = 0; i < sample_count; ++i) {
1183                         guint j = (hc->total_samples - sample_count + i) % hc->samples_to_measure;
1184                         sample_sum += hc->samples [j];
1185                         thread_sum += hc->thread_counts [j];
1186                 }
1187
1188                 average_throughput = sample_sum / sample_count;
1189                 average_thread_count = thread_sum / sample_count;
1190
1191                 if (average_throughput > 0 && average_thread_count > 0) {
1192                         gdouble noise_for_confidence, adjacent_period_1, adjacent_period_2;
1193
1194                         /* Calculate the periods of the adjacent frequency bands we'll be using to
1195                          * measure noise levels. We want the two adjacent Fourier frequency bands. */
1196                         adjacent_period_1 = sample_count / (((gdouble) sample_count) / ((gdouble) hc->wave_period) + 1);
1197                         adjacent_period_2 = sample_count / (((gdouble) sample_count) / ((gdouble) hc->wave_period) - 1);
1198
1199                         /* Get the the three different frequency components of the throughput (scaled by average
1200                          * throughput). Our "error" estimate (the amount of noise that might be present in the
1201                          * frequency band we're really interested in) is the average of the adjacent bands. */
1202                         throughput_wave_component = mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->samples, sample_count, hc->wave_period), average_throughput);
1203                         throughput_error_estimate = cabs (mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->samples, sample_count, adjacent_period_1), average_throughput));
1204
1205                         if (adjacent_period_2 <= sample_count) {
1206                                 throughput_error_estimate = MAX (throughput_error_estimate, cabs (mono_double_complex_scalar_div (hill_climbing_get_wave_component (
1207                                         hc->samples, sample_count, adjacent_period_2), average_throughput)));
1208                         }
1209
1210                         /* Do the same for the thread counts, so we have something to compare to. We don't
1211                          * measure thread count noise, because there is none; these are exact measurements. */
1212                         thread_wave_component = mono_double_complex_scalar_div (hill_climbing_get_wave_component (hc->thread_counts, sample_count, hc->wave_period), average_thread_count);
1213
1214                         /* Update our moving average of the throughput noise. We'll use this
1215                          * later as feedback to determine the new size of the thread wave. */
1216                         if (hc->average_throughput_noise == 0) {
1217                                 hc->average_throughput_noise = throughput_error_estimate;
1218                         } else {
1219                                 hc->average_throughput_noise = (hc->throughput_error_smoothing_factor * throughput_error_estimate)
1220                                         + ((1.0 + hc->throughput_error_smoothing_factor) * hc->average_throughput_noise);
1221                         }
1222
1223                         if (cabs (thread_wave_component) > 0) {
1224                                 /* Adjust the throughput wave so it's centered around the target wave,
1225                                  * and then calculate the adjusted throughput/thread ratio. */
1226                                 ratio = mono_double_complex_div (mono_double_complex_sub (throughput_wave_component, mono_double_complex_scalar_mul(thread_wave_component, hc->target_throughput_ratio)), thread_wave_component);
1227                                 transition = TRANSITION_CLIMBING_MOVE;
1228                         } else {
1229                                 ratio = mono_double_complex_make (0, 0);
1230                                 transition = TRANSITION_STABILIZING;
1231                         }
1232
1233                         noise_for_confidence = MAX (hc->average_throughput_noise, throughput_error_estimate);
1234                         if (noise_for_confidence > 0) {
1235                                 confidence = cabs (thread_wave_component) / noise_for_confidence / hc->target_signal_to_noise_ratio;
1236                         } else {
1237                                 /* there is no noise! */
1238                                 confidence = 1.0;
1239                         }
1240                 }
1241         }
1242
1243         /* We use just the real part of the complex ratio we just calculated. If the throughput signal
1244          * is exactly in phase with the thread signal, this will be the same as taking the magnitude of
1245          * the complex move and moving that far up. If they're 180 degrees out of phase, we'll move
1246          * backward (because this indicates that our changes are having the opposite of the intended effect).
1247          * If they're 90 degrees out of phase, we won't move at all, because we can't tell wether we're
1248          * having a negative or positive effect on throughput. */
1249         move = creal (ratio);
1250         move = CLAMP (move, -1.0, 1.0);
1251
1252         /* Apply our confidence multiplier. */
1253         move *= CLAMP (confidence, -1.0, 1.0);
1254
1255         /* Now apply non-linear gain, such that values around zero are attenuated, while higher values
1256          * are enhanced. This allows us to move quickly if we're far away from the target, but more slowly
1257         * if we're getting close, giving us rapid ramp-up without wild oscillations around the target. */
1258         gain = hc->max_change_per_second * sample_duration;
1259         move = pow (fabs (move), hc->gain_exponent) * (move >= 0.0 ? 1 : -1) * gain;
1260         move = MIN (move, hc->max_change_per_sample);
1261
1262         /* If the result was positive, and CPU is > 95%, refuse the move. */
1263         if (move > 0.0 && threadpool->cpu_usage > CPU_USAGE_HIGH)
1264                 move = 0.0;
1265
1266         /* Apply the move to our control setting. */
1267         hc->current_control_setting += move;
1268
1269         /* Calculate the new thread wave magnitude, which is based on the moving average we've been keeping of the
1270          * throughput error.  This average starts at zero, so we'll start with a nice safe little wave at first. */
1271         new_thread_wave_magnitude = (gint)(0.5 + (hc->current_control_setting * hc->average_throughput_noise
1272                 * hc->target_signal_to_noise_ratio * hc->thread_magnitude_multiplier * 2.0));
1273         new_thread_wave_magnitude = CLAMP (new_thread_wave_magnitude, 1, hc->max_thread_wave_magnitude);
1274
1275         /* Make sure our control setting is within the ThreadPool's limits. */
1276         hc->current_control_setting = CLAMP (hc->current_control_setting, threadpool->limit_worker_min, threadpool->limit_worker_max - new_thread_wave_magnitude);
1277
1278         /* Calculate the new thread count (control setting + square wave). */
1279         new_thread_count = (gint)(hc->current_control_setting + new_thread_wave_magnitude * ((hc->total_samples / (hc->wave_period / 2)) % 2));
1280
1281         /* Make sure the new thread count doesn't exceed the ThreadPool's limits. */
1282         new_thread_count = CLAMP (new_thread_count, threadpool->limit_worker_min, threadpool->limit_worker_max);
1283
1284         if (new_thread_count != current_thread_count)
1285                 hill_climbing_change_thread_count (new_thread_count, transition);
1286
1287         if (creal (ratio) < 0.0 && new_thread_count == threadpool->limit_worker_min)
1288                 *adjustment_interval = (gint)(0.5 + hc->current_sample_interval * (10.0 * MAX (-1.0 * creal (ratio), 1.0)));
1289         else
1290                 *adjustment_interval = hc->current_sample_interval;
1291
1292         return new_thread_count;
1293 }
1294
1295 static void
1296 heuristic_notify_work_completed (void)
1297 {
1298         g_assert (threadpool);
1299
1300         InterlockedIncrement (&threadpool->heuristic_completions);
1301         threadpool->heuristic_last_dequeue = mono_msec_ticks ();
1302 }
1303
1304 static gboolean
1305 heuristic_should_adjust (void)
1306 {
1307         g_assert (threadpool);
1308
1309         if (threadpool->heuristic_last_dequeue > threadpool->heuristic_last_adjustment + threadpool->heuristic_adjustment_interval) {
1310                 ThreadPoolCounter counter;
1311                 counter.as_gint64 = COUNTER_READ();
1312                 if (counter._.working <= counter._.max_working)
1313                         return TRUE;
1314         }
1315
1316         return FALSE;
1317 }
1318
1319 static void
1320 heuristic_adjust (void)
1321 {
1322         g_assert (threadpool);
1323
1324         if (mono_coop_mutex_trylock (&threadpool->heuristic_lock) == 0) {
1325                 gint32 completions = InterlockedExchange (&threadpool->heuristic_completions, 0);
1326                 gint64 sample_end = mono_msec_ticks ();
1327                 gint64 sample_duration = sample_end - threadpool->heuristic_sample_start;
1328
1329                 if (sample_duration >= threadpool->heuristic_adjustment_interval / 2) {
1330                         ThreadPoolCounter counter;
1331                         gint16 new_thread_count;
1332
1333                         counter.as_gint64 = COUNTER_READ ();
1334                         new_thread_count = hill_climbing_update (counter._.max_working, sample_duration, completions, &threadpool->heuristic_adjustment_interval);
1335
1336                         COUNTER_ATOMIC (counter, { counter._.max_working = new_thread_count; });
1337
1338                         if (new_thread_count > counter._.max_working)
1339                                 worker_request (mono_domain_get ());
1340
1341                         threadpool->heuristic_sample_start = sample_end;
1342                         threadpool->heuristic_last_adjustment = mono_msec_ticks ();
1343                 }
1344
1345                 mono_coop_mutex_unlock (&threadpool->heuristic_lock);
1346         }
1347 }
1348
1349 void
1350 mono_threadpool_ms_cleanup (void)
1351 {
1352         #ifndef DISABLE_SOCKETS
1353                 mono_threadpool_ms_io_cleanup ();
1354         #endif
1355         mono_lazy_cleanup (&status, cleanup);
1356 }
1357
1358 MonoAsyncResult *
1359 mono_threadpool_ms_begin_invoke (MonoDomain *domain, MonoObject *target, MonoMethod *method, gpointer *params, MonoError *error)
1360 {
1361         static MonoClass *async_call_klass = NULL;
1362         MonoMethodMessage *message;
1363         MonoAsyncResult *async_result;
1364         MonoAsyncCall *async_call;
1365         MonoDelegate *async_callback = NULL;
1366         MonoObject *state = NULL;
1367
1368         if (!async_call_klass)
1369                 async_call_klass = mono_class_load_from_name (mono_defaults.corlib, "System", "MonoAsyncCall");
1370
1371         mono_lazy_initialize (&status, initialize);
1372
1373         mono_error_init (error);
1374
1375         message = mono_method_call_message_new (method, params, mono_get_delegate_invoke (method->klass), (params != NULL) ? (&async_callback) : NULL, (params != NULL) ? (&state) : NULL, error);
1376         return_val_if_nok (error, NULL);
1377
1378         async_call = (MonoAsyncCall*) mono_object_new_checked (domain, async_call_klass, error);
1379         return_val_if_nok (error, NULL);
1380
1381         MONO_OBJECT_SETREF (async_call, msg, message);
1382         MONO_OBJECT_SETREF (async_call, state, state);
1383
1384         if (async_callback) {
1385                 MONO_OBJECT_SETREF (async_call, cb_method, mono_get_delegate_invoke (((MonoObject*) async_callback)->vtable->klass));
1386                 MONO_OBJECT_SETREF (async_call, cb_target, async_callback);
1387         }
1388
1389         async_result = mono_async_result_new (domain, NULL, async_call->state, NULL, (MonoObject*) async_call, error);
1390         return_val_if_nok (error, NULL);
1391         MONO_OBJECT_SETREF (async_result, async_delegate, target);
1392
1393         mono_threadpool_ms_enqueue_work_item (domain, (MonoObject*) async_result, error);
1394         return_val_if_nok (error, NULL);
1395
1396         return async_result;
1397 }
1398
1399 MonoObject *
1400 mono_threadpool_ms_end_invoke (MonoAsyncResult *ares, MonoArray **out_args, MonoObject **exc, MonoError *error)
1401 {
1402         MonoAsyncCall *ac;
1403
1404         mono_error_init (error);
1405         g_assert (exc);
1406         g_assert (out_args);
1407
1408         *exc = NULL;
1409         *out_args = NULL;
1410
1411         /* check if already finished */
1412         mono_monitor_enter ((MonoObject*) ares);
1413
1414         if (ares->endinvoke_called) {
1415                 mono_error_set_invalid_operation(error, "Delegate EndInvoke method called more than once");
1416                 mono_monitor_exit ((MonoObject*) ares);
1417                 return NULL;
1418         }
1419
1420         ares->endinvoke_called = 1;
1421
1422         /* wait until we are really finished */
1423         if (ares->completed) {
1424                 mono_monitor_exit ((MonoObject *) ares);
1425         } else {
1426                 gpointer wait_event;
1427                 if (ares->handle) {
1428                         wait_event = mono_wait_handle_get_handle ((MonoWaitHandle*) ares->handle);
1429                 } else {
1430                         wait_event = mono_w32event_create (TRUE, FALSE);
1431                         g_assert(wait_event);
1432                         MonoWaitHandle *wait_handle = mono_wait_handle_new (mono_object_domain (ares), wait_event, error);
1433                         if (!is_ok (error)) {
1434                                 CloseHandle (wait_event);
1435                                 return NULL;
1436                         }
1437                         MONO_OBJECT_SETREF (ares, handle, (MonoObject*) wait_handle);
1438                 }
1439                 mono_monitor_exit ((MonoObject*) ares);
1440                 MONO_ENTER_GC_SAFE;
1441                 WaitForSingleObjectEx (wait_event, INFINITE, TRUE);
1442                 MONO_EXIT_GC_SAFE;
1443         }
1444
1445         ac = (MonoAsyncCall*) ares->object_data;
1446         g_assert (ac);
1447
1448         *exc = ac->msg->exc; /* FIXME: GC add write barrier */
1449         *out_args = ac->out_args;
1450         return ac->res;
1451 }
1452
1453 gboolean
1454 mono_threadpool_ms_remove_domain_jobs (MonoDomain *domain, int timeout)
1455 {
1456         gint res;
1457         gint64 now, end;
1458         ThreadPoolDomain *tpdomain;
1459         ThreadPoolDomainCleanupSemaphore *cleanup_semaphore;
1460
1461         g_assert (domain);
1462         g_assert (timeout >= -1);
1463
1464         g_assert (mono_domain_is_unloading (domain));
1465
1466         if (timeout != -1)
1467                 end = mono_msec_ticks () + timeout;
1468
1469 #ifndef DISABLE_SOCKETS
1470         mono_threadpool_ms_io_remove_domain_jobs (domain);
1471         if (timeout != -1) {
1472                 if (mono_msec_ticks () > end)
1473                         return FALSE;
1474         }
1475 #endif
1476
1477         /*
1478         * There might be some threads out that could be about to execute stuff from the given domain.
1479         * We avoid that by waiting on a semaphore to be pulsed by the thread that reaches zero.
1480         * The semaphore is only created for domains which queued threadpool jobs.
1481         * We always wait on the semaphore rather than ensuring domain->threadpool_jobs is 0.
1482         * There may be pending outstanding requests which will create new jobs.
1483         * The semaphore is signaled the threadpool domain has been removed from list
1484         * and we know no more jobs for the domain will be processed.
1485         */
1486
1487         mono_lazy_initialize(&status, initialize);
1488         mono_coop_mutex_lock(&threadpool->domains_lock);
1489
1490         tpdomain = domain_get (domain, FALSE);
1491         if (!tpdomain || tpdomain->outstanding_request == 0) {
1492                 mono_coop_mutex_unlock(&threadpool->domains_lock);
1493                 return TRUE;
1494         }
1495
1496         mono_coop_mutex_unlock(&threadpool->domains_lock);
1497
1498         g_assert (domain->cleanup_semaphore);
1499
1500         cleanup_semaphore = (ThreadPoolDomainCleanupSemaphore*) domain->cleanup_semaphore;
1501
1502         if (timeout == -1) {
1503                 res = mono_coop_sem_wait (&cleanup_semaphore->sem, MONO_SEM_FLAGS_NONE);
1504                 g_assert (res == MONO_SEM_TIMEDWAIT_RET_SUCCESS);
1505         } else {
1506                 now = mono_msec_ticks();
1507                 if (now > end)
1508                         return FALSE;
1509                 res = mono_coop_sem_timedwait (&cleanup_semaphore->sem, end - now, MONO_SEM_FLAGS_NONE);
1510         }
1511
1512         if (InterlockedDecrement (&cleanup_semaphore->ref) == 0) {
1513                 mono_coop_sem_destroy (&cleanup_semaphore->sem);
1514                 g_free (cleanup_semaphore);
1515                 domain->cleanup_semaphore = NULL;
1516         }
1517
1518         return res == MONO_SEM_TIMEDWAIT_RET_SUCCESS;
1519 }
1520
1521 void
1522 mono_threadpool_ms_suspend (void)
1523 {
1524         if (threadpool)
1525                 threadpool->suspended = TRUE;
1526 }
1527
1528 void
1529 mono_threadpool_ms_resume (void)
1530 {
1531         if (threadpool)
1532                 threadpool->suspended = FALSE;
1533 }
1534
1535 void
1536 ves_icall_System_Threading_ThreadPool_GetAvailableThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1537 {
1538         ThreadPoolCounter counter;
1539
1540         if (!worker_threads || !completion_port_threads)
1541                 return;
1542
1543         mono_lazy_initialize (&status, initialize);
1544
1545         counter.as_gint64 = COUNTER_READ ();
1546
1547         *worker_threads = MAX (0, threadpool->limit_worker_max - counter._.active);
1548         *completion_port_threads = threadpool->limit_io_max;
1549 }
1550
1551 void
1552 ves_icall_System_Threading_ThreadPool_GetMinThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1553 {
1554         if (!worker_threads || !completion_port_threads)
1555                 return;
1556
1557         mono_lazy_initialize (&status, initialize);
1558
1559         *worker_threads = threadpool->limit_worker_min;
1560         *completion_port_threads = threadpool->limit_io_min;
1561 }
1562
1563 void
1564 ves_icall_System_Threading_ThreadPool_GetMaxThreadsNative (gint32 *worker_threads, gint32 *completion_port_threads)
1565 {
1566         if (!worker_threads || !completion_port_threads)
1567                 return;
1568
1569         mono_lazy_initialize (&status, initialize);
1570
1571         *worker_threads = threadpool->limit_worker_max;
1572         *completion_port_threads = threadpool->limit_io_max;
1573 }
1574
1575 MonoBoolean
1576 ves_icall_System_Threading_ThreadPool_SetMinThreadsNative (gint32 worker_threads, gint32 completion_port_threads)
1577 {
1578         mono_lazy_initialize (&status, initialize);
1579
1580         if (worker_threads <= 0 || worker_threads > threadpool->limit_worker_max)
1581                 return FALSE;
1582         if (completion_port_threads <= 0 || completion_port_threads > threadpool->limit_io_max)
1583                 return FALSE;
1584
1585         threadpool->limit_worker_min = worker_threads;
1586         threadpool->limit_io_min = completion_port_threads;
1587
1588         return TRUE;
1589 }
1590
1591 MonoBoolean
1592 ves_icall_System_Threading_ThreadPool_SetMaxThreadsNative (gint32 worker_threads, gint32 completion_port_threads)
1593 {
1594         gint cpu_count = mono_cpu_count ();
1595
1596         mono_lazy_initialize (&status, initialize);
1597
1598         if (worker_threads < threadpool->limit_worker_min || worker_threads < cpu_count)
1599                 return FALSE;
1600         if (completion_port_threads < threadpool->limit_io_min || completion_port_threads < cpu_count)
1601                 return FALSE;
1602
1603         threadpool->limit_worker_max = worker_threads;
1604         threadpool->limit_io_max = completion_port_threads;
1605
1606         return TRUE;
1607 }
1608
1609 void
1610 ves_icall_System_Threading_ThreadPool_InitializeVMTp (MonoBoolean *enable_worker_tracking)
1611 {
1612         if (enable_worker_tracking) {
1613                 // TODO implement some kind of switch to have the possibily to use it
1614                 *enable_worker_tracking = FALSE;
1615         }
1616
1617         mono_lazy_initialize (&status, initialize);
1618 }
1619
1620 MonoBoolean
1621 ves_icall_System_Threading_ThreadPool_NotifyWorkItemComplete (void)
1622 {
1623         ThreadPoolCounter counter;
1624
1625         if (mono_domain_is_unloading (mono_domain_get ()) || mono_runtime_is_shutting_down ())
1626                 return FALSE;
1627
1628         heuristic_notify_work_completed ();
1629
1630         if (heuristic_should_adjust ())
1631                 heuristic_adjust ();
1632
1633         counter.as_gint64 = COUNTER_READ ();
1634         return counter._.working <= counter._.max_working;
1635 }
1636
1637 void
1638 ves_icall_System_Threading_ThreadPool_NotifyWorkItemProgressNative (void)
1639 {
1640         heuristic_notify_work_completed ();
1641
1642         if (heuristic_should_adjust ())
1643                 heuristic_adjust ();
1644 }
1645
1646 void
1647 ves_icall_System_Threading_ThreadPool_ReportThreadStatus (MonoBoolean is_working)
1648 {
1649         // TODO
1650         MonoError error;
1651         mono_error_set_not_implemented (&error, "");
1652         mono_error_set_pending_exception (&error);
1653 }
1654
1655 MonoBoolean
1656 ves_icall_System_Threading_ThreadPool_RequestWorkerThread (void)
1657 {
1658         return worker_request (mono_domain_get ());
1659 }
1660
1661 MonoBoolean G_GNUC_UNUSED
1662 ves_icall_System_Threading_ThreadPool_PostQueuedCompletionStatus (MonoNativeOverlapped *native_overlapped)
1663 {
1664         /* This copy the behavior of the current Mono implementation */
1665         MonoError error;
1666         mono_error_set_not_implemented (&error, "");
1667         mono_error_set_pending_exception (&error);
1668         return FALSE;
1669 }
1670
1671 MonoBoolean G_GNUC_UNUSED
1672 ves_icall_System_Threading_ThreadPool_BindIOCompletionCallbackNative (gpointer file_handle)
1673 {
1674         /* This copy the behavior of the current Mono implementation */
1675         return TRUE;
1676 }
1677
1678 MonoBoolean G_GNUC_UNUSED
1679 ves_icall_System_Threading_ThreadPool_IsThreadPoolHosted (void)
1680 {
1681         return FALSE;
1682 }