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Preface 
 

This book is about the digital logic design of microprocessors. It is intended to provide both an understanding of 
the basic principles of digital logic design, and how these fundamental principles are applied in the building of 
complex microprocessor circuits using current technologies. Although the basic principles of digital logic design 
have not changed, the design process, and the implementation of the circuits have changed. With the advances in 
fully integrated modern computer aided design (CAD) tools for logic synthesis, simulation, and the implementation 
of circuits in programmable logic devices (PLDs) such as field programmable gate arrays (FPGAs), it is now 
possible to design and implement complex digital circuits very easily and quickly. 

Many excellent books on digital logic design have followed the traditional approach of introducing the basic 
principles and theories of logic design, and the building of separate combinational and sequential components. 
However, students are left to wonder about the purpose of these individual components, and how they are used in 
the building of microprocessors – the ultimate in digital circuits. One primary goal of this book is to fill in this gap 
by going beyond the logic principles, and the building of individual components. The use of these principles and the 
individual components are combined together to create datapaths and control units, and finally the building of real 
dedicated custom microprocessors and general-purpose microprocessors. 

Previous logic design and implementation techniques mainly focus on the logic gate level. At this low level, it is 
difficult to discuss larger and more complex circuits beyond the standard combinational and sequential circuits. 
However, with the introduction of the register-transfer technique for designing datapaths, and the concept of a finite-
state machine for control units, we can easily implement an arbitrary algorithm as a dedicated microprocessor in 
hardware. The construction of a general-purpose microprocessor then comes naturally as a generalization of a 
dedicated microprocessor. 

 With the provided CAD tool, and the optional FPGA hardware development kit, students can actually 
implement these microprocessor circuits, and see them execute, both in software simulation, and in hardware. The 
book contains many interesting examples with complete circuit schematic diagrams, and VHDL codes for both 
simulation and implementation in hardware. With the hands-on exercises, the student will learn not only the 
principles of digital logic design, but also in practice, how circuits are implemented using current technologies. 

To actually see your own microprocessor comes to life in real hardware is an exciting experience. Hopefully, 
this will help the students to not only remember what they have learned, but will also get them interested in the 
world of digital circuit design. 

Advanced and Historical Topics 
Sections that are designated with an asterisk ( * ) are either advanced topics, or topics for a historical 

perspective. These sections may be skipped without any loss of continuity in learning how to design a 
microprocessor. 

Summary Checklist 
There is a chapter summary checklist at the end of each chapter. These checklists provide a quick way for 

students to evaluate whether they have understood the materials presented in the chapter. The items in the checklists 
are divided into two categories. The first set of items deal with new concepts, ideas, and definitions, while the 
second set deals with practical how to do something types. 

Design of Circuits Using VHDL 
Although this book provides coverage on VHDL for all the circuits, it can be omitted entirely for the 

understanding and designing of digital circuits. For an introductory course in digital logic design, learning the basic 
principles is more important than learning how to use a hardware description language. In fact, instructors may find 
that students may get lost in learning the principles while trying to learn the language at the same time. With this in 
mind, the VHDL code in the text is totally independent of the presentation of each topic, and may be skipped 
without any loss of continuity. 

Digital Logic and Microprocessor Design with VHDL Preface
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On the other hand, by studying the VHDL codes, the student can not only learn the use of a hardware 
description language, but also learn how digital circuits can be designed automatically using a synthesizer. This 
book provides a basic introduction to VHDL, and uses the learn-by-examples approach. In writing VHDL code at 
the dataflow and behavioral levels, the student will see the power and usefulness of a state-of-the-art CAD synthesis 
tool. 

Using this Book 
This book can be used in either an introductory, or a more advanced course in digital logic design. For an 

introductory course with no previous background in logic, Chapters 1 to 4 are intended to provide the fundamental 
concepts in designing combinational circuits, and Chapters 6 to 8 cover the basic sequential circuits. Chapters 9 to 
12 on microprocessor design can be introduced and covered lightly. For an advanced course where students already 
have an exposure to logic gates and simple digital circuits, Chapters 1 to 4 will serve as a review. The focus should 
be on the register-transfer design of datapaths and control units, and the building of dedicated and general-purpose 
microprocessors as covered in Chapters 9 to 12. A lab component should complement the course where students can 
have a hands-on experience in implementing the circuits presented using the included CAD software, and the 
optional development kit. A brief summary of the topics covered in each chapter follows. 

Chapter 1 – Designing a Microprocessor gives an overview of the various components of a microprocessor 
circuit, and the different abstraction levels in which a circuit can be designed. 

Chapter 2 – Digital Circuits provides the basic principles and theories for designing digital logic circuits by 
introducing the use of truth tables and Boolean algebra, and how the theories get translated into logic gates, and 
circuit diagrams. A brief introduction to VHDL is also given. 

Chapter 3 – Combinational Circuits shows how combinational circuits are analyzed, synthesized and 
reduced. 

Chapter 4 – Combinational Components discusses the standard combinational components that are used as 
building blocks for larger digital circuits. These components include adder, subtractor, arithmetic logic unit, 
decoder, encoder, multiplexer, tri-state buffer, comparator, shifter, and multiplier. In a hierarchical design, these 
components will be used to build larger circuits such as the microprocessor. 

Chapter 5 – Implementation Technologies digresses a little by looking at how logic gates are implemented at 
the transistor level, and the various programmable logic devices available for implementing digital circuits. 

Chapter 6 – Latches and Flip-Flops introduces the basic storage elements, specifically, the latch and the flip-
flop.  

Chapter 7 – Sequential Circuits shows how sequential circuits in the form of finite-state machines, are 
analyzed, and synthesized. This chapter also shows how the operation of sequential circuits can be precisely 
described using state diagrams. 

Chapter 8 – Sequential Components discusses the standard sequential components that are used as building 
blocks for larger digital circuits. These components include register, shift register, counter, register file, and 
memory. Similar to the combinational components, these sequential components will be used in a hierarchical 
fashion to build larger circuits. 

Chapter 9 – Datapaths introduces the register-transfer design methodology, and shows how an arbitrary 
algorithm can be performed by a datapath. 

Chapter 10 – Control Units shows how a finite-state machine (introduced in Chapter 7) is used to control the 
operations of a datapath so that the algorithm can be executed automatically. 

Chapter 11 – Dedicated Microprocessors ties the separate datapath and control unit together to form one 
coherent circuit – the custom dedicated microprocessor. Several complete dedicated microprocessor examples are 
provided. 

Chapter 12 – General-Purpose Microprocessors continues on from Chapter 11 to suggest that a general-
purpose microprocessor is really a dedicated microprocessor that is dedicated to only read, decode, and execute 
instructions. A simple general-purpose microprocessor is designed and implemented, and programs written in 
machine language can be executed on it. 
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Software and Hardware Packages 
The newest student edition of Altera’s MAX+Plus II CAD software is included with this book on the 

accompanying CD-ROM. The optional UP2 hardware development kit is available from Altera at a special student 
price. An order form for the kit can be obtained from Altera’s website at www.altera.com. 

Source files for all the circuit drawings and VHDL codes presented in this book can also be found on the 
accompanying CD-ROM. 

Website for the Book 
The website for this book is located at the following URL: 

www.cs.lasierra.edu/~ehwang  

The website provides many resources for both faculty and students. 

 

Enoch O. Hwang 
Riverside, California 
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Chapter 1 

Designing Microprocessors 
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Being a computer science or electrical engineering student, you probably have assembled a PC before. You may 
have gone out to purchase the motherboard, CPU (central processing unit), memory, disk drive, video card, sound 
card, and other necessary parts, assembled them together, and have made yourself a state-of-the-art working 
computer. But have you ever wondered how the circuits inside those IC (integrated circuit) chips are designed? You 
know how the PC works at the system level by installing the operating system and seeing your machine come to life. 
But have you thought about how your PC works at the circuit level, how the memory is designed, or how the CPU 
circuit is designed? 

In this book, I will show you from the ground up, how to design the digital circuits for microprocessors, also 
known as CPUs. When we hear the word “microprocessor,” the first thing that probably comes to many of our 
minds is the Intel Pentium® CPU, which is found in most PCs. However, there are many more microprocessors that 
are not Pentiums, and many more microprocessors that are used in areas other than the PCs. 

Microprocessors are the heart of all “smart” devices, whether they be electronic devices or otherwise. Their 
smartness comes as a direct result of the decisions and controls that microprocessors make. For example, we usually 
do not consider a car to be an electronic device. However, it certainly has many complex, smart electronic systems, 
such as the anti-lock brakes and the fuel-injection system. Each of these systems is controlled by a microprocessor. 
Yes, even the black, hardened blob that looks like a dried-up and pressed-down piece of gum inside a musical 
greeting card is a microprocessor. 

There are generally two types of microprocessors: general-purpose microprocessors and dedicated 
microprocessors. General-purpose microprocessors, such as the Pentium CPU, can perform different tasks under 
the control of software instructions. General-purpose microprocessors are used in all personal computers. 

Dedicated microprocessors, also known as application-specific integrated circuits (ASICs), on the other 
hand, are designed to perform just one specific task. For example, inside your cell phone, there is a dedicated 
microprocessor that controls its entire operation. The embedded microprocessor inside the cell phone does nothing 
else but control the operation of the phone. Dedicated microprocessors are, therefore, usually much smaller and not 
as complex as general-purpose microprocessors. However, they are used in every smart electronic device, such as 
the musical greeting cards, electronic toys, TVs, cell phones, microwave ovens, and anti-lock break systems in your 
car. From this short list, I’m sure that you can think of many more devices that have a dedicated microprocessor 
inside them. Although the small dedicated microprocessors are not as powerful as the general-purpose 
microprocessors, they are being sold and used in a lot more places than the powerful general-purpose 
microprocessors that are used in personal computers. 

Designing and building microprocessors may sound very complicated, but don’t let that scare you, because it is 
not really all that difficult to understand the basic principles of how microprocessors are designed. We are not trying 
to design a Pentium microprocessor here, but after you have learned the material presented in this book, you will 
have the basic knowledge to understand how it is designed. 

This book will show you in an easily understandable approach, starting with the basics and leading you through 
to the building of larger components, such as the arithmetic logic unit (ALU), register, datapath, control unit, and 
finally to the building of the microprocessor — first dedicated microprocessors, and then general-purpose 
microprocessors. Along the way, there will be many sample circuits that you can try out and actually implement in 
hardware using the optional Altera UP2 development board. These circuits, forming the various components found 
inside a microprocessor, will be combined together at the end to produce real, working microprocessors. Yes, the 
exciting part is that at the end, you actually can implement your microprocessor in a real IC, and see that it really 
can execute software programs or make lights flash! 

1.1 Overview of a Microprocessor 
The Von Neumann model of a computer, shown in Figure 1.1, consists of four main components: the input, the 

output, the memory, and the microprocessor (or CPU). The parts that you purchased for your computer can all be 
categorized into one of these four groups. The keyboard and mouse are examples of input devices. The CRT 
(cathode ray tube) and speakers are examples of output devices. The different types of memory (cache, read-only 
memory (ROM), random-access memory (RAM), and the disk drive) are all considered part of the memory box in 
the model. In this book, the focus is not on the mechanical aspects of the input, output, and storage devices. Rather, 
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the focus is on the design of the digital circuitry of the microprocessor, the memory, and other supporting digital 
logic circuits. 

The logic circuit for the microprocessor can be divided into two parts: the datapath and the control unit, as 
shown in Figure 1.1. Figure 1.2 shows the details inside the control unit and the datapath. The datapath is 
responsible for the actual execution of all data operations performed by the microprocessor, such as the addition  of 
two numbers inside the arithmetic logic unit (ALU). The datapath also includes registers for the temporary storage 
of your data. The functional units inside the datapath, which in our example includes the ALU and the register, are 
connected together with multiplexers and data signal lines. The data signal lines are for transferring data between 
two functional units. Data signal lines in the circuit diagram are represented by lines connecting two functional 
units. Sometimes, several data signal lines are grouped together to form a bus. The width of the bus (that is, the 
number of data signal lines in the group) is annotated next to the bus line. In the example, the bus lines are thicker 
and are 8-bits wide. Multiplexers, also known as MUXes, are for selecting data from two or more sources to go to 
one destination. In the sample circuit, a 2-to-1 multiplexer is used to select between the input data and the constant 
‘0’ to go to the left operand of the ALU. The output of the ALU is connected to the input of the register. The output 
of the register is connected to three different destinations: (1) the right operand of the ALU, (2) an OR gate used as a 
comparator for the test “not equal to 0,” and (3) a tri-state buffer. The tri-state buffer is used to control the output of 
the data from the register. 

Input

Microprocessor

Memory

Output
Control

Unit Datapath

 
Figure 1.1. Von Neumann model of a computer. 
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Figure 1.2. Internal parts of a microprocessor. 

Even though the datapath is capable of performing all of the data operations of the microprocessor, it cannot, 
however, do it on its own. In order for the datapath to execute the operations automatically, the control unit is 
required. The control unit, also known as the controller, controls all of the operations of the datapath, and therefore, 
the operations of the entire microprocessor. The control unit is a finite state machine (FSM) because it is a machine 
that executes by going from one state to another and that there are only a finite number of states for the machine to 
go to. The control unit is made up of three parts: the next-state logic, the state memory, and the output logic. The 
purpose of the state memory is to remember the current state that the FSM is in. The next-state logic is the circuit for 
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determining what the next state should be for the machine. And the output logic is the circuit for generating the 
actual control signals for controlling the datapath. 

Every digital logic circuit, regardless of whether it is part of the control unit or the datapath, is categorized as 
either a combinational circuit or a sequential circuit. A combinational circuit is one where the output of the circuit 
is dependent only on the current inputs to the circuit. For example, an adder circuit is a combinational circuit. It 
takes two numbers as inputs. The adder evaluates the sum of these two numbers and outputs the result. 

A sequential circuit, on the other hand, is dependent not only on the current inputs, but also on all the previous 
inputs.  In other words, a sequential circuit has to remember its past history. For example, the up-channel button on a 
TV remote is part of a sequential circuit. Pressing the up-channel button is the input to the circuit. However, just 
having this input is not enough for the circuit to determine what TV channel to display next. In addition to the up-
channel button input, the circuit must also know the current channel that is being displayed, which is the history. If 
the current channel is channel 3, then pressing the up-channel button will change the channel to channel 4. 

Since sequential circuits are dependent on the history, they must therefore contain memory elements for 
remembering the history; whereas combinational circuits do not have memory elements. Examples of combinational 
circuits inside the microprocessor include the next-state logic and output logic in the control unit, and the ALU, 
multiplexers, tri-state buffers, and comparators in the datapath. Examples of sequential circuits include the register 
for the state memory in the controller and the registers in the datapath. The memory in the Von Neuman computer 
model is also a sequential circuit. 

Irregardless of whether a circuit is combinational or sequential, they are all made up of the three basic logic 
gates: AND, OR, and NOT gates. From these three basic gates, the most powerful computer can be made. 
Furthermore, these basic gates are built using transistors — the fundamental building blocks for all digital logic 
circuits. Transistors are just electronic binary switches that can be turned on or off. The on and off states of a 
transistor are used to represent the two binary values: 1 and 0. 

Figure 1.3 summarizes how the different parts and components fit together to form the microprocessor. From 
transistors, the basic logic gates are built. Logic gates are combined together to form either combinational circuits or 
sequential circuits. The difference between these two types of circuits is only in the way the logic gates are 
connected together. Latches and flip-flops are the simplest forms of sequential circuits, and they provide the basic 
building blocks for more complex sequential circuits. Certain combinational circuits and sequential circuits are used 
as standard building blocks for larger circuits, such as the microprocessor. These standard combinational and 
sequential components usually are found in standard libraries and serve as larger building blocks for the 
microprocessor. Different combinational components and sequential components are connected together to form 
either the datapath or the control unit of a microprocessor. Finally, combining the datapath and the control unit 
together will produce the circuit for either a dedicated or a general microprocessor. 
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Figure 1.3. Summary of how the parts of a microprocessor fit together. The numbers in each box denote the chapter 
number in which the topic is discussed. 

1.2 Design Abstraction Levels 
Digital circuits can be designed at any one of several abstraction levels. When designing a circuit at the 

transistor level, which is the lowest level, you are dealing with discrete transistors and connecting them together to 
form the circuit. The next level up in the abstraction is the gate level. At this level, you are working with logic gates 
to build the circuit. At the gate level, you also can specify the circuit using either a truth table or a Boolean equation. 
In using logic gates, a designer usually creates standard combinational and sequential components for building 
larger circuits. In this way, a very large circuit, such as a microprocessor, can be built in a hierarchical fashion. 
Design methodologies have shown that solving a problem hierarchically is always easier than trying to solve the 
entire problem as a whole from the ground up. These combinational and sequential components are used at the 
register-transfer level in building the datapath and the control unit in the microprocessor. At the register-transfer 
level, we are concerned with how the data is transferred between the various registers and functional units to realize 
or solve the problem at hand. Finally, at the highest level, which is the behavioral level, we construct the circuit by 
describing the behavior or operation of the circuit using a hardware description language. This is very similar to 
writing a computer program using a programming language. 

1.3 Examples of a 2-to-1 Multiplexer 
As an example, let us look at the design of the 2-to-1 multiplexer from the different abstraction levels. At this 

point, don’t worry too much if you don’t understand the details of how all of these circuits are built. This is intended 
just to give you an idea of what the description of the circuits look like at the different abstraction levels. We will get 
to the details in the rest of the book. 

An important point to gain from these examples is to see that there are many different ways to create the same 
functional circuit. Although they are all functionally equivalent, they are different in other respects such as size (how 
big the circuit is or how many transistors it uses), speed (how long it takes for the output result to be valid), cost 
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(how much it costs to manufacture), and power usage (how much power it uses). Hence, when designing a circuit, 
besides being functionally correct, there will always be economic versus performance tradeoffs that we need to 
consider. 

The multiplexer is a component that is used a lot in the datapath. An analogy for the operation of the 2-to-1 
multiplexer is similar in principle to a railroad switch in which two railroad tracks are to be merged onto one track. 
The switch controls which one of the two trains on the two separate tracks will move onto the one track. Similarly, 
the 2-to-1 multiplexer has two data inputs, d0 and d1, and a select input, s. The select input determines which data 
from the two data inputs will pass to the output, y. 

Figure 1.4 shows the graphical symbol also referred to as the logic symbol for the 2-to-1 multiplexer. From 
looking at the logic symbol, you can tell how many signal lines the 2-to-1 multiplexer has, and the name or function 
designated for each line. For the 2-to-1 multiplexer, there are two data input signals, d1 and d0, a select input signal, 
s, and an output signal, y. 

y

d1 d0

s 01

 
Figure 1.4. Logic symbol for the 2-to-1 multiplexer. 

1.3.1 Behavioral Level 

We can describe the operation of the 2-to-1 multiplexer simply, using the same names as in the logic symbol, by 
saying that 

d0 passes to y when s = 0, and 
d1 passes to y when s = 1 

Or more precisely, the value that is at d0 passes to y when s = 0, and the value that is at d1 passes to y when s = 1. 

We use a hardware description language  (HDL) to describe a circuit at the behavioral level. When describing a 
circuit at this level, you would write basically the same thing as in the description, except that you have to use the 
correct syntax required by the hardware description language. Figure 1.5 shows the description of the 2-to-1 
multiplexer using the hardware description language called VHDL. 

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY multiplexer IS PORT (
d0, d1, s: IN STD_LOGIC;
y: OUT STD_LOGIC);

END multiplexer;

ARCHITECTURE Behavioral OF multiplexer IS
BEGIN

PROCESS(s, d0, d1)
BEGIN
y <= d0 WHEN s = '0' ELSE d1;

END PROCESS;
END Behavioral;

Figure 1.5. Behavioral level VHDL description of the 2-to-1 multiplexer. 

The LIBRARY and USE statements are similar to the “#include” preprocessor command in C. The IEEE library 
contains the definition for the STD_LOGIC type used in the declaration of signals. The ENTITY section declares the 
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interface for the circuit by specifying the input and output signals of the circuit. In this example, there are three input 
signals of type STD_LOGIC, and one output signal also of type STD_LOGIC. The ARCHITECTURE section defines the 
actual operation of the circuit. The operation of the multiplexer is defined in the one conditional signal assignment 
statement 

y <= d0 WHEN s = '0' ELSE d1;

The statement, which uses the symbol <= to denote the signal assignment, says that the signal y gets the value of d0 
when s is equal to 0, otherwise, y gets the value of d1. 

As you can see, when designing circuits at the behavioral level, we do not need to know what logic gates are 
needed or how they are connected together. We only need to know their interface and operation. 

1.3.2 Gate Level 

At the gate level, you can draw a schematic diagram, which is a diagram showing how the logic gates are 
connected together. Two schematic diagrams of a circuit are shown in Figure 1.6(a) and (b). In Figure 1.6(a), the 
circuit uses three inverters ( ), four 3-input AND gates ( ), and one 4-input OR gate ( ). In Figure 1.6(b), 
only one inverter, two 2-input AND gates, and one 2-input OR gate are needed. Although one circuit is larger (in 
terms of the number of gates needed) than the other, both of these circuits realize the same 2-to-1 multiplexer 
function. Therefore, when we want to actually implement a 2-to-1 multiplexer circuit, we will want to use the 
second, smaller circuit rather than the first. 

d0d1s

y

 

(a) 

d0

d1

s y

 

 

(b) 

Figure 1.6. Gate level circuit diagram for the 2-to-1 multiplexer: (a) circuit using eight gates; (b) circuit using four 
gates. 

At the gate level, you can also describe the 2-to-1 multiplexer using a truth table or with a Boolean equation as 
shown in Figure 1.7(a) and (b) respectively. For the truth table, we list all possible combinations of the binary values 
for the three inputs s, d0 and d1, and then determine what the output value y should be based on the functional 
description of the circuit. We see that for the first four rows of the table when s = 0, y has the same values as d0, 
whereas in the last four rows when s = 1, y has the same values as d1. 

The Boolean equation in (b) can be derived from either the schematic diagram or the truth table. The first 
equality in (b) matches the truth table in (a), and also the schematic diagram in Figure 1.6(a). The second equality in 
(b) matches the schematic diagram in Figure 1.6(b). To derive the equation from the truth table, we look at all the 
rows where the output y is a 1. Each of these rows results in a term in the equation. For each term, the variable is 
primed (' ) when the value of the variable is a 0, and unprimed when the value of the variable is a 1. 

 
s d1 d0 y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 

 y = s' d1' d0 + s' d1 d0 + s d1 d0' + s d1 d0 
  = s' d0 + s d1 
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Figure 1.7. Gate level description of the 2-to-1 multiplexer: (a) using a truth table; (b) using a Boolean equation. 

1.3.3 Transistor Level 

The 2-to-1 multiplexer circuit at the transistor level is shown in Figure 1.8. It contains six transistors, three of 
which are PMOS ( ), and three are NMOS ( ). The pair of transistors on the left forms an inverter for the 
signal s, while the two pairs of transistors on the right form two transmission gates. The transmission gate allows or 
disallows the data signal d0 or d1 to pass through, depending on the control signal s. The top transmission gate is 
turned on when s is a 0, and the bottom transmission gate is turned on when s is a 1. Hence, when s is 0, the value at 
d0 is passed to y, and when s is 1, the value at d1 is passed to y. 

Vcc

s y

d0
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Figure 1.8. Transistor circuit for the 2-to-1 multiplexer. 

1.4 Introduction to VHDL 
The popularity of using hardware description languages (HDL) for designing digital circuits began in the mid-

1990s when commercial synthesis tools became available. Two popular HDLs used by many engineers today are 
VHDL and Verilog. VHDL, which stands for VHSIC Hardware Description Language, and VHSIC, in turn, stands 
for Very High Speed Integrated Circuit, was jointly sponsored and developed by the U.S. Department of Defense 
and the IEEE in the mid-1980s. It was standardized by the IEEE in 1987 (VHDL-87), and later extended in 1993 
(VHDL-93). Verilog, on the other hand, was first introduced in 1984, and later in 1988, as a proprietary hardware 
description language by the two companies Synopsys and Cadence Design Systems. In this book, we will use 
VHDL. 

VHDL, in many respects, is similar to a regular computer programming language, such as C++. For example, it 
has constructs for variable assignments, conditional statements, loops, and functions, just to name a few. In a 
computer programming language, a compiler is used to translate the high-level source code to machine code. In 
VHDL, however, a synthesizer is used to translate the source code to a description of the actual hardware circuit that 
implements the code. From this description, which we call a netlist, the actual physical digital device that realizes 
the source code can be made automatically. Accurate functional and timing simulation of the code is also possible in 
order to test the correctness of the circuit. 

You saw in Section 1.3.1 how we used VHDL to describe the 2-to-1 multiplexer at the behavioral level. VHDL 
can also be used to describe a circuit at other levels. Figure 1.9 shows the VHDL code for the multiplexer written at 
the dataflow level. The main difference between the behavioral VHDL code shown in Figure 1.5 and the dataflow 
VHDL code is that in the behavioral code there is a PROCESS block statement, whereas in the dataflow code, there is 
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no PROCESS statement. Statements within a PROCESS block are executed sequentially like in a computer program, 
while statements outside a PROCESS block (including the PROCESS block itself) are executed concurrently or in 
parallel. The signal assignment statement, using the symbol <=, is derived directly from the Boolean equation for the 
multiplexer as shown in Figure 1.7(b) using the built-in VHDL operators AND, OR, and NOT. 

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY multiplexer IS PORT(
d0, d1, s: IN STD_LOGIC;
y: OUT STD_LOGIC);

END multiplexer;

ARCHITECTURE Dataflow OF multiplexer IS
BEGIN

y <= ((NOT s) AND d0) OR (s AND d1);
END Dataflow;

Figure 1.9. Dataflow level VHDL description of the 2-to-1 multiplexer. 

In addition to the behavioral and dataflow levels, we can also write VHDL code at the structural level. Figure 
1.11 shows the VHDL code for the multiplexer written at the structural level. The code is based on the circuit shown 
in Figure 1.10. The three different gates (and2gate, or2gate, and notgate) used in the circuit are first declared and 
defined using the ENTITY and ARCHITECTURE statements respectively. After this, the multiplexer is declared, also 
with the ENTITY statement. The actual structural definition of the multiplexer is in the ARCHITECTURE section for 
multiplexer2. First of all, the COMPONENT statements specify what components are used in the circuit. The SIGNAL 
statement declares three internal signals that will be used in the connection of the circuit. Finally, the PORT MAP 
statements declare the instances of the gates used in the circuit, and also specify how they are connected using the 
external and internal signals. 

snd0
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u2
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u1

u4

d0

d1

s y

 
Figure 1.10. 2-to-1 multiplexer circuit. 

----------------- NOT gate -----------------------
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY notgate IS PORT(

i: IN STD_LOGIC;
o: OUT STD_LOGIC);

END notgate;
ARCHITECTURE Dataflow OF notgate IS
BEGIN

o <= not i;
END Dataflow;

----------------- 2-input AND gate ---------------
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY and2gate IS PORT(

i1, i2: IN STD_LOGIC;
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o: OUT STD_LOGIC);
END and2gate;
ARCHITECTURE Dataflow OF and2gate IS
BEGIN

o <= i1 AND i2;
END Dataflow;

----------------- 2-input OR gate ----------------
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY or2gate IS PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END or2gate;
ARCHITECTURE Dataflow OF or2gate IS
BEGIN

o <= i1 OR i2;
END Dataflow;

----------------- 2-to-1 multiplexer ------------
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY multiplexer IS PORT(

d0, d1, s: IN STD_LOGIC;
y: OUT STD_LOGIC);

END multiplexer;
ARCHITECTURE Structural OF multiplexer IS

COMPONENT notgate PORT(
i: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT and2gate PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT and3gate PORT(

i1, i2, i3: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT or2gate PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;

SIGNAL sn, snd0, sd1: STD_LOGIC;

BEGIN
U1: notgate PORT MAP(s,sn);
U2: and2gate PORT MAP(d0, sn, snd0);
U3: and2gate PORT MAP(d1, s, sd1);
U4: or2gate PORT MAP(snd0, sd1, y);

END Structural;

Figure 1.11. Structural level VHDL description of the 2-to-1 multiplexer. 
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1.5 Synthesis 
Given a gate level circuit diagram, such as the one shown in Figure 1.6, you can actually get some discrete logic 

gates, and manually connect them together with wires on a breadboard. Traditionally, this is how electronic 
engineers actually designed and implemented digital logic circuits. However, this is not how electronic engineers 
design circuits anymore. They write programs, such as the one in Figure 1.5, just like what computer programmers 
do. The question then is how does the program that describes the operation of the circuit actually get converted to 
the physical circuit? 

The problem here is similar to translating a computer program written in a high-level language to machine 
language for a particular computer to execute. For a computer program, we use a compiler to do the translation. For 
translating a digital logic circuit, we use a synthesizer. Instead of using a high-level computer language to describe 
a computer program, we use a hardware description language (HDL) to describe the operations of a digital logic 
circuit. Writing a description of a digital logic circuit is similar to writing a computer program; the only difference is 
that a different language is used. A synthesizer is then used to translate the HDL program into the circuit netlist. A 
netlist is a description of how a circuit is actually realized or connected using basic gates. This translation process 
from a HDL description of a circuit to its netlist is referred to as synthesis. 

Furthermore, the netlist from the output of the synthesizer can be used directly to implement the actual circuit in 
a programmable logic device (PLD) chip such as a field programmable gate array (FPGA). With this final step, the 
creation of a digital circuit that is fully implemented in an integrated circuit (IC) chip can be easily done. The 
Appendix gives a tutorial of the complete process from writing the VHDL code to synthesizing the circuit and 
uploading the netlist to the FPGA chip using Altera’s development system. 

1.6 Going Forward 
We will now embark upon a journey that will take you from a simple transistor to the building of a 

microprocessor. Figure 1.2 will serve as our guide and map. If you get lost on the way, and do not know where a 
particular component fits in the overall picture, just refer to this map. At the beginning of each chapter, I will refresh 
your memory with this map by highlighting the components in the map that the chapter will cover. 

Figure 1.12 is an actual picture of the circuitry inside an Intel Pentium 4 CPU. When you reach the end of this 
book, you still may not be able to design the circuit for the P4, but you will certainly have the knowledge of how a 
microprocessor is designed because you will actually have designed and implemented a working microprocessor 
yourself. 

 
Figure 1.12. The internal circuitry of the Intel P4 CPU. 
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1.7 Summary Checklist 
 
� Microprocessor 
� General-purpose microprocessor 
� Dedicated microprocessor, ASIC 
� Datapath 
� Control unit 
� Finite state machine (FSM) 
� Next-state logic 
� State memory 
� Output logic 
� Combinational circuit 
� Sequential circuit 
� Transistor level design 
� Gate level design 
� Register-transfer level design 
� Behavioral level design 
� Logic symbol 
� VHDL 
� Synthesis 
� Netlist 

 

1.8 Problems 

1.1. Find out the approximate number of general-purpose microprocessors sold in the US in a year versus the 
number of dedicated microprocessors sold. 

1.2. Compile a list of devices that you use during one regular day that are controlled by a microprocessor. 

1.3. Describe what your regular daily routine will be like if there is no electrical power, including battery power, 
available. 

1.4. Apply the Von Neumann model of a computer system as shown in Figure 1.1 to the following systems. 
Determine what parts of the system correspond to the different parts of the model. 

a) Traffic light 
b) Heart pace maker 
c) Microwave oven 
d) Musical greeting card 
e) Hard disk drive (not the entire personal computer) 

1.5. The speed of a microprocessor is often measured by its clock frequency. What is the clock frequency of the 
fastest general-purpose microprocessor available? 

1.6. Compare some typical clock speeds between general-purpose microprocessors versus dedicated 
microprocessors. 

1.7. Summarize the mainstream generations of the Intel general-purpose microprocessors used in personal 
computers starting with the 8086 CPU. List the year introduced, the clock speed, and the number of 
transistors in each. 

Answer 
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CPU Year Introduced Clock Speed Number of Transistors 
8086 1978 4.7 – 10 MHz 29,000 
80286 1982 6 – 12 MHz 134,000 
80386 1985 16 – 33 MHz 275,000 
80486 1989 25 – 100 MHz 1.2 million 
Pentium 1993 60 – 200 MHz 3.3 million 
Pentium Pro 1995 150 – 200 MHz 5.5 million 
Pentium II 1997 234 – 450 MHz 7.5 million 
Celeron 1998 266 – 800 MHz 19 million 
Pentium III 1999 400 MHz – 1.2 GHz 28 million 
Pentium 4 2000 1.4  – 3 GHz 42 million 

 

1.8. Using Figure 1.9 as a template, write the dataflow VHDL code for the 2-to-1 multiplexer circuit shown in 
Figure 1.6(a). 

1.9. Using Figure 1.11 as a template, write the structural VHDL code for the 2-to-1 multiplexer circuit shown in 
Figure 1.6(a). 

1.10. Do Tutorial 1 in Appendix A. 

1.11. Do Tutorial 2 in Appendix B. 

1.12. Do Tutorial 3 in Appendix C. 
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Chapter 2 

Digital Circuits 
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Our world is an analog world. Measurements that we make of the physical objects around us are never in 
discrete units, but rather in a continuous range. We talk about physical constants such as 2.718281828… or 
3.141592…. To build analog devices that can process these values accurately is next to impossible. Even building a 
simple analog radio requires very accurate adjustments of frequencies, voltages, and currents at each part of the 
circuit. If we were to use voltages to represent the constant 3.14, we would have to build a component that will give 
us exactly 3.14 volts every time. This is again impossible; due to the imperfect manufacturing process, each 
component produced is slightly different from the others. Even if the manufacturing process can be made as perfect 
as perfect can get, we still would not be able to get 3.14 volts from this component every time we use it. The reason 
being that the physical elements used in producing the component behave differently in different environments, such 
as temperature, pressure, and gravitational force, just to name a few. Therefore, even if the manufacturing process is 
perfect, using this component in different environments will not give us exactly 3.14 volts every time. 

To make things simpler, we work with a digital abstraction of our analog world. Instead of working with an 
infinite continuous range of values, we use just two values! Yes, just two values: 1 and 0, on and off, high and low, 
true and false, black and white, or however you want to call it. It is certainly much easier to control and work with 
two values rather than an infinite range. We call these two values a binary value for the reason that there are only 
two of them. A single 0 or a single 1 is then a binary digit or bit. This sounds great, but we have to remember that 
the underlining building block for our digital circuits is still based on an analog world. 

This chapter provides the theoretical foundations for building digital logic circuits using logic gates, the basic 
building blocks for all digital circuits. In order to understand how logic gates are used to implement digital circuits, 
we need to have a good understanding of the basic theory of Boolean algebra, Boolean functions, and how to use 
and manipulate them. Most people may find Sections 2.5 and 2.6 on these theories to be boring, but let me 
encourage you to grind through it patiently, because if you do not understand it now, you will quickly get lost in the 
later chapters. The good news is that these two sections are the only sections in this book on theory, and I will try to 
keep it as short and simple as possible. You will also find that many of the Boolean Theorems are very familiar, 
because they are similar to the Algebra Theorems that you have learned from your high school math class. As you 
can see from the microprocessor road map, this chapter affects all the parts for building a microprocessor. 

2.1 Binary Numbers 
Since digital circuits deal with binary values, we will begin with a quick introduction to binary numbers. A bit, 

having either the value of 0 or 1, can represent only two things or two pieces of information. It is, therefore, 
necessary to group many bits together to represent more pieces of information. A string of n bits can represent 2n 
different pieces of information. For example, a string of two bits results in the four combinations 00, 01, 10, and 11. 
By using different encoding techniques, a group of bits can be used to represent different information, such as a 
number, a letter of the alphabet, a character symbol, or a command for the microprocessor to execute. 

The use of decimal numbers is quite familiar to us. However, since the binary digit is used to represent 
information within the computer, we also need to be familiar with binary numbers. Note that the use of binary 
numbers is just a form of representation for a string of bits. We can just as well use octal, decimal, or hexadecimal 
numbers to represent the string of bits. In fact, you will find that hexadecimal numbers are often used as a shorthand 
notation for binary numbers. 

The decimal number system is a positional system. In other words, the value of the digit is dependent on the 
position of the digit within the number. For example, in the decimal number 48, the decimal digit 4 has a greater 
value than the decimal digit 8 because it is in the tenth position, whereas the digit 8 is in the unit position. The value 
of the number is calculated as 4×101 + 8×100. 

Like the decimal number system, the binary number system is also a positional system. The only difference 
between the two is that the binary system is a base-2 system, and so it uses only two digits, 0 and 1, instead of ten. 
The binary numbers from 0 to 15 (decimal) are shown in Figure 2.1. The range from 0 to 15 has 16 different 
combinations. Since 24 = 16, therefore, we need a 4-bit binary number, i.e., a string of four bits, to represent this 
range. 

When we count in decimal, we count from 0 to 9. After 9, we go back to 0, and have a carry of a 1 to the next 
digit. When we count in binary, we do the same thing except that we only count from 0 to 1. After 1, we go back to 
0, and have a carry of a 1 to the next bit. 
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The decimal value of a binary number can be found just like for a decimal number except that we raise the base 
number 2 to a power rather than the base number 10 to a power. For example, the value for the decimal number 658 
is 

65810 = 6×102 + 5×101 + 8×100 = 600 + 50 + 8 = 65810 

Similaly, the decimal value for the binary number 10110112 is 

10110112 = 1×26 + 0×25 + 1×24 + 1×23 + 0×22 + 1×21 + 1×20 = 64 + 16 + 8 + 2 + 1 = 9110 

To get the decimal value, the least significant bit (in this case, the rightmost 1) is multiplied with 20. The next 
bit to the left is multiplied with 21, and so on. Finally, they are all added together to give the value 9110. 

Notice the subscript 10 in the decimal number 65810, and the 2 in the binary number 10110112. This subscript is 
used to denote the base of the number whenever there might be confusion as to what base the number is in. 

 
Decimal Binary Octal Hexadecimal 

0 0000 0 0 
1 0001 1 1 
2 0010 2 2 
3 0011 3 3 
4 0100 4 4 
5 0101 5 5 
6 0110 6 6 
7 0111 7 7 
8 1000 10 8 
9 1001 11 9 

10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 

Figure 2.1 Numbers from 0 to 15 in binary, octal, and hexadecimal. 

Converting a decimal number to its binary equivalent can be done by successively dividing the decimal number 
by 2 and keeping track of the remainder at each step. Combining the remainders together (starting with the last one) 
forms the equivalent binary number. For example, using the decimal number 91, we divide it by 2 to get 45 with a 
remainder of 1. Then we divide 45 by 2 to get 22 with a remainder of 1. We continue in this fashion until the end as 
shown below. 

912
45

1
2

22
1

2
11

0
2

5
1

2
2

1
2

1
0

most significant bit

least significant bit

= 1011011

 
Concatenating the remainders together starting with the last one results in the binary number 10110112. 

Binary numbers usually consist of a long string of bits. A shorthand notation for writing out this lengthy string 
of bits is to use either the octal or hexadecimal numbers. Since octal is base-8 and hexadecimal is base-16, both of 
which are a power of 2, a binary number can be easily converted to an octal or hexadecimal number, or vice versa.  
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Octal numbers only use the digits from 0 to 7 for the eight different combinations. When counting in octal, the 
number after 7 is 10 as shown in Figure 2.1. To convert a binary number to octal, we simply group the bits into 
groups of threes starting from the right. The reason for this is because 8 = 23. For each group of three bits, we write 
the equivalent octal digit for it. For example, the conversion of the binary number 1 110 0112 to the octal number 
1638 is shown below. 

 001 110 011 
 1 6 3 

Since the original binary number has seven bits, we need to extend it with two leading zeros to get three bits for 
the leftmost group. Note that when we are dealing with negative numbers, we may require extending the number 
with leading ones instead of zeros. 

Converting an octal number to its binary equivalent is just as easy. For each octal number, we write down the 
equivalent three bits. These groups of three bits are concatenated together to form the final binary number. For 
example, the conversion of the octal number 57248 to the binary number 101 111 010 1002 is shown below. 

 5 7 2 4 
 101 111 010 100 

The decimal value of an octal number can be found just like for a binary or decimal number except that we raise 
the base number 8 to a power instead. For example, the octal number 57248 has the value 

57248 = 5×83 + 7×82 + 2×81 + 4×80 = 2560 + 448 + 16 + 4 = 302810 

Hexadecimal numbers are treated basically the same way as octal numbers except with the appropriate changes 
to the base. Hexadecimal (or hex for short) numbers use base-16, and thus require 16 different digit symbols as 
shown in Figure 2.1. Converting binary numbers to hexadecimal numbers involve grouping the bits into groups of 
fours since 16 = 24. For example, the conversion of the binary number 110 1101 10112 to the hexadecimal number 
6DB16 is shown below. Again, we need to extend it with a leading zero to get four bits for the leftmost group. 

 0110 1101 1011 
 6 D B 

To convert a hex number to a binary number, we write down the equivalent four bits for each hex digit, and 
then concatenate them together to form the final binary number. For example, the conversion of the hexadecimal 
number 5C4A16 to the binary number 0101 1100 0100 10102 is shown below. 

 5 C 4 A 
 0101 1100 0100 1010 

The following example shows how the decimal value of the hexadecimal number C4A16 is evaluated. 

C4A16 = C×162 + 4×161 + A×160 = 12×162 + 4×161 + 10×160 = 3072 + 64 + 10 = 314610 

2.2 Binary Switch 
Besides the fact that we are working only with binary values, digital circuits are easy to understand because 

they are based on one simple idea of turning a switch on or off to obtain either one of the two binary values. Since 
the switch can be in either one of two states (on or off), we call it a binary switch, or just a switch for short. The 
switch has three connections: an input, an output, and a control for turning the switch on or off as shown in Figure 
2.2. When the switch is opened as in (a), it is turned off and nothing gets through from the input to the output. When 
the switch is closed as in (b), it is turned on, and whatever is presented at the input is allowed to pass through to the 
output. 
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in out in out

(a) (b)

control

 
Figure 2.2 Binary switch: (a) opened or off; (b) closed or on. 

Uses of the binary switch idea can be found in many real world devices. For example, the switch can be an 
electrical switch with the input connected to a power source and the output connected to a siren S as shown in Figure 
2.3. 

Battery Siren

Switch

 
Figure 2.3 A siren controlled by a switch. 

When the switch is closed, the siren turns on. The usual convention is to use a 1 to mean “on” and a 0 to mean 
“off.” Therefore, when the switch is closed, the output is a 1 and the siren will turn on. We can also use a variable, x, 
to denote the state of the switch. We can let x = 1 to mean the switch is closed and x = 0 to mean the switch is 
opened. Using this convention, we can describe the state of the siren S in terms of the variable x using a simple logic 
expression. Since S = 1 if x = 1 and S = 0 if x = 0, we can write 

S = x 

This logic expression describes the output S in terms of the input variable x.  

2.3 Basic Logic Operators and Logic Expressions 
Two binary switches can be connected together either in series or in parallel as shown in Figure 2.4. 

(b)

F

(a)

F

x

y

yx

 
Figure 2.4 Connection of two binary switches: (a) in series; (b) in parallel. 

If two switches are connected in series as in (a), then both switches have to be on in order for the output F to be 
a 1. In other words, F = 1 if x = 1 AND y = 1. If either x or y is off, or both are off, then F = 0. Translating this into a 
logic expression, we get 

F = x AND y 

Hence, two switches connected in series give rise to the logical AND operator. In a Boolean function (which we 
will explain in more detail in section 2.5) the AND operator is either denoted with a dot ( •  ) or no symbol at all. Thus 
we can rewrite the above expression as 

F = x •  y 

or simply 
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F = xy 

If we connect two switches in parallel as in (b), then only one switch needs to be on in order for the output F to 
be a 1. In other words, F = 1 if either x = 1, or y = 1, or both x and y are 1’s.  This means that F = 0 only if both x 
and y are 0’s. Translating this into a logic expression, we get 

F = x OR y 

and this gives rise to the logical OR operator. In a Boolean function, the OR operator is denoted with a plus symbol 
( + ). Thus we can rewrite the above expression as 

F = x + y 

In addition to the AND and OR operators, there is another basic logic operator – the NOT operator, also known as 
the INVERTER. Whereas, the AND and OR operators have multiple inputs, the NOT operator has only one input and 
one output. The NOT operator simply inverts its input, so a 0 input will produce a 1 output, and a 1 becomes a 0. In a 
Boolean function, the NOT operator is either denoted with an apostrophe symbol ( '  )  or a bar on top (   )  as in 

F = x' 
or 

xF =  

When several operators are used in the same expression, the precedence given to the operators are, from highest 
to lowest, NOT, AND, and OR. The order of evaluation can be changed by means of using parenthesis. For example, 
the expression 

F = xy + z' 
means (x and y) or (not z), and the expression 

F = x(y + z)' 
means x and (not (y or z)). 

2.4 Truth Tables 
The operation of the AND, OR, and NOT logic operators can be formally described by using a truth table as 

shown in Figure 2.5. A truth table is a two-dimensional array where there is one column for each input and one 
column for each output (a circuit may have more than one output). Since we are dealing with binary values, each 
input can be either a 0 or a 1. We simply enumerate all possible combinations of 0’s and 1’s for all the inputs. 
Usually, we want to write these input values in the normal binary counting order. With two inputs, there are 22 
combinations giving us the four rows in the table. The values in the output column are determined from applying the 
corresponding input values to the functional operator. For the AND truth table in Figure 2.5(a), F = 1 only when x 
and y are both 1, otherwise, F = 0. For the OR truth table (b), F = 1 when either x or y or both is a 1, otherwise F = 0. 
For the NOT truth table, the output F is just the inverted value of the input x. 
 

x y F 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

(a) 

x y F 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

(b) 

x F 
0 1 
1 0 

 

(c) 

Figure 2.5 Truth tables for the three basic logical operators: (a) AND; (b) OR; (c) NOT. 

Using a truth table is one method to formally describe the operation of a circuit or function. The truth table for 
any given logic expression (no matter how complex it is) can always be derived. Examples on the use of truth tables 
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to describe digital circuits are given in the following sections. Another method to formally describe the operation of 
a circuit is by using Boolean expressions or Boolean functions. 

2.5 Boolean Algebra and Boolean Function 

2.5.1 Boolean Algebra 

George Boole, in 1854, developed a system of mathematical logic, which we now call Boolean algebra. Based 
on Boole’s idea, Claude Shannon, in 1938, showed that circuits built with binary switches can easily be described 
using Boolean algebra. The abstraction from switches being on and off to the use of Boolean algebra is as follows. 
Let B = {0, 1} be the Boolean algebra whose elements are one of the two values, 0 and 1. We define the operations 
AND (• ), OR (+), and NOT (' )  for the elements of B by the axioms in Figure 2.6(a). These axioms are simply the 
definitions for the AND, OR, and NOT operators. 

A variable x is called a Boolean variable if x takes on only values in B, i.e. either 0 or 1. Consequently, we 
obtain the theorems in Figure 2.6(b) for single variable and Figure 2.6(c) for two and three variables. 

Theorems in Figure 2.6(b) can be proved easily by substituting the binary values into the expressions and using 
the axioms. For example, to show that Theorem 6a is true, we substitute 0 into x to get axiom 3a, and substitute 1 
into x to get axiom 2a. 

To prove the theorems in Figure 2.6(c), we can use either one of two methods: 1) use a truth table, or 2) use 
axioms and theorems that have already been proven. We show these two methods in the following two examples. 

 
1a. 0 •  0 = 0 1b. 1 + 1 = 1  
2a. 1 •  1 = 1 2b. 0 + 0 = 0  
3a. 0 •  1 = 1 •  0 = 0 3b. 1 + 0 = 0 + 1 = 1  
4a. 0' = 1 4b. 1' = 0  

(a) 
 

 

5a. x •  0 = 0 5b. x + 1 = 1 Null element 
6a. x •  1 = 1 •  x = x 6b. x + 0 = 0 + x = x Identity 
7a. x •  x = x 7b. x + x = x Idempotent 
8a. (x' )' = x   Double complement 
9a. x •  x' = 0 9b. x + x' = 1 Inverse 

(b) 
 

10a. x •  y = y •  x 10b. x + y = y + x Commutative 
11a. (x •  y) •  z = x •  (y •  z) 11b. (x + y) + z = x + (y +  z) Associative 
12a. x •  (y + z) = (x •  y) + (x •  z) 12b. x + (y •  z)  = (x + y) •  (x + z) Distributive 
13a. x •  (x + y) = x 13b. x + (x •  y) = x Absorption 
14a. (x •  y) + (x •  y' ) = x 14b. (x + y) •  (x + y' ) = x Combining 
15a. (x •  y)' = x' + y' 15b. (x + y)' = x' •  y' DeMorgan’s 

(c) 

Figure 2.6 Boolean algebra axioms and theorems: (a) Axioms; (b) Single variable theorems; (c) two and three 
variable theorems. 

Example 2.1: Proof of theorem using a truth table. 

Theorem 12a states that x •  (y + z)  = (x •  y) + (x •  z). To prove that Theorem 12a is true using a truth table, we 
need to show that for every combination of values for the three variables x, y, and z, the left-hand side of the 
expression is equal to the right-hand side. The truth table below is constructed as follows: 
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x y z (y + z) (x •  y) (x •  z) x •  (y + z) (x •  y) + (x •  z) 
0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 1 0 1 0 0 0 0 
0 1 1 1 0 0 0 0 
1 0 0 0 0 0 0 0 
1 0 1 1 0 1 1 1 
1 1 0 1 1 0 1 1 
1 1 1 1 1 1 1 1 

We start with the first three columns labeled x, y, and z, and enumerate all possible combinations of values for 
these three variables. For each combination (row), we evaluate the intermediate expressions y+z, x•y, and x• z by 
substituting the values of x, y, and z into the expression. Finally, we obtain the values for the last two columns, 
which correspond to the left-hand side and right-hand side of Theorem 12a. The values in these two columns are 
identical for every combination of x, y, and z, therefore, we can say that Theorem 12a is true. ♦  

Example 2.2: Proof of theorem using axioms and theorems. 

Theorem 13b states that x + (x •  y) = x. To prove that Theorem 13b is true using axioms and theorems, we can 
argue as follows: 

x + (x •  y) = (x •  1) + (x •  y) by Identity Theorem 6a 
 = x •  (1 + y) by Distributive Theorem 12a 
 = x •  (1) by Null element Theorem 5b 
 = x by Identity Theorem 6a ♦  

Example 2.2 shows that some theorems can be derived from others that have already been proven with the truth 
table. Full treatment of Boolean algebra is beyond the scope of this book and can be found in the references. For our 
purposes, we simply assume that all the theorems are true and will just use them to show that two circuits are 
equivalent as depicted in the next two examples. 

Example 2.3: Use Boolean algebra to reduce the equation F(x,y,z) = (x' + y' + x'y' + xy) (x' + yz) as much as possible. 

F = (x' + y' + x'y' + xy) (x' + yz) 
 = (x' •  1 + y' •  1 + x'y' + xy) (x' + yz) by Identity Theorem 6a 
 = (x' (y + y' ) + y' (x + x' ) + x'y' + xy) (x' + yz) by Inverse Theorem 9b 
 = (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz) by Distributive Theorem 12a 
 = (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz) by Idempotent Theorem 7b 
 = (x' (y + y') + x (y + y')) (x' + yz) by Distributive Theorem 12a 
 = (x' •  1 + x •  1) (x' + yz) by Inverse Theorem 9b 
 = (x' + x) (x' + yz) by Identity Theorem 6a 
 = 1 (x' + yz) by Inverse Theorem 9b 
 = (x' + yz) by Identity Theorem 6a 

Since the expression (x' + y' + x'y' + xy) (x' + yz) reduces down to (x' + yz), therefore, we do want to implement 
the circuit for the latter expression rather then the former because the circuit size for the latter is much smaller.  ♦  

Example 2.4: Show, using Boolean algebra, that the two equations F1 = (xy' + x'y + x' + y' + z' ) (x + y' + z) and 
F2 = y' + x'z + xz' are equivalent. 

F1 = (xy' + x'y + x' + y' + z' ) (x + y' + z) 
= xy'x + xy'y' + xy'z + x'yx + x'yy' + x'yz + x'x + x'y' + x'z + y'x + y'y' + y'z + z'x + z'y' + z'z  
= xy' + xy' + xy'z + 0 + 0 + x'yz + 0 + x'y' + x'z + xy' + y' + y'z + xz' + y'z' + 0 
= xy' + xy'z + x'yz + x'y' + x'z + y' + y'z + xz' + y'z' 
= y'(x + xz + x' + 1 + z + z') + x'z(y + 1) + xz' 
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= y' + x'z + xz' 
= F2 ♦  

2.5.2 * Duality Principle 

Notice in Figure 2.6 that we have listed the axioms and theorems in pairs. Specifically, we define the dual of a 
logic expression as one that is obtained by changing all + operators with •  operators, and vice versa, and by 
changing all 0’s with 1’s, and vice versa. For example, the dual of the logic expression 

(x•y'•z) + (x•y•z' ) + (y•z) + 0 

is 
(x+y'+z) •  (x+y+z' ) •  (y+z) •  1 

The duality principle states that if a Boolean expression is true, then its dual is also true. Be careful in that it 
does not say that a Boolean expression is equivalent to its dual. For example, Theorem 5a in Figure 2.6 says that 
x •  0 = 0 is true, thus by the duality principle, its dual, x + 1 = 1 is also true. However, x •  0 = 0 is not equal to x + 1 
= 1, since 0 is definitely not equal to 1. 

We will see in Section 2.5.3 that the inverse of a Boolean expression can be obtained by first taking the dual of 
that expression, and then complementing each Boolean variable in the resulting dual expression. In this respect, the 
duality principle is often used in digital logic design. Whereas an expression might be complex to implement, its 
inverse might be simpler, thus resulting in a smaller circuit, and inverting the final output of this circuit will produce 
the same result as from the original expression. 

2.5.3 Boolean Function and the Inverse 

As we have seen, any digital circuit can be described by a logical expression, also known as a Boolean function. 
Any Boolean functions can be formed from binary variables and the Boolean operators • , +, and ' (for AND, OR, and 
NOT respectively). For example, the following Boolean function uses the three variables or literals x, y, and z. It has 
three AND terms (also referred to as product terms), and these AND terms are ORed (summed) together. The first 
two AND terms contain all three variables each, while the last AND term contains only two variables. By definition, 
an AND (or product) term is either a single variable, or two or more variables ANDed together. Quite often, we refer 
to functions that are in this format as a sum-of-products or or-of-ands. 

F(x,y,z) = x y' z + x y z'  + y z

3 AND terms

3 variables 2 variables
 

The value of a function evaluates to either a 0 or a 1 depending on the given set of values for the variables. For 
example, the function above evaluates to a 1 when any one of the three AND terms evaluate to a 1, since 1 OR x is 1. 
The first AND term, xy'z, equals to a 1 if  

  x = 1, y = 0, and z = 1 

because if we substitute these values for x, y, and z into the first AND term xy'z, we get a 1. Similarly, the second AND 
term, xyz', equals to a 1 if 

  x = 1, y = 1, and z = 0. 

The last AND term, yz, has only two variables. What this means is that the value of this term is not dependent on the 
missing variable x. In other words x can be either a 0 or a 1, but as long as y = 1 and z = 1, this term will equal to a 1. 

Thus, we can summarize by saying that F evaluates to a 1 if 

  x = 1, y = 0, and z = 1 

or 
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  x = 1, y = 1, and z = 0 

or 

  x = 0, y = 1, and z = 1 

or 

  x = 1, y = 1, and z = 1. 

Otherwise, F evaluates to a 0. 

It is often more convenient to summarize the above verbal description of a function with a truth table as shown 
in Figure 2.7 under the column labeled F. Notice that the four rows in the table where F = 1 match the four cases in 
the description above. 

 
x y z F F' 
0 0 0 0 1 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

Figure 2.7 Truth table for the function F = xy'z + xyz' + yz 

The inverse of a function, denoted by F', can be easily obtained from the truth table for F by simply changing 
all the 0’s to 1’s and 1’s to 0’s as shown in the truth table in Figure 2.7 under the column labeled F'. Therefore, we 
can write the Boolean function for F' in the sum-of-products format, where the AND terms are obtained from those 
rows where F' = 1. Thus, we get 

F' = x'y'z' + x'y'z + x'yz' + xy'z' 

To deduce F' algebraically from F requires the use of DeMorgan’s Theorem (Theorem 15a) twice. For example, 
using the same function 

F = xy'z + xyz' + yz 

we obtain F' as follows 

F' = (xy'z + xyz' + yz)' 
 = (xy'z)' •  (xyz')' •  (yz)' 
 = (x'+y+z' ) •  (x'+y'+z) •  (y'+z' ) 

There are three things to notice about this equation for F'. First, F' is just the dual of F (as defined in 
Section 2.5.2) and then having all the variables inverted. Second, instead of being in a sum-of-products format, it is 
in a product-of-sums (and-of-ors) format where three OR terms (also referred to as sum terms) are ANDed together. 
Third, from the same original function F, we obtained two different equations for F'. From the truth table, we 
obtained 

F' = x'y'z' + x'y'z + x'yz' + xy'z' 

and from applying DeMorgan’s Theorem to F, we obtained 

F' = (x'+y+z' ) •  (x'+y'+z) •  (y'+z' ) 

Hence, we must conclude that these two expressions for F', where one is in the sum-of-products format, and the 
other is in the product-of-sums format, are equivalent. In general, all functions can be expressed in either the sum-
of-products or product-of-sums format. 
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Thus, we should also be able to express the same function F = xy'z + xyz' + yz in the product-of-sums format. 
We can derive it using one of two methods. For method one, we can start with F' and apply DeMorgan’s Theorem to 
it just like how we obtained F' from F. 

F = F' ' 
 = (x'y'z' + x'y'z + x'yz' + xy'z' )' 
 = (x'y'z' )' •  (x'y'z)' •  (x'yz' )' •  (xy'z' )' 
 = (x+y+z) •  (x+y+z' ) •  (x+y'+z) •  (x'+y+z) 

For the second method, we start with the original F and convert it to the product-of-sums format using the 
Boolean theorems. 

F = xy'z + xyz' + yz 
 = (x+x+y) •  (x+x+z) •  (x+y+y) •  (x+y+z) •  (x+z'+y) •  (x+z'+z) •  (step 1) 
 (y'+x+y) •  (y'+x+z) •  (y'+y+y) •  (y'+y+z) •  (y'+z'+y) •  (y'+z'+z) •  
 (z+x+y) •  (z+x+z) •  (z+y+y) •  (z+y+z) •  (z+z'+y) •  (z+z'+z) 
 = (x+y) •  (x+z) •  (x+y) •  (x+y+z) •  (x+z'+y) •  (y'+x+z) •  (z+x+y) •  (z+x) •  (z+y) •  (z+y) (step 2) 
 = (x+y) •  (x+z) •  (x+y+z) •  (x+y+z' ) •  (x+y'+z) •  (z+y) (step 3) 
 = (x+y+zz' ) •  (x+yy'+z) •  (x+y+z) • (x+y+z' ) •  (x+y'+z) •  (xx'+y+z) (step 4) 
 = (x+y+z) •  (x+y+z') •  (x+y+z) •  (x+y'+z) •  (x+y+z) •  (x+y+z') •  (x+y'+z) •  (x+y+z) •  (x'+y+z) (step 5) 
 = (x+y+z) •  (x+y+z' ) •  (x+y'+z) •  (x'+y+z) 

In the first step, we apply Theorem 12b (Distributive) to get every possible combination of sum terms. For 
example, the first sum term (x+x+y) is obtained from getting the first x from xy'z, the second x from xyz', and the y 
from yz. The second sum term (x+x+z) is obtained from getting the first x from xy'z, the second x from xyz', and the z 
from yz. This is repeated for all combinations. In this step, the sum terms, such as (x+z'+z), where it contains 
variables of the form v + v' can be eliminated since v + v' = 1, and 1 •  x = x. 

In the second and third steps, duplicate variables and terms are eliminated. For example, the term (x+x+y) is 
equal to just (x+y+y), which is just (x+y). The term (x+z'+z) is equal to (x+1), which is equal to just 1, and therefore, 
can be eliminated completely from the expression. 

In the fourth step, every sum term with a missing variable will have that variable added back in by using 
Theorems 6b and 9a, which says that x + 0 = x and yy' = 0, therefore, x + yy' = x. 

Step five uses the Distributive Theorem, and the resulting duplicate terms are again eliminated to give us the 
format that we want. 

Functions that are in the product-of-sums format (such as the one shown below) are more difficult to deduce 
when they evaluate to a 1. For example, using  

F' = (x'+y+z' ) •  (x'+y'+z) •  (y'+z' ) 

F' evaluates to a 1 when all three terms evaluate to a 1. For the first term to evaluate to a 1, x can be 0, or y can be 1, 
or z can be 0. For the second term to evaluate to a 1, x can be 0, or y can be 0, or z can be 1. Finally, for the last term, 
y can be 0, or z can be 0, or x can be either a 0 or a 1. As a result, we end up with many more combinations to 
consider, even though many of the combinations are duplicates. 

However, it is easier to determine when a product-of-sums format expression evaluates to a 0. For example, 
using the same expression 

F' = (x'+y+z' ) •  (x'+y'+z) •  (y'+z' ) 

F' evaluates to 0 when any one of the three OR terms is 0, since 0 AND x is 0; and this happens when 

  x = 1, y = 0, and z = 1 for the first OR term, 

or 

  x = 1, y = 1, and z = 0 for the second OR term, 

or 

  y = 1, z = 1, and x can be either 0 or 1 for the last or term. 
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Similarly, for a sum-of-products format expression, it is easy to evaluate when it is a 1, but difficult to evaluate 
when it is a 0. 

These four conditions in which F' evaluates to a 0 match exactly those rows in the table shown in Figure 2.7 
where F' = 0. Therefore, we see that in general, the unique algebraic expression for any Boolean function can be 
specified by either (1) selecting the rows from the truth table where the function is a 1 and use the sum-of-products 
format, or (2) selecting the rows from the truth table where the function is a 0 and use the product-of-sums format. 
Whatever format we decide to use, the one thing to remember is that we are always interested in only when the 
function (or its inverse) is equal to a 1. 

Figure 2.8 summarizes these two formats for the function F = xy'z + xyz' + yz and its inverse F'. Notice that the 
sum-of-products format for F is the dual with its variables inverted of the product-of-sums format for F'. Similarly, 
the product-of-sums format for F is the dual with its variables inverted of the sum-of-products format for F'. 

x'yz + xy'z + xyz' + xyz (x+y+z) •  (x+y+z') •  (x+y'+z) •  (x'+y+z)

(x+y'+z') •  (x'+y+z') •  (x'+y'+z) •  (x'+y'+z')x'y'z' + x'y'z + x'yz' + xy'z'

inverted
dualinv

ert
ed

du
al

Product-of-sumsSum-of-products

F'

F equal

equal

inverse

 

Figure 2.8 Relationships between the function F = xy'z + xyz' + yz and its inverse F', and the sum-of-products and 
product-of-sums formats. The label “inverted dual” means applying the duality principle and then inverting the 
variables. 

2.6 Minterms and Maxterms 
As you recall, a product term is a term with either a single variable, or two or more variables ANDed together, 

and a sum term is a term with either a single variable, or two or more variables ORed together. To differentiate 
between a term that contains any number of variables with a term that contains all the variables used in the function, 
we use the words minterm and maxterm. We are not introducing new ideas here, rather, we are just introducing two 
new words and notations for defining what we have already learned. 

2.6.1 Minterms 

A minterm is a product term that contains all the variables used in a function. For a function with n variables, 
the notation mi where 0 ≤ i < 2n, is used to denote the minterm whose index i is the binary value of the n variables 
such that the variable is complemented if the value assigned to it is a 0, and uncomplemented if it is a 1. 

For example, for a function with three variables x, y, and z, the notation m3 is used to represent the term in 
which the values for the variables xyz are 011 (for the subscript 3). Since we want to complement the variable whose 
value is a 0, and uncomplement it if it is a 1. Hence m3 is for the minterm x'yz. Figure 2.9(a) shows the eight 
minterms and their notations for n = 3 using the three variables x, y, and z. 

When specifying a function, we usually start with product terms that contain all the variables used in the 
function. In other words, we want the sum of minterms, and more specifically the sum of the one-minterms, that is 
the minterms for which the function is a 1 (as opposed to the zero-minterms, that is the minterms for which the 
function is a 0). We use the notation 1-minterm to denote one-minterm, and 0-minterm to denote zero-minterm. 
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x y z Minterm Notation  x y z Maxterm Notation 
0 0 0 x' y' z' m0  0 0 0 x + y + z M0 
0 0 1 x' y' z m1  0 0 1 x + y + z' M1 
0 1 0 x' y z' m2  0 1 0 x + y' + z M2 
0 1 1 x' y z m3  0 1 1 x + y' + z' M3 
1 0 0 x y' z' m4  1 0 0 x' + y + z M4 
1 0 1 x y' z m5  1 0 1 x' + y + z' M5 
1 1 0 x y z' m6  1 1 0 x' + y' + z M6 
1 1 1 x y z m7  1 1 1 X' + y' + z' M7 

 (a) (b) 

Figure 2.9 (a) Minterms for three variables. (b) Maxterms for three variables. 

The function from the previous section 

F = xy'z + xyz' + yz 
 = x'yz + xy'z + xyz' + xyz 

and repeated in the following truth table has the 1-minterms m3, m5, m6, and m7. 
 

x y z F F' Minterm Notation 
0 0 0 0 1 x' y' z' m0 
0 0 1 0 1 x' y' z m1 
0 1 0 0 1 x' y z' m2 
0 1 1 1 0 x' y z m3 
1 0 0 0 1 x y' z' m4 
1 0 1 1 0 x y' z m5 
1 1 0 1 0 x y z' m6 
1 1 1 1 0 x y z m7 

Thus, a shorthand notation for the function is 

F(x, y, z) = m3 + m5 + m6 + m7 

By just using the minterm notations, we do not know how many variables are in the original function. 
Consequently, we need to explicitly specify the variables used by the function as in F(x, y, z). We can further 
simplify the notation by using the standard algebraic symbol Σ for summation. Therefore, we have 

F(x, y, z) = Σ(3, 5, 6, 7) 

These are just different ways of expressing the same function. 

Since a function is obtained from the sum of the 1-minterms, the inverse of the function, therefore, must be the 
sum of the 0-minterms. This can be easily obtained by replacing the set of indices with those that were excluded 
from the original set. 

Example 2.5: Given the Boolean function F(x, y, z) = y + x'z, use Boolean algebra to convert the function to the 
sum-of-minterms format. 

This function has three variables. In a sum-of-minterms format, all product terms must have all variables. To do 
so, we need to expand each product term by ANDing it with (v + v' ) for every missing variable v in that term. Since 
(v + v' ) = 1, therefore, ANDing a product term with (v + v' ) does not change the value of the term. 

F = y + x'z 
 = y(x+x' )(z+z' ) + x'z(y+y' ) expand 1st term by ANDing it with (x+x' )(z+z' ), and 2nd term with (y+y' ) 
 = xyz + xyz' + x'yz + x'yz' + x'yz + x'y'z 
 = m7 + m6 + m3 + m2 + m1  
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 = Σ(1, 2, 3, 6, 7) sum of 1-minterms ♦  

Example 2.6: Given the Boolean function F(x, y, z) = y + x'z, use Boolean algebra to convert the inverse of the 
function to the sum-of-minterms format. 

F' = (y + x'z)' inverse 
 = y' •  (x'z)' use DeMorgan 
 = y' •  (x+z' ) use DeMorgan 
 = y'x + y'z' use Distributive Theorem to change to sum of products format 
 = y'x(z+z' ) + y'z' (x+x' ) expand 1st term by ANDing it with (z+z' ), and 2nd term with (x+x' ) 
 = xy'z + xy'z' + xy'z' + x'y'z' 
 = m5 + m4 + m0  
 = Σ(0, 4, 5) sum of 0-minterms ♦  

2.6.2 * Maxterms 

Analogous to a minterm, a maxterm is a sum term that contains all the variables used in the function. For a 
function with n variables, the notation Mi where 0 ≤ i < 2n, is used to denote the maxterm whose index i is the binary 
value of the n variables such that the variable is complemented if the value assigned to it is a 1, and 
uncomplemented if it is a 0. 

For example, for a function with three variables x, y, and z, the notation M3 is used to represent the term in 
which the values for the variables xyz are 011. For maxterms, we want to complement the variable whose value is a 
1, and uncomplement it if it is a 0. Hence M3 is for the maxterm x + y' + z'. Figure 2.9(b) shows the eight maxterms 
and their notations for n = 3 using the three variables x, y, and z. 

We have seen that a function can also be specified as a product of sums, or more specifically, a product of 0-
maxterms, that is, the maxterms for which the function is a 0. Just like the minterms, we use the notation 
1-maxterm to denote one-maxterm, and 0-maxterm to denote zero-maxterm. Thus, the function  

F(x, y, z) = xy'z + xyz' + yz  
 = (x + y + z) •  (x + y + z') •  (x + y' + z) •  (x' + y + z) 

which is shown in the following table 
 

x y z F F' Maxterm Notation 
0 0 0 0 1 x + y + z M0 
0 0 1 0 1 x + y + z' M1 
0 1 0 0 1 x + y' + z M2 
0 1 1 1 0 x + y' + z' M3 
1 0 0 0 1 x' + y + z M4 
1 0 1 1 0 x' + y + z' M5 
1 1 0 1 0 x' + y' + z M6 
1 1 1 1 0 x' + y' + z' M7 

can be specified as the product of the 0-maxterms M0, M1, M2, and M4. The shorthand notation for the function is 

F(x, y, z) = M0 •  M1 •  M2 •  M4 

Again, by using the standard algebraic symbol Π for product, the notation is further simplified to  

F(x, y, z) = Π (0, 1, 2, 4) 

The following summarizes these relationships for the function F = xy'z + xyz' + yz and its inverse. Comparing 
these equations with those in Figure 2.8, we see that they are identical. 
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F(x, y, z) = x' y z + x y' z + x y z' + x y z 
 = m3 + m5 + m6 + m7 
 = Σ(3, 5, 6, 7) 

 = (x+y+z) •  (x+y+z' ) •  (x+y'+z) •  (x'+y+z) 
 = M0 •  M1 •  M2 •  M4 
 = Π(0, 1, 2, 4) 

F'(x, y, z) = x' y' z' + x' y' z + x' y z' + x y' z' 
 = m0 + m1 + m2 + m4 
 = Σ(0, 1, 2, 4) 

 = (x+y'+z' ) •  (x'+y+z' ) •  (x'+y'+z) •  (x'+y'+z' ) 
 = M3 •  M5 •  M6 •  M7 
 = Π(3, 5, 6, 7) 

Notice that it is always the Σ of minterms and Π of maxterms; you never have Σ of maxterms or Π of minterms. 

Example 2.7: Given the Boolean function F(x, y, z) = y + x'z, use Boolean algebra to convert the function to the 
product-of-maxterms format. 

To change a sum term to a maxterm, we expand each term by ORing it with (vv' ) for every missing variable v in 
that term. Since (vv' ) = 0, therefore, ORing a sum term with (vv' ) does not change the value of the term. 

F = y + x'z 
 = y + (x'z) 
 = (y+x' )(y+z) use Distributive Theorem to change to product of sums format 
 = (y+x' +zz' )(y+z+xx' ) expand 1st term by ORing it with zz', and 2nd term with xx' 
 = (x' +y+z) (x' +y+z' ) (x+y+z) (x' +y+z) 
 = M4 •  M5 •  M0  
 = Π(0, 4, 5) product of 0-maxterms ♦  

Example 2.8: Given the Boolean function F(x, y, z) = y + x'z, use Boolean algebra to convert the inverse of the 
function to the product-of-maxterms format. 

F' = (y + x' z)' inverse 
 = y' •  (x' z)' use DeMorgan 
 = y' •  (x+z' ) use DeMorgan 
 = (y' +xx' +zz' ) •  (x+z' +yy' ) expand 1st term by ORing it with xx' +zz', and 2nd term with yy' 
 = (x+y' +z) (x+y' +z' ) (x' +y' +z) (x' +y' +z' ) (x+y+z' ) (x+y' +z' ) 
 = M2 •  M3 •  M6 •  M7 •  M1  
 = Π(1, 2, 3, 6, 7) product of 1-maxterms ♦  

2.7 Canonical, Standard, and non-Standard Forms 
Any Boolean function that is expressed as a sum of minterms, or as a product of maxterms is said to be in its 

canonical form. For example, the following two expressions are in their canonical forms 

F = x' y z + x y' z + x y z' + x y z 

F' = (x+y'+z' ) •  (x'+y+z' ) •  (x'+y'+z) •  (x'+y'+z' ) 

As noted from the previous section, to convert a Boolean function from one canonical form to its other 
equivalent canonical form, simply interchange the symbols Σ with Π, and list the index numbers that were excluded 
from the original form. For example, the following two expressions are equivalent 

Π 1-maxterms 

Σ 1-minterms

Σ 0-minterms

Π 0-maxterms 
inverted 

duals 

equivalent 

equivalent 

inverse

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

43



F1(x, y, z) = Σ(3, 5, 6, 7) 

F2(x, y, z) = Π(0, 1, 2, 4) 

To convert a Boolean function from one canonical form to its inverse, simply interchange the symbols Σ with 
Π, and list the same index numbers from the original form. For example, the following two expressions are inverses 

F1(x, y, z) = Σ(3, 5, 6, 7) 

F2(x, y, z) = Π(3, 5, 6, 7) 

A Boolean function is said to be in a standard form if a sum-of-products expression or a product-of-sums 
expression has at least one term that is not a minterm or a maxterms respectively. In other words, at least one term in 
the expression is missing at least one variable. For example, the following expression is in a standard form because 
the last term is missing the variable x. 

F = xy'z + xyz' + yz 

Sometimes, common variables in a standard form expression can be factored out. The resulting expression is no 
longer in a sum-of-products or product-of-sums format. These expressions are in a non-standard form. For 
example, starting with the previous expression, if we factor out the common variable x from the first two terms, we 
get the following expression, which is in a non-standard form. 

F = x(y'z + yz') + yz 

2.8 Logic Gates and Circuit Diagrams 
Logic gates are the actual physical implementations of the logical operators discussed in the previous sections. 

Transistors, acting as tiny electronic binary switches are connected together to form these gates. Thus, we have the 
AND gate, the OR gate, and the NOT gate (also called the INVERTER ) for the corresponding AND, OR, and NOT logical 
operators. These gates form the basic building blocks for all digital logic circuits. The name “gate” comes from the 
fact that these devices operate like a door or gate to let or not to let things (in our case, current) through. 

In drawing digital circuit diagrams, also called schematic diagrams, or just schematics, we use special logic 
symbols to denote these gates as shown in Figure 2.10. The AND gate, or specifically, the 2-input AND gate, in 
Figure 2.10(a) has two input connections coming in from the left and one output connection going out on the right. 
Similarly, the 2-input OR gate in Figure 2.10(b) has two input connections and one output connection. The INVERTER 
in Figure 2.10(c) has one input coming from the left and one output going to the right. The outputs from these gates, 
of course, are dependent on their inputs, and are defined by their logical functions. 

(a) (b) (c)
 

Figure 2.10 Logic symbols for the three basic logic gates: (a) 2-input AND; (b) 2-input OR; (c) NOT. 

Sometimes, an AND gate or an OR gate with more than two inputs are needed. Hence, in addition to the 2-input 
AND and OR gates, there are 3-input, 4-input, or as many inputs as are needed of the AND and OR gates. In practice, 
however, the number of inputs is limited to a small number, such as five. The logic symbols for some of these gates 
are shown in Figure 2.11(a) to (d). 

There are several other gates that are variants of the three basic gates that are also often used in digital circuits. 
They are the NAND gate, the NOR gate, the XOR gate, and the XNOR gate. The NAND gate is derived from an AND gate 
and the INVERTER connected in series so that the output of the AND gate is inverted. The name “NAND” comes from 
the description “Not AND.” Similarly, the NOR gate is the OR gate with its output inverted. The XOR, or eXclusive OR 
gate is like the OR gate except that when both inputs are 1, the output is a 0 instead. The XNOR, or eXclusive NOR 
gate is just the inverse of the XOR gate for when there are an even number of inputs (like 2 inputs). When there are 
an odd number of inputs (like 3 inputs), the XOR is the same as the XNOR. The logic symbols and their truth tables 
for some of these gates are shown in Figure 2.11 and Figure 2.12 respectively. 
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Notice, in Figure 2.11, the use of the little circle or bubble at the output of some of the logic symbols. This 
bubble is used to denote the inverted value of a signal. For example, the NAND gate is the inverse of the AND gate, 
thus the NAND gate logic symbol is the same as the AND gate logic symbol except that it has the extra bubble at the 
output. 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)  
Figure 2.11 Logic symbols for: (a) 3-input AND; (b) 4-input AND; (c) 3-input OR; (d) 4-input OR; (e) 2-input NAND; 
(f) 2-input NOR; (g) 3-input NAND; (h) 3-input NOR; (i) 2-input XOR; (j) 2-input XNOR. 

 
  2-NAND 2-NOR 2-XOR 2-XNOR 
x y (x•y)' (x+y)' x ⊕  y x � y 
0 0 1 1 0 1 
0 1 1 0 1 0 
1 0 1 0 1 0 
1 1 0 0 0 1 

 
   3-AND 3-OR 3-NAND 3-NOR 3-XOR 3-XNOR 
x y z x •  y •  z x + y + z (x •  y •  z)' (x + y + z)' x ⊕  y ⊕  z x � y � z 
0 0 0 0 0 1 1 0 0 
0 0 1 0 1 1 0 1 1 
0 1 0 0 1 1 0 1 1 
0 1 1 0 1 1 0 0 0 
1 0 0 0 1 1 0 1 1 
1 0 1 0 1 1 0 0 0 
1 1 0 0 1 1 0 0 0 
1 1 1 1 1 0 0 1 1 

Figure 2.12 Truth tables for: 2-input NAND; 2-input NOR; 2-input XOR; 2-input XNOR; 3-input AND; 3-input 
OR; 3-input NAND; 3-input NOR; 3-input XOR; 3-input XNOR. 

The notations used for these gates in a logical expression are (xy)' for the 2-input NAND gate, (x+y)' for the 2-
input NOR gate, x ⊕  y for the XOR gate, and x � y for the XNOR gate. 

Looking at the truth table for the 2-input XOR gate, we can derive the equation for the 2-XOR gate as 

x ⊕  y = x'y + xy' 

Similarly, the equation for the 2-input XNOR gate as derived from the 2-XNOR truth table is 

x � y = x'y' + xy 

The equation for the 3-input XOR gate is derived as follows 

x ⊕  y ⊕  z  
 = (x ⊕  y) ⊕  z 
 = (x'y + xy' ) ⊕  z 
 = (x'y + xy' )z' + (x'y + xy' )'z 
 = x'yz' + xy'z' + (x'y)' (xy' )'z 
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 = x'yz' + xy'z' + (x+y' ) (x'+y) z 
 = x'yz' + xy'z' + xx'z + xyz + x'y'z + y'yz 
 = x'y'z + x'yz' + xy'z' + xyz 

The last four product terms in the above derivation are the four 1-minterms in the 3-input XOR truth table. For 3 
or more inputs, the XOR gate has a value of 1when there is an odd number of 1’s in the inputs, otherwise, it is a 0. 

Notice also that the truth tables for the 3-input XOR and XNOR gates are identical. It turns out that for an even 
number of inputs, XOR is the inverse of XNOR, but for an odd number of inputs, XOR is equal to XNOR. 

All these gates can be interconnected together to form large complex circuits which we call networks. These 
networks can be described graphically using circuit diagrams, with Boolean expressions or with truth tables. 

Example 2.9: Draw the circuit diagram for the equation F(x, y, z) = y + x'z. 

In the equation, we need to first invert x, and then AND it with z. Finally, we need to OR y with the output of the 
AND. The resulting circuit is shown below. For easy reference, the internal nodes in the circuit are annotated with the 
two intermediate values x' and x'z. 

    

x

z

y F

x'
x'z

 ♦  

Example 2.10: Draw the circuit diagram for the equation F(x, y, z) = xyz + xyz' + x'yz + x'yz' + x'y'z. 

The equation consists of five AND terms that are ORed together. Each AND term requires three inputs for the 
three variables. Hence, the circuit shown below has five 3-input AND gates, whose outputs are connected to a 5-input 
OR gate. The inputs to the AND gates come directly from the three variables x, y, and z, or their inverted values. 
Notice that in the equation, there are six inverted variables. However, in the circuit, we do not need six inverters, 
rather, only three inverters are used; one for each variable. 

    

x y z

F

 ♦  

2.9 Designing a Car Security System 
In a car security system, we usually want to connect the siren in such a way that the siren will activate when it is 

triggered by one or more sensors. In addition, there will be a master switch to turn the system on or off. Let us 
assume that there is a car door switch D, a vibration detector switch V, and the master switch M. We will use the 
convention that when the door is opened D = 1, otherwise, D = 0. Similarly, when the car is being shaken, V = 1, 
otherwise, V = 0. Thus, we want the siren S to turn on, that is, set S = 1, when either D = 1 or V = 1, or when both 
D = 1and V = 1, but only for when the system is turned on, that is, when M = 1. However, when we turn off the 
system, and either enter or drive the car, we do not want the siren to turn on. Hence, when M = 0, it does not matter 
what values D and V have, the siren should remain off. 

Given the above description of a car security system, we can build a digital circuit that meets our specifications. 
We start by constructing a truth table, which is basically a precise way of stating the operations for the device. The 
table will have three input columns M, D, and V, and an output column S as shown below 
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M D V S 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

The values under the S column are obtained from interpreting the description of when we want the siren to turn 
on. When M = 0, we don’t want the siren to come on, regardless of what the values for D and V are. When M = 1, 
we want the siren to come on when either or both D and V is a 1. 

The truth table can be described formally with a logic expression written in words as 

S = (M AND (NOT D) AND V) OR (M AND D AND (NOT V)) OR (M AND D AND V) 

or preferably using the simpler notation of a Boolean function 

S = (M D' V) + (M D V') + (M D V) 

Again, what this equation is saying is that we want the siren to activate, S = 1, when the master switch is on and 
the door is not opened and the vibration switch is on, or the master switch is on and the door is opened and the 
vibration switch is not on, or the master switch is on and the door is opened and the vibration switch is on. Notice 
that we are only interested in the situations when S = 1. We ignore the rows when S = 0. When we construct circuits 
from truth tables, we always use only the rows where the output is a 1. 

Finally, we can translate this equation into a circuit diagram. The translation is a simple one-to-one mapping of 
changing the AND operator into the AND gate, the OR operator into the OR gate, and the NOT operator into the 
INVERTER. Thus, we get the following circuit diagram for our car security system 

 

S

M D V

 
A careful reader might notice that the Boolean equation shown above and the circuit for specifying when the 

siren is to be turned on can be simplified to  

  S = M (D + V) 

D

M
V S

 
  
This simplified equation says that the siren is to be turned on only when the master switch is on and either the door 
switch or vibration switch is on. Just by using simple reasoning, we can see that this simplified circuit will do 
exactly what the previous circuit does. In other words, both circuits are functionally equivalent. 

More formally, we can use the Boolean Theorems from Section 2.5.1 to show that these two equations are 
indeed equivalent as follows 

S = (M D' V) + (M D V') + (M D V) 
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 = M (D' V + D V' + D V) by Distributive Theorem 12a 
 = M (D' V + D V' + D V + DV) by Idempotent Theorem 7b 
 = M ( D(V' + V) + V(D' + D) )  by Distributive Theorem 12a 
 = M ( D(1) + V(1))  by Inverse Theorem 9b 
 = M (D + V)  by Identity Theorem 6a 

Figure 2.13(a) shows a sample simulation trace of the car security system circuit. Between times 0 and 200ns, 
the master switch M is a 0, so regardless of the values of D and V, the siren is off (Siren=0). Between times 200ns 
and 600ns, M = 1. During this time, whenever either D = 1 or V = 1, the siren is on. This is a functional trace of the 
circuit, and so all the signal edges line up exactly, i.e., the output signal edge changes at exactly the same time (with 
no delay) as the input edge that caused it to change. For a timing trace, on the other hand, the output signal edge will 
be delayed slightly after the causing input edge as shown in Figure 2.13(b). 
 

 

(a) 

 

(b) 

Figure 2.13 Sample simulation trace of the car security system circuit: (a) functional trace; (b) timing trace. 

When building a circuit, besides having a functionally correct circuit, we also want to optimize it in terms of its 
size, speed, heat dissipation, and power consumption. We will see in later sections how circuits are optimized. 

2.10 VHDL for Digital Circuits 
A digital circuit that is described with a Boolean function can easily be converted to VHDL code using the 

dataflow model. At the dataflow level, a circuit is defined using built-in VHDL logic operators such as AND, OR, and 
NOT. These operators are applied to signals using concurrent signal assignment statements. 

2.10.1 VHDL code for a 2-input NAND gate 

Figure 2.14 shows the VHDL code for a 2-input NAND gate. It also serves as a basic template for all VHDL 
codes. Lines starting with two hyphens are comments. The LIBRARY and USE statements specify that the IEEE 
library is needed and that all the components in that library package can be used. These two statements are 
equivalent to the “#include” preprocessor line in C++. 

Every component defined in VHDL, whether it is a simple NAND gate or a complex microprocessor, has two 
parts: an ENTITY section and an ARCHITECTURE section. The entity section is similar to a function declaration in C++ 
and serves as the interface between the component and the outside. It declares all the input and output signals for a 
circuit. Every entity must have a unique name; in the example, the name NAND2gate is used. The entity contains a 
PORT list, which, like a parameter list, specifies the data to be passed in and out of the component. In the example, 
there are two input signals called x and y of type STD_LOGIC and an output signal called f of the same type. The 
STD_LOGIC type is like the BIT type, except that it contains additional values besides just 0 and 1. 
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The architecture is the definition of the component, and contains the code that realizes the operation of the 
component. For every architecture, you need to specify its name, and which entity it is for. In the example, the name 
is Dataflow, and it is for the entity NAND2 gate. It is possible for one entity to have more then one architecture, 
since an entity can be implemented in more than one way. Within the body of the architecture, we can have one or 
more concurrent statements. Unlike statements in C++ where they are executed in sequential order, concurrent 
statements in the architecture body are executed in parallel. Thus, the ordering of these statements is irrelevant. The 
symbol “<=” is used for a signal assignment statement. The expression on the right-hand side of the <= symbol is 
evaluated when either x or y changes values (either from 0 to 1, or from 1 to 0), and the result is assigned to the 
signal on the left-hand side. The NAND operator is a built-in VHDL operator. 

-- this is a dataflow model of a 2-input NAND gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY NAND2gate IS PORT (
x: IN STD_LOGIC;
y: IN STD_LOGIC;
f: OUT STD_LOGIC);

END NAND2gate;

ARCHITECTURE Dataflow OF NAND2gate IS
BEGIN

f <= x NAND y; -- signal assignment
END Dataflow;

Figure 2.14 VHDL code for a 2-input NAND gate. 

2.10.2 VHDL code for a 3-input NOR gate 

Figure 2.15(a) shows the VHDL code for a 3-input NOR gate. In addition to the three input signals x, y, and z, 
and one output signal f declared in the entity section, this example has two internal signals, xory and xoryorz, both of 
which are of type STD_LOGIC. The keyword SIGNAL in the architecture section is used to declare these two internal 
signals. Internal signals are used for naming connection points (or nodes) within a circuit. Three concurrent signal 
assignment statements are used. All the signal assignment statements are executed concurrently, so the ordering of 
the statements is irrelevant. The coding of these three signal assignment statements is based on the 3-input NOR gate 
circuit shown in Figure 2.15(b). 

Figure 2.15(c) shows a sample simulation trace of the circuit. In the trace, we see that the output signal f is a 1 
only when all three inputs are 0’s. This occurs twice, first time between 0 and 100ns, and second time between 
800ns and 900ns. For all the other times, f is a 0, since not all three inputs are 0’s. Hence, the simulation trace shows 
the correct operation of this circuit for the 3-input NOR gate. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY NOR3gate IS PORT (
x: IN STD_LOGIC;
y: IN STD_LOGIC;
z: IN STD_LOGIC;
f: OUT STD_LOGIC);

END NOR3gate;

ARCHITECTURE Dataflow OF NOR3gate IS
SIGNAL xory, xoryorz : STD_LOGIC;

BEGIN
xory <= x OR y; -- three concurrent signal assignments
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xoryorz <= xory OR z;
f <= NOT xoryorz;

END Dataflow;

(a) 

x
y
z z

xory
xoryorz

 

(b) 

 

(c) 

Figure 2.15 3-input NOR gate: (a) VHDL code; (b) circuit; (c) simulation trace. 

2.10.3 VHDL code for a function 

Figure 2.16 shows the VHDL code, and the simulation trace for the car security system circuit of Section 2.9. 
The function implemented is S = (M D' V) + (M D V') + (M D V). 

This VHDL code (as well as the ones from the two previous sections) is written at the dataflow level, not 
because the name of the architecture is “Dataflow.” Dataflow level coding uses logic equations to describe a circuit, 
and this is done by using the built-in VHDL operators such as AND, OR, and NOT in concurrent signal assignment 
statements. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY Siren IS PORT (
M: IN STD_LOGIC;
D: IN STD_LOGIC;
V: IN STD_LOGIC;
S: OUT STD_LOGIC);

END Siren;

ARCHITECTURE Dataflow OF Siren IS
SIGNAL term_1, term_2, term_3: STD_LOGIC;

BEGIN
term_1 <= M AND (NOT D) AND V;
term_2 <= M AND D AND (NOT V);
term_3 <= M AND D AND V;
S <= term_1 OR term_2 OR term_3;

END Dataflow;

(a) 
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(b) 

Figure 2.16 The car security circuit of Section 2.9: (a) dataflow VHDL code; (b) simulation trace. 

2.11 Summary Checklist 
 
� Binary number 
� Hexadecimal number 
� Binary switch 
� AND, OR, and NOT 
� Truth table 
� Boolean algebra axioms and theorems 
� Duality principle 
� Boolean function and the inverse 
� Product term 
� Sum term 
� Sum-of-products, or-of-ands 
� Product of sums, and-of-ors 
� Minterm and maxterm 
� Sum-of minterms 
� Product-of-maxterms 
� Canonical, standard, and non-standard form 
� Logic gate, logic symbol 
� Circuit diagram 
� NAND, NOR, XOR, XNOR 
� Network 
� VHDL 
� Be able to derive the Boolean equation from a truth table, or vice versa 
� Be able to derive the circuit diagram from a Boolean equation, or vice versa 
� Be able to derive the circuit diagram from a truth table, or vice versa 
� Be able to use Boolean algebra to reduce a Boolean equation 
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2.12 Problems 

2.1 Convert the following decimal numbers to binary: 
a) 66 
b) 49 
c) 513 
d) 864 
e) 1897 
f) 2004 

2.2 Convert the following unsigned binary numbers to decimal, hexadecimal and octal: 
a) 11110 
b) 11010 
c) 100100011 
d) 1011011 
e) 1101101110 
f) 101111010100 

Answer: 
a) 3010, 1E16, 368 
e) 87810, 36E16, 15568 

2.3 Convert the following hexadecimal numbers to binary: 
a) 66 
b) E3 
c) 2FE8 
d) 7C2 
e) 5A2D 
f) E08B 

2.4 Derive the truth table for the following Boolean functions. 
a) F(x,y,z) = x'y'z' + x'yz + xy'z' + xyz 
b) F(x,y,z) = xy'z + x'yz' + xyz + xyz' 
c) F(w,x,y,z) = w'xy'z + w'xyz + wxy'z + wxyz 
d) F(w,x,y,z) = wxy'z + w'yz' + wxz + xyz' 
e) F(x,y,z) = xy' + x'y'z + xyz' 
f) F(w,x,y,z) = w'z' + w'xy + wx'z + wxyz 
g) F(x,y,z) = [(x+y' ) (yz)' ] (xy' + x'y) 
h) F(N3,N2,N1,N0) = N3'N2'N1N0' + N3'N2'N1N0 + N3N2'N1N0' + N3N2'N1N0 + N3N2N1'N0' + N3N2N1N0 

Answer: 
g) 

x y z x' y' x+y' yz (yz)' [(x+y' ) (yz)' ] xy' x'y (xy' + x'y) [(x+y' ) (yz)' ] (xy' + x'y) 
0 0 0 1 1 1 0 1 1 0 0 0 0 
0 0 1 1 1 1 0 1 1 0 0 0 0 
0 1 0 1 0 0 0 1 0 0 1 1 0 
0 1 1 1 0 0 1 0 0 0 1 1 0 
1 0 0 0 1 1 0 1 1 1 0 1 1 
1 0 1 0 1 1 0 1 1 1 0 1 1 
1 1 0 0 0 1 0 1 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 0 0 0 

 

2.5 Derive the Boolean function for the following truth tables: 
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a) b) 

a b c F 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0  

w x y z F 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 1 1  

c) d) 
w x y z F1 F2 

0 0 0 0 1 1 
0 0 0 1 0 1 
0 0 1 0 0 1 
0 0 1 1 1 1 
0 1 0 0 0 0 
0 1 0 1 1 1 
0 1 1 0 1 0 
0 1 1 1 0 0 
1 0 0 0 0 1 
1 0 0 1 1 1 
1 0 1 0 1 0 
1 0 1 1 0 0 
1 1 0 0 1 1 
1 1 0 1 0 1 
1 1 1 0 0 1 
1 1 1 1 1 1  

N3 N2 N1 N0 F 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 1 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 1  

2.6 Use a truth table to show that the following expressions are true: 
a) w'z' + w'xy + wx'z + wxyz = w'z' + xyz + wx'y'z + wyz 
b) z + y' + yz' = 1 
c) xy'z' + x' + xyz' = x' + z' 
d) xy + x'z + yz = xy + x'z 

 
Answer: 
d) 

x y z xy x'z yz xy+x'z+yz xy+x'z 
0 0 0 0 0 0 0 0 
0 0 1 0 1 0 1 1 
0 1 0 0 0 0 0 0 
0 1 1 0 1 1 1 1 
1 0 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 
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1 1 0 1 0 0 1 1 
1 1 1 1 0 1 1 1 

 
e) w'x'yz' + w'x'yz + wx'yz' + wx'yz + wxyz = y(x' + wz) 
f) w'xy'z + w'xyz + wxy'z + wxyz = xz 
g) xiyi + ci(xi + yi) = xiyici + xiyici' + xiyi'ci + xi'yici 
h) xiyi + ci(xi + yi) = xiyi + ci(xi ⊕  yi) 

2.7 Use Boolean algebra to show that the expressions in Problem 2.6 are true. 
a) Answer 

w'z' + w'xy + wx'z + wxyz 
= w'x'y'z' + w'x'yz' + w'xy'z' + w'xyz' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz 
= w'x'y'z' + w'x'yz' + w'xy'z' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz 
= w'z' + w'xyz + wx'y'z + wx'yz + wxyz 
= w'z' + (w'+w)xyz + wx'y'z + w(x'+x)yz 
= w'z' + xyz + wx'y'z + wyz 

 
c) 
Answer: 

x y' z' + x' + x y z' = x z' (y' + y) + x' 
 = x z' + x' 
 = x z' + 1 x' 
 = (x + 1)(x + x' )(z' + 1)(z' + x' ) 
 = 1 •  1 •  1 (z' + x' ) 
 = x' + z' 
 
f) 
Answer: 

w'xy'z + w'xyz + wxy'z + wxyz 
= xy'z(w' + w) + xyz(w' + w) 
= xy'z + xyz 
= xz(y + y') 
= xz 

g) 

 Answer: 

xiyi + ci(xi + yi) 
 = xiyi + xici + yici 
 = xiyi(ci + ci' ) + xi(yi + yi' )ci + (xi + xi' )yici 
 = xiyici + xiyici' + xiyici + xiyi'ci + xiyici + xi'yici 
 = xiyici + xiyici' + xiyi'ci + xi'yici 

2.8 Use Boolean algebra to reduce the functions in Problem 2.4 as much as possible. 

Answer: 
a) 
 F(x,y,z) = x'y'z' + x'yz + xy'z' + xyz 

 = y'z' (x + x') + yz(x + x' ) 
 = y'z' + yz 
 = (y + z' ) (y' + z) 
 = y � z 

2.9 Any function can be implemented directly as specified or as its inverted form with a not gate added at the 
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final output. Assume that the circuit size is proportional to only the number of AND gates and OR gates, i.e. 
ignore the number of NOT gates in determining the circuit size. Determine which form of the function (the 
inverted or un-inverted) will result in a smaller circuit size for the following function. Give your reason and 
specify how many AND and OR gates are needed to implement the smaller circuit. 

F(x,y,z) = x'y'z' + x'y'z + xy'z + xy'z' + xyz 

2.10 Derive the truth table for the following logic gates: 
a) A 4-input AND gate. 
b) A 4-input NAND gate. 
c) A 4-input NOR gate. 
d) A 4-input XOR gate. 
e) A 4-input XNOR gate. 
f) A 5-input XOR gate. 
g) A 5-input XNOR gate. 

2.11 Derive the truth table for the following Boolean functions. 
a) F(w,x,y,z) = [(x � y)' + (xyz)'] (w' + x + z) 
b) F(x,y,z) = x ⊕  y ⊕  z 
c) F(w,x,y,z) = [w'xy'z + w'z (y ⊕  x)]' 

2.12 Use Boolean algebra to convert the functions in Problem 2.11 to: 
a) The sum-of-minterms format. 
b) The product-of-maxterms format. 

2.13 Use Boolean algebra to reduce the functions in Problem 2.11 as much as possible. 

2.14 Use a truth table to show that the following expressions are true: 
a) (x ⊕  y) = (x � y)' 
b) x ⊕  y' = x � y 
c) (w ⊕  x) � (y ⊕  z) = (w � x) � (y � z) = (((w�x)�y)�z). 
Answer 

w x y Z w⊕ x y⊕ z (w⊕ x) � (y⊕ z) w�x y�z (w�x) � (y�z) (((w�x)�y)�z) 
0 0 0 0 0 0 1 1 1 1 1 
0 0 0 1 0 1 0 1 0 0 0 
0 0 1 0 0 1 0 1 0 0 0 
0 0 1 1 0 0 1 1 1 1 1 
0 1 0 0 1 0 0 0 1 0 0 
0 1 0 1 1 1 1 0 0 1 1 
0 1 1 0 1 1 1 0 0 1 1 
0 1 1 1 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 1 0 0 
1 0 0 1 1 1 1 0 0 1 1 
1 0 1 0 1 1 1 0 0 1 1 
1 0 1 1 1 0 0 0 1 0 0 
1 1 0 0 0 0 1 1 1 1 1 
1 1 0 1 0 1 0 1 0 0 0 
1 1 1 0 0 1 0 1 0 0 0 
1 1 1 1 0 0 1 1 1 1 1 

d) [((xy)'x)' ((xy)'y)' ]' = x ⊕  y 

2.15 Use Boolean algebra to show that the expressions in Question 2.14 are true. 
d) 

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

55



Answer: 
F = [((xy)'x)' ((xy)'y)' ]' 
 = ((xy)'x) + ((xy)'y) 
 = (x' + y' )x + (x' + y' )y 
 = xx' + xy' + x'y + y'y 
 = xy' + x'y 
 = x ⊕  y 

2.16 Use Boolean algebra to show that XOR = XNOR for three inputs. 
Answer: 
x ⊕  y ⊕  z = (x ⊕  y) ⊕  z 
 = (x'y + xy') ⊕  z 
 = (x'y + xy')' z + (x'y + xy') z' 
 = (x'y)' · (xy')' z + x'yz' + xy'z' 
 = (x + y') · (x' + y) z + x'yz' + xy'z' 
 = xx'z + xyz + x'y'z + y'yz + x'yz' + xy'z' 
 = (xy + x'y') z + (x'y + xy') z' 
 = (xy + x'y') z + (xy + x'y')' z' 
 = (x�y) z + (x�y)' z' 
 = x�y�z 

2.17 Express the Boolean functions in Question 2.4 using: 
a) The Σ notation. 
b) The Π notation. 

2.18 Write the following expression as a Boolean function in the canonical form: 
c) F(x, y, z) = Σ(1, 3, 7) 
d) F(w, x, y, z) = Σ(1, 3, 7) 
e) F(x, y, z) = Π(1, 3, 7) 
f) F(w, x, y, z) = Π(1, 3, 7) 
g) F' (x, y, z) = Σ(1, 3, 7) 
h) F' (x, y, z) = Π(1, 3, 7) 

2.19 Given F' (x, y, z) = Σ(1, 3, 7), express the function F using a truth table. 
Answer: 
F' is expressed as a sum of its 0-minterms. Therefore, F is the sum of its 1-minterms = Σ(0, 2, 4, 5, 6). Using 

three variables, the truth table is as follows: 
 

x y z Minterms F 
0 0 0 m0=x' y' z' 1 
0 0 1 m1=x' y' z 0 
0 1 0 m2=x' y z' 1 
0 1 1 m3=x' y z 0 
1 0 0 m4=x y' z' 1 
1 0 1 m5=x y' z 1 
1 1 0 m6=x y z' 1 
1 1 1 m7=x y z 0 

2.20 Use Boolean algebra to convert the function F(x, y, z) = Σ(3, 4, 5) to its equivalent product-of-sum canonical 
form. 

Answer: 
F  = Σ(3, 4, 5) = m3 + m4 + m5 

= x’yz + xy’z’ + xy’z 
= (x’ + x + x)(x’ + x + y’)(x’ + x + z) 
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 (x’ + y’ + x)(x’ + y’ + y’)(x’ + y’ + z) 
 (x’ + z’ + x)(x’ + z’ + y’)(x’ + z’ + z) 
 (y + x + x)(y + x + y’)(y + x + z) 
 (y + y’ + x)(y + y’ + y’)(y + y’ + z) 
 (y + z’ + x)(y + z’ + y’)(y + z’ + z) 
 (z + x + x)(z + x + y’)(z + x + z) 
 (z + y’ + x)(z + y’ + y’)(z + y’ + z) 
 (z + z’ + x)(z + z’ + y’)(z + z’ + z) 
= (x’ + y’ + z) (x’ + y’ + z’) (x + y + z) (x + y + z’) (x + y’ + z) 

2.21 Given F = xy'z' + xy'z + xyz' + xyz, write the expression for F ' using: 
a) the AND-of-OR format 
Answer: 

AND-of-OR format is obtained by using the duality principle or De Morgan’s Theorem: 
F' = (x'+y+z) •  (x'+y+z') •  (x'+y'+z) •  (x'+y'+z') 

b) the OR-of-AND formats 
Answer: 

OR-of-AND format is obtained by first constructing the truth table for F and then inverting the 0’s and 1’s 
to get F '. Then we simply use the AND terms where F' = 1. 

 
x y z F F ' 
0 0 0 0 1 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

 
F ' = x'y'z' + x'y'z + x'yz' + x'yz 

2.22 Use Boolean algebra to convert the equation F = w � x � y � z to: 
a) The sum-of-minterms format. 
Answer 
F = w � x � y � z 
 = (wx + w'x' ) � y � z 
 = [(wx + w'x' )y + (wx + w'x' )' y' ] z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z' 
 = wxyz + w'x'yz + (wx)' (w'x' )'y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z' 
 = m15 + m3 + (w'+x' )(w+x)y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z' 
 = m15 + m3 + w'xy'z + wx'y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z' 
 = m15 + m3 + m5 + m9 + [(wx + w'x' ) y]' [(wx + w'x' )' y' ]' z' 
 = m15 + m3 + m5 + m9 + [(wx + w'x' )' + y' ] [(wx + w'x' )+ y] z' 
 = m15 + m3 + m5 + m9 + [(wx)' (w'x' )' + y' ] [wxz' + w'x' z' + yz' ] 
 = m15 + m3 + m5 + m9 + [(w'+x' )(w+x) + y' ] [wxz' + w'x' z' + yz' ] 
 = m15 + m3 + m5 + m9 + [w'x + wx' + y' ] [wxz' + w'x' z' + yz' ] 
 = m15 + m3 + m5 + m9 + w'xyz' + wx'yz' + wxy'z' + w'x'y'z' 
 = m15 + m3 + m5 + m9 + m6 + m10 + m12 + m0 

b) The product-of-maxterms format. 

2.23 Write the complete dataflow VHDL code for the Boolean functions in Problem 2.4. 

2.24 Write the complete dataflow VHDL code for the logic gates in Problem 2.10. 
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2.25 Write the complete dataflow VHDL code for the Boolean functions in Problem 2.11. 
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Chapter 3 

Combinational Circuits 
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Digital circuits, regardless of whether they are part of the control unit or the datapath, are classified as either 
one of two types: combinational or sequential. Combinational circuits are the class of digital circuits where the 
outputs of the circuit are dependent only on the current inputs. In other words, a combinational circuit is able to 
produce an output simply from knowing what the current input values are. Sequential circuits, on the other hand, 
are circuits whose outputs are dependent on not only the current inputs, but also on all of the past inputs. Therefore, 
in order for a sequential circuit to produce an output, it must know the current input and all past inputs. Because of 
their dependency on past inputs, sequential circuits must contain memory elements in order to remember the history 
of past input values. Combinational circuits do not need to know the history of past inputs, and therefore, do not 
require any memory elements. A “large” digital circuit may contain both combinational circuits and sequential 
circuits. However, regardless of whether it is a combinational circuit or a sequential circuit, it is nevertheless a 
digital circuit, and so they use the same basic building blocks – the AND, OR, and NOT gates.  What makes them 
different is in the way the gates are connected. 

The car security system from Section 2.9 is an example of a combinational circuit. In the example, the siren is 
turned on when the master switch is on and someone opens the door. If you close the door then the siren will turn off 
immediately. With this setup, the output, which is the siren, is dependent only on the inputs, which are the master 
and door switches. For the security system to be more useful, the siren should remain on even after closing the door 
after it is first triggered. In order to add this new feature to the security system, we need to modify it so that the 
output is not only dependent on the master and door switches, but also dependent on whether the door has been 
previously opened or not. A memory element is needed in order to remember whether the door was previously 
opened or not, and this results in a sequential circuit. 

In this and the next chapter, we will look at the design of combinational circuits. In this chapter, we will look at 
the analysis and design of general combinational circuits. Chapter 4 will look at the design of specific combinational 
components. Some sample combinational circuits in our microprocessor road map include the next-state logic and 
output logic in the control unit, and the multiplexer, ALU, comparator, and tri-state buffer in the datapath. We will 
leave the design of sequential circuits for a later chapter. 

In addition to being able to design a functionally correct circuit, we would also like to be able to optimize the 
circuit in terms of size, speed, and power consumption. Usually, reducing the circuit size will also increase the speed 
and reduce the power usage. In this chapter, we will look only at reducing the circuit size. Optimizing the circuit for 
speed and power usage is beyond the scope of this book. 

3.1 Analysis of Combinational Circuits 
Very often, we are given a digital logic circuit, and we would like to know the operation of the circuit. The 

analysis of combinational circuits is the process in which we are given a combinational circuit, and we want to 
derive a precise description of the operation of the circuit. In general, a combinational circuit can be described 
precisely either with a truth table or with a Boolean function. 

3.1.1 Using a Truth Table 

For example, given the combinational circuit of Figure 3.1, we want to derive the truth table that describes the 
circuit. We create the truth table by first listing all of the inputs found in the circuit, one input per column, followed 
by all of the outputs found in the circuit. Hence, we start with a table with four columns: three columns (x, y, z) for 
the inputs, and one column (f) for the output, as shown in Figure 3.2(a). 
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x y z

f

 
Figure 3.1 Sample combinational circuit. 

 

x y z f 
    

 

 

(a) 

x y z f 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

(b) 

x y z

f0

0 0 0

1 1
0

0

0

0
 

(c) 

x y z

f1

0 0 1

1 1
1

0

0

0
 

(d) 
 

x y z f 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

(e) 

Figure 3.2 Deriving the truth table for the sample circuit in Figure 3.1: (a) listing the input and output columns; (b) 
enumerating all possible combinations of the three input values; (c) circuit annotated with the input values xyz = 
000; (d) circuit annotated with the input values xyz = 001; (e) complete truth table for the circuit. 
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The next step is to enumerate all possible combinations of 0’s and 1’s for all of the input variables. In general, 
for a circuit with n inputs, there are 2n combinations, from 0 to 2n – 1. Continuing on with the example, the table in 
Figure 3.2(b) lists the eight combinations for the three variables in order. 

Now, for each row in the table (that is, for each combination of input values) we need to determine what the 
output value is. This is done by substituting the values for the input variables and tracing through the circuit to the 
output. For example, using xyz = 000, the outputs for all of the AND gates are 0, and ORing all the zeros gives a zero, 
therefore, f = 0 for this set of values for x, y, and z. This is shown in the annotated circuit in Figure 3.2(c). 

For xyz = 001, the output of the top AND gate gives a 1, and 1 OR with anything gives a 1, therefore, f = 1, as 
shown in the annotated circuit in Figure 3.2(d). 

Continuing in this fashion for all of the input combinations, we can complete the final truth table for the circuit, 
as shown in Figure 3.2(e). 

A faster method for evaluating the values for the output signals is to work backwards, that is, to trace the circuit 
from the output back to the inputs. You want to ask the question: When is the output a 1 (or a 0)? Then trace back to 
the inputs to see what the input values ought to be in order to get the 1 output. For example, using the circuit in 
Figure 3.1, f is a 1 when any one of the four OR gate inputs is a 1. For the first input of the OR gate to be a 1, the 
inputs to the top AND gate must be all 1’s. This means that the values for x, y, and z must be 0, 0, and 1, respectively. 
Repeat this analysis with the remaining three inputs to the OR gate. What you will end up with are the four input 
combinations for which f is a 1. The remaining input combinations, of course, will produce a 0 for f. 

Example 3.1: Deriving a truth table from a circuit diagram 

Derive the truth table for the following circuit with three inputs, A, B and C, and two outputs, P and Q: 

A B C

P

Q
 

The truth table will have three columns for the three inputs and two columns for the two outputs. Enumerating 
all possible combinations of the three input values gives eight rows in the table. For each combination of input 
values, we need to evaluate the output values for both P and Q. For P to be a 1, either of the OR gate inputs must be 
a 1. The first input to this OR gate is a 1 if ABC = 001.  The second input to this OR gate is a 1 if AB = 11. Since C is 
not specified in this case, it means that C can be either a 0 or a 1. Hence, we get the three input combinations for 
which P is a 1, as shown in the following truth table under the P column. The rest of the input combinations will 
produce a 0 for P. For Q to be a 1, both inputs of the AND gate must be a 1. Hence, A must be a 0, and either B is a 0 
or C is a 1. This gives three input combinations for which Q is a 1, as shown in the truth table below under the Q 
column. 
 

A B C P Q 
0 0 0 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 1 0 1 
1 0 0 0 0 
1 0 1 0 0 
1 1 0 1 0 
1 1 1 1 0 
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    ♦  

3.1.2 Using a Boolean Function 

To derive a Boolean function that describes a combinational circuit, we simply write down the Boolean logical 
expressions at the output of each gate (instead of substituting actual values of 0’s and 1’s for the inputs) as we trace 
through the circuit from the primary input to the primary output. Using the sample combinational circuit of Figure 
3.1, we note that the logical expression for the output of the top AND gate is x'y'z. The logical expressions for the 
following AND gates are, respectively x'yz, xy'z, and xyz. Finally, the outputs from these AND gates are all ORed 
together. Hence, we get the final expression 

 f = x'y'z + x'yz + xy'z + xyz 

To help keep track of the expressions at the output of each logic gate, we can annotate the outputs of each logic 
gate with the resulting logical expression as shown here. 

x y z

f

x'y'z

x'yz

xy'z

xyz

x'y'z + x'yz + xy'z + xyz

x' y'

 
If we substitute all possible combinations of values for all of the variables in the final equation, we should 

obtain the same truth table as before. 

Example 3.2: Deriving a Boolean function from a circuit diagram 

Derive the Boolean function for the following circuit with three inputs, x, y, and z, and one output, f. 

x y z

f
 

Starting from the primary inputs x, y, and z, we annotate the outputs of each logic gate with the resulting logical 
expression. Hence, we obtain the annotated circuit: 

x y z

y' xy'

y ⊕  zx'
xy' + (y ⊕  z)

f = x' (xy' + (y ⊕  z))
 

The Boolean function for the circuit is the final equation, f = x' (xy' + (y ⊕  z)), at the output of the circuit. ♦  

If a circuit has two or more outputs, then there must be one equation for each of the outputs. All the equations 
are then derived totally independent of each other. 
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3.2 Synthesis of Combinational Circuits 
Synthesis of combinational circuits is just the reverse procedure of the analysis of combinational circuits. In 

synthesis, we start with a description of the operation of the circuit. From this description, we derive either the truth 
table or the Boolean logical function that precisely describes the operation of the circuit. Once we have either the 
truth table or the logical function, we can easily translate that into a circuit diagram. 

For example, let us construct a 3-bit comparator circuit that outputs a 1 if the number is greater than or equal to 
5 and outputs a 0 otherwise. In other words, construct a circuit that outputs a 0 if the input is a number between 0 
and 4 inclusive and outputs a 1 if the input is a number between 5 and 7 inclusive. The reason why the maximum 
number is 7 is because the range for an unsigned 3-bit binary number is from 0 to 7. Hence, we can use the three 
bits, x2, x1, and x0, to represent the 3-bit input value to the comparator. From the description, we obtain the following 
truth table: 

 
Decimal Binary number Output 
number x2 x1 x0 f 

0 0 0 0 0 
1 0 0 1 0 
2 0 1 0 0 
3 0 1 1 0 
4 1 0 0 0 
5 1 0 1 1 
6 1 1 0 1 
7 1 1 1 1 

In constructing the circuit, we are interested only in when the output is a 1 (i.e., when the function f is a 1). 
Thus, we only need to consider the rows where the output function f = 1. From the previous truth table, we see that 
there are three rows where f = 1, which give the three AND terms x2x1'x0, x2x1x0', and x2x1x0. Notice that the variables 
in the AND terms are such that it is inverted if its value is a 0, and not inverted if its value is a 1. In the case of the 
first AND term, we want f = 1 when x2 = 1 and x1 = 0 and x0 = 1, and this is satisfied in the expression x2x1'x0. 
Similarly, the second and third AND terms are satisfied in the expressions x2x1x0' and x2x1x0 respectively. Finally, we 
want f = 1 when either one of these three AND terms is equal to 1. So we ORed the three AND terms together giving us 
our final expression: 

 f = x2x1'x0 + x2x1x0' + x2x1x0 (3.1) 

In drawing the schematic diagram, we simply convert the AND operators to AND gates and OR operators to OR 
gates. The equation is in the sum-of-products format, meaning that it is summing (ORing) the product (AND) terms. 
A sum-of-products equation translates to a two-level circuit with the first level being made up of AND gates and the 
second level made up of OR gates. Each of the three AND terms contains three variables, so we use a 3-input AND 
gate for each of the three AND terms. The three AND terms are ORed together, so we use a 3-input OR gate to connect 
the output of the three AND gates. For each inverted variable, we need an inverter. The schematic diagram derived 
from Equation (3.1) is shown here. 

x2 x1 x0

f

 
From this discussion, we see that any combinational circuit can be constructed using only AND, OR, and NOT 

gates from either a truth table or a Boolean equation. 

Example 3.3: Synthesizing a combinational circuit from a truth table 
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Synthesize a combinational circuit from the following truth table. The three variables, a, b, and c, are input 
signals, and the two variables, x, and y, are output signals. 

 
a b c x y 
0 0 0 1 0 
0 0 1 0 0 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 1 
1 1 0 1 0 
1 1 1 0 0 

We can either first derive the Boolean equation from the truth table, and then derive the circuit from the 
equation, or we can derive the circuit directly from the truth table. For this example, we will first derive the Boolean 
equation. Since there are two output signals, there will be two equations; one for each output signal. 

From Section 2.6, we saw that a function is formed by summing its 1-minterms. For output x, there are five 1-
minterms: m0, m2, m3, m5, and m6. These five minterms represent the five AND terms, a'b'c', a'bc', a'bc, ab'c, and 
abc'. Hence, the equation for x is 

 x = a'b'c' + a'bc' + a'bc + ab'c + abc' 

Similarly, the output signal y has three 1-minterms, and they are a'bc', ab'c', and ab'c. Hence, the equation for y 
is 

 y = a'bc' + ab'c' + ab'c 

The combinational circuit constructed from these two equations is shown in Figure 3.3(a). Each 3-variable AND 
term is replaced by a 3-input AND gate. The three inputs to these AND gates are connected to the three input variables 
a, b, and c, either directly if the variable is not primed or through a NOT gate if the variable is primed. For output x, a 
5-input OR gate is used to connect the outputs of the five AND gates for the corresponding five AND terms. For output 
y, a 3-input OR gate is used to connect the outputs of the three AND gates. 

Notice that the two AND terms, a'bc', and ab'c, appear in both the x and the y equations. As a result, we do not 
need to generate these two signals twice. Hence, we can reduce the size of the circuit by not duplicating these two 
AND gates, as shown in Figure 3.3(b). ♦  

 

a b c

x

y

 

(a) 

a b c

x

y

 

(b) 

Figure 3.3 Combinational circuit for Example 3.2: (a) no reduction; (b) with reduction. 
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3.3 * Technology Mapping 
To reduce implementation cost and turnaround time to produce a digital circuit on an IC, designers often make 

use of off-the-shelf semi-custom gate arrays. Many gate arrays are ICs that have only NAND gates or NOR gates built 
in them, but their input and output connections are not yet connected. To use these gate arrays, a designer simply has 
to specify where to make these connections between the gates. The problem here is that, when we use these gate 
arrays to implement a circuit, we need to convert all AND, OR, and NOT gates in the circuit to use only NAND or NOR 
gates, depending on what is available in the gate array. In addition, these NAND and NOR gates usually have the same 
number of fixed inputs, for example, only three inputs. 

In Section 3.2, we saw that any combinational circuit can be constructed with only AND, OR, and NOT gates. It 
turns out that any combinational circuit can also be constructed with either only NAND gates or only NOR gates. The 
reason why we want to use only NAND or NOR gates will be made clear when we look at how these gates are built at 
the transistor level in Chapter 5. We will now look at how a circuit with AND, OR, and NOT gates is converted to one 
with only NAND or only NOR gates. 

The conversion of any given circuit to use only 2-input NAND or 2-input NOR gates is possible by observing the 
following equalities. These equalities, in fact, are obtained from the Boolean algebra theorems from Chapter 2. 

Rule 1: x' ' = x (double NOT) 

Rule 2: x' = (x •  x)' = (x •  1)'  (NOT to NAND) 

Rule 3: x' = (x + x)' = (x + 0)'  (NOT to NOR) 

Rule 4: xy = ((xy)')' (AND to NAND) 

Rule 5: x + y = ((x + y)')' = (x' y' )'  (OR to NAND) 

Rule 6: xy = ((xy)')' = (x' + y')'  (AND to NOR) 

Rule 7: x + y = ((x + y)')'  (OR to NOR) 

Rule 1 simply says that a double inverter can be eliminated altogether. Rules 2 and 3 convert a NOT gate to a 
NAND gate or a NOR gate, respectively. For both Rules 2 and 3, there are two ways to convert a NOT gate to either a 
NAND gate or a NOR gate. For the first method, the two inputs are connected in common. For the second method, one 
input is connected to the logic 1 for the NAND gate and to 0 for the NOR gate. Rule 4 applies Rule 1 to the AND gate. 
The resulting expression gives us a NAND gate followed by a NOT gate. We can then use Rule 2 to change the NOT 
gate to a NAND gate. Rule 5 changes an OR gate to use two NOT gates and a NAND gate by first applying Rule 1 and 
then De Morgan’s theorem. Again, the two NOT gates can be changed to two NAND gates using Rule 2. Similarly, 
Rule 6 converts an AND gate to use two NOT gates and a NOR gate, and Rule 7 converts an OR gate to a NOR gate 
followed by a NOT gate. 

In a circuit diagram, these rules are translated to the equivalent circuits, as shown in Figure 3.4. Rules 2, 4, and 
5 are used if we want to convert a circuit to use only 2-input NAND gates; whereas, Rules 3, 6, and 7 are used if we 
want to use only 2-input NOR gates.  
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Rule 1: =

Rule 2: = =
1

Rule 3: = =
0

Rule 4: = =

Rule 5: = =

Rule 6: = =

Rule 7: = =
 

Figure 3.4 Circuits for converting from AND, OR, or NOT gates to NAND or NOR gates. 

Another thing that we might want is to get the functionality of a 2-input NAND or 2-input NOR gate from a 3-
input NAND or 3-input NOR gate, respectively. In other words, we want to use a 3-input NAND or NOR gate to work 
like a 2-input NAND or NOR gate, respectively. On the other hand, we might also want to get the reverse of that (that 
is, to get the functionality of a 3-input NAND or 3-input NOR gate from a 2-input NAND or 2-input NOR gate, 
respectively). These equalities are shown in the following rules and their corresponding circuits in Figure 3.5. 

Rule 8: (x •  y)' = (x •  y •  y)'   (2-input to 3-input NAND) 

Rule 9: (x + y)' = (x + y + y)'   (2-input to 3-input NOR) 

Rule 10: (abc)' = ((ab) c)'  = ((ab)'' c)'   (3-input to 2-input NAND) 

Rule 11: (a+b+c)' = ((a+b) + c)' = ((a+b)'' + c)'   (3-input to 2-input NOR) 

Rule 8 converts from a 2-input NAND gate to a 3-input NAND gate. Rule 9 converts from a 2-input NOR gate to a 
3-input NOR gate. Rule 10 converts from a 3-input NAND gate to using only 2-input NAND gates. Rule 11 converts 
from a 3-input NOR gate to using only 2-input NOR gates. Notice that, for Rules 10 and 11, an extra NOT gate is 
needed in between the two gates. 
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Rule 8: =

Rule 9: =

Rule 10: = =

Rule 11: = =
 

Figure 3.5 Circuits for converting 2-input to 3-input NAND or NOR gate and vice versa. 

Example 3.4: Converting a circuit to 3-input NAND gates 

Convert the following circuit to use only 3-input NAND gates. 

x y z

f

 

First, we need to change the 4-input OR gate to a 3- and 2-input OR gates. 

x y z

f

 

Then we will use Rule 4 to change all of the AND gates to 3-input NAND gates with inverters and Rule 5 to 
change all of the OR gates to 3-input NAND gates with inverters. The 2-input NAND gates are replaced with 3-input 
NAND gates with two of its inputs connected together. 

x y z

f
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Finally, we eliminate all the double inverters and replace the remaining inverters with NAND gates with their 
inputs connected together. 

 

x y z

f

 ♦  

3.4 Minimization of Combinational Circuits 
When constructing digital circuits, in addition to obtaining a functionally correct circuit, we like to optimize it 

in terms of circuit size, speed, and power consumption. In this section, we will focus on the reduction of circuit size. 
Usually, by reducing the circuit size, we will also improve on speed and power consumption. We have seen in the 
previous sections that any combinational circuit can be represented using a Boolean function. The size of the circuit 
is directly proportional to the size or complexity of the functional expression. In fact, it is a one-to-one 
correspondence between the functional expression and the circuit size. In Section 2.5.1, we saw how we can 
transform a Boolean function to another equivalent function by using the Boolean algebra theorems. If the resulting 
function is simpler than the original, then we want to implement the circuit based on the simpler function, since that 
will give us a smaller circuit size. 

Using Boolean algebra to transform a function to one that is simpler is not an easy task, especially for the 
computer. There is no formula that says which is the next theorem to use. Luckily, there are easier methods for 
reducing Boolean functions. The Karnaugh map method is an easy way for reducing an equation manually and is 
discussed in Section 3.4.1. The Quine-McCluskey or tabulation method for reducing an equation is ideal for 
programming the computer and is discussed in Section 3.4.3. 

3.4.1 Karnaugh Maps 

To minimize a Boolean equation in the sum-of-products form, we need to reduce the number of product terms 
by applying the Combining Boolean theorem (Theorem 14) from Section 2.5.1. In so doing, we will also have 
reduced the number of variables used in the product terms. For example, given the following 3-variable function: 

 F = xy'z' + xyz'  

we can factor out the two common variables xz' and reduce it to 

 F = xz' (y' + y) 
  = xz' 1 
  = xz' 

In other words, two product terms that differ by only one variable whose value is a 0 (primed) in one term and a 
1 (unprimed) in the other term, can be combined together to form just one term with that variable omitted as shown 
in the previous equations. Thus, we have reduced the number of product terms, and the resulting product term has 
one less variable. By reducing the number of product terms, we reduce the number of OR operators required, and by 
reducing the number of variables in a product term, we reduce the number of AND operators required. 

Looking at a logic function’s truth table, sometimes it is difficult to see how the product terms can be combined 
and minimized. A Karnaugh map (K-map for short) provides a simple and straightforward procedure for 
combining these product terms. A K-map is just a graphical representation of a logic function’s truth table, where 
the minterms are grouped in such a way that it allows one to easily see which of the minterms can be combined. The 
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K-map is a 2-dimensional array of squares, each of which represents one minterm in the Boolean function. Thus, the 
map for an n-variable function is an array with 2n squares. 

Figure 3.6 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice the labeling of the columns and 
rows are such that any two adjacent columns or rows differ in only one bit change. This condition is required 
because we want minterms in adjacent squares to differ in the value of only one variable or one bit, and so these 
minterms can be combined together. This is why the labeling for the third and fourth columns and for the third and 
fourth rows are always interchanged. When we read K-maps, we need to visualize them as such that the two end 
columns or rows wrap around, so that the first and last columns and the first and last rows are really adjacent to each 
other, because they also differ in only one bit. 

In Figure 3.6, the K-map squares are annotated with their minterms and minterm numbers for easy reference 
only. For example, in Figure 3.6(a) for a 2-variable K-map, the entry in the first row and second column is labeled 
x'y and annotated with the number 1. This is because the first row is when the variable x is a 0, and the second 
column is when the variable y is a 1. Since, for minterms, we need to prime a variable whose value is a 0 and not 
prime it if its value is a 1, therefore, this entry represents the minterm x'y, which is minterm number 1. Be careful 
that, if we label the rows and columns differently, the minterms and the minterm numbers will be in different 
locations. When we use K-maps to minimize an equation, we will not write these in the squares. Instead, we will be 
putting 0’s and 1’s in the squares. 

For a 5-variable K-map, as shown in Figure 3.6(d), we need to visualize the right half of the array (where v = 1) 
to be on top of the left half (where v = 0). In other words, we need to view the map as three-dimensional. Hence, 
although the squares for minterms 2 and 16 are located next to each other, they are not considered to be adjacent to 
each other. On the other hand, minterms 0 and 16 are adjacent to each other, because one is on top of the other. 
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Figure 3.6 Karnaugh maps for: (a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables. 

Given a Boolean function, we set the value for each K-map square to either a 0 or a 1, depending on whether 
that minterm for the function is a 0-minterm or a 1-minterm, respectively. However, since we are only interested in 
using the 1-minterms for a function, the 0’s are sometimes not written in the 0-minterm squares. 

For example, the K-map for the 2-variable function: 
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 F = x'y' + x'y + xy 
is 

x

0 1 1
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F y

y

x'

 
The 1-minterms, m0 (x'y') and m1 (x'y), are adjacent to each other, which means that they differ in the value of 

only one variable. In this case, x is 0 for both minterms, but for y, it is a 0 for one minterm and a 1 for the other 
minterm. Thus, variable y can be dropped, and the two terms are combined together giving just x'. The prime in x' is 
because x is 0 for both minterms. This reasoning corresponds with the expression: 

 x'y' + x'y = x' (y' + y) = x' (1) = x' 

Similarly, the 1-minterms m1 (x'y) and m3 (xy) are also adjacent and y is the variable having the same value for 
both minterms, and so they can be combined to give  

 x'y + xy = (x' + x) y = (1) y = y 

We use the term subcube to refer to a rectangle of adjacent 1-minterms. These subcubes must be rectangular in 
shape and can only have sizes that are powers of two. Formally, for an n-variable K-map, an m-subcube is defined as 
that set of 2m minterms in which n – m of the variables will have the same value in every minterm, while the 
remaining variables will take on the 2m possible combinations of 0’s and 1’s. Thus, a 1-minterm all by itself is called 
a 0-subcube, two adjacent 1-minterms is called a 1-subcube, and so on. In the previous 2-variable K-map, there are 
two 1-subcubes: one labeled with x' and one labeled with y. 

A 2-subcube will have four adjacent 1-minterms and can be in the shape of any one of those shown in Figure 
3.7(a) through (e). Notice that Figure 3.7(d) and (e) also form 2-subcubes, even though the four 1-minterms are not 
physically adjacent to each other. They are considered to be adjacent because the first and last rows and the first and 
last columns wrap around in a K-map. In Figure 3.7(f), the four 1-minterms cannot form a 2-subcube, because even 
though they are physically adjacent to each other, they do not form a rectangle. However, they can form three 1-
subcubes – y'z, x'y' and x'z. 

We say that a subcube is characterized by the variables having the same values for all of the minterms in that 
subcube. In general, an m-subcube for an n-variable K-map will be characterized by n – m variables. If the value that 
is similar for all of the variables is a 1, that variable is unprimed; whereas, if the value that is similar for all of the 
variables is a 0, that variable is primed. In an expression, this is equivalent to the resulting smaller product term 
when the minterms are combined together. For example, the 2-subcube in Figure 3.7(d) is characterized by z', since 
the value of z is 0 for all of the minterms, whereas the values for x and y are not all the same for all of the minterms. 
Similarly, the 2-subcube in Figure 3.7(e) is characterized by x'z'. 
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Figure 3.7 Examples of K-maps with 2-subcubes: (a) and (b) 3-variable; (c) 4-variable; (d) 3-variable with wrap 
around subcube; (e) 4-variable with wrap around subcube; (f) four adjacent minterms that cannot form one 2-
subcube. 

For a 5-variable K-map, as shown in Figure 3.8, we need to visualize the right half of the array (where v = 1) to 
be on top of the left half (where v = 0). Thus, for example, minterm 20 is adjacent to minterm 4 since one is on top 
of the other, and they form the 1-subcube w'xy'z'. Even though minterm 6 is physically adjacent to minterm 20 on 
the map, they cannot be combined together, because when you visualize the right half as being on top of the left 
half, then they really are not on top of each other. Instead, minterm 6 is adjacent to minterm 4 because the columns 
wrap around, and they form the subcube v'w'xz'. Minterms 9, 11, 13, 15, 25, 27, 29, and 31 are all adjacent, and 
together they form the subcube wz. Now that we are viewing this 5-variable K-map in three dimensions, we also 
need to change the condition of the subcube shape to be a three-dimensional rectangle.  

You can see that this visualization becomes almost impossible to work with very quickly as we increase the 
number of variables. In more realistic designs with many more variables, tabular methods (instead of K-maps) are 
used for reducing the size of equations. 
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Figure 3.8 A 5-variable K-map with wrap-around subcubes. 

The K-map method reduces a Boolean function from its canonical form to its standard form. The goal for the K-
map method is to find as few subcubes as possible to cover all of the 1-minterms in the given function. This 
naturally implies that the size of the subcube should be as big as possible. The reasoning for this is that each subcube 
corresponds to a product term, and all of the subcubes (or product terms)  must be ORed together to get the function. 
Larger subcubes require fewer AND gates because of fewer variables in the product term, and fewer subcubes will 
require fewer inputs to the OR gate. 

The procedure for using the K-map method is as follows: 

1. Draw the appropriate K-map for the given function and place a 1 in the squares that correspond to the function’s 
1-minterms. 

2. For each 1-minterm, find the largest subcube that covers this 1-minterm. This largest subcube is known as a 

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

72



prime implicant (PI). By definition, a prime implicant is a subcube that is not contained within any other 
subcube. If there is more than one subcube that is of the same size as the largest subcube, then they are all prime 
implicants. 

3. Look for 1-minterms that are covered by only one prime implicant. Since this prime implicant is the only 
subcube that covers this particular 1-minterm, this prime implicant must be in the final solution. This prime 
implicant is referred to as an essential prime implicant (EPI). By definition, an essential prime implicant is a 
prime implicant that includes a 1-minterm that is not included in any other prime implicant. 

4. Create a minimal cover list by selecting the smallest possible number of prime implicants such that every 1-
minterm is contained in at least one prime implicant. This cover list must include all of the essential prime 
implicants plus zero or more of the remaining prime implicants. It is acceptable that a particular 1-minterm is 
covered in more than one prime implicant, but all 1-minterms must be covered. 

5. The final minimized function is obtained by ORing all of the prime implicants from the minimal cover list. 

Note that the final minimized function obtained by the K-map method may not be in its most reduced form. It is 
only in its most reduced standard form. Sometimes, it is possible to reduce the standard form further into a non-
standard form. 

Example 3.5: Using K-map to minimize a 4-variable function 

Use the K-map method to minimize a 4-variable (w, x, y, and z) function F with the 1-minterms: m0, m2, m5, m7, 
m10, m13, m14, and m15. 

We start with the following 4-variable K-map with a 1 placed in each of the eight minterm squares: 
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The prime implicants for each of the 1-minterms are shown in the following K-map and table: 
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1-minterm Prime Implicant 
m0 w'x'z' 
m2 w'x'z', x'yz' 
m5 xz 
m7 xz 
m10 x'yz', wyz' 
m13 xz 
m14 wyz', wxy 
m15 xz  

For minterm m0, there is only one prime implicant w'x'z'. For minterm m2, there are two 1-subcubes that cover 
it, and they are the largest. Therefore, m2 has two prime implicants, w'x'z' and x'yz'. When we consider m14, again 
there are two 1-subcubes that cover it, and they are the largest. So m14 also has two prime implicants. Minterm m15, 
however, has only one prime implicant xz. Although the 1-subcube wxy also covers m15, it is not a prime implicant 
for m15 because it is smaller than the 2-subcube xz. 
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From the K-map, we see that there are five prime implicants: w'x'z', x'yz', xz, wyz', and wxy. Of these five prime 
implicants, w'x'z' and xz are essential prime implicants, since m0 is covered only by w'x'z', and m5, m7, and m13 are 
covered only by xz. 

We start the cover list by including the two essential prime implicants w'x'z' and xz. These two subcubes will 
have covered the minterms m0, m2, m5, m7, m13, and m15. To cover the remaining two uncovered minterms, m10 and 
m14, we want to use as few prime implicants as possible. Hence, we select the prime implicant wyz', which covers 
both of them. 

Finally, our reduced standard form equation is obtained by ORing the two essential prime implicants and one 
prime implicant in the cover list: 

F = w'x'z' + xz + wyz' 

Notice that we can reduce this standard form equation even further by factoring out the z' from the first and last 
term to get the non-standard form equation 

 F = z' (w'x' + wy) + xz ♦  

Example 3.6: Using K-map to minimize a 5-variable function 

Use the K-map method to minimize a 5-variable function F (v, w, x, y and z) with the 1-minterms: v'w'x'yz', 
v'w'x'yz, v'w'xy'z, v'w'xyz, vw'x'yz', vw'x'yz, vw'xyz', vw'xyz, vwx'y'z, vwx'yz, vwxy'z, and vwxyz. 
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The list of prime implicants is: v'w'xz, w'x'y, w'yz, vw'y, vyz, and vwz. From this list of prime implicants, w'yz 
and vyz are not essential. The four remaining essential prime implicants are able to cover all of the 1-minterms. 
Hence, the solution in standard form is 

 F = v'w'xz + w'x'y + vw'y + vwz ♦  

3.4.2 Don’t-cares 

There are times when a function is not specified fully. In other words, there are some minterms for the function 
where we do not care whether their values are a 0 or a 1. When drawing the K-map for these “don’t-care”  
minterms, we assign an “×” in that square instead of a 0 or a 1. Usually, a function can be reduced even further if we 
remember that these ×’s can be either a 0 or a 1. As you recall when drawing K-maps, enlarging a subcube reduces 
the number of variables for that term. Thus, in drawing subcubes, some of them may be enlarged if we treat some of 
these ×’s as 1’s. On the other hand, if some of these ×’s will not enlarge a subcube, then we want to treat them as 0’s 
so that we do not need to cover them. It is not necessary to treat all ×’s to be all 1’s or all 0’s.  We can assign some 
×’s to be 0’s and some to be 1’s. 

For example, given a function having the following 1-minterms and don’t-care minterms: 

1-minterms: m0, m1, m2, m3, m4, m7, m8, and m9 

×-minterms: m10, m11, m12, m13, m14, and m15 

we obtain the following K-map with the prime implicants x', yz, and y'z'. 
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Notice that, in order to get the 4-subcube characterized by x', the two don’t-care minterms, m10 and m11, are 

taken to have the value 1. Similarly, the don’t-care minterms, m12 and m15, are assigned a 1 for the subcubes y'z' and 
yz, respectively. On the other hand, the don’t-care minterms, m13 and m14, are taken to have the value 0, so that they 
do not need to be covered in the solution. The reduced standard form function as obtained from the K-map is, 
therefore, 

 F = x' + yz + y'z' 

Again, this equation can be reduced further by recognizing that yz + y'z' = y � z. Thus,  

 F = x' + (y � z) 

3.4.3 * Tabulation Method 

K-maps are useful for manually obtaining the minimized standard form Boolean function for maybe up to, at 
most, five variables. However, for functions with more than five variables, it becomes very difficult to visualize how 
the minterms should be combined into subcubes. Moreover, the K-map algorithm is not as straightforward for 
converting to a computer program. There are tabulation methods that are better suited for programming the 
computer, and thus, can solve any function given in canonical form having any number of variables. One tabulation 
method is known as the Quine-McCluskey method. 

Example 3.7: Illustrating the Quine-McCluskey algorithm 

We now illustrate the Quine-McCluskey algorithm using the same four-variable function from Example 3.5 and 
repeated here 

F(w,x,y,z) = Σ(0,2,5,7,10,13,14,15) 

To construct the initial table, the minterms are grouped according to the number of 1’s in that minterm 
number’s binary representation. For example, m0 (0000) has no 1’s; m2 (0010) has one 1; m5 (0101) has two 1’s; etc. 
Thus, the initial table of 0-subcubes (i.e. subcubes having only one minterm) as obtained from the function stated 
above is 

 
Subcube Value Group Subcube 

Minterms w x y z 
Subcube 
Covered 

G0 m0 0 0 0 0 � 
G1 m2 0 0 1 0 � 
G2 m5 0 1 0 1 � 

 m10 1 0 1 0 � 
G3 m7 0 1 1 1 � 

 m13 1 1 0 1 � 
 m14 1 1 1 0 � 

G4 m15 1 1 1 1 � 

The “Subcube Covered” column is filled in from the next step. 

In the second step, we construct a second table by combining those minterms in adjacent groups from the first 
table that differ in only one bit position, as shown next. For example, m0 and m2 differ in only the y bit. Therefore, in 
the second table, we have an entry for the 1-subcube containing the two minterms, m0 and m2. A hyphen (–) is used 
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in the bit position that is different in the two minterms. Since this 1-subcube covers the two individual minterms, m0 
and m2, we make a note of it by checking these two minterms in the “Subcube Covered” column in the previous 
table. This process is equivalent to saying that the two minterms, m0 (w'x'y'z' ) and m2 (w'x'yz' ), can be combined 
together and is reduced to the one term, w'x'z'. The hypen under the y column simply means that y can be either a 0 
or a 1, and therefore, y can be discarded. Thus, this second table simply lists all of the 1-subcubes. Again, the 
“Subcube Covered” column in this second table will be filled in from the third step. 

 
Subcube Value Group Subcube 

Minterms w x y z 
Subcube 
Covered 

G0 m0,m2 0 0 – 0  
G1 m2,m10 – 0 1 0  
G2 m5,m7 0 1 – 1 � 

 m5,m13 – 1 0 1 � 
 m10,m14 1 – 1 0  

G3 m7,m15 – 1 1 1 � 
 m13,m15 1 1 – 1 � 
 m14,m15 1 1 1 –  

In step three, we perform the same matching process as before. We look for subcubes in adjacent groups that 
differ in only one bit position. In the matching, the hyphen must also match. These subcubes are combined to create 
the next subcube table. The resulting table, however, is a table containing 2-subcubes. From the above 1-subcube 
table, we get the following 2-subcube table: 

 
Subcube Value Group Subcube 

Minterms w x y z 
Subcube 
Covered 

G2 m5,m7,m13,m15 – 1 – 1  

From the 1-subcube table, subcubes m5m7 and m13m15 can be combined together to form the subcube 
m5m7m13m15 in the 2-subcube table, since they differ in only the w bit. Similarly, subcubes m5m13 and m7m15 from the 
1-subcube table can also be combined together to form the subcube m5m7m13m15, because they differ in only the y 
bit. From both of these combinations, the resulting subcube is the same. Therefore, we have the four checks in the 1-
subcube table, but only one resulting subcube in the 2-subcube table. Notice that in the subcube m5m7m13m15, there 
are two hypens; one that is carried over from the previous step, and one for where the bit is different from the 
current step. 

We continue to repeat the matching as long as there are adjacent subcubes that differ in only one bit position. 
We stop when there are no more subcubes that can be combined. The prime implicants are those subcubes that are 
not covered, (i.e. those without a check mark in the “Subcube Covered” column). The only subcube in the 2-subcube 
table does not have a check mark, and it has the value x = 1 and z = 1; thus we get the prime implicant xz. The 1-
subcube table has four subcubes that do not have a check mark; they are the four prime implicants: w'x'z', x'yz', wyz', 
and wxy. Note that these prime implicants may not necessarily be all in the last table. These five prime implicants 
(xz, w'x'z', x'yz', wyz', and wxy) are exactly the same as those obtained in Example 3.5. ♦  

3.5 * Timing Hazards and Glitches 
As you probably know, things in practice don’t always work according to what you learn in school. Hazards and 

glitches in circuits are such examples of things that may go awry. In our analysis of combinational circuits, we have 
been performing only functional analysis. A functional analysis assumes that there is no delay for signals to pass 
from the input to the output of a gate. In other words, we look at a circuit only with respect to its logical operation as 
defined by the Boolean theorems. We have not considered the timing of the circuit. When a circuit is actually 
implemented, the timing of the circuit (that is, the time for the signals to pass from the input of a logic gate to the 
output) is very critical and must be treated with care. Otherwise, an actual implementation of the circuit may not 
work according to the functional analysis of the same circuit. Timing hazards are problems in a circuit as a result of 
timing issues. These problems can be observed only from a timing analysis of the circuit or from an actual 
implementation of the circuit. A functional analysis of the circuit will not reveal timing hazard problems. 
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A glitch is when a signal is expected to be stable (from a functional analysis), but it changes value for a brief 
moment and then goes back to what it is expected to be. For example, if a signal is expected to be at a stable 0, but 
instead, it goes up to a 1 and then drops back to a 0 very quickly. This sudden, unexpected transition of the signal is 
a glitch, and the circuit having this behavior contains a hazard. 

Take, for example, the simple 2-to-1 multiplexer circuit shown in Figure 3.9(a). Let us assume that both d0 and 
d1 are at a constant 1, and that s goes from a 1 to a 0. For a functional analysis of the circuit, the output y should 
remain at a constant 1. However, if we perform a timing analysis of the circuit, we will see something different in 
the timing diagram. Let us assume that all of the logic gates in the circuit have a delay of one time unit. The 
resulting timing trace is shown in Figure 3.9(b). At time t0, s drops to a 0. Since it takes one time unit for s to be 
inverted through the inverter, s' changes to a 1 after one time unit at time t1. At the same time, it takes the bottom 
AND gate one time unit for the output sd1 to change to a 0 at time t1. However, the top AND gate will not see any 
input change until time t1, and when it does, it takes another one time unit for its output s'd0 to rise to a 1 at time t2. 
Starting at time t1, both inputs of the OR gate are 0, so after one time unit, the OR gate outputs a 0 at time t2. At time 
t2, when the top AND gate outputs a 1, the OR gate will take this 1 input, and outputs a 1 after one time unit at t3. So 
between times t2 and t3, output y unexpectedly drops to a 0 for one time unit, and then rises back to a 1. Hence, the 
output signal y has a glitch, and the circuit has a hazard. 

As you may have noticed, glitches in a signal are caused by multiple sources having paths of different delays 
driving that signal. These types of simple glitches can be easily solved using K-maps. A glitch generally occurs if, 
by simply changing one input, we have to go out of one prime implicant in a K-map and into an adjacent one (i.e. 
moving from one subcube to another). The glitch can be eliminated by adding an extra prime implicant, so that when 
going from one prime implicant to the adjacent one, we remain inside the third prime implicant. 

Figure 3.9(c) shows the K-map with the two original prime implicants, s'd0 and sd1, that correspond to the 
circuit in (a). When we change s from a 1 to a 0, we have to go out of the prime implicant sd1 and into the prime 
implicant s'd0. Figure 3.9(d) shows the addition of the extra prime implicant d1d0. This time, when moving from the 
prime implicant sd1 to the prime implicant s'd0, we remain inside the prime implicant d1d0. The 2-to-1 multiplexer 
circuit with the extra prime implicant d1d0 added as shown in Figure 3.9(e) will prevent the glitch from happening. 
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Figure 3.9 Example of a glitch: (a) 2-to-1 multiplexer circuit with glitches; (b) timing trace; (c) K-map with 
glitches; (d) K-map without glitches; (e) 2-to-1 multiplexer circuit without the glitches. 
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3.5.1 Using Glitches 

Sometimes, we can use glitches to our advantage, as shown in the following example.  

Example 3.8: A one-shot circuit using glitches 

A circuit that outputs a single short pulse when given an input of arbitrary time length is known as a one-shot. A 
one-shot circuit is used, for example, for generating a single short 1 pulse when a key is pressed. Sometimes, when a 
key is pressed, we do not want to generate a continuous 1 signal for as long as the key is pressed. Instead, we want 
the output signal to be just a single short 1 pulse, even if the key is still being pressed. 

Since logic gates have an inherent signal delay, we can use this delay to determine the duration of the short 
pulse that we want. This short pulse, of course, is really just a glitch in the circuit. Figure 3.10(a) shows a sample 
one-shot circuit using signal delays through three inverters. Figure 3.10(b) shows a sample timing trace for it. 

Input Output
A  

 

(a) 

 

Output

A

Input

Delay through
the Inverters

Delay through
the AND gate  

(b) 

Figure 3.10 A one-shot circuit: (a) using signal delay through three inverters; (b) timing trace. 

Initially, assume that the value for Input is a 0, and point A is a 1, therefore, the output of the AND gate is a 0. 
When we set Input to a 1 momentarily, both inputs to the AND gate will be 1’s, and so after a delay through the AND 
gate, Output will be a 1. After a delay through the three inverters, with Input still at a 1, point A will go to a 0, and 
Output will change back to a 0. When we set Input back to a 0, Output will continue to be a 0. After the delay 
through the inverters when point A goes back to a 1, Output remains at a 0. 

As a result, a glitch is created by the signal delay through the three inverters. This glitch, however, is the short 1 
pulse that we want, and the length of this pulse is determined by the delay through the inverters. With this one-shot 
circuit, it does not matter how long the input key is being pressed, the output signal will always be the same 1 pulse 
each time that the key is pressed. ♦  

3.6 BCD to 7-Segment Decoder 
We will now synthesize the circuit for a BCD to 7-segment decoder for driving a 7-segment LED display. The 

decoder converts a 4-bit binary coded decimal (BCD) input to seven output signals for turning on the seven lights in 
a 7-segment LED display. The 4-bit input encodes the binary representation of a decimal digit. Given the decimal 
digit input, the seven output lines are turned on in such a way so that the LED displays the corresponding digit. The 
7-segment LED display schematic with the names of each segment labeled is shown here  
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The operation of the BCD to 7-segment decoder is specified in the truth table in Figure 3.11. The four inputs to 
the decoder are i3, i2, i1, and i0, and the seven outputs for each of the seven LEDs are labeled a, b, c, d, e, f, and g. 
For each input combination, the corresponding digit to display on the 7-segment LED is shown in the “Display” 
column. The segments that need to be turned on for that digit will have a 1 while the segments that need to be turned 
off for that digit will have a 0. For example, for the 4-bit input 0000, which corresponds to the digit 0, segments a, b, 
c, d, e, and f need to be turned on, while segment g needs to be turned off. 

Notice that the input combinations 1010 to 1111 are not used, and so don’t-care values are assigned to all of the 
segments for these six combinations. 

 

Inputs Decimal a b c d e f g 
i3 i2 i1 i0 Digit Display 

       
0 0 0 0 0  1 1 1 1 1 1 0 

0 0 0 1 1  0 1 1 0 0 0 0 

0 0 1 0 2  1 1 0 1 1 0 1 

0 0 1 1 3  1 1 1 1 0 0 1 

0 1 0 0 4  0 1 1 0 0 1 1 

0 1 0 1 5  1 0 1 1 0 1 1 

0 1 1 0 6  1 0 1 1 1 1 1 

0 1 1 1 7  1 1 1 0 0 0 0 

1 0 0 0 8  1 1 1 1 1 1 1 

1 0 0 1 9  1 1 1 0 0 1 1 
rest of the combinations × × × × × × × 

Figure 3.11 Truth table for the BCD to 7-segment decoder. 

From the truth table in Figure 3.11, we are able to specify seven equations that are dependent on the four inputs 
for each of the seven segments. For example, the canonical form equation for segment a is 

a = i3'i2'i1'i0' + i3'i2'i1i0' + i3'i2'i1i0 + i3'i2i1'i0 + i3'i2i1i0' + i3'i2i1i0 + i3i2'i1'i0' + i3i2'i1'i0 

Before implementing this equation directly in a circuit, we want to simplify it first using the K-map method. 
The K-map for the equation for segment a is 
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From evaluating the K-map, we derive the simpler equation for segment a as 

    a = i3 + i1 + i2'i0' + i2i0 = i3 + i1 + (i2 � i0) 

Proceeding in a similar manner, we get the following remaining six equations 

    b = i2' + (i1 � i0) 
    c = i2 + i1' + i0 
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    d = i1i0' + i2'i0' + i2'i1 + i2i1'i0 
    e = i1i0' + i2'i0' 
    f = i3 + i2i1' + i2i0' + i1'i0' 
    g = i3 + (i2 ⊕  i1) + i1i0' 

From these seven simplified equations, we can now implement the circuit, as shown in Figure 3.12. The 
labeling of the nodes and gates in the drawing will be explained and used in Section 3.7.1. 
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Figure 3.12 Circuit for the BCD to 7-segment decoder. 

3.7 VHDL for Combinational Circuits 
Writing VHDL code to describe a digital circuit can be done using any one of three models or levels of 

abstraction: structural, dataflow, or behavioral. The choice of which model to use usually depends on what is 
known about the circuit. At the structural level, which is the lowest level, you first have to manually design the 
circuit. Having drawn the circuit, you use VHDL to specify the components and gates that are needed by the circuit 
and how they are connected together by following your circuit exactly. Synthesizing a structural VHDL description 
of a circuit will produce a netlist that is like your original circuit. The advantage of working at the structural level is 
that you have full control as to what components are used and how they are connected together. The disadvantage, 
of course, is that you need to manually come up with the circuit, and so the full capabilities of the synthesizer are not 
utilized. A simple example of a structural VHDL code for a 2-input multiplexer was shown in Figure 1.11. 

At the dataflow level, the circuit is defined using built-in VHDL logic operators (such as the AND, OR, and NOT) 
that are applied to input signals. In order to work at this level, you need to have the Boolean equations for the circuit. 
Hence, the dataflow level is best suited for describing a circuit that is already expressed as a Boolean function. The 
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equations are easily converted to the required VHDL syntax using signal assignment statements. A simple example 
of a dataflow VHDL code for a 2-input multiplexer was shown in Figure 1.9. 

All of the statements used in the structural and dataflow levels are executed concurrently, as opposed to 
statements in a computer program, which are usually executed in a sequential manner. In other words, the ordering 
of the VHDL statements written in the structural or dataflow level does not matter – the results would be exactly the 
same. 

Describing a circuit at the behavioral level is very similar to writing a computer program. You have all of the 
standard high-level programming constructs—such as the FOR LOOP, WHILE LOOP, IF THEN ELSE, CASE, and variable 
assignments. The statements are enclosed in a PROCESS block and are executed sequentially. A simple example of a 
behavioral VHDL code for a 2-input multiplexer was shown in Figure 1.5. 

3.7.1 Structural BCD to 7-Segment Decoder 

Figure 3.13 shows the structural VHDL code for the BCD to 7-segment decoder based on the circuit shown in 
Figure 3.12. The code starts with declaring and defining all of the components needed in the circuit. For this decoder 
circuit, only basic gates (such as the NOT gate, 2-input AND, 3-input AND, etc.) are used. The ENTITY statement is 
used to declare all of these components, and the ARCHITECTURE statement is used to define the operation of these 
components. Since we are using only simple gates, defining these components using the dataflow model is the 
simplest. For more complex components (as we will see in later chapters) we want to choose the model that is best 
suited for the information that we have available for the circuit. The reason why the code shown in Figure 3.13 is 
structural is not because of how these components are defined, but rather on how these components are connected 
together to form the enclosing entity; in this case, the bcd entity. Notice that the LIBRARY and USE statements need to 
be repeated for every ENTITY declaration. 

The actual structural code begins with the bcd ENTITY declaration. The bcd circuit shown in Figure 3.12 has four 
input signals, i3, i2, i1, and i0, and seven output signals, a, b, c, d, e, f, and g. These signals are declared in the PORT 
list using the keyword IN for the input signals, and OUT for the output signals; both of which are of type STD_LOGIC. 

The ARCHITECTURE section begins by specifying the components needed in the circuit using the COMPONENT 
statement. The port list in the COMPONENT statements must match exactly the port list in the entity declarations of 
the components. They must match not only in the number, direction, and type of the signals, but also in the names 
given to the signals. Note also that names in the component port list can be the same as the names in the bcd entity 
port list, but they are not the same signals. For example, the and2gate component port list and the bcd entity port list 
both have two signals called i1 and i2. References to these two signals in the body of the bcd architecture are for the 
signals declared in the bcd entity. 

After the COMPONENT statements, the internal node signals are declared using the SIGNAL statement. The names 
listed are the same as the internal node names used in the circuit in Figure 3.12 for easy reference. 

Following all of the declarations, the body of the architecture starts with the keyword BEGIN. For each gate used 
in the circuit, there is a corresponding PORT MAP statement. Each PORT MAP statement begins with an optional label 
(such as U1, U2, and so on) followed by the name of the component (as previously declared with the COMPONENT 
statements) to use. Again, the labels used in the PORT MAP statements correspond to the labels on the gates in the 
circuit in Figure 3.12. The parameter list in the PORT MAP statement matches the port list in the component 
declaration. For example, U0 is instantiated with the component notgate. The first parameter in the PORT MAP 
statement is the input signal i0, and the second parameter is the output signal ip0. U4 is instantiated with the 3-input 
OR gate. The three inputs are i3, i1, and a1, and the output is a. Here, a1 is the output from the 2-input XNOR gate of 
U3. The rest of the PORT MAP statements in the program are obtained in a similar manner. 

All the PORT MAP statements are executed concurrently, and therefore, the ordering of these statements is 
irrelevant. In other words, changing the ordering of these statements will still produce the same result. Any time 
when a signal in a PORT MAP statement changes value, i.e., from a 0 to a 1, or vice versa, that PORT MAP statement is 
executed. 
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----------------- NOT gate -----------------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY notgate IS PORT(

i: IN STD_LOGIC;
o: OUT STD_LOGIC);

END notgate;
ARCHITECTURE Dataflow OF notgate IS
BEGIN

o <= NOT i;
END Dataflow;

----------------- 2-input AND gate ---------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY and2gate IS PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END and2gate;
ARCHITECTURE Dataflow OF and2gate IS
BEGIN

o <= i1 AND i2;
END Dataflow;

----------------- 3-input AND gate ---------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY and3gate IS PORT(

i1, i2, i3: IN STD_LOGIC;
o: OUT STD_LOGIC);

END and3gate;
ARCHITECTURE Dataflow OF and3gate IS
BEGIN

o <= (i1 AND i2 AND i3);
END Dataflow;

----------------- 2-input OR gate ----------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY or2gate IS PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END or2gate;
ARCHITECTURE Dataflow OF or2gate IS
BEGIN

o <= i1 OR i2;
END Dataflow;

----------------- 3-input OR gate ----------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY or3gate IS PORT(

i1, i2, i3: IN STD_LOGIC;
o: OUT STD_LOGIC);

END or3gate;
ARCHITECTURE Dataflow OF or3gate IS
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BEGIN
o <= i1 OR i2 OR i3;

END Dataflow;

----------------- 4-input OR gate ----------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY or4gate IS PORT(

i1, i2, i3, i4: IN STD_LOGIC;
o: OUT STD_LOGIC);

END or4gate;
ARCHITECTURE Dataflow OF or4gate IS
BEGIN

o <= i1 OR i2 OR i3 OR i4;
END Dataflow;

----------------- 2-input XOR gate ---------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY xor2gate IS PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END xor2gate;
ARCHITECTURE Dataflow OF xor2gate IS
BEGIN

o <= i1 XOR i2;
END Dataflow;

----------------- 2-input XNOR gate --------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY xnor2gate IS PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END xnor2gate;
ARCHITECTURE Dataflow OF xnor2gate IS
BEGIN

o <= NOT(i1 XOR i2);
END Dataflow;

----------------- bcd entity ---------------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY bcd IS PORT(
i0, i1, i2, i3: IN STD_LOGIC;
a, b, c, d, e, f, g: OUT STD_LOGIC);

END bcd;
ARCHITECTURE Structural OF bcd IS

COMPONENT notgate PORT(
i: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT and2gate PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);
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END COMPONENT;
COMPONENT and3gate PORT(

i1, i2, i3: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT or2gate PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT or3gate PORT(

i1, i2, i3: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT or4gate PORT(

i1, i2, i3, i4: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT xor2gate PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;
COMPONENT xnor2gate PORT(

i1, i2: IN STD_LOGIC;
o: OUT STD_LOGIC);

END COMPONENT;

SIGNAL ip0,ip1,ip2,a1,b1,d1,d2,d3,d4,e1,e2,f1,f2,f3,g1,g2: STD_LOGIC;
BEGIN

U0: notgate PORT MAP(i0,ip0);
U1: notgate PORT MAP(i1,ip1);
U2: notgate PORT MAP(i2,ip2);
U3: xnor2gate PORT MAP(i2, i0, a1);
U4: or3gate PORT MAP(i3, i1, a1, a);
U5: xnor2gate PORT MAP(i1, i0, b1);
U6: or2gate PORT MAP(ip2, b1, b);
U7: or3gate PORT MAP(i2, ip1, i0, c);
U8: and2gate PORT MAP(i1, ip0, d1);
U9: and2gate PORT MAP(ip2, ip0, d2);
U10: and2gate PORT MAP(ip2, i1, d3);
U11: and3gate PORT MAP(i2, ip1, i0, d4);
U12: or4gate PORT MAP(d1, d2, d3, d4, d);
U13: and2gate PORT MAP(i1, ip0, e1);
U14: and2gate PORT MAP(ip2, ip0, e2);
U15: or2gate PORT MAP(e1, e2, e);
U16: and2gate PORT MAP(i2, ip1, f1);
U17: and2gate PORT MAP(i2, ip0, f2);
U18: and2gate PORT MAP(ip1, ip0, f3);
U19: or4gate PORT MAP(i3, f1, f2, f3, f);
U20: xor2gate PORT MAP(i2, i1, g1);
U21: and2gate PORT MAP(i1, ip0, g2);
U22: or3gate PORT MAP(i3, g1, g2, g);

END Structural;

Figure 3.13 Structural VHDL code of the BCD to 7-segment decoder. 
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3.7.2 Dataflow BCD to 7-Segment Decoder 

Figure 3.14 shows the dataflow VHDL code for the BCD to 7-segment decoder based on the Boolean equations 
derived in Section 3.6. The ENTITY declaration for this dataflow code is exactly the same as that for the structural 
code, since the interface for the decoder remains the same.  

In the ARCHITECTURE section, seven concurrent signal assignment statements are used: one for each of the seven 
Boolean equations, which corresponds to the seven LED segments. For example, the equation for segment a is 

 a = i3 + i1 + (i2 � i0) 

This is converted to the signal assignment statement: 

 a <= i3 OR i1 OR (i2 XNOR i0); 

Proceeding in a similar manner, we obtain the signal assignment statements in the dataflow code for the 
remaining six equations. 

All of the signal assignment statements are executed concurrently, and therefore, the ordering of these 
statements is irrelevant. In other words, changing the ordering of these statements will still produce the same result. 
Any time when a signal on the right-hand side of an assignment statement changes value (i.e., from a 0 to a 1, or 
vice versa) that assignment statement is executed. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY bcd IS PORT(

i0, i1, i2, i3: IN STD_LOGIC;
a, b, c, d, e, f, g: OUT STD_LOGIC);

END bcd;
ARCHITECTURE Dataflow OF bcd IS
BEGIN

a <= i3 OR i1 OR (i2 XNOR i0); -- seg a
b <= (NOT i2) OR NOT (i1 XOR i0); -- seg b
c <= i2 OR (NOT i1) OR i0; -- seg c
d <= (i1 AND NOT i0) OR (NOT i2 AND NOT i0) -- seg d

OR (NOT i2 AND i1) OR (i2 AND NOT i1 AND i0);
e <= (i1 AND NOT i0) OR (NOT i2 AND NOT i0); -- seg e
f <= i3 OR (i2 AND NOT i1) -- seg f

OR (i2 AND NOT i0) OR (NOT i1 AND NOT i0);
g <= i3 OR (i2 XOR i1) OR (i1 AND NOT i0); -- seg g

END Dataflow;

Figure 3.14 Dataflow VHDL code of the BCD to 7-segment decoder.  

3.7.3 Behavioral BCD to 7-Segment Decoder 

The behavioral VHDL code for the BCD to 7-segment decoder is shown in Figure 3.15. The port list for this 
entity is slightly different from the two entities in the previous sections. Instead of having the four separate input 
signals, i0, i1, i2, and i3, we have declared a vector, I, of length four. This vector, I, is declared with the type keyword 
STD_LOGIC_VECTOR, that is, a vector of type STD_LOGIC. The length of the vector is specified by the range (3 
DOWNTO 0). The first number (3) in the range denotes the index of the most significant bit of the vector, and the 
second number (0) in the range denotes the index of the least significant bit of the vector. Likewise, the seven output 
signals, a to g, is replaced with the STD_LOGIC_VECTOR Segs of length 7. This time, however, the keyword TO is 
used in the range to mean that the most significant bit in the vector is index 1, and the least significant bit in the 
vector is index 7. 

In the architecture section, a PROCESS statement is used. All of the statements inside the process block are 
executed sequentially. The process block itself, however, is treated as a single concurrent statement. Thus, the 
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architecture section can have two or more process blocks together with other concurrent statements, and these will 
all execute concurrently. 

The parenthesized list of signals after the PROCESS keyword is referred to as the sensitivity list. The purpose of 
the sensitivity list is that, when a value for any of the listed signals changes, the entire process block is executed 
from the beginning to the end. 

In the code, there is a CASE statement inside the process block. Depending on the value of I, one of the WHEN 
parts will be executed. A WHEN part consists of the keyword WHEN followed by a constant value for the variable I to 
match, followed by the symbol “=>.” The statement or statements after the symbol “=>” is executed when I matches 
that corresponding constant. In the code, all of the WHEN parts contain one signal assignment statement. All of the 
signal assignment statements assign a string of seven bits to the output signal Segs. This string of seven bits 
corresponds to the on-off values of the seven segments, a to g, as shown in the 7-segment decoder truth table of 
Figure 3.11. For example, looking at the truth table, we see that when I = “0000” (that is, for the decimal digit 0) we 
want all of the segments to be on except for segment g. Recall that in the declaration of the Segs vector, the most 
significant bit, which is the leftmost bit in the bit string, is index 1, and the least significant bit, which is the 
rightmost bit, is index 7. In VHDL, the notation Segs(n) is used to denote the index n of the Segs vector. In the code, 
we have designated Segs(1) for segment a, Segs(2) for segment b, and so on to Segs(7) for segment g. So, in order to 
display the decimal digit 0, we need to assign the bit string “1111110” to Segs. 

If the value of I does not match any of the WHEN parts, then the WHEN OTHERS part will be chosen. In this case, 
all of the segments will be turned off. Notice that for both the structural and the dataflow code, the segments are not 
all turned off when I is one of these values. Instead, a certain combination of LEDs are turned on because the K-
maps assigned some of the don’t-cares to 1’s. If we assign all the don’t-cares to 0, then all the LEDs will be turned 
off. An alternative to turning all of the segments off for the remaining six cases is to display the six alphabets, A, b, 
C, d, E, and F, for the six hexadecimal digits. The two letters, b, and d, have to be displayed in lower case, because 
otherwise, it will be the same as the numbers 8 and 0, respectively. 

A sample simulation trace of the behavioral 7-segment decoder code is shown in Figure 3.16. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY bcd IS PORT (
I: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
Segs: OUT STD_LOGIC_VECTOR (1 TO 7));

END bcd;

ARCHITECTURE Behavioral OF bcd IS
BEGIN

PROCESS(I)
BEGIN
CASE I IS
WHEN "0000" => Segs <= "1111110";
WHEN "0001" => Segs <= "0110000";
WHEN "0010" => Segs <= "1101101";
WHEN "0011" => Segs <= "1111001";
WHEN "0100" => Segs <= "0110011";
WHEN "0101" => Segs <= "1011011";
WHEN "0110" => Segs <= "1011111";
WHEN "0111" => Segs <= "1110000";
WHEN "1000" => Segs <= "1111111";
WHEN "1001" => Segs <= "1110011";
WHEN OTHERS => Segs <= "0000000";
END CASE;

END PROCESS;
END Behavioral;
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Figure 3.15 Behavioral VHDL code of the BCD to 7-segment decoder. 

 
Figure 3.16 A sample simulation trace of the behavioral 7-segment decoder code. 

3.8 Summary Checklist 

� Combinational circuit 
� Analysis of combinational circuit 
� Synthesis of combinational circuit 
� Technology mapping 
� Using K-maps to minimize a Boolean function 
� The use of don’t-cares 
� Using don’t-cares in a K-map 
� Using the Quine-McCluskey method to minimize a Boolean function 
� Timing hazards and glitches 
� How to eliminate simple glitches 
� Writing structural, dataflow, and behavioral VHDL code 
� Be able to analyze any combinational circuit by deriving its truth table, or Boolean function 
� Be able to synthesize a combinational circuit from a given description, truth table, or Boolean function 
� Be able to reduce any combinational circuit to its smallest size 
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3.9 Problems 
3.1 Derive the truth table for the following circuits: 

a)  
x y z

F

 

b)  
w

x
y

z

F

 

c)  

F

x y z

 

d)  
a b c

F

 
Answer: 

a) 
x y z F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

b) 

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

88



w x y z w(x+y) (w(x+y))' (y' + z) [(w(x+y))' (y' + z)] F 
0 0 0 0 0 1 1 1 0 
0 0 0 1 0 1 1 1 0 
0 0 1 0 0 1 0 0 1 
0 0 1 1 0 1 1 1 0 
0 1 0 0 0 1 1 1 0 
0 1 0 1 0 1 1 1 0 
0 1 1 0 0 1 0 0 1 
0 1 1 1 0 1 1 1 0 
1 0 0 0 0 1 1 1 0 
1 0 0 1 0 1 1 1 0 
1 0 1 0 1 0 0 0 1 
1 0 1 1 1 0 1 0 1 
1 1 0 0 1 0 1 0 1 
1 1 0 1 1 0 1 0 1 
1 1 1 0 1 0 0 0 1 
1 1 1 1 1 0 1 0 1 

c) 
x y z (x + y) (x + y + z' ) (x + y + z' )' (x + y) 1 (x + y + z' )' F 
0 0 0 0 1 0 0 1 
0 0 1 0 0 1 0 1 
0 1 0 1 1 0 0 1 
0 1 1 1 1 0 0 1 
1 0 0 1 1 0 0 1 
1 0 1 1 1 0 0 1 
1 1 0 1 1 0 0 1 
1 1 1 1 1 0 0 1 

d) 
a b c a’ (a' ⊕  c) (c' b' a) (c' b' a)' (a' ⊕  c) + (c' b' a)' F 
0 0 0 1 1 0 1 1 0 
0 0 1 1 0 0 1 1 0 
0 1 0 1 1 0 1 1 1 
0 1 1 1 0 0 1 1 1 
1 0 0 0 0 1 0 0 1 
1 0 1 0 1 0 1 1 0 
1 1 0 0 0 0 1 1 1 
1 1 1 0 1 0 1 1 1 

 

3.2 Derive the Boolean function directly from the circuits in Problem 3.1. 

Answer: 
a) F = xy + (xy' (x+z' )) 
b) F = [(w(x+y))' (y' + z)]' 
c) F = [(x + y) (y' + z' + x' + y) (x + y + z' )' ]' 
d) F = [(a' ⊕  c) + (c' b' a)' ] � b 

3.3 Draw the circuit diagram that implements the following truth tables: 
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a) b) 
a b c F 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0  

w x y z F 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 1 1  

c) d) 
w x y z F1 F2 

0 0 0 0 1 1 
0 0 0 1 0 1 
0 0 1 0 0 1 
0 0 1 1 1 1 
0 1 0 0 0 0 
0 1 0 1 1 1 
0 1 1 0 1 0 
0 1 1 1 0 0 
1 0 0 0 0 1 
1 0 0 1 1 1 
1 0 1 0 1 0 
1 0 1 1 0 0 
1 1 0 0 1 1 
1 1 0 1 0 1 
1 1 1 0 0 1 
1 1 1 1 1 1  

N3 N2 N1 N0 F 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 1 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 1  

3.4 Draw the circuit diagram that implements the following expressions: 
a) F (x, y, z) = Σ(0, 1, 6) 
Answer: 

F (x, y, z) = Σ(0, 1, 6) 
= m0 + m1 + m6 
= x' y' z' + x' y' z + x y z' 
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F

zyx

 
b) F (w,x, y, z) = Σ(0, 1, 6) 
c) F (w,x, y, z) = Σ(2, 6, 10, 11, 14, 15) 
d) F (x, y, z) = Π(0, 1, 6) 
e) F (w,x, y, z) = Π(0, 1, 6) 
f) F (w,x, y, z) = Π(2, 6, 10, 11, 14, 15) 

3.5 Draw the circuit diagram that implements the following Boolean functions using as few basic gates as possible, 
but without modifying the equation. 

a) F = xy' + x'y'z + xyz' 
b) F = w'z' + w'xy + wx'z + wxyz 
c) F = w'xy'z + w'xyz + wxy'z + wxyz 
d) F = N3'N2'N1N0' + N3'N2'N1N0 + N3N2'N1N0' + N3N2'N1N0 + N3N2N1'N0' + N3N2N1N0 
e) F = [(x � y)' + (xyz)'] (w' + x + z) 
f) F = x ⊕  y ⊕  z 
g) F = [w'xy'z + w'z (y ⊕  x)]' 

3.6 Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 2-input AND, 2-input 
OR, and  NOT gates. 

3.7 Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number is any one of the 
following numbers: 2, 3, 10, 11, 12, and 15. Otherwise, it outputs a 0. 

3.8 Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number is greater than or equal to 
5. Otherwise, it outputs a 0. 

3.9 Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number has an even number of 
zeros. Otherwise, it outputs a 0. 

3.10 Construct the following circuit. The circuit has five input signals and one output signal. The five input lines are 
labeled W, X, Y, Z, and E, and the output line is labeled F. E is used to enable (turn on) or disable (turn off) the 
circuit; thus, when E = 0, the circuit is disabled, and F is always 0. When E = 1, the circuit is enabled, and F is 
determined by the value of the four input signals, W, X, Y, and Z, where W is the most significant bit. If the 
value is odd, then F = 1, otherwise F = 0. 
Answer: 
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E W X Y Z

F

  or 
E
Z F

 

3.11 Draw the smallest circuit that inputs two 2-bit numbers. The circuit outputs a 2-bit number that represents the 
count of the number of even numbers in the inputs. The number 0 is taken as an even number. For example, if 
the two input numbers are 0 and 3, then the circuit outputs the number 1 in binary. If the two input numbers are 
0 and 2, then the circuit outputs the number 2 in binary. Show your work by deriving the truth table, the 
equation, and finally the circuit. You need to minimize all of the equations to standard forms. 
Answer: 

x1 x0 y1 y0 out1 out0 
0 0 0 0 1 0 
0 0 0 1 0 1 
0 0 1 0 1 0 
0 0 1 1 0 1 
0 1 0 0 0 1 
0 1 0 1 0 0 
0 1 1 0 0 1 
0 1 1 1 0 0 
1 0 0 0 1 0 
1 0 0 1 0 1 
1 0 1 0 1 0 
1 0 1 1 0 1 
1 1 0 0 0 1 
1 1 0 1 0 0 
1 1 1 0 0 1 
1 1 1 1 0 0 

 
 

out1 = x1'x0'y1'y0' + x1'x0'y1y0' + x1x0'y1'y0' + x1x0'y1y0' 
 = x0' y0' 
out0 = x1'x0'y1'y0 + x1'x0'y1y0 + x1'x0y1'y0' + x1'x0y1y0' + x1x0'y1'y0 + x1x0'y1y0 + x1x0y1'y0' + x1x0y1y0' 
 = x0 ⊕  y0 
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x0 y0

out0

out1

 
 

3.12 Derive and draw the circuit that inputs two 2-bit unsigned numbers. The circuit outputs a 3-bit signed number 
that represents the difference between the two input numbers (i.e. it is the result of the first number minus the 
second number). Derive the truth table and equations in canonical form. 

Answer: 
x1 x0 y1 y0 d2 d1 d0 
0 0 0 0 0 0 0 
0 0 0 1 1 1 1 
0 0 1 0 1 1 0 
0 0 1 1 1 0 1 
0 1 0 0 0 0 1 
0 1 0 1 0 0 0 
0 1 1 0 1 1 1 
0 1 1 1 1 1 0 
1 0 0 0 0 1 0 
1 0 0 1 0 0 1 
1 0 1 0 0 0 0 
1 0 1 1 1 1 1 
1 1 0 0 0 1 1 
1 1 0 1 0 1 0 
1 1 1 0 0 0 1 
1 1 1 1 0 0 0 

 
d2 = x1'x0'y1'y0 + x1'x0'y1y0' + x1'x0'y1y0 + x1'x0y1y0' + x1'x0y1y0 + x1x0'y1y0 
d1 = x1'x0'y1'y0 + x1'x0'y1y0' + x1'x0y1y0' + x1'x0y1y0 + x1x0'y1'y0' + x1x0'y1y0 + x1x0y1'y0' + x1x0y1'y0 
d0 = x1'x0'y1'y0 + x1'x0'y1y0 + x1'x0y1'y0' + x1'x0y1y0' + x1x0'y1'y0 + x1x0'y1y0 + x1x0y1'y0' + x1x0y1y0' 
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x1 x0 y1 y0

m1

m2

m3

m4

m6

m7

m8

m9

m11

m12

m13

m14

d2

d1

d0

m1m2m3m4m6m7m8m9m11m12m13m14

 

3.13 Use Boolean algebra to show that the following circuit is equivalent to the NOT gate. 

 

3.14 Construct a 4-input NAND gate circuit using only 2-input NAND gates. 
Answer: 

 

3.15 Implement the following circuit using as few NAND gates (with any number of inputs) as possible. 

EN T A B

Out

 

Answer: 
A xnor B = (A xor B)' 
   = (AB' + A'B)' 
   = (AB')' (A'B)' 
   = [(AB' )' (A'B)']'' 
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   = 
EN T A B

Out

 

EN T A B

Out

 

3.16 Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 2-input NAND gates. 

3.17 Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 3-input NAND gates. 

3.18 Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 3-input NOR gates. 

3.19 Convert the following circuit as is (i.e., do not reduce it first) to use only 2-input NOR gates. 

 

Answer: 

 

3.20 Convert the following full adder circuit to use only eleven 2-input NAND gates. 

A
B

A
B
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x y

cin

cout

s  
Answer: 
Recall that wx + yz = ((wx)' (yz)')'. Furthermore, x ⊕  y ⊕  z = x � y � z and x � y = (x'y' + xy). 

x y

cout

cin

s  

3.21 Perform a timing analysis of the circuit shown in Figure 3.9(c) to see that the circuit does not produce any 
glitches. 

3.22 Derive a circuit for the 2-input XOR gate that uses only 2-input NAND gates. 
Answer 

x
y F

 
F = x ⊕  y 
 = xy' + x'y 
 = xx' + xy' + x'y + y'y 
 = (x' + y' )x + (x' + y' )y 
 = ((xy)'x) + ((xy)'y) 
 = [((xy)'x)' ((xy)'y)' ]'  

3.23 Use K-maps to reduce the Boolean functions represented by the truth tables in Problem 3.3 to standard form. 
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3.24 Use K-maps to reduce the Boolean functions in Problem 3.4 to standard form. 

3.25 Use K-maps to reduce the Boolean functions in Problem 3.5 to standard form. 

3.26 List all of the PIs, EPIs, and all of the minimized standard form solutions for the following equation.  
 

F(v,w,x,y,z) = Π(2,3,4,5,6,7,8,9,11,13,15,18,19,20,21,22,29,30,31) 
Answer 
F(v,w,x,y,z) = Π(2,3,4,5,6,7,8,9,11,13,15,18,19,20,21,22,29,30,31) 
  = Σ(0,1,10,12,14,16,17,23,24,25,26,27,28) 

yz
wx

00

v = 0

1 1

00

1 1

1

01 11 10

01

11

10

v = 1

1 1

00

1

1

1 1 1 1

01 11 10

F

 

yz
wx

00

v = 0

1 1

00

1 1

1

01 11 10

01

11

10

v = 1

1 1

00

1

1

1 1 1 1

01 11 10

F
w'x'y'

vx'y'

wx'yz'

vw'xyz

vwy'z'

wxy'z'

v'wyz'

vwx'

v'wxz'
 

PI’s: wxy'z', w'x'y', vx'y', vw'xyz, vwx', wx'yz', vwy'z', v'wyz', v'wxz' 
 

PI’s 0 1 10 12 14 16 17 23 24 25 26 27 28 
wxy'z'     �         � 
w'x'y' EPI � �    � �       
vx'y'       � �  � �    

vw'xyz EPI        �      
vwx' EPI         � � � �  

wx'yz'    �        �   
vwy'z'          �    � 
v'wyz'    �  �         
v'wxz'     � �         

EPI covered minterms 0 1    16 17 23 24 25 26 27  

EPI’s: w'x'y', vw'xyz, vwx' 

Solution: 

F = w'x'y' + vw'xyz + vwx' + v'wyz' + wxy'z' 
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3.27 Use K-maps to reduce the following 4-variable Boolean functions F(w, x, y, z) to standard form: 
a) 1-minterms: m2, m3, m4, m5 

Don’t-care minterms: m10, m11, m12, m13, m14, m15 
b) 1-minterms: 1, 3, 4, 7, 9 

Don’t-care minterms: 0, 2, 13, 14, 15 
c) 1-minterms: 2, 3, 8, 9 

Don’t-care minterms: 1, 5, 6, 7, 8, 13, 15 

Answer: 
a) 

yz
wx

00

00
1 1

1 1

01 11 10
0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

01

11

10

F

× ×

× ×

××

 

3.28 Use K-maps to reduce the following 5-variable Boolean functions F(v, w, x, y, z) to standard form: 
a) 1-minterms: 1, 3, 4, 7, 9 

Don’t-care minterms: 0, 2, 13, 14, 15 
b) 1-minterms:  

3.29 Use the Quine-McCluskey method to simplify the function f(w,x,y,z) = Σ(0,2,5,7,13,15). List all the PI’s, EPI’s, 
cover lists, and solutions. 

Answer: 
Subcube Value Group 

ID 
Subcube 
Minterms w x y z 

Subcube 
Covered 

G0 m0 0 0 0 0 � 
G1 m2 0 0 1 0 � 
G2 m5 0 1 0 1 � 
G3 m7 0 1 1 1 � 

 m13 1 1 0 1 � 
G4 m15 1 1 1 1 � 

 
Subcube Value Group 

ID 
Subcube 
Minterms w x y z 

Subcube 
Covered 

G0 m0,2 0 0 - 0  
G2 m5,7 0 1 - 1 � 

 m5,13 - 1 0 1 � 
G3 m7,15 - 1 1 1 � 

 m13,15 1 1 - 1 � 
 

Subcube Value Group 
ID 

Subcube 
Minterms w x y z 

Subcube 
Covered 

G2 m5,7,13,15 - 1 - 1  
 

Function Minterms Prime 
Implicant 

Name 

Prime 
Implicant 

Expression 

Implicant 
Minterms 0 2 5 7 13 15 
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P1 w'x'z' (0,2) ⊗  ⊗      
P4 xz (5,7,13,15)   ⊗  ⊗  ⊗  ⊗  

EPI Covered Minterms: 0 2 5 7 13 15 
Not Covered Minterms:       

 
PI list: w'x'z', xz 
EPI list: w'x'z', xz 
Cover list: w'x'z', xz 
f = w'x'z' + xz 

3.30 Use the Quine-McCluskey method to reduce the Boolean functions in Problem 3.4 to standard form. 

3.31 Write the function that eliminates the static hazard(s) in the function F = w'z + xyz' + wx'y. 

Answer: 

 

yz 01

1

1

00

00

01

wx

0 1

4 5

1011

1

1 1

3 2

7 6

8 9

1

1 1
10

11

10
11

12 13 1415

 

yz 01

1

1

00

00

01

wx

0 1

4 5

1011

1

1 1

3 2

7 6

8 9

1

1 1
10

11

10
11

12 13 1415

 
 Original function After adding the overlaps 

F = w'z + xyz' + wx'y + w'xy + wyz' + x'yz 

3.32 Write the function that eliminates the static hazard(s) in the function F = y'z' + wz + w'x'y. 

Answer: 

 

yz
wx

00 1

00
1 1

1

1 1 1

1 1 1

01 11 10

01

11

10

F

 

yz
wx

00 1

00
1 1

1

1 1 1

1 1 1

01 11 10

01

11

10

F

 

 With hazard Without hazard 

F = y'z' + wz + w'x'y + wy' + x'yz + w'x'z' 

3.33 Write the complete structural VHDL code for the Boolean functions in Problem 3.4. 

3.34 Write the complete dataflow VHDL code for the Boolean functions in Problem 3.4. 

3.35 Write the complete behavioral VHDL code for the Boolean functions in Problem 3.4. 
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3.36 Write the complete dataflow VHDL code for the Boolean functions in Problem 3.5. 

3.37 Write the behavioral VHDL code for converting an 8-bit unsigned binary number to two 4-bit BCD numbers. 
These two BCD numbers represent the tenth and unit digits of a decimal number. Also, turn on the decimal 
point LED for the unit digit if the 8-bit binary number is in the one hundreds range, and turn on the decimal 
point LED for the tenth digit if the 8-bit binary number is in the two hundreds range. This circuit is used as the 
output circuit for many designs in later chapters. 
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Chapter 4 

Standard Combinational Components 

 

 

 

Control
Signals

Status
Signals

MUX

'0'

Data
Inputs

Data
Outputs

Datapath

ALU

Register
ff

8

8

8

Output
LogicNext-

state
Logic

Control
Inputs

Control
Outputs

State
Memory

Register

Control Unit

ff

 



As with many construction projects, it is often easier to build in a hierarchical fashion. Initially, we use the very 
basic building blocks to build slightly larger building blocks, and then from these larger building blocks, we build 
yet larger building blocks, and so on. Similarly, in constructing large digital circuits, instead of starting with the 
basic logic gates as building blocks each time, we often start with larger building blocks. Many of these larger 
building blocks are often used over and over again in different digital circuits, and therefore, are considered as 
standard components for large digital circuits. In order to reduce the design time, these standard components are 
often made available in standard libraries so that they do not have to be redesigned each time that they are needed. 
For example, many digital circuits require the addition of two numbers; therefore, an adder circuit is considered a 
standard component and is available in most standard libraries. 

Standard combinational components are combinational circuits that are available in standard libraries. These 
combinational components are used mainly in the construction of datapaths. For example, in our microprocessor 
road map, the standard combinational components are the multiplexer, ALU, comparator, and tri-state buffer. Other 
standard combinational components include adders, subtractors, decoders, encoders, shifters, rotators, and 
multipliers. Although the next-state logic and output logic circuits in the control unit are combinational circuits, they 
are not considered as standard combinational components because they are designed uniquely for a particular control 
unit to solve a specific problem, and usually are never reused in another design. 

In this chapter, we will design some standard combinational components. These components will be used in 
later chapters for the building of the datapath in the microprocessor. When we use these components to build the 
datapath, we do not need to know the detailed construction of these components. Instead, we only need to know how 
these components operate, and how they connect to other components. Nevertheless, in order to see the whole 
picture, we should understand how these individual components are designed. 

4.1 Signal Naming Conventions 
So far in our discussion, we have always used the words “high” and “low” to mean 1 or 0, or “on” or “off”, 

respectively. However, this is somewhat arbitrary, and there is no reason why we can’t say a 0 is a high or a 1 is off. 
In fact, many standard off-the-shelf components use what we call negative logic where 0 is for on and 1 is for off. 
Using negative logic is usually more difficult to understand because we are used to positive logic where 1 is for on, 
and 0 is for off. In all of our discussions, we will use the more natural, positive logic that we are familiar with. 

Nevertheless, in order to prevent any confusion as to whether we are using positive logic or negative logic, we 
often use the words “assert,” “de-assert,” “active-high,” and “active-low.” Regardless of whether we are using 
positive or negative logic, active-high always means that a 1 (i.e., a high) will cause the signal to be active or 
enabled and that a 0 will cause the signal to be inactive or disabled. For example, if there is an active-high signal 
called add and we want to enable it (i.e. to make it do what it is intended for, which in this case is to add something) 
then we need to set this signal line to a 1. Setting this signal to a 0 will cause this signal to be disabled or inactive. 
An active-low signal, on the other hand, means that a 0 will cause the signal to be active or enabled, and that a 1 will 
cause the signal to be inactive or disabled. So if the signal add is an active-low signal, then we need to set it to a 0 to 
make it add something. 

We also use the word “assert” to mean: to make a signal active or to enable the signal. To de-assert a signal is 
to disable the signal or to make it inactive. For example, to assert the active-high add signal line means to set the 
add signal to a 1. To de-assert an active-low line also means to set the line to a 1—since a 0 will enable the line 
(active-low)—and we want to disable (de-assert) it. 

4.2 Adder 

4.2.1 Full Adder 

To construct an adder for adding two n-bit binary numbers, X = xn-1 … x0 and Y = yn-1 … y0, we need to first 
consider the addition of a single bit slice, xi with yi, together with the carry-in bit, ci, from the previous bit position 
on the right. The result from this addition is a sum bit, si, and a carry-out bit, ci+1, for the next bit position. In other 
words, si = xi + yi + ci, and ci+1 = 1 if there is a carry from the addition to the next bit on the left. Note that the + 
operator in this equation is addition and not the logical OR. 
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For example, consider the following addition of the two 4-bit binary numbers, X = 1001 and Y = 0011. 

1 0 0 1

1 100+

0011
11

c1c2

 

The result of the addition is 1100. The addition is performed just like that for decimal numbers, except that there is a 
carry whenever the sum is either a 2 or a 3 in decimals, since 2 is 10 in binary and 3 is 11. The most significant bit in 
the 10 or the 11 is the carry-out bit. Looking at the bit slice that is highlighted in blue where x1 = 0, y1 = 1, and c1 = 
1, the addition for this bit slice is x1 + y1 + c1  = 0 + 1 + 1 = 10. Therefore, the sum bit is s1 = 0, and the carry-out bit 
is c2 = 1. 

The circuit for the addition of a single bit slice is known as a full adder (FA), and its truth table is shown in 
Figure 4.1(a). The derivation of the equations for si and ci+1 are shown in Figure 4.1(b). From these two equations, 
we get the circuit for the full adder, as shown in Figure 4.1(c). Figure 4.1(d) shows the logic symbol for it. The 
dataflow VHDL code for the full adder is shown in Figure 4.2. 

 
xi yi ci ci+1 si 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

(a) 

si = xi'yi'ci + xi'yici' + xiyi'ci' + xiyici 
 = (xi'yi + xiyi')ci' + (xi'yi' + xiyi)ci 
 = (xi ⊕  yi)ci' + (xi ⊕  yi)'ci 
 = xi ⊕  yi ⊕  ci 

ci+1 = xi'yici + xiyi'ci + xiyici' + xiyici 
 = xiyi(ci' + ci) + ci(xi'yi + xiyi') 
 = xiyi + ci(xi ⊕  yi) 

 

(b) 

xi yi

ci

ci+1

si  
(c) 

FA

xi yi

cici+1

si

 
 

(d) 

Figure 4.1 Full adder: (a) truth table; (b) equations for si and ci+1; (c) circuit; (d) logic symbol. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY fa IS PORT (
Ci, Xi, Yi: IN STD_LOGIC;
Ci1, Si: OUT STD_LOGIC);

END fa;
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ARCHITECTURE Dataflow OF fa IS
BEGIN

Ci1 <= (Xi AND Yi) OR (Ci AND (Xi XOR Yi));
Si <= Xi XOR Yi XOR Ci;

END Dataflow;

Figure 4.2 Dataflow VHDL code for a 1-bit full adder.  

4.2.2 Ripple-carry Adder 

The full adder is for adding two operands that are only one bit wide. To add two operands that are, say four bits 
wide, we connect four full adders together in series. The resulting circuit (shown in Figure 4.3) is called a ripple-
carry adder for adding two 4-bit operands. 

Since a full adder adds the three bits, xi, yi and ci, together, we need to set the first carry-in bit, c0, to 0 in order 
to perform the addition correctly. Moreover, the output signal, cout, is a 1 whenever there is an overflow in the 
addition. 

The structural VHDL code for the 4-bit ripple-carry adder is shown in Figure 4.4. Since we need to duplicate 
the full adder component four times, we can use either the PORT MAP statement four times or by using the FOR-
GENERATE statement as shown in the code to automatically generate the four components. The statement FOR k 
IN 3 DOWNTO 0 GENERATE determines how many times to repeat the PORT MAP statement that is in the body 
of the GENERATE statement and the values used for k. The vector signal Carryv is used to propagate the carry bit 
from one FA to the next. 

x1 y1

c1

s1

FA1

x2 y2

c2

s2

FA2

x3 y3

c3

s3

FA3

cout

x0 y0

c0 = 0

s0

FA0

 
Figure 4.3 Ripple-carry adder. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Adder4 IS PORT (
A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Cout: OUT STD_LOGIC;
SUM: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END Adder4;

ARCHITECTURE Structural OF Adder4 IS
COMPONENT FA PORT (
ci, xi, yi: IN STD_LOGIC;
co, si: OUT STD_LOGIC);

END COMPONENT;

SIGNAL Carryv: STD_LOGIC_VECTOR(4 DOWNTO 0);

BEGIN
Carryv(0) <= '0';

Adder: FOR k IN 3 DOWNTO 0 GENERATE
FullAdder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+1), SUM(k));
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END GENERATE Adder;

Cout <= Carryv(4);
END Structural;

Figure 4.4 VHDL code for a 4-bit ripple-carry adder using a FOR-GENERATE statement. 

4.2.3 * Carry-lookahead Adder 

The ripple-carry adder is slow because the carry-in for each full adder is dependent on the carry-out signal from 
the previous FA. So before FAi can output valid data, it must wait for FAi–1 to have valid data. In the carry-
lookahead adder, each bit slice eliminates this dependency on the previous carry-out signal and instead uses the 
values of the two input operands, X and Y, directly to deduce the needed signals. This is possible from the following 
observations regarding the carry-out signal. For each FAi, the carry-out signal, ci+1, is set to a 1 if either one of the 
following two conditions is true: 

xi = 1 and yi = 1 

or 

(xi = 1 or yi = 1) and ci = 1 

In other words,  

ci+1 = xiyi + ci(xi + yi) (4.1) 

At first glance, this carry-out equation looks completely different from the carry-out equation deduced in Figure 
4.1(b). However, they are equivalent (see Problem 2.6(g)). 

If we let 

gi = xi yi  

and 

pi = xi  + yi 

then Equation (4.1) can be rewritten as 

ci+1 = gi + pici (4.2) 

Using Equation (4.2) for ci+1, we can recursively expand it to get the carry-out equations for any bit slice, ci, that 
is dependent only on the two input operands, X and Y, and the initial carry-in bit, c0. Using this technique, we get the 
following carry-out equations for the first four bit slices 

c1 = g0 + p0c0 (4.3) 

c2 = g1 + p1c1 
 = g1 + p1(g0 + p0c0) 
 = g1 + p1g0 + p1p0c0 (4.4) 

c3 = g2 + p2c2 
 = g2 + p2 (g1 + p1g0 + p1p0c0) 
 = g2 + p2 g1 + p2p1g0 + p2p1 p0c0 (4.5) 

c4 = g3 + p3c3 
 = g3 + p3(g2 + p2g1 + p2p1g0 + p2p1p0c0) 
 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0 (4.6) 

Using Equations (4.3) to (4.6), we obtain the circuit for generating the carry-lookahead signals for c1 to c4, as 
shown in Figure 4.5(a). Note that each equation is translated to a three-level combinational logic—one level for 
generating the gi and pi, and two levels (for the sum-of-products format) for generating the ci expression. This carry-
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lookahead circuit can be reduced even further because we want c0 to be a 0 when performing additions, and this 0 
will cancel the rightmost product term in each equation. 

The full adder for the carry-lookahead adder can also be made simpler since it is no longer required to generate 
the carry-out signal for the next bit slice. In other words, the carry-in signal for the full adder now comes from the 
new carry-lookahead circuit rather than from the carry-out signal of the previous bit slice. Thus, this full adder only 
needs to generate the sumi signal. Figure 4.5(b) shows one bit slice of the carry-lookahead adder. For an n-bit carry-
lookahead adder, we use n bit slices. These n bit slices are not connected in series as with the ripple-carry adder, 
otherwise, it defeats the purpose of having the more complicated carry-out circuit. 

y3x3 y2x2

p2g2

y1x1 y0x0

c0

c1c2c3c4

p3g3 p1g1 p0g0

 

(a) 

xi yi

Carry-
lookahead

Circuit

x0...xi-1 y0...yi-1

sumi

ci

 
 
 
 

(b) 

Figure 4.5 (a) Circuit for generating the carry-lookahead signals, c1 to c4; (b) one bit slice of the carry-lookahead 
adder. 

4.3 Two’s Complement Binary Numbers 
Before introducing subtraction circuits, we need to review how negative numbers are encoded using two’s 

complement representation. Binary encoding of numbers can be interpreted as either signed or unsigned. Unsigned 
numbers include only positive numbers and zero, whereas signed numbers include positive, negative, and zero. For 
signed numbers, the most significant bit (MSB) tells whether the number is positive or negative. If the most 
significant bit is a 1, then the number is negative; otherwise, the number is positive. The value of a positive signed 
number is obtained exactly as for unsigned numbers described in Section 2.1. For example, the value for the positive 
signed number 011010012 is just 1 × 26 + 1 × 25 + 1 × 23 + 1 × 20 = 105 in decimal. 

However, to determine the value of a negative signed number, we need to perform a two-step process: 1) flip all 
the 1 bits to 0’s and all the 0 bits to 1’s, and 2) add a 1 to the result obtained from step 1). The number obtained from 
applying this two-step process is evaluated as an unsigned number for its value. The negative of this resulting value 
is the value of the original negative signed number. 

Example 4.1: Finding the value for a signed number 

Given the 8-bit signed number 111010012, we know that it is a negative number because of the leading 1. To 
find out the value of this negative number, we perform the two-step process as follows: 

11101001 (original number) 
00010110 (flip bits) 
00010111 (add a 1 to the previous number) 

The value for the resulting number 00010111 is 1 × 24 + 1 × 22 + 1 × 21 + 1 × 20 = 23. Therefore, the value of the 
original number 11101001 is negative 23 (–23). ♦  
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Example 4.2: Finding the value for a signed number 

To find the value for the 4-bit signed number 1000, we apply the two-step process to the number as follows: 

1000  (original number) 
0111  (flip bits) 
1000  (add a 1 to the previous number) 

The resulting number 1000 is exactly the same as the original number! This, however, should not confuse us if 
we follow exactly the instructions for the conversion process. We need to interpret the resulting number as an 
unsigned number to determine the value. Interpreting the resulting number 1000 as an unsigned number gives us the 
value of 8. Therefore, the original number, which is also 1000, is negative 8 (–8). ♦  

Figure 4.6 shows the two’s complement numbers for four bits. The range goes from –8 to 7. In general, for an 
n-bit two’s complement number, the range is from –2n-1 to 2n-1 – 1. 

 
4-bit Binary Two’s Complement 

0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 – 8 
1001 – 7 
1010 – 6 
1011 – 5 
1100 – 4 
1101 – 3 
1110 – 2 
1111 – 1 

Figure 4.6 4-bit two’s complement numbers. 

The nice thing about using two’s complement to represent negative numbers is that when we add a number with 
the negative of the same number, the result is zero as expected. This is shown in the next example. 

Example 4.3: Adding 4-bit signed numbers 

Use 4-bit signed arithmetic to perform the following addition. 

 3 = 0011 
 + (–3) = + 1101 
 0 = 10000 

The result 10000 has five bits. But since we are using 4-bit arithmetic (that is, the two operands are 4-bits wide) 
the result must also be in 4-bits. The leading 1 in the result is, therefore, an overflow bit. By dropping the leading 
one, the remaining result 0000 is the correct answer for the problem. Although this addition resulted in an overflow 
bit, but by dropping this extra bit, we obtained the correct answer. ♦  

Example 4.4: Adding 4-bit signed numbers 

Use 4-bit signed arithmetic to perform the following addition. 
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 6 = 0110 
 + 3 = + 0011 
 9 ≠ 1001 

The result 1001 is a 9 if we interpret it as an unsigned number. However, since we are using signed numbers, 
we need to interpret the result as a signed number. Interpreting 1001 as a signed number gives – 7, which of course 
is incorrect. The problem here is that the range for a 4-bit signed number is from – 8 to + 7, and + 9 is outside of this 
range.    ♦  

Although the addition in this example did not resulted in an overflow bit, but the final answer is incorrect. In 
order to correct this problem, we need to add (at least) one extra bit by sign extending the number. The corrected 
arithmetic is shown in Example 4.5. 

Example 4.5: Adding 5-bit signed numbers 

Use 5-bit signed arithmetic to perform the following addition. 

 6 = 00110 
 + 3 = + 00011 
 9 = 01001 

The result 01001, when interpreted as a signed number, is 9. ♦  

To extend a signed number, we need to add leading 0’s or 1’s depending on whether the original most 
significant bit is a 0 or a 1. If the most significant bit is a 0, we sign extend the number by adding leading 0’s. If the 
most significant bit is a 1, we sign extend the number by adding leading 1’s. By performing this sign extension, the 
value of the number is not changed, as shown in Example 4.6. 

Example 4.6: Performing sign extensions 

Sign extend the numbers 10010 and 0101 to 8-bits wide. 

For the number 10010, since the most significant bit is a 1, therefore, we need to add leading 1’s to make the 
number 8-bits long. The resulting number is 11110010. For the number 0101, since the most significant bit is a 0, 
therefore, we need to add leading 0’s to make the number 8-bits long. The resulting number is 00000101. The 
following shows that the two resulting numbers have the same value as the two original numbers. Since the first 
number is negative (because of the leading 1 bit) we need to perform the two-step process to evaluate its value. The 
second number is positive, so we can evaluate its value directly. 

 
 Original 

Number 
 Sign 

Extended 
 Original 

Number 
 Sign 

Extended 
 10010  11110010  0101  00000101 
Flip bits 01101  00001101     

Add 1 01110  00001110     
Value – 14  – 14  5  5 

    ♦  

4.4 Subtractor 
We can construct a one-bit subtractor circuit similar to the method used for constructing the full adder. 

However, instead of the sum bit, si, for the addition, we have a difference bit, di, for the subtraction, and instead of 
having carry-in and carry-out signals, we have borrow-in (bi) and borrow-out (bi+1) signals. So, when we subtract the 
ith bit of the two operands, xi and yi, we get the difference di = xi − yi. If, however, the previous bit on the right has to 
borrow from this ith bit, then input bi will be set to a 1, and the equation for the difference will be di = xi − bi − yi. On 
the other hand, if the ith bit has to borrow from the next bit on the left for the subtraction, then the output bi+1 will be 
set to a 1. The value borrowed is a 2, and so the resulting equation for the difference will be di = xi − bi + 2bi+1 − yi. 
Note that the symbols + and − used in this equation are for addition and subtraction, and not for logical operations. 
The term 2bi+1 is “2 multiply by bi+1.” Since bi+1 is a 1 when we have to borrow, and we borrow a 2 each time, 
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therefore, the equation just adds a 2 when there is a borrow. When there is no borrow, bi+1 is 0, and so the term bi+1 
cancels out to 0. 

For example, consider the following subtraction of the two 4-bit binary numbers, X = 0100 and Y = 0011: 

0 1 0 0

1 100

1000

1 1

bibi+1

 

Consider the bit position that is highlighted in blue. Since the subtraction for the previous bit on the right has to 
borrow, therefore, bi is a 1. Moreover, bi+1 is also a 1 because the current bit has to borrow from the next bit on the 
left. When it borrows, it gets a 2. Therefore, di = xi − bi + 2bi+1 − yi = 0 – 1 + 2(1) – 1 = 0. 

The truth table for the 1-bit subtractor is shown in Figure 4.7(a), from which the equations for di and bi+1, as 
shown in Figure 4.7(b), are derived. From these two equations, we get the circuit for the subtractor as shown in 
Figure 4.7(c). Figure 4.7(d) shows the logic symbol for the subtractor. 

Building a subtractor circuit for subtracting an n-bit operand can be done by daisy-chaining n 1-bit subtractor 
circuits together, similar to the adder circuit shown in Figure 4.3. However, there is a much better subtractor circuit, 
as shown in the next section. 

 
xi yi bi bi+1 di 
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

(a) 

di = xi'yi'bi + xi'yibi' + xiyi'bi' + xiyibi 
 = (xi'yi + xiyi' )bi' + (xi'yi' + xiyi)bi 
 = (xi ⊕  yi)bi' + (xi ⊕  yi)'bi 
 = xi ⊕  yi ⊕  bi 

bi+1 = xi'yi'bi + xi'yibi' + xi'yibi + xiyibi 
 = xi'bi(yi' + yi) + xi'yi(bi' + bi) + yibi(xi' + xi) 
 = xi'bi + xi'yi + yibi 

 
(b) 

xi yi

di

bi

bi+1

 
(c) 

FS

xi yi

bibi+1

di

 

 

(d) 

Figure 4.7 1-bit subtractor: (a) truth table; (b) equations for di and bi+1; (c) circuit; (d) logic symbol. 
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4.5 Adder-Subtractor Combination 
It turns out that instead of having to build a separate adder and subtractor units, we can modify the ripple-carry 

adder (or the carry-lookahead adder) slightly to perform both operations. The modified circuit performs subtraction 
by adding the negated value of the second operand. In other words, instead of performing the subtraction A – B, the 
addition operation A + (– B) is performed. 

Recall that in two’s complement representation, to negate a value involves inverting all 0’s to 1’s and 1’s to 0’s, 
and then adding a 1. Hence, we need to modify the adder circuit so that we can selectively do either one of two 
things: 1) flip the bits of the B operand and then add an extra 1 for the subtraction operation, or 2) not flip the bits 
and not add an extra 1 for the addition operation. 

For this adder-subtractor combination circuit, in addition to the two input operands A and B, a select signal, s, is 
needed to select which operation to perform. The assignment of the two operations to the select signal s is shown in 
Figure 4.8(a). When s = 0, we want to perform an addition, and when s = 1, we want to perform a subtraction. When 
s = 0, B does not need to be modified, and like the adder circuit from Section 4.2.2, the initial carry-in signal c0 
needs to be set to a 0. On the other hand, when s = 1, we need to invert the bits in B and add a 1. The addition of a 1 
is accomplished by setting the initial carry-in signal c0 to a 1. Two circuits are needed for handling the above 
situations: one for inverting the bits in B and one for setting c0. Both of these circuits are dependent on s. 

The truth table for these two circuits is shown in Figure 4.8(b). The input variable bi is the ith bit of the B 
operand. The output variable yi is the output from the circuit that either inverts or does not invert the bits in B. From 
this truth table, we can conclude that the circuit for yi is just a 2-input XOR gate, while the circuit for c0 is just a 
direct connection from s. Putting everything together, we obtain the adder-subtractor combination circuit (for four 
bits) as shown in Figure 4.8(c). The logic symbol for the circuit is shown in Figure 4.8(d). 

 

s Function Operation 
0 Add F = A + B 
1 Subtract F = A + B' + 1 

 

(a) 

s bi yi c0 

0 0 0 0 
0 1 1 0 
1 0 1 1 
1 1 0 1 

(b) 

s
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Figure 4.8 Adder-subtractor combination: (a) operation table; (b) truth table for yi and c0; (c) circuit; (d) logic 
symbol. 

Notice the adder-subtractor circuit in Figure 4.8(c) has two different overflow signals, Unsigned_Overflow and 
Signed_Overflow. This is because the circuit can deal with both signed and unsigned numbers. When working with 
unsigned numbers only, the output signal Unsigned_Overflow is sufficient to determine whether there is an overflow 
or not. However, for signed numbers, we need to perform the XOR of Unsigned_Overflow with c3, producing the 
Signed_Overflow signal in order to determine whether there is an overflow or not. 
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For example, the valid range for a 4-bit signed number goes from –23 to 23–1 (i.e., from –8 to 7). Adding the 
two signed numbers, 4 + 5 = 9 should result in a signed number overflow since 9 is outside the range. However, the 
valid range for a 4-bit unsigned number goes from 0 to 24–1 (i.e., 0 to 15).  If we treat the two numbers 4 and 5 as 
unsigned numbers, then the result of adding these two unsigned numbers, 9, is inside the range. So when adding the 
two numbers 4 and 5, the Unsigned_Overflow signal should be de-asserted, while the Signed_Overflow signal 
should be asserted. Performing the addition of 4 + 5 in binary as shown here: 

0 1 0

110+

101
1

0

0

0 0

c3

Unsigned
Overflow

0 XOR 1 = 1
Signed

Overflow  

we get 0100 + 0101 = 1001, which produces a 0 for the Unsigned_Overflow signal. However, the addition produces 
a 1 for c3, and XORing these two values, 0 for Unsigned_Overflow and 1 for c3, results in a 1 for the 
Signed_Overflow signal. 

In another example, adding the two 4-bit signed numbers, –4 + (–3) = –7 should not result in a signed overflow. 
Performing the arithmetic in binary, –4 = 1100 and –3 = 1101, as shown here: 

1 1 0

111+

101
1

0

0

1 0

c3

Unsigned
Overflow

1 XOR 1 = 0
Signed

Overflow  

we get 1100 + 1101 = 11001, which produces a 1 for both Unsigned_Overflow and c3. XORing these two values 
together gives a 0 for the Signed_Overflow signal. On the other hand, if we treat the two binary numbers, 1100 and 
1101, as unsigned numbers, then we are adding 12 + 13 = 25. 25 is outside the unsigned number range, and so the 
Unsigned_Overflow signal should be asserted. 

The behavioral VHDL code for the 4-bit adder-subtractor combination circuit is shown in Figure 4.9. The 
GENERIC keyword declares a read-only constant identifier, n, of type INTEGER having a default value of 4. This 
constant identifier is then used in the declaration of the STD_LOGIC_VECTOR size for the three vectors: A, B, and F. 

The Unsigned_Overflow bit is obtained by performing the addition or subtraction operation using n + 1 bits.  
The two operands are zero extended using the & symbol for concatenation before the operation is performed. The 
result of the operation is stored in the n + 1 bit vector, result. The most significant bit of this vector, result(n), is the 
Unsigned_Overflow bit. 

To get the Signed_Overflow bit, we need to XOR the Unsigned_Overflow bit with the carry bit, c3, from the 
second-to-last bit slice. The c3 bit is obtained just like how the Unsigned_Overflow bit is obtained, except that the 
operation is performed on only the first n – 1 bits of the two operands. The vector c3 of length n is used for storing 
the result of the operation. The Signed_Overflow signal is the XOR of signed_result(n) with c3(n–1). 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

111



ENTITY AddSub IS
GENERIC(n: INTEGER :=4); -- default number of bits = 4
PORT(S: IN STD_LOGIC; -- select subtract signal

A: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
F: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0);
unsigned_overflow: OUT STD_LOGIC;
signed_overflow: OUT STD_LOGIC);

END AddSub;

ARCHITECTURE Behavioral OF AddSub IS
-- temporary result for extracting the unsigned overflow bit
SIGNAL result: STD_LOGIC_VECTOR(n DOWNTO 0);
-- temporary result for extracting the c3 bit
SIGNAL c3: STD_LOGIC_VECTOR(n-1 DOWNTO 0);

BEGIN
PROCESS(S, A, B)
BEGIN
IF (S = '0') THEN -- addition
-- the two operands are zero extended one extra bit before adding
-- the & is for string concatination
result <= ('0' & A) + ('0' & B);
c3 <= ('0' & A(n-2 DOWNTO 0)) + ('0' & B(n-2 DOWNTO 0));
F <= result(n-1 DOWNTO 0); -- extract the n-bit result
unsigned_overflow <= result(n); -- get the unsigned overflow bit
signed_overflow <= result(n) XOR c3(n-1); -- get signed overflow bit

ELSE -- subtraction
-- the two operands are zero extended one extra bit before subtracting
-- the & is for string concatination
result <= ('0' & A) - ('0' & B);
c3 <= ('0' & A(n-2 DOWNTO 0)) - ('0' & B(n-2 DOWNTO 0));
F <= result(n-1 DOWNTO 0); -- extract the n-bit result
unsigned_overflow <= result(n); -- get the unsigned overflow bit
signed_overflow <= result(n) XOR c3(n-1); -- get signed overflow bit

END IF;
END PROCESS;

END Behavioral;

Figure 4.9 Behavioral VHDL code for a 4-bit adder-subtractor combination component.  

4.6 Arithmetic Logic Unit 
The arithmetic logic unit (ALU) is one of the main components inside a microprocessor. It is responsible for 

performing arithmetic and logic operations, such as addition, subtraction, logical AND, and logical OR. The ALU, 
however, is not used to perform multiplications or divisions. It turns out that, in constructing the circuit for the ALU, 
we can use the same idea as for constructing the adder-subtractor combination circuit, as discussed in the previous 
section. Again, we will use the ripple-carry adder as the building block and then insert some combinational logic 
circuitry in front of the two input operands to each full adder. This way, the primary inputs will be modified 
accordingly, depending on the operations being performed before being passed to the full adder. The general, overall 
circuit for a 4-bit ALU is shown in Figure 4.10(a), and its logic symbol in (b). 

As we can see in the figure, the two combinational circuits in front of the full adder (FA) are labeled LE and 
AE. The logic extender (LE) is for manipulating all logical operations; whereas, the arithmetic extender (AE) is for 
manipulating all arithmetic operations. The LE performs the actual logical operations on the two primary operands, 
ai and bi, before passing the result to the first operand, xi, of the FA. On the other hand, the AE only modifies the 
second operand, bi, and passes it to the second operand, yi, of the FA where the actual arithmetic operation is 
performed. 
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Figure 4.10 4-bit ALU: (a) circuit; (b) logic symbol. 

We saw from the adder-subtractor circuit that, to perform additions and subtractions, we only need to modify yi 
(the second operand to the FA) so that all operations can be done with additions. Thus, the AE only takes the second 
operand of the primary input, bi, as its input and modifies the value depending on the operation being performed. Its 
output is yi, and it is connected to the second operand input of the FA. As in the adder-subtractor circuit, the addition 
is performed in the FA. When arithmetic operations are being performed, the LE must pass the first operand 
unchanged from the primary input ai to the output xi for the FA. 

Unlike the AE (where it only modifies the operand) the LE performs the actual logical operations. Thus, for 
example, if we want to perform the operation A OR B, the LE for each bit slice will take the corresponding bits, ai 
and bi, and OR them together. Hence, one bit from both operands, ai and bi, are inputs to the LE. The output of the 
LE is passed to the first operand, xi, of the FA. Since this value is already the result of the logical operation, we do 
not want the FA to modify it but to simply pass it on to the primary output, fi. This is accomplished by setting both 
the second operand, yi, of the FA, and c0 to 0 since adding a 0 will not change the resulting value. 

The combinational circuit labeled CE (for carry extender) is for modifying the primary carry-in signal, c0, so 
that arithmetic operations are performed correctly. Logical operations do not use the carry signal, so c0 is set to 0 for 
all logical operations. 

 

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

113



s2 s1 s0 Operation Name Operation xi (LE) yi (AE) c0 (CE) 
0 0 0 Pass Pass A to output ai 0 0 
0 0 1 AND A AND B ai AND bi 0 0 
0 1 0 OR A OR B ai OR bi 0 0 
0 1 1 NOT A' ai' 0 0 
1 0 0 Addition A + B ai bi 0 
1 0 1 Subtraction A – B ai bi' 1 
1 1 0 Increment A + 1 ai 0 1 
1 1 1 Decrement A – 1 ai 1 0 

(a) 
 

s2 s1 s0 xi 
0 0 0 ai 
0 0 1 ai bi 
0 1 0 ai + bi 
0 1 1 ai' 
1 × × ai 

 

(b) 

s2 s1 s0 bi yi 
0 × × × 0 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 1 
1 1 1 1 1 

(c) 

s2 s1 s0 c0 
0 × × 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 

 

(d) 

Figure 4.11 ALU operations: (a) function table; (b) LE truth table; (c) AE truth table; (d) CE truth table. 

In the circuit shown in Figure 4.10, three select lines, s2, s1, and s0, are used to select the operations of the ALU. 
With these three select lines, the ALU circuit can implement up to eight different operations. Suppose that the 
operations that we want to implement in our ALU are as defined in Figure 4.11(a). The xi column shows the values 
that the LE must generate for the different operations. The yi column shows the values that the AE must generate. 
The c0 column shows the carry signals that the CE must generate. 

For example, for the pass-through operation, the value of ai is passed through without any modifications to xi. 
For the AND operation, xi gets the result of ai AND bi. As mentioned before, both yi and c0 are set to 0 for all of the 
logical operations, because we do not want the FA to change the results. The FA is used only to pass the results from 
the LE straight through to the output F. For the subtraction operation, instead of subtracting B, we want to add –B. 
Changing B to –B in two’s complement format requires flipping the bits of B and then adding a 1. Thus, yi gets the 
inverse of bi, and the 1 is added through the carry-in c0. To increment A, we set yi to all 0’s, and add the 1 through 
the carry-in c0. To decrement A, we add a –1 instead. Negative one in two’s complement format is a bit string with 
all 1’s. Hence, we set yi to all 1’s and the carry-in c0 to 0. For all the arithmetic operations, we need the first operand, 
A, unchanged for the FA. Thus, xi gets the value of ai for all arithmetic operations. 

Figure 4.11(b), (c) and (d) show the truth tables for the LE, AE, and CE respectively. The LE circuit is derived 
from the xi column of Figure 4.11(b); the AE circuit is derived from the yi column of Figure 4.11(c); and the CE 
circuit is derived from the c0 column of Figure 4.11(d). Notice that xi is dependent on five variables, s2, s1, s0, ai, and 
bi; whereas yi is dependent on only four variables, s2, s1, s0, and bi; and c0 is dependent on only the three select lines, 
s2, s1, and s0. The K-maps, equations, and schematics for these three circuits are shown in Figure 4.12. 

The behavioral VHDL code for the ALU is shown in Figure 4.13, and a sample simulation trace for all the 
operations using the two inputs 5 and 3 is shown in Figure 4.14. 
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Figure 4.12 K-maps, equations, and schematics for: (a) LE; (b) AE; and (c) CE. 
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LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
-- The following package is needed so that the STD_LOGIC_VECTOR signals
-- A and B can be used in unsigned arithmetic operations.
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY alu IS PORT (
S: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- select for operations
A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0); -- input operands
F: OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); -- output

END alu;

ARCHITECTURE Behavior OF alu IS
BEGIN

PROCESS(S, A, B)
BEGIN

CASE S IS
WHEN "000" => -- pass A through
F <= A;

WHEN "001" => -- AND
F <= A AND B;

WHEN "010" => -- OR
F <= A OR B;

WHEN "011" => -- NOT A
F <= NOT A;

WHEN "100" => -- add
F <= A + B;

WHEN "101" => -- subtract
F <= A - B;

WHEN "110" => -- increment
F <= A + 1;

WHEN OTHERS => -- decrement
F <= A - 1;

END CASE;
END PROCESS;

END Behavior;

Figure 4.13 Behavioral VHDL code for an ALU.  

 

 
Figure 4.14 Sample simulation trace with the two input operands 5 and 3 for all of the eight operations. 

AND OR NOT A Add Subtract Increment DecrementPass A 
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4.7 Decoder 
A decoder, also known as a demultiplexer, asserts one out of n output lines, depending on the value of an m-

bit binary input data. In general, an m-to-n decoder has m input lines, Am-1, …, A0, and n output lines, Yn-1, …, Y0, 
where n = 2m. In addition, it has an enable line, E, for enabling the decoder. When the decoder is disabled with E set 
to 0, all the output lines are de-asserted. When the decoder is enabled, then the output line whose index is equal to 
the value of the input binary data is asserted. For example, for a 3-to-8 decoder, if the input address is 101, then the 
output line Y5 is asserted (set to 1 for active-high) while the rest of the output lines are de-asserted (set to 0 for 
active-high). 

A decoder is used in a system having multiple components, and we want only one component to be selected or 
enabled at any one time. For example, in a large memory system with multiple memory chips, only one memory 
chip is enabled at a time. One output line from the decoder is connected to the enable input on each memory chip. 
Thus, an address presented to the decoder will enable that corresponding memory chip. The truth table, circuit, and 
logic symbol for a 3-to-8 decoder are shown in Figure 4.15. 

A larger size decoder can be implemented using several smaller decoders. For example, Figure 4.16 uses seven 
1-to-2 decoders to implement a 3-to-8 decoder. The correct operation of this circuit is left as an exercise for the 
reader. 

The behavioral VHDL code for the 3-to-8 decoder is shown in Figure 4.17. 
 

E A2 A1 A0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 
0 × × × 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 0 0 1 0 
1 0 1 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 1 0 0 0 
1 1 0 0 0 0 0 1 0 0 0 0 
1 1 0 1 0 0 1 0 0 0 0 0 
1 1 1 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 

(a) 

 

A1
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E

Y0Y1Y2Y3Y4Y5Y6Y7

A2

 

Y2 Y1 Y0Y3Y4Y5Y6Y7

A2 A1 A0

E

 

 (b) (c) 

Figure 4.15 A 3-to-8 decoder: (a) truth table; (b) circuit; (c) logic symbol. 
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Y3 Y2 Y1 Y0

A2 A1

E1 0

E1 0 E1 0

E1 0 E1 0 E1 0 E1 0

A0E

Y5 Y4Y7 Y6  
Figure 4.16 A 3-to-8 decoder implemented with seven 1-to-2 decoders 

-- A 3-to-8 decoder
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Decoder IS PORT(
E: IN STD_LOGIC; -- enable
A: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- 3 bit address
Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- data bus output

END Decoder;

ARCHITECTURE Behavioral OF Decoder IS
BEGIN

PROCESS (E, A)
BEGIN
IF (E = '0') THEN -- disabled
Y <= (OTHERS => '0'); -- 8-bit vector of 0

ELSE
CASE A IS -- enabled
WHEN "000" => Y <= "00000001";
WHEN "001" => Y <= "00000010";
WHEN "010" => Y <= "00000100";
WHEN "011" => Y <= "00001000";
WHEN "100" => Y <= "00010000";
WHEN "101" => Y <= "00100000";
WHEN "110" => Y <= "01000000";
WHEN "111" => Y <= "10000000";
WHEN OTHERS => NULL;

END CASE;
END IF;

END PROCESS;
END Behavioral;

Figure 4.17 Behavioral VHDL code for a 3-to-8 decoder. 
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4.8 Encoder 
An encoder is almost like the inverse of a decoder where it encodes a 2n-bit input data into an n-bit code. The 

encoder has 2n input lines and n output lines, as shown by the logic symbol in Figure 4.18(c) for n = 3. The 
operation of the encoder is such that exactly one of the input lines should have a 1 while the remaining input lines 
should have 0’s. The output is the binary value of the index of the input line that has the 1. The truth table for an 8-
to-3 encoder is shown in Figure 4.18(a). For example, when input I3 is a 1, the three output bits Y2, Y1, and Y0, are set 
to 011, which is the binary number for the index 3. Entries having multiple 1’s in the truth table inputs are ignored, 
since we are assuming that only one input line can be a 1.  

Looking at the three output columns in the truth table, we obtain the three equations shown in Figure 4.18(b), 
and the resulting circuit in (c). The logic symbol is shown in Figure 4.18(d). 

Encoders are used to reduce the number of bits needed to represent some given data either in data storage or in 
data transmission. Encoders are also used in a system with 2n input devices, each of which may need to request for 
service. One input line is connected to one input device. The input device requesting for service will assert the input 
line that is connected to it. The corresponding n-bit output value will indicate to the system which of the 2n devices 
is requesting for service. For example, if device 5 requests for service, it will assert the I5 input line. The system will 
know that device 5 is requesting for service, since the output will be 101 = 5. However, this only works correctly if 
it is guaranteed that only one of the 2n devices will request for service at any one time. 

If two or more devices request for service at the same time, then the output will be incorrect. For example, if 
devices 1 and 4 of the 8-to-3 encoder request for service at the same time, then the output will also be 101, because 
I4 will assert the Y2 signal, and I1 will assert the Y0 signal. To resolve this problem, a priority is assigned to each of 
the input lines so that when multiple requests are made, the encoder outputs the index value of the input line with the 
highest priority. This modified encoder is known as a priority encoder. 
 

I7 I6 I5 I4 I3 I2 I1 I0 Y2 Y1 Y0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 1 
0 0 0 0 0 1 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 1 1 
0 0 0 1 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 1 0 1 
0 1 0 0 0 0 0 0 1 1 0 
1 0 0 0 0 0 0 0 1 1 1 

(a) 

Y0 = I1 + I3 + I5 + I7 
Y1 = I2 + I3 + I6 + I7 
Y2 = I4 + I5 + I6 + I7 

 

(b) 
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(c) 

I2 I1 I0I3I4I5I6I7

Y2 Y1 Y0

 
 

(d) 

Figure 4.18 An 8-to-3 encoder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol. 
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4.8.1 * Priority Encoder 

The truth table for an active-high 8-to-3 priority encoder is shown in Figure 4.19. The table assumes that input 
I7 has the highest priority, and I0 has the lowest priority. For example, if the highest priority input asserted is I3, then 
it doesn’t matter whether the lower priority input lines, I2, I1 and I0, are asserted or not; the output will be for that of 
I3, which is 011. Since it is possible that no inputs are asserted, there is an extra output, Z, that is needed to 
differentiate between when no inputs are asserted and when one or more inputs are asserted. Z is set to a 1 when one 
or more inputs are asserted; otherwise, Z is set to 0. When Z is 0, all of the Y outputs are meaningless. 
 

I7 I6 I5 I4 I3 I2 I1 I0 Y2 Y1 Y0 Z 
0 0 0 0 0 0 0 0 × × × 0 
0 0 0 0 0 0 0 1 0 0 0 1 
0 0 0 0 0 0 1 × 0 0 1 1 
0 0 0 0 0 1 × × 0 1 0 1 
0 0 0 0 1 × × × 0 1 1 1 
0 0 0 1 × × × × 1 0 0 1 
0 0 1 × × × × × 1 0 1 1 
0 1 × × × × × × 1 1 0 1 
1 × × × × × × × 1 1 1 1 

Figure 4.19 An 8-to-3 priority encoder truth table. 

An easy way to derive the equations for the 8-to-3 priority encoder is to define a set of eight intermediate 
variables, v0, …, v7, such that vk is a 1 if Ik is the highest priority 1 input. Thus, the equations for v0 to v7 are: 

v0 = I7' I6' I5' I4' I3' I2' I1' I0 
v1 = I7' I6' I5' I4' I3' I2' I1 
v2 = I7' I6' I5' I4' I3' I2 
v3 = I7' I6' I5' I4' I3 
v4 = I7' I6' I5' I4 
v5 = I7' I6' I5 
v6 = I7' I6 
v7 = I7 

Using these eight intermediate variables, the final equations for the priority encoder are similar to the ones for 
the regular encoder, namely: 

Y0 = v1 + v3 + v5 + v7 
Y1 = v2 + v3 + v6 + v7 
Y2 = v4 + v5 + v6 + v7 

Finally, the equation for Z is simply 

Z = I7 + I6 + I5 + I4 + I3 + I2 + I1 + I0 

4.9 Multiplexer 
The multiplexer, or MUX for short, allows the selection of one input signal among n signals, where n > 1, and 

is a power of two. Select lines connected to the multiplexer determine which input signal is selected and passed to 
the output of the multiplexer. In general, an n-to-1 multiplexer has n data input lines, m select lines where m = log2 
n, i.e. 2m = n, and one output line. For a 2-to-1 multiplexer, there is one select line, s, to select between the two 
inputs, d0 and d1. When s = 0, the input line d0 is selected, and the data present on d0 is passed to the output y. When 
s = 1, the input line d1 is selected and the data on d1 is passed to y. The truth table, equation, circuit, and logic 
symbol for a 2-to-1 multiplexer are shown in Figure 4.20. 
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s d1 d0 y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

(a) 

y = s'd1'd0 + s'd1d0 + sd1d0' + sd1d0 
 = s'd0(d1' + d1) + sd1(d0' + d0) 
 = s'd0 + sd1 

 

(b) 

s

d0

d1

y

 

(b) 

d1 d0s
y

 

(c) 

Figure 4.20 A 2-to-1 multiplexer: (a) truth table; (b) equation; (c) circuit; (d) logic symbol. 

Constructing a larger size multiplexer, such as the 8-to-1 multiplexer, can be done similarly. In addition to 
having the eight data input lines, d0 to d7, the 8-to-1 multiplexer has three (23 = 8) select lines, s0, s1, and s2. 
Depending on the value of the three select lines, one of the eight input lines will be selected and the data on that 
input line will be passed to the output. For example, if the value of the select lines is 101, then the input line d5 is 
selected, and the data that is present on d5 will be passed to the output. 

The truth table, circuit, and logic symbol for the 8-to-1 multiplexer are shown in Figure 4.21. The truth table is 
written in a slightly different format. Instead of including the d’s in the input columns and enumerating all 211 = 
2048 rows (the eleven variables come from the eight d’s and the three s’s), the d’s are written in the entry under the 
output column. For example, when the select line value is 101, the entry under the output column is d5, which means 
that y takes on the value of the input line d5. 

To understand the circuit in Figure 4.21(b), notice that each AND gate acts as a switch and is turned on by one 
combination of the three select lines. When a particular AND gate is turned on, the data at the corresponding d input 
is passed through that AND gate. The outputs of the remaining AND gates are all 0’s. 
 

s2 s1 s0 y 
0 0 0 d0 
0 0 1 d1 
0 1 0 d2 
0 1 1 d3 
1 0 0 d4 
1 0 1 d5 
1 1 0 d6 
1 1 1 d7 

(a) 

d7 d6 d5 d4 d3 d2 d1 d0
s2

y

s1

s0

 

(b) 

s2
s1

d1 d0d2d3d4d5d6d7

s0 y
 

 
 

(c) 
 

Figure 4.21 An 8-to-1 multiplexer: (a) truth table; (b) circuit; (c) logic symbol. 

Instead of using 4-input AND gates (where three of its inputs are used by the three select lines to turn it on) we 
can use 2-input AND gates, as shown in Figure 4.22(a). This way the AND gate is turned on with just one line. The 
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eight 2-input AND gates can be turned on individually from the eight outputs of a 3-to-8 decoder. Recall from 
Section 4.7 that the decoder asserts only one output line at any time. 

Larger multiplexers can also be constructed from smaller multiplexers. For example, an 8-to-1 multiplexer can 
be constructed using seven 2-to-1 multiplexers as shown in Figure 4.22(b). The four top-level 2-to-1 multiplexers 
provide the eight data inputs and all are switched by the same least significant select line s0. This top level selects 
one from each group of two data inputs. The middle level then groups the four outputs from the top level again into 
groups of two and selects one from each group using the select line s1. Finally, the multiplexer at the bottom level 
uses the most significant select line s2 to select one of the two outputs from the middle level multiplexers. 

The VHDL code for an 8-bit wide 4-to-1 multiplexer is shown in Figure 4.23. Two different implementations of 
the same multiplexer are shown. Figure 4.23(a) shows the architecture code written at the behavioral level, since it 
uses a PROCESS statement. Inside the PROCESS block, a CASE statement is used to select between the four choices for 
S. Figure 4.23(b) shows a dataflow level architecture code using a concurrent selected signal assignment statement 
using the keyword WITH … SELECT. In the first choice, if S is equal to 00, then the value D0 is assigned to Y. If S 
does not match any one of the four choices, 00, 01, 10, and 11, then the WHEN OTHERS clause is selected. The syntax 
(OTHERS => 'U') means to fill the entire vector with the value “U”. 
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Figure 4.22 An 8-to-1 multiplexer implemented using: (a) a 3-to-8 decoder; (b) seven 2-to-1 multiplexers. 

-- A 4-to-1 8-bit wide multiplexer
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Multiplexer IS
PORT(S: IN STD_LOGIC_VECTOR(1 DOWNTO 0); -- select lines

D0, D1, D2, D3: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- data bus input
Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- data bus output

END Multiplexer;

-- Behavioral level code
ARCHITECTURE Behavioral OF Multiplexer IS
BEGIN

PROCESS (S,D0,D1,D2,D3)
BEGIN
CASE S IS
WHEN "00" => Y <= D0;
WHEN "01" => Y <= D1;
WHEN "10" => Y <= D2;
WHEN "11" => Y <= D3;
WHEN OTHERS => Y <= (OTHERS => 'U'); -- 8-bit vector of U
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END CASE;
END PROCESS;

END Behavioral;

(a) 

-- Dataflow level code
ARCHITECTURE Dataflow OF Multiplexer IS
BEGIN

WITH S SELECT Y <=
D0 WHEN "00",
D1 WHEN "01",
D2 WHEN "10",
D3 WHEN "11",
(OTHERS => 'U') WHEN OTHERS; -- 8-bit vector of U

END Dataflow;

(b) 

Figure 4.23 VHDL code for an 8-bit wide 4-to-1 multiplexer: (a) behavioral level; (b) dataflow level.  

4.9.1 * Using Multiplexers to Implement a Function 

Multiplexers can be used to implement a Boolean function very easily. In general, for an n-variable function, a 
2n-to-1 multiplexer (that is, a multiplexer with n select lines) is needed. An n-variable function has 2n minterms, and 
each minterm corresponds to one of the 2n multiplexer inputs. The n input variables are connected to the n select 
lines of the multiplexer. Depending on the values of the n variables, one data input line will be selected, and the 
value on that input line is passed to the output. Therefore, all we need to do is to connect all the data input lines to 
either a 1 or a 0, depending on whether we want that corresponding minterm to be a 1-minterm or a 0-minterm, 
respectively. 

Figure 4.24 shows the implementation of the 3-variable function, F (x, y, z) = x'y'z' + x'yz' + xy'z + xyz' + xyz. 
The 1-minterms for this function are m0, m2, m5, m6, and m7, so the corresponding data input lines, d0, d2, d5, d6, and 
d7 are connected to a 1, while the remaining data input lines are connected to a 0. For example, the 0-minterm x'yz 
has the value 011, which will select the d3 input, so a 0 passes to the output. On the other hand, the 1-minterm xy'z 
has the value 101, which will select the d5 input, so a 1 passes to the output. 

s2
s1

d1 d0d2d3d4d5d6d7

s0 y

y
x

z

F

01 000111

 
Figure 4.24 Using an 8-to-1 multiplexer to implement the function F (x, y, z) = x'y'z' + x'yz' + xy'z + xyz' + xyz. 

4.10 Tri-state Buffer 
A tri-state buffer, as the name suggests, has three states: 0, 1, and a third state denoted by Z. The value Z 

represents a high-impedance state, which for all practical purposes acts like a switch that is opened or a wire that is 
cut. Tri-state buffers are used to connect several devices to the same bus. A bus is one or more wire for transferring 
signals. If two or more devices are connected directly to a bus without using tri-state buffers, signals will get 
corrupted on the bus because the devices are always outputting either a 0 or a 1. However, with a tri-state buffer in 
between, devices that are not using the bus can disable the tri-state buffer so that it acts as if those devices are 
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physically disconnected from the bus. At any one time, only one active device will have its tri-state buffers enabled, 
and thus, use the bus. 

The truth table and symbol for the tri-state buffer is shown in Figure 4.25(a) and (b). The active high enable line 
E turns the buffer on or off. When E is de-asserted with a 0, the tri-state buffer is disabled, and the output y is in its 
high-impedance Z state. When E is asserted with a 1, the buffer is enabled, and the output y follows the input d. 

A circuit consisting of only logic gates cannot produce the high impedance state required by the tri-state buffer, 
since logic gates can only output a 0 or a 1. To provide the high impedance state, the tri-state buffer circuit uses two 
transistors in conjunction with logic gates, as shown in Figure 4.25(c). Section 5.3 will discuss the operations of 
these two transistors in detail. For now, we will keep it simple. The top PMOS transistor is enabled with a 0 at the 
node labeled A, and when it is enabled, a 1 signal from Vcc passes down through the transistor to y. The bottom 
NMOS transistor is enabled with a 1 at the node labeled B, and when it is enabled, a 0 signal from ground passes up 
through the transistor to y. When the two transistors are disabled (with A = 1 and B = 0) they will both output a high 
impedance Z value; so y will have a Z value. 

Having the two transistors, we need a circuit that will control these two transistors so that together they realize 
the tri-state buffer function. The truth table for this control circuit is shown in Figure 4.25(d). The truth table is 
derived as follows. When E = 0, it does not matter what the input d is, we want both transistors to be disabled so that 
the output y has the Z value. The PMOS transistor is disabled when the input A = 1; whereas, the NMOS transistor is 
disabled when the input B = 0. When E = 1 and d = 0, we want the output y to be a 0. To get a 0 on y, we need to 
enable the bottom NMOS transistor and disable the top PMOS transistor so that a 0 will pass through the NMOS 
transistor to y. To get a 1 on y for when E = 1 and d = 1, we need to do the reverse by enabling the top PMOS 
transistor and disabling the bottom NMOS transistor. 

The resulting circuit is shown in Figure 4.25(c). When E = 0, the output of the NAND gate is a 1, regardless of 
what the other input is, and so the top PMOS transistor is turned off. Similarly, the output of the AND gate is a 0, so 
the bottom NMOS transistor is also turned off. Thus, when E = 0, both transistors are off, so the output y is in the Z 
state. 

When E = 1, the outputs of both the NAND and AND gates are equal to d'.  So if d = 0, the output of the two gates 
are both 1, so the bottom transistor is turned on while the top transistor is turned off. Thus, y will have the value 0, 
which is equal to d. On the other hand, if d = 1, the top transistor is turned on while the bottom transistor is turned 
off, and y will have the value 1. 

The behavioral VHDL code for an 8-bit wide tri-state buffer is shown in Figure 4.26. 
 

E y 
0 Z 
1 d 

 

(a) 

E

d y
 

 
 

(b) 

d

E

A

B

Vcc

y

PMOS

NMOS

 
(c) 

E d A B y 
0 0 1 0 Z 
0 1 1 0 Z 
1 0 1 1 0 
1 1 0 0 1 

(d) 

Figure 4.25 Tri-state buffer: (a) truth table; (b) logic symbol; (c) circuit; (d) truth table for the control portion of the 
tri-state buffer circuit. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY TriState_Buffer IS PORT (
E: IN STD_LOGIC;
d: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END TriState_Buffer;
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ARCHITECTURE Behavioral OF TriState_Buffer IS
BEGIN

PROCESS (E, d)
BEGIN
IF (E = '1') THEN
y <= d;

ELSE
y <= (OTHERS => 'Z'); -- to get 8 Z values

END IF;
END PROCESS;

END Behavioral;

Figure 4.26 VHDL code for an 8-bit wide tri-state buffer.  

4.11 Comparator 
Quite often, we need to compare two values for their arithmetic relationship (equal, greater, less than, etc.). A 

comparator is a circuit that compares two binary values and indicates whether the relationship is true or not. To 
compare whether a value is equal or not equal to a constant value, a simple AND gate can be used. For example, to 
compare a 4-bit variable x with the constant 3, the circuit in Figure 4.27(a) can be used. The AND gate outputs a 1 
when the input is equal to the value 3. Since 3 is 0011 in binary, therefore, x3 and x2 must be inverted. 

The XOR and XNOR gates can be used for comparing inequality and equality, respectively, between two values. 
The XOR gate outputs a 1 when its two input values are different. Hence, we can use one XOR gate for comparing 
each bit pair of the two operands. A 4-bit inequality comparator is shown in Figure 4.27(b). Four XOR gates are used, 
with each one comparing the same bit from the two operands. The outputs of the XOR gates are ORed together so that 
if any bit pair is different then the two operands are different, and the resulting output is a 1. Similarly, an equality 
comparator can be constructed using XNOR gates instead, since the XNOR gate outputs a 1 when its two input values 
are the same. 

To compare the greater-than or less-than relationships, we can construct a truth table and build the circuit from 
it. For example, to compare whether a 4-bit value X is less than five, we get the truth table, equation, and circuit 
shown in Figure 4.27(c). 
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x0

x1
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x3

 
(a) 

 

F

x3y3x2y2x1y1x0y0  
(b) 

 
x3 x2 x1 x0 X < 5 
0 0 0 0 1 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 1 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 0 
1 × × × 0 

 (X < 5) = x3'x2' + x3'x2x1'x0' 

(X < 5)

x0x1x2x3

 

(c) 
 
Figure 4.27 Simple 4-bit comparators for: (a) X = 3; (b) X ≠ Y; (c) X < 5. 

Instead of constructing a comparator for a fixed number of bits for the input values, we often prefer to construct 
an iterative circuit by constructing a 1-bit slice comparator and then daisy chaining n of them together to make an 
n-bit comparator. The 1-bit slice comparator will have, in addition to the two input operand bits, xi and yi, a pi bit 
that keeps track of whether all the previous bit pairs compared so far are true or not for that particular relationship. 
The circuit outputs a 1 if pi = 1, and the relationship is true for the current bit pair xi and yi. Figure 4.28(a) shows a 1-
bit slice comparator for the equal relationship. If the current bit pair, xi and yi, is equal, the XNOR gate will output a 1. 
Hence, pi+1 = 1 if the current bit pair is equal and the previous bit pair, pi, is a 1. To obtain a 4-bit iterative equality 
comparator, we connect four 1-bit equality comparators in series, as shown in Figure 4.28(b). The initial p0 bit must 
be set to a 1. Thus, if all four bit pairs are equal, then the last bit, p4, will be a 1; otherwise, p4 will be a 0. 

EQ

xi yi

pi
pi+1

 

(a) 

'1'EQ EQEQ EQ

x3 y3 x2 y2 x1 y1 x0 y0

p0p1p2p3p4

 

(b) 

Figure 4.28 Iterative comparators: (a) 1-bit slice for xi = yi; (b) 4-bit X = Y. 

Building an iterative comparator circuit for the greater-than relationship is slightly more difficult. The 1-bit slice 
comparator circuit for the condition xi > yi is constructed as follows. In addition to the two operand input bits, xi and 
yi, there are also two status input bits, gin and ein. Here, gin is a 1 if the condition xi > yi is true for the previous bit 
slice; otherwise, gin is a 0. Furthermore, ein is a 1 if the condition xi = yi is true; otherwise ein is a 0. The circuit also 
has two status output bits, gout and eout, having the same meaning as the gin and ein signals. These two input and two 
output status bits allow the bit slices to be daisy-chained together. Following the above description of the 1-bit slice, 
we obtain the truth table shown in Figure 4.29(a). The equations for eout and gout are shown in Figure 4.29(b), and the 
1-bit slice circuit in (c). 
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In order for the bit slices to operate correctly, we need to perform the comparisons from the most significant bit 
to the least significant bit. The complete 4-bit iterative comparator circuit for the condition xi > yi is shown in Figure 
4.29(d). The initial values for gin and ein must be set to gin = 0 and ein = 1. 

If x = y, then the last eout is a 1, otherwise, eout is a 0. If the last eout is a 0, then the last gout can be either a 1 or a 
0. If x > y then gout is a 1; otherwise, gout is a 0. Notice that both eout and gout cannot be both 1’s. The operation of this 
comparator circuit is summarized in Figure 4.29(e). 
 

gin ein xi yi Meaning gout eout 

0 0 × × < 0 0 
0 1 0 0 = 0 1 
0 1 0 1 < 0 0 
0 1 1 0 > 1 0 
0 1 1 1 = 0 1 
1 0 × × > 1 0 
1 1 × × Invalid 1 1 

(a) 
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(b) 
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>
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>
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>
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>
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(d) 
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Condition eout gout 

Invalid 1 1 
x = y 1 0 
x > y 0 1 
x < y 0 0 

(e) 

Figure 4.29 Comparator for x > y: (a) truth table for 1-bit slice; (b) K-maps and equations for gout and eout; (c) circuit 
for 1-bit slice; (d) 4-bit x > y comparator circuit; (e) operational table. 

4.12 Shifter 
The shifter is used for shifting bits in a binary word one position either to the left or to the right. The operations 

for the shifter are referred to either as shifting or rotating, depending on how the end bits are shifted in or out. For a 
shift operation, the two end bits do not wrap around; whereas for a rotate operation, the two end bits wrap around. 
Figure 4.30 shows six different shift and rotate operations. 

For example, for the “Shift left with 0” operation, all the bits are shifted one position to the left. The original 
leftmost bit is shifted out (i.e. discarded) and the rightmost bit is filled with a 0. For the “Rotate left” operation, all 
the bits are shifted one position to the left. However, instead of discarding the leftmost bit, it is shifted in as the 
rightmost bit (i.e. it rotates around). 
For each bit position, a multiplexer is used to move a bit from either the left or right to the current bit position. The 
size of the multiplexer will determine the number of operations that can be implemented. For example, we can use a 
4-to-1 multiplexer to implement the four operations, as specified by the table in Figure 4.31(a). Two select lines, s1 
and s0, are needed to select between the four different operations. For a 4-bit operand, we will need to use four 4-to-
1 multiplexers as shown in Figure 4.31(b). How the inputs to the multiplexers are connected will depend on the 
given operations. 

 
Operation Comment Example 

Shift left with 0 
Shift bits to the left one position. The 
leftmost bit is discarded and the rightmost 
bit is filled with a 0. 

10110100

101101000
 

Shift left with 1 Same as above, except that the rightmost bit 
is filled with a 1. 

10110100

101101001
 

Shift right with 0 
Shift bits to the right one position. The 
rightmost bit is discarded and the leftmost 
bit is filled with a 0. 

10110100

011010010
 

Shift right with 1 Same as above, except that the leftmost bit is 
filled with a 1. 

10110100

011010011
 

Rotate left 
Shift bits to the left one position. The 
leftmost bit is moved to the rightmost bit 
position. 

10110100

01101001
 

Rotate right 
Shift bits to the right one position. The 
rightmost bit is moved to the leftmost bit 
position. 

10110100

01101010
 

Figure 4.30 Shifter and rotator operations. 
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s1 s0 Operation 
0 0 Pass through 
0 1 Shift left and fill with 0 
1 0 Shift right and fill with 0 
1 1 Rotate right 

(a) 

out3

in3

out2

in2

out1

in1

out0

in0

'0' '0'

s1s0

0123
s1s0 y

MUX0

0123
s1s0 y

MUX1

0123
s1s0 y

MUX2

0123
s1s0 y

MUX3

 

(b) 

in0

out0out1out2out3

in1in2in3s1
s0

4-bit Shifter

 

 

(c) 

Figure 4.31 A 4-bit shifter: (a) operation table; (b) circuit; (c) logic symbol. 

In this example, when s1 = s0 = 0, we want to pass the bit straight through without shifting, i.e. we want the 
value for ini to pass to outi. Given s1 = s0 = 0, d0 of the multiplexer is selected, hence, ini is connected to d0 of muxi 
which outputs to outi. For s1 = 0 and s0 = 1, we want to shift left, i.e. we want the value for ini to pass to outi+1. With 
s1 = 0 and s0 = 1, d1 of the multiplexer is selected, hence, ini is connected to d1 of MUXi+1 which outputs to outi+1. 
For this selection, we also want to shift in a 0 bit, so d1 of MUX0 is connected directly to a 0.  

The behavioral VHDL code for an 8-bit shifter having the functions as defined in Figure 4.31(a) is shown in 
Figure 4.32. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY shifter IS PORT (
S: IN STD_LOGIC_VECTOR(1 DOWNTO 0); -- select for operations
input: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- input
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- output

END shifter;

ARCHITECTURE Behavior OF shifter IS
BEGIN

PROCESS(S, input)
BEGIN

CASE S IS
WHEN "00" => -- pass through
output <= input;

WHEN "01" => -- shift left with 0
output <= input(6 downto 0) & '0';

WHEN "10" => -- shift right with 0
output <= '0' & input(7 downto 1);

WHEN OTHERS => -- rotate right
output <= input(0) & input(7 DOWNTO 1);
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END CASE;
END PROCESS;

END Behavior;

Figure 4.32 Behavioral VHDL code for an 8-bit shifter having the operations as defined in Figure 4.31(a). 

4.12.1 * Barrel Shifter 

A barrel shifter is a shifter that can shift or rotate the data by any number of bits in a single operation. The 
select lines for a barrel shifter are used—not to determine what kind of operations (shift or rotate) to perform as for 
the general shifter—but rather to determine how many bits to move. Hence, only one particular operation can be 
implemented in a barrel shifter circuit. In general, an n-bit barrel shifter can shift the data bits by as much as n – 1 
bit distance away in one operation. 

Figure 4.33(a) shows the operation table of a 4-bit barrel shifter implementing the rotate left operation. When 
s1s0 = 00, no rotation is performed (i.e. a pass through). When s1s0 = 01, the data bits are rotated one position to the 
left. When s1s0 = 10, the data bits are rotated two positions to the left. The corresponding circuit is shown in Figure 
4.33(b). 

 
Select 
s1 s0 

Operation Output 
out3 out2 out1 out0 

00 No rotation in3 in2 in1 in0 
01 Rotate left by 1 bit position in2 in1 in0 in3 
10 Rotate left by 2 bit positions in1 in0 in3 in2 
11 Rotate left by 3 bit positions in0 in3 in2 in1 

(a) 

out3

in3

out2

in2

out1

in1

out0

in0

s1s0

0123
s1s0 y

MUX0

0123
s1s0 y

MUX1

0123
s1s0 y

MUX2

0123
s1s0 y

MUX3

 

(b) 

Figure 4.33 A 4-bit barrel shifter for the rotate left operation: (a) operation table; (b) circuit. 

4.13 * Multiplier 
In grade school, we were taught to multiply two numbers using a shift-and-add procedure. Regardless of 

whether the two numbers are in decimal or binary, we use the same shift-and-add procedure for multiplying them. In 
fact, multiplying with binary numbers is even easier because you are always multiplying with either a 0 or a 1. 
Figure 4.34(a) shows the multiplication of two 4-bit unsigned binary numbers, the multiplicand M (m3m2m1m0) with 
the multiplier Q (q3q2q1q0) to produce the resulting product P (p7p6p5p4p3p2p1p0). Notice that the intermediate 
products are always either the same as the multiplicand (if the multiplier bit is a 1) or it is zero (if the multiplier bit 
is a 0). 

We can derive a combinational multiplication circuit based on this shift-and-add procedure as shown in Figure 
4.34(b). Each intermediate product is obtained by ANDing the multiplicand M with one bit of the multiplier qi. Since 

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

130



qi is always a 1 or a 0, therefore, the output of the AND gates is always either mi or 0. For example, bit zero of the 
first intermediate product is obtained by ANDing m0 with q0; bit one is obtained by ANDing m1 with q0, and so on. 
Hence, the four bits for the first intermediate product are m3q0, m2q0, m1q0, and m0q0; the four bits for the second 
intermediate product are m3q1, m2q1, m1q1, and m0q1; and so on. 

Multiple adders are used to sum all the intermediate products together to give the final product. Each 
intermediate product is shifted over to the correct bit position for the addition. For example, p0 is just m0q0; p1 is the 
sum of m1q0 and m0q1; p2 is the sum of m2q0, m1q1 and m0q2; and so on. The four full adders (1-bit adders) in each 
row are connected, as in the ripple-carry adder with each carry-out signal connected to the carry-in of the next full 
adder. The carry-out of the last full adder is connected to the input of the last full adder in the row below. The last 
carry-out from the last row of adders is the value for p7 of the final product. As in the ripple-carry adder, all the 
initial carry-ins, c0, are set to a 0. 

Multiplicand (M)  1 1 0 1    m3 m2 m1 m0 

Multiplier (Q)       ×  1 0 1 1     ×  q3 q2 q1 q0 
   1 1 0 1    m3q0 m2q0 m1q0 m0q0 
 Intermediate products  1 1 0 1      m3q1 m2q1 m1q1 m0q1 
   0 0 0 0        m3q2 m2q2 m1q2 m0q2 
   +  1 1 0 1          +   m3q3 m2q3 m1q3 m0q3    
Product (P)  1 0 0 0 1 1 1 1 p7 p6 p5 p4 p3 p2 p1 p0 

 (a) 

p0p1p2p3p4p5p6p7

++++ 0

++++ 0

++++ 0

0

m3 q3 m2 q3 m1 q3 m0 q3

m3 q2 m2 q2 m1 q2 m0 q2

m3 q1 m2 q1 m1 q1 m0 q1

m3 q0 m2 q0 m1 q0 m0 q0

 

(b) 

Figure 4.34 Multiplication: (a) method; (b) circuit. 
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4.14 Summary Checklist 

� Full adder 
� Ripple-carry adder 
� Carry-lookahead adder 
� Two’s complement 
� Sign extension 
� Subtractor 
� Arithmetic logic unit (ALU) 
� Arithmetic extender (AE) 
� Logic extender (LE) 
� Carry extender (CE) 
� Decoder 
� Encoder 
� Priority encoder 
� Multiplexer (MUX) 
� Tri-state buffer 
� Z value 
� Comparator 
� Shifter 
� Barrel Shifter 
� Multiplier 
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4.15 Problems 

4.1. Convert the following numbers to 12-bit binary numbers using two’s complement representation. 
a) 23410 
b) –23410 
c) 2348 
d) BC416 
e) –47210  
Answer: 
a) 000011101010 
b) 111100010110 
c) 000 010 011100 
d) 101111000100 
e) 111000101000 

4.2. Convert the following two’s complement binary numbers to decimal, octal, & hexadecimal. 
a) 1001011 
b) 011110 
c) 101101 
d) 1101011001 
e) 0110101100 

Answer: 
 Decimal Octal Hexadecimal 

a) –53 713 CB 
b) 30 36 1E 
c) –19 55 ED 
d) –167 7531 F59 
e) 428 654 1AC 

4.3. Write the complete structural VHDL code for the full adder circuit shown in Figure 4.1(c). 
Answer 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Full_Adder IS PORT (
xi: IN STD_LOGIC;
yi: IN STD_LOGIC;
cin: IN STD_LOGIC;
si: OUT STD_LOGIC;
cout OUT STD_LOGIC);

END Full_Adder;

ARCHITECTURE Full_Adder_structural OF Full_Adder IS
SIGNAL xy, xxory, xxorycin: STD_LOGIC;
COMPONENT AND2 PORT (I0,I1: IN STD_LOGIC; O: OUT STD_LOGIC);

END COMPONENT;
COMPONENT XOR2 PORT (I0,I1: IN STD_LOGIC; O: OUT STD_LOGIC);

END COMPONENT;
COMPONENT OR2 PORT (I0,I1: IN STD_LOGIC; O: OUT STD_LOGIC);

END COMPONENT;

BEGIN
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U1: AND2 PORT MAP (xi, yi, xy);
U2: XOR2 PORT MAP (xi, yi, xxory);
U3: XOR2 PORT MAP (xxory, cin, si);
U4: AND2 PORT MAP (xxory, cin, xxorycin);
U5: OR2 PORT MAP (xy, xxorycin, cout);

END Full_Adder_structural;

4.4. Draw the smallest possible complete circuit for a 2-bit carry-lookahead adder. 
Answer: 

xi yi

ci

si

FAi =c1

x1 y1 x0 y0

c0

s0s1

FA1 FA0
c0 = 0

c1
x0y0

 

x1 y1

s1

x0 y0

s0

c1

 

4.5. Draw the complete circuit for a 4-bit carry-lookahead adder. 

4.6. Derive the carry-lookahead equation and circuit for c5. 

4.7. Show that when adding two n-bit signed numbers, An-1…A0 and Bn-1…B0, producing the result, Sn-1…S0, the 
Signed_Overflow flag can be deduced by the equation: 

Signed_Overflow = An-1 XOR Bn-1 XOR Sn-1 XOR Sn 

4.8. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all the equations 
to standard form. 

 
s2 s1 s0 Operations 
0 0 0 B – 1 
0 0 1 A NOR B 
0 1 0 A – B 
0 1 1 A XNOR B 
1 0 0 1 
1 0 1 A NAND B 
1 1 0 A plus B 
1 1 1 A' 

Answer: 
s2 s1 s0 ALU Operations LE AE CE 
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xi yi c0 

0 0 0 B – 1 bi 1 0 
0 0 1 A NOR B ai NOR bi 0 0 
0 1 0 A – B ai bi' 1 
0 1 1 A XNOR B ai XNOR bi 0 0 
1 0 0 1 0 0 1 
1 0 1 A NAND B ai NAND bi 0 0 
1 1 0 A + B ai bi 0 
1 1 1 A' ai' 0 0 

s1s0

aibi s2 = 1

00

1 1 1

1 1

1 1

01 11 10

00

s2 = 0

1

00
1

1

1 1

1 1

01 11 10

01

11

10

xi

s2s0ai'

s1s0'ai

s2s1's0bi'

s2's1's0'bi

s0ai'bi'

s2's1aibi  

xi = s0ai'bi' + s2's1's0'bi + s2s1's0bi' + s2s0ai' + s1s0'ai + s2's1aibi 

1

01

1 1

00

00

01

1011

1

11

10

s2bi
s1s0

yi

s2s1s0'bi

s2's1's0'

s2's0'bi'

 

yi = s2's0'bi' + s2's1's0' + s2s1s0'bi 

s1s0
s2

0

00
1

1

01 11 10

1

c0

 

c0 = s2s1's0' + s2's1s0' 
 = (s2 ⊕  s1)s0' 
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4.9. Draw the complete 4-bit ALU circuit having the following operations. Don’t-care values are assigned to unused 
select combinations. Use K-maps to reduce all the equations to standard form. 

 
s2 s1 s0 Operations 
0 0 0 Pass A through the LE 
0 0 1 Pass B through the LE 
0 1 0 NOT A 
0 1 1 NOT B 
1 0 0 A – B 
1 0 1 B – A 
1 1 0 B + 1 

Answer 
 

s2 s1 s0 Operations LE 
xi 

AE 
yi 

CE 
c0 

0 0 0 Pass A through the LE ai 0 0 
0 0 1 Pass B through the LE bi 0 0 
0 1 0 NOT A ai' 0 0 
0 1 1 NOT B bi' 0 0 
1 0 0 A – B ai bi' 1 
1 0 1 B – A ai' bi 1 
1 1 0 B + 1 bi 0 1 
1 1 1 Unused × × × 

 

s1s0

aibi s2 = 1

00
1 1

1 1

1 1

01 11 10

00

s2 = 0

00
1 1

1 1

1 1

1 1

01 11 10

01

11

10

xi

× × × ×

s1's0'ai

s2s0ai'

s2s1bi

s1s0bi'

s2's1's0bi

s2's1s0'ai'  
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xi = s1s0bi' + s2's1's0bi + s1's0'ai + s2s0ai' + s2s1bi + s2's1s0'ai' 

s2 s1 s0 ai bi

xi

 

0100

00

01

1011

1

1

11

10

s2bi
s1s0

yi

s2s0bi

s2s1's0'bi'

×××× ××××

 

yi = s2s1's0'bi' + s2s0bi 

s2 s1 s0 bi

yi

 

s2
s1s0

00 1

0

1

1

1

01

11

10

c0

×
s2

 

c0 = s2 

c0s2  
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f0

a0 b0

c1
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f1

a1 b1

c2

AELE

y1x1

FA

f2

a2 b2

c3

AELE

y2x2

FA

f3

a3 b3

c4

AELE

y3x3

CE

s2

 

4.10. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all the 
equations to standard form. 

 
s2 s1 s0 Operations 
0 0 0 A plus B 
0 0 1 Increment A 
0 1 0 Increment B 
0 1 1 Pass A 
1 0 0 A – B 
1 0 1 A XOR B 
1 1 0 A AND B 

4.11. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all the equations 
to standard form. 

 
s2 s1 s0 Operations 
0 0 0 Pass A 
0 0 1 Pass B through the AE 
0 1 0 A plus B 
0 1 1 A' 
1 0 0 A XOR B 
1 0 1 A NAND B 
1 1 0 A – 1 
1 1 1 A – B 

 
4.12. Given the following K-maps for the LE, AE, and C0 of an ALU, determine the ALU operations assigned to 

each of the select line combinations. 

s1s0

aibi s2 = 1

00

1 1 1

1 1

1 1

01 11 10

00

s2 = 0

1

00
1

1

1 1

1 1

01 11 10

01

11

10

LE

  

s2bi
s1s0

00 1 1

00

1 1

01 11 10

01

11

10

AE

  

s1s0
s2

0

00
1

1

01 11 10

1

CE
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Answer: 
s2 s1 s0 LE AE CE ALU Operation 
0 0 0 bi 1 0 B – 1 
0 0 1 ai NOR bi 0 0 A NOR B 
0 1 0 ai bi' 1 A – B 
0 1 1 ai XNOR bi 0 0 A XNOR B 
1 0 0 0 0 1 1 
1 0 1 ai NAND bi 0 0 A NAND B 
1 1 0 ai bi 0 A + B 
1 1 1 ai' 0 0 A' 

 
4.13. A four-function ALU has the following equations for its LE, AE, and CE: 

xi = ai + s1's0bi 

yi = s1's0' + s1s0bi' 

c0 = s1s0 

Determine the four functions in the correct order that are implemented in this ALU. Show all your work. 

Answer: 
From the equations, we get the following K-maps: 

aibi

s1s0

00

00

1 1

1 1 1

1 1

1 1

01 11 10

01

11

10

xi

  

bi

s1s0

00 1 1

0

1

1

01

11

10

yi

 

From the K-maps, we deduce the functional table 
 

s1 s0 
LE 
xi 

AE 
yi 

CE 
c0 

Function 

0 0 A 1 0 A – 1 
0 1 A OR B 0 0 A OR B 
1 0 A 0 0 Pass A 
1 1 A B' 1 A – B 

 
4.14. Draw the circuit for the 2-to-4 decoder. 

Answer: 

A1

A0

E

Y0Y1Y2Y3  
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4.15. Derive the truth table for a 3-to-8 decoder using negative logic. 

4.16. Draw the circuit for the 4-to-16 decoder using only 2-to-4 decoders. 
Answer: 

2-to-4
decoder

A0A1

C0C1C2C3

E

2-to-4
decoder

A0A1

C0C1C2C3

E 2-to-4
decoder

A0A1

C0C1C2C3

E 2-to-4
decoder

A0A1

C0C1C2C3

E 2-to-4
decoder

A0A1

C0C1C2C3

E

A3 A2 A1 A0

C12C13C14C15 C0C1C2C3C8C9C10C11 C4C5C6C7

E

 

4.17. Draw the circuit for the 4-to-2 priority encoder using only 2-input AND, 2-input OR, and NOT gates. 

Answer: 
Truth table: 

D3 D2 D1 D0 A1 A0 Z 
0 0 0 0 0 0 0 
0 0 0 1 0 0 1 
0 0 1 × 0 1 1 
0 1 × × 1 0 1 
1 × × × 1 1 1 

Equations: 
A1 = D3 + D2 
A0 = D3 + D2'D1 
Z = D3 + D2 + D1 + D0 

Circuit: 

D3

D2

D1

D0

A1

A0

Z
 

4.18. Draw the circuit for an 8-to-3 priority encoder. 
4.19. Draw the circuit for the 8-to-3 priority encoder using only 4-to-2 priority encoders. 
4.20. Write the behavioral VHDL code for the 8-to-3 priority encoder. 
4.21. Draw the circuit for a 16-to-1 multiplexer using only 4-to-1 multiplexers. 

Answer: 
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4.22. Draw the circuit for a 16-to-1 multiplexer using only 2-to-1 multiplexers. 
4.23. Use only 2-to-1 multiplexers to implement the function: f(w,x,y,z) = Σ(0,2,5,7,13,15). 

Answer: 

01
s y

01
s y

01
s y

01
s y

01
s y

01
s y

01
s y

01
s y

01
s y

01
s y

01
s y
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s y

01
s y

01
s y

01
s y

z

w

x

y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1010010100000101

f  
4.24. Use only 2-to-1 multiplexers (as many as you need) to implement the function: F(x, y, z)  = Π(0, 3, 4, 5, 7). 

Answer: 

F(x, y, z)  = Π(0, 3, 4, 5, 7) 

  = Σ(1, 2, 6) 

01
s y

d0d1d2d3d4d5d6d7

z

y

x

y

011010 00

01
s y

01
s y

01
s y

01
s y

01
s y

01
s y

 
4.25. Use one 8-to-1 multiplexer to implement the function: F(x,y,z) = Σ(0,3,4,6,7). 
4.26. Use 2-to-1 multiplexers to implement the function: F(x,y,z) = Σ(0,2,4,5). 
4.27. Derive the truth table for comparing two 4-bit operands for the less-than-or-equal-to relationship. Derive the 

equation and circuit from this truth table. 
4.28. Construct the circuit for one bit slice of an n-bit magnitude comparator that compares xi ≥ yi. 

Answer: 
Truth table for xi ≥ yi: 

xi yi fi 
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0 0 1 
0 1 0 
1 0 1 
1 1 1 

When taking the previous bit-slice into consideration, fi can be a 1 only if the previous fi-1 is also a 1. Thus, 
x y

fi-1
fi

 
4.29. Draw the circuit for a 4-bit iterative comparator that tests for the greater-than-or-equal-to relationship. 
4.30. Draw the circuit for a 4-bit shifter that realizes the following operation table: 
 

s2 s1 s0 Operation 
0 0 0 Pass through 
0 0 1 Rotate left 
0 1 0 Shift right and fill with 1 
0 1 1 Not used 
1 0 0 Shift left and fill with 0 
1 0 1 Pass through 
1 1 0 Rotate right 
1 1 1 Shift right and fill with 0 

 
4.31. Draw a 4-bit shifter circuit for the following operational table. Use only the basic gates AND, OR, and NOT (i.e. 

do not use multiplexers). 
 

s1 s0 Operation 
0 0 Shift left fill with 0 
0 1 Shift right fill with 0 
1 0 Rotate left 
1 1 Rotate right 

Answer: 
s1 s0 Operation O3 O2 O1 O0 
0 0 Shift left fill with 0 I2 I1 I0 0 
0 1 Shift right fill with 1 1 I3 I2 I1 
1 0 Rotate left I2 I1 I0 I3 
1 1 Rotate right I0 I3 I2 I1 

 
O3 = s1's0'I2 + s1's0 + s1s0'I2 + s1s0I0 
O2 = s1's0'I1 + s1's0I3 + s1s0'I1 + s1s0I3 
O1 = s1's0'I0 + s1's0I2 + s1s0'I0 + s1s0I2 
O0 = s1's0I1 + s1s0'I3 + s1s0I1 
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s1

s0

I3 I2 I1 I0

O3 O2 O1 O0  
 

4.32. Draw a 4-bit shifter circuit for the following operation table using only six 2-to-1 multiplexers. 
 

Operation 
Shift left fill with 0 
Shift right fill with 0 
Rotate left 
Rotate right 

Answer: 

01
s y

Left

01
s yShift

'0' '0'

O0O1O3 O2

I0I1I2I3

01
s y

01
s y

01
s y

01
s y

 
4.33. Derive the truth table for the following combinational circuit. Write also the operation name for each row in 

the table. 
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Answer: 
s2 s1 s0 y3 y2 y1 y0 Operation 
0 0 0 1 d3 d2 d1 Shift right and pad with 1 
0 0 1 d3 d2 d1 d0 Pass through 
0 1 0 d2 d1 d0 0 Shift left and pad with 0 
0 1 1 d3 d2 d1 d0 Pass through 
1 0 0 d0 d3 d2 d1 Rotate right 
1 0 1 d3 d2 d1 d0 Pass through 
1 1 0 d2 d1 d0 d3 Rotate left 
1 1 1 d3 d2 d1 d0 Pass through 
 

4.34. Draw a 4-bit barrel shifter circuit for the rotate right operation. 
4.35. Draw the complete detail circuit diagram for the 4-bit multiplier based on the circuit shown in Figure 4.34(b). 
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* Implementation Technologies 
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This chapter discusses how digital circuits are implemented at the physical level. As you know, transistors are 
the fundamental building blocks for all digital circuits. They are the actual physical devices that implement the 
binary switch and, therefore, also for the logic gates. 

There are many different transistor technologies for creating a digital circuit. Some of these technologies are the 
diode-transistor logic (DTL), transistor-transistor logic (TTL), bipolar logic, and complementary metal-oxide-
semiconductor (CMOS) logic. Among them, the most widely used is the CMOS technology. 

Figure 5.1(a) shows a single discrete transistor with its three connections for signal input, output, and control. 
Above the transistor in the figure is a lump of silicon, which, of course, is the main ingredient for the transistor. 
Figure 5.1(b) is a picture of transistors inside an IC taken with an electron microscope. Figure 5.1(c) is a higher 
magnification of the rectangle area in (b). 

 
 (a) (b) (c) 

Figure 5.1 Transistors: (a) a lump of silicon and a transistor; (b) transistors inside an EPROM as seen through an 
electron microscope; (c) higher magnification of the rectangle area in (b). 

In this chapter, we will look at how CMOS transistors work, and how they are used to build the basic logic 
gates. Next, we will look at how digital circuits are actually implemented in various programmable logic devices 
(PLDs), such as read-only memories (ROMs), programmable logic arrays (PLAs), programmable array logic 
(PAL ) devices, complex programmable logic devices (CPLDs), and field programmable gate arrays (FPGAs). The 
optional Altera UP2 development board contains both a CPLD and a FPGA chip for implementing your circuits. 
The information presented in this chapter, however, is not needed to understand how microprocessors are designed 
at the logic circuit level. 

5.1 Physical Abstraction 
Physical circuits deal with physical properties, such as voltages and currents. Digital circuits use the 

abstractions of 0 and 1 to represent the presence or absence of these physical properties. In fact, a range of voltages 
is interpreted as the logic 0, and another, non-overlapping range is interpreted as the logic 1. Traditionally, digital 
circuits operate with a 5-volt power supply. In such a case, it is customary to interpret the voltages in the range 0–
1.5 V as logic 0, while voltages in the range 3.5–5 V as logic 1.  This is shown in Figure 5.2. Voltages in the middle 
range (from 1.5–3.5 V) are undefined and should not occur in the circuit except during transitions from one state to 
the other. However, they may be interpreted as a “weak” logic 0 or a “weak” logic 1. 

In our discussion of transistors, we will not get into their electrical characteristics of voltages and currents, but 
we will simply use the abstraction of 0 and 1 to describe their operations. 
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Undefined

 
Figure 5.2 Voltage levels for logic 0 and 1. 

5.2 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) 
The metal-oxide-semiconductor field-effect transistor (MOSFET) acts as a voltage-controlled switch with three 

terminals: source, drain, and gate. The gate controls whether current can pass from the source to the drain or not. 
When the gate is asserted or activated, the transistor is turned on and current flows from the source to the drain. 
When looking at the transistor by itself, there is no physical difference between the source and the drain terminals. 
They are distinguished only when connected with the rest of the circuit by the differences in the voltage levels. 

There are two variations of the MOSFET: the n-channel and the p-channel. The physical structures of these two 
transistors are shown in Figure 5.3(a) and (b), respectively. The name metal-oxide-semiconductor comes from the 
three layers of material that make up the transistor. The “n” stands for negative and represents the electrons, while 
“p” stands for positive and represents the holes that flow through a channel in the semiconductor material between 
the source and the drain. 

For the n-channel MOSFET shown in Figure 5.3(a), a p-type silicon semiconductor material (called the 
substrate) is doped with n-type impurities at the two ends. These two n-type regions form the source and the drain of 
the transistor. An insulating oxide layer is laid on top of the two n regions and the p substrate, except for two 
openings leading to the two n regions. Finally, metal is laid in the two openings in the oxide to form connections to 
the source and the drain. Another deposit of metal is laid on top of the oxide between the source and the drain to 
form the connection to the gate. 

The structure of the p-channel MOSFET shown in Figure 5.3(b) is similar to that in (a), except that the substrate 
is of n-type material, and the doping for the source and drain is of p-type impurities. 

Oxide layer
Metal

Doping of impurities
Silicon semiconductor  

 

p
n n

Source DrainGate

Substrate

n-channel

 

(a) 

n
p p

Source DrainGate

Substrate

p-channel

 

(b) 

Figure 5.3 Physical structure of the MOSFET: (a) n-channel (NMOS); (b) p-channel (PMOS). 
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The n-channel and p-channel MOSFETs work opposite of each other. For the n-channel MOSFET, only an n-
channel between the source and the drain is created under the control of the gate. This n-channel (n for negative) 
only allows negative charged electrons (0’s) to move from the source to the drain. On the other hand, the p-channel 
MOSFET can only create a p-channel between the source and the drain under the control of the gate, and this p-
channel (p for positive) only allows positive charged holes (1’s) to move from the source to the drain. 

5.3 CMOS Logic 
In CMOS (complementary MOS) logic, only the two complementary MOSFET transistors, (n-channel also 

known as NMOS, and p-channel also known as PMOS)1, are used to create the circuit. The logic symbols for the 
NMOS and PMOS transistors are shown in Figure 5.4(a) and Figure 5.5(a), respectively. In designing CMOS 
circuits, we are interested only in the three connections—source, drain, and gate—of the transistor. The substrate for 
the NMOS is always connected to ground, while the substrate for the PMOS is always connected to VCC

2, so it is 
ignored in the diagrams for simplicity. Notice that the only difference between these two logic symbols is that one 
has a circle at the gate input, while the other does not. Using the convention that the circle denotes active-low (i.e., a 
0 activates the signal), the NMOS gate input (with no circle) is, therefore, active-high. The PMOS gate input (with a 
circle) is active-low. 

For the NMOS transistor, the source is the terminal with the lower voltage with respect to the drain. You can 
intuitively think of the source as the terminal that is supplying the 0 value, while the drain consumes the 0 value. 
The operation of the NMOS transistor is shown in Figure 5.4(b).When the gate is a 1 (asserted), the NMOS 
transistor is turned on or enabled, and the source input that is supplying the 0 can pass through to the drain output 
through the connecting n-channel. However, if the source has a 1, the 1 will not pass through to the drain even if the 
transistor is turned on, because the NMOS does not create a p-channel. Instead, only a weak 1 will pass through to 
the drain. On the other hand, when the gate is a 0 (or any value other than a 1), the transistor is turned off, and the 
connection between the source and the drain is disconnected. In this case, the drain will always have a high-
impedance Z value independent of the source value. The × (don’t-care) in the Input Signal column means that it 
doesn’t matter what the input value is, the output will be Z. The high-impedance value, denoted by Z, means no 
value or no output. This is like having an insulator with an infinite resistance or a break in a wire, therefore, 
whatever the input is, it will not pass over to the output.  
 

Drain

Source

Gate

 

(a) 

Gate Switch Input Signal Output Signal 
0 0 1 On 

(Closed) 1 Weak 1 
0 

(Any value other than a 1) 
Off 

(Open) × Z 

 

(b) 

Figure 5.4 NMOS transistor: (a) logic symbol; (b) truth table. 

The PMOS transistor works exactly the opposite of the NMOS transistor. For the PMOS transistor, the source is 
the terminal with the higher voltage with respect to the drain. You can intuitively think of the source as the terminal 
that is supplying the 1 value, while the drain consumes the 1 value. The operation of the PMOS transistor is shown 
in Figure 5.5(b). When the gate is a 0 (asserted), the PMOS transistor is turned on or enabled, and the source input 
that is supplying the 1 can pass through to the drain output through the connecting p-channel. However, if the source 
has a 0, the 0 will not pass through to the drain even if the transistor is turned on, because the PMOS does not create 
an n-channel. Instead, only a weak 0 will pass through to the drain. On the other hand, when the gate is a 1 (or any 
value other than a 0), the transistor is turned off, and the connection between the source and the drain is 
disconnected. In this case, the drain will always have a high-impedance Z value independent of the source value. 

                                                           
1 For bipolar transistors, these two transistors are referred to as NPN and PNP, respectively. 
2 VCC is power or 5-volts in a 5 V circuit, while ground is 0 V. 
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(b) 

Figure 5.5 PMOS transistor: (a) logic symbol; (b) truth table. 

5.4 CMOS Circuits 
CMOS circuits are built using only the NMOS and PMOS transistors. Because of the inherent properties of the 

NMOS and PMOS transistors, CMOS circuits are always built with two halves. One half will use one transistor type 
while the other half will use the other type, and when combined together to form the complete circuit, they will work 
in complement of each other. The NMOS transistor is used to output the 0 half of the truth table, while the PMOS 
transistor is used to output the 1 half of the truth table. 

Furthermore, notice that the truth tables for these two transistors, shown in Figure 5.4(b) and Figure 5.5(b), 
suggest that CMOS circuits essentially must deal with five logic values instead of two. These five logic values are 0, 
1, Z (high-impedance), weak 0, and weak 1. Therefore, when the two halves of a CMOS circuit are combined 
together, there is a possibility of mixing any combinations of these five logic values. 

Figure 5.6 summarizes the result of combining these logic values. Here a 1 combined with another 1 does not 
give you a 2, but rather just a 1! A short circuit results from connecting a 0 directly to a 1 (that is, connecting ground 
directly to VCC). This is like sticking two ends of a wire into the two holes of an electrical outlet in the wall. You 
know the result, and you don’t want to do it! Connecting a 0 with a weak 1, or a 1 with a weak 0 will also result in a 
short, but it may take a longer time before you start to see smoke coming out. Any value combined with Z is just that 
value, since Z is nothing. 

A properly designed CMOS circuit should always output either a 0 or a 1. The other three values (weak 0, weak 
1, and Z) should not occur in any part of the circuit. The construction of several basic gates using the CMOS 
technology will now be shown. 

 
 0 1 Z Weak 0 Weak 1 

0 0 Short 0 0 Short 
1 Short 1 1 Short 1 
Z 0 1 Z Weak 0 Weak 1 

Weak 0 0 Short Weak 0 Weak 0 Short 
Weak 1 Short 1 Weak 1 Short Weak 1 

Figure 5.6 Result of combining the five possible logic values. 

5.4.1 CMOS Inverter 

Half of the inverter truth table says that, given a 1, the circuit needs to output a 0. Therefore, the question to ask 
is which CMOS transistor (NMOS or PMOS) when given a 1 will output a 0? Looking at the two truth tables for the 
two transistors, we find that only the NMOS transistor outputs a 0. The PMOS transistor outputs either a 1 or a weak 
0. A weak 0, as you recall from Section 5.1, is an undefined or an unwanted value. The next question to ask is how 
do we connect the NMOS transistor so that, when we input a 1, the transistor outputs a 0? The answer is shown in 
Figure 5.7(a) where the source of the NMOS transistor is connected to ground (to provide the 0 value), the gate is 
the input, and the drain is the output. When the gate is a 1, the 0 from the source will pass through to the drain 
output. 
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The complementary half of the inverter circuit is to output a 1 when given a 0. Again, from looking at the two 
transistor truth tables, we find that the PMOS transistor will do the job. This is expected, since we have used the 
NMOS for the first half, and the complementary second half of the circuit must use the other transistor. This time, 
the source is connected to VCC to supply the 1 value, as shown in Figure 5.7(b). When the gate is a 0, the 1 from the 
source will pass through to the drain output. 

To form the complete inverter circuit, we simply combine these two complementary halves together, as shown 
in Figure 5.7(c). When combining two halves of a CMOS circuit together, the one thing to be careful of is not to 
create any possible shorts in the circuit. We need to make sure that, for all possible combinations of 0’s and 1’s to all 
the inputs, there are no places in the circuit where both a 0 and a 1 can occur at the same node. 

For our CMOS inverter circuit, when the gate input is a 1, the bottom NMOS transistor is turned on while the 
top PMOS transistor is turned off. With this configuration, a 0 from ground will pass through the bottom NMOS 
transistor to the output while the top PMOS transistor will output a high-impedance Z value. A Z combined with a 0 
is still a 0, because a high-impedance is of no value. Alternatively, when the gate input is a 0, the bottom NMOS 
transistor is turned off while the top PMOS transistor is turned on. In this case, a 1 from VCC will pass through the 
top PMOS transistor to the output while the bottom NMOS transistor will output a Z. The resulting output value is a 
1. Since the gate input can never be both a 0 and a 1 at the same time, therefore, the output can only have either a 0 
or a 1, and so, no short can result. 
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 (a) (b) (c) 

Figure 5.7 CMOS inverter circuit: (a) NMOS half; (b) PMOS half; (c) complete circuit. 

5.4.2 CMOS NAND Gate 

Figure 5.8 shows the truth table for the NAND gate. Half of the truth table consists of the one 0 output while the 
other half of the truth table consists of the three 1 outputs. For the 0 half of the truth table, we want the output to be a 
0 when both A = 1 and B = 1. Again, we ask the question: Which CMOS transistor when given a 1 will output a 0? 
Of course the answer is again the NMOS transistor. This time, however, since there are two inputs, A and B, we 
need two NMOS transistors. We need to connect these two transistors so that a 0 is outputted only when both are 
turned on with a 1. Recall from Section 2.3 that the AND operation results from two binary switches connected in 
series. Figure 5.9(a) shows the two NMOS transistors connected in series, with the source of one connected to 
ground to provide the 0 value, and the drain of the other providing the output 0. The two transistor gates are 
connected to the two inputs, A and B, so that only when both inputs are a 1 will the circuit output a 0. 

The complementary half of the NAND gate is to output a 1 when either A = 0 or B = 0. This time, two PMOS 
transistors are used. To realize the OR operation, the two transistors are connected in parallel with both sources 
connected to VCC and both drains to the output, as shown in Figure 5.9(b). This way, only one transistor needs to be 
turned on for the circuit to output the 1 value. 

The complete NAND gate circuit is obtained by combining these two halves together, as shown in Figure 5.9(c). 
When both A and B are 1, the two bottom NMOS transistors are turned on while the two top PMOS transistors are 
turned off. In this configuration, a 0 from ground will pass through the two bottom NMOS transistors to the output, 
while the two top PMOS transistors will output a high-impedance Z value. Combining a 0 with a Z will result in a 0. 

Digital Logic and Microprocessor Design with VHDL Chapter 5 - Implementation Technologies

150



Alternatively, when either A = 0, or B = 0, or both equal to 0, at least one of the bottom NMOS transistors will be 
turned off, thus outputting a Z. On the other hand, at least one of the top PMOS transistors will be turned on and a 1 
from VCC will pass through that PMOS transistor. The resulting output value will be a 1. Again, we see that no short 
circuit can occur. 
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Figure 5.8 NAND gate truth table: (a) the 0 half; (b) the 1 half. 
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Figure 5.9 CMOS NAND circuit: (a) the 0 half using two NMOS transistors; (b) the 1 half using two PMOS 
transistors; (c) the complete NAND gate circuit. 

5.4.3 CMOS AND Gate 

Figure 5.10 shows the 0 and 1 halves of the truth table for the AND gate. We can proceed to derive this circuit in 
the same manner as we did for the NAND gate. For the 0 half of the truth table, we want the output to be a 0 when 
either A = 0 or B = 0. This means that we need a transistor that outputs a 0 when it is turned on also with a 0. This 
being one of the main differences between the NAND gate and the AND gate, it causes a slight problem. Looking 
again at the two transistor truth tables in Figure 5.4 and Figure 5.5, we see that neither transistor fits this criterion. 
The NMOS transistor outputs a 0 when the gate is enabled with a 1, and the PMOS transistor outputs a 1 when the 
gate is enabled with a 0. If we pick the NMOS transistor, then we need to invert its input. On the other hand, if we 
pick the PMOS transistor, then we need to invert its output.  

For this discussion, let us pick the PMOS transistor. To obtain the A or B operation, two PMOS transistors are 
connected in parallel. The output from these two transistors is inverted with a single NMOS transistor, as shown in 
Figure 5.11(a). When either A or B has a 0, that corresponding PMOS transistor is turned on, and a 1 from the VCC 
source passes down to the gate of the NMOS transistor. With this NMOS transistor turned on, a 0 from ground is 
passed through to the drain output of the circuit. 
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For the 1 half of the circuit, we want the output to be a 1 when both A = 1 and B = 1. Again, we have the 
dilemma that neither transistor fits this criterion. To be complimentary with the 0 half, we will use two NMOS 
transistors connected in series. When both transistors are enabled with a 1, the output 0 needs to be inverted with a  
PMOS transistor, as shown in Figure 5.11(b). 

Combining the two halves produces the complete AND gate CMOS circuit shown in Figure 5.11(c). Instead of 
joining the two halves at the point of the output, the circuit connects together before inverting the signal to the 
output. The resulting AND gate circuit is simply the circuit for the NAND gate followed by that of the INVERTER. 
From this discussion, we understand why in practice that NAND gates are preferred over AND gates. 
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Figure 5.10 AND gate truth table: (a) the 0 half; (b) the 1 half. 
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Figure 5.11 CMOS AND circuit: (a) the 0 half using two PMOS transistors and an NMOS transistor; (b) the 1 half 
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using two NMOS transistors and a PMOS transistor; (c) the complete AND gate circuit. 

5.4.4 CMOS NOR and OR Gates 

The CMOS NOR gate and OR gate circuits can be derived similarly to that of the NAND and AND gate circuits. 
Like the NAND gate, the NOR gate circuit uses four transistors, whereas the OR gate circuit uses six transistors. 

5.4.5 Transmission Gate 

The NMOS and PMOS transistors, when used alone as a control switch, can pass only a 0 or a 1, respectively. 
Very often, we like a circuit that is able to pass both a 0 and a 1 under a control signal. The transmission gate is such 
a circuit that allows both a 0 and a 1 to pass through when it is enabled. When it is disabled, it outputs the Z value. 

The transmission gate uses the two complimentary transistors connected together, as shown in Figure 5.12. Both 
ends of the two transistors are connected in common. The top PMOS transistor gate is connected to the inverted 
control signal C', while the bottom NMOS transistor gate is connected directly to the control signal C. Hence, both 
transistors are enabled when the control signal C = 1, and the circuit is disabled when C = 0. 

When the circuit is enabled, if the input is a 1, the 1 signal will pass through the top PMOS transistor, while the 
bottom NMOS transistor will pass through a weak 1. The final, combined output value will be a 1. On the other 
hand, if the input is a 0, the 0 signal will pass through the bottom NMOS transistor, while the top PMOS transistor 
will output a weak 0. The final, combined output value this time will be a 0. Therefore, in both cases, the output 
value is the same as the input value. 

When the circuit is disabled with C = 0, both transistors will output the Z value. Thus, regardless of the input, 
there will be no output. 

C '

Output

C

Input

 
Figure 5.12 CMOS transmission gate circuit. 

5.4.6 2-input Multiplexer CMOS Circuit 

CMOS circuits for larger components can be derived by replacing each gate in the circuit with the 
corresponding CMOS circuit for that gate. Since we know the CMOS circuit for the three basic gates (AND, OR, and 
NOT) this is a simple “copy and paste” operation. 

For example, we can replace the gate level 2-input multiplexer circuit shown in Figure 5.13(a) with the CMOS 
circuit shown in Figure 5.13(b). For this circuit, we simply replace the two AND gates with the two 6-transistor 
circuits for the AND gate, another 6-transistor circuit for the OR gate, and the 2-transistor circuit for the INVERTER; 
giving a total of 20 transistors for this version of the 2-input multiplexer. 

However, since the NAND gate uses two fewer transistors than the AND gate, we can first convert the two level 
or-of-ands circuit in Figure 5.13(a) to a two level NAND gate circuit shown in Figure 5.13(c). This conversion is 
based on the technology mapping technique discussed in Section 3.3. Performing the same “cut-and-paste” 
operation on this two level NAND gate circuit produces the CMOS circuit in Figure 5.13(d) that uses only 14 
transistors. 
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We can do much better in terms of the number of transistors needed for the 2-input multiplexer circuit. From the 
original gate level multiplexer circuit in Figure 5.13(a), we want to ask the question: What is the purpose of the two 
AND gates? The answer is that each AND gate acts like a control switch. When it is turned on by the select signal s, 
the input passes through to the output. Well, the operation of the transmission gate is just like this, and it uses only 
two transistors. Hence, we can replace the two AND gates with two transmission gates. Furthermore, the AND gate 
outputs a 0 when it is disabled. In order for this 0 from the output of the disabled AND gate not to corrupt the data 
from the output of the other enabled AND gate, the OR gate is needed. If we connect the two outputs from the AND 
gates directly without the OR gate, a short circuit will occur when the enabled AND gate outputs a 1, because the 
disabled AND gate always outputs a 0. However, this problem disappears when we use two transmission gates 
instead of the two AND gates, because when a transmission gate is disabled, it outputs a Z value and not a 0. 
Thereby, we can connect the outputs of the two transmission gates directly without the need of the OR gate. The 
resulting circuit is shown in Figure 5.13(e), using only six transistors. The two-transistor inverter is needed (just like 
in the gate level circuit) for turning on only one switch while turning off the other switch at any one time. 
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Figure 5.13 2-input multiplexer circuits: (a) gate level circuit using AND and OR gates; (b) transistor level circuit for 
part (a); (c) gate level circuit using NAND gates; (d) transistor level circuit for part (c); (e) transistor level circuit 
using transmission gates. 

5.4.7 CMOS XOR and XNOR Gates 

The XOR circuit can be constructed using the same reasoning as for the 2-input multiplexer discussed in 
Section 5.4.6. First, we recall that the equation for the XOR gate is AB' + A'B. For the first AND term, we want to use 
a transmission gate to pass the A value. This transmission gate is enabled with the value B'. The resulting circuit for 
this first term is shown in Figure 5.14(a). For the second AND term, we want to use another transmission gate to pass 
the A' value and have the transmission gate enabled with the value B, resulting in the circuit shown in Figure 
5.14(b). Combining the two partial circuits together gives us the complete XOR circuit shown in Figure 5.14 (c). 
Again, as with the 2-input multiplexer circuit, it is not necessary to use an OR gate to connect the outputs of the two 
transmission gates together. 
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Figure 5.14 CMOS XOR gate circuit: (a) partial circuit for the term AB'; (b) partial circuit for the term A'B; (c) 
complete circuit. 

The CMOS XOR circuit shown in Figure 5.14(c) uses eight transistors: four transistors for the two transmission 
gates and another four transistors for the two inverters. However, with some ingenuity, we can construct the XOR 
circuit with only six transistors, as shown in Figure 5.15(a). Similarly, the XNOR circuit is shown in Figure 5.15(b). 
In the next section, we will perform an analysis of this XOR circuit to see that it indeed has the same functionality as 
the XOR gate. 
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Figure 5.15 CMOS circuits using only six transistors for: (a) XOR gate; (b) XNOR gate. 

5.5 Analysis of CMOS Circuits 
The analysis of a CMOS circuit follows the same procedure as with the analysis of a combinational circuit, as 

discussed in Section 3.1. First, we must assume that the inputs to the circuit must have either a logic 0 or logic 1 
value; that is, the input value cannot be a weak 0, a weak 1, or a Z. Then, for every combination of 0 and 1 to the 
inputs, trace through the circuit (based on the operations of the two CMOS transistors) to determine the value 
obtained at every node in the circuit. When two different values are merged together at the same point in the circuit, 
we will use the table in Figure 5.6 to determine the resulting value. 

Example 5.1: Analyzing the XOR CMOS circuit 

Analyze the CMOS circuit shown in Figure 5.15. For this discussion, the words “top-right,” “top-middle,” 
“bottom-middle,” and “bottom-right” are used to refer to the four transistors in the circuit. 

Figure 5.16(a) shows the analysis of the circuit with the inputs A = 0 and B = 0. The top-right PMOS transistor 
is enabled with a 0 from input A; however, the source for this transistor is a 0 from input B, and this produces a weak 
0 at the output of this transistor. In the figure, the arrow denotes that the transistor is enabled, and the label “w 0” at 
its output denotes that the output value is a weak 0. For the top-middle PMOS transistor, it is also enabled but with a 
0 from input B. The source for this transistor is a 0 from A, and so, the output is again a weak 0. The bottom-middle 
NMOS transistor is enabled with a 1 from B'. Since the source is a 0 from A, this transistor outputs a 0. For the 
bottom-right NMOS transistor, the 0 from A disables it, and so, a Z value appears at its output. The outputs of these 
four transistors are joined together at the point of the circuit output. At this common point, two weak 0’s, a 0, and a 
Z are combined together. Referring to Figure 5.6, combining these four values together results in an overall value of 
a 0. Hence, the circuit outputs a 0 for the input combination A = 0 and B = 0. 

Figure 5.16(b), (c), and (d) show the analysis of the circuit for the remaining three input combinations. The 
outputs for all four input combinations match exactly those of the 2-input XOR gate. ♦  
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Figure 5.16. Analysis of the CMOS XOR gate circuit: (a) shows the analysis for the inputs AB = 00. All the transistor 
outputs are annotated with the resulting output value. The letter “w” is used to signify that it is a weak value; (b) 
through (d) show the analysis for the remaining input combinations, 01, 10, and 11, respectively. 

Example 5.2: Analyzing a CMOS circuit with a short 

The CMOS circuit shown below is modified slightly from the XOR circuit from Example 5.1; the top-right 
PMOS transistor is replaced with a NMOS transistor. Let us perform an analysis of this circuit using the inputs A = 1 
and B = 0. 
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The top-right NMOS transistor is enabled with a 1 from input A. The source for this NMOS transistor is a 0 

from input B, and so, it outputs a 0. The top-middle PMOS transistor is also enabled, but with a 0 from input B. The 
source for this PMOS transistor is a 1 from input A, and so, it outputs a 1. It is not necessary to continue with the 
analysis of the remaining two transistors, because at the common output, we already have a 0 (from the top-right 
NMOS transistor) combining with a 1 (from the top-middle PMOS transistor) producing a short circuit. ♦  

5.6 Using ROMs to Implement a Function 
Memory is used for storing binary data. This stored data, however, can be interpreted as being the 

implementation of a combinational circuit. A combinational circuit expressed as a Boolean function in canonical 
form is implemented in the memory by storing data bits in appropriate memory locations. Any type of memory, such 
as ROM (read-only memory), RAM (random access memory), PROM (programmable ROM), EPROM (erasable 
PROM), EEPROM (electrically erasable PROM), and so on, can be used to implement combinational circuits. Of 
course, non-volatile memory is preferred, since you do want your circuit to stay intact after the power is removed. 

In order to understand how combinational circuits are implemented in ROMs, we need to first understand the 
internal circuitry of the ROM. ROM circuit diagrams are drawn more concisely by the use of a new logic symbol to 
represent a logic gate. Figure 5.17 shows this new logic symbol for an AND gate and an OR gate with multiple inputs. 
Instead of having multiple input lines drawn to the gate, the input lines are replaced with just one line going to the 
gate. The multiple input lines are drawn perpendicular to this one line. To actually connect an input line to the gate, 
an explicit connection point (• ) must be drawn where the two lines cross. For example, in Figure 5.17(a) the AND 
gate has only two inputs; whereas in (b), the OR gate has three inputs. 
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Figure 5.17 Array logic symbol for: (a) AND gate; (b) OR gate. 
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Figure 5.18 Internal circuit for a 16 × 4 ROM: (a) with no connections made; (b) with connections made. 

The circuit diagram for a 16 × 4 ROM having 16 locations, each being 4-bits wide, is shown in Figure 5.18(a). 
A 4-to-16 decoder is used to decode the four address lines, A3, A2, A1, and A0, to the 16 unique locations. Each output 
of the decoder is a location in the memory. Recall that the decoder operation is such that, when a certain address is 
presented, the output having the index of the binary address value will have a 1, while the rest of the outputs will 
have a 0. 

Four OR gates provide the four bits of data output for each memory location. The area for making the 
connections between the outputs of the decoder with the inputs of the OR gates is referred to as the OR array. When 
no connections are made, the OR gates will always output a 0, regardless of the address input. With connections 
made as in Figure 5.18(b), the data output of the OR gates depends on the address selected. For the circuit in Figure 
5.18(b), if the address input is 0000, then the decoder output line 0 will have a 1. Since there are no connections 
made between the decoder output line 0 and any of the four OR gate inputs, the four OR gates will output a 0. 
Therefore, the data stored in location 0 is 0000 in binary. If the address input is 0001, then the decoder output line 1 
will have a 1. Since this line is connected to the inputs of the two OR gates for D1 and D0, therefore, D1 and D0 will 
both have a 1, while D3 and D2 will both have a 0. Hence, the data stored in location 1 is 0011. In the circuit of 
Figure 5.18(b) the value stored in location 2 is 1101. 

A 16 × 4 ROM can be used to implement a 4-variable Boolean function as follows. The four variables are the 
inputs to the four address lines of the ROM. The 16 decoded locations become the 16 possible minterms for the 4-
variable function. For each 1-minterm in the function, we make a connection between that corresponding decoder 
output line that matches that minterm number with the input of an OR gate. It does not matter which OR gate is used, 
as long as one OR gate is used to implement one function. Hence, up to four functions with a total of four variables 
can be implemented in a 16 × 4 ROM, such as the one shown in Figure 5.18(a). Larger sized ROMs, of course, can 
implement larger and more functions. 

From Figure 5.18(b), we can conclude that the function associated with the OR gate output D0, is F = Σ(1,2). 
That is, minterms 1 and 2 are the 1-minterms for this function, while the rest of the minterms are the 0-minterms. 
Similarly, the function for D1 has only minterm 1 as its 1-minterm. The functions for D2 and D3 both have only 
minterm 2 as its 1-minterm. 

ROMs are programmed during the manufacturing process and cannot be programmed afterwards. As a result, 
using ROMs to implement a function is only cost effective if a large enough quantity is needed. For small quantities, 
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EPROMs or EEPROMs are preferred. Both EPROMs and EEPROMs can be programmed individually using an 
inexpensive programmer connected to the computer. The memory device is inserted into the programmer. The bits 
to be stored in each location of the memory device are generated by the development software. This data file is then 
transferred to the programmer, which then actually writes the bits into the memory device. Furthermore, both 
EPROMs and EEPROMs can be erased and reprogrammed with different data bits. 

Example 5.3: Using a 16 × 4 ROM to implement Boolean functions 

Implement the following two Boolean functions using the 16 × 4 ROM circuit shown in Figure 5.18. 

F1 (w,x,y,z) = w'x'yz + w'xyz' + w'xyz + wx'y'z' + wx'yz' + wxyz' 

F2 (w,x,y,z) = w'x'y'z' + w'x 

For F1, the 1-minterms are m3, m6, m7, m8, m10, and m14. For F2, the 1-minterms are m0, m4, m5, m6, and m7. 
Notice that in F2, the term w'x expands out to four minterms. The implementation is shown in the circuit connection 
below. We arbitrarily pick D0 to implement F1 and D1 to implement F2. 
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5.7 Using PLAs to Implement a Function 
Using ROMs or EPROMs to implement a combinational circuit is very wasteful because usually many locations 

in the ROM are not used. Each storage location in a ROM represents a minterm. In practice, only a small number of 
these minterms are the 1-minterms for the function being implemented. As a result, the ROM implementing the 
function is usually quite empty. 

Programmable logic arrays (PLAs) are designed to reduce this waste by not having all of the minterms “built-
in” as in ROMs, but rather, allowing the user to specify only the minterms that are needed. PLAs are designed 
specifically for implementing combinational circuits. 

The internal circuit for a 4 × 8 × 4 PLA is shown in Figure 5.19. The main difference between the PLA circuit 
and the ROM circuit is that for the PLA circuit, an AND array is used instead of a decoder. The input signals are 
available both in the inverted and non-inverted forms. The AND array allows the user to specify only the product 
terms needed by the function; namely, the 1-minterms. The OR array portion of the circuit is similar to that of the 
ROM, allowing the user to specify which product terms to sum together. Having four OR gates will allow up to four 
functions to be implemented in a single device. 
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In addition, the PLA has an output array which provides the capability to either invert or not invert the value at 
the output of the OR gate. This is accomplished by connecting one input of the XOR gate to either a 0 or a 1. By 
connecting one input of the XOR gate to a 1, the output of the XOR gate is the inverse of the other input. 
Alternatively, connecting one input of the XOR gate to a 0, the output of the XOR gate is the same as the other input. 
This last feature allows the implementation of the inverse of a function in the AND/OR arrays, and then finally 
getting the function by inverting it. 

The actual implementation of a combinational circuit into a PLA device is similar to writing data bits into a 
ROM or other memory device. A PLA programmer connected to a computer is used. The development software 
allows the combinational circuit to be defined and then transferred and programmed into the PLA device. 
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Figure 5.19 Internal circuit for a 4 × 8 × 4 PLA. 

Example 5.4: Using a 4 × 8 × 4 PLA to implement a full adder circuit 

Implement the full adder circuit in a 4 × 8 × 4 PLA. The truth table for the full adder from Section 4.2.1 is 
shown here. 

 
xi yi ci ci+1 si 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 
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In the PLA circuit shown next, the three inputs, xi, yi, and ci, are connected to the PLA inputs, A2, A1, and A0, 
respectively. The first four rows of the AND array implement the four 1-minterms of the function ci+1, while the next 
three rows of the AND array implement the first three 1-minterms of the function si. The last minterm, m7, is shared 
by both functions, and therefore, it does not need to be duplicated. The two functions, ci+1 and si, are mapped to the 
PLA outputs, F1 and F0, respectively. Since the two functions are implemented directly (i.e. not the inverse of the 
functions), the XOR gates for both functions are connected to 0. 
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Example 5.5: Using a 4 × 8 × 4 PLA to implement a function 

Implement the following function in a 4 × 8 × 4 PLA. 

F (w,x,y,z) = Σ(0, 1, 3, 4, 5, 6, 9, 10, 11, 15) 

This four variable function has ten 1-minterms. Since the 4 × 8 × 4 PLA can accommodate only eight minterms, 
we need to implement the inverse of the function, which will have only six 1-minterms (16 – 10 = 6). The inverse of 
the function can then be inverted back to the original function at the output array by connecting one of the XOR 
inputs to a 1, as shown here. 

F' = Σ(2, 7, 8, 12, 13, 14) 
 = w'x'yz' + w'xyz + wx'y'z' + wxy'z' + wxy'z + wxyz' 
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Another way to implement the above function in the PLA is to first minimize it. The following K-map shows 

that the function reduces to 

F = w'y' + x'z + w'xz' + wyz + wx'y 
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With only five product terms, the function can be implemented directly without having to be inverted as shown 

in the following circuit. 
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5.8 Using PALs to Implement a Function 
Programmable array logic (PAL®) devices are similar to PLAs, except that the OR array for the PAL is not 

programmable but rather, fixed by the internal circuitry. Hence, they are not as flexible in terms of implementing a 
combinational circuit. 

The internal circuit for a 4 × 4 PAL is shown in Figure 5.20. The OR gate inputs are fixed; whereas, the AND 
gate inputs are programmable. Each output section is from the OR of the three product terms. This means that each 
function can have, at most, three product terms. To make the device a little bit more flexible, the output F3, is fed 
back to the programmable inputs of the AND gates. With this connection, up to five product terms are possible for 
one function. 
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Figure 5.20. Internal circuit for a 4 × 4 PAL device. 

Example 5.6: Using a 4 × 4 PAL to implement functions 

Implement the following three functions given in sum-of-minterms format using the PAL circuit of Figure 5.20. 

F1 (w,x,y,z) = w'x'yz + wx'yz' 

F2 (w,x,y,z) = w'x'yz + wx'yz' + w'xy'z' + wxyz 

F3 (w,x,y,z) = w'x'y'z' + w'x'y'z + w'x'yz' + w'x'yz 

Function F1 has two product terms, and it can be implemented directly in one PAL section. F2 has four product 
terms, and so, it cannot be implemented directly. However, we note that the first two product terms are the same as 
F1. Hence, by using F1, it is possible to reduce F2 from four product terms to three as shown here. 

F2 (w,x,y,z) = w'x'yz + wx'yz' + w'xy'z' + wxyz 
  = F1 + w'xy'z' + wxyz 

F3 also has four product terms, but these four product terms can be reduced to just one by minimizing the 
equation as shown here. 

F3 (w,x,y,z) = w'x'y'z' + w'x'y'z + w'x'yz' + w'x'yz 
  = w'x' (y'z' + y'z + yz' + yz) 
  = w'x' 

The connections for these three functions are shown in the following PAL circuit. Notice that, for functions F1 
and F3, there are unused AND gates. Since there are no inputs connected to them, they output a 0, which does not 
affect the output of the OR gate. 
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F2

F3

zyxw

 ♦  

5.9 Complex Programmable Logic Device (CPLD)  
Using ROMs, PLAs, and PALs to implement a combinational circuit is fairly straightforward and easy to do.  

However, to implement a sequential circuit or a more complex combinational circuit may require more sophisticated 
and larger programming devices. The complex programmable logic device (CPLD) is capable of implementing a 
circuit with upwards of 10,000 logic gates. 

The CPLD contains many PAL-like blocks that are connected together using a programmable interconnect to 
form a matrix. The PAL-like blocks in the CPLD are called macrocells as shown in Figure 5.21. Each macrocell has 
a programmable-AND-fixed-OR array similar to a PAL device for implementing combinational logic operations. The 
XOR gate in the macrocell circuit, shown in Figure 5.21, will either invert or not invert the output from the 
combinational logic. Furthermore, a flip-flop (discuss in Chapter 6) is included to provide the capability of 
implementing sequential logic operations. The flip-flop can be bypassed using the multiplexer for combinational 
logic operations. 

Groups of 16 macrocells are connected together to form the logic array blocks. Multiple logic array blocks are 
linked together using the programmable interconnect, as shown in Figure 5.22. Logic signals are routed between the 
logic array blocks on the programmable interconnect. This global bus is a programmable path that can connect any 
signal source to any destination on the CPLD. 

The input/output (I/O) blocks allow each I/O pin to be configured individually for input, output, or bi-
directional operation. All I/O pins have a tri-state buffer that is controlled individually. The I/O pin is configured as 
an input port if the tri-state buffer is disabled; otherwise, it is an output port. 

Figure 5.23 shows some of the main features of the Altera MAX7000 CPLD. Instead of needing a separate 
programmer to program the CPLD, all MAX devices support in-system programmability through the IEEE JTAG 
interface. This allows designers to program the CPLD after it is mounted on a printed circuit board. Furthermore, the 
device can be reprogrammed in the field. CPLDs are non-volatile, so once they are programmed with a circuit, the 
circuit remains implemented in the device even when the power is removed. 
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Figure 5.21 Circuit for the logic array block with two macrocells. 
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Figure 5.22 Internal circuit for a complex programmable logic device (CPLD). 
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Feature MAX7000 CPLD FLEX10K FPGA 
Usable logic gates 10,000 250,000 
Macrocells 512 N/A 
Logic array blocks 32 1,520 
User I/O pins 212 470 

Figure 5.23. Features of the Altera MAX7000 CPLD and the FLEX10K250 FPGA. 

5.10 Field Programmable Gate Array (FPGA) 
Field programmable gate arrays (FPGAs) are complex programmable logic devices that are capable of 

implementing up to 250,000 logic gates and up to 40,960 RAM bits, as featured by the Altera FLEX10K250 FPGA 
chip (see Figure 5.23). The internal circuitry of the FLEX10K FPGA is shown in Figure 5.24. The device contains 
an embedded array and a logic array. The embedded array is used to implement memory functions and complex 
logic functions, such as microcontroller and digital signal processing. The logic array is used to implement general 
logic, such as counters, arithmetic logic units, and state machines. 
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Figure 5.24. FLEX10K FPGA circuit. 

The embedded array consists of a series of embedded array blocks (EAB). When implementing memory 
functions, each EAB provides 2,048 bits, which can be used to create RAM, dual-port RAM, or ROM.  EABs can be 
used independently, or multiple EABs can be combined to implement larger functions. 

The logic array consists of multiple logic array blocks (LAB). Each LAB contains eight logic elements (LE) and 
a local interconnect. The LE shown in Figure 5.25 is the smallest logical unit in the FLEX10K architecture. Each LE 
consists of a 4-input look-up table (LUT) and a programmable flip-flop. The 4-input LUT is a function generator 
made from a 16-to-1 multiplexer that can quickly compute any function of four variables. (Refer to Section 4.8 for 
how multiplexers are used to implement Boolean functions.) The four input variables are connected to the four 
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select lines of the multiplexer. Depending on the values of these four variables, the value from one of the 16 
multiplexer inputs is passed to the output. There are 16 1-bit registers connected to the 16 multiplexer inputs to 
supply the multiplexer input values. Depending on the function to be implemented, the content of the 1-bit registers 
is set to a 0 or a 1. It is set to a 1 for all the 1-minterms of a four variable function, and to a 0 for all the 0-minterms. 
The LUT in Figure 5.25 implements the four variable function F(w,x,y,z) = Σ(0, 3, 5, 6, 7, 12, 13, 15). The 
programmable flip-flop can be configured for D, T, JK, or SR operations, and is used for sequential circuits. For 
combinational circuits, the flip-flop can be bypassed using the 2-to-1 multiplexer. 

1001011100001101

4-input LUT

16-to-1 MUX

D QSet

Clear

To Interconnect

Register Bypass

Clock
Register

Bypass Select

Programmable
Flip-flop

101112131415 02 13456789

Variable D
Variable C
Variable B
Variable A

 
Figure 5.25. Logic element circuit with a 4-input LUT and a programmable register. 

All the EABs, LABs, and I/O elements, are connected together via the FastTrack interconnect, which is a series 
of fast row and column buses that run the entire length and width of the device. The interconnect contains 
programmable switches so that the output of any block can be connected to the input of any other block. 

Each I/O pin in an I/O element is connected to the end of each row and column of the interconnect and can be 
used as either an input, output, or bi-directional port. 

5.11 Summary Checklist 

� Voltage levels 
� Weak 0, weak 1 
� NMOS 
� NMOS truth table 
� PMOS 
� PMOS truth table 
� High-impedance Z 
� Transistor circuits for basic gates 
� PLD 
� ROM circuit implementation 
� PLA circuit implementation 
� PAL circuit implementation 
� CPLD 
� FPGA 

5.12 Problems 
5.1 Draw the CMOS circuit for a 2-input NOR gate. 
5.2 Draw the CMOS circuit for a 2-input OR gate. 
5.3 Draw the CMOS circuit for a 3-input NAND gate. 
5.4 Draw the CMOS circuit for a 3-input NOR gate. 
5.5 Draw the CMOS circuit for an AND gate by using two NMOS transistors for the 0 half of the circuit and two 

PMOS transistors for the 1 half of the circuit. 
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Answer 

Output

Vcc

A

Vcc

B

Vcc

 

5.6 Draw the CMOS circuit for a 3-input AND gate. 

5.7 Derive the truth table for the following CMOS circuits. There are five possible values: 1, 0, Z, weak 1, weak 0, 
and short. 

a) 

A

B

C Output 

Answer: 
 

A B C Output 
0 0 0 Weak 0 
0 0 1 1 
0 1 0 Z 
0 1 1 Z 
1 0 0 Short 
1 0 1 1 
1 1 0 1 
1 1 1 Z 

b) 
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Vcc

Vcc
Vcc

Vcc

A

B

F

 
Answer: 

A F 
0 Z 
1 B 

 
This is a tri-state buffer. 

c) 

Output

A
B

Vcc

 
Answer: 
 
A B Output 
0 0 Short 
0 1 Weak 0 
1 0 Short 
1 1 Weak 1 
 
d) 

A

B

C

Output

 
Answer: 
 

A B C Output 
0 0 0 Z 
0 0 1 0 

Digital Logic and Microprocessor Design with VHDL Chapter 5 - Implementation Technologies

170



0 1 0 Z 
0 1 1 Z 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 Z 
 

5.8 Synthesize a CMOS circuit that realizes the following truth table. 
 

A B Output 
0 0 0 
0 1 0 
1 0 1 
1 1 0 

Answer: 

A

Vcc

B

A

Vcc

B

Output

 

5.9 Synthesize a CMOS circuit that realizes the following truth table.having two inputs and one output. Use as few 
transistors as possible. 

 
A B Output 
0 0 0 
0 1 0 
1 0 1 
1 1 Short 

Answer: 

B

A Output 

or 
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B

A

Vcc

Output

 

5.10 Use one 16 × 4 ROM (4 address lines, 16 entries, 4 data lines) to implement the following functions. Label all 
the lines clearly. 

f1 = w'xy'z + w'xz 
f2 = w 
f3 = xy' + xyz 

Answer: 

OR Array

f1f2f3

A3

A2

A1

A0

4-to-16
Decoder

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

z

y

x

w

 

5.11 Use one 16 × 4 ROM (4 address lines, 16 entries, 4 data lines) to implement the following functions. Label all 
the lines clearly. 

f1 = w x' y' z + w x' y z' + w' x y' z' 
f2 = x y +  w' z + w x' y 

Answer: 

Digital Logic and Microprocessor Design with VHDL Chapter 5 - Implementation Technologies

172



OR Array

f1f2

A3

A2

A1

A0

4-to-16
Decoder

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

z

y

x

w

 

5.12 Use one 4 × 8 × 4 PLA to implement the following two functions: 

F1(w,x,y,z) = wx'y'z + wx'yz' + wxy' 
F2(w,x,y,z) = wx'y + x'y'z 

 
Answer: 

OR Array

AND Array

Output
Array

1

F2 F1

0

x zyw

 

5.13 Use one 4 × 8 × 4 PLA to implement the following two functions: 
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F1(w,x,y,z) = Σ(0,2,3,4,5,6,11,12,13,14,15) 
F2(w,x,y,z) = Σ(1,2,3,5,7,9) 

Answer: 

OR Array

AND Array

Output
Array

1

F2 F1

0

x zyw
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Chapter 6 

Latches and Flip-Flops 
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So far, we have been looking at the design of combinational circuits. We will now turn our attention to the 
design of sequential circuits. Recall that the outputs of sequential circuits are dependent on not only their current 
inputs (as in combinational circuits), but also on all their past inputs. Because of this necessity to remember the 
history of inputs, sequential circuits must contain memory elements. 

The car security system from Section 2.9 is an example of a combinational circuit. In that example, the siren is 
turned on when the master switch is on and someone opens the door. If you close the door afterwards, then the siren 
will turn off immediately. For a more realistic car security system, we would like the siren to remain on even if you 
close the door after it was first triggered. In order for this modified system to work correctly, the siren must be 
dependent on not only the master switch and the door switch but also on whether the siren is currently on or off. In 
other words, this modified system is a sequential circuit that is dependent on both the current and on the past inputs 
to the system. 

In order to remember this history of inputs, sequential circuits must have memory elements. Memory elements, 
however, are just like combinational circuits in the sense that they are made up of the same basic logic gates. What 
makes them different is in the way these logic gates are connected together. In order for a circuit to “remember” its 
current value, we have to connect the output of a logic gate directly or indirectly back to the input of that same gate. 
We call this a feedback loop circuit, and it forms the basis for all memory elements. Combinational circuits do not 
have any feedback loops. 

Latches and flip-flops are the basic memory elements for storing information. Hence, they are the fundamental 
building blocks for all sequential circuits. A single latch or flip-flop can store only one bit of information. This bit of 
information that is stored in a latch or flip-flop is referred to as the state of the latch or flip-flop. Hence, a single 
latch or flip-flop can be in either one of two states: 0 or 1. We say that a latch or a flip-flop changes state when its 
content changes from a 0 to a 1 or vice versa. This state value is always available at the output. Consequently, the 
content of a latch or a flip-flop is the state value, and is always equal to its output value. 

The main difference between a latch and a flip-flop is that for a latch, its state or output is constantly affected by 
its input as long as its enable signal is asserted. In other words, when a latch is enabled, its state changes 
immediately when its input changes. When a latch is disabled, its state remains constant, thereby, remembering its 
previous value. On the other hand, a flip-flop changes state only at the active edge of its enable signal, i.e., at 
precisely the moment when either its enable signal rises from a 0 to a 1 (referred to as the rising edge of the signal), 
or from a 1 to a 0 (the falling edge). However, after the rising or falling edge of the enable signal, and during the 
time when the enable signal is at a constant 1 or 0, the flip-flop’s state remains constant even if the input changes. 

In a microprocessor system, we usually want changes to occur at precisely the same moment. Hence, flip-flops 
are used more often than latches, since they can all be synchronized to change only at the active edge of the enable 
signal. This enable signal for the flip-flops is usually the global controlling clock signal. 

Historically, there are basically four main types of flip-flops: SR, D, JK, and T. The major differences between 
them are the number of inputs they have and how their contents change. Any given sequential circuit can be built 
using any of these types of flip-flops (or combinations of them). However, selecting one type of flip-flop over 
another type to use in a particular sequential circuit can affect the overall size of the circuit. Today, sequential 
circuits are designed mainly with D flip-flops because of their ease of use. This is simply a tradeoff issue between 
ease of circuit design versus circuit size. Thus, we will focus mainly on the D flip-flop. Discussions about the other 
types of flip-flops can be found in Section 6.14. 

In this chapter, we will look at how latches and flip-flops are designed and how they work. Since flip-flops are 
at the heart of all sequential circuits, a good understanding of their design and operation is very important in the 
design of microprocessors. 

6.1 Bistable Element 
Let us look at the inverter. If you provide the inverter input with a 1, the inverter will output a 0. If you do not 

provide the inverter with an input (that is neither a 0 nor a 1), the inverter will not have a value to output. If you 
want to construct a memory circuit using the inverter, you would want the inverter to continue to output the 0 even 
after you remove the 1 input. In order for the inverter to continue to output a 0, you need the inverter to self-provide 
its own input. In other words, you want the output to feed back the 0 to the input. However, you cannot connect the 
output of the inverter directly to its input, because you will have a 0 connected to a 1 and so creating a short circuit.  
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The solution is to connect two inverters in series, as shown in Figure 6.1. This circuit is called a bistable 
element, and it is the simplest memory circuit. The bistable element has two symmetrical nodes labeled Q and Q', 
both of which can be viewed as either an input or an output signal. Since Q and Q' are symmetrical, we can 
arbitrarily use Q as the state variable, so that the state of the circuit is the value at Q. Let us assume that Q originally 
has the value 0 when power is first applied to the circuit. Since Q is the input to the bottom inverter, therefore, Q' is 
a 1. A 1 going to the input of the top inverter will produce a 0 at the output Q, which is what we started off with. 
Hence, the value at Q will remain at a 0 indefinitely. Similarly, if we power-up the circuit with Q = 1, we will get Q' 
= 0, and again, we get a stable situation with Q remaining at a 1 indefinitely. Thus, the circuit has two stable states: 
Q = 0 and Q = 1; hence, the name “bistable.” 

Q

Q'  
Figure 6.1 Bistable element circuit. 

We say that the bistable element has memory because it can remember its state (i.e., keep the value at Q 
constant) indefinitely. Unfortunately, we cannot change its state (i.e., cannot change the value at Q). We cannot just 
input a different value to Q, because it will create a short circuit by connecting a 0 to a 1. For example, let us assume 
that Q is currently 0. If we want to change the state, we need to set Q to a 1, but in so doing we will be connecting a 
1 to a 0, thus creating a short. Another way of looking at this problem is that we can think of both Q and Q' as being 
the primary outputs, which means that the circuit does not have any external inputs. Therefore, there is no way for us 
to input a different value. 

6.2 SR Latch 
In order to change the state for the bistable element, we need to add external inputs to the circuit. The simplest 

way to add extra inputs is to replace the two inverters with two NAND gates, as shown in Figure 6.2(a). This circuit is 
called an SR latch. In addition to the two outputs Q and Q', there are two inputs S' and R' for set and reset, 
respectively. Just like the bistable element, the SR latch can be in one of two states: a set state when Q = 1, or a reset 
state when Q = 0. Following the convention, the primes in S and R denote that these inputs are active-low (i.e., a 0 
asserts them, and a 1 de-asserts them). 

To make the SR latch go to the set state, we simply assert the S' input by setting it to 0 (and de-asserting R'). It 
doesn’t matter what the other NAND gate input is, because 0 NAND anything gives a 1, hence Q = 1, and the latch is 
set. If S' remains at 0 so that Q (which is connected to one input of the bottom NAND gate) remains at 1, and if we 
now de-assert R' (i.e., set R' to a 1) then the output of the bottom NAND gate will be 0, and so, Q' = 0. This situation 
is shown in Figure 6.2(d) at time t0. From this current situation, if we now de-assert S' so that S' = R' = 1, the latch 
will remain in the set state because Q' (the second input to the top NAND gate) is 0, which will keep Q = 1, as shown 
at time t1. At time t2, we reset the latch by making R' = 0 (and S' = 1). With R' being a 0, Q' will go to a 1. At the top 
NAND gate, 1 NAND 1 is 0, thus forcing Q to go to 0. If we de-assert R' next so that, again, we have S' = R' = 1, this 
time the latch will remain in the reset state, as shown at time t3. 

Notice the two times (at t1 and t3) when both S' and R' are de-asserted (i.e., S' = R' = 1). At t1, Q is at a 1; 
whereas, at t3, Q is at a 0. Why is this so? What is different between these two times? The difference is in the value 
of Q immediately before those times. The value of Q right before t1 is 1; whereas, the value of Q right before t3 is 0. 
When both inputs are de-asserted, the SR latch remembers its previous state. Previous to t1, Q has the value 1, so at 
t1, Q remains at a 1. Similarly, previous to t3, Q has the value 0, so at t3, Q remains at a 0. 
 

Q

Q'

S'

R'  

S' R' Q Qnext Qnext' 
0 0 × 1 1 
0 1 × 1 0 
1 0 × 0 1 
1 1 0 0 1 
1 1 1 1 0 
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(a) (b) 

Q

Q'

S'

R'  
 

(c) 

S'

R'

Q

Q'
t0 t1 t2 t3 t4 t5

Undefined

Undefined

t6  

(d) 

Figure 6.2 SR latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) sample trace. 

If both S' and R' are asserted (i.e., S' = R' = 0), then both Q and Q' are equal to a 1, as shown at time t4, since 0 
NAND anything gives a 1. Note that there is nothing wrong with having Q equal to Q'. It is just because we named 
these two points Q and Q' that we don’t like them to be equal. However, we could have used another name say, P 
instead of Q'. 

If one of the input signals is de-asserted earlier than the other, the latch will end up in the state forced by the 
signal that is de-asserted later, as shown at time t5. At t5, R' is de-asserted first, so the latch goes into the set state 
with Q = 1, and Q' = 0. 

A problem exists if both S' and R' are de-asserted at exactly the same time, as shown at time t6. Let us assume 
for a moment that both gates have exactly the same delay and that the two wire connections between the output of 
one gate to the input of the other gate also have exactly the same delay. Currently, both Q and Q' are at a 1. If we set 
S' and R' to a 1 at exactly the same time, then both NAND gates will perform a 1 NAND 1 and will both output a 0 at 
exactly the same time. The two 0’s will be fed back to the two gate inputs at exactly the same time, because the two 
wire connections have the same delay. This time around, the two NAND gates will perform a 1 NAND 0 and will both 
produce a 1 again at exactly the same time. This time, two 1’s will be fed back to the inputs, which again will 
produce a 0 at the outputs, and so on and on. This oscillating behavior, called the critical race, will continue 
indefinitely until one outpaces the other. If the two gates do not have exactly the same delay then, the situation is 
similar to de-asserting one input before the other, and so, the latch will go into one state or the other. However, since 
we do not know which is the faster gate, therefore, we do not know which state the latch will end up in. Thus, the 
latch’s next state is undefined. 

Of course, in practice, it is next to impossible to manufacture two gates and make the two connections with 
precisely the same delay. In addition, both S' and R' need to be de-asserted at exactly the same time. Nevertheless, if 
this circuit is used in controlling some mission-critical device, we don’t want even this slim chance to happen. 

In order to avoid this non-deterministic behavior, we must make sure that the two inputs are never de-asserted at 
the same time. Note that we do want the situation when both of them are de-asserted, as in times t1 and t3, so that the 
circuit can remember its current content. We want to de-assert one input after de-asserting the other, but just not de-
asserting both of them at exactly the same time. In practice, it is very difficult to guarantee that these two signals are 
never de-asserted at the same time, so we relax the condition slightly by not having both of them asserted together. 
In other words, if one is asserted, then the other one cannot be asserted. Therefore, if both of them are never asserted 
simultaneously, then they cannot be de-asserted at the same time. A minor side benefit for not having both of them 
asserted together is that Q and Q' are never equal to each other. Recall that, from the names that we have given these 
two nodes, we do want them to be inverses of each other. 

From the above analysis, we obtain the truth table in Figure 6.2(b) for the NAND implementation of the SR latch. 
In the truth table, Q and Qnext actually represent the same point in the circuit. The difference is that Q is the current 
value at that point, while Qnext is the new value to be updated in the next time period. Another way of looking at it is 
that Q is the input to a gate, and Qnext is the output from a gate. In other words, the signal Q goes into a gate, 
propagates through the two gates, and arrives back at Q as the new signal Qnext. Figure 6.2(c) shows the logic symbol 
for the SR latch. 
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The SR latch can also be implemented using NOR gates, as shown in Figure 6.3(a). The truth table for this 
implementation is shown in Figure 6.3(b). From the truth table, we see that the main difference between this 
implementation and the NAND implementation is that for the NOR implementation, the S and R inputs are active-high, 
so that setting S to 1 will set the latch, and setting R to 1 will reset the latch. However, just like the NAND 
implementation, the latch is set when Q = 1, and reset when Q = 0. The latch remembers its previous state when S = 
R = 0. When S = R = 1, both Q and Q' are 0. The logic symbol for the SR latch using NOR implementation is shown 
in Figure 6.3(c). 

Q

Q'

R

S  

(a) 

S R Q Qnext Qnext' 
0 0 0 0 1 
0 0 1 1 0 
0 1 × 0 1 
1 0 × 1 0 
1 1 × 0 0 

(b) 

Q

Q'

S

R  
 

(c) 

Figure 6.3 SR latch: (a) circuit using NOR gates; (b) truth table; (c) logic symbol. 

6.3 SR Latch with Enable 
The SR latch is sensitive to its inputs all the time. In other words, Q will always change when either S or R is 

asserted. It is sometimes useful to be able to disable the inputs so that asserting them will not cause the latch to 
change state but to keep its current state. Of course, this is achieved by de-asserting both S and R. Hence, what we 
want is just one enable signal that will de-assert both S and R. The SR latch with enable (also known as a gated SR 
latch) shown in Figure 6.4(a) accomplishes this by adding two extra NAND gates to the original NAND gate 
implementation of the latch. These two new NAND gates are controlled by the enable input, E, which determines 
whether the latch is enabled or disabled. When E = 1, the circuit behaves like the normal NAND implementation of 
the SR latch except that the new S and R inputs are active-high rather than active-low. When E = 0, then S' = R' = 1, 
and the latch will remain in its previous state regardless of the S and R inputs. The truth table and the logic symbol 
for the SR latch with enable is shown in Figure 6.4(b) and (c), respectively. 

A typical operation of the latch is shown in the sample trace in Figure 6.4(d). Between t0 and t1, E = 0, so 
changing the S and R inputs do not affect the output. Between t1 and t2, E = 1, and the trace is similar to the trace of 
Figure 6.2(d) except that the input signals are inverted. 
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Figure 6.4 SR latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) sample trace. 

6.4 D Latch 
Recall from Section 6.2 that the disadvantage with the SR latch is that we need to ensure that the two inputs, S 

and R, are never de-asserted at exactly the same time, and we said that we can guarantee this by not having both of 
them asserted. This situation is prevented in the D latch by adding an inverter between the original S' and R' inputs. 
This way, S' and R' will always be inverses of each other, and so, they will never be asserted together. The circuit 
using NAND gates and the inverter is shown in Figure 6.5(a). There is now only one input D (for data). When D = 0, 
then S' = 1 and R' = 0, so this is similar to resetting the SR latch by making Q = 0. Similarly, when D = 1, then S' = 0 
and R' = 1, and Q will be set to 1. From this observation, we see that Qnext always gets the same value as the input D, 
and is independent of the current value of Q. Hence, we obtain the truth table for the D latch, as shown in Figure 
6.5(b). 

Comparing the truth table for the D latch shown in Figure 6.5(b) with the truth table for the SR latch shown in 
Figure 6.2(b), it is obvious that we have eliminated not just one, but three rows, where S' = R'. The reason for adding 
the inverter to the SR latch circuit was to eliminate the row where S' = R' = 0. However, we still need to have the 
other two rows where S' = R' = 1 in order for the circuit to remember its current value. By not being able to set both 
S' and R' to 1, this D latch circuit has now lost its ability to remember. Qnext cannot remember the current value of Q, 
instead it will always follow D. The end result is like having a piece of wire where the output is the same as the 
input! 
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Figure 6.5 D latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol. 
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6.5 D Latch with Enable 
In order to make the D latch remember the current value, we need to connect Q (the current state value) back to 

the input D, thus creating another feedback loop. Furthermore, we need to be able to select whether to loop Q back 
to D or input a new value for D. Otherwise, like the bistable element, we will not be able to change the state of the 
circuit. One way to achieve this is to use a 2-input multiplexer to select whether to feedback the current value of Q 
or pass an external input back to D. The circuit for the D latch with enable (also known as a gated D latch) is 
shown in Figure 6.6(a). The external input becomes the new D input, the output of the multiplexer is connected to 
the original D input, and the select line of the multiplexer is the enable signal E. 

When the enable signal E is asserted (E = 1), the external D input passes through the multiplexer, and so Qnext 
(i.e., the output Q) follows the D input. On the other hand, when E is de-asserted (E = 0), the current value of Q 
loops back as the input to the circuit, and so Qnext retains its last value independent of the D input. 

When the latch is enabled, the latch is said to be open, and the path from the input D to the output Q is 
transparent. In other words, Q follows D. Because of this characteristic, the D latch with enable circuit is often 
referred to as a transparent latch. When the latch is disabled, it is closed, and the latch remembers its current state. 
The truth table and the logic symbol for the D latch with enable are shown in Figure 6.6(b) and (c). A sample trace 
for the operation of the D latch with enable is shown in Figure 6.6(d). Between t0 and t1, the latch is enabled with E 
= 1, so the output Q follows the input D. Between t1 and t2, the latch is disabled, so Q remains stable even when D 
changes. 

An alternative way to construct the D latch with enable circuit is shown in Figure 6.7. Instead of using the 2-
input multiplexer, as shown in Figure 6.6(a), we start with the SR latch with enable circuit of Figure 6.4(a), and 
connect the S and R inputs together with an inverter. The functional operations of these two circuits are identical. 
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Figure 6.6 D latch with enable: (a) circuit; (b) truth table; (c) logic symbol; (d) sample trace. 
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Figure 6.7 D latch with enable circuit using four NAND gates. 

6.6 Clock 
Latches are known as level-sensitive because their outputs are affected by their inputs as long as they are 

enabled. Their memory state can change during this entire time when the enable signal is asserted. In a computer 
circuit, however, we do not want the memory state to change at various times when the enable signal is asserted. 
Instead, we like to synchronize all of the state changes to happen at precisely the same moment and at regular 
intervals. In order to achieve this, two things are needed: 1) a synchronizing signal, and 2) a memory circuit that is 
not level-sensitive. The synchronizing signal, of course, is the clock, and the non-level-sensitive memory circuit is 
the flip-flop. 

The clock is simply a very regular square wave signal, as shown in Figure 6.8. We call the edge of the clock 
signal when it changes from 0 to 1 the rising edge. Conversely, the falling edge of the clock is the edge when the 
signal changes from 1 to 0. We will use the symbol � to denote the rising edge and � for the falling edge. In a 
computer circuit, either the rising edge or the falling edge of the clock can be used as the synchronizing signal for 
writing data into a memory element. This edge signal is referred to as the active edge of the clock. In all of our 
examples, we will use the rising clock edge as the active edge. Therefore, at every rising edge, data will be clocked 
or stored into the memory element. 

A clock cycle is the time from one rising edge to the next rising edge or from one falling edge to the next falling 
edge. The speed of the clock, measured in hertz (Hz), is the number of cycles per second. Typically, the clock speed 
for a microprocessor in an embedded system runs around 20 MHz, while the microprocessor in a personal computer 
runs upwards of 2 GHz and higher. A clock period is the time for one clock cycle (seconds per cycle), so it is just 
the inverse of the clock speed. 

The speed of the clock is determined by how fast a circuit can produce valid results. For example, a two-level 
combinational circuit will have valid results at its output much sooner than, say, an ALU can. Of course, we want 
the clock speed to be as fast as possible, but it can only be as fast as the slowest circuit in the entire system. We want 
the clock period to be the time it takes for the slowest circuit to get its input from a memory element, operate on the 
data, and then write the data back into a memory element. More will be said on this in later sections. 

Figure 6.9 shows a VHDL description of a clock-divider circuit that roughly cuts a 25 MHz clock down to 1 Hz. 

One Clock Cycle

Falling Edge Rising Edge  
Figure 6.8 Clock signal. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Clockdiv IS PORT (
Clk25Mhz: IN STD_LOGIC;
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Clk: OUT STD_LOGIC);
END Clockdiv;

ARCHITECTURE Behavior OF Clockdiv IS
CONSTANT max: INTEGER := 25000000;
CONSTANT half: INTEGER := max/2;
SIGNAL count: INTEGER RANGE 0 TO max;

BEGIN
PROCESS
BEGIN
WAIT UNTIL Clk25Mhz'EVENT and Clk25Mhz = '1';
IF count < max THEN
count <= count + 1;

ELSE
count <= 0;

END IF;
IF count < half THEN
Clk <= '0';

ELSE
Clk <= '1';

END IF;
END PROCESS;

END Behavior;

Figure 6.9 VHDL behavioral description of a clock-divider circuit. 

6.7 D Flip-Flop 
Unlike the latch, a flip-flop is not level-sensitive, but rather edge-triggered. In other words, data gets stored 

into a flip-flop only at the active edge of the clock. An edge-triggered D flip-flop achieves this by combining in 
series a pair of D latches. Figure 6.10(a) shows a positive-edge-triggered D flip-flop, where two D latches are 
connected in series. A clock signal Clk is connected to the E input of the two latches: one directly, and one through 
an inverter.  

The first latch is called the master latch. The master latch is enabled when Clk = 0 because of the inverter, and 
so QM follows the primary input D. However, the signal at QM cannot pass over to the primary output Q, because 
the second latch (called the slave latch) is disabled when Clk = 0. When Clk = 1, the master latch is disabled, but the 
slave latch is enabled so that the output from the master latch, QM, is transferred to the primary output Q. The slave 
latch is enabled all the while that Clk = 1, but its content changes only at the rising edge of the clock, because once 
Clk is 1, the master latch is disabled, and the input to the slave latch, QM, will be constant. Therefore, when Clk = 1 
and the slave latch is enabled, the primary output Q will not change because the input QM is not changing. 

The circuit shown in Figure 6.10(a) is called a positive-edge-triggered D flip-flop because the primary output Q 
on the slave latch changes only at the rising edge of the clock. If the slave latch is enabled when the clock is low 
(i.e., with the inverter output connected to the E of the slave latch), then it is referred to as a negative-edge-
triggered flip-flop. The circuit is also referred to as a master-slave D flip-flop because of the two D latches used in 
the circuit. 

Figure 6.10(b) shows the operation table for the D flip-flop. The � symbol signifies the rising edge of the 
clock. When Clk is either at 0 or 1, the flip-flop retains its current value (i.e., Qnext = Q). Qnext changes and follows 
the primary input D only at the rising edge of the clock. The logic symbol for the positive-edge-triggered D flip-flop 
is shown in Figure 6.10(c). The small triangle at the clock input indicates that the circuit is triggered by the edge of 
the signal, and so it is a flip-flop. Without the small triangle, the symbol would be that for a latch. If there is a circle 
in front of the clock line, then the flip-flop is triggered by the falling edge of the clock, making it a negative-edge-
triggered flip-flop. Figure 6.10(d) shows a sample trace for the D flip-flop. Notice that when Clk = 0, QM follows D, 
and the output of the slave latch, Q, remains constant. On the other hand, when Clk = 1, Q follows QM, and the 
output of the master latch, QM, remains constant. 
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Figure 6.10 Master-slave positive-edge-triggered D flip-flop: (a) circuit using D latches; (b) operation table; (c) 
logic symbol; (d) sample trace. 

Figure 6.11 compares the different operations between a latch and a flip-flop. In Figure 6.11(a), we have a D 
latch with enable, a positive-edge-triggered D flip-flop, and a negative-edge-triggered D flip-flop, all having the 
same D input and controlled by the same clock signal. Figure 6.11(b) shows a sample trace of the circuit’s 
operations. Notice that the gated D latch, Qa, follows the D input as long as the clock is high (between times t0 and t1 
and times t2 and t3). The positive-edge-triggered flip-flop, Qb, follows the D input only at the rising edge of the clock 
at time t2, while the negative-edge-triggered flip-flop, Qc, follows the D input only at the falling edge of the clock at 
times t1 and t3. 
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Figure 6.11 Comparison of a gated latch, a positive-edge-triggered flip-flop, and a negative-edge-triggered flip-flop: 
(a) circuit; (b) sample trace. 

6.7.1 * Alternative Smaller Circuit 

Not all master-slave flip-flops are edge-triggered. For instance, using two SR latches to construct a master-slave 
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flip-flop results in a flip-flop that is level-sensitive. Conversely, an edged-triggered D flip-flop can be constructed 
using SR latches instead of the master-slave D latches. 

The circuit shown in Figure 6.12 shows how a positive-edge-triggered D flip-flop can be constructed using 
three interconnected SR latches. The advantage of this circuit is that it uses only 6 NAND gates (26 transistors) as 
opposed to 11 gates (38 transistors) for the master-slave D flip-flop shown in Figure 6.10(a). The operation of the 
circuit is as follows. When Clk = 0, the outputs of gates 2 and 3 will be 1 (since 0 NAND x = 1). With n2 = n3 = 1, this 
will keep the output latch (comprising of gates 5 and 6) in its current state. At the same time, n4 = D' since one input 
to gate 4 is n3, which is a 1 (1 NAND x = x'). Similarly, n1 = D since n2 = 1, and the other input to gate 1 is n4, which 
is D' (again 1 NAND x = x'). 

When Clk changes to 1, n2 will be equal to D' because 1 NAND n1 = n1', and n1 = D. Similarly, n3 will be equal to 
D when Clk changes to 1 because the other two inputs to gate 3 are both D'. Therefore, if Clk = 1 and D = 0, then n2 
(which is equal to D') will be 1 and n3 (which is equal to D) will be 0. With n2 = 1 and n3 = 0, this will de-assert S' 
and assert R', thus resetting the output latch Q to 0. On the other hand, if Clk = 1 and D = 1, then n2 (which is equal 
to D') will be 0 and n3 (which is equal to D) will be 1. This will assert S' and de-assert R'; thus setting the output 
latch Q to 1. So at the rising edge of the Clk signal, Q will follow D. 

The setting and resetting of the output latch occurs only at the rising edge of the Clk signal, because once Clk is 
at a 1 and remains at a 1, changing D will not change n2 or n3. The reason, as noted in the previous paragraph, is that 
n2 and n3 are always inverses of each other. Furthermore, the following argument shows that both n2 and n3 will 
remain constant even if D changes. Let us first assume that n2 is a 0. If n2 = 0, then n3 (the output of gate 3) will 
always be a 1 (since 0 NAND x = 1), regardless of what n4 (the third input to gate 3) may be. Hence, if n4 (the output 
of gate 4) cannot affect n3, then D (the input to gate 4) also cannot affect either n2 or n3. On the other hand, if n2 = 1, 
then n3 = 0 (n3 = n2'). With a 0 from n3 going to the input of gate 4, the output of gate 4 at n4 will always be a 1 (0 
NAND x = 1), regardless of what D is. With the three inputs to gate 3 being all 1’s, n3 will continue to be 0. 
Therefore, as long as Clk = 1, changing D will not change n2 or n3. And if n2 and n3 remain stable, then Q will also 
remain stable for the entire time that Clk is 1. 
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Figure 6.12. Positive-edge-triggered D flip-flop. 

6.8 D Flip-Flop with Enable 
So far, with the construction of the different memory elements, it seems like every time we add a new feature 

we have also lost a feature that we need. The careful reader will have noticed that, in building the D flip-flop, we 
have again lost the most important property of a memory element—it can no longer remember its current content! 
At every active edge of the clock, the D flip-flop will load in a new value. So how do we get it to remember its 
current value and not load in a new value? 

The answer, of course, is exactly the same as what we did with the D latch, and that is by adding an enable 
input, E, through a 2-input multiplexer, as shown in Figure 6.13(a). When E = 1, the primary input D signal will 
pass to the D input of the flip-flop, thus updating the content of the flip-flop at the active edge. When E = 0, the 
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current content of the flip-flop at Q is passed back to the D input of the flip-flop, thus keeping its current value. 
Notice that changes to the flip-flop value occur only at the active edge of the clock. Here, we are using the rising 
edge as the active edge. The operation table and the logic symbol for the D flip-flop with enable is shown in Figure 
6.13(b) and (c) respectively. 
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Figure 6.13 D flip-flop with enable: (a) circuit; (b) operation table; (c) logic symbol. 

6.9 Asynchronous Inputs 
Flip-flops (as we have seen so far) change states only at the rising or falling edge of a synchronizing clock 

signal. Many circuits require the initialization of flip-flops to a known state that is independent of the clock signal. 
Sequential circuits that change states whenever a change in input values occurs that is independent of the clock are 
referred to as asynchronous sequential circuits. Synchronous sequential circuits, on the other hand, change states 
only at the active edge of the clock signal. Asynchronous inputs usually are available for both flip-flops and latches, 
and they are used to either set or clear the storage element’s content that is independent of the clock. 

Figure 6.14(a) shows a gated D latch with asynchronous active-low Set' and Clear' inputs, and (b) is the logic 
symbol for it. Figure 6.14(c) is the circuit for the D edge-triggered flip-flop with asynchronous Set' and Clear' 
inputs, and (d) is the logic symbol for it. When Set' is asserted (set to 0) the content of the storage element is set to 1 
immediately (i.e., without having to wait for the next rising clock edge), and when Clear' is asserted (set to 0) the 
content of the storage element is set to 0 immediately. 
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Figure 6.14 Storage elements with asynchronous inputs: (a) D latch with active-low set and clear; (b) logic symbol 
for (a); (c) D edge-triggered flip-flop with active-low set and clear; (d) logic symbol for (c). 

6.10 Description of a Flip-Flop 
Combinational circuits can be described with either a truth table or a Boolean equation. For describing the 

operation of a flip-flop or any sequential circuit in general, we use a characteristic table, a characteristic equation, a 
state diagram, or an excitation table, as discussed in the following subsections.  

6.10.1 Characteristic Table 

The characteristic table specifies the functional behavior of the flip-flop. It is a simplified version of the flip-
flop’s operational table by only listing how the state changes at the active clock edge. The table has the flip-flop’s 
input signal(s) and current state (Q) listed in the input columns, and the next state (Qnext) listed in the output column. 
Qnext' is always assumed to be the inverse of Qnext, so it is not necessary to include this output column. The clock 
signal is also not included in the table, because it is a signal that we do not want to modify. Nevertheless, the clock 
signal is always assume to exist. Furthermore, since all state changes for a flip-flop (i.e., changes to Qnext) occur at 
the active edge of the clock, therefore it is not necessary to list the situations from the operation table for when the 
clock is at a constant value. 

The characteristic table for the D flip-flop is shown in Figure 6.15(a). It has two input columns (the input signal 
D, and the current state Q) and one output column for Qnext. From the operation table for the D flip-flop shown in 
Figure 6.10(b), we see that there are only two rows where Qnext is affected during the rising clock edge. Hence, these 
are the only two rows inserted into the characteristic table. 

The characteristic table is used in the analysis of sequential circuits to answer the question of what is the next 
state, Qnext, when given the current state, Q, and input signals (D in the case of the D flip-flop). 

6.10.2 Characteristic Equation 

The characteristic equation is simply the Boolean equation that is derived directly from the characteristic 
table. Like the characteristic table, the characteristic equation specifies the flip-flop’s next state, Qnext, as a function 
of its current state, Q, and input signals. The D flip-flop characteristic table has only one 1-minterm, which results in 
the simple characteristic equation for the D flip-flop shown in Figure 6.15(b). 
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6.10.3 State Diagram 

A state diagram is a graph with nodes and directed edges connecting the nodes, as shown in Figure 6.15(c). 
The state diagram graphically portrays the operation of the flip-flop. The nodes are labeled with the states of the 
flip-flop, and the directed edges are labeled with the input signals that cause the transition to go from one state of the 
flip-flop to the next. Figure 6.15(c) shows the state diagram for the D flip-flop. It has two states, Q = 0 and Q = 1, 
which correspond to the two values that the flip-flop can contain. The operation of the D flip-flop is such that when 
it is in state 0, it will change to state 1 if the input D is a 1; otherwise, if the input D is a 0, then it will remain in state 
0. Hence, there is an edge labeled D = 1 that goes from state Q = 0 to Q = 1, and a second edge labeled D = 0 that 
goes from state Q = 0 back to itself. Similarly, when the flip-flop is in state 1, it will change to state 0 if the input D 
is a 0; otherwise, it will remain in state 1. These two conditions correspond to the remaining two edges that go out 
from state Q = 1 in the state diagram. 

6.10.4 Excitation Table 

The excitation table is like the mirror image of the characteristic table by exchanging the input signal 
column(s) with the output (Qnext) column. The excitation table shows what the flip-flop’s inputs should be in order to 
change from the flip-flop’s current state to the next state desired. In other words, the excitation table answers the 
question of what the flip-flop’s inputs should be when given the current state that the flip-flop is in and the next state 
that we want the flip-flop to go to. This table is used in the synthesis of sequential circuits. 

Figure 6.15(d) shows the excitation table for the D flip-flop. As can be seen, this table can be obtained directly 
from the state diagram. For example, using the state diagram of the D flip-flop from Figure 6.15(c), if the current 
state is Q = 0 and we want the next state to be Qnext = 0, then the D input must be a 0 as shown by the label on the 
edge that goes from state 0 back to itself. On the other hand, if the current state is Q = 0 and we want the next state 
to be Qnext = 1, then the D input must be a 1. 
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Figure 6.15 Description of a D flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) 
excitation table. 

6.11 * Timing Issues 
So far in our discussion of latches and flip-flops, we have ignored timing issues and the effects of propagation 

delays. In practice, timing issues are very important in the correct design of sequential circuits. Consider again the D 
latch with enable circuit from Section 6.5 and redrawn in Figure 6.16(a). Signals from the inputs require some delay 
to propagate through the gates and finally to reach the outputs. 

Assuming that the propagation delay for the inverter is one nanosecond (ns) and 2 ns for the NAND gates, the 
timing trace diagram would look like Figure 6.16(b) with the signal delays taken into consideration. The arrows 
denote which signal edge causes another signal edge. The number next to an arrow denotes the number of 
nanoseconds in delay for the resulting signal to change. 
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At time t1, signal D drops to 0. This causes R to rise to 1 after a 1 ns delay through the inverter. The D edge also 
causes S' to rise to 1, but after a delay of 2 ns through the NAND gate. After that, R' drops to 0 2 ns after R rises to 1. 
This in turn causes Q' to rise to 1 after 2 ns, followed by Q dropping to 0. 

At time t2, signal E drops to 0, disabling the circuit. As a result, when D rises to 1 at time t3, both Q and Q' are 
not affected. 

At time t4, signal E rises to 1 and re-enables the circuit. This causes S' to drop to 0 after 2 ns. R' remains 
unchanged at 1 since the two inputs to the NAND gate, E and R, are 1 and 0, respectively. With S' asserted and R' de-
asserted, the latch is set with Q rising to 1 2 ns after S' drops to a 0. This is followed by Q' dropping to 0 after 
another 2 ns. 
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Figure 6.16 D latch with enable: (a) circuit; (b) timing diagram with delays. 

Furthermore, for the D latch circuit to latch in the data from input D correctly, there is a critical window of time 
right before and right after the falling edge of the enable signal, E, that must be observed. Within this time frame, the 
input signal, D, must not change. As shown in Figure 6.17, the time before the falling edge of E is referred to as the 
setup time, tsetup, and the time after the falling edge of E is referred to as the hold time, thold. The length of these two 
times is dependent on the implementation and manufacturing process and can be obtained from the component data 
sheet. 

E

D

tsetup thold  
Figure 6.17 Setup and hold times for the gated D latch. 

6.12 Car Security System—Version 2 
In Section 2.9, we designed a combinational circuit for a car security system where the siren will come on when 

the master switch is on and either the door switch or the vibration switch is also on. However, as soon as both the 
door switch and the vibration switch are off, the siren will turn off immediately even though the master switch is still 
on. In reality, what we really want is to have the siren remain on, even after both the door and vibration switches are 
off. In order to do so, we need to remember the state of the siren. In other words, for the siren to remain on, it should 
be dependent not only on whether the door or the vibration switch is on, but also on the fact that the siren is 
currently on. 

We can use the state of a SR latch to remember the state of the siren (i.e., the output of the latch will drive the 
siren). The state of the latch is driven by the conditions of the input switches. The modified circuit, as shown in 
Figure 6.18, has an SR latch (in addition to its original combinational circuit) for remembering the current state of 
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the siren. The latch is set from the output of the combinational circuit. The latch’s reset is connected to the master 
switch so that the siren can be turned off immediately. 

A sample timing trace of the operation of this circuit is shown in Figure 6.19. At time 0, the siren is off, even 
though the door switch is on, because the master switch is off. At time 300 ns, the siren is turned on by the door 
switch since the master switch is also on. At time 500 ns, both the door and the vibration switches are off, but the 
siren is still on because it was turned on previously. The siren is turned off by the master switch at time 600 ns. 

Q
S'

R'

Siren
SD

M
V

 
Figure 6.18 Modified car security system circuit with memory. 

 
Figure 6.19 Sample timing trace of the modified car security system circuit with memory. 

6.13 VHDL for Latches and Flip-Flops 

6.13.1 Implied Memory Element 

VHDL does not have any explicit object for defining a memory element. Instead, the semantics of the language 
provide for signals to be interpreted as a memory element. In other words, the memory element is declared 
depending on how these signals are assigned. 

Consider the VHDL code in Figure 6.20. If Enable is 1, then Q gets the value of D; otherwise, Q gets a 0. In this 
code, Q is assigned a value for all possible outcomes of the test in the IF statement. With this construct, a 
combinational circuit is produced. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY no_memory_element IS PORT (
D, Enable: IN STD_LOGIC;
Q: OUT STD_LOGIC);

END no_memory_element;

ARCHITECTURE Behavior OF no_memory_element IS
BEGIN

PROCESS(D, Enable)
BEGIN
IF Enable = '1' THEN
Q <= D;

ELSE
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Q <= '0';
END IF;

END PROCESS;
END Behavior;

Figure 6.20 Sample VHDL description of a combinational circuit. 

If we remove the ELSE and the statement in the ELSE part, as shown in Figure 6.21, then we have a situation 
where no value is assigned to Q if Enable is not 1. The key point here is that the VHDL semantics stipulate that, in 
cases where the code does not specify a value of a signal, the signal should retain its current value. In other words, 
the signal must remember its current value, and in order to do so, a memory element is implied. 

6.13.2 VHDL Code for a D Latch with Enable 

Figure 6.21 shows the VHDL code for a D latch with enable. If Enable is 1, then Q gets the value of D. 
However, if Enable is not 1, the code does not specify what Q should be; therefore, Q retains its current value by 
using a memory element. This code produces a latch and not a flip-flop, because Q follows D as long as Enable is 1 
and not only at the active edge of the Enable signal. The process sensitivity list includes both D and Enable, because 
either one of these signals can cause a change in the value of the Q output. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_latch_with_enable IS PORT (
D, Enable: IN STD_LOGIC;
Q: OUT STD_LOGIC);

END D_latch_with_enable;

ARCHITECTURE Behavior OF D_latch_with_enable IS
BEGIN

PROCESS(D, Enable)
BEGIN
IF Enable = '1' THEN
Q <= D;

END IF;
END PROCESS;

END Behavior;

Figure 6.21 VHDL code for a D latch with enable. 

6.13.3 VHDL Code for a D Flip-Flop 

Figure 6.22 shows the behavioral VHDL code for a positive-edge-triggered D flip-flop. The only difference 
here is that Q follows D only at the rising edge of the clock, and it is specified here by the condition “Clock' EVENT 
AND Clock = '1'.”  The ' EVENT attribute refers to any changes in the qualifying Clock signal. Therefore, when this 
happens and the resulting Clock value is a 1, we have, in effect, a condition for a positive or rising clock edge. 
Again, the code does not specify what is assigned to Q when the condition in the IF statement is false, so it implies 
the use of a memory element. Note also that the process sensitivity list contains only the clock signal, because it is 
the only signal that can cause a change in the Q output. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_flipflop IS PORT (
D, Clock: IN STD_LOGIC;
Q: OUT STD_LOGIC);
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END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN

PROCESS(Clock) -- sensitivity list is used
BEGIN
IF Clock’EVENT AND Clock = '1' THEN
Q <= D;

END IF;
END PROCESS;

END Behavior;

Figure 6.22 Behavioral VHDL code for a positive-edge-triggered D flip-flop using an IF statement. 

Another way to describe a flip-flop is to use the WAIT statement instead of the IF statement as shown in Figure 
6.23. When execution reaches the WAIT statement, it stops until the condition in the statement is true before 
proceeding. The WAIT statement, when used in a process block for synthesis, must be the first statement in the 
process. Note also that the process sensitivity list is omitted, because the WAIT statement implies that the sensitivity 
list contains only the clock signal. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_flipflop IS PORT (
D, Clock: IN STD_LOGIC;
Q: OUT STD_LOGIC);

END D_flipflop;

ARCHITECTURE Behavioral OF D_flipflop IS
BEGIN

PROCESS -- sensitivity list is not used if WAIT is used
BEGIN
WAIT UNTIL Clock’EVENT AND Clock = '0'; -- negative edge triggered
Q <= D;

END PROCESS;
END Behavioral;

Figure 6.23 Behavioral VHDL code for a negative-edge-triggered D flip-flop using a WAIT statement. 

Alternatively, we can write a structural VHDL description for the positive-edge-triggered D flip-flop, as shown 
in Figure 6.24. This VHDL code is based on the circuit for a positive-edge-triggered D flip-flop, as given in Figure 
6.12. 

The simulation trace for the positive-edge-triggered D flip-flop is shown in Figure 6.25.  In the trace, before the 
first rising edge of the clock at time 100 ns, both Q and Q' (QN) are undefined because nothing has been stored in 
the flip-flop yet. Immediately after this rising clock edge at 100 ns, Q gets the value of D, and QN gets the inverse. 
At 200 ns, D changes to 1, but Q does not follow D immediately but is delayed until the next rising clock edge at 
300 ns. At the same time, QN drops to 0. At 400 ns when D drops to 0, Q again follows it at the next rising clock 
edge at 500 ns. 

-- define the operation of the 2-input NAND gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY NAND_2 IS PORT (
I0, I1: IN STD_LOGIC;
O: OUT STD_LOGIC);
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END NAND_2;

ARCHITECTURE Dataflow_NAND2 OF NAND_2 IS
BEGIN

O <= I0 NAND I1;
END Dataflow_NAND2;

-- define the structural operation of the SR latch
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY SRlatch IS PORT (
SN, RN: IN STD_LOGIC;
Q, QN: BUFFER STD_LOGIC);

END SRlatch;

ARCHITECTURE Structural_SRlatch OF SRlatch IS
COMPONENT NAND_2 PORT (
I0, I1 : IN STD_LOGIC;
O : OUT STD_LOGIC);

END COMPONENT;
BEGIN

U1: NAND_2 PORT MAP (SN, QN, Q);
U2: NAND_2 PORT MAP (Q, RN, QN);

END Structural_SRlatch;

-- define the operation of the 3-input NAND gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY NAND_3 IS PORT (
I0, I1, I2: IN STD_LOGIC;
O: OUT STD_LOGIC);

END NAND_3;

ARCHITECTURE Dataflow_NAND3 OF NAND_3 IS
BEGIN

O <= NOT (I0 AND I1 AND I2);
END Dataflow_NAND3;

-- define the structural operation of the D flip-flop
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY positive_edge_triggered_D_flipflop IS PORT (
D, Clock: IN STD_LOGIC;
Q, QN: BUFFER STD_LOGIC);

END positive_edge_triggered_D_flipflop;

ARCHITECTURE StructuralDFF OF positive_edge_triggered_D_flipflop IS
SIGNAL N1, N2, N3, N4: STD_LOGIC;

COMPONENT SRlatch PORT (
SN, RN: IN STD_LOGIC;
Q, QN: BUFFER STD_LOGIC);

END COMPONENT;
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COMPONENT NAND_2 PORT (
I0, I1: IN STD_LOGIC;
O: OUT STD_LOGIC);

END COMPONENT;
COMPONENT NAND_3 PORT (
I0, I1, I2: IN STD_LOGIC;
O: OUT STD_LOGIC);

END COMPONENT;

BEGIN
U1: SRlatch PORT MAP (N4, Clock, N1, N2); -- set latch
U2: SRlatch PORT MAP (N2, N3, Q, QN); -- output latch
U3: NAND_3 PORT MAP (N2, Clock, N4, N3); -- reset latch
U4: NAND_2 PORT MAP (N3, D, N4); -- reset latch

END StructuralDFF;

Figure 6.24 Structural VHDL code for a positive-edge-triggered D flip-flop.  

 

Figure 6.25 Simulation trace for the positive-edge-triggered D flip-flop. 

6.13.4 VHDL Code for a D Flip-Flop with Enable and Asynchronous Set and Clear 

Figure 6.26 shows the VHDL code for a positive-edge-triggered D flip-flop with enable and asynchronous 
active-high set and clear inputs. The two asynchronous inputs are checked independently of the clock event. When 
either the Set or the Clear input is asserted with a 1 (active-high), Q is immediately set to 1 or 0, respectively, 
independent of the clock. If Enable is asserted with a 1, then Q follows D at the rising edge of the clock; otherwise, 
Q keeps its previous content. Figure 6.27 shows the simulation trace for this flip-flop. Notice in the trace that when 
either Set or Clear is asserted (at 100 ns and 200 ns, respectively) Q changes immediately. However, when Enable is 
asserted at 400 ns, Q doesn’t follow D until the next rising clock edge at 500 ns. Similarly, when D drops to 0 at 600 
ns, Q doesn’t change immediately but drops at the next rising edge at 700 ns. At 800 ns, when D changes to a 1, Q 
does not follow the change at the next rising edge at 900 ns, because Enable is now de-asserted. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY d_ff IS PORT (
Clock: IN STD_LOGIC;
Enable: IN STD_LOGIC;
Set: IN STD_LOGIC;
Clear: IN STD_LOGIC;
D: IN STD_LOGIC;
Q: OUT STD_LOGIC);

END d_ff;

ARCHITECTURE Behavioral OF d_ff IS
BEGIN
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PROCESS(Clock,Set,Clear)
BEGIN
IF (Set = '1') THEN
Q <= '1';

ELSIF (Clear = '1') THEN
Q <= '0';

ELSIF (Clock'EVENT AND Clock = '1') THEN
IF Enable = '1' THEN
Q <= D;

END IF;
END IF;

END PROCESS;
END Behavioral;

Figure 6.26 VHDL code for a positive-edge-triggered D flip-flop with active-high enable and asynchronous set and 
clear inputs.  

 
Figure 6.27 Simulation trace for the positive-edge-triggered D flip-flop with active-high enable and asynchronous 
set and clear inputs. 

6.14 * Other Flip-Flop Types 
There are basically four main types of flip-flops: D, SR, JK, and T. The major differences in these flip-flop 

types are in the number of inputs they have and how they change states. Like the D flip-flop, each type can also have 
different variations, such as active-high or -low inputs, whether they change state at the rising or falling edge of the 
clock signal, and whether they have any asynchronous inputs. Any given sequential circuit can be built using any of 
these types of flip-flops or combinations of them. However, selecting one type of flip-flop over another type to use 
in a particular circuit can affect the overall size of the circuit. Today, sequential circuits are designed primarily with 
D flip-flops only because of their simple operation. Of the four flip-flop’s characteristic equations, the characteristic 
equation for the D flip-flop is the simplest. 

6.14.1 SR Flip-Flop 

Like SR latches, SR flip-flops are useful in control applications where we want to be able to set or reset the data 
bit. However, unlike SR latches, SR flip-flops change their content only at the active edge of the clock signal. 
Similar to SR latches, SR flip-flops can enter an undefined state when both inputs are asserted simultaneously. 
When the two inputs are de-asserted, then the next state is the same as the current state. The characteristic table, 
characteristic equation, state diagram, circuit, logic symbol, and excitation table for the SR flip-flop are shown in 
Figure 6.28. 

The SR flip-flop truth table shown in Figure 6.28(a) is for active-high set and reset signals. Hence, the flip-flop 
state, Qnext, is set to 1 when S is asserted with a 1, and Qnext is reset to 0 when R is asserted with a 1. When both S and 
R are de-asserted with a 0, the flip-flop remembers its current state. From the truth table, we get the following K-
map for Qnext, which results in the characteristic equation shown in Figure 6.28(b). 
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Notice that the SR flip-flop circuit shown in Figure 6.28 (d) uses the D flip-flop. The signal for asserting the D 
input of the flip-flop is generated by the combinational circuit that is derived from the characteristic equation of the 
SR flip-flop, namely D = Qnext = S + R'Q. 
 

S R Q Qnext Qnext' 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 1 0 
1 1 0 × × 
1 1 1 × × 

(a) 

Qnext = S + R'Q 

 
 

(b) 

Q=0 Q=1

SR=01

SR=10

SR=00 or 10
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Clk
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Q

Clk

R
S Q
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Clk

S

Q'

Q
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(e) 

 
Q Qnext S R 
0 0 0 × 
0 1 1 0 
1 0 0 1 
1 1 × 0 

(f) 

Figure 6.28 SR flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic 
symbol; (f) excitation table. 

6.14.2 JK Flip-Flop 

The operation of the JK flip-flop is very similar to the SR flip-flop. The J input is just like the S input in the SR 
flip-flop in that, when asserted, it sets the flip-flop. Similarly, the K input is like the R input where it resets the flip-
flop when asserted. The only difference is when both inputs, J and K, are asserted. For the SR flip-flop, the next 
state is undefined; whereas, for the JK flip-flop, the next state is the inverse of the current state. In other words, the 
JK flip-flop toggles its state when both inputs are asserted. The characteristic table, characteristic equation, state 
diagram, circuit, logic symbol, and excitation table for the JK flip-flop are shown in Figure 6.29. 
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6.14.3 T Flip-Flop 

The T flip-flop has one input, T (which stands for toggle), in addition to the clock. When T is asserted (T = 1), 
the flip-flop state toggles back and forth at each active edge of the clock, and when T is de-asserted, the flip-flop 
keeps its current state. The characteristic table, characteristic equation, state diagram, circuit, logic symbol, and 
excitation table for the T flip-flop are shown in Figure 6.30. 
 

J K Q Qnext Qnext' 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 0 1 
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1 0 × 1 
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Figure 6.29 JK flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic 
symbol; (f) excitation table. 
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1 1 0 1 

(a) 

Qnext = TQ' + T'Q = T ⊕  Q 
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Figure 6.30 T flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic 
symbol; (f) excitation table. 

6.15 Summary Checklist 
 
� Feedback loop 
� Bistable element 
� Latch 
� Flip-flop 
� Clock 

� Level-sensitive, active edge, rising / falling edge, clock cycle 
� SR latch 
� SR latch with enable 
� D latch 
� D latch with enable 
� D flip-flop 

� Characteristic table, characteristic equation, state diagram circuit, excitation table 
� Asynchronus inputs 
� VHDL implied memory element 
� SR flip-flop 

� Characteristic table, characteristic equation, state diagram circuit, excitation table 
� JK flip-flop 

� Characteristic table, characteristic equation, state diagram circuit, excitation table 
� T flip-flop 

� Characteristic table, characteristic equation, state diagram circuit, excitation table 
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6.16 Problems 

1. Draw the SR latch with enable similar to that shown in Figure 6.4 but using NOR gates to implement the SR 
latch. Derive the truth table for this circuit. 

Answer 

R

E

S S

R
Q

Q'
 

 
E S R Q Qnext Qnext' 
0 × × 0 0 1 
0 × × 1 1 0 
1 0 0 0 0 1 
1 0 0 1 1 0 
1 0 1 × 0 1 
1 1 0 × 1 0 
1 1 1 × 0 0 

 
2. Draw the D latch using NOR gates 

Answer 
Q

Q'D  

3. Draw the D latch with enable similar to the circuit in Figure 6.6 (a) but use NAND gates instead of the 
multiplexer. 

Answer 

 
S

R

Q

Q'

E

R'

S'D

 

4. Draw the master-slave negative edge-triggered D flip-flop circuit. 

5. Derive the truth table for the negative edge-triggered D flip-flop. 

6. Draw the circuit for the SR flip-flop with enable. 
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7. Derive the truth table for the SR flip-flop with enable. 

8. Write the behavioral VHDL code for the SR flip-flop with enable using the IF clock’EVENT statement. 

9. Do questions 6, 7, and 8 for the JK flip-flop. 

10. Do questions 6, 7, and 8 for the T flip-flop. 

11. Complete the following timing diagram for the following circuit. Assume that the signal delay through the NOR 
gates is 3 nanoseconds, and the delay through the NOT gate is 1 nanosecond. 

Q

Q'D

D'

 

D

D'

Q

0 1 2 3 4 5 6Time (ns) 7 8

Q'
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Chapter 7 

Sequential Circuits 
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In the previous chapter, we looked at the design and operation of flip-flops – the most fundamental memory 
element used in microprocessor circuits. We saw that a single flip-flop is capable of remembering only one bit of 
information or one bit of history. In order for a sequential circuit to remember more inputs and a longer history, the 
circuit must contain more flip-flops. This collection of (D) flip-flops used to remember the complete history of past 
inputs is referred to as the state memory. The entire content of the state memory at a particular time forms a binary 
encoding that represents the complete history of inputs up to that time. We refer to this binary encoding in the state 
memory at one particular instance of time as the state of the system at that time. 

The output signals from a sequential circuit are generated by the output logic circuit. Recall that the outputs of 
sequential circuits are dependent on their past and current inputs. Since all the inputs are “remembered” in the form 
of states in the state memory, therefore, we can say that the outputs are dependent on the content of the state 
memory. Therefore, the output logic is simply a combinational circuit that is dependent on the content of the state 
memory, and may or may not be dependent on the current inputs. The output signals that the output logic generates 
constitute the actions or operations that are performed by the sequential circuit. Hence, a sequential circuit can 
perform different operations in different states simply by generating different output signals. 

If we want a sequential circuit to perform, say, four different operations, then we will need four states – one 
operation per state. Of course if several operations can be performed in parallel, then we can assign them to one 
state. But for now, just to keep things simple, we will simply assign one operation per state. Furthermore, there 
might be an operation where we may want to repeat it for, say, a hundred times. Instead of assigning this same 
operation to one hundred different states, we will want to use just one state, and have some form of looping 
capabilities to repeat that state a hundred times. 

Thus, a sequential circuit operates by transitioning from one state to the next, generating different output 
signals. The part inside a sequential circuit that is responsible for determining what next state to go to is called the 
next-state logic circuit. Based on the current state that the system is in (i.e., the past inputs), and the current inputs, 
the next-state logic will determine what the next state should be. This statement, in fact, is equivalent to saying that 
the outputs are dependent on the past and current inputs, since a state is used to remember the past inputs, and it also 
determines the outputs to be generated. The next-state logic, however, is just a combinational circuit that takes the 
contents of the state memory flip-flops and the current inputs as its inputs. The outputs from the next-state logic are 
used to change the contents of the state memory flip-flops. The circuit changes state when the contents of the state 
memory change, and this happens at the active edge of every clock cycle since values are written into a flip-flop at 
the active clock edge. 

The speed at which a sequential circuit sequences through the states is determined by the speed of the clock 
signal. The state memory flip-flops are always enabled, so at every active edge of the clock, a new value is stored 
into the flip-flops. The limiting factor for the clock speed is in the time that it takes to perform all the operations that 
are assigned to a particular state. All data operations assigned to a state must finish their operations within one clock 
period so that the results can be written into registers at the next active clock edge. 

A sequential circuit is also known as a finite-state machine (FSM) because the size of the state memory is 
finite, and therefore, the total number of different possible states is also finite. A sequential circuit is like a machine 
that operates by stepping through a sequence of states. Although there is only a finite number of different states, the 
FSM can, however, go to any of these states as many times as necessary. Hence, the sequence of states that the FSM 
can go through can be infinitely long. 

The control unit inside the microprocessor is a finite-state machine, therefore, in order to be able to construct a 
microprocessor, we need to understand the construction and operation of FSMs. In this chapter, we will first look at 
how to precisely describe the operation of a finite-state machine using state diagrams. Next, we will look at the 
analysis and synthesis of finite-state machines. 

7.1 Finite-State-Machine (FSM) Models 
In the introduction, we mentioned that the output logic circuit is dependent on the content of the state memory, 

and may or may not be dependent on the current inputs. The fact that the output logic may or may not be dependent 
on the current inputs gives rise to two different FSM models. 

Figure 7.1 (a) shows the general schematic for the Moore FSM where its outputs are dependent only on its 
current state, i.e. on the content of the state memory. Figure 7.1 (b) shows the general schematic for the Mealy FSM 
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where its outputs are dependent on both the current state of the machine and also the current inputs. The only 
difference between the two figures is that for the Moore FSM, the output logic circuit only has the current state as its 
input, whereas, for the Mealy FSM, the output logic circuit has both the current state and the input signals as its 
inputs. In both models, we see that the inputs to the next-state logic are the primary input signals and the current 
state of the machine. The next-state logic circuit generates values to change the contents of the state memory. Since 
the state memory is made up of one or more D flip-flops, and the content of the D flip-flop changes to whatever 
value is at its D input at the next active clock edge, therefore, to change a state, the next-state logic circuit simply 
has to generate values for all the D inputs for all the flip-flops. These D input values are referred to as the excitation 
values, since they “excite” or cause the D flip-flops to change states. 
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Figure 7.1. Finite-state machine models: (a) Moore FSM; (b) Mealy FSM. 

Figure 7.2 (a) and (b) show a sample circuit of a Moore and Mealy FSM respectively. The two circuits are 
identical except for their outputs. For the Moore FSM, the output circuit is a 2-input AND gate that gets its input 
values from the outputs of the two D flip-flops. Remember that the state of the FSM is represented by the content of 
the state memory, which are the contents of the flip-flops. The content (or state) of a flip-flop is represented by the 
value at the Q (or Q' ) output. Hence, this circuit is only dependent on the current state of the machine. 

For the Mealy FSM, the output circuit is a 3-input AND gate. In addition to getting its two inputs from the flip-
flops, the third input to this AND gate is connected to the primary input C. With this one extra connection, this output 
circuit is dependent on both the current state and the input, thus making it a Mealy FSM. 

For both circuits, the state memory consists of two D flip-flops. Having two flip-flops, four different 
combinations of values can be represented. Hence, this finite-state machine can be in any one of four different states. 
The state that this FSM will go to next depends on the value at the D inputs of the flip-flops. 

Every flip-flop in the state memory requires a combinational circuit to generate a next-state value for its 
input(s). Since we have two D flip-flops, each having one (D) input, therefore, the next-state logic circuit consists of 
two combinational circuits; one for input D0 and one for D1. The inputs to these two combinational circuits are the 
Q’s, which represent the current state of the flip-flops, and the primary input C. Notice that it is not necessary for the 
input C to be an input to all the combinational circuits. In the sample circuit, only the bottom combinational circuit 
is dependent on the input C. 
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Figure 7.2. Sample finite-state machine circuits: (a) Moore; (b) Mealy. 

7.2 State Diagrams 
State diagrams are used to precisely describe the operation of finite-state machines. A state diagram is a 

deterministic graph with nodes and directed edges connecting the nodes. There is one node for every state of the 
FSM, and these nodes are labeled with its state name or encoding. For every state transition of the FSM there is a 
directed edge connecting two nodes. The directed edge originates from the node for current state that the FSM is 
transitioning from, and goes to the node for the next state that the FSM is transitioning to. Edges may or may not 
have labels on them. Edges for unconditional transitions from one state to another will not have a label. In this case, 
only one edge can originate from that node. Conditional transitions from a state will have two outgoing edges for 
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each input signal condition. The two edges from this state will have the corresponding input signal conditions 
labeled on them – one edge with the label for when the condition is true, and the other edge with the label for when 
the condition is false. If there is more than one input signal, then all possible input conditions must be labeled on the 
outgoing edges from the state. The graph is deterministic because from any node, it should show which is the next 
node to go to for any input combination. If an edge is not labeled, or if not all possible input conditions are labeled 
on the outgoing edges from the same state, then these missing conditions are don’t care conditions. 

Figure 7.3 (a) shows a sample state diagram having four states, one input signal C, and one output signal Y. The 
four states are labeled with the four encoded binary values 00, 01, 10, and 11. In this book, we will always use state 
0 as the starting or reset state unless stated otherwise. There are three unconditional transitions, i.e., edges with no 
labels, from state 00 to 01, 10 to 00, and 11 to 00. There is one conditional transition from state 01 to 10 or 11. For 
this conditional transition from state 01, if the condition (C = 0) is true then the transition from 01 to 10 is made. 
Otherwise, if the condition (C = 0) is false, that is (C = 0)' is true or (C = 1) is true, then the transition from 01 to 11 
is made. 

The output signal Y in Figure 7.3 (a) is labeled inside each node denoting that the output is dependent only on 
the current state. For example, when the FSM is in state 01, the output Y is set to a 1, whereas, in state 11, Y is set to 
a 0. Hence, this state diagram is for a Moore FSM. 

The operation of the FSM based on the state diagram in Figure 7.3 (a) goes as follows. After reset, the FSM 
starts from state 00. When it is in state 00, it outputs a 0 for Y. At the next clock cycle, the FSM unconditionally 
transitions to state 01 and outputs a 1 for Y. Next, the FSM will either go to state 10 or 11 in the next clock cycle 
depending on the condition (C = 0). If the condition (C = 0) is true, then the FSM will go to state 10 and output a 0 
for Y, otherwise, it will go to state 11 and also output a 0 for Y. From either state 10 or 11, the FSM will 
unconditionally transition back to state 00 at the next clock cycle. The FSM will always go to a new state at the 
beginning of the next active clock edge. 

Figure 7.3 (b) shows a slightly different state diagram from the one in Figure 7.3 (a). Instead of labeling the 
output signal Y inside a node, it is labeled on the edges. What this means is that the output is dependent on both the 
current state, i.e., the state in which the edge originates from, and the input signal C. For example, when the FSM is 
in state 01, if the FSM takes the left edge for the condition (C = 0) to state 10, then it will output a 0 for Y. However, 
if the FSM takes the right edge for the condition (C = 0)' to state 11, then it will output a 1 for Y. Hence, this second 
state diagram is for a Mealy FSM. 

Figure 7.3 (c) shows a state diagram having five states, two input signals, and no output signals. In practice, all 
FSMs should have output signals, otherwise, they don’t do anything useful. The five states in this state diagram are 
given the logical state names s0, s1, s2, s3, and s4. The two input signals are A and B. Again, we will use the state 
name with subscript 0, namely s0, as the starting state. From state s0, there is one unconditional edge going to state 
s1. This unlabeled edge is equivalent to having the label AB=××, meaning that this edge is taken for any combination 
of the two input signals. From state s1, there are four outgoing edges labeled with the four different combinations of 
the two input signals. State s2 has only two outgoing edges. However, the two labels on them cover the four possible 
input conditions since B is don’t care in both cases. State s3 has only three outgoing edges, but again the labels on 
them cover all four input conditions. 
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Figure 7.3. Sample state diagrams: (a) a Moore FSM with four states, one input signal C, and one output signal Y; 
(b) a Mealy FSM with four states, one input signal C, and one output signal Y; (c) a FSM with five states and two 
input signals A and B. 

As you can see, a state diagram is very similar to a computer program flow chart where the nodes are for the 
statements or data operations, and the edges are for the control of the program sequence. Because of this similarity, 
we should be able to convert any program to a state diagram. Example 7.1 shows how to convert a simple C-style 
pseudo-code to a state diagram. 

Example 7.1 

Derive the state diagram based on the following pseudo-code. 

x = 5
while (x ≠ 0){
output x
x = x – 1
}

The pseudo-code has three data operation statements and one conditional test. Each data operation statement is 
assigned to a node (state) as shown in Figure 7.4 (a). Each node is given a name for the state, and is annotated with 
the statement to be executed in that state. At this point, instead of labeling the nodes with the actual binary encoding 
for the state, it is better to just give it a name. The actual encoding of the state can be done later on in the synthesis 
process. 

Next, we assign directional edges to the diagram based on the sequence of execution. Starting from state s0 
where the statement x = 5 is executed, the program then tests for the condition (x ≠ 0). If the condition is true, then 
the output statement is executed, otherwise, the loop (and the program) is terminated. Referring to Figure 7.4 (b), 
there are two outgoing edges from state s0. The edge from s0 to s1 has the label (x ≠ 0), i.e., if the condition (x ≠ 0) is 
true, then this edge is taken, and so it will go to state s1 to execute the output statement. On the other hand, if the 
condition is false, the loop needs to be terminated. Since there is no statement after the loop, therefore, we have to 
add an extra no-operation state s3 to the state diagram for it to go to. The edge from s0 to s3 is labeled (x ≠ 0)', 
meaning that the edge is taken when the condition (x ≠ 0) is false. 

After executing the output statement, the decrement statement is executed. This sequence is reflected in the 
unconditional edge going from state s1 to s2. After executing the decrement statement in s2, the condition (x ≠ 0) in 
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the while loop is again tested. If the condition is true, it will take the edge with the label (x ≠ 0) back to state s1 to 
repeat the loop. If the condition is false, it will take the edge with the label (x ≠ 0)' to state s3. From state s3, it 
unconditionally loops back to itself, thus, going nowhere and doing nothing. ♦  

x = 5 output x

x = x - 1

s0 s1

s2

 

(a) 

x = 5 output x

x = x - 1

s0 s1

s2s3

(x ≠ 0)

(x ≠ 0)'
(x ≠ 0)

(x ≠ 0)'
 

(b) 

Figure 7.4. State diagram for Example 7.1: (a) data operations assigned to nodes; (b) complete state diagram with 
the transitional edges. 

7.3 Analysis of Sequential Circuits 
Very often we are given a sequential circuit and need to know its operation. The analysis of sequential circuits 

is the process in which we are given a sequential circuit (such as the ones in Figure 7.2), and we want to obtain a 
precise description of the operation of the circuit by deriving the state diagram for it. The steps for the analysis of 
sequential circuits are as follows: 

1. Derive the excitation equations from the next-state logic circuit. 
2. Derive the next-state equations by substituting the excitation equations into the flip-flop’s characteristic 

equations. 
3. Derive the next-state table from the next-state equations. 
4. Derive the output equations from the output logic circuit. 
5. Derive the output table from the output equations. 
6. Draw the state diagram from the next-state table and the output table. 

7.3.1 Excitation Equation 

The excitation equations are the equations for the next-state logic circuit in the FSM. In other words, they are 
just the input equations to the state memory flip-flops in the FSM. Since the next-state logic is a combinational 
circuit, therefore, deriving the excitation equations is just an analysis of a combinational circuit as discussed in 
Section 3.1.2. The next-state logic circuit that is derived by these equations “excites” the flip-flops by causing them 
to change states, hence the name “excitation equation”. These equations provide the signals to the inputs of the flip-
flops, and are expressed as a function of the current state and the inputs to the FSM. The current state is determined 
by the current contents of the flip-flops, that is, the flip-flops’ output signal Q (and Q' ). There is one equation for 
each flip-flop’s input. 

The following are two sample excitation equations for the two D flip-flops used in the circuit from Figure 
7.2 (a). Equation (1) is from the next-state logic circuit for the D1 input of flip-flop 1, and equation (2) is from the 
next-state circuit for the D0 input of flip-flop 0. 

D1 = Q1'Q0 (1) 
D0 = Q1'Q0' + CQ1' (2) 
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7.3.2 Next-state Equation 

The next-state equations specify what the flip-flops’ next state is going to be depending on two things: 1) the 
inputs to the flip-flops, and 2) the functional behavior of the flip-flops. The inputs to the flip-flops are provided by 
the excitation equations as discussed in Section 7.3.1 above. The functional behavior of a flip-flop, as you recall 
from Section 6.10.2, is described formally by its characteristic equation. The characteristic equation tells us what 
Qnext ought to be, that is, what the next state ought to be, depending on the current state and current inputs. Thus, to 
derive the next-state equations, we substitute the excitation equations into the corresponding flip-flop’s 
characteristic equations. 

For example, the characteristic equation for the D flip-flop (from Section 6.10.2) is 

Qnext = D 

Therefore, substituting the two excitation equations (1) and (2) from above into the characteristic equation for the D 
flip-flop will give us the following two next-state equations 

Q1next = D1 = Q1'Q0 (3) 
Q0next = D0 = Q1'Q0' + CQ1' (4) 

7.3.3 Next-state Table 

The next-state table is simply the truth table as derived from the next-state equations. It lists for every 
combination of the current state (the Q) values and input values, what the next state (the Qnext) values should be. 
These next state values are obtained by substituting the current state and input values into the appropriate next-state 
equations. 

Figure 7.5 shows the next-state table as obtained from the two next-state equations (3) and (4) from 
Section 7.3.2 above. Having two flip-flops, Q1Q0, there are four encodings, 00, 01, 10, and 11, for the current state. 
There is one input signal C, with the two possible values, 0 and 1. The entries in the table are the next state values 
Q1next Q0next. For each entry, the leftmost bit is for the Q1 flip-flop, and the rightmost bit is for the Q0 flip-flop. These 
next state values are obtained from substituting the current state values Q1Q0, and input value C into the next-state 
equations (3) and (4). 

For example, to get the Q1next value for the top left entry (the left bit in the blue entry), we substitute the current 
state values Q1 = 0 and Q0 = 0, and the input value C = 0 into equation (3) giving 

Q1next = Q1'Q0 
 = 0' •  0 
 = 1 •  0 
 = 0 

Substituting the same values into equation (4) will give us the Q0next value for that same top left entry. 

Q1next = Q1'Q0' + CQ1' 
 = 0' •  0' + 0 •  0' 
 = 1 + 0 
 = 1 

The rest of the entries in the next-state table are obtained in the same manner by substituting the corresponding 
values for Q1, Q0, and C into the two next-state equations. 

The top left entry tells us that if the current state is 00, and the input signal C is a 0, then the next state that the 
FSM will go to is 01. From the current state 00, if the input signal C is a 1, the next state is also 01. This means that 
the transition from state 00 to 01 does not depend on the input condition C, so this is an unconditional transition. 
From state 01, there are two conditional transitions: the FSM will transition to state 10 if the condition C = 0 is true, 
otherwise if C = 1, it will transition to state 11. From either state 10 or 11, the FSM will go to state 00 
unconditionally. 
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Next State 
Q1next Q0next 

Current State 
Q1Q0 C = 0 C = 1 

00 01 01 
01 10 11 
10 00 00 
11 00 00 

Figure 7.5. A next-state table with four states and one input signal C. 

7.3.4 Output Equation 

The output equations are the equations derived from the combinational output logic circuit in the FSM. 
Depending on the type of FSM (Moore or Mealy), the output equations can be dependent on just the current state or 
on both the current state and the inputs. 

For the Moore circuit of Figure 7.2 (a), the output equation is 

Y = Q1'Q0 (5) 

For the Mealy circuit of Figure 7.2 (b), the output equation is 

Y = CQ1'Q0 (6) 

A typical FSM will have many output signals, and so there will be one equation for every output signal.  

7.3.5 Output Table 

Like the next-state table, the output table is the truth table that is derived from the output equations. The output 
tables for the Moore and Mealy FSMs are slightly different from each other. For the Moore FSM, the output table 
lists for every combination of the current state what the output values should be. Whereas for the Mealy FSM, the 
output table lists for every combination of the current state and input values what the output values should be. These 
output values are obtained by substituting the current state and input values into the appropriate output equations.  

Figure 7.6 (a) and (b) show the output tables for the Moore and Mealy FSMs as derived from the output 
equations (5) and (6) respectively from Section 7.3.4 above. For the Moore FSM, the output signal Y is dependent 
only on the current state value Q1Q0, whereas, for the Mealy FSM, the output signal Y is dependent on both the 
current state and input C. 
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Figure 7.6. Output table: (a) for Moore FSM; (b) for Mealy FSM. 

7.3.6 State Diagram 

The last step in the analysis is to derive the state diagram. The state diagram is obtained directly from the next-
state table and the output table. 
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The next-state table from Figure 7.5 shows that there are four states in the state diagram. For each next state 
entry in the table, there is a corresponding edge going from that current state to that next state. The corresponding 
input condition is the label for that edge. 

The state diagram shown in Figure 7.3 (a) is derived from the next-state table from Figure 7.5, and the Moore 
output table from Figure 7.6 (a). The state diagram shown in Figure 7.3 (b) is derived from the same next-state table 
from Figure 7.5, but using the Mealy output table from Figure 7.6 (b). 

7.3.7 Example: Analysis of a Moore FSM 

We will now illustrate the complete process of analyzing a Moore FSM with an example. 

Example 7.2 

Figure 7.7 shows a simple sequential circuit. Comparing this circuit with the general FSM schematic in Figure 
7.1, we conclude that this is a Moore type FSM since the output logic consists of a 2-input AND gate that is 
dependent only on the current state Q1Q0. We will follow the above six steps to do a detail analysis of this circuit. 
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Figure 7.7. A simple Moore finite-state machine. 

Step 1 is to derive the excitation equations, which are the equations for the next-state logic circuit. These 
equations are dependent on the current state of the flip-flops Q1 and Q0, and the input C. One equation is needed for 
every data input of all the flip-flops in the state memory. Our sample circuit has two flip-flops having the two inputs 
D1, and D0, so we get the two excitation equations as shown in Figure 7.8 (a). These two equations are obtained 
from analyzing the two combinational circuits that provide the inputs D1 and D0 to the two flip-flops. For this 
particular example, both of these combinational circuits are simple two level sum-of-products circuits. 

Step 2 is to derive the next-state equations. These equations tell us what the next-state is going to be given the 
inputs to the flip-flops, and the functional behavior of the flip-flops. One equation is needed for every flip-flop. The 
functional behavior of the flip-flop is described by its characteristic equation, which for the D flip-flop, is Qnext = D. 
The inputs to the flip-flops are just the excitation equations derived from step 1. Hence, we simply substitute the 
excitation equation into the characteristic equation for each flip-flop to obtain the next-state equation for that flip-
flop. With two flip-flops in the example, we get two next-state equations, one for Q1next and one for Q0next. Figure 
7.8 (b) shows these two next-state equations. 

Step 3 is to derive the next-state table. The next-state values in the table are obtained by substituting every 
combination of current state and input values into the next-state equations obtained in step 2. In our example, there 
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are two flip-flops, Q1 and Q0, and input C. Hence the table will have eight next-state entries. There are two bits for 
every entry – the first bit for Q1next, and the second for Q0next. 

For example, to find the Q1next value for the current state Q1Q0 = 00 and C = 1 (the blue entry), we substitute the 
values Q1 = 0, Q0 = 0 and C = 1 into the equation Q1next = C'Q1 + Q1Q0' + CQ1'Q0 = (1' •  0) + (0 •  0' ) + (1 •  0' •  0) 
to get the value 0. Similarly, we get Q0next by substituting the same values for Q1, Q0, and C into the equation Q0next = 
C'Q0 + CQ0' = (1' •  0) + (1 •  0' ) to get the value 1. The resulting next-state table for our example is shown in Figure 
7.8 (c). 

Step 4 is to derive the output equations from the output logic circuit. One output equation is needed for every 
output signal. For our example, there is only one output signal Y that is dependent only on the current state of the 
machine. The output equation for Y as derived from the circuit diagram is shown in Figure 7.8 (d). 

Step 5 is to derive the output table. Just like the next-state table, the output table is obtained by substituting all 
possible combinations of the current state values into the output equation(s) for the Moore FSM. The output table for 
our Moore FSM example is shown in Figure 7.8 (e). 

Step 6 is to draw the state diagram, which is derived directly from the next-state and output tables. Every state 
in the next-state table will have a corresponding node labeled with the state encoding in the state diagram. For every 
next state entry in the next-state table, there will be a corresponding directed edge. This edge originates from the 
node labeled with the current state and ends at the node labeled with the next state entry. The edge is labeled with 
the corresponding input conditions. 

For example, in the next-state table, when the current state Q1Q0 is 00, the next state Q1next Q0next is 01 for the 
input C = 1. Hence, in the state diagram, there is a directed edge from node 00 to node 01 with the label C = 1. For a 
Moore FSM, the outputs are dependent only on the current state, thus the output values from the output table are 
included inside each node in the state diagram. The complete state diagram for our example is shown in Figure 
7.8 (f).  

A sample timing diagram for the execution of the circuit is shown in Figure 7.8 (g). The two D flip-flops used 
in the circuit are positive edge-triggered flip-flops so they change their states at each rising clock edge. Initially, we 
assume that these two flip-flops are both in state 0. The first rising clock edge is at time t0. Normally, the flip-flops 
will change state at this time, however, since C is a 0, the flip-flops’ values remain constant. At time t1, C changes to 
a 1, so that at the next rising clock edge at time t2, the flip-flop values Q1Q0 changes to 01. At the next two rising 
clock edges, t3 and t4, the value for Q1Q0 changes to 10, then 11 respectively. At time t4 when Q1Q0 = 11, the output 
Y also changes to a 1 since Y = Q1 •  Q0. At time t5, input C drops back down to a 0 but the output Y remains at a 1. 
Q1Q0 remains the same at 11 through the next rising clock edge since C is 0. At time t6, C changes back to a 1 and so 
at the next rising clock edge at time t7, Q1Q0 increments again to 00 and the cycle repeats. 

When C = 1, the FSM cycles through the four states in order repeatedly. When C = 0, the FSM stops at the 
current state until C is asserted again. If we interpret the four state encodings as a decimal number, then we can 
conclude that the circuit of Figure 7.7 is for a modulo-4 up counter that cycles through the four values 0, 1, 2, and 3. 
The input C enables or disables the counting. ♦  
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Figure 7.8. Analysis of a Moore FSM: (a) excitation equations; (b) next-state equations; (c) next-state table; (d) 
output equation; (e) output table; (f) state diagram; (g) timing diagram. 

7.3.8 Example: Analysis of a Mealy FSM 

Example 7.3 illustrates the process for performing an analysis on a Mealy FSM. 

Example 7.3 

Figure 7.9 shows a simple Mealy FSM. This circuit is exactly like the one in Figure 7.7 except that the output 
circuit, which in this example is just one 3-input AND gate, is dependent on not only the current state Q1Q0, but also 
on the input C. 

The analysis for this circuit goes exactly like the one for the Moore FSM in Example 7.2 up to creating the next-
state table in step 3. The only difference is in deriving the output equation and output table for steps 4 and 5. For a 
Mealy FSM, the output equation is dependent on both the current state and the input value. Since the circuit has only 
one output signal, we obtain the output equation that is dependent on C as shown in Figure 7.10 (a).  Figure 7.10 (b) 
shows the resulting output table obtained by substituting all possible values for Q1, Q0, and C into the output 
equation. 

For the state diagram, we cannot put the output value inside a node since the output value is dependent on the 
current state and the input value. Thus, the output value is placed on the edge that corresponds to the current state 
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value and input value as shown in Figure 7.10 (c). Output signal Y is 0 for all edges except for the one originating 
from state 11 having the input condition C = 1. On this one edge, Y is a 1. 
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Figure 7.9. A simple Mealy finite-state machine. 
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00 0 0 
01 0 0 
10 0 0 
11 0 1 
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Figure 7.10. Analysis of a Mealy FSM: (a) output equation; (b) output table; (c) state diagram; (d) timing diagram. 

A sample timing diagram is shown in Figure 7.10 (d). This diagram is exactly the same as the one for the Moore 
FSM shown in Figure 7.8 (g) up to time t5. At time t5, input C drops to a 0, and so output Y also drops to a 0 since 
Y = C •  Q1 •  Q0. At time t6, C rises back up to a 1, and so Y also rises to a 1 immediately. Since the output circuit is a 
combinational circuit, Y does not change at the active edge of the clock, but changes immediately when the inputs 
change. At time t7 when Q1Q0 changes to 00, Y again changes back to a 0. 

Except for the difference in how this circuit generates the output signal Y, this Mealy FSM behaves exactly the 
same as the Moore FSM from Example 7.2 in the way that it changes from one state to the next. This, of course, is 
due to the fact that both next-state tables are identical. Thus, this Mealy FSM circuit is also a modulo-4 up counter. ♦  

7.4 Synthesis of Sequential Circuits 
The synthesis of sequential circuits is just the reverse of the analysis of sequential circuits. In synthesis, we 

start with what is usually an ambiguous functional description of the circuit that we want. From this description, we 
need to come up with the precise operation of the circuit using a state diagram. The state diagram allows us to 
construct the next-state and output tables. From these two tables, we get the next-state and output equations, and 
finally the complete FSM circuit. 

During the synthesis process, there are many possible circuit optimizations in terms of the circuit size, speed, 
and power consumption that can be performed. Circuit optimization is discussed in Section 7.8. In this section, we 
will focus only on synthesizing a functionally correct sequential circuit. 

The steps for the synthesis of sequential circuits are as follows: 

1. Produce a state diagram from the functional description of the circuit. 
2. Derive the next-state table from the state diagram. 
3. Convert the next-state table to the implementation table. 
4. Derive the excitation equations for each flip-flop input from the implementation table. 
5. Derive the output table from the state diagram. 
6. Derive the output equations from the output table. 
7. Draw the FSM circuit diagram based on the excitation and output equations. 

7.4.1 State Diagram 

The first step in the sequential circuit synthesis process is to derive the state diagram for it. The circuit to be 
built is usually described using an ambiguous natural language. Not only does the language itself create 
uncertainties, in many cases the description of the circuit is also incomplete. This incomplete description arises 
when not all possible situations of an event or behavior are specified. In order to translate an ambiguous description 
into a precise state diagram, the designer must have a full understanding of the functional behavior of the circuit in 
question. In addition, the designer may need some ingenuity and creativity to fill in the missing gaps. Meaningful 
assumptions need to be made and stated clearly, and ambiguous situations need to be clarified. This is the one step 
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in the design process where there is no clear-cut answer for it. In this step, we rely on the knowledge and expertise 
of the designer to come up with a correct and meaningful state diagram. 

Instead of using a natural language to describe the circuit, a more precise method can be used. Other ways to 
describe a circuit more precisely include the use of a hardware description language such as VHDL, a state action 
table, or an ASM chart. The use of ASM charts and state action tables are described in Chapter 10. 

In this section, we will construct a FSM circuit based on the C style pseudo-code shown in Figure 7.11. Do not 
try to interpret the logical execution of the code because it does not perform anything meaningful. Furthermore, this 
section is not about optimizing the code by modifying it to make it shorter, although optimizing the code this way 
may produce a smaller FSM circuit. In this section, the focus is on learning how to convert any given pseudo-code, 
as is, to a FSM circuit that realizes it. Section 7.8 discusses how to optimize sequential circuits. 

repeat {
Y = 0 -- s0
if (B = 0){
Y = 0 -- s1

else
Y = 1 -- s2

}
Y = 1 -- s3

}

Figure 7.11. C style pseudo-code for synthesis. 

The pseudo-code shown in Figure 7.11 contains four signal assignment statements – two Y = 0, and two Y = 1. 
We assign one state to each of the four signal assignment statements. The first Y = 0 is assigned to state s0, the 
second Y = 0 is assigned to state s1, and so on, as shown in the pseudo-code. 

After the first Y = 0 statement, the if statement conditionally determines whether to execute the second Y = 0 
statement or the Y = 1 statement. Hence, from state s0, there is one edge going to state s1, and one edge going to state 
s2. The labels on these two edges are the conditions for the if statement. The edge going to state s1 has the label 
(B = 0), and the edge going to state s2 has the label (B = 1). From either state s1 or state s2, state s3 is executed, 
hence, there are two unconditional edges from these two states to s3. Finally, because of the unconditional repeat 
loop, there is an unconditional edge from s3 going back to state s0. The resulting state diagram is shown in Figure 
7.12 (a). 

7.4.2 Next-state Table 

Given a state diagram, it is easy to derive both the next-state and output tables from it. Since the next-state and 
output tables, and the state diagram portrait the same information but depicted in a different format, therefore, it 
requires only a straightforward translation from one to the other. 

Figure 7.12 (b) shows the next-state table for the state diagram shown in (a). The row labels are the current state 
and the column labels are the input conditions. The table entries are the next states. Translating directly from the 
state diagram, from current state s0, if B is a 0, then the next state is s1. Correspondingly, in the next-state table, the 
entry for the intersection of the current state s0 and input B = 0 is s1.  
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(a) 
 

Next State 
Q1next Q0next 

Current State 
Q1Q0 B = 0 B = 1 
s0 00 s1 01 s2 10 
S1 01 s3 11 s3 11 
s2 10 s3 11 s3 11 
s3 11 s0 00 s0 00 

 (b) 

Implementation 
D1 D0 

Current State 
Q1Q0 B = 0 B = 1 

00 01 10 
01 11 11 
10 11 11 
11 00 00 

 (c) 

Q1Q0
B

0 1

00
1

1 1 1

01 11 10

1

D1

 

D1 = (Q1 ⊕  Q0) + BQ1' 

Q1Q0
B

0 1 1

00
1

1 1

01 11 10

1

D0

 

D1 = (Q1 ⊕  Q0) + B'Q1' 
(d) 

 

Current State 
Q1Q0 

Output 
Y 

s0 00 0 
S1 01 0 
s2 10 1 
s3 11 1 

(e) 
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Figure 7.12. (a) A simple state diagram; (b) next-state table; (c) implementation table using D flip-flops; (d) 
excitation equations; (e) output table; (f) FSM circuit. 

In the next-state table, the actual encoding for the states is also given. To encode the four states, two flip-flops, 
Q1 and Q0, are required. In the example, the encoding given to the four states, s0, s1, s2, and s3, is just the four 
different combinations of the two flip-flop values, 00, 01, 10, and 11 respectively. Using different encoding schemes 
can give different results in terms of circuit size, speed, and power consumption. This optimization technique is 
further discussed in Section 7.8.2.  

7.4.3 Implementation Table 

The implementation table is derived from the next-state table. Whereas, the next-state table is independent of 
the flip-flop type used, the implementation table is dependent on the choice of flip-flop used. A FSM can be 
implemented using any one of the four different types of flip-flops (as discussed in Section 6.11) or combinations of 
them. Using different flip-flops or combinations of flip-flops can produce different size circuits but with the same 
functionality. The current trend in microprocessor design is to use only D flip-flops because of their ease of use. We 
will, likewise, use only D flip-flops in our synthesis of sequential circuits. Section 7.8.3 discusses how sequential 
circuits are synthesized with other types of flip-flops. 

The implementation table shows what the flip-flop inputs ought to be in order to realize the next-state table. In 
other words, it shows the necessary inputs for the flip-flops that will produce the next states as given in the next-
state table. The next-state table answers the question of what is the next state of the flip-flop given the current state 
of the flip-flop and the input values. The implementation table, on the other hand, answers the question of what 
should the input(s) to the flip-flop be in order to realize the corresponding next state given in the next-state table. 

The flip-flop inputs that we are concerned with are the synchronous inputs. For the D flip-flop, this is just the D 
input. For the other flip-flop types, they are the S and R inputs for the SR flip-flop; the J and K inputs for the JK flip-
flop; and the T input for the T flip-flop. We do not consider the asynchronous inputs such as the Set and Clear 
inputs, nor do we consider the clock input signal. 

Hence, to derive the implementation table using D flip-flops, we need to determine the value that must be 
assigned to the D input such that it will cause the corresponding Qnext value given in the next-state table. However, 
since the characteristic equation for the D flip-flop (i.e. the equation that describes the operation of the D flip-flop as 
given in Section 6.10.2) is 

Qnext = D 
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therefore, the values for Qnext and D are the same. 

Thus, the entries in the implementation table using D flip-flops are identical to the entries in the next-state table. 
The only difference between the two tables is in the meaning of the entries. In the next-state table as shown in 
Figure 7.12 (b), the label for the entries is Qnext for the next state to go to, whereas, in the implementation table as 
shown in Figure 7.12 (c), the label for the entries is D for the input to the D flip-flop. Since there are two flip-flops, 
Q1 and Q0, each having one input D, hence the implementation table has the two corresponding inputs D1 and D0. 
The leftmost bit is for flip-flop 1 and the rightmost bit is for flip-flop 0. Note that if one of the other types of flip-
flops is used, the two tables will not be the same as discuss in Section 7.8.3. 

7.4.4 Excitation Equation and Next-state Circuit 

Recall that the excitation equations are the equations for the flip-flop’s synchronous inputs. There is one 
excitation equation for every input of every flip-flop. Remember that we do not include the asynchronous inputs and 
the clock input. The excitation equations are dependent on the current state encodings, i.e., the contents of the flip-
flops, and the primary FSM input signals. 

The excitation equations are what caused the flip-flops in the state memory to change state. The circuit that is 
derived from these equations is the next-state circuit in the FSM. The next-state circuit is a combinational circuit, 
and so deriving this circuit is the same as synthesizing any other combinational circuit as discussed in Section 3.2. 

The implementation table derived from the previous step is just the truth table for the excitation equations. For 
our example, we need two equations for the two flip-flop inputs, D1 and D0. In the example, extracting the leftmost 
bit in every entry in the implementation table will give us the truth table for D1, and therefore, the excitation 
equation for D1. Similarly, extracting the rightmost bit in every entry in the implementation table will give us the 
truth table and excitation equation for D0. The truth table, in the form of a K-map, and the excitation equations for 
D1 and D0 are given in Figure 7.12 (d). 

7.4.5 Output Table and Equation 

The output table and output equations are used to derive the output circuit in the FSM. The output table can be 
obtained directly from the state diagram. In the state diagram of Figure 7.12 (a), the output signal Y is dependent 
only on the state. In states s0 and s1, Y is assigned the value 0. In states s2 and s3, Y is assigned a 1. The resulting 
output table is shown in Figure 7.12 (e). 

The output equation as derived from the output truth table is simply 

Y = Q1 

7.4.6 FSM Circuit 

Using Figure 7.2 (a) as a template, our FSM circuit requires two D flip-flops for its state memory. The number 
of flip-flops to use was determined when the states were encoded. The type of flip-flops to use was determined when 
deriving the implementation table. The next-state circuit is drawn from the excitation equations, while the output 
circuit is drawn from the output equation. Connecting these three parts, state memory, next-state circuit, and output 
circuit, together produces the final FSM circuit shown in Figure 7.12 (f). 

7.4.7 Examples: Synthesis of Moore FSMs 

We will now illustrate the synthesis of Moore FSMs with two examples. Example 7.4 illustrates the synthesis of 
a simple Moore FSM. Example 7.5 illustrates the synthesis of a Moore FSM that is more typical of what the control 
unit of a microprocessor is like. 

Example 7.4 

For our first synthesis example, we will design a modulo-6 up counter using D flip-flops having a count enable 
input C, and an output signal Y that is asserted when the count is equal to five. The count is to be represented 
directly by the contents of the flip-flops. 
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Next State 
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Current State 
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Figure 7.13. Synthesis of a Moore FSM for Example 7.4: (a) state diagram; (b) next-state table; (c) implementation 
table; (d) K-maps and excitation equations; (e) output table and equation; (f) FSM circuit. 

Step 1 is to construct the state diagram. From the above functional description, we need to construct a state 
diagram that will show the precise operation of the circuit. A modulo-6 counter counts from zero to five, and then 
back to zero. Since the count is represented by the flip-flop values and we have six different counts (from zero to 
five), we will need three flip-flops (Q2, Q1, Q0) that will produce the sequence 000, 001, 010, 011, 100, 101, 000, … 
when C is asserted, otherwise, when C is de-asserted, the counting stops. In other words, from state 000, which is 
count = 0, there will be an edge that goes to state 001 with the label C = 1. From state 001, there is an edge that goes 
to state 010 with the label C = 1, and so on. For the counting to stop at each count, there will be edges at each state 
that loop back to the same state with the label C = 0. Furthermore, we want to assert Y in state 101, so in this state, 
we set Y to a 1. For the rest of the states, Y is set to a 0.  Hence, we obtain the state diagram in Figure 7.13 (a) for a 
modulo-6 up counter. 

Step 2 is to derive the next-state table, which is a direct translation from the state diagram. We have three flip-
flops Q2, Q1, and Q 0, and one primary input C. The current states for the flip-flops are listed down the rows, while 
the input is listed across the columns. The entries are the next states. For each entry in the next-state table, we need 
to determine what the next state is for each of the three flip-flops, so there are three bit values, Q2next, Q1next, and 
Q0next for each entry. For example, if the current state is Q2Q1Q0 = 010 and the input is C = 1, then the next state 
Q2nextQ1nextQ0next is 011. The next-state table is shown in Figure 7.13 (b). 
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Step 3 is to convert the next-state table to its implementation table. Since for the D flip-flop, the implementation 
table is the same as the next-state table, we can simply use the next-state table and just re-label the entry heading as 
shown in Figure 7.13 (c). 

Step 4 is to derive the excitation equations for all the flip-flop inputs in terms of the current state and the 
primary input. These equations are obtained directly from the implementation table. In the example, there are three 
flip-flops with the three inputs D2, D1, and D0, which correspond to the three bits in the entries in the implementation 
table. To derive the equation for D2, we consider just the leftmost bit in each entry for the truth table for D2. Looking 
at all the leftmost bits, there are four 1-minterms giving the canonical equation 

D2 = C'Q2Q1'Q0' + C'Q2Q1'Q0 + CQ2'Q1Q0 + CQ2Q1'Q0' 

Similarly, the equation for D1 is derived from considering just the middle bit for all the entries, and the equation 
for D0 from the rightmost bit. Since these equations will be used to construct the next-state circuit, they should be 
simplified. The three K-maps and simplified excitation equations for D2, D1, and D0 are shown in Figure 7.13 (d). 

Steps 5 and 6 are to derive the output table and equation. There is one equation for every output signal. Since 
the value of Y is labeled inside each node, it is therefore dependent only on the current state. From the state diagram, 
Y is asserted only in state 101, so Y has a 1 only in that current state entry, while the rest of them are 0’s. The output 
table and equation are shown in Figure 7.13 (e). 

Finally, we can draw the circuit for the FSM. We know that the circuit is a Moore FSM that uses three D flip-
flops for its state memory having one primary input C and one output Y. The next-state function circuit is derived 
from the three excitation equations for D2, D1, and D0. The output function circuit is derived from the output 
equation for Y. The full circuit is shown in Figure 7.13 (f). ♦  

Example 7.5 

In this example, we will synthesize a Moore FSM that is more typical of what the control unit of a 
microprocessor is like. We start with the state diagram as shown in Figure 7.14 (a). Each state is labeled with a state 
name, s0, s1, s2, and s3, and has two output signals x and y. There are also two conditional status signals Start and 
(n=9) labeled on four of the edges, while the rest of the edges do not have any conditions. From state s0, the 
conditional edge labeled Start is taken when Start = 1, otherwise, the edge labeled Start' is taken. Similarly, from 
state s2, the edge with the label (n = 9) is taken when the condition is true, that is, when the value of variable n is 
equal to nine. If n is not equal to nine, then the edge with the label (n = 9)' is taken.  

Two flip-flops Q0 and Q1 are needed in order to encode the four states. For simplicity, we will use the binary 
value of the index of the state name to be the encoding for that state. For example, the encoding for state s0 is Q1Q0 
= 00 and the encoding for state s1 is Q1Q0 = 01, and so on. 

From the above analysis, we are able to derive the next-state table as shown in Figure 7.14 (b). The four current 
states for Q1Q0 are listed down the four rows. The four columns are for the four combinations of the two conditional 
signals Start and (n=9). For example, the column with the value Start, (n=9) = 10 means Start = 1 and (n=9) = 0. 
The condition (n=9) = 0 means that the condition (n=9) is false which means (n=9)' is true. The entries in the table 
are the next states, Q1next Q0next, for the two flip-flops. 

For example, looking at the state diagram, from state s2 we go back to state s1 when the condition (n=9)' is true 
independent of the Start condition. Hence, in the next-state table, for the current state row s2 (10), the two next-state 
entries for when the condition (n=9)' is true is s1 (01). The condition “(n=9)' is true” means (n=9) = 0. This 
corresponds to the two columns with the labels 00 and 10, that is, Start can be either 0 or 1, while (n=9) is 0. 

Using D flip-flops to implement the FSM, we get the implementation table shown in Figure 7.14 (c). The 
implementation table and the next-state table are identical when D flip-flops are used. The only difference between 
them is the meaning given to the entries. For the next-state table, the entries are the next state of the flip-flops, 
whereas for the implementation table, the entries are the inputs to the flip-flops. They are the input values necessary 
to get to that next state. Again, since the next state is equal to the input value (Qnext = D) for a D flip-flop, therefore, 
the entries in these two tables are the same. 
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Figure 7.14. Synthesis of a Moore FSM for Example 7.5: (a) state diagram; (b) next-state table; (c) implementation 
table; (d) excitation equations and K-maps for D1 and D0; (e) output table; (f) output equations and K-maps; (g) 
FSM circuit. 

The excitation equations are derived from the implementation table. There is one excitation equation for every 
data input of every flip-flop used. Since we have two D flip-flops, therefore, we have two excitation equations; one 
for D1 and the second for D0. The equations are dependent on the four variables Q1, Q0, Start, and (n=9). We look at 
the implementation table as one having two truth tables merged together, one truth table for D1 and one for D0. Since 
the two bits in the entries are ordered D1D0, therefore, for the D1 truth table, we look at only the leftmost D1 bit in 
each entry, and for the D0 truth table, we look at only the rightmost D0 bit. Extracting the two truth tables from the 
implementation table in this manner, we obtain the two K-maps and corresponding excitation equations for D1 and 
D0 as shown in Figure 7.14 (d). The excitation equations allow us to derive the next-state combinational circuit. 

The output table is obtained from the output signals given in the state diagram. The output table is just the truth 
table for the two output signals x and y. The output signal equations derived from the output table are dependent on 
the current state Q1Q0. The output table, K-maps and output equations are shown in Figure 7.14 (e) and (f). 

From the excitation and output equations, we can easily produce the next-state and output circuits, and the 
resulting FSM circuit shown in Figure 7.14 (g). ♦  

Digital Logic and Microprocessor Design with VHDL Chapter 7 - Sequential Circuits

223



7.4.8 Example: Synthesis of a Mealy FSM 

The next example illustrates the synthesis of a Mealy FSM. You will find that this process is almost identical to 
the synthesis of a Moore FSM with the one exception of deriving the output equations. The outputs for a Mealy 
FSM are dependent on both the current state and the input signals, whereas, for the Moore FSM, they are only 
dependent on the current state. 

Example 7.6 

In this example, we will synthesize a Mealy FSM based on the state diagram shown in Figure 7.15 (a) using D 
flip-flops. The four states are already encoded with the values of the two flip-flops. There are two conditional input 
signals (x=0) and (x=y). Since these are conditions, the equal sign means the test for equality. There is one output 
signal A, which can be set to either a 0 or a 1 value. The equal sign here means assignment. Notice that what makes 
this a Mealy FSM state diagram is the fact that the outputs are associated with the edges and not the nodes. 
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Figure 7.15. Synthesis of a Mealy FSM for Example 7.6: (a) state diagram; (b) next-state table; (c) implementation 
table; (d) excitation equations and K-maps for D1 and D0; (e) output table; (f) output equation and K-map; (g) FSM 
circuit. 

Deriving the next-state and implementation tables for a Mealy FSM is exactly the same as for a Moore FSM. 
The next-state and implementation tables for this example are shown in Figure 7.15 (b) and (c). The excitation 
equations and K-maps for D1 and D0 are shown in (d). 

The output table as shown in Figure 7.15 (e) is slightly different from the output tables for Moore FSMs. In 
addition to the output signal A being dependent on the current state Q1Q0, it is also dependent on the two input 
signals (x=0) and (x=y). Hence the table has four columns for the four possible combinations of the two input 
signals. The entries in the table are the values for A. 

Looking at the state diagram in Figure 7.15 (a), we see that from state 00, output signal A is assigned the value 1 
when the condition (x=0) is true, otherwise it is assigned a 0. Since the condition (x=y) is not labeled on these two 
edges going out from state 00, therefore, the output is independent to this condition from state 00. Hence, in row 00, 
the two entries under the two columns with the label 00 and 01, are both 0; whereas, the two entries under the two 
columns 10 and 11 are both 1. 
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Using the output table as the truth table, we are able to derive the K-map and output equation for A as shown in 
Figure 7.15 (f). Notice that the equation is also dependent on the two input signals. 

Again, using the excitation and output equations, we are able to draw the final FSM circuit shown in Figure 
7.15 (g). 

7.5 Unused State Encodings and the Encoding of States 
In a real world situation, the number of states used in the state diagram is most likely not a power of two. For 

example, the state diagram shown in Figure 7.13 (a) for the modulo-6 counter uses six states. To encode six states, 
we need at least three flip-flops since two flip-flops can encode only four different combinations. However, three 
flip-flops give eight different combinations. So two combinations are not used. The question is what do we do with 
these unused encodings? In the next-state table, what next state values do we assigned to these unused states? Do we 
just ignore them? 

If the FSM can never be in any of the unused states, then it does not matter what their next states are. In this 
case, we can put “don’t care” values for their next states. The resulting next-state circuit may be smaller because of 
the “don’t care” values. 

But what if, by chance, the FSM enters one of these unused states? The operation of the FSM will be 
unpredictable because we do not know what the next state is. Well, this is not exactly true because even though we 
started with the “don’t cares,” we have mapped them to a fixed excitation equation. So these unused states do have 
definite next states. It is just that these next states are not what we wanted. Hence, the resulting FSM operation will 
be incorrect if it ever enters one of the unused states. If this FSM is used in a mission critical control unit, we do not 
want even this slight chance to occur. 

One solution is to use the initialization or starting state as the next state for these unused state encodings. This 
way, the FSM will restart from the beginning if it ever enters one of these unused states. 

So far, we have been using the sequential binary value to encode the states in order, for example, state s0 is 
encoded as 00, state s1 as 01, state s2 as 10, and so on. However, there is no reason why we cannot use a different 
encoding for the states. In fact, we do want to use a different encoding if it will result in a smaller circuit. 

Example 7.7 shows a FSM with an unused state encoding, and the encoding of one state differently. 

Example 7.7 

In this example, we will synthesize a FSM for the one-shot circuit first discussed in Section 3.5.1. Recall that 
the one-shot circuit outputs a single short pulse when given an input of arbitrary time length. In this FSM circuit, the 
length of the single short pulse will be one clock cycle. The state diagram for this circuit is shown in Figure 7.16 (a). 

State s0, encoded as 00, is the reset state, and the FSM waits for a key press in this state. When a switch is 
pressed, the FSM goes to state s1, encoded as 01, to output a single short pulse. From s1, the FSM unconditionally 
goes to state s2, encoded as 11, to turn off the one-shot pulse. Hence, the pulse only lasts for one clock cycle, 
irregardless of how long the key is pressed. To break the loop, and wait for another key press, the FSM has to wait 
for the release of the key in state s2. When the key is released, the FSM goes back to state s0 to wait for another key 
press. 

This state diagram uses two bits to encode the three states, hence state encoding 10 is not used. The state 
diagram shows that if the FSM enters state 10, it will unconditionally go to the reset state 00 in the next clock cycle. 
Furthermore, we have encoded state s2 as 11 instead of 10 for the index two. 

The corresponding next-state table is shown in Figure 7.16 (b). Using D flip-flops to implement this FSM, the 
implementation table, again, is like the next-state table. Therefore, we can use the next-state table directly to derive 
the two excitation equations for D1 and D0 as shown in (c). The output table and output equation is shown in (d), and 
finally the complete FSM circuit in (e). 
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Figure 7.16. FSM for one-shot circuit: (a) state diagram; (b) next-state table; (c) excitation equations and K-maps 
for D1 and D0; (d) output table and output equation; (e) FSM circuit. 

7.6 Designing a Car Security System—Version 3 
We will revisit the car security system example from Chapters 2 and 6. Recall that in the first version (Chapter 

2) the circuit is a combinational circuit. The problem with a combinational circuit is that once the alarm is triggered, 
by lets say opening the door, the alarm can be turned off immediately by closing the door again. However, what we 
want is that once the alarm is triggered, it should remain on even after closing the door, and the only way to turn it 
off is to turn off the master switch. 

This requirement suggests that we need a sequential circuit instead where the output is dependent on not only 
the current input switch settings but also on the current state of the alarm. Thus, we are able to come up with the 
state diagram as shown in Figure 7.17 (a). In addition to the three input switches M, D and V for Master, Door, and 
Vibration, we need two states, 1 and 0, to depict whether the siren is on or off respectively. If the siren is currently 
on, i.e. in the 1 state, then it will remain in that state as long as the master switch is still on, so it doesn’t matter 
whether the door is now close or open. This is represented by the edge that goes from state 1 and loops back to state 
1 with the label MDV=1××. From the on state, the only way to turn off the siren is to turn off the master switch. This 
is represented by the edge going from state 1 to state 0 with the label MDV=0××. If the siren is currently off, it is 
turned on when the master switch is on, and either the door switch or the vibration switch is on. This is represented 
by the edge going from state 0 to state 1 with the labels MDV=101,110, or 111. Finally, from the off state, the siren 
will remain off when either the master switch remains off, or if the master switch is on but none of the other two 
switches are on. This is represented by the edge from state 0 looping back to state 0. 

The state diagram is translated to the corresponding next-state table and implementation table using one D flip-
flop as shown in Figure 7.17 (b). Again the next-state table and implementation table are the same except that the 
entries for the next-state table are for the next states, and the entries for the implementation table are for the inputs to 
the flip-flop. Doing a 4-variable K-map on the implementation table gives us the excitation equation shown in 
Figure 7.17 (c). The final circuit for this car security system is shown in Figure 7.17 (d). The circuit uses one D flip-
flop. The next-state circuit is derived from the excitation equation, which produces the signal for the D input of the 
flip-flop. The output of the flip-flop directly drives the siren. 
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Figure 7.17. Car security system – version 3: (a) state diagram; (b) next-state / implementation table; (c) K-map and 
excitation equation; (d) circuit. 

7.7 VHDL for Sequential Circuits 
Writing VHDL code for sequential circuits is usually done at the behavioral level. The advantage of writing 

behavioral VHDL code is that we do not need to manually synthesize the circuit. The synthesizer will automatically 
produce the netlist for the circuit from the behavioral code. 

In order to write the behavioral VHDL code for a sequential circuit, we need to use the information from the 
state diagram for the circuit. The main portion of the code contains two processes: a next-state-logic process, and an 
output-logic process. The edges (both conditional and unconditional) from the state diagram are used to derive the 

Digital Logic and Microprocessor Design with VHDL Chapter 7 - Sequential Circuits

229



next-state-logic process, which will generate the next-state logic circuit. The output signal information in the state 
diagram is used to derive the process for the output logic. 

We will now illustrate the behavioral VHDL coding of sequential circuits with several examples. 

Example 7.8 

In this example, we will write the behavioral VHDL code for the Moore FSM of Example 7.2. The state 
diagram for the example from Figure 7.8 is repeated here in Figure 7.18. Since the synthesizer will automatically 
take care of the state encoding, therefore, the states only need to be labeled with their logical names. The behavioral 
VHDL code for this Moore FSM based on this state diagram and output table is shown in Figure 7.19. 

Y = 0
C = 0

C = 0C = 1

C = 1

C = 1C = 0

C = 0

C = 1

s0

Y = 0
s1

Y = 0
s2

Y = 1
s3

 
Figure 7.18. State diagram for Example 7.8. 

The entity section declares the primary I/O signals for the circuit. There is the global input clock and reset 
signals. The clock signal determines the speed in which the sequential circuit will transition from one state to the 
next. The reset signal initializes all the state memory flip-flops to zero. In addition to the standard global clock and 
reset signals, the entity section also declares all the input and output signals. For this example, there is an input 
signal C, and an output signal Y; both of which are of type STD_LOGIC. 

The architecture section starts out with using the TYPE statement to define the four states, s0, s1, s2, and s3, used 
in the state diagram. The SIGNAL statement declares the signal state to store the current state of the FSM. There are 
two processes in the architecture section that execute concurrently: the next-state-logic process, and the output-logic 
process. As the name suggests, the next-state process defines the next-state logic circuit that is inside the control 
unit, and the output logic process defines the output logic circuit inside the control unit. The main statement within 
these two processes is the CASE statement that determines what the current state is. 

In the next-state-logic process, the current state of the FSM is initialized to s0 on reset. The CASE statement is 
executed only at the rising clock edge because of the test (clock'EVENT AND clock = '1') in the IF statement. Hence, 
the state signal is assigned a new state value at every rising clock edge. The new state value is, of course, dependent 
on the current state and input signals, if any. For example, if the current state is s0, the case for s0 is selected. From 
the state diagram, we see that when in state s0, the next state is dependent on the input signal C. Hence, in the code, 
an IF statement is used. If C is 1 then the new state s1 is assigned to the signal state, otherwise, s0 is assigned to state. 
For the latter case, even though we are not changing the state value s0, we still make that assignment to prevent the 
VHDL synthesizer from using a memory element for the state signal. Recall from Section 6.13.1 that VHDL 
synthesizes a signal using a memory element if the signal is not assigned a value for all possible cases. The rest of 
the cases in the CASE statement are written similarly based on the remaining edges in the state diagram. 

In the output-logic process, all the output signals must be assigned a value in every case. Again, the reason is 
that we do not want these output signals to come from memory elements. In the FSM model, the output circuit is a 
combinational circuit, and so it should not contain any memory elements. For each state in the CASE statement in the 
output process, the values assigned to each of the output signal are taken directly from the output table. For this 
example, there is only one output signal Y. 

A sample simulation trace of this sequential circuit is shown in Figure 7.20. In the simulation trace, between 
times 100ns and 800ns when R is de-asserted and C is asserted, the state changes at each rising clock edge (at times 
300ns, 500ns, and 700ns.) At time 700ns when the current state is s3, we see that the output signal Y is also asserted. 
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At time 800ns, input C is de-asserted, as a result, the FSM did not change state at the next rising clock edge at time 
900ns. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MooreFSM IS PORT (
clock: IN STD_LOGIC;
reset: IN STD_LOGIC;
C: IN STD_LOGIC;
Y: OUT STD_LOGIC);

END MooreFSM;

ARCHITECTURE Behavioral OF MooreFSM IS
TYPE state_type IS (s0, s1, s2, s3);
SIGNAL state: state_type;

BEGIN
next_state_logic: PROCESS (clock, reset)
BEGIN
IF (reset = '1') THEN
state <= s0;

ELSIF (clock'EVENT AND clock = '1') THEN
CASE state IS
WHEN s0 =>
IF C = '1' THEN
state <= s1;

ELSE
state <= s0;

END IF;
WHEN s1 =>
IF C = '1' THEN
state <= s2;

ELSE
state <= s1;

END IF;
WHEN s2=>
IF C = '1' THEN
state <= s3;

ELSE
state <= s2;

END IF;
WHEN s3=>
IF C = '1' THEN
state <= s0;

ELSE
state <= s3;

END IF;
END CASE;

END IF;
END PROCESS;

output_logic: PROCESS (state)
BEGIN
CASE state IS
WHEN s0 =>
Y <= '0';
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WHEN s1 =>
Y <= '0';

WHEN s2 =>
Y <= '0';

WHEN s3 =>
Y <= '1';

END CASE;
END PROCESS;

END Behavioral;

Figure 7.19. Behavioral VHDL code of a Moore FSM for Example 7.7. 

 
Figure 7.20. Simulation trace of a Moore FSM for Example 7.8. 

Example 7.9 

This example shows how a Mealy FSM is written using behavioral VHDL code. We will use the Mealy FSM 
from Example 7.3. The state diagram for this FSM is shown in Figure 7.10. This FSM is very similar to the one 
from the previous example except that the generation of the output signal Y is also dependent on the input signal C. 
The VHDL code is shown in Figure 7.21. In this code, we see that the next-state-logic process is identical to the 
previous FSM code. In the output-logic process, the only difference is in state s3 where an IF statement is used to 
determine the value of the input signal C. The output signal Y is assigned a value depending on the result of this test. 

The simulation trace for this Mealy FSM is shown in Figure 7.22. Notice that the only difference between this 
trace and the one from the previous example is in the Y signal between times 800ns and 1us.  During this time 
period, the input signal C is de-asserted. In the previous trace, this has no effect on Y, however, for the Mealy FSM 
trace, Y is also de-asserted. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MealyFSM IS PORT (
clock: IN STD_LOGIC;
reset: IN STD_LOGIC;
C: IN STD_LOGIC;
Y: OUT STD_LOGIC);

END MealyFSM;

ARCHITECTURE Behavioral OF MealyFSM IS
TYPE state_type IS (s0, s1, s2, s3);
SIGNAL state: state_type;

BEGIN
next_state_logic: PROCESS (clock, reset)
BEGIN
IF (reset = '1') THEN
state <= s0;
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ELSIF (clock'EVENT AND clock = '1') THEN
CASE state is
WHEN s0 =>
IF C = '1' THEN
state <= s1;

ELSE
state <= s0;

END IF;
WHEN s1 =>
IF C = '1' THEN
state <= s2;

ELSE
state <= s1;

END IF;
WHEN s2=>
IF C = '1' THEN
state <= s3;

ELSE
state <= s2;

END IF;
WHEN s3=>
IF C = '1' THEN
state <= s0;

ELSE
state <= s3;

END IF;
END CASE;

END IF;
END PROCESS;

output_logic: PROCESS (state, C)
BEGIN
CASE state IS
WHEN s0 =>
Y <= '0';

WHEN s1 =>
Y <= '0';

WHEN s2 =>
Y <= '0';

WHEN s3 =>
IF (C = '1') THEN
Y <= '1';

ELSE
Y <= '0';

END IF;
END CASE;

END PROCESS;

END Behavioral;

Figure 7.21. Behavioral VHDL code for the Mealy FSM of Example 7.9. 
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Figure 7.22. Simulation trace for the Mealy FSM of Example 7.9. 

Example 7.10 

This is another example of a Moore FSM written using behavioral VHDL code. This FSM is from Example 7.5, 
and the state diagram for this example is shown in Figure 7.14. The behavioral VHDL code for this FSM is shown in 
Figure 7.23, and the simulation trace in Figure 7.24. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MooreFSM IS PORT(
clock: IN STD_LOGIC;
reset: IN STD_LOGIC;
start, neq9: IN STD_LOGIC;
x,y: OUT STD_LOGIC);

END MooreFSM;

ARCHITECTURE Behavioral OF MooreFSM IS
TYPE state_type IS (s0, s1, s2, s3);
SIGNAL state: state_type;

BEGIN
next_state_logic: PROCESS (clock, reset)
BEGIN
IF (reset = '1') THEN
state <= s0;

ELSIF (clock'EVENT AND clock = '1') THEN
CASE state IS
WHEN s0 =>
IF start = '1' THEN
state <= s1;

ELSE
state <= s0;

END IF;
WHEN s1 =>
state <= s2;

WHEN s2 =>
IF neq9 = '1' THEN
state <= s3;

ELSE
state <= s1;

END IF;
WHEN s3 =>
state <= s0;

END CASE;
END IF;

END PROCESS;
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output_logic: PROCESS (state)
BEGIN
CASE state IS
WHEN s0 =>
x <= '0';
y <= '1';

WHEN s1 =>
x <= '1';
y <= '1';

WHEN s2 =>
x <= '1';
y <= '1';

WHEN s3 =>
x <= '1';
y <= '0';

END CASE;
END PROCESS;

END Behavioral;

Figure 7.23. Behavioral VHDL code for the Moore FSM of Example 7.10.  

 
Figure 7.24. Simulation trace for the Moore FSM of Example 7.10. 

7.8 * Optimization for Sequential Circuits 
In designing any digital circuit, in addition to getting a functionally correct circuit, we like to optimize it for 

size, speed, and power consumption. In this section, we will briefly discuss some of the issues involved. A full 
treatment of optimization for sequential circuits is beyond the scope of this book. 

Since sequential circuits also contain combinational circuit parts (the next-state logic and the output logic), 
these parts should also be optimized following the optimization procedures for combinational circuits as discussed in 
Section 4.4. Some basic choices for sequential circuit optimization include state reduction, state encoding, and 
choice of flip-flop types.  

7.8.1 State Reduction 

Sequential circuits with fewer states most likely will result in a smaller circuit since the number of states 
directly translates to the number of flip-flops needed. Fewer flip-flops imply a smaller state memory for the FSM. 
Furthermore, fewer flip-flops also mean fewer flip-flop inputs, so the number of excitation equations needed is also 
reduced. This of course means that the next-state circuit will be smaller. 

There are two levels in which we can reduce the number of states. At the pseudo-code description level, we can 
try to optimize the code by shortening the code if possible. We can also assign two or more data operations to the 
same state. 
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After obtaining a state diagram, we may still be able to reduce the number of states by removing equivalent 
states. If two states are equivalent, we can remove one of them, and instead use the other equivalent state. The 
resulting FSM will still be functionally equivalent. Two states are said to be equivalent if the following two 
conditions are true: 

1. Both states produce the same output for every input. 
2. Both states have the same next state for every input. 

7.8.2 State Encoding 

When initially drawing the state diagram for a sequential circuit, it is preferred to keep the state names 
symbolic. However, these state names must be eventually encoded with a unique bit string. State encoding is the 
process of determining how many flip-flops are required to represent the states in the next-state table or state 
diagram, and to assign a unique bit string combination to each named state. In all the examples presented so far, we 
have been using the straight binary encoding scheme where n flip-flops are needed to encode 2n states. For example, 
for four states, state s0 gets the encoding 00, state s1 gets the encoding 01, s2 gets 10, and s3 gets the encoding 11. 
However, this scheme does not always lead to the smallest FSM circuit. Other encoding schemes are minimum bit 
change, prioritized adjacency, and one-hot encoding. 

For the minimum bit change scheme, binary encodings are assigned to the states in such a way that the total 
number of bit changes for all state transitions is minimized. In other words, if every edge in the state diagram is 
assigned a weight that is equal to the number of bit change between the source encoding and the destination 
encoding of that edge, this scheme would select the one that minimizes the sum of all these edge weights. 

For example, given a four-state state diagram shown in Figure 7.25 (a), the minimum bit change scheme would 
use the encoding shown in (b) and not the encoding shown in (c). In both (b) and (c), the number of bit change 
between the encodings of two states joined by an edge is labeled on that edge. For example, in (b), the number of bit 
change between state s1 = 01 and s2 = 11 is 1. The encoding used in (b) has a smaller sum of all the edge weights 
than the encoding used in (c). 

Notice that even though the encoding of Figure 7.25 (b) produces the smallest total edge weight, there are 
several other ways to encode these four states that will also produce the same total edge weight. For example, 
assigning 00 to s1 instead of to s0, 01 to s2 instead of s1, 11 to s3, and 10 to s0.  
 

s0 s1

s2s3
 

(a) 

100 01

1110 1

1 1

 

(b) 

100 01

1011 1

2 2

 

(c) 

Figure 7.25. Minimum bit change encoding: (a) a four-state state diagram; (b) encoding with a total weight of 4; (c) 
encoding with a total weight of 6. 

For the prioritized adjacency scheme, adjacent states to any state s are given certain priorities. Encodings are 
assigned to these adjacent states such that those with a higher priority will have an encoding that has fewer bit 
change from the encoding of state s than those adjacent states with a lower priority. 

In the one-hot encoding scheme, each state is assigned one flip-flop. A state is encoded with its flip-flop having 
a 1 value while all the other flip-flops have a 0 value. For example, the one-hot encoding for four states would be 
0001, 0010, 0100, and 1000.  
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7.8.3 Choice of Flip-Flops 

A FSM can be implemented using any of the four types of flip-flops, SR, D, JK, and T (see Section 6.13) or any 
combinations of them. Using different flip-flops can produce a smaller circuit but with the same functionality. The 
decision as to what types of flip-flops to use is reflected in the implementation table. Whereas, the next-state table is 
independent of the flip-flop types used, the implementation table is dependent on these choices of flip-flops. 

The implementation table answers the question of what the flip-flop inputs should be in order to realize the 
next-state table. In order to do this, we need to use the excitation table for the selected flip-flop(s). Recall that the 
excitation table is used to answer the question of what the inputs should be when given the current state that the flip-
flop is in and the next state that we want the flip-flop to go to. So to get the entries for the implementation table, we 
substitute the next-state values from the next-state table with the corresponding entry in the excitation table. 

For example, if we have the following next-state table 
 

Next State 
Q1next Q0next 

Current 
State 
Q1Q0 C=0 C=1 

00 00 00 
01 10 10 
10 01 11 
11 00 00 

 
and we want to use the SR flip-flop to implement the circuit, we would convert the next-state table to the 
implementation table as follows. First, the next state column headings from the next-state table (Q1nextQ0next) are 
changed to the corresponding flip-flop input names (S1R1S0R0). Since the SR flip-flop has two inputs, therefore, each 
next-state bit Qnext is replaced with two input bits SR. This is done for all the flip-flops used as shown below 
 

Implementation 
S1R1S0R0 

Current State 
Q1Q0 C=0 C=1 

00   
01 10__  
10   
11   

To derive the entries in the implementation table, we will need the excitation table for the SR flip-flop (from 
Section 6.13.1) shown below 
 

Q Qnext S R 
0 0 0 × 
0 1 1 0 
1 0 0 1 
1 1 × 0 

For example, if the current state for flip-flop one is Q1 = 0 and the next state Q1next = 1, we would do a table 
lookup in the excitation table for QQnext = 01. The corresponding two input bits are SR = 10. Hence, we would 
replace the 1 bit for Q1next in the next-state table with the two input bits S1R1 = 10 in the same entry location in the 
implementation table. Proceeding in this same manner for all the next-state bits in the next-state table entries, we 
obtain the complete implementation table below 
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Implementation 
S1R1S0R0 

Current State 
Q1Q0 C=0 C=1 

00 0×0× 0×0× 
01 1001 1001 
10 0110 ×010 
11 0101 0101 

Once we have the implementation table, deriving the excitation equations and drawing the next-state circuit are 
identical for all flip-flop types. 

The output table and output equations are not affected by the change in flip-flop types, and so they remain 
exactly the same too. 

Example 7.11 

In this example, we will design a modulo-6 up counter using T flip-flops. This is similar to Example 7.4 but 
using T flip-flops instead of D flip-flops. The next-state table for the modulo-6 up counter as obtained from 
Example 7.4 is shown in Figure 7.26 (a). The excitation table for the T flip-flop as derived in Section 6.14.3 is 
shown in Figure 7.26 (b). 

The implementation table is obtained from the next-state table by substituting each next-state bit with the 
corresponding input bit of the T flip-flop. This is accomplished by doing a table look-up from the T flip-flop 
excitation table. 

For example, in the next-state table for the current state Q2Q1Q0 = 010 and the input C = 1, we want the next 
state Q2next Q1next Q0next to be 011. The corresponding entry in the implementation table shown in Figure 7.26 (c) 
using T flip-flops would be T2T1T0 = 001 because for flip-flop2 we want its content to go from Q2 = 0 to Q2next = 0. 
The excitation table tells us that to realize this change, the T2 input needs to be a 0. Similarly, for flip-flop1 we want 
its content to go from Q1 = 1 to Q1next = 1, and again the T1 input needs to be a 0 to realize this change. Finally, for 
flip-flop0 we want its content to go from Q0 = 0 to Q0next = 1, this time, we need T0 to be a 1. Continuing in this 
manner for all the entries in the next-state table, we obtain the implementation table shown in Figure 7.26 (c). 

From the implementation table, we obtain the excitation equations just like before. For this example, we have 
the three input bits T2, T1 and T0, which results in the three equations. These equations are dependent on the four 
variables Q2, Q1, Q0, and C. The three K-maps and excitation equations for T2, T1, and T0 are shown in Figure 7.26 
(d). The output equation is the same as before (see Figure 7.13 (e)). Finally, the complete modulo-6 up counter 
circuit is shown in Figure 7.26 (e). 

Comparing this circuit with the circuit from Example 7.3 shown in Figure 7.13 (f) where D flip-flops are used, 
it is obvious that using T flip-flops for this problem result in a much smaller circuit than using D flip-flops. ♦  
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Next State 
Q2next Q1next Q0next 

 Current 
State 

Q2Q1Q0 C = 0 C = 1 
000 000 001 
001 001 010 
010 010 011 
011 011 100 
100 100 101 
101 101 000 

(a) 

Qnext Qnext' T 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

(b) 

Implementation 
T2 T1 T0 

Current State 
Q2Q1Q0 C = 0 C = 1 

000 000 001 
001 000 011 
010 000 001 
011 000 111 
100 000 001 
101 000 101 

(c) 

CQ2

Q1Q0

00 0 0

00

0 0

0 0 1 0

0 1

0 0

01 11 10

01

11

10

T2

CQ2Q0
× ×

××
CQ1Q0

 

T2 = CQ2Q0 + CQ2Q1 

 

CQ2

Q1Q0

00 0 0

00

0 0

0 0 0 1

0 1

0 0

01 11 10

01

11

10

T1

CQ2'Q0
× ×

××
 

T1 = CQ2'Q0 

(d) 

CQ2

Q1Q0

00 0 0

00

1 1

0 0 1 1

0 1

0 1

01 11 10

01

11

10

T0

C
× ×

××
 

T0 = C 

 

y

C

Clk

T1

Q'1

Q1

Clear

Clk

T2

Q'2

Q2

Clear

Clk

T0

Q'0

Q0

ClearClock
Reset  

(e) 

Figure 7.26. Synthesis of a FSM for Example 7.11: (a) next-state table; (b) excitation table for the T flip-flop; (c) 
implementation table using T flip-flops; (d) K-maps and excitation equations; (e) FSM circuit. 

7.9 Summary Checklist 
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� State diagram 
� State encoding 
� Output signal 
� Conditional edge 
� Next-state table 
� Implementation table 
� Excitation equation 
� Output table 
� Output equation 
� Next-state logic 
� State memory 
� Output logic 
� FSM circuit 
� Unused state encoding 
� Be able to derive the state diagram from an arbitrary pseudo-code circuit description 
� Be able to derive the next-state table from a state diagram 
� Be able to derive the implementation table from a next-state table 
� Be able to derive the excitation equations from an implementation table 
� Be able to derive the output table from a state diagram 
� Be able to derive the output equations from an output table 
� Be able to derive the FSM circuit from the excitation and output equations 

7.10 Problems 

7.1. Analyze the following FSMs and derive the state diagram for it: 

a) C is an input, and a and b are outputs. 

Clk

D0

Q'0

Q0

Clear

Clk

D1

Q'1

Q1

Clear

C

Clock
Reset

a

b

 

Answer 

Excitation / next-state equations: 

Q1next = D1 = CQ1'Q0' + C'Q1'Q0 
Q0next = D0 = Q1'Q0' + CQ0' 

Output equations: 
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a = Q1'Q0 
b = Q1Q0 

Next-state and output tables: 

 
Next State 
Q1next Q0next 

Output Current State 
Q1Q0 C = 0 C = 1 a b 

00 01 11 0 0 
01 10 00 1 0 
10 00 01 0 0 
11 00 00 0 1 

State diagram: 

00

01

10

11

C=0

C=1

C=0
C=1

C=0

C=1

ab=10ab=01

ab=00

ab=00

C = ×

 

 

b) C is an input, and a and b are outputs. 

Clk

D0

Q'0

Q0

Clear

Clk

D1

Q'1

Q1

Clear

C

Clock
Reset

a

b

 

Answer 
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Excitation / next-state equations: 

Q1next = D1 = CQ1'Q0' + C'Q1'Q0 
Q0next = D0 = Q1'Q0' + CQ0' 

Output equations: 

a = CQ1'Q0 
b = CQ0 

Next-state and output tables: 
 

Next State / Output 
Q1next Q0next / ab Current State 

Q1Q0 C = 0 C = 1 
00 01 / 00 11 / 00 
01 10 / 00 00 / 11 
10 00 / 00 01 / 00 
11 00 / 00 00 / 01 

State diagram: 

00

01

10

11

C=0

C=1

C=0
C=1

C=0

C=1

ab=01

ab=00

ab=11

ab=00
ab=00

ab=00

ab=00

C=0

C=1

ab=00

 

 

c) A and B are inputs, and X and Y are outputs. 
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Clk

D0

Q'0

Q0

Clear

A

Clock
Reset

Clk

D1

Q'1

Q1

Clear

X

B

Y

 

Answer 

Excitation / next-state equations: 

Q1next = D1 = AQ1 + BQ1'Q0 
Q0next = D0 = A' � Q0' = A'Q0' + AQ0 

 
Next-state table: 
 

Next State 
Q1next Q0next 

AB = 
Current State 

Q1 Q0 
00 01 10 11 

00 01 01 00 00 
01 00 10 01 11 
10 01 01 10 10 
11 00 00 11 11 

 
Output equations: 

X = Q1 + Q0' 
Y = (Q1' Q0)' = Q1 + Q0' 

Output table: 
 

Output Current State 
Q1 Q0 X Y 

00 1 1 
01 0 0 
10 1 1 
11 1 1 

State diagram: 
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00 01

1011

AB = 1x
AB = 0x

AB = 00

AB = 10

AB = 01

AB = 0x

AB = 11

AB = 1x
AB = 1x

AB = 0x

X=Y=1 X=Y=0

X=Y=1 X=Y=1

 

d) (Z≠0) is an input, and ClrX, LoadY, inZ, LoadX, stat1, LoadZ, and subtract are outputs. 

Clk

D0

Q'0

Q0

Clear

(Z≠0)

Clock
Reset

Clk

D1

Q'1

Q1

Clear

ClrX
LoadY
inZ
LoadX

LoadZ
stat1

subtract

 
Answer: 
 
Excitation / next-state equations: 
 D1 = Q1next = Q0 + (Z≠0)' 
 D0 = Q0next = Q1 + Q0' 

Output equations: 
 ClrX = LoadY = inZ = Q1'Q0' 
 LoadX = stat1 = Q1'Q0 
 LoadZ = Q0' 
 subtract = Q1Q0' 

Next-state table / Output table: 
 

Next State 
Q1next Q0next 

Outputs Current 
State 
Q1Q0 (Z≠0) = 0 (Z≠0) = 1 ClrX LoadX LoadY LoadZ inZ stat1 subtract 

00 11 01 1 0 1 1 1 0 0 
01 10 10 0 1 0 0 0 1 0 
10 11 01 0 0 0 1 0 0 1 
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11 11 11 0 0 0 0 0 0 0 

State diagram: 

0

1

2

3

(Z≠0) (Z≠0)'

(Z≠0)

(Z≠0)'

ClrX=1
LoadX=0
LoadY=1
LoadZ=1
inZ=1
stat1=0
subtract=0

ClrX=0
LoadX=0
LoadY=0
LoadZ=0
inZ=0
stat1=0
subtract=0

ClrX=0
LoadX=1
LoadY=0
LoadZ=0
inZ=0
stat1=1
subtract=0

ClrX=0
LoadX=0
LoadY=0
LoadZ=1
inZ=0
stat1=0
subtract=1  

e) Start is an input, and LoadN, and LoadM are outputs. 
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Clk

D0

Q'0

Q0

Clear

Start

Clock
Reset

Clk

D1

Q'1

Q1

Clear

Clk

D2

Q'2

Q2

Clear

LoadN

LoadM

 

Answer: 

 
Excitation equations: 

D2 = Q2'Q0 + Q1' 
D1 = Q2'Q0' + Q2'Q1'Q0 + S'Q2Q1'Q0' 
D0 = Q1Q0' + S'Q1'Q0' + SQ2Q0 

Next-state equations: 
Q2next = D2 = Q2'Q0 + Q1' 
Q1next = D1 = Q2'Q0' + Q2'Q1'Q0 + Start'Q2Q1'Q0' 
Q0next = D0 = Q1Q0' + Start'Q1'Q0' + StartQ2Q0 

Next-state table: 
 

Next State 
Q2nextQ1nextQ0next 

Start = 
Current State 

Q2Q1Q0 
0 1 

000 111 110 
001 110 110 
010 011 011 
011 100 100 
100 111 100 
101 100 101 
110 001 001 
111 000 001 

 

Output equations: 
LoadN = Q2Q1Q0 
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LoadM = Q2'Q1Q0'  

State diagram 

111

000 001

010

011

100101

110

Start'
Start

Start

Start'

Start'

Start

Start'
Start

LoadN=1
LoadM=1
LoadN=0

LoadM=0

LoadM=0
LoadN=0

LoadM=0
LoadN=0

LoadM=0
LoadN=0

LoadM=0
LoadN=0

LoadM=0
LoadN=0

LoadM=0
LoadN=0

 

 

7.2. Analyze the following FSMs and derive the state diagram for it: 

a) C is an input, and a and b are outputs. 

Clk

T0

Q'0

Q0

Clear

C

Clock
Reset

a

b
Clk

T1

Q'1

Q1

Clear

 

Answer 

Excitation equations: 

T1 = CQ1'Q0' + C'Q1'Q0 
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T0 = Q1'Q0' + CQ0' 

Characteristic equation for the T flip-flop: 

Qnext = T ⊕  Q 

Next-state equations: 

Q1next = T1 ⊕  Q1  
 = (CQ1'Q0' + C'Q1'Q0) ⊕  Q1 
 = (CQ1'Q0' + C'Q1'Q0)'Q1 + (CQ1'Q0' + C'Q1'Q0)Q1' 
 = (CQ1'Q0' )' (C'Q1'Q0)' Q1 + CQ1'Q0' + C'Q1'Q0 
 = (C'+Q1+Q0) (C+Q1+Q0' ) Q1 + CQ1'Q0' + C'Q1'Q0 
 = C'Q1 + C'Q1Q0' + CQ1 + Q1 + Q1Q0' + CQ1Q0 + Q1Q0 + CQ1'Q0'  + C'Q1'Q0 
 = Q1 + CQ1'Q0'  + C'Q1'Q0 

Q0next = T0 ⊕  Q0  
 = (Q1'Q0' + CQ0' ) ⊕  Q0 
 = (Q1'Q0' + CQ0' )' Q0 + (Q1'Q0' + CQ0' )Q0' 
 = (Q1'Q0' )' (CQ0' )' Q0 + Q1'Q0' + CQ0' 
 = (Q1+Q0) (C'+Q0) Q0 + Q1'Q0' + CQ0' 
 = C'Q1Q0 + Q1Q0 + C'Q0 + Q0 + Q1'Q0' + CQ0' 
 = Q0 + Q1'Q0' + CQ0' 

Output equations: 

a = Q1'Q0 
b = Q1Q0 

Next-state and output tables: 
 

Next State 
Q1next Q0next 

Output Current State 
Q1Q0 C = 0 C = 1 a b 

00 01 11 0 0 
01 11 01 1 0 
10 10 11 0 0 
11 11 11 0 1 

State diagram: 

00

01

10

11

C=0

C=1

C=1

C=0

C=1

ab=10ab=01

ab=00

ab=00

C = ×

C=0

 

b) C is an input, and a and b are outputs. 
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Clk

J 1

K1 Q'1

Q1

Clr

C

Clock
Reset

a

b

Clk

J 0

K0 Q'0

Q0

Clr

 
Answer: 

Excitation equations: 

J1 = CQ1'Q0' + C'Q1'Q0 
K1 = C'Q1 
J0 = Q1'Q0' 
K0 = CQ0 

Characteristic equation for the JK flip-flop: 

Qnext = K'Q + JQ' 

Next-state equations: 

Q1next = K1'Q1 + J1Q1' 
 = (C'Q1)'Q1 + (CQ1'Q0' + C'Q1'Q0)Q1' 
 = (C+Q1' )Q1 + CQ1'Q0' + C'Q1'Q0 
 = CQ1 + CQ1'Q0' + C'Q1'Q0 

Q0next = K0'Q0 + J0Q0' 
 = (CQ0)'Q0 + (Q1'Q0' )Q0' 
 = (C' +Q0' )Q0 + Q1'Q0' 
 = C'Q0 + Q1'Q0' 

Output equations: 

a = Q1'Q0 
b = Q1Q0 

Next-state and output tables: 
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Next State 
Q1next Q0next 

Output Current State 
Q1Q0 C = 0 C = 1 a b 

00 01 11 0 0 
01 11 00 1 0 
10 00 10 0 0 
11 01 10 0 1 

State diagram: 

00

01

10

11

C=0

C=1

C=1

C=0

C=1

ab=10ab=01

ab=00

ab=00

C=1

C=0

C=0

 

c) C is an input, and a and b are outputs. 

Clk

S 1

R1 Q'1

Q1

Clr

C

Clock
Reset

a

b

Clk

S 0

R0 Q'0

Q0

Clr

 

Answer: 

Excitation equations: 

S1 = CQ1'Q0' + C'Q1'Q0 
R1 = C'Q1 
S0 = Q1'Q0' 
R0 = CQ0 

Next-state equations: 

Q1next = S1 + R1'Q1 
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 = CQ1'Q0' + C'Q1'Q0 + (C'Q1)'Q1 
 = CQ1'Q0' + C'Q1'Q0 + (C + Q1' )Q1 
 = CQ1'Q0' + C'Q1'Q0 + CQ1 + Q1'Q1 
 = CQ1'Q0' + C'Q1'Q0 + CQ1 

Q0next = S0 + R0'Q0 
 = Q1'Q0' + (CQ0)'Q0 
 = Q1'Q0' + (C' + Q0' )Q0 
 = Q1'Q0' + C'Q0 + Q0'Q0 
 = Q1'Q0' + C'Q0 

Next-state table: 
 

Next State 
Q1next Q0next 

Current State 
Q1Q0 C = 0 C = 1 

00 01 11 
01 11 00 
10 00 10 
11 01 10 

 
State diagram: 

00 01

1011

C=1

C=0

C=0

C=0 C=0
C=1

C=1
C=1  

 

d) C is an input, and a and b are outputs. 
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Clk

S 1

R1 Q'1

Q1

Clr

C

Clock
Reset

a

b

Clk

J 0

K0 Q'0

Q0

Clr

 

7.3. Synthesize a FSM circuit using D flip-flops for the following state diagrams: 

a) 

00 01

1011

A=0
A=1

A=1

A=0

A=1

A=0
A=×

 
Answer: 

Next-state table: 
 

Next State 
Q1next Q0next 

Current State 
Q1Q0 A = 0 A = 1 

00 11 10 
01 01 11 
10 01 01 
11 00 10 

Implementation table: 
 

Next State 
J1K1S0R0 

Current State 
Q1Q0 A = 0 A = 1 

00 1×10 1×0× 
01 0××0 1××0 
10 ×110 ×110 
11 ×101 ×001 
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Excitation equations: 

J1 = Q0' + A 
K1 = Q0' + A' 
S0 = (Q1 ⊕  Q0) + Q0'A' 
R0 = Q1Q0 

FSM circuit: 

Clk

S 0

Q'0

Q0

Clear
R0

A

Clock
Reset

Clk

J 0

Q'0

Q0

Clear
K0

 
 
b) 
 

7.4. Use JK flip-flops to synthesize a FSM circuit for the state diagrams in Problem 7.3. 

7.5. Use SR flip-flops to synthesize a FSM circuit for the state diagrams in Problem 7.3. 

7.6. Use T flip-flops to synthesize a FSM circuit for the state diagrams in Problem 7.3. 

7.7. Use a JK flip-flop for flip-flop 1, and a T flip-flop for flip-flop 2 to synthesize a FSM circuit for the state 
diagrams in Problem 7.3. 

7.8. Design a modulo-4 up/down counter using D flip-flops. The count is represented by the content of the flip-
flops. The circuit has a Count signal and an Up signal. The counter counts when Count is asserted, and stops 
when Count is de-asserted. The Up signal determines the direction of the count. When Up is asserted, the 
count increments by one at each clock cycle. When Up is de-asserted, the count decrements by one at each 
clock cycle. 

7.9. Design a modulo-5 up counter using D flip-flops similar to Problem 7.8, but without the Up signal. 

7.10. Design a modulo-5 up/down counter using D flip-flops similar to Problem 7.8. 

7.11. Design a modulo-4 up counter using T flip-flops. 

Answer: 

Next-state table: 
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Current State Next State 
Q1next Q0next 

Q1 Q0 C = 0 C = 1 
00 00 01 
01 01 10 
10 10 11 
11 11 00 

 
Implementation table: 
 

Current State Next State 
T1 T0 

Q1 Q0 C = 0 C = 1 
00 00 01 
01 00 11 
10 00 01 
11 00 11 

 
Excitation equations: 

T1 = CQ0 
T0 = C 

Circuit: 

C

Clk

Clk

T1

Q'1

Q1

Clk

T0

Q'0

Q0

 

7.12. Design a FSM that counts the following decimal sequence 

3, 7, 2, 6, 3, 7, 2, 6, … 

The count is to be represented directly by the contents of the D flip-flops. The counting starts when the control 
input C is asserted and stops whenever C is de-asserted. Assume that the next-state from all unused states is the 
state for the first count in the sequence, i.e. the state for 3. 

Answer: 

Since we’re using the flip-flop content to represent the count and the largest number is 7, therefore, we need 
three (3) bits even though there are only four numbers in the sequence. 

State diagram: 
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011 111

010110

C = 0
C = 1

C = 0

C = 0C = 0

C = 1

C = 1

C = 1

xxx

all unused
state

 

Next-state table and implementation table: 
 

Next State / Implementation 
Q2next Q1next Q0next / D2D1D0 

Current State 
Q2Q1Q0 C = 0 C = 1 

000 011 011 
001 011 011 
010 010 110 
011 011 111 
100 011 011 
101 011 011 
110 110 011 
111 111 010 

Excitation equations: 

D2 = Q2'Q1C + Q2Q1C' 
D1 = 1 
D0 = Q1' + Q2'Q0 + Q0C' + Q2Q0'C 

Circuit: 
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Clk

D0

Q'0

Q0

Clk

D1

Q'1

Q1

Clk

D2

Q'2

Q2

C

Clk

'1'

 
 

7.13. Design a counter that counts in the following sequence: 

1, 4, 6, 7, 1, 4, 6, 7, …. 

The count is to be represented directly by the contents of three D flip-flops. The counter is enabled by the input 
C. The count stops when C = 0. The next-state from all unused states are undefined. 

7.14. Repeat Example 7.6 but encode state s2 as 10 instead of 11, and the unused state is 11. See if the resulting 
FSM circuit is larger or smaller. 

7.15. Repeat Problem 7.13, but use a JK flip-flop, a D flip-flop, and a SR flip-flop in this order starting from the 
most significant bit for the three flip-flops. 

Answer: 

Next-state table: 
 

Next State 
Q2next Q1next Q0next 

Current State 
Q2Q1Q0 C = 0 C = 1 

001 001 100 
100 100 110 
110 110 111 
111 111 001 

 
Excitation tables for the three flip-flops: 

 
Q Qnext J K D S R 
0 0 0 × 0 0 × 
0 1 1 × 1 1 0 
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1 0 × 1 0 0 1 
1 1 × 0 1 × 0 

 
Implementation table: 
 

Implementation 
J2 K2 D1 S0 R0 

Current State 
Q2Q1Q0 C = 0 C = 1 

001 0×0×0 1×001 
100 ×000× ×010× 
110 ×010× ×0110 
111 ×01×0 ×10×0 

 
K-maps and excitation equations: 

 

CQ2

Q1Q0

00

00

0 1

01 11 10

01

11

10

J2

×

×

×

C ×

× ×

×

×

× ×

×

× ×

×

 

CQ2

Q1Q0
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00

0

0 1

0 0
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11
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K2

× ×

×

×

CQ0
× ×

× ×

×

×
  

CQ2
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00 0

00

1

0 0

1 0

1 1
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11
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D1

× ×

××

×

× ×

×

C'Q1
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 J2 = C K2 = CQ0 D1 = CQ0' + C'Q1 

 

CQ2

Q1Q0

00 0

00

0

0

 0 1

01 11 10

01

11

10

S0

CQ1

×

× × ×

××

×

× ×

××

  

CQ2

Q1Q0

00

00

0 1

0 0

0

01 11 10

01

11

10

R0

CQ1'

× × × ×

××

× ×

×××
 

 S0 = CQ1 R0 = CQ1' 

Circuit: 
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7.16. Manually design and implement on the UP2 board the following FSM circuit. Make the LEDs in the 7-
segment display move in a clockwise direction around in a circle, i.e. turn on and off the LED segments in 
this order: segment a, b, c, d, e, f, a, b, etc. 

7.17. Manually design and implement on the UP2 board the following FSM circuit. Similar to Problem 7.16, but 
make one 7-segment LED display in a clockwise direction, and the other in an anti-clockwise direction. 

7.18. Manually design and implement on the UP2 board the following FSM circuit. Similar to Problem 7.16, but 
make it so that each time when a push button switch is pressed, the display changes directions. 

7.19. Manually design and implement on the UP2 board the following FSM circuit. Input from the eight DIP 
switches. Output on the 7-segment the decimal number that represents the number of DIP switches that are in 
the on position. 

7.20. Manually design and implement on the UP2 board a FSM circuit for controlling three switches, T1, T2, and 
T3, and three lights L1, L2, and L3. Each light is turned on by the corresponding switch, for example, T1 turns 
on L1. Initially, all switches are off. The first switch that is pressed will turn on its corresponding light. When 
the first light is turned on, it will remain on, while the other two lights remain off, and they are unaffected by 
subsequent switch presses until reset. 

Answer: 
 Q1next Q0next 

T3 T2 T1 
Q1 Q0 000 001 010 011 100 101 110 111 

00 00 01 10 00 11 00 00 00 
01 01 01 01 01 01 01 01 01 
10 10 10 10 10 10 10 10 10 
11 11 11 11 11 11 11 11 11 
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7.21. Design a FSM circuit for controlling a simple home security system. The operation of the system is as 
follows. 

Inputs: - Front gate switch (FS) 
  - Motion detector switch (MS) 
  - Asynchronous Reset switch (R) 
  - Clear switch (C) 

Outputs: - Front gate melody (FM) 
  - Motion detector melody (MM) 

•  When the reset switch (R) is asserted, the FSM goes to the initialization state (S_init) immediately. The 
encoding for the initialization state is zeros for all the flip-flops. 

•  From state S_init, the FSM unconditionally goes to the wait state (S_wait). 

•  From state S_wait, the FSM waits for one of the four switches to be activated. All the switches are active 
high so when a switch is pressed or activated, it sends out a 1. The following actions are taken when a 
switch is pressed: 

•  When FS is pressed, the FSM goes to state S_front. In state S_front, the front gate melody is turned on by 
setting FM = 1. The FSM remains in state S_front until the clear switch is pressed. Once the clear switch is 
pressed, the FSM goes back to S_wait. 

•  When MS is activated, the FSM goes to state S_motion. In state S_motion, MM is turned on with a 1. MM 
will remain on for two more clock periods and then it will go back to S_wait. 

•  From any state, as soon as the reset switch is pressed, the FSM immediately goes back to state S_init. 

•  Pressing the clear switch only affects the FSM when it is in state S_front. The clear switch has no effect on 
the FSM when it is in any other states. 

•  Any unused state encoding will have S_init as their next state. 
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Chapter 8 

Standard Sequential Components 
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In a computer system, we usually want to store more than one bit of information. More over, we may want to 
group several bits together and consider them as one unit, such as an integer is made up of eight bits. In Chapter 6, 
we presented the circuits for latches and flip-flops for storing one bit of information. In this chapter, we will look at 
registers for storing multiple bits of information as a unit. Registers also are made more versatile by adding extra 
functionalities, such as counting and shifting, to it. We will also look at the design of counters and shift registers. 

Very often, computer circuits may need to store several values at the same time. Instead of using several 
separate registers, we may want to combine these registers together. Register files and memories are like an array of 
registers for storing multiple values. In this chapter, we will also look at the construction of register files and 
memory circuits. 

Similar to the standard combinational components, these sequential components are used in almost every digital 
circuit. Hence, rather than having to redesign them each time that they are needed, they usually are available in 
standard libraries. 

8.1 Registers 
When we want to store a byte of data, we need to combine eight flip-flops together and have them work 

together as a unit. A register is just a circuit with two or more D flip-flops connected together in such a way that 
they all work exactly the same way and are synchronized by the same clock and enable signals. The only difference 
is that each flip-flop in the group is used to store a different bit of the data. 

Figure 8.1(a) shows a 4-bit register with parallel load and asynchronous clear. Four D flip-flops with active-
high enable and asynchronous clear are used. Notice in the circuit that the control inputs, Clk, E, and Clear, for all of 
the flip-flops are connected, respectively, in common; so that when a particular input is asserted, all of the flip-flops 
will behave in exactly the same way. The 4-bit input data is connected to D0 through D3, while Q0 through Q3 serve 
as the 4-bit output data for the register. When the active-high load signal Load is asserted (i.e., Load = 1), the data 
presented on the D lines is stored into the register (the four flip-flops) at the next rising edge of the clock signal. 
When Load is de-asserted, the content of the register remains unchanged. The register can be asynchronously 
cleared (i.e., setting all of the Qi’s to 0 immediately, without having to wait for the next active clock edge) by 
asserting the Clear line. The content of the register is always available on the Q output lines, so no control line is 
required for reading the data from the register. Figure 8.1(b) and (c) show the operation table and the logic symbol, 
respectively, for this 4-bit register. 

Figure 8.2 shows the VHDL code for the 4-bit register with active-high Load and Clear signals. Notice that the 
coding is very similar to that for the single D flip-flop. The main difference is that the data inputs and outputs are 4-
bits wide. A sample simulation trace for the register is shown in Figure 8.3. At time 100 ns, even though Load is 
asserted, the register is not written with the D input value of 5, because Clear is asserted. Between times 200 ns and 
400 ns, Load is de-asserted, so even though Clear is de-asserted, the register still is not loaded with the input value 
of 5. At time 400 ns, Load is asserted, but the input data is not loaded into the register immediately (as can be seen 
by Q being a 0). The loading occurs at the next rising edge of the clock at 500 ns when Q changes to 5. At time 600 
ns, Clear is asserted, and so, Q is reset to 0 immediately, without having to wait until the next rising clock edge at 
700 ns. 
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Clear Load Operation 
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Clock

D3 D2 D1 D0

Q3 Q2 Q1 Q0

Load

 

(c) 

Figure 8.1 A 4-bit register with parallel load and asynchronous clear: (a) circuit; (b) operation table; (c) logic 
symbol. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY reg IS GENERIC (size: INTEGER := 3);-- size of the register
PORT (
Clock, Clear, Load: IN STD_LOGIC;
D: IN STD_LOGIC_VECTOR(size DOWNTO 0);
Q: OUT STD_LOGIC_VECTOR(size DOWNTO 0));

END reg;

ARCHITECTURE Behavior OF reg IS
BEGIN

PROCESS(Clock, Clear)
BEGIN
IF Clear = '1' THEN
Q <= (OTHERS => '0');

ELSIF (Clock'EVENT AND Clock = '1') THEN
IF Load = '1' THEN
Q <= D;

END IF;
END IF;

END PROCESS;
END Behavior;

Figure 8.2 VHDL code for a 4-bit register with active-high Load and Clear signals.  

Digital Logic and Microprocessor Design with VHDL Chapter 8 - Standard Sequential Components

262



 
Figure 8.3 Sample simulation trace for the 4-bit register. 

8.2 Shift Registers 
Similar to the combinational shifter and rotator circuits, there are the equivalent sequential shifter and rotator 

circuits. The circuits for the shift and rotate operations are constructed exactly the same. The only difference in the 
sequential version is that the operations are performed on the value that is stored in a register rather than directly on 
the input value. The main usage for a shift register is for converting from a serial data input stream to a parallel data 
output or vice versa. For a serial-to-parallel data conversion, the bits are shifted into the register at each clock cycle, 
and when all of the bits (usually eight bits) are shifted in, the 8-bit register can be read to produce the eight bit 
parallel output. For a parallel-to-serial conversion, the 8-bit register is first loaded with the input data. The bits are 
then individually shifted out, one bit per clock cycle, on the serial output line. 

8.2.1 Serial-to-Parallel Shift Register 

Figure 8.4(a) shows a 4-bit serial-to-parallel converter. The input data bits come in on the Serial_in line at a rate 
of one bit per clock cycle. When Shift is asserted, the data bits are loaded in one bit at a time. In the first clock cycle, 
the first bit from the serial input stream, Serial_in, gets loaded into Q3, while the original bit in Q3 is loaded into Q2, 
Q2 is loaded into Q1, and so on. In the second clock cycle, the bit that is in Q3 (i.e., the first bit from the Serial_in 
line) gets loaded into Q2, while Q3 is loaded with the second bit from the Serial_in line. This continues for four 
clock cycles until four bits are shifted into the four flip-flops, with the first bit in Q0, second bit in Q1, and so on. 
These four bits are then available for parallel reading through the output Q. Figure 8.4(b) and (c) show the operation 
table and the logic symbol, respectively, for this shift register. 

The structural VHDL code for a 4-bit serial-to-parallel shift register is shown in Figure 8.5. The code is written 
at the structural level. The operation of a D flip-flop with enable is first defined. The ARCHITECTURE section for the 
ShiftReg entity uses four PORT MAP statements to instantiate four D flip-flops. These four flip-flops then are 
connected together using the internal signals, N0, N1, N2, and N3, such that the output of one flip-flop is connected to 
the input of the next flip-flop. These four internal signals also connect to the four output signals, Q0 to Q3, for the 
register output. Note that we cannot use the output signals, Q0 to Q3, to directly connect the four flip-flops together, 
since output signals cannot be read. 

A sample simulation trace of the serial-to-parallel shift register is shown in Figure 8.6. At the first rising clock 
edge at time 100 ns, the Serial_in bit is a 0, so there is no change in the 4 bits of Q, since they are initialized to 0’s. 
At the next rising clock edge at time 300 ns, the Serial_in bit is a 1, and it is shifted into the leftmost bit of Q. 
Hence, Q has the value of 1000. At time 500 ns, another 1 bit is shifted in, giving Q the value of 1100. At time 700 
ns, a 0 is shifted in, giving Q the value of 0110. Notice that as bits are shifted in, the rightmost bits are lost. At time 
900 ns, Shift is de-asserted, so the 1 bit in the Serial_in line is not shifted in. Finally, at time 1.1 µs, another 1 bit is 
shifted in. 
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Figure 8.4 A 4-bit serial-to-parallel shift register: (a) circuit; (b) operation table; (c) logic symbol. 

-- D flip-flop with enable
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_flipflop IS
PORT(D, Clock, E : IN STD_LOGIC;

Q : OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN

PROCESS(Clock)
BEGIN
IF (Clock'EVENT AND Clock = '1') THEN
IF (E = '1') THEN
Q <= D;

END IF;
END IF;

END PROCESS;
END Behavior;

-- 4-bit shift register
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY ShiftReg IS

PORT(Serial_in, Clock, Shift : IN STD_LOGIC;
Q : OUT STD_LOGIC_VECTOR(3 downto 0));

END ShiftReg;

ARCHITECTURE Structural OF ShiftReg IS
SIGNAL N0, N1, N2, N3 : STD_LOGIC;

Digital Logic and Microprocessor Design with VHDL Chapter 8 - Standard Sequential Components

264



COMPONENT D_flipflop PORT (D, Clock, E : IN STD_LOGIC;
Q : OUT STD_LOGIC);

END COMPONENT;

BEGIN
U1: D_flipflop PORT MAP (Serial_in, Clock, Shift, N3);
U2: D_flipflop PORT MAP (N3, Clock, Shift, N2);
U3: D_flipflop PORT MAP (N2, Clock, Shift, N1);
U4: D_flipflop PORT MAP (N1, Clock, Shift, N0);
Q(3) <= N3;
Q(2) <= N2;
Q(1) <= N1;
Q(0) <= N0;

END Structural;

Figure 8.5 Structural VHDL code for a 4-bit serial-to-parallel shift register. 

 
Figure 8.6 Sample simulation trace for the 4-bit serial-in-parallel-out shift register of Figure 8.5. 

8.2.2 Serial-to-Parallel and Parallel-to-Serial Shift Register 

For both the serial-to-parallel and parallel-to-serial operations, we perform the same left-to-right shifting of bits 
through the register. The only difference between the two operations is whether we want to perform a parallel read 
after the shifting or a parallel write before the shifting. For the serial-to-parallel operation, we want to perform a 
parallel read after the bits have been shifted in. On the other hand, for the parallel-to-serial operation, we want to 
perform a parallel write first and then shift the bits out as a serial stream. 

We can implement both operations into the serial-to-parallel circuit from the previous section simply by adding 
a parallel load function to the circuit, as shown in Figure 8.7(a). The four multiplexers work together for selecting 
whether we want the flip-flops to retain the current value, load in a new value, or shift the bits to the right by one bit 
position. The operation of this circuit is dependent on the two select lines, SHSel1 and SHSel0, which control which 
input of the multiplexers is selected. The operation table and logic symbol are shown in Figure 8.7(b) and (c), 
respectively. The behavioral VHDL code and a sample simulation trace for this shift register are shown in Figure 8.8 
and Figure 8.9, respectively. 
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SHSel1 SHSel0 Operation 
0 0 No operation (i.e., retain current value) 
0 1 Parallel load in new value 
1 0 Shift right 
1 1 Rotate right 
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Figure 8.7 A 4-bit serial-to-parallel and parallel-to-serial shift register: (a) circuit; (b) operational table; (c) logic 
symbol. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY shiftreg IS PORT (
Clock: IN STD_LOGIC;
SHSel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
Serial_in: IN STD_LOGIC;
D: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Serial_out: OUT STD_LOGIC;
Q: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END shiftreg;
ARCHITECTURE Behavioral OF shiftreg IS

SIGNAL content: STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN

PROCESS(Clock)
BEGIN
IF (Clock'EVENT AND Clock='1') THEN
CASE SHSel IS
WHEN "01" => -- load
content <= D;

WHEN "10" => -- shift right, pad with bit from Serial_in
content <= Serial_in & content(3 DOWNTO 1);

WHEN OTHERS =>
NULL;

END CASE;
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END IF;
END PROCESS;

Q <= content;
Serial_out <= content(0);

END Behavioral;

Figure 8.8 Behavioral VHDL code for a 4-bit serial-to-parallel and parallel-to-serial shift register. 

 
Figure 8.9 Sample trace for the 4-bit serial-to-parallel and parallel-to-serial shift register. 

8.3 Counters 
Counters, as the name suggests, are for counting a sequence of values. However, there are many different types 

of counters depending on the total number of count values, the sequence of values that it outputs, whether it counts 
up or down, and so on. The simplest is a modulo-n counter that counts the decimal sequence 0, 1, 2, … up to n-1 and 
back to 0. Some typical counters are described next. 

Modulo-n counter: Counts from decimal 0 to n – 1 and back to 0. For example, a modulo-5 counter sequence 
in decimal is 0, 1, 2, 3, and 4. 

Binary coded decimal (BCD) counter: Just like a modulo-n counter, except that n is fixed at 10. Thus, the 
sequence is always from 0 to 9. 

n-bit binary counter: Similar to modulo-n counter, but the range is from 0 to 2n – 1 and back to 0, where n is 
the number of bits used in the counter. For example, a 3-bit binary counter sequence in decimal is 0, 1, 2, 3, 
4, 5, 6, and 7. 

Gray-code counter: The sequence is coded so that any two consecutive values must differ in only one bit. For 
example, one possible 3-bit gray-code counter sequence is 000, 001, 011, 010, 110, 111, 101, and 100. 

Ring counter: The sequence starts with a string of 0 bits followed by one 1 bit, as in 0001. This counter simply 
rotates the bits to the left on each count. For example, a 4-bit ring counter sequence is 0001, 0010, 0100, 
1000, and back to 0001. 

We will now look at the design of several counters. 
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8.3.1 Binary Up Counter 

An n-bit binary counter can be constructed using a modified n-bit register where the data inputs for the register 
come from an incrementer (adder) for an up counter, and a decrementer (subtractor) for a down counter. To get to 
the next up-count sequence from the value that is stored in a register, we simply have to add a 1 to it. We can use the 
full adder discussed in Section 4.2.1 as the input to the register, but we can do better. The full adder adds two 
operands plus the carry. But what we want is just to add a 1, so the second operand to the full adder is always a 1. 
Since the 1 can also be added in via the carry-in signal of the adder, we really do not need the second operand input. 
This modified adder that only adds one operand with the carry-in is called a half adder (HA). Its truth table is 
shown in Figure 8.10(a). We have a as the only input operand, cin and cout are the carry-in and carry-out signals, 
respectively, and s is the sum of the addition. In the truth table, we are simply adding a plus cin to give the sum s and 
possibly a carry-out, cout. From the truth table, we obtain the two equations for cout and s shown in Figure 8.10(b). 
The HA circuit is shown in Figure 8.10(c) and its logic symbol in (d). 
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1 1 1 0 
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Figure 8.10 Half adder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol. 

Several half adders can be daisy-chained together, just like with the full adders to form an n-bit adder. The 
single operand input a comes from the register. The initial carry-in signal, c0, is used as the count enable signal, 
since a 1 on c0 will result in incrementing a 1 to the register value, and a 0 will not. The resulting 4-bit binary up 
counter circuit is shown in Figure 8.11(a), along with its operation table and logic symbol in (b) and (c). As long as 
Count is asserted, the counter will increment by 1 on each clock pulse until Count is de-asserted. When the count 
reaches 2n – 1 (which is equivalent to the binary number with all 1’s) the next count will revert back to 0, because 
adding a 1 to a binary number with all 1’s will result in an overflow on the Overflow bit, and all of the original bits 
will reset to 0. The Clear signal allows an asynchronous reset of the counter to 0. 
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Figure 8.11 A 4-bit binary up counter with asynchronous clear: (a) circuit; (b) operation table; (c) logic symbol. 

The behavioral VHDL code for the 4-bit binary up counter is shown in Figure 8.12. The statement 
USE IEEE.STD_LOGIC_UNSIGNED.ALL is needed in order to perform additions on STD_LOGIC_VECTORs. The internal 
signal value is used to store the current count. When Clear is asserted, value is assigned the value “0000” using the 
expression OTHERS => '0'. Otherwise, if Count is asserted, then value will be incremented by 1 on the next rising 
clock edge. Furthermore, the count in value is assigned to the counter output, Q, using the concurrent statement 
Q <= value, because it is outside the PROCESS block.  A sample simulation trace is shown in Figure 8.13. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL; -- need this to add STD_LOGIC_VECTORs

ENTITY counter IS PORT (
Clock: IN STD_LOGIC;
Clear: IN STD_LOGIC;
Count: IN STD_LOGIC;
Q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END counter;

ARCHITECTURE Behavioral OF counter IS
SIGNAL value: STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN
PROCESS (Clock, Clear)
BEGIN
IF Clear = '1' THEN
value <= (OTHERS => '0'); -- 4-bit vector of 0, same as "0000"

ELSIF (Clock'EVENT AND Clock='1') THEN
IF Count = '1' THEN
value <= value + 1;

END IF;
END IF;

END PROCESS;

Q <= value;
END Behavioral;

Figure 8.12 Behavioral VHDL code for a 4-bit binary up counter. 
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Figure 8.13 Simulation trace for the 4-bit binary up counter. 

8.3.2 Binary Up-down Counter 

We can design an n-bit binary up-down counter just like the up counter, except that we need both an adder and a 
subtractor for the data input to the register. The half adder-subtractor (HAS) truth table is shown in Figure 8.14(a). 
The Down signal is to select whether we want to count up or down. Asserting Down (setting to 1) will count down. 
The top half of the table is exactly the same as the HA truth table. For the bottom half, we are performing a 
subtraction of a – cin, where s is the difference of the subtraction, and cout is a 1 if we need to borrow. For example, 
for 0 – 1, we need to borrow, so cout is a 1. When we borrow, we get a 2; and 2 – 1 = 1, so s is also a 1. The two 
resulting equations for cout and s are shown in Figure 8.14(b). The circuit and logic symbol for the half adder-
subtractor are shown in Figure 8.14(c) and (d). 
 

Down a cin cout s 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 0 
1 0 1 1 1 
1 1 0 0 1 
1 1 1 0 0 

(a) 

cout = Down' a cin + Down a' cin = (Down ⊕  a) cin 

s = Down' (a ⊕  cin) + Down (a ⊕  cin) = a ⊕  cin 
 
 
 

(b) 

Down

cin
a

cout

s  
 

(c) 

s a
cout cin

HAS

Down

 

(d) 
 

Figure 8.14 Half adder-subtractor (HAS): (a) truth table; (b) equations; (c) circuit; (d) logic symbol. 

We can simply replace the HAs with the HASs in the up counter circuit to get the up-down counter circuit, as 
shown in Figure 8.15(a). Its operation table and logic symbol are shown in Figure 8.15(b) and (c). Again, the 
Overflow signal is asserted each time the counter rolls over from 1111 back to 0000. 

The VHDL code for the up-down counter, shown in Figure 8.16, is similar to the up counter code but with the 
additional logic for the Down signal. If Down is asserted, then value is decremented by 1, otherwise it is 
incremented by 1. To make the code a little bit different, the counter output signal, Q, is declared as an integer that 
ranges from 0 to 15. This range, of course, is the range for a 4-bit binary value. Furthermore, the storage for the 
current count, value, is declared as a variable of type integer rather than as a signal. Notice also, that the signal 
assignment statement, Q <= value, is put inside the PROCESS block. Instead of being a concurrent statement (when it 
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was placed outside the PROCESS block in Figure 8.12), it is now a sequential statement. A sample simulation trace is 
shown in Figure 8.17. 
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(a) 

Clear Count Down Operation 

1 × × Reset counter to zero 
0 0 × No change 
0 1 0 Count up 
0 1 1 Count down 

(b) 

4-bit Binary
Up-down Counter

Clock

Overflow

Q3 Q2 Q1 Q0

Clear
Count
Down

 

(c) 

Figure 8.15 A 4-bit binary up-down counter with asynchronous clear: (a) circuit; (b) operation table; (c) logic 
symbol. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY udcounter IS PORT (
Clock: IN STD_LOGIC;
Clear: IN STD_LOGIC;
Count: IN STD_LOGIC;
Down: IN STD_LOGIC;
Q: OUT INTEGER RANGE 0 TO 15);

END udcounter;

ARCHITECTURE Behavioral OF udcounter IS
BEGIN

PROCESS (Clock, Clear)
VARIABLE value: INTEGER RANGE 0 TO 15;

BEGIN
IF (Clear = '1') THEN
value := 0;

ELSIF (Clock'EVENT AND Clock='1') THEN
IF (Count = '1') THEN
IF (Down = '0') THEN
value := value + 1;

ELSE
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value := value - 1;
END IF;

END IF;
END IF;
Q <= value;

END PROCESS;

END Behavioral;

Figure 8.16 VHDL code for a 4-bit binary up-down counter. 

 
Figure 8.17. Simulation trace for the 4-bit binary up-down counter. 

8.3.3 Binary Up-down Counter with Parallel Load 

To make the binary counter more versatile, we need to be able to start the count sequence with any number 
other than zero. This is accomplished easily by modifying our counter circuit to allow it to load in an initial value. 
With the value loaded into the register, we can now count starting from this new value. The modified counter circuit 
is shown in Figure 8.18(a). The only difference between this circuit and the up-down counter circuit shown in Figure 
8.15(a) is that a 2-input multiplexer is added between the s output of the HAS and the Di input of the flip-flop. By 
doing this, the input of the flip-flop can be selected from either an external input value (if Load is asserted) or the 
next count value from the HAS output (if Load is de-asserted). If the HAS output is selected, then the circuit works 
exactly like before. If the external input is selected, then whatever value is presented on the input data lines will be 
loaded into the register. The operational table and logic symbol for this circuit are shown in Figure 8.18(b) and (c). 

We have kept the Clear line, so that the counter can still be initialized to 0 at anytime. Notice that there is a 
timing difference between asserting the Clear line to reset the counter to 0, as opposed to loading in a 0 by asserting 
the Load line and setting the data input to a 0. In the first case, the counter is reset to 0 immediately after the Clear is 
asserted, while the latter case will reset the counter to 0 at the next rising edge of the clock. 

This counter can start with whatever value is loaded into the register, but it will always count up to 2n – 1, 
where n is the number of bits for the register. This is when the register contains all 1’s. When the counter reaches the 
end of the count sequence, it will always cycle back to 0, and not to the initial value that was loaded in. However, 
we can add a simple comparator to this counter circuit so that the count sequence can start or end with any number 
in between and cycle back to the new starting value, as shown in the next section. 
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Clear Load Count Down Operation 

1 × × × Reset counter to zero 
0 0 0 × No change 
0 0 1 0 Count up 
0 0 1 1 Count down 
0 1 × × Load value 
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Figure 8.18. A 4-bit binary up-down counter with parallel load and asynchronous clear: (a) circuit; (b) operation 
table; (c) logic symbol. 

8.3.4 BCD Up Counter 

A limitation with the binary up-down counter with parallel load is that it always counts up to 2n – 1 for an n bit 
register and then cycles back to zero. If we want the count sequence to end at a number less than 2n – 1, we need to 
use an equality comparator to test for this new ending number. The comparator compares the current count value 
that is in the register with this new ending number. When the counter reaches this new ending number, the 
comparator asserts its output.  

The counter can start from a number that is initially loaded in. However, if we want the count sequence to cycle 
back to this new starting number each time, we need to assert the Load signal at the end of each count sequence and 
reload this new starting number. The output of the comparator is connected to the Load line, so that when the 
counter reaches the ending number, it will assert the Load line and loads in the starting number. Hence, the counter 
can end at a new ending number and cycles back to a new starting number. 

The binary coded decimal (BCD) up counter counts from 0 to 9 and then cycles back to 0. The circuit for it is 
shown in Figure 8.19. The heart of the circuit is just the 4-bit binary up-down counter with parallel load. A 4-input 
AND gate is used to compare the count value with the number 9. When the count value is 9, the AND gate comparator 
outputs a 1 to assert the Load line. Once the Load line is asserted, the next counter value will be the value loaded in 
from the counter input D. Since D is connected to all 0’s, the counter will cycle back to 0 at the next rising clock 
edge. The Down line is connected to a 0, since we only want to count up. 
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Clear
Count
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D3 D2 D1 D0
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Clear
Count

0

Q3 Q2 Q1 Q0  
Figure 8.19 BCD up counter. 

In order for the timing of each count to be the same, we must use the Load operation to load in the value 0, 
rather than using the Clear operation. If we connect the output of the AND gate to the Clear input instead of the Load 
input, we will still get the correct count sequence. However, when the count reaches 9, it will change to a 0 almost 
immediately, because when the output of the AND gate asserts the asynchronous Clear signal, the counter is reset to 
0 right away and not at the next rising clock edge. 

Example 8.1: Constructing an up counter circuit 

This example uses the 4-bit binary up-down counter with parallel load to construct an up counter circuit that 
counts from 3 to 8 (in decimal), and back to 3. 

The circuit for this counter, shown in Figure 8.20, is almost identical to the BCD up counter circuit. The only 
difference is that we need to test for the number 8 instead of 9 as the last number in the sequence, and the first 
number to load in is a 3 instead of a 0. Hence, the inputs to the AND gate for comparing with the binary counter 
output is 1000, and the number for loading in is 0011. ♦  
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Q3 Q2 Q1 Q0
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Q3 Q2 Q1 Q0

1

0
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Figure 8.20 Counter for Example 8.1. 

8.3.5 BCD Up-down Counter 

We can get a BCD up-down counter by modifying the BCD up counter circuit slightly. The counter counts from 
0 to 9 for the up sequence and 9 down to 0 for the down sequence. For the up sequence, when the count reaches 9, 
the Load line is asserted to load in a 0 (0000 in binary). For the down sequence, when the count reaches 0, the Load 
line is asserted to load in a 9 (1001 in binary). 
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The BCD up-down counter circuit is shown in Figure 8.21. Two 5-input AND gates acting as comparators are 
used. The one labeled “Up” will output a 1 when Down is de-asserted (i.e., counting up), and the count is 9. The one 
label “Dn” will output a 1 when Down is asserted, and the count is 0. The Load signal is asserted by either one of 
these two AND gates. Four 2-to-1 multiplexers are used to select which of the two starting values, 0000 or 1001, is to 
be loaded in when the Load line is asserted. The select lines for these four multiplexers are connected in common to 
the Down signal, so that when the counter is counting up, 0000 is loaded in when the counter wraps around, and 
1001 is loaded in when the counter wraps around while counting down. It should be obvious that the two values, 
0000 and 1001, can also be loaded in without the use of the four multiplexers. 
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Figure 8.21 BCD up-down counter. 

Example 8.2: Constructing an up-down counter circuit 

This example uses the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit 
that outputs the sequence, 2, 5, 9, 13, and 14, repeatedly. 

The 4-bit binary counter can only count numbers consecutively. In order to output numbers that are not 
consecutive, we need to design an output circuit that maps from one number to another number. The required 
sequence has five numbers, so we will first design a counter to count from 0 to 4. The output circuit will then map 
the numbers, 0, 1, 2, 3, and 4 to the required output numbers, 2, 5, 9, 13, and 14, respectively. 

The inputs to the output circuit are the four output bits of the counter, Q3, Q2, Q1, and Q0. The outputs from this 
circuit are the modified four bits, O3, O2, O1, and O0, for representing the five output numbers. The truth table and 
the resulting output equations for the output circuit are shown in Figure 8.22(a) and (b), respectively. The easiest 
way to see how the output equations are obtained is to use a K-map and put in all of the don’t-cares. The complete 
counter circuit is shown in Figure 8.22(c). ♦  
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Output O3 O2 O1 O0 

0 0 0 0 0 2 0 0 1 0 
1 0 0 0 1 5 0 1 0 1 
2 0 0 1 0 9 1 0 0 1 
3 0 0 1 1 13 1 1 0 1 
4 0 1 0 0 14 1 1 1 0 
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O0 = Q1 + Q0 
O1 = Q1'Q0' 
O2 = Q2 + Q0 
O3 = Q2 + Q1 
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Figure 8.22 Counter for Example 8.2. 

8.4 Register Files 
When we want to store several numbers concurrently in a digital circuit, we can use several individual registers 

in the circuit. However, there are times when we want to treat these registers as a unit, similar to addressing the 
individual locations of an array or memory. So, instead of having several individual registers, we want to have an 
array of registers. This array of registers is known as a register file. In a register file, all of the respective control 
signals for the individual registers are connected in common. Furthermore, all of the respective data input and output 
lines for all of the registers are also connected in common. For example, the Load lines for all of the registers are 
connected together, and all of the d3 data lines for all of the registers are connected together. So the register file has 
only one set of input lines and one set of output lines for all of the registers. In addition, address lines are used to 
specify which register in the register file is to be accessed. 

In a microprocessor circuit requiring an ALU, the register file usually is used for the source operands of the 
ALU. Since the ALU usually takes two input operands, we like the register file to be able to output two values from 
possibly two different locations of the register file at the same time. So, a typical register file will have one write 
port and two read ports. All three ports will have their own enable and address lines. When the read enable line is 
de-asserted, the read port will output a 0. On the other hand, when the read enable line is asserted, the content of the 
register specified by the read address lines is passed to the output port. The write enable line is used to load a value 
into the register specified by the write address lines. 
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The logic symbol for a 4 × 8 register file (four registers, each being 8-bits wide) is shown in Figure 8.23. The 8-
bit write port is labeled In, and the two 8-bit read ports are labeled Port A and Port B. WE is the active-high write 
enable line. To write a value into the register file, this line must be asserted. The WA1 and WA0 are the two address 
lines for selecting the write location. Since there are four locations in this register file, two address lines are needed. 
The RAE line is the read enable line for Port A. The two read address select lines for Port A are RAA1 and RAA0. For 
Port B, we have the Port B enable line, RBE, and the two address lines, RBA1 and RBA0. 
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RBE

RBA0

Clock
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B

4 × 8
Register File
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Figure 8.23 Logic symbol for a 4 × 8 register file. 

The register circuit from Figure 8.1 does not have any control for the reading of the data to the output port. In 
order to control the output of data, we can use a 2-input AND gate to enable or disable each of the data output lines, 
Qi. We want to control all the data output lines together, therefore, one input from all of the 2-input AND gates are 
connected in common. When this common input is set to a 0, all the AND gates will output a 0. When this common 
input is set to a 1, the output for all of the AND gates will be the value from the other input. An alternative to using 
AND gates to control the read ports is to use tri-state buffers. Instead of outputting a 0 when disabled, the tri-state 
buffers will have a high impedance. 

Our register file has two read ports, that is, two output controls for each register. So, instead of having just one 
2-input AND gate per output line, Qi, we need to connect two AND gates to each output line: one for Port A, and one 
for Port B. An 8-bit wide register file cell circuit will have eight AND gates for Port A, and another eight AND gates 
for Port B, as shown in Figure 8.24. AE and BE are the read enable signals for Port A and Port B, respectively. For 
each read port, the read enable signal is connected in common to one input of all of the eight AND gates. The second 
input from each of the eight AND gates connects to the eight output lines, Q0 to Q7. 
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Figure 8.24 An 8-bit wide register file cell with one write port and two read ports. 

For a 4 × 8 register file, we need to use four 8-bit register file cells. In order to select which register file cell we 
want to access, three decoders are used to decode the addresses, WA1, WA0, RAA1, RAA0, RBA1, and RBA0. One 
decoder is used for the write addresses, WA1 and WA0; one for the Port A read addresses, RAA1 and RAA0; and one 
for the Port B read addresses, RBA1 and RBA0. The decoders’ outputs are used to assert the individual register file 
cell’s write line, Load, and read enable lines, AE, and BE. The complete circuit for the 4 × 8 register file is shown in 
Figure 8.25. The respective read ports from each register file cell are connected to the external read port through a 4-
input × 8-bit OR gate. 
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For example, to read from Register 3 through Port B, the RBE line has to be asserted, and the Port B address 
lines, RBA0 and RBA1, have to be set to 112 (for Register 3). The data from Register 3 will be available immediately 
on Port B. To write a value to Register 2, the write address lines, WA0 and WA1, are set to 102, and then the write 
enable line, WE, is asserted. The data at input D is then written into Register 2 at the next active (rising) clock edge. 
Since all three decoders can be enabled at the same time, therefore, the two read operations and the write operation 
can all be asserted together. 

2-to-4
Decoder

A0

A1

Y0

Y1

Y2

Y3E

WA0

WA1

WE

8

8

8

Read
Port A

AE

BE

8

D0-7
8-bit

Register

Load
Q0-7

×8

Write
Port

Read
Port B

×8

8

8

1

1

8

8

8

Read
Port A

AE

BE

8

D0-7
8-bit

Register

Load
Q0-7

×8

Write
Port

Read
Port B

×8

8

8

1

1

8

8

8

Read
Port A

AE

BE

8

D0-7
8-bit

Register

Load
Q0-7

×8

Write
Port

Read
Port B

×8

8

8

1

1

Clock

8

Input D

8

8

8

Read
Port A

AE

BE

8

D0-7
8-bit

Register

Load
Q0-7

×8

Write
Port

Read
Port B

×8

8

8

1

1

×8
8

Port A

×8
8

Port B

2-to-4
Decoder

A0

A1

Y0

Y1

Y2

Y3 E

RAA0

RAA1

RAE

2-to-4
Decoder

A0

A1

Y0

Y1

Y2

Y3 E

RBA0

RBA1

RBE

 
Figure 8.25 A 4 × 8 register file circuit with one write port and two read ports. 

In terms of the timing issues, the data on the read ports are available immediately after the read enable line is 
asserted, whereas, the write occurs at the next active (rising) edge of the clock. Because of this, the same register can 
be accessed for both reading and writing at the same time; that is, the read and write enable lines can be asserted at 
the same time using the same read and write address. When this happens, then the value that is currently in the 
register is read through the read port, and a new value will be written into the register at the next rising clock edge. 
This timing is shown in Figure 8.26. The important point to remember is that, when the read and write operations are 
performed at the same time on the same register, the read operation always reads the current value stored in the 
register and never the new value that is to be written in by the write operation. The new value written in is available 
only after the next rising clock edge. 
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Figure 8.26 Read and write timings for a register file cell. 

The VHDL code for the 4 × 8 register file is shown in Figure 8.27. The main code is composed of three 
processes: the write process and the two read port processes. These three processes are similar to three concurrent 
statements in that they are executed in parallel. The write process is sensitive to the clock, and because of the IF 
clock statement in the process, a write occurs only at the rising edge of the clock signal. The two read port processes 
are not sensitive to the clock but only to the read enable and read address signals. So the read data is available 
immediately when these lines are asserted. The function CONV_INTEGER(WA) converts the STD_LOGIC_VECTOR WA 
to an integer so that the address can be used as an index into the RF array. 

A sample simulation trace is shown in Figure 8.28. In the simulation trace, both the write address, WA, and Port 
A read address, RAA, are set to Register 3. At 0 ns, the input data, D, is 5. With write enable, WE, asserted, the data 5 
is stored into RF(3) at the next rising edge of the clock, which happens at 100 ns. When RAE is asserted at 200 ns, 
the data 5 from RF(3) is available on Port A immediately. At 400 ns, both WE and RAE are asserted at the same 
time. The current data 5 from RF(3) appears immediately on Port A. However, the new data 7 is written into RF(3) 
at 500 ns, the next rising clock edge. The new data 7 is available on Port A only after time 500 ns. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL; -- needed for CONV_INTEGER()

ENTITY regfile IS port(
clock: IN std_logic; --clock
WE: IN std_logic; --write enable
WA: IN std_logic_vector(1 DOWNTO 0); --write address
D: IN std_logic_vector(7 DOWNTO 0); --input
RAE, RBE: IN std_logic; --read enable ports A & B
RAA, RBA: IN std_logic_vector(1 DOWNTO 0); --read address port A & B
PortA, PortB: OUT std_logic_vector(7 DOWNTO 0));--output port A & B

END regfile;

ARCHITECTURE Behavioral OF regfile IS
SUBTYPE reg IS std_logic_vector(7 DOWNTO 0);
TYPE regArray IS array(0 to 3) OF reg;
SIGNAL RF: regArray; --register file contents

BEGIN
WritePort: PROCESS (clock)
BEGIN
IF (clock'EVENT AND clock='1') THEN
IF (WE = '1') THEN
RF(CONV_INTEGER(WA)) <= D; -- fn to convert from vector to integer

END IF;
END IF;

END PROCESS;
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ReadPortA: PROCESS (RAA, RAE)
BEGIN
-- Read Port A
IF (RAE = '1') THEN
PortA <= RF(CONV_INTEGER(RAA)); -- fn to convert from vector to integer

ELSE
PortA <= (others => '0');

END IF;
END PROCESS;

ReadPortB: PROCESS (RBE, RBA)
BEGIN
-- Read Port B
IF (RBE = '1') THEN
PortB <= RF(CONV_INTEGER(RBA)); -- fn to convert from vector to integer

ELSE
PortB <= (others => '0');

END IF;
END PROCESS;

END Behavioral;

Figure 8.27 VHDL code for a 4 × 8 register file with one write port and two read ports. 

 
Figure 8.28 Sample simulation trace for the 4 × 8 register file. 

8.5 Static Random Access Memory 
Another main component in a computer system is memory. This can refer to either random access memory 

(RAM) or read-only memory (ROM). We can make memory the same way we make the register file but with more 
storage locations. However, there are several reasons why we don’t want to. One reason is that we usually want a lot 
of memory and we want it very cheap, so we need to make each memory cell as small as possible. Another reason is 
that we want to use a common data bus for both reading data from, and writing data to the memory. This implies 
that the memory circuit should have just one data port (and not two or three like the register file) for both reading 
and writing of data. 

The logic symbol, showing all of the connections for a typical RAM chip is shown in Figure 8.29(a). There is a 
set of data lines, Di, and a set of address lines, Ai. The data lines serve for both input and output of the data to the 
location that is specified by the address lines. The number of data lines is dependent on how many bits are used for 
storing data in each memory location. The number of address lines is dependent on how many locations are in the 
memory chip. For example, a 512-byte memory chip will have eight data lines (8 bits = 1 byte) and nine address 
lines (29 = 512). 
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In addition to the data and address lines, there are usually two control lines: chip enable (CE), and write enable 
(WR). In order for a microprocessor to access memory, either with the read operation or the write operation, the 
active-high CE line must first be asserted. Asserting the CE line enables the entire memory chip. The active-high 
WR line selects which of the two memory operations is to be performed. Setting WR to a 0 selects the read operation, 
and data from the memory is retrieved. Setting WR to a 1 selects the write operation, and data from the 
microprocessor is written into the memory. Instead of having just the WR line for selecting the two operations, read 
and write, some memory chips have both a read enable and a write enable line. In this case, only one line can be 
asserted at any one time. The memory location in which the read and write operations are to take place, of course, is 
selected by the value of the address lines. The operation of the memory chip is shown in Figure 8.29(b). 
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WR

A0

A1

An-1

D0D1Dm-1

2n × m
RAM

 

(a) 

CE WR Operation 
0 × None 
1 0 Read from memory location selected by address lines 
1 1 Write to memory location selected by address lines 

 
 

(b) 

Figure 8.29 A 2n × m RAM chip: (a) logic symbol; (b) operation table. 

Notice in Figure 8.29(a) that the RAM chip does not require a clock signal. Both the read and write memory 
operations are not synchronized to the global system clock. Instead the data operations are synchronized to the two 
control lines, CE and WR. Figure 8.30(a) shows the timing diagram for a memory write operation. The write 
operation begins with a valid address on the address lines, followed immediately by the CE line being asserted. 
Shortly after, valid data must be present on the data lines, and then the WR line is asserted. As soon as the WR line is 
asserted, the data that is on the data lines is then written into the memory location that is addressed by the address 
lines. 

A memory read operation also begins with setting a valid address on the address lines, followed by CE going 
high. The WR line is then pulled low, and shortly after, valid data from the addressed memory location is available 
on the data lines. The timing diagram for the read operation is shown in Figure 8.30(b). 

Each bit in a static RAM chip is stored in a memory cell similar to the circuit shown in Figure 8.31(a). The main 
component in the cell is a D latch with enable. A tri-state buffer is connected to the output of the D latch so that it 
can be selectively read from. The Cell enable signal is used to enable the memory cell for both reading and writing. 
For reading, the Cell enable signal is used to enable the tri-state buffer. For writing, the Cell enable together with the 
Write enable signals are used to enable the D latch so that the data on the Input line is latched into the cell. The logic 
symbol for the memory cell is shown in Figure 8.31 (b). 
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Figure 8.30 Memory timing diagram: (a) read operation; (b) write operation. 
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Figure 8.31 Memory cell: (a) circuit; (b) logic symbol. 

To create a 4 × 4 static RAM chip, we need sixteen memory cells forming a 4 × 4 grid, as shown in Figure 8.32. 
Each row forms a single storage location, and the number of memory cells in a row determines the bit width of each 
location. So all of the memory cells in a row are enabled with the same address. Again, a decoder is used to decode 
the address lines, A0 and A1. In this example, a 2-to-4 decoder is used to decode the four address locations. The CE 
signal is for enabling the chip, specifically to enable the read and write functions through the two AND gates. The 
internal WE signal, asserted when both the CE and WR signals are asserted, is used to assert the Write enables for all 
of the memory cells. The data comes in from the external data bus, Di, through the input buffer and to the Input line 
of each memory cell. The purpose of using an input buffer for each data line is so that the external signal coming in 
only needs to drive just one device (the buffer) rather than having to drive several devices (i.e., all of the memory 
cells in the same column). Which row of memory cells actually gets written to will depend on the given address. The 
read operation requires CE to be asserted and WR to be de-asserted. This will assert the internal RE signal, which in 
turn will enable the four output tri-state buffers at the bottom of the circuit diagram. Again, the location that is read 
from is selected by the address lines. 

The VHDL code for a 16 × 4 RAM chip is shown in Figure 8.33. The bi-directional data port, D, is declared as 
BUFFER so that it can be read from and written to. The actual memory content is stored in the variable mem, which is 
an array of size 16 of type STD_LOGIC_VECTOR. 
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Figure 8.32 A 4 × 4 RAM chip circuit. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL; -- needed for CONV_INTEGER()

ENTITY memory IS PORT (
CE, WR: IN STD_LOGIC; --chip enable, write enable
A: IN STD_LOGIC_VECTOR(3 DOWNTO 0); --address
D: BUFFER STD_LOGIC_VECTOR(3 DOWNTO 0)); --data

END memory;

ARCHITECTURE Behavioral OF memory IS
BEGIN

PROCESS (CE, WR)
SUBTYPE cell IS STD_LOGIC_VECTOR(3 DOWNTO 0);
TYPE memArray IS array(0 TO 15) OF cell;
VARIABLE mem: memArray; --memory contents
VARIABLE ctrl: STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
ctrl := CE & Wr; -- group signals for CASE decoding
CASE ctrl IS
WHEN "10" => -- read
D <= mem(CONV_INTEGER(A));-- fn TO convert from bit vector TO integer

WHEN "11" => -- write
mem(CONV_INTEGER(A)) := D;-- fn TO convert from bit vector TO integer

WHEN OTHERS => -- invalid or not enable
D <= (OTHERS => 'Z');

END CASE;
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END PROCESS;
END Behavioral;

Figure 8.33 VHDL code for a 16 × 4 RAM chip. 

8.6 * Larger Memories 
In general, there is always a need for larger memories. Because of product availability constraints, we need to 

construct these larger memories from multiple, smaller memory chips. Larger memory requirements can be for 
either more memory locations, wider bit widths for each location, or both. 

8.6.1 More Memory Locations 

For example, we may want to have a 1 K × 8-bit memory built using multiple 256 × 8-bit memory chips. Using 
such small numbers is archaic, but you get the idea. In this case, we would need four of these 256 × 8-bit memory 
chips, since 1 K = 4 × 256. A 256 × 8-bit memory chip has eight address lines, since 28 = 256. To decode four chips, 
we need an additional two address lines to enable which of the four chips we want to address. Thus, we need a total 
of ten address lines with the first eight, A0 to A7, connected, respectively, in common directly to the eight address 
lines on the four chips, and the last two lines, A8 and A9, connected to the address inputs of a 2-to-4 decoder. The 
four outputs from the decoder are used to assert the chip enable, CE, line of the four memory chips, RAM0 to RAM3. 
The data lines and the write enable lines are all connected, respectively, in common. The circuit is shown in Figure 
8.34(a). 

The 256-byte memory chip, RAM0, is enabled when the address bits, A8 and A9, are 00. Hence, the address 
range for RAM0 is from 0 to 255 (0000000000 to 0011111111 in binary). Similarly, RAM1 is enabled when the 
address bits, A8 and A9, are 01. Hence, the address range for RAM1 is from 256 to 511 (0100000000 to 0111111111 
in binary). The address range for RAM2 is from 512 to 767 (1000000000 to 1011111111 in binary), and the address 
range for RAM3 is from 768 to 1023 (1100000000 to 1111111111 in binary). 

A particular memory location is accessed as follows. If we want to write to memory location 717, which is 
binary 1011001101, the Y2 line of the decoder would be asserted, since bits 8 and 9 are “10.” This Y2 line in turn 
asserts the CE line of the RAM2 chip, while the remaining RAM chips are disabled. Finally, within the RAM2 chip 
that is enabled, location 205, which is binary 11001101 from bits 0 to 7 of the original address, is selected. Location 
205 in the third RAM chip is location 717 for the entire memory, since 256 + 256 + 205 = 717. 

8.6.2 Wider Bit Width 

We may also want to have wider bit width for each memory location made from smaller ones. For example, we 
may want to have a memory that is 512 locations × 16-bits wide made from 256 × 8-bit memory chips.  Again, we 
would need four 256-byte memory chips, but connected as shown in Figure 8.34(b). For 512 locations, only nine 
address lines are needed, with the first eight, A0 to A7, connected, respectively, in common directly to the eight 
address lines on the four chips, and the last line, A8, connected to the address input of a 1-to-2 decoder. For a 16-bit 
wide data bus, we need to connect two 8-bit wide chips in parallel so that each two similar 8-bit wide location in the 
two chips can be combined together to form a 16-bit wide location. Since these two chips need to work together, 
their chip enable, CE, lines must be connected in common and asserted by the same output from the decoder. 

Memory chips RAM0 and RAM2 are for storing the data bits D0 to D7, while memory chips RAM1 and RAM3 
are for storing the data bits D8 to D15. The address range for RAM0 and RAM1 is from 0 to 255 (000000000 to 
011111111 in binary), and the address range for RAM2 and RAM3 is from 256 to 511 (100000000 to 111111111 in 
binary). 
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Figure 8.34 Larger memory made from smaller memory chips: (a) a 1 K × 8-bit memory made from four 256 × 8-
bit memory chips; (b) a 512 × 16-bit memory made from four 256 × 8-bit memory chips. 

Example 8.3: Building larger memory using smaller RAM chips 

Build a 2 M-byte memory using 512 K-byte RAM chips. 

A 512 K-byte RAM chip has 9 address lines, A0 to A8, because 29 = 512 K. Since 4 × 512 K = 2 M, therefore, 
we need to use four 512 K-byte RAM chips. In order to select from these four RAM chips, we need two more 
address lines, A9 and A10. Hence, the system must have at least 11 address lines. The first 9 address lines, A0 to A8, 
are connected directly to the four RAM chips. The last two address lines, A9 and A10, are connected to a 2-to-4 
decoder. The four outputs of the decoder are connected to the chip enables (CE) for the four RAM chips. The eight 
data lines and the write enable lines are all connected, respectively, in common. The circuit is shown in Figure 8.35.♦  
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Figure 8.35 A 2 M-byte memory circuit for Example 8.3. 

Example 8.4: Determining an address range 

What is the address range for the Y5 line in the following circuit? 
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Y5 is asserted when the address lines, A13, A12, A11, and A10, are 0101. The lowest address is when the ten low-
order address bits, A9 to A0, are all 0’s, and the highest address is when these ten bits are all 1’s. Hence, the address 
range for Y5 is from 01010000000000 to 01011111111111 in binary or 5120 to 6143 in decimal. ♦  

8.7 Summary Checklist 
� Registers 
� Serial-to-Parallel Shift Registers 
� Parallel-to-Serial Shift Registers 
� Binary counters 
� Binary up-down counters 
� BCD counters 
� BCD up-down counters 
� Counters for random sequences 
� Register files 
� Random access memories (RAM) 
� Building more memory locations using smaller RAM chips 
� Building wider bit-width memories using smaller RAM chips 

8.8 Problems 

8.1. The 4-bit binary up counter VHDL code shown in Figure 8.12 does not have the Overflow output signal. 
Modify the code to include the Overflow signal. 

8.2. For the BCD up counter circuit shown in Figure 8.19, what happens if the output of the AND gate comparator 
is connected to the Clear signal instead of to the Load signal? Will it produce the same waveform? Explain 
your observations. 

8.3. In the BCD up-down counter circuit shown in Figure 8.21, four 2-input multiplexers are used to select the 
correct value to be loaded in. Modify the circuit so that the multiplexers are not needed. 

8.4. Write the behavioral VHDL code for the BCD up-down counter. 

8.5. Use the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit that counts 
from 0 to 7 decimal and back to 0. 

8.6. Use the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit that counts 
from 5 to 13 decimal and back to 5. 

8.7. Use the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit that outputs 
the sequence: 7, 12, 19, 36, 42, 58, and 57, repeatedly. 

8.8. Use the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit that outputs 
the sequence: 4, 8, 5, 3, 16, and 7, repeatedly. 

8.9. Write the behavioral VHDL code for the BCD up-down counter. 

8.10. Write the structural VHDL code for the BCD up-down counter based on the circuit diagram shown in Figure 
8.21. Use the 4-bit binary up-down counter VHDL code as a component. 

8.11. What are the valid address ranges for the Y5 and Y7 lines in the following circuits? 
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8.12. Design a 32 M-byte memory using 4 M-byte RAM chips. Label all of the signals clearly. 

8.13. Design an 8 M-byte memory using 2 M × 4-bit RAM chips. Label all of the signals clearly. 

8.14. Manually design and implement on the UP2 board an FSM circuit for writing the value 13 into location 2 of a 
4 × 8 register file, then read location 2 through Port A, and display the number as binary on the eight LEDs. 

8.15. Manually design and implement on the UP2 board the following FSM circuit for controlling a 4 × 8 register 
file. For input, use two DIP switches to specify the register file location and another eight DIP switches to 
specify the data input. Use a push-button for the write enable signal. For output, use the eight LEDs. The 
eight output LEDs continuously display the content of the current selected register file location. When the 
push-button is pressed, the data input is loaded into the selected location. 
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In Chapter 4, we learned how to design functional units for performing single, simple data operations, such as 
the adder for adding two numbers or the comparator for comparing two values. The next logical question to ask is 
how do we design a circuit for performing more complex data operations or operations that involve multiple steps? 
For example, how do we design a circuit for adding four numbers or a circuit for adding a million numbers? For 
adding four numbers, we can connect three adders together, as shown in Figure 9.1(a). However, for adding a 
million numbers, we really don’t want to connect a million minus one adders together like that. Instead, we want a 
circuit with just one adder and to use it a million times. A datapath circuit allows us to do just that, that is, for 
performing operations involving multiple steps. Figure 9.1(b) shows a simple datapath using one adder to add as 
many numbers as we want. In order for this to be possible, a register is needed to store the temporary result after 
each addition. The temporary result from the register is fed back to the input of the adder so that the next number 
can be added to the current sum. 

In this chapter, we will look at the design of datapaths. Recall that the datapath is the second main part in a 
microprocessor. The datapath is responsible for the manipulation of data. It includes (1) functional units such as 
adders, shifters, multipliers, ALUs, and comparators, (2) registers and other memory elements for the temporary 
storage of data, and (3) buses, multiplexers, and tri-state buffers for the transfer of data between the different 
components in the datapath, and the external world. From the microprocessor road map figure at the beginning of 
this chapter, we see that external data enters the datapath through the data input lines. Results from the datapath 
operations are provided through the data output lines. These signals serve as the primary input/output data ports for 
the microprocessor. 

In order for the datapath to function correctly, appropriate control signals must be asserted at the right time. 
Control signals are needed for all of the select and control lines for all of the components used in the datapath. This 
includes all of the select lines for multiplexers, ALUs, and other functional units having multiple operations; all of 
the read/write enable signals for registers and register files; address lines for register files; and enable signals for tri-
state buffers. Thus, the operation of the datapath is determined by which control signals are asserted or de-asserted 
and at what time. In a microprocessor, these control signals are generated by the control unit. 

Number 1 Number 2 Number 3 Number 4

+

+

+

 

(a) 

+

Register

Numbers from 1
to 1 Million

 

(b) 

Figure 9.1 Circuits to add several numbers: (a) combinational circuit to add four numbers; (b) datapath to add one 
million numbers. 

Some of the control signals generated by the control unit are dependent on the data that is being manipulated 
within the datapath. (For example, the result of a conditional test with a number that is stored in a register.) Hence, 
in order for the control unit to generate these control signals correctly, the datapath needs to supply status signals to 
the control unit. These status signals are usually from the output of comparators. The comparator tests for a given 
logical condition between two data values in the datapath. These values are obtained either from memory elements 
or directly from the output of functional units, or are hardwired as constants. The status signals provide information 
for the control unit to determine what state to go to next. For example, in a conditional loop situation, the status 
signal provides the result of the condition being tested, and tells the control unit whether to repeat or exit the loop. 

Since the datapath performs all of the functional operations of a microprocessor (and the microprocessor is for 
solving problems) therefore, the datapath must be able to perform all of the operations that are required to solve the 
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given problem. For example, if the problem requires the addition of two numbers, the datapath, therefore, must 
contain an adder. If the problem requires the storage of three temporary variables, the datapath must have three 
registers. However, even with these requirements, there are still many options as to what actually is implemented in 
the datapath. For example, an adder can be implemented as a single adder circuit, or as part of the ALU. These 
functional units can be used many times. Registers can be separate register units or combined in a register file. 
Furthermore, two temporary variables can share the same register if they are not needed at the same time. 

Datapath design is also referred to as register-transfer level (RTL) design. In a register-transfer level design, 
we look at how data is transferred from one register to another, or back to the same register. If the same data is 
written back to a register without any modifications, then nothing has been accomplished. Therefore, before writing 
the data to a register, the data usually passes through one or more functional units, and gets modified. 

The sequence of RTL operations—read data from a register, modify data by functional units, and write result to 
a register—is referred to as a register-transfer operation. Every register-transfer operation must complete within 
one clock cycle (which is equivalent to one state of the FSM, since the FSM changes state at every clock cycle). 
Furthermore, in a single register-transfer operation, a functional unit cannot be used more than once. However, the 
same functional unit can be used more than once if it is used by different register-transfer operations. In other words, 
a functional unit can be used only once in the same clock cycle, but can be used again in a different clock cycle. 

We will now look at how datapaths are designed, and how they are used to solve problems. First, we will look 
at the design of dedicated datapaths for solving single specific problems, and then we will look at general datapaths 
where they can be used for solving different problems. 

9.1 Designing Dedicated Datapaths  
The goal for designing a dedicated datapath is to build a circuit for solving a single specific problem. In this 

chapter, we will specify the problem in the form of an algorithm. We will use C-style pseudocodes to write the 
algorithms. The logical interpretation of the algorithm is irrelevant in what we are trying to do, so when given a 
certain segment of code, we will just take the code as is and will not optimize it in any manner. 

In a register-transfer level design, we focus on how data move from register to register via some functional units 
where they are modified. In the design process, we need to decide on the following issues: 

•  What kind of registers to use, and how many are needed? 
•  What kind of functional units to use, and how many are needed? 
•  Can a certain functional unit be shared between two or more operations? 
•  How are the registers and functional units connected together so that all of the data movements specified by 

the algorithm can be realized? 

Since the datapath is responsible for performing all of the data operations, it must be able to perform all of the 
data manipulation statements and conditional tests specified by the algorithm. For example, the assignment 
statement: 

A = A + 3 

takes the value that is stored in the variable A, adds the constant 3 to it, and stores the result back into A. Note that 
whatever the initial value of A is here is irrelevant since that is a logical issue. In order for the datapath to perform 
the data operation specified by this statement, the datapath must have a register for storing the value A. Furthermore, 
there must be an adder for performing the addition. The constant 3 can be hardwired into the circuit as a binary 
value. 

The next question to ask is how do we connect the register, the adder, and the constant 3 together so that the 
execution of the assignment statement can be realized. Recall from Section 8.1 that a value stored in a register is 
available at the Q output of the register. Since we want to add A + 3, we connect the Q output of the register to the 
first operand input of the adder, and connect the constant 3 to the second operand input. We want to store the result 
of the addition back into A (i.e., back into the same register), therefore, we connect the output of the adder to the D 
input of the register, as shown in Figure 9.2(a). 
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The storing of the adder result into the register is accomplished by asserting the Load control signal of the 
register (i.e., asserting Aload). This ALoad signal is an example of what we have been referring to as the datapath 
control signal. This control signal controls the operation of this datapath. The control unit, which we will talk about 
in the next chapter, will control this signal by either asserting or de-asserting it. 

The actual storing of the value into the register, however, does not occur immediately when ALoad is asserted. 
Since the register is synchronous to the clock signal, therefore, the actual storing of the value occurs at the next 
active clock edge. Because of this, the new value of A is not available at the Q output of the register during the 
current clock cycle, but is available at the beginning of the next clock cycle. 

As another example, the datapath shown in Figure 9.2(b) can perform the execution of the statement: 

A = B + C 

where B and C are two different variables stored in two separate registers, thus providing the two operand inputs to 
the adder. The output of the adder is connected to the D input of the A register for storing the result of the adder. 
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Figure 9.2 Sample datapaths: (a) for performing A = A + 3; (b) for performing A = B + C. 

The execution of the statement is realized simply by asserting the ALoad signal, and the actual storing of the 
value for A occurs at the next active edge of the clock. During the current clock cycle, the adder will perform the 
addition of B and C, and the result from the adder must be ready and available at its output before the end of the 
current clock cycle so that, at the next active clock edge, the correct value will be written into A. Since we are not 
writing any values to register B or C, we do not need to control the two Load signals for them. 

If we want a single datapath that can perform both of the statements: 

A = B + C 

and 

A = A + 3 

we will need to combine the two datapaths in Figure 9.2 together. 

Since A is the same variable in the two statements, only one register for A is needed. However, register A now 
has two data sources: one from the first adder for B + C, and the second from the second adder for A + 3. The 
problem is that two or more data sources cannot be connected directly together to one destination, as shown in 
Figure 9.3(a) because their signals will collide, resulting in incorrect values. The solution is to use a multiplexer to 
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select which of the two sources to pass to register A. The correct datapath using the multiplexer is shown in Figure 
9.3(b). 

Both statements assign a value to A, so ALoad must be asserted for the execution of both statements. The actual 
value that is written into A, however, depends on the selection of the multiplexer. If Amux is asserted, then the result 
from the bottom adder (i.e., the result from A + 3) is stored into A; otherwise, the result from the top adder is stored 
into A. Since the two adders are combinational circuits and the value from a register is always available at its output, 
therefore, the results from the two additions are always available at the two inputs of the multiplexer. But depending 
on the Amux control signal, only one value will be passed through to the A register. 

Notice that the datapath does not show which statement is going to be executed first. The sequence in which 
these two statements are executed depends on whether the signal Amux is asserted first or de-asserted first. If this 
datapath is part of a microprocessor, then the control unit would determine when to assert or de-assert this Amux 
control signal, since it is the control unit that performs the sequencing of datapath operations. 

Furthermore, notice that these two statements cannot be executed within the same clock cycle. Since both 
statements write to the same register, and a register can only latch in one value at an active clock edge, only one 
result from one adder can be written into the register in one clock cycle. The other statement will have to be 
performed in another clock cycle, but not necessarily the next cycle. 
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Figure 9.3 Datapath for performing A = A + 3 and A = B + C: (a) without multiplexer—wrong; (b) with 
multiplexer—correct. 

Example 9.1: Designing a dedicated datapath 

Design a datapath that can execute the two statements: 

A = B + C 

and 
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A = A + 3 

using only one adder. 

The only difference between this datapath and the one in Figure 9.3(b) is that it should use only one adder. So 
starting with this one adder, in order to execute the first statement, the first operand input to the adder is from 
register B, and the second operand input to the adder is from register C. However, to execute the second statement, 
the two input operands to the adder are register A and the constant 3. Since both input operands have two different 
sources, again we must use a multiplexer for each of them. The output of the two multiplexers will connect to the 
two adder input operands, as shown in Figure 9.4. For both statements, the result of the addition is stored in register 
A, therefore, the output of the adder connects to the input of the A register. 

Notice that the two select lines for the two multiplexers can be connected together. This is possible because the 
two operands B and C for the first statement are connected to input 0 of the two multiplexers, respectively, and the 
two operands A and 3 for the second statement are connected to input 1 of the two multiplexers, respectively. Thus, 
de-asserting the Mux select signal will pass the two correct operands for the first statement, and likewise, asserting 
the Mux select signal will pass the two correct operands for the second statement. We want to reduce the number of 
control signals for the datapath as much as possible, because (as we will see in the next chapter) minimizing the 
number of control signals will minimize the size of the output circuit in the control unit. ♦  
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Figure 9.4 Datapath for performing A = A + 3 and A = B + C using only one adder. 

9.1.1 Selecting Registers 

In most situations, one register is needed for each variable used by the algorithm. However, if two variables are 
not used at the same time, then they can share the same register. If two or more variables share the same register, 
then the data transfer connections leading to the register and out from the register usually are made more complex, 
since the register now has more than one source and destination. Having multiple destinations is not too big of a 
problem, since we can connect all of the destinations to the same source.1 However, having multiple sources will 
require a multiplexer to select one of the several sources to transfer to the destination. Figure 9.5 shows a circuit 
with a register having two sources—one from an external input and one from the output of an adder. A multiplexer 
is needed in order to select which one of these two sources is to be the input to the register. 

                                                           
1 This is true only theoretically. In practice, there are fan-in (multiple sources with one destination) and fan-out (one 
source with multiple destinations) limits that must be observed. 
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Figure 9.5 Circuit of a register with two sources. 

After deciding how many registers are needed, we still need to determine whether to use a single register file 
containing enough register locations, separate individual registers, or a combination of both for storing the variables 
in. Furthermore, registers with built-in special functions, such as shift registers and counters, can also be used. For 
example, if the algorithm has a FOR loop statement, a single counter register can be used to not only store the count 
variable but also to increment the count. This way, not only do we reduce the component count, but the amount of 
datapath connections between components is also reduced. Decisions for selecting the type of registers to use will 
affect how the data transfer connections between the registers and functional units are connected. 

9.1.2 Selecting Functional Units 

It is fairly straightforward to decide what kind of functional units are required. For example, if the algorithm 
requires the addition of two numbers, then the datapath must include an adder. However, we still need to decide 
whether to use a dedicated adder, an adder–subtractor combination, or an ALU (which has the addition operation 
implemented). Of course, these questions can be answered by knowing what other data operations are needed by the 
algorithm. If the algorithm has only an addition and a subtraction, then you may want to use the adder–subtractor 
combination unit. On the other hand, if the algorithm requires several addition operations, do we use just one adder 
or several adders? 

Using one adder may decrease the datapath size in terms of number of functional units, but it may also increase 
the datapath size because more complex data transfer paths are needed. For example, if the algorithm contains the 
following two addition operations: 

a = b + c 
d = e + f 

Using two separate adders will result in the datapath shown in Figure 9.6(a); whereas, using one adder will require 
the use of two extra 2-to-1 multiplexers to select which register will supply the input to the adder operands, as 
shown in Figure 9.6(b). Furthermore, this second datapath requires two extra control signals for the two 
multiplexers. In terms of execution speed, the datapath on the left can execute both addition statements 
simultaneously within the same clock cycle, since they are independent of each other. However, the datapath on the 
right will have to execute these two additions sequentially in two different clock cycles, since there is only one adder 
available. The final decision as to which datapath to use is up to the designer. 
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Figure 9.6 Datapaths for realizing two addition operations: (a) using two separate adders; (b) using one adder. 

9.1.3 Data Transfer Methods 

There are several methods in which the registers and functional units can be connected together so that the 
correct data transfers between the different units can be made. 

Multiple Sources 

If the input to a unit has more than one source, then a multiplexer can be used to select which one of the 
multiple sources to use. The sources can be from registers, constant values, or outputs from other functional units. 
Figure 9.7 shows two such examples. In Figure 9.7(a), the left operand of the adder has four sources: two from 
registers, one from the constant 1, and one from the output of an ALU. In Figure 9.7(b), register a has two sources: 
one from the constant 1 and one from the output of an adder. 

b

+

'1' ALUa

0123
s0

s1

 

(a) 

+'1'

a

01

 

(b) 

Figure 9.7 Examples of multiple sources using multiplexers: (a) an adder operand having four sources; (b) a register 
having two sources. 

Multiple Destinations 

A source having multiple destinations does not require any extra circuitry. The one source can be connected 
directly to the different destinations, and all of the destinations where the data is not needed would simply ignore the 
data source. For example, in Figure 9.6(b), the output of the adder has two destinations: register a, and register d. If 
the output of the adder is for register a, then the Load line for register a is asserted, while the Load line for register d 
is not; and if the output of the adder is for register d, then the Load line for register d is asserted, while the Load line 
for register a is not. In either case, only the correct register will take the data while the other units simply will ignore 
the data. 

This also works if one of the destinations is a combinational functional unit. In this case, the functional unit will 
take the source data and manipulates it. However, the output of the functional unit will not be used (that is not stored 
in any register) so functionally, it doesn’t matter that the functional unit worked on the source, because the result is 
not stored. However, it does require power for the functional unit to manipulate the data, so if we want to reduce the 
power consumption, we would want the functional unit to not manipulate the data at all. This, however, is a power 
optimization issue that is beyond the scope of this book. 

Tri-state Bus 

Another scheme where multiple sources and destinations can be connected to the same data bus is through the 
use of tri-state buffers. The point to note here is that, when multiple sources are connected to the same bus, only one 
source can output at any one time. If two or more sources output to the same bus at the same time, then there will be 
data conflicts. This occurs when one source outputs a 0 while another source outputs a 1. By using tri-state buffers 
to connect between the various sources and the common data bus, we want to make sure that only one tri-state buffer 
is enabled at any one time, while the rest of them are all disabled. Tri-state buffers that are disabled output high- 
impedance Z values, so no data conflicts can occur. 
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Figure 9.8 shows a tri-state bus with five units (three registers, an ALU, and an adder) connected to it. An 
advantage of using a tri-state bus is that the bus is bi-directional, so that data can travel in both directions on the bus. 
Connections for data going from a component to the bus need to be tri-stated, while connections for data going from 
the bus to a component need not be. Notice also that data input and output of a register both can be connected to the 
same tri-state bus; whereas, the input and output of a functional unit (such as the adder or ALU) cannot be connected 
to the same tri-state bus. 

ALU

Common Data Bus

+

a b

c

 
Figure 9.8 Multiple sources using tri-state buffers to share a common data bus. 

9.1.4 Generating Status Signals 

Although it is the control unit that is responsible for the sequencing of statement execution, the datapath, 
however, must supply the results of the conditional tests for the control unit so that the control unit can determine 
what statement to execute next. Status signals are the results of the conditional tests that the datapath supplies to the 
control unit. Every conditional test that the algorithm has requires a corresponding status signal. These status signals 
usually are generated by comparators. 

For example, if the algorithm has the following IF statement 

IF (A = 0) THEN … 

the datapath must, therefore, have an equality comparator that compares the value from the A register with the 
constant 0, as shown in Figure 9.9(a). The output of the comparator is the status signal for the condition (A = 0). 
This status signal is a 1 when the condition (A = 0) is true; otherwise, it is a 0. Recall from Section 4.10 that the 
circuit for the equality comparator with the constant 0 is simply a NOR gate, therefore, we can replace the black box 
for the comparator with just an 8-input NOR gate, as shown in Figure 9.9(b). 
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Figure 9.9 Comparators for generating the status signal (A = 0). 

There are times when an actual comparator is not needed for generating a status signal. For example, if we want 
a status signal for testing whether a number is an odd number, as in the following IF statement 

IF (A is an odd number) THEN … 
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we can simply use the A0 bit of the 8-bit number from register A as the status signal for this condition, since all odd 
numbers have a 1 in the zero bit position. The generation of this status signal is shown in Figure 9.10. 
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Figure 9.10 Comparator for generating the status signal (A is an odd number). 

9.2 Using Dedicated Datapaths 
Any given datapath will have a number of control signals. By asserting or de-asserting these control signals at 

different times, the datapath can perform different register-transfer operations. Since the execution of an operation 
requires the correct assertion and de-assertion of all of the control signals together, we would like to think of all of 
them as a unit rather than as individual signals. All of the control signals for a datapath, when grouped together, are 
referred to as a control word. Hence, a control word will have one bit for each control signal in the datapath. One 
register-transfer operation of a datapath, therefore, is determined by the values set in one control word, and so, we 
can specify the datapath operation simply by specifying the bit string for the control word. Each control word 
operation will take one clock cycle to perform. By combining multiple control words together in a certain sequence, 
the datapath will perform the specified operations in the order given. 

Example 9.2: Deriving control words for a datapath 

The datapath in Figure 9.4, having the two control signals ALoad and Mux, was designed to execute the two 
statements: A = A + 3 and A = B + C. The control word for this datapath, therefore, has two bits—one for each 
control signal. The ordering of these two bits at this point is arbitrary; however, once decided, we need to be 
consistent with the order. The two control words for performing the two statements are shown in Figure 9.11. 

Control word 1 specifies the control word bit string for executing the statement, A = A + 3. This is accomplished 
by asserting both the ALoad and the Mux signals. Control word 2 is for executing the statement, A = B + C, by 
asserting ALoad and de-asserting Mux. ♦  

 
Control 
Word Instruction ALoad Mux 

1 A = A + 3 1 1 
2 A = B + C 1 0 

Figure 9.11 Control words for the datapath in Figure 9.4 for performing the two statements: A = A + 3 and 
A = B + C. 

In order for the datapath to operate automatically, the control unit will have to generate these control signals 
correctly at the appropriate time. In the following chapters, we will learn how to construct the control unit and then 
combine it with the datapath to form a microprocessor. 

9.3 Examples of Dedicated Datapaths 
We will now illustrate the design of dedicated datapaths with several examples. The datapaths produced in the 

examples are by no mean the only correct datapaths for solving each of the problems. Just like writing a computer 
program, there are many ways of doing it. 
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9.3.1 Simple IF-THEN-ELSE 

Example 9.3: Simple IF-THEN-ELSE 

In this example, we want to construct a 4-bit-wide dedicated datapath for solving the simple IF-THEN-ELSE 
algorithm shown in Figure 9.12. To create a datapath for the algorithm, we need to look at all of the data 
manipulation statements in the algorithm, since the datapath is responsible for manipulating data. These data 
manipulation instructions are the register-transfer operations. In most cases, one data manipulation instruction is 
equivalent to one register-transfer operation. However, some data manipulation instructions may require two or 
more register-transfer operations to realize. 

The algorithm uses two variables, A and B; therefore, the datapath should have two 4-bit registers—one for each 
variable. Line 1 of the algorithm inputs a value into A. In order to realize this operation, we need to connect the data 
input signals to the input of register A, as shown in Figure 9.13. By asserting the ALoad signal, the data input value 
will be loaded into register A at the next active clock edge. 

Line 2 of the algorithm tests the value of A with the constant 5. The datapath in Figure 9.13 uses a 4-input AND 
gate for the equality comparator with the  four input bits connected as 0101 to the four output bits of register A. 
Since 5 in decimal is 0101 in binary, bits 0 and 2 are not inverted for the two 1’s in the bit string, while bits 1 and 3 
are inverted for the two 0’s. With this connection, the AND gate will output a 1 when the input is a 5. The output of 
this comparator is the 1-bit status signal for the condition (A = 5) that the datapath sends to the control unit. 

1 INPUT A
2 IF (A = 5) THEN
3 B = 8
4 ELSE
5 B = 13
6 END IF
7 OUTPUT B

Figure 9.12 Algorithm for solving the simple IF-THEN-ELSE problem of Example 9.3. 
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Figure 9.13 Dedicated datapath for solving the simple IF-THEN-ELSE problem of Example 9.3. 

Given the status signal for the comparison (A = 5), the control unit will decide whether to execute line 3 or line 
5 of the algorithm. This decision is done by the control unit and not by the datapath. The datapath is responsible only 
for all of the register-transfer operations. Lines 3 and 5 require loading either an 8 or a 13 into register B. In order to 
be able to select one data from several sources, a multiplexer is needed—in this case, a 2-to-1 multiplexer is used. 
One input of the multiplexer is connected to the constant 8 and the other to the constant 13. The output of the 
multiplexer is connected to the input of register B, so that one of the two constants can be loaded into the register. 
Again, which constant is to be loaded into the register is dependent on the condition in line 2. Knowing the result of 
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the test from the status signal, the control unit will generate the correct signal for the multiplexer select line, Muxsel. 
The actual loading of the value into register B is accomplished by asserting the BLoad signal. 

Finally, the algorithm outputs the value from register B in line 7. This is accomplished by connecting a tri-state 
buffer to the output of the B register. To output the value, the control unit asserts the enable line, Out, on the tri-state 
buffer, and the value from the B register will be passed to the data output lines. 

Notice that the complete datapath shown in Figure 9.13 consists of two separate circuits. This is because the 
algorithm does not require the values of A and B to be used together. A question we might ask is whether we can 
connect the output of the comparator to the multiplexer select signal so that the status signal (A = 5) directly controls 
Muxsel. Logically, this is alright, since if the condition (A = 5) is true, then the status signal is a 1. Assigning a 1 to 
Muxsel will select the 1 input of the multiplexer, thus passing the constant 8 to register B. Otherwise, if the condition 
(A = 5) is false, then Muxsel will get a 0 from the comparator, and the constant 13 will pass through the multiplexer. 
The advantage of doing this is that the datapath will generate one less status signal and requires one less control 
signal from the control unit. However, in some situations, we need to be careful with the timing when we use status 
signals to directly control the control signals. 

Figure 9.14 shows the control words for performing the statements in Figure 9.12 using the datapath in Figure 
9.13. Control word 1 executes the instruction INPUT A. To do this, the ALoad signal is asserted, and the data value at 
the input port will be loaded into the register at the next active clock edge. For this instruction, we do not need to 
load a value into the B register; hence, BLoad is de-asserted for this control word. Furthermore, because of this, it 
does not matter what the multiplexer outputs, so Muxsel can be a don’t-care value. For control words 2 and 3, we 
want to load one of the two constants into B; therefore, BLoad is asserted for both of these control words, and the 
value for Muxsel determines which constant is loaded into B. When Muxsel is asserted, the constant 8 is passed to 
the input of the B register, and when it is de-asserted, the constant 13 is passed to the register. Control word 4 asserts 
the Out signal to enable the tri-state buffer, thus outputting the value from the B register. ♦  

 
Control 
Word Instruction ALoad Muxsel BLoad Out 

1 INPUT A 1 × 0 0 
2 B = 8 0 1 1 0 
3 B = 13 0 0 1 0 
4 OUTPUT B 0 × 0 1 

Figure 9.14 Control words for solving the simple IF-THEN-ELSE problem of Example 9.3 

9.3.2 Counting 1 to 10 

Example 9.4: Counting 1 to 10 

Construct a 4-bit-wide dedicated datapath to generate and output the numbers from 1 to 10. The algorithm for 
this counting problem is shown in Figure 9.15. 

From the algorithm, we see that again we need a 4-bit register for storing the value for i. For line 3, an adder can 
be used for incrementing i. Both lines 1 and 3 write a value into i, thus providing two sources for the register. Our 
first inclination might be to use a 2-input multiplexer. However, notice that loading a 0 into a register is equivalent 
to clearing the register with the asynchronous Clear line, as long as the timing is correct. The resulting datapath is 
shown in Figure 9.16(a). For line 1, we assert the Clear signal to initialize i to 0, and for line 3, we assert the iLoad 
signal to load in the result from the adder, which adds a 1 to the current value of i. Asserting Out will output i. The 
status signal for the conditional test (i ≠ 10) is realized by the 4-input NAND gate, where the four input bits of the 
NAND gate are connected to the four output lines from the register as 1010 binary for the constant decimal 10. 

Alternatively, instead of using a separate register and adder, we can use a single 4-bit up counter to implement 
the entire algorithm, as shown in Figure 9.16(b). Again, initializing i to 0 is accomplished by asserting the Clear 
signal. To increment i for line 3, we simply assert the Count signal. Generating the status signal and outputting the 
count are the same as before. 
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The control words for the two different datapaths in Figure 9.16 are shown in Figure 9.17, respectively. For 
both cases, asserting the Clear signal will initialize i to 0. To increment i for the datapath in Figure 9.16(a), we need 
to assert iLoad. This will load in the value from the output of the adder, which is the result for i + 1, since one 
operand of the adder is i, and the other operand is the constant 1. For the datapath in Figure 9.16(b), we simply have 
to assert Count to increment i. The internal counter will increment the content in the register. Control word 3 asserts 
the Out signal, which asserts the enable signal on the tri-state buffer, thus passing the content of the register to the 
output port. 

Note that control words 2 and 3 (corresponding to lines 3 and 4 in the algorithm, respectively) must be executed 
ten times in order to output the ten numbers. The looping in the algorithm is implemented in the control unit, and we 
will see in the next chapter how it is done. ♦  

1 i = 0
2 WHILE (i ≠ 10){
3 i = i + 1
4 OUTPUT i
5 }

Figure 9.15 Algorithm for solving the counting problem of Example 9.4. 
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Figure 9.16 Dedicated datapath for solving the counting problem of Example 9.4: (a) using a separate adder and 
register; (b) using a single up counter. 

 
Control 
Word Instruction iLoad Clear Out 

1 i = 0 0 1 0 
2 i = i + 1 1 0 0 
3 OUTPUT i 0 0 1 

(a) 

Control 
Word Instruction Count Clear Out 

1 i = 0 0 1 0 
2 i = i + 1 1 0 0 
3 OUTPUT i 0 0 1 

(b) 
 

Figure 9.17 Control words for solving the counting problem of Example 9.4: (a) using the datapath in Figure 
9.16(a); (b) using the datapath in Figure 9.16(b). 
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9.3.3 Summation of n Down to 1 

Example 9.5: Summation of n down to 1 

Construct an 8-bit dedicated datapath to generate and add the numbers from n down to 1, where n is an 8-bit 
user-input number. The datapath should output the sum of the numbers when done and notify external devices that 
the calculation is completed by asserting a Done signal. The algorithm is shown in Figure 9.18. 

1 sum = 0
2 INPUT n
3 WHILE (n ≠ 0){
4 sum = sum + n
5 n = n - 1
6 }
7 OUTPUT sum

Figure 9.18 Algorithm for solving the summation problem of Example 9.5. 

We first note that we need to have two 8-bit registers with load function for storing the two variables, n and 
sum. The register for sum should also include a Clear function for initializing it to 0. The register for n should also 
be a down counter for decrementing n. A separate adder is used for the addition operation. The resulting dedicated 
datapath is shown in Figure 9.19. 

For initializing sum, we simply can assert the Clear line. Asserting nLoad will input a value for n. Asserting 
sumLoad will load into register sum the value from the output of the adder, which is the summation of sum plus n. 
Decrementing n by 1 is accomplished by asserting nCount. Finally, asserting Out will enable the tri-state buffer, thus 
outputting the value from the sum register. The Out signal is also used as a Done signal to notify external devices 
that the calculation is completed. The comparator for the WHILE loop condition (n ≠ 0) is an 8-input OR gate. The 
output of this OR gate is the status signal for the control unit. 

The control words for this example are shown in Figure 9.20. ♦  
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Figure 9.19 Dedicated datapath for solving the summation problem of Example 9.5. 
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Control 
Word Instruction nLoad nCount sumLoad Clear Out 

1 sum = 0 0 0 0 1 0 
2 INPUT n 1 0 0 0 0 
3 sum = sum + n 0 0 1 0 0 
4 n = n – 1 0 1 0 0 0 
5 OUTPUT sum 0 0 0 0 1 

Figure 9.20 Control words for solving the summation problem of Example 9.5. 

9.3.4 Factorial of n 

Example 9.6: Factorial of n 

Design an 8-bit dedicated datapath for evaluating the factorial of n. The factorial of n is defined to be the 
product of 1 × 2 × 3 × … × n. Figure 9.21 shows the algorithm for solving the factorial of n where n is an 8-bit user 
input number. The datapath should notify external devices that the calculation is completed by asserting a Done 
signal when the data at the output port is valid. 

1 INPUT n
2 product = 1
3 WHILE (n > 1) {
4 product = product * n
5 n = n – 1

}
6 OUTPUT product

Figure 9.21 Algorithm for solving the factorial problem of Example 9.6. 

After analyzing the algorithm, we conclude that the following registers and functional units are needed for the 
datapath: 

•  An 8-bit down counter with parallel load for storing the variable n and for decrementing n. The parallel 
load feature will allow for the input of n. 

•  An 8-bit register with load for storing the variable product. 
•  A multiply functional unit. 
•  A greater-than-one comparator for returning the status signal to the control unit.  
•  A tri-state buffer for output. 

The complete dedicated datapath is shown in Figure 9.22. The input port is connected to the input of the n 
register. By asserting nLoad, the value at the input port is loaded into register n, thus realizing the instruction in line 
1. Since this n register is also a down counter, by asserting nCount, we will have executed line 5. 

Register product has two sources, one from line 2, and the second from line 4. A 2-to-1 multiplexer is used to 
select from these two sources using the productMux select line. For line 2, the constant 1 is connected to the 1-input 
of the multiplexer, so that, by asserting both productMux and productLoad, the constant 1 will be loaded into the 
register. For line 4, one operand of the multiply function is product, and the other operand is n. Hence, the output of 
the product register is connected to one input of the multiply unit. Since n is stored in the counter, therefore, the 
output of the counter is connected to the second input of the multiply unit. The result of the multiply is assigned 
back into the variable product. Thus, in the datapath, we needed a connection from the output of the multiply 
functional unit back to the input of the register where product is stored via the 2-to-1 multiplexer. 

The tri-state buffer, connected to the output of the product register, is needed for the final output of the result. 
The Out signal for enabling the tri-state buffer is also used as the Done signal. Finally, the comparator generates the 
status signal for the condition (n > 1) to the control unit. One input to the comparator comes from the counter where 
n is stored, and the other input is the constant 1. 
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Figure 9.22 Dedicated datapath for solving the factorial problem of Example 9.6. 

The control words for evaluating the factorial using the dedicated datapath shown in Figure 9.22 has five 
control signals: productMux, productLoad, nLoad, nCount, and Out, as shown in Figure 9.23(a). 

Control word 1 loads n into the counter register by asserting the nLoad signal. We are not loading into the 
product register, so the productLoad signal is de-asserted, and therefore, it doesn’t matter what the productMux 
signal is. Both nCount and Out are de-asserted, since we don’t want to decrement n, and we are not done evaluating. 

Control word 2 initializes product to 1. Since the constant 1 is connected to the 1-input of the multiplexer, we 
need to set productMux to 1. The productLoad signal has to be asserted to actually load the constant 1 into the 
register. 

Control word 3 multiplies product with n. Since the value stored in a register is always available at its output, 
the combinational multiplier circuit constantly is performing the multiplication of these two numbers. The output 
from the multiplier is stored back into the product register simply by setting productMux to 0 and asserting the 
productLoad signal. 

Control word 4 decrements n by asserting the nCount signal. Since we are using a down counter, asserting 
nCount will decrement the value stored in the register. Again, we are not loading a value into the product register, so 
the value of productMux does not matter. 

Control word 5 outputs the value stored in the product register. This is accomplished simply by asserting the 
Out signal. The value stored in the product register, which is available at its output, is passed through the tri-state 
buffer to the output port. Since the Out signal is also connected to the Done signal, asserting Out will also assert 
Done. 

Notice that with this dedicated datapath, several instructions can be performed in parallel, as shown by the 
control words in Figure 9.23(b). Specifically, inputting n and initializing product to 1 can be performed 
simultaneously by control word 1. In the datapath circuit, the path that goes from the data input port to the counter 
register for storing n is separated completely from the path that goes from the constant 1 to the register for storing 
product. Because of this, control word 1 can assert both the productLoad and the nLoad signals together. Asserting 
productLoad and productMux will load in the constant 1, while nLoad will load in n. 

Similarly, the multiplication and the decrement instructions can be performed together by control word 2. Here, 
productLoad is asserted and productMux is de-asserted to store the result from the multiplier, while nCount is 
asserted to decrement n. We will see in the next chapter that, by reducing the number of control words, the circuit 
for the control unit will be smaller. ♦  
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Control 
Word Instruction productMux productLoad nLoad nCount Out 

1 INPUT n × 0 1 0 0 
2 product = 1 1 1 0 0 0 
3 product = product * n 0 1 0 0 0 
4 n = n – 1 × 0 0 1 0 
5 OUTPUT product × 0 0 0 1 

(a) 
 

Control 
Word Instruction productMux productLoad nLoad nCount Out 

1 INPUT n, product = 1 1 1 1 0 0 
2 product = product * n, n = n – 1 0 1 0 1 0 
3 OUTPUT product × 0 0 0 1 

(b) 

Figure 9.23 Control words for solving the factorial problem of Example 9.6: (a) using five control words; (b) using 
only three control words. 

9.3.5 Count 0’s and 1’s 

Example 9.7: Count 0’s and 1’s 

In this example, we want to construct an 8-bit dedicated datapath for solving the following problem: 

Input an 8-bit number. Output a 1 if the number has the same number of 0’s and 1’s, otherwise, output a 0. 
(E.g., the number 10111011 will output a 0; whereas, the number 10100011 will output a 1.) 

The algorithm for solving the problem is shown in Figure 9.24. The WHILE loop is executed eight times using 
the counteight variable for the 8 bits in the input number n. For each bit in n, if it is a 1, the variable countbit is 
incremented, otherwise, it is decremented. At the end of the WHILE loop, if countbit is equal to 0, then there are the 
same number of 0’s and 1’s in n. 

INPUT n
countbit = 0 // for counting the number of zero and one bits
counteight = 0 // for looping eight times
WHILE (counteight ≠ 8) {

IF (n0 = 1) THEN // test whether bit 0 of n is a 1
countbit = countbit + 1

ELSE
countbit = countbit – 1

END IF
n = n >> 1 // shift n right one bit
counteight = counteight + 1;
}

IF (countbit = 0) THEN
OUTPUT 1

ELSE
OUTPUT 0

END IF
ASSERT Done

Figure 9.24 Algorithm for solving the count 0’s and 1’s problem of Example 9.7. 
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After analyzing the algorithm, we conclude that the following registers and functional units are needed for the 
datapath: 

•  An  8-bit shifter with parallel load register for storing and shifting n. 
•  A 4-bit up counter for counteight. 
•  A 4-bit up-down counter for countbit. 
•  A “not equal to 8” comparator for looping eight times.  
•  An “equal to 0” comparator for testing with countbit. 

The dedicated datapath for implementing the algorithm is shown in Figure 9.25. Notice that there are no 
connections between the shifter and the two counters; they are completely separate circuits. To extract bit 0 of n and 
test whether it is equal to a 1 or not, we only have to connect to the least significant bit, n0, of the shifter, and no 
active component is necessary. To test for (counteight ≠ 8), we use a 4-input NAND gate with the three least 
significant input bits inverted. When counteight is equal to eight, the NAND gate outputs a 0, which serves as the 
ending loop condition. Using the Down signal, the countbit register can be either incremented or decremented. Since 
register countbit is keeping track of the number of 0’s and 1’s, if it is a 0 at the end, it means that n has the same 
number of 0’s and 1’s. The NOR gate will output a 1 if countbit is a 0. Whether the output of the NOR gate actually is 
outputted will depend on whether the tri-state buffer is enabled or not. When the control unit asserts the Out signal 
to enable the tri-state buffer, this 1 signal also serves as the Done signal to inform the external user that the 
computation is completed. In other words, when the Done signal is asserted, the output value is the correct result for 
the computation. 

The control words for this example are shown in Figure 9.26. Notice that there are several control words with 
don’t-care values. For example, in control word 2 for initializing countbit to 0, it does not matter what the setting for 
the Down signal, is since we are not incrementing or decrementing the count. ♦  
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Figure 9.25 Dedicated datapath for solving the count 0’s and 1’s problem of Example 9.7. 
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Control 
Word Instruction nLoad nShift eightCount Down bitCount Clear Out 

1 INPUT n 1 0 × × × × 0 
2 countbit = 0, counteight = 0 0 0 0 × 0 1 0 
3 countbit = countbit + 1 0 0 0 0 1 0 0 
4 countbit = countbit – 1 0 0 0 1 1 0 0 
5 n = n >> 1 0 1 0 × 0 0 0 
6 counteight = counteight + 1 0 0 1 × 0 0 0 
7 OUTPUT 1, OUTPUT 0, ASSERT Done 0 0 0 × 0 0 1 

Figure 9.26 Control words for solving the count 0’s and 1’s problem of Example 9.7. 

9.4 General Datapaths 
As the name suggests, a general datapath is more general than dedicated datapath in the sense that it can be used 

to solve various problems instead of just one specific problem, as long as it has all of the required functional units 
and enough registers for storing all of the temporary data. The idea of using a general datapath is that we can use a 
“ready-made” datapath circuit to solve a given problem without having to modify it. The tradeoff is a time-versus-
space issue. On one hand, we do not need the extra time to design a dedicated datapath. On the other hand, the 
general datapath may contain more features than what the problem requires, so it not only increases the size of the 
circuit but also consumes more power than necessary. 

Figure 9.27 shows an example of a simple, general datapath. It contains one functional unit, the ALU, and one 
8-bit register for storing data. The input to the A operand of the ALU can be either from an external data input or the 
constant 1, as selected by the multiplexer select line IE. The B operand of the ALU is always from the content of the 
register. The operation of the ALU is determined by the three control lines: ALU2, ALU1, and ALU0, as defined in the 
ALU operation table. The design of the ALU was discussed in Section 4.5. The register has a load capability for 
loading the output of the ALU into the register when the Load signal line is asserted. The register can also be reset to 
0 asynchronously by asserting the Clear signal line. The content of the register can be passed to the external data 
output port by asserting the output enable line, OE, of the tri-state buffer. We assume here that the buses for 
transferring the data between the components are 8-bits wide. All the control lines, of course, are 1-bit wide. 
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ALU2 ALU1 ALU0 Operation 
0 0 0 Pass through A 
0 0 1 A AND B 
0 1 0 A OR B 
0 1 1 NOT A 
1 0 0 A + B 
1 0 1 A – B 
1 1 0 A + 1 
1 1 1 A – 1  

Figure 9.27 A simple, general datapath circuit. 
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There are seven control signals (numbers 0 to 6) for controlling the operations of this simple, general datapath. 
When grouped together, they form the control word for this datapath. Just like the dedicated datapath, various 
operations can be performed by this datapath either by asserting or de-asserting these control signals at different 
times.  

For example, to load a value from the external data input to the register, we would set the control word as 
follows: 

 
IE ALU2 ALU1 ALU0 Load Clear OE Control word 6 5 4 3 2 1 0 

Value  1 0 0 0 1 0 0 

By setting IE = 1, we select the external input to pass through the multiplexer. From the ALU operation table, 
we see that setting the ALU control lines: ALU2, ALU1, and ALU0, to 000 selects the pass-through operation, which 
passes the data from the A operand input of the ALU to the output of the ALU with no modifications. Finally, setting 
Load = 1 loads the value from the output of the ALU into the register. Thus, we have stored the input value into the 
register. We do not want to clear the register nor output the value from the register, so both Clear and OE are set to 
0’s. 

Note that the actual writing of the register occurs at the next active edge of the clock. Thus, the new value is not 
available from the register until the beginning of the next clock cycle. If we read from the register during the current 
clock cycle, we would get the original value that was in the register and not the new value that was just entered in. In 
other words, if we had set OE to 1 in the above control word, we would be reading the register in the current clock 
cycle and, thus, be outputting the original value found in the register rather than the new value from the data input. 
We will look at this important issue again in Section 9.6. 

9.5 Using General Datapaths 

Using a general datapath is exactly the same as using a dedicated datapath. We simply have to assert (or de-
assert) the appropriate control signals at the right time so that the data transfer between registers is correct to realize 
a data manipulation statement. The following example shows how we can use the general datapath shown in Figure 
9.27 to solve a problem. 

Example 9.8: Using a general datapath to output the numbers from 1 to 10 

To see how a general datapath is used to perform a computation, let us write the control words to generate and 
output the numbers from 1 to 10 using the general datapath shown in Figure 9.27. This example, of course, is 
identical to Example 9.4, except that we are using a different datapath. Hence, only the control words will be 
different. The algorithm is repeated here in Figure 9.28(a), and the control words for using this general datapath to 
solve the problem are shown in Figure 9.28(b). 

1 i = 0
2 WHILE (i ≠ 10){
3 i = i + 1
4 OUTPUT i
5 }

(a) 
 

Control IE ALU2 ALU1 ALU0 Load Clear OE 
Word Instruction 6 5–3 2 1 0 

1 i = 0 × ××× 0 1 0 
2 i = i + 1 0 100 (add) 1 0 0 
3 OUTPUT i × ××× 0 0 1 

(b) 
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Figure 9.28 Generate and output the numbers from 1 to 10: (a) algorithm; (b) control words for the datapath in 
Figure 9.27 using three control words. 

Control word 1 initializes i to 0 by asserting the Clear signal for the register. The ALU is not needed in this 
operation, so it doesn’t matter what the inputs to the ALU are or the operation that is selected for the ALU to 
perform. Hence, the four control lines: IE (for selecting the input), ALU2, ALU1, and ALU0 (for selecting the ALU 
operation) are all set to don’t-cares. Load is de-asserted because we do not need to store the output of the ALU to the 
register. At this time, we also do not want to output the value from the register, so the output control line OE is also 
de-asserted. 

Control word 2 increments i, so we need to add a 1 to the value that is stored in the register. Although, the ALU 
has an increment operation, we cannot use it because the ALU was designed such that the operation increments the 
A operand rather than the B operand, and this datapath is connected such that the output of the register goes to the B 
operand only. Now, we can modify the ALU to have an increment B operation, or we can modify the datapath so 
that the output of the register can be routed to the A operand of the ALU. However, both of these solutions require 
modifications to the datapath, and this defeats the purpose of using a general datapath. If we are going to modify this 
datapath, we may as well modify it even further to get a dedicated data path. So instead, what we can do is to use the 
ALU addition operation (100) to increment the value stored in the register by one. We can get a 1 to the A operand 
by setting IE to 0, since the 0-input line of the multiplexer is tied to the constant 1. The B operand will have the 
register value. Finally, we need to load the result of the addition back into the register, so the Load line is asserted. 

Control word 3 outputs the value from the register. Again, we don’t care about the inputs to the ALU and the 
operation of the ALU, so there is no new value to load into the register. We definitely do not want to clear the 
register. We simply want to output the value from the register, so we just assert OE by setting it to a 1. 

Just like for the dedicated datapath, the general datapath must also provide the status signal for the condition 
(i ≠ 10) to the control unit. Using this status signal, the control unit will determine whether to repeat control words 2 
and 3 in the loop or to terminate. We must, therefore, add a comparator to this general datapath to test whether the 
condition (i ≠ 10) is true or not. The output of this comparator is the status signal that the datapath sends back to the 
control unit. Since variable i is stored in the register, we should connect the output of the register to the input of this 
comparator, as shown in Figure 9.29. 
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Figure 9.29 The comparator circuit for generating the status signal (i ≠ 10) added to the general datapath.  
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The simulation trace for this counting example is shown in Figure 9.30. Notice that two cycles are needed for 
each count, as shown in the output signal in the trace—the first cycle for control word 2 where the output shows a Z 
value, and the second cycle for control word 3 where the actual count appears at the output. These two cycles are 
repeated ten times for the ten numbers. For example, at 500 ns (at the beginning of the first of the two clock cycles), 
Load = 1 and OE = 0. The current content of the register is 1. Since OE = 0, so the output is Z. At 700 ns (the 
beginning of the second of the two clock cycles), the register is updated with the value 2. Load is de-asserted and 
OE is asserted, and the number 2 is output. 

This simulation trace was obtained by manually asserting and de-asserting the seven datapath control signals at 
each clock cycle. This is only because we wanted to test out the datapath, and we have not yet constructed the 
control unit for generating these control signals automatically. What we really need to do eventually is to construct 
the control unit based on the control words from Figure 9.28(b). The control unit will generate the appropriate 
control signals for the datapath for each clock cycle.  ♦  

 
Figure 9.30 Simulation trace for Example 9.8 using the three control words shown in Figure 9.28(b). 

9.6 A More Complex General Datapath 
When a particular general datapath does not contain all of the functional units and/or registers needed to 

perform all of the required operations specified in the algorithm that we are trying to implement, then we need to 
select a more complex datapath. When working with general datapaths, the goal is to find the simplest and smallest 
datapath that matches the requirements of the problem as closely as possible. Example 9.9 shows the need for 
selecting a more complex datapath. 

Example 9.9: Determining the need for a complex datapath 

Let us use the simple datapath of Figure 9.27 to generate and add the numbers from n down to 1, where n is an 
8-bit user input number, and output the sum of these numbers. The algorithm for doing this is shown in Figure 9.31. 
The algorithm requires the use of two variables, n for the input that counts down to 0, and sum for adding up the 
total. This means that we need two registers in the datapath, unless we want the user to enter the numbers from n 
down to 1 manually and just use the one register to store the sum. Thus, we conclude that the datapath of Figure 9.27 
cannot be used to implement this algorithm. ♦  

In order to implement the algorithm of Figure 9.31 we need a slightly more complex datapath that includes at 
least two registers. One possible datapath is shown in Figure 9.32(a). The main difference between this datapath and 
the previous one is that a register file (RF) with four locations is used instead of having just one register. The 
register file, as discussed in Section 8.4, has one write port and two read ports. To access a particular port, the enable 
line for that port must be asserted and the address for the location set up. The designated lines are WE for write 
enable, RAE for read Port A enable, and RBE for read Port B enable, WA1,0 for the write address, RAA1,0 for the read 
Port A address, and RBA1,0 for the read Port B address. The read Ports A and B can be read simultaneously, and they 
are connected to the two input operands A and B of the ALU, respectively. The ALU operations are specified in 
Figure 9.32(b). The result of the ALU is passed through a shifter whose operations are specified in Figure 9.32(c). 
Although the shifter is not needed by the algorithm of Figure 9.31, it is available in this datapath. The output of the 
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shifter is routed back to the register file via the multiplexer, or it can be output externally by enabling the output tri-
state buffer. The datapath width is again 8-bits wide. 

1 sum = 0
2 INPUT n
3 WHILE (n ≠ 0){
4 sum = sum + n
5 n = n - 1
6 }
7 OUTPUT sum

Figure 9.31 Algorithm to generate and sum the numbers from n down to 1. 
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SH1 SH0 Operation 
0 0 Pass through 
0 1 Shift left and fill with 0 
1 0 Shift right and fill with 0 
1 1 Rotate right 

 

(c) 

Figure 9.32 Complex general datapath with a register file: (a) circuit; (b) ALU operations; (c) Shifter operations. 

Example 9.10: Using complex datapath to sum numbers 

The summation algorithm of Figure 9.31 can be implemented using the datapath shown in Figure 9.32. The 
control words for manipulating the datapath for this algorithm are shown in Figure 9.33. 

Control word 1 initializes sum to 0 by performing a subtraction where the two operands are the same. The 
location of the register file (RF) used for the two operands is arbitrary because it doesn’t matter what the value is, as 
long as both operands get the same value. We use RF location 00 to store the value of the variable sum. Thus, we 
assert all three RF enable lines, and sets the RF write address and both read addresses to location 0. The shifter is not 
needed, so the pass-through operation is selected. 
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Control IE WE WA1,0 RAE RAA1,0 RBE RBA1,0 ALU2,1,0 SH1,0 OE 
Word Instruction 15 14 13–12 11 10–9 8 7–6 5–3 2–1 0 

1 sum = 0 0 1 00 1 00 1 00 101 (subtract) 00 0 
2 INPUT n 1 1 01 0 ×× 0 ×× ××× ×× 0 
3 sum = sum + n 0 1 00 1 00 1 01 100 (add) 00 0 
4 n = n – 1 0 1 01 1 01 0 ×× 111 (decrement) 00 0 
5 OUTPUT sum × 0 ×× 1 00 0 ×× 000 (pass) 00 1 

Figure 9.33 Control words to generate and sum the numbers from n down to 1 using the datapath in Figure 9.32. 

All of the operations specified by a control word are performed within one clock cycle. The timing for the 
operations of this control word is as follows. At the active edge of the clock, the FSM enters the state for this control 
word. The appropriate control signals for this control word to the datapath are asserted. Data from RF location 0 is 
read for both ports and passed to the ALU. Recall that the register file is constructed such that the data from reading 
a port is available immediately, and does not have to wait until the next active clock edge. Since both the ALU and 
the shifter are combinational circuits, they will operate within the same clock cycle. The result is written back to RF 
location 0 at the next active clock edge. Thus, the updated or new value in RF location 0 is not available until the 
beginning of the next clock cycle. 

Control word 2 inputs the value n and stores it in RF location 1. To read from the input, we set IE = 1. To write 
n into RF location 1, we set WE = 1 and WA1,0 = 01. Both the ALU and the shifter are not used in this control word, 
so their select lines are set to don’t-cares. 

Control word 3 reads sum through Port A by setting RAE = 1 and RAA1,0 = 00, and n through Port B by setting 
RBE = 1 and RBA1,0 = 01. These two numbers are added together by setting the ALU select lines, ALU2,1,0, to 100. 
The result of the addition passes through the shifter and the multiplexer, and then it is written back to RF location 0. 

Control word 4 decrements n by 1 by using the decrement operation of the ALU (111). From RF location 01, n 
is read through Port A and passes to the A operand of the ALU. The ALU decrements the A operand by 1, and the 
result is written back to RF location 01. 

After decrementing n, the WHILE loop needs to test the value of n. In order for the control unit to loop correctly, 
the datapath must generate the correct status signal for the condition (n ≠ 0). The question is where do we connect 
the comparator inputs to in the datapath so that we can get the correct value for n? Since n is stored in location 01 of 
the register file, our first inclination might be to connect to Port A of the register file, which is also the input to the 
ALU. An alternative might be to connect to the output of the ALU. The difference between these two connection 
points is that, for the first connection, we would be using the value of n before the decrement, while for the second 
connection, we would be using the value of n after the decrement. Furthermore, if we look at these same two 
connection points at a different time, say, during the clock cycle for control word 3, then the values are not even for 
n, but rather for sum, since control word 3 reads sum through Port A, and the ALU calculates sum + n. Therefore, in 
order to know which is the correct connection point, we need to look at the state diagram for this algorithm to 
determine in which state is the status signal needed and what data is being passed through the datapath during that 
clock cycle. We will come back to this problem in the next chapter. 

Control word 5 outputs the result that is stored in sum by reading from RF location 0 via Port A and passing it 
through the ALU and shifter. OE is asserted to enable the tri-state buffer for the output. 

The simulation trace of the control words is shown in Figure 9.34. Again, the datapath control signals are set 
manually until n (stored in RF(1)) reaches 0, at which point OE is asserted, and the summation value 55 appears on 
the output.  ♦  
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Figure 9.34 Simulation trace for the summation problem control words of Figure 9.33. 

Example 9.11:  Using a general datapath to implement the multiplication of two numbers  

Write the control words for performing the multiplication of two unsigned numbers using the general datapath 
shown in Figure 9.32. The two numbers are entered in through the data input port. The multiplication algorithm is 
shown in Figure 9.35. 

1 prod = 0
2 INPUT A
3 INPUT B
4 WHILE (B ≠ 0){
5 prod = prod + A
6 B = B - 1
7 }
8 OUTPUT prod

Figure 9.35 Algorithm to multiply two unsigned numbers. 

The control words for manipulating the datapath to perform the multiplication of two unsigned numbers are 
shown in Figure 9.36. 

Control word 1 assigns a 0 (obtained from subtracting a number from itself) to RF(0). RF(0) is used for storing 
the variable prod. 

Control words 2 and 3 input the two unsigned numbers A and B into RF(1) and RF(2), respectively. IE is set to 
1 so that the value comes from Data Input, and because of this, it doesn’t matter what the ALU and the shifter will 
do. WE is asserted for the write. WA1,0 are set to the addresses 01 for variable A and 10 for variable B. 

Control word 4 performs the addition of prod with A. Variable prod, stored in RF(0), is read through Port A; 
and variable A, from RF(1), is read through Port B. The ALU is selected for addition, and the result is passed 
through the shifter. With WE being asserted and WA1,0 set to 00, the result is written back into RF(0). 

Control word 5 decrements B. Variable B, from RF(2), is read through Port A. The ALU is selected for the 
decrement operation, and the result is again passed through the shifter. The result is written back into RF(2). 

Control word 6 outputs the result stored in prod by reading RF(0) through Port A, and passing this value 
through the ALU and the shifter. The value is passed to the data output port by asserting OE. ♦  
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Control IE WE WA1,0 RAE RAA1,0 RBE RBA1,0 ALU2,1,0 SH1,0 OE 
Word Instruction 15 14 13–12 11 10–9 8 7–6 5–3 2–1 0 

1 prod = 0 0 1 00 1 00 1 00 101 (subtract) 00 0 
2 INPUT A 1 1 01 0 ×× 0 ×× ××× ×× 0 
3 INPUT B 1 1 10 0 ×× 0 ×× ××× ×× 0 
4 prod = prod + A 0 1 00 1 00 1 01 100 (add) 00 0 
5 B = B – 1 0 1 10 1 10 0 ×× 111 (decrement) 00 0 
6 OUTPUT prod × 0 ×× 1 00 0 ×× 000 (pass) 00 1 

Figure 9.36 Control words to multiply two unsigned numbers using the datapath in Figure 9.32. 

9.7 Timing Issues 
In Figure 9.28(b) of Example 9.8 to generate and output the numbers from 1 to 10, two control words are used 

for the addition and output operations. Control word 2 does the addition and writing of the result into the register, 
while control word 3 outputs the count stored in i. During the current clock cycle for control word 2, the operation 
starts with the constant ‘1’ passing through the multiplexer, followed by the ALU performing the addition i + 1, as 
shown in Figure 9.37. The current value of i is available from the output of the register at the beginning of the 
current clock cycle. The result from the addition is available shortly before the beginning of the next clock cycle 
(next rising clock edge). Recall from Section 6.7 that a value is latched into a flip-flop at the active (rising) edge of 
the clock. So, although the Load signal is asserted at the beginning of the current clock cycle, a value is not written 
into the register until the next rising clock edge, which is at the beginning of the next clock cycle. Since the addition 
result is available before the next rising clock edge, it is this addition result that is written into the register at the 
beginning of the next clock cycle. 

So for control word 2, we are doing both a read and a write of the same register, i, in one clock cycle for 
executing the instruction i = i + 1. The read is for the i that is on the right-hand side of the equal sign, and the write 
is for the i that is on the left-hand side of the equal sign. From the above analysis, we see that performing both a read 
and a write to the same register in the same clock cycle does not create any data conflict because the reading occurs 
at the beginning of the current clock cycle and, therefore, is getting the current value that is in the register. The 
writing occurs at the beginning of the next clock cycle, which happens after the reading. 

As a result, the value that is available at the output of the register in the current clock cycle is still the value 
before the write back, which is the value before the addition of i + 1. If we assert the OE signal in the current clock 
cycle to output the register value (that is, do the addition and output operations in the same clock cycle as shown in 
control word 2 of Figure 9.38), the output value would be the value before the addition and not the result from after 
the addition. According to the algorithm in Figure 9.28(a), the output should be for the value from after the addition. 
Because of this, Figure 9.28(b) uses control word 3 (starting at the next clock cycle) to output the value from after 
the addition. 

Clock Signal

Start of control word 2 Start of control word 3
Write register with ALU result

Constant '1' passes through multiplexer

ALU performs i + 1

current clock cycle next clock cycle

Result of i + 1 ready

Load asserted

Read i from register

IE de-asserted
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Figure 9.37 Read and write timings for a control word. 

The simulation trace for the two control words of Figure 9.38 (where the addition and output operations are 
both done in the same control word) is shown in Figure 9.39. There are two main differences between this 
simulation trace and the one in Figure 9.30. The first is that each count now requires only one clock cycle rather than 
two, because only control word 2 is repeated ten times. As a result, the time to count to ten is about half (2.3 µs 
versus 4.1 µs). The second thing is that the first output value is a 0 and not a 1 (as it should be). The first time that 
control word 2 executes is the clock cycle between 100 ns and 300 ns. The incremented value (1) is not written into 
the register until at 300 ns, so when OE is asserted before 300 ns, the output value is a 0. 

We certainly like the fact that it only requires half the time to execute the algorithm, but outputting an extra zero 
at the beginning is not what we wanted. There are several possible solutions, one of which is shown in Figure 9.40. 
In Figure 9.40, control signal OE is not asserted in control word 2, which is executed only once at the beginning 
before the loop. (Notice that control words 1 and 2 together are equivalent to assigning the constant 1 to i.) 
Subsequent executions of control word 3 will have OE asserted together with the addition, and this one we will 
repeat ten times. The corrected simulation trace for this set of control words is shown in Figure 9.41. Again, only 2.3 
µs are needed for the completion of the algorithm, but this time, the count at the output starts at 1 rather than 0. 
 

Control IE ALU2 ALU1 ALU0 Load Clear OE 
Word Instruction 6 5–3 2 1 0 

1 i = 0 × ××× 0 1 0 
2 i = i + 1 & OUTPUT i 0 100 (add) 1 0 1 

Figure 9.38 Counting algorithm using two control words for the datapath in Figure 9.27(a). 

 
Figure 9.39 Simulation trace for using the two control words from Figure 9.38. 

 
 

Control IE ALU2 ALU1 ALU0 Load Clear OE 
Word Instruction 6 5–3 2 1 0 

1 i = 0 × ××× 0 1 0 
2 i = i + 1 0 100 (add) 1 0 0 
3 i = i + 1 & OUTPUT i 0 100 (add) 1 0 1 

Figure 9.40. Optimized control words for the counting algorithm using the datapath in Figure 9.27(a). 
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Figure 9.41 Corrected simulation trace for using the three control words from Figure 9.40. 

9.8 VHDL for Datapaths 
In modeling the datapath using VHDL, we need to work at the structural level. First, all of the components used 

in the datapath must be described individually. It doesn’t matter whether these components are described at the 
behavioral, dataflow, or structural level. These components are then connected together in an enclosing entity using 
the structural level method. 

9.8.1 Dedicated Datapath 

Figure 9.42 shows the VHDL code for the dedicated datapath of Figure 9.25. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY Datapath IS PORT (
Clock: IN STD_LOGIC;

-- primary datapath input
Input: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

-- control signals
nLoad: IN STD_LOGIC;
nShift: IN STD_LOGIC;
eightCount: IN STD_LOGIC;
Clear: IN STD_LOGIC;
bitCount: IN STD_LOGIC;
Down: IN STD_LOGIC;
OutDone: IN STD_LOGIC;

-- status signals
eq8: OUT STD_LOGIC;
N0eq1: OUT STD_LOGIC;

-- primary datapath output
Count: OUT STD_LOGIC_VECTOR(3 DOWNTO 0); -- for debug
Done: OUT STD_LOGIC;
Output: OUT STD_LOGIC);

END Datapath;
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ARCHITECTURE Structural OF Datapath IS
COMPONENT shiftreg PORT (

Clock: IN STD_LOGIC;
SHSel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END COMPONENT;

COMPONENT counter PORT (
Clock: IN STD_LOGIC;
Clear: IN STD_LOGIC;
Count: IN STD_LOGIC;
Down: IN STD_LOGIC;
Q: OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

SIGNAL SHSel: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL ShiftOut: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL CountbitOut: INTEGER RANGE 0 TO 15;
SIGNAL CounteightOut: INTEGER RANGE 0 TO 15;
SIGNAL Equal: STD_LOGIC;
SIGNAL Up: STD_LOGIC;

BEGIN

SHSel <= nShift & nLoad;
U0: shiftreg PORT MAP(Clock,SHSel,Input,ShiftOut);
N0eq1 <= ShiftOut(0);

-- counteight
Up <= '0';
U1: counter PORT MAP(Clock,Clear,eightCount,Up,CounteightOut);
eq8 <= '1' WHEN CounteightOut = 8 ELSE '0';
Count <= CONV_STD_LOGIC_VECTOR(CounteightOut, 4); -- for debug

-- countbit
U2: counter PORT MAP(Clock,Clear,bitCount,Down,CountbitOut);
Equal <= '1' WHEN CountbitOut = 0 ELSE '0';
Output <= Equal WHEN OutDone = '1' ELSE 'Z';
Done <= OutDone;

END Structural;

Figure 9.42 VHDL code for the datapath in Figure 9.25. 

9.8.2 General Datapath 

Figure 9.43 and Figure 9.44 show the complete VHDL code for modeling the complex, general datapath circuit 
from Figure 9.32. Figure 9.43 lists the definitions of all of the components used in the datapath. The VHDL codes 
and the detail constructions of the components used in the datapath circuit have been discussed in previous chapters. 
Figure 9.44 shows the enclosing entity that connects these components together at the structural level to form the 
datapath. 

-- 2-to-1 MUX
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY mux2 IS PORT (
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S: IN STD_LOGIC; -- select line
D1, D0: IN STD_LOGIC_VECTOR(7 downto 0); -- data bus input
Y: OUT STD_LOGIC_VECTOR(7 downto 0)); -- data bus output

END mux2;

ARCHITECTURE Behavioral OF mux2 IS
BEGIN

PROCESS(S, D1, D0)
BEGIN

IF(S = '0' )THEN
Y <= D0;

ELSE
Y <= D1;

END IF;
END PROCESS;

END Behavioral;

-------------------------------------------------------------------------
-- Register File
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
--USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY regfile IS PORT (
clk: IN STD_LOGIC; --clock
WE: IN STD_LOGIC; --write enable
WA: IN STD_LOGIC_VECTOR(1 DOWNTO 0); --write address
input: IN STD_LOGIC_VECTOR(7 DOWNTO 0); --input
RAE: IN STD_LOGIC; --read enable ports A & B
RAA: IN STD_LOGIC_VECTOR(1 DOWNTO 0); --read address port A & B
RBE: IN STD_LOGIC; --read enable ports A & B
RBA: IN STD_LOGIC_VECTOR(1 DOWNTO 0); --read address port A & B
Aout, Bout: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); --output port A & B

END regfile;

ARCHITECTURE Behavioral OF regfile IS
SUBTYPE reg IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE regArray IS array(0 TO 3) OF reg;
SIGNAL RF: regArray; --register file contents

BEGIN
WritePort: PROCESS (clk)
BEGIN

IF (clk'EVENT AND clk = '1') THEN
IF (WE = '1') THEN

RF(CONV_INTEGER(WA)) <= input;
END IF;

END IF;
END PROCESS;

ReadPortA: PROCESS (RAE, RAA)
BEGIN

IF (RAE = '1') then
Aout <= RF(CONV_INTEGER(RAA)); -- convert bit VECTOR to integer

ELSE
Aout <= (others => '0');

END IF;
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END PROCESS;

ReadPortB: PROCESS (RBE, RBA)
BEGIN

IF (RBE = '1') then
Bout <= RF(CONV_INTEGER(RBA)); -- convert bit VECTOR to integer

ELSE
Bout <= (others => '0');

END IF;
END PROCESS;

END Behavioral;

-------------------------------------------------------------------------
-- ALU
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
-- need the following to perform arithmetics on STD_LOGIC_VECTORs
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY alu IS PORT (
ALUSel: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- select for operations
A, B: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- input operands
F: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- output

END alu;

ARCHITECTURE Behavior OF alu IS
BEGIN

PROCESS(ALUSel, A, B)
BEGIN

CASE ALUSel IS
WHEN "000" => -- pass A through

F <= A;
WHEN "001" => -- AND

F <= A AND B;
WHEN "010" => -- OR

F <= A OR B;
WHEN "011" => -- NOT

F <= NOT A;
WHEN "100" => -- add

F <= A + B;
WHEN "101" => -- subtract

F <= A - B;
WHEN "110" => -- increment

F <= A + 1;
WHEN others => -- decrement

F <= A - 1;
END CASE;

END PROCESS;
END Behavior;

-------------------------------------------------------------------------
-- Shifter
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY shifter IS PORT (
SHSel: IN STD_LOGIC_VECTOR(1 DOWNTO 0); -- select for operations
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input: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- input operands
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- output

END shifter;

ARCHITECTURE Behavior OF shifter IS
BEGIN

PROCESS(SHSel, input)
BEGIN

CASE SHSel IS
WHEN "00" => -- pass through

output <= input;
WHEN "01" => -- shift right

output <= input(6 DOWNTO 0) & '0';
WHEN "10" => -- shift left

output <= '0' & input(7 DOWNTO 1);
WHEN OTHERS => -- rotate right

output <= input(0) & input(7 DOWNTO 1);
END CASE;

END PROCESS;
END Behavior;

-------------------------------------------------------------------------
-- Tri-state buffer
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY TriStateBuffer IS PORT (
E: IN STD_LOGIC;
D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END TriStateBuffer;

ARCHITECTURE Behavioral OF TriStateBuffer IS
BEGIN

PROCESS (E, D) -- get error message if no d
BEGIN

IF (E = '1') THEN
Y <= D;

ELSE
Y <= (OTHERS => 'Z'); -- to get 8 Z values

END IF;
END PROCESS;

END Behavioral;

Figure 9.43 Components for the datapath of Figure 9.32. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY datapath IS PORT (
clock: IN STD_LOGIC;
input: IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );
IE, WE: IN STD_LOGIC;
WA: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
RAE: IN STD_LOGIC;
RAA: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
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RBE: IN STD_LOGIC;
RBA: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
aluSel: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
shSel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
OE: IN STD_LOGIC;
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END datapath;

ARCHITECTURE Structural OF datapath IS

COMPONENT mux2 PORT (
S: IN STD_LOGIC; -- select lines
D1, D0: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- data bus input
Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- data bus output

END COMPONENT;

COMPONENT regfile PORT (
clk: IN STD_LOGIC; --clock
WE: IN STD_LOGIC; --write enable
WA: IN STD_LOGIC_VECTOR(1 DOWNTO 0); --write address
input: IN STD_LOGIC_VECTOR(7 DOWNTO 0); --input
RAE: IN STD_LOGIC; --read enable ports A & B
RAA: IN STD_LOGIC_VECTOR(1 DOWNTO 0); --read address port A & B
RBE: IN STD_LOGIC; --read enable ports A & B
RBA: IN STD_LOGIC_VECTOR(1 DOWNTO 0); --read address port A & B
Aout, Bout: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); --output port A & B

END COMPONENT;

COMPONENT alu PORT (
ALUSel: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- select for operations
A, B: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- input operands
F: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- output

END COMPONENT;

COMPONENT shifter PORT (
SHSel: IN STD_LOGIC_VECTOR(1 DOWNTO 0); -- select for operations
input: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- input operands
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- output

END COMPONENT;

COMPONENT tristatebuffer PORT (
E: IN STD_LOGIC;
D: IN STD_LOGIC_VECTOR(7 downto 0);
Y: OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT;

SIGNAL muxout, rfAout, rfBout: STD_LOGIC_VECTOR( 7 DOWNTO 0 );
SIGNAL aluout, shiftout, tristateout: STD_LOGIC_VECTOR( 7 DOWNTO 0 );

BEGIN
-- doing structural modeling here

U0: mux2 PORT MAP( IE, input, shiftout, muxout );
U1: regfile PORT MAP(clock,WE,WA,muxout,RAE,RAA,RBE,RBA,rfAout,rfBout );
U2: alu PORT MAP( ALUsel, rfAout, rfBout, aluout );
U3: shifter PORT MAP(SHSel,aluout,shiftout);
U4: tristatebuffer PORT MAP(OE, shiftout, tristateout);
output <= tristateout;
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END Structural;

Figure 9.44 Datapath of Figure 9.32 constructed at the structural level. 

9.9 Summary Checklist 
 
� Datapath 
� Dedicated datapath 
� Control signals 
� Status signals 
� Control word 
� General datapath 
� Register-transfer level design 
� Timing issues (when a register is updated) 
� Be able to design a dedicated datapath from an algorithm 
� Be able to generate the status signals 
� Be able to use a given datapath by deriving the control words for it to implement an algorithm 

9.10 Problems 

9.1. Derive the truth table for the circuit in Figure P9.1. The truth table should only have columns for the control 
signal inputs and outputs. The data inputs, D0 to D3, are written in the table entries. 

1-to-2
Decoder

01
s y

01
s y

+ / -

A0

E

Subtract

OutE

Output

D0D1D2D3

Y0

Y1

 
Figure P9.1. 
 

Answer: 
 

A0 E Subtract OutE Output 
0 0 0 0 Z 
0 0 0 1 D2 + D0 
0 0 1 0 Z 
0 0 1 1 D2 - D0 
0 1 0 0 Z 
0 1 0 1 D3 + D0 
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0 1 1 0 Z 
0 1 1 1 D3 - D0 
1 0 0 0 Z 
1 0 0 1 D2 + D0 
1 0 1 0 Z 
1 0 1 1 D2 - D0 
1 1 0 0 Z 
1 1 0 1 D2 + D1 
1 1 1 0 Z 
1 1 1 1 D2 - D1 

9.2. Use schematic entry to implement the general datapath shown in Figure 9.27. 

9.3. Test the datapath from Problem 9.2 by performing a simulation on the algorithm shown in Figure 9.28. 

9.4. Implement the datapath from Problem 9.2 on the UP2 board. Perform sample tests to show that it operates 
correctly. 

9.5. Write the VHDL code for the general datapath shown in Figure 9.27. 

9.6. Use simulation to show that the synthesized circuits from Problem 9.2 and Problem 9.5 perform functionally 
identical to each other. 

9.7. Use schematic entry to implement the general datapath shown in Figure 9.32. 

9.8. Test the datapath from Problem 9.7 by performing a simulation on the algorithm shown in Figure 9.31. 

9.9. Implement the datapath from Problem 9.7 on the UP2 board. Perform sample tests to show that it operates 
correctly. 

9.10. Test the datapath from Problem 9.7 by performing a simulation on the algorithm shown in Figure 9.35. 

9.10.1 Use schematic entry to implement the datapath for Counting 1 to 10 

9.11. Example 9.4. 

9.10.2 Simulate and test the datapath for Counting 1 to 10 

9.12. Example 9.4. 

9.10.3 Write the VHDL code for the datapath for Counting 1 to 10 

9.13. Example 9.4. 

9.10.4 Use schematic entry to implement the datapath for Summation of n Down to 1 

9.14. Example 9.5. 

9.10.5 Simulate and test the datapath for Summation of n Down to 1 

9.15. Example 9.5. 
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9.10.6 Write the VHDL code for the datapath for Summation of n Down to 1 

9.16. Example 9.5. 

9.10.7 Use schematic entry to implement the datapath for Factorial of n 

9.17. Example 9.6. 

9.10.8 Simulate and test the datapath for Factorial of n 

9.18. Example 9.6. 

9.10.9 Write the VHDL code for the datapath for Factorial of n 

9.19. Example 9.6. 

9.10.10 Use schematic entry to implement the datapath for Count 0’s and 1’s 

9.20. Example 9.7. 

9.10.11 Simulate and test the datapath for Count 0’s and 1’s 

9.21. Example 9.7. 

9.10.12 Write the VHDL code for the datapath for Count 0’s and 1’s 

9.22. Example 9.7. 

9.23. Derive and simulate the control words using the datapath shown in Figure 9.32 for inputting two 8-bit 
unsigned numbers, and then output the largest number. 

9.24. Derive and simulate the control words using the datapath shown in Figure 9.32 for inputting three 8-bit 
unsigned numbers, and then output the largest number, followed by the second largest.  

9.25. Derive and simulate the control words using the datapath shown in Figure 9.32 for inputting ten 8-bit 
unsigned numbers, and then output the sum of the numbers. 

9.26. Derive and simulate the control words using the datapath shown in Figure 9.32 for inputting multiple 8-bit 
unsigned numbers until a zero is entered, and then output the number of numbers entered. 

9.27. Derive and simulate the control words using the datapath shown in Figure 9.32 for inputting an 8-bit unsigned 
number, and then output the number of 1 bits in the number. For example, the number 11010110 has five 1 
bits. 

9.28. Derive and simulate the control words using the datapath shown in Figure 9.32 for solving the Greatest 
Common Divisor (GCD) algorithm shown in Figure P9.28. 

WHILE (X ≠ Y){
IF (X < Y) THEN

Y = Y - X;
ELSE

X = X - Y;
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END IF
}

Figure P9.28. 

9.29. Design an 8-bit dedicated datapath for the algorithm in Figure P9.29, and write the control words for it. Use 
only one adder-subtractor unit for all the addition and subtraction operations. Label clearly all of the control 
and status signals. 

w = 0
x = 0
y = 0
INPUT z
WHILE (z ≠ 0) {
w = w – 2
IF (z is an odd number) THEN

x = x + 2
ELSE

y = y + 1
END IF
z = z – 1
}

Figure P9.29. 

Answer: 

Load 8-bit register
Clear

D7-0

z
Q7-0Clock

Load 8-bit register
Clear

D7-0

y
Q7-0Clock

Load 8-bit register
Clear

D7-0

x
Q7-0Clock

Load 8-bit register
Clear

D7-0

w
Q7-0Clock

0123
s1-0

+ / -

01

'1' '2'

8

8 8

8

8 8

z0

LOp1-0

ROp

Subtract

(z is odd)

(z ≠ 0)

Clock
Clear

wLoad
xLoad
yLoad
zLoad

01zMux

input

8
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Control 
Word Instruction zMux zLoad yLoad xLoad wLoad Clear LOp1-0 ROp Subtract 

1 w = 0, x = 0, y = 0 × 0 0 0 0 1 ×× × × 
2 INPUT z 1 1 0 0 0 0 ×× ×× × 
3 w = w – 2 × 0 0 0 1 0 00 0 1 
4 x = x + 2 × 0 0 1 0 0 01 0 0 
5 y = y + 1 × 0 1 0 0 0 10 1 0 
6 z = z – 1 0 1 0 0 0 0 11 1 1 

 

9.30. Design a dedicated datapath for inputting two 8-bit unsigned numbers, and then output the largest number. 
The datapath should have only one input port and one output port. Label clearly all of the control and status 
signals. 

Answer: 

8

Input

01

Output

Load 8-bit register
Clear

D7-0

Y
Q7-0

Load 8-bit register
Clear

D7-0

X
Q7-0

LoadX

LoadY
Clear
Clock

SelX

OutE

(X>Y) >

 

9.31. Design and simulate a dedicated datapath for inputting three 8-bit unsigned numbers, and then output the 
largest number, followed by the second largest. 

9.32. Design and simulate a dedicated datapath for inputting ten 8-bit unsigned numbers, and then output the sum 
of the numbers. 

9.33. Design and simulate a dedicated datapath for inputting multiple 8-bit unsigned numbers until a zero is 
entered, and then output the number of numbers entered. 

9.34. Design and simulate a dedicated datapath for inputting an 8-bit unsigned number, and then output the number 
of 1 bits in the number. For example, the number 11010110 has five 1 bits. 

9.35. Design and simulate a dedicated datapath for solving the algorithm in Figure P9.35. Use only one adder (i.e., 
no adder-subtractor and no ALU) for all the arithmetic operations. Include the circuits for generating all of the 
status signals. The datapath is 4-bits wide. 

s1 = 0;
s2 = 0;
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FOR(i=0; i≠10; i++){
INPUT j;
IF (j is even) THEN

s1++;
ELSE

s2++;
END IF
}

OUTPUT s1;
OUTPUT s2;

Figure P9.35. 

9.36. Design and simulate a dedicated datapath for solving the Greatest Common Denominator (GCD) algorithm 
shown in Figure P9.36. The two numbers X and Y are 8-bit unsigned numbers. Include the circuits for 
generating all the status signals. 

WHILE (X ≠ Y){
IF (X < Y) THEN

Y = Y - X;
ELSE

X = X - Y;
END IF
}

Figure P9.36. 

9.37. Design and simulate a dedicated datapath for implementing a stack of size 10. When the Push signal is 
asserted, the input value is pushed onto the stack. When the Pop signal is asserted, the value at the top of the 
stack is output. 
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In the last chapter, we saw how a datapath is designed and how it is used to execute a particular algorithm by 
specifying the control words to manipulate the datapath at each clock cycle. In that chapter, we tested the datapath 
by setting the control word signals manually during simulation. However, to actually have the datapath 
automatically operate according to the control words, a control unit is needed to generate the control word signals 
automatically at each clock cycle. 

The control unit inside the microprocessor is a finite state machine. By stepping through a sequence of states, 
the control unit controls the operations of the datapath. For each state that the control unit is in, the output logic that 
is inside the control unit will generate all of the appropriate control signals for the datapath to perform one data 
operation. These data operations are referred to as register-transfer operations. Each register-transfer operation 
consists of reading a value from a register, modifying the value by one or more functional units, and finally, writing 
the modified value back into the same or a different register. 

Since the control unit is a finite state machine, the circuit for it is derived exactly as discussed in Section 7.3 
having the next-state circuit, the state memory register, and the output logic circuit. However, the sequential circuits 
synthesized in Section 7.3 are stand-alone FSMs and were not used as part of larger circuits. What we want to do 
now is to synthesize these FSMs as control units for microprocessors. The main difference is in the way we define 
and use the input and output signals of the FSM. The FSM models shown in Figure 7.1 simply show that the FSM 
has input and output signals. For a control unit, we want to be more precise as to where the input signals come from, 
where the output signals go to, and what these signals are used for. 

There are two types of input signals and two types of output signals. The control inputs are the primary 
external input signals to the control unit. These are the external signals for controlling the operation of the 
microprocessor. For example, a Start signal will tell the microprocessor to start executing, or a Reset signal will 
reset the state memory to the initialization state. The status signals are input signals from the datapath. Usually, 
comparators in the datapath generate these status signals for determining execution branches in an algorithm (for 
example, to test whether or not to repeat a loop). These two types of input signals together provide information for 
the next-state logic circuit in the FSM to determine what next state to go to in the next clock cycle. 

The control outputs are the primary output signals from the microprocessor to the external world. For example, 
when a microprocessor is finished executing an algorithm, it outputs a Done signal to let the user know that it is 
done, and that the data being output by the datapath is valid. The control signals are probably the most important of 
all the input/output signals, since these are the signals that directly control the operations of the datapath. In every 
clock cycle, the control unit will generate a different set of control signals for the datapath to perform one register-
transfer operation. 

One of the first things that we do when constructing an FSM circuit is to derive the state diagram. When 
deriving the state diagram for the control unit, we have to be very careful with the timings of the register-transfer 
operations. The issue here is that, when we write a value into a register, that value is not available until the 
beginning of the next clock cycle.  Hence, if we read from the register in the current clock cycle, we would be 
reading the old value in the register rather than the new value that is being written into the register. 

When we were designing general FSMs in Chapter 7, this timing issue was never a problem, because we were 
not using the FSMs to control register-transfer operations in a datapath. They are stand-alone FSMs, and so their 
input and output signals are independent of each other. 

However, the FSMs that we want to design in this chapter are for controlling register-transfer operations in a 
datapath. The output signals from these FSMs are control signals for the datapath, and some of them are used to load 
registers with new values. These new register values may be used by comparators for the testing of conditions. The 
results of these conditional tests are the status signals used by the control unit to determine what next state to go to. 
Finally, from the different states, different control signals are generated. Hence, for a control unit, the status (input) 
signals and the control (output) signals are dependent on each other. Thus, when status signals are generated, we 
need to make sure that they are from tests of the intended register value. 

Timing problem issues are resolved during the state diagram derivation step. Once we have the correct timing 
state diagram, then deriving the actual control unit circuit is exactly the same as the process described in Chapter 7 
for deriving an FSM. To help deal with timing issues, we sometimes prefer to use an algorithmic state machine 
(ASM) chart or a state action table to describe the behavior of a control unit rather than using a state diagram. The 
use of ASM charts and state action tables is discussed in Section 10.3. 
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10.1 Constructing the Control Unit 
In Chapter 9, we learned how to construct and use a datapath to implement an algorithm. All data manipulation 

instructions in the algorithm are converted to control words, and each control word is executed in one clock cycle to 
perform one register-transfer operation. A control unit is used to generate the appropriate control signals in the 
control words so that the datapath can perform all of the required register-transfer operations automatically. These 
control signals are the output signals from the output logic circuit that is inside the FSM. 

In addition to generating the control signals, the control unit is also needed to control the sequencing of the 
instructions in the algorithm. The datapath is responsible only for the manipulation of the data; it only performs the 
register-transfer operations. It is the control unit that determines when each register-transfer operation is to be 
executed and in what order. The sequencing done by the control unit is established during the derivation of the state 
diagram. 

The state diagram shows what register-transfer operation is executed in what state and the sequencing of the 
execution of these operations. A state is created for each control word, and each state is executed in one clock cycle. 
The edges in the state diagram are determined by the sequence in which the instructions in the algorithm are 
executed. The sequential execution of instructions is represented by unconditional transitions between states (i.e., 
edges with no labels). Execution branches in the algorithm are represented by conditional transitions from a state 
with two outgoing edges: one with the label for when the condition is true and the other with the label for when the 
condition is false. If there is more than one condition, then all possible combinations of these conditions must be 
labeled on the outgoing edges from every state. These conditions are the status signals generated by the datapath, 
and passed to the next-state logic in the FSM. 

Once the state diagram is derived, the actual construction of the control unit circuit follows the same procedure 
as for the FSM discussed in Section 7.3. We will now illustrate the construction of simple control units with several 
examples. 

10.1.1 Counting 1 to 10 

Example 10.1: Deriving the control unit for the counting problem 

In this example, we will construct the state diagram and the control unit for controlling the dedicated datapath 
from Example 9.4 to generate and output the numbers from 1 to 10. The algorithm, dedicated datapath, and control 
words from Example 9.4 are repeated here in Figure 10.1 for convenience. 

1 i = 0
2 WHILE (i ≠ 10){
3 i = i + 1
4 OUTPUT i
5 }

(a) 
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Control 
Word Instruction iLoad Clear Out 

1 i = 0 0 1 0 
2 i = i + 1 1 0 0 
3 OUTPUT i 0 0 1 

(c) 

Figure 10.1 The counting problem for Example 10.1: (a) algorithm; (b) dedicated datapath; (c) control words. 

From the algorithm shown in Figure 10.1(a), we see that there are three data manipulation instructions: lines 1, 
3, and 4. Line 2 is not a data manipulation statement, but rather, it is a control statement. From Example 9.4, we 
have derived the three corresponding control words for these three data manipulation instructions for controlling the 
dedicated datapath shown in Figure 10.1(b). These three control words are shown here in Figure 10.1(c). 

We start by assigning these three control words to three separate states in the state diagram, as shown in Figure 
10.2(a). The states are given the symbolic names s0, s1, s2, and s3 and are annotated with the control word and 
instruction that each is assigned to execute. In state s0, we want the control unit to generate the control signals for 
control word 1 to execute the instruction i = 0. In state s1, we want the control unit to generate the control signals for 
control word 2 to execute the instruction i = i + 1. State s2 executes the instruction OUTPUT i. State s3 is added simply 
for exiting the WHILE loop and halting the execution of the algorithm. 

The sequence in which the states are connected follows the sequence of the instructions in the algorithm. The 
FSM starts from the reset state s0, which initializes i to 0. After executing line 1 in the algorithm, the execution of 
line 3 depends on the condition in the WHILE loop. Since line 1 is executed in state s0 and line 3 is executed in state 
s1, therefore, transitioning from state s0 to s1 depends on the test condition (i ≠ 10). This condition is represented by 
the two outgoing edges from state s0: one edge going to state s1 with the label (i ≠ 10) for when the condition is true, 
and one edge going to state s3 with the label (i ≠ 10)' for when the condition is false. The execution of line 4 follows 
immediately after line 3; hence, there is an unconditional edge from state s1 to s2. From state s2, there are the same 
two conditional edges as from state s0 for testing whether to repeat the WHILE loop or not. If the condition (i ≠ 10) is 
true, then the FSM will go back to state s1; otherwise, the FSM will exit the WHILE loop and go to state s3. The FSM 
halts in state s3 by having an unconditional edge going back to itself. No register-transfer operation is assigned to 
state s3. 

Having derived the state diagram, the actual construction of the control unit circuit is exactly the same as for 
constructing general FSM circuits. The next-state table is shown in Figure 10.2(b). Since there is a total of four 
states, two flip-flops are needed to encode them. For simplicity, the straight binary encoding scheme is used for 
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encoding the states. Hence, state s0 is encoded as Q1Q0 = 00, state s1 is encoded as Q1Q0 = 01, and so on. In the next-
state table, these four states are assigned to four rows, each labeled with the state name and their encoding.  

In addition to the four current states listed down the rows of the table, the next state of the FSM is also 
dependent on the status signal for the test condition (i ≠ 10). Thus, we have the last two columns in the table: one 
column with the label (i ≠ 10)' for when the condition is false and one column with the label (i ≠ 10) for when the 
condition is true. 

The two flip-flops and one status signal give us a total of three variables (or 23 different combinations) to 
consider in the next-state table. Each next-state entry in the table is obtained from the state diagram by looking at the 
corresponding current state and the edges leading out from that state to see what the next state is. For example, 
looking at the state diagram shown in Figure 10.2(a), the edge with the label (i ≠ 10) leading out from state s0 goes 
to state s1. Correspondingly, in the next-state table, the next-state entry at the intersection of row s0 (00) and the 
column labeled (i ≠ 10) has the value s1 (01). 

From the next-state table, we get the implementation table, as shown in Figure 10.2(c). Using D flip-flops to 
implement the FSM, the implementation table is the same as the next-state table because the characteristic equation 
for the D flip-flop is Qnext = D. The only difference between the two tables is that the bits in the entries mean 
something different. In the next-state table, the bits in the entries (labeled Q1nextQ0next) are the next states for the FSM 
to go to. In the implementation table, the bits (labeled D1D0) are the inputs necessary to realize those next states. 

From the implementation table, we derive the excitation equations. The excitation equations are used to derive 
the next-state circuit for generating the inputs to the state memory flip-flops. Since we have used two D flip-flops, 
two excitation equations (one for D1, and one for D0) are needed, as shown in Figure 10.2(d). The two K-maps for 
these two excitation equations are obtained from extracting the corresponding bits from the implementation table. 
For example, the leftmost bit in each entry in the implementation table is for the D1 K-map and equation, and the 
rightmost bit is for the D0 K-map and equation. These two excitation equations are dependent on the three variables, 
Q1, Q0, and (i ≠ 10), which represent the current state and status signal, respectively. Having derived the excitation 
equations, it is trivial to draw the next-state circuit based on these equations. 

The output logic circuit for the FSM is derived from the control word signals and the states in which the control 
words are assigned to. Recall that the control signals control the operation of the datapath, and now we are 
constructing the control unit to control the datapath. So what the control unit needs to do is to generate and output 
the appropriate control signals in each state to execute the instruction that is assigned to that state. In other words, 
the control signals for controlling the operation of the datapath are simply the output signals from the output logic 
circuit in the FSM. 

To derive the output table, we take the control word table and replace all of the control word numbers with the 
actual encoding of the state in which that control word is assigned to. For example, looking at the state diagram 
shown in Figure 10.2(a), control word 1 is assigned to state s0. So in the output table, we put in the value 00 instead 
of the control word number 1. The value 00 is the encoding that we have given to state s0, and it represents the 
current state value for the two flip-flops, Q1, and Q0. Since there is no control word or instruction assigned to the 
halting state, s3 (11), all of the control signals for this state can be de-asserted. The output table and the resulting 
output equations are shown in Figure 10.2(e) and (f), respectively. 

Once we have derived the excitation and output equations, we easily can draw the control unit circuit shown in 
Figure 10.2(g). The state memory simply consists of the two D flip-flops with asynchronous clear signals. All of the 
asynchronous clear signals are connected to the global Reset signal. Both the next-state logic circuit and the output 
logic circuit are combinational circuits and are constructed from the excitation equations and output equations, 
respectively.  ♦  

Digital Logic and Microprocessor Design with VHDL Chapter 10 - Control Units

332



Next State 
Q1next Q0next 

Current State 
Q1Q0 (i ≠ 10)' (i ≠ 10) 
s0 00 s3 11 s1 01 
s1 01 s2 10 s2 10 
s2 10 s3 11 s1 01 
s3 11 s3 11 s3 11 

 
(b) 

 
(i ≠ 10)

s0

s1

s2

s3

Control Word 1
i = 0

(i ≠ 10) (i ≠ 10)'

Halt

(i ≠ 10)'

Control Word 2
i = i + 1

Control Word 3
OUTPUT i

 

(a) 
 

Implementation 
D1 D0 

Current State 
Q1Q0 (i ≠ 10)' (i ≠ 10) 

00 11 01 
01 10 10 
10 11 01 
11 11 11 

 (c) 
 

(i ≠ 10)
1

1

1 1

0

00

01

Q1Q0

D1

1 111

110

Q0

(i ≠ 10)'

 

D1 = (i ≠ 10)' + Q0 

(i ≠ 10)
1

1 1

0

00

01

Q1Q0

D0

1 111

1 110

Q1

Q0'

 

D0 = Q1 + Q0' 
(d) 

 
Q1Q0 iLoad Clear Out 

00 0 1 0 
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Figure 10.2 Construction of the control unit for Example 10.1: (a) state diagram; (b) next-state table; (c) 
implementation table using D flip-flops; (d) K-maps and excitation equations; (e) output table; (f) output equations 
for the three control signals; (g) circuit. 

10.1.2 Simple IF-THEN-ELSE 

We will now construct the state diagram and the control unit for controlling the dedicated datapath from 
Example 9.3 for the simple IF-THEN-ELSE problem. The algorithm, dedicated datapath, and control words from 
Example 9.3 are repeated here in Figure 10.3 for convenience. Example 10.2 shows the naive way of creating a state 
diagram by simply assigning one state for each control word, just like in Example 10.1. However, we will see from 
the example that the state diagram created this way for this problem is incorrect, because the status signal generated 
is wrong. Example 10.3 shows the derivation of the corrected state diagram and the construction of the control unit 
for the IF-THEN-ELSE problem. 
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1 INPUT A
2 IF (A = 5) THEN
3 B = 8
4 ELSE
5 B = 13
6 END IF
7 OUTPUT B
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Control 
Word Instruction ALoad Muxsel BLoad Out 

1 INPUT A 1 × 0 0 
2 B = 8 0 1 1 0 
3 B = 13 0 0 1 0 
4 OUTPUT B 0 × 0 1 

(c) 

Figure 10.3 The IF-THEN-ELSE problem for Example 10.2 and Example 10.3: (a) algorithm; (b) dedicated datapath; 
(c) control words. 

Example 10.2: Deriving an incorrect state diagram 

In this example, we will derive the state diagram for the control unit for controlling the dedicated datapath from 
Example 9.3 for solving the IF-THEN-ELSE problem. From the algorithm shown in Figure 10.3(a), we see that there 
are four data manipulation instructions: lines 1, 3, 5, and 7. Line 2 is not a data manipulation instruction, but rather, 
it is a control statement. From Example 9.3, we have derived the four corresponding control words for these four 
data manipulation instructions for controlling the dedicated datapath shown in Figure 10.3(b). These four control 
words are repeated here in Figure 10.3(c). 

Again, we start by assigning these four control words to four separate states in the state diagram, as shown in 
Figure 10.4(a). These four states are given the symbolic names s_input, s_equal, s_notequal, and s_output, and are 
annotated with the control word and instruction that is assigned to them. For example, in state s_input, we want the 
control unit to generate the control word 1 signals for executing the instruction INPUT A, and in state s_equal, we 
want the control unit to generate the control word 2 signals for executing the instruction B = 8. 
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After the INPUT A instruction, the execution of the following two instructions, B = 8 and B = 13, depends on the 
condition of the IF statement. Since these three instructions are assigned to the three states: s_input, s_equal, and 
s_notequal, respectively, therefore, transitioning from state s_input to the other two states depends on the condition 
(A = 5) in the IF statement. This conditional execution is represented by the two outgoing edges from state s_input: 
one edge going to state s_equal with the label (A = 5) for when the condition is true, and one edge going to state 
s_notequal with the label (A = 5)' for when the condition is false. The instruction, OUTPUT B, is executed 
unconditionally after executing either of the two instructions, B = 8 or B = 13; therefore, from either state s_equal or 
s_notequal, there is an unconditional edge going to state s_output. The algorithm halts after executing OUTPUT B, so 
we make the FSM halt in state s_output by unconditionally going back to itself. 

According to the algorithm, after inputting a value for A in state s_input, we need to test for the condition 
(A = 5). If the condition is true, we go to state s_equal to execute the instruction B = 8; otherwise, we go to state 
s_notequal to execute the instruction B = 13. From either state s_equal or s_notequal, the next and final state is 
s_output. Let us assume that state s_input is executed in clock cycle 1. In clock cycle 2, either state s_equal or 
s_notequal is executed. State s_output is then executed in clock cycle 3. 

There are two important points to understand and remember here: 

1. At a rising clock edge, a register is loaded with a new value if its load signal is asserted 

2. At every rising clock edge, the FSM enters a new state—the next state 

As with all of our other examples, we use the rising clock edge as the active edge. The reason for point 1 is 
because we are using positive edge-triggered D flip-flops with enable in our registers. So if the flip-flop is enabled, 
then the input data will be stored into the flip-flop at the next rising clock edge. Point 2 is because we are also using 
positive edge-triggered D flip-flops in the state memory register inside the FSM. However, these flip-flops are 
always enabled without the need of an enable signal (see Section 6.7). Therefore, at every rising clock edge, a new 
value from the next-state logic circuit will be stored into the state memory register, and so, the FSM enters a new 
state at every rising clock edge. 

If we construct the control unit based on the state diagram shown in Figure 10.4(a), then the following scenario 
can occur. At the first rising clock edge, the FSM enters state s_input. Shortly after entering state s_input, the FSM 
asserts the control signal ALoad to load in a value for variable A. Since a register is loaded at a rising clock edge, 
and the first rising clock edge has passed, therefore, the value for A will be loaded into the register at the next rising 
clock edge (i.e., at the beginning of clock cycle 2). However, the FSM needs to go to the next state (either s_equal or 
s_notequal) also at the beginning of clock cycle 2. In order for the FSM to know which of the two states to go to, the 
FSM must know the result of the test condition (A = 5) while it is still in state s_input. The dilemma here is that the 
status signal generated by the comparator for the test (A = 5) is needed in state s_input, and the test uses the input 
value of A. However, this value of A is not available until the beginning of the next clock cycle. Therefore, what the 
comparator is reading from the register in clock cycle 1 is the old (or current) value of A and not the new input 
value. 

Figure 10.4(b) shows the timing diagram for this state diagram with the incorrect result. The user inputs a 5. 
The diagram shows that the value 5 is loaded into register A at time 200 ns (the beginning of clock cycle 2). Since 
the input is a 5, the test for (A = 5) should be true, and the output should be an 8. However, in the timing diagram, 
we see that the state changes to s_notequal at time 200 ns. This is because the conditional test is reading A with the 
old value of 0 rather than the new value of 5. Hence, the output of 13 is incorrect.  ♦  
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Figure 10.4 Example 10.2: (a) incorrect state diagram; (b) incorrect timing diagram. 

You may be wondering why the state diagram for Example 10.1 is correct, whereas the state diagram for 
Example 10.2 is incorrect. The first two lines of these two algorithms are very similar: The first line assigns a value 
to a variable (one with the constant zero, and the other with an input), and the second line is a conditional test with 
the value in the variable. So what causes the conditional test for Example 10.1 to be correct, but the conditional test 
for Example 10.2 to be incorrect? The reason is because the timing of these two variable assignments is different. In 
Example 10.1, the variable i is assigned a 0 by asserting the asynchronous Clear signal for the register. Because of 
the asynchronous clear, i will get a 0 immediately and will not have to wait until the next clock cycle; hence, the 
conditional test is correct. However, in Example 10.2, we use the ALoad signal to load in a value for the register. 
Therefore, A will not get the new value until the beginning of the next clock cycle, but as the conditional test needs 
the value in the current clock cycle, hence, the test is incorrect. 

Example 10.3: Deriving a correct state diagram and the control unit 

In Example 10.2, even though the comparator is testing for the condition (A = 5), it is not getting the correct 
value for A in the clock cycle that the test result is needed. In order for the comparator to get the correct value for A, 
it needs to wait until the value is loaded into the register at the next clock cycle. One simple way to resolve this 
timing error is to add an extra state after inputting the value for A so that the value can be written into the register 
before it is read back out for the test. There is no control word assigned to this extra state. This modified state 
diagram is shown in Figure 10.5(a) and the corresponding timing diagram with the corrected result in (b). The same 
input value of 5 is loaded into the register at time 200 ns at the beginning of clock cycle 2. However, the reading of 
the register for the conditional test does not occur until shortly after time 200 ns. Hence, the test result is equal, and 
the FSM goes to state s_equal and outputs the correct value of 8. 

Clock Cycle 1 Clock Cycle 2 Clock Cycle 3 Clock Cycle 4 
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Figure 10.5 Example 10.3: (a) correct state diagram; (b) correct timing diagram. 

Now that we have derived the correct state diagram, the actual construction of the control unit circuit is exactly 
the same as before. The next-state table is shown in Figure 10.6(b). Since there is a total of five states, three flip-
flops are needed to encode them. For example, state s_input is encoded as Q2Q1Q0 = 000, state s_extra is encoded as 
Q2Q1Q0 = 001, and so on. The three remaining encodings (101, 110, and 111) are not used. In normal circumstances, 
the control unit should never get to one of the unused states. However, due to noises or glitches in the circuit, the 
FSM may end up in one of these unused states. Because of this, it is a good idea to set the next state for all of the 
unused states to the reset state. On the other hand, if you don’t care what the next state is for these unused states, 
then don’t-care values can be used, and this may result in simpler excitation equations. In our next-state table, we 
have added three more rows for these three unused states. Their next state for all input conditions is the reset state, 
000. 

The corresponding implementation table (using D flip-flops) and the resulting excitation equations are shown in 
Figure 10.6(c) and (d), respectively. Note that the excitation equations listed in Figure 10.6(d) are not the only 
correct equations; there are other possible correct excitation equations. For instance, if don’t-care values are used for 
the next states in the three unused states, then the excitation equations may be reduced further. 

The output logic circuit for the FSM is based on the control word signals and the states in which the control 
words are assigned to. There is one output equation for each control word signal, and these equations are dependent 
only on the states of the FSM (i.e., the Q values of the flip-flops). To derive the truth tables for these output 
equations, simply take the control word table and replace all of the control word numbers with the actual encoding 

Clock Cycle 1 Clock Cycle 2 Clock Cycle 3 Clock Cycle 4 
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of the state (i.e., the Q values) in which that control word is assigned to. Having the output table, the output 
equations can be derived easily, as shown in Figure 10.6(e) and (f). 

Once we have derived the excitation and output equations, we can draw the control unit circuit, as shown in 
Figure 10.6(g). The state memory simply consists of the three D flip-flops. Both the next-state logic circuit and the 
output logic circuit are combinational circuits, and are constructed from the excitation equations and output 
equations, respectively.  ♦  
 

s_
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s_
equal

s_
output

(A = 5)' (A = 5)

Control Word 2
B = 8

Control Word 3
B = 13

Control Word 4
OUTPUT B

s_
input

Control Word 1
INPUT A

 

(a) 
 

Next State 
Q2next Q1next Q0next 

Current State 
Q2Q1Q0 (A = 5)' (A = 5) 
s_input  000 s_extra  001 s_extra  001 
s_extra  001 s_notequal  010 s_equal  011 

s_notequal  010 s_output  100 s_output  100 
s_equal  011 s_output  100 s_output  100 

s_output  100 s_output  100 s_output  100 
 Unused 101 000 000 
Unused 110 000 000 
Unused 111 000 000 

 
 
 

(b) 
 

Next State 
D2D1D0 

Current State 
Q2Q1Q0 (A = 5)' (A = 5) 

000 001 001 
001 010 011 
010 100 100 
011 100 100 
100 100 100 
101 000 000 
110 000 000 
111 000 000 

(c) 

D2 = Q2'Q1 + Q2Q1'Q0' 
D1 = Q2'Q1'Q0 
D0 = Q2'Q1'Q0' + Q2'Q1' (A = 5) 

 

(d) 
 

Q2Q1Q0 Instruction ALoad Muxsel BLoad Out 
000 INPUT A 1 × 0 0 
001 No operation 0 × 0 0 
010 B = 8 0 1 1 0 
011 B = 13 0 0 1 0 
100 OUTPUT B 0 × 0 1 
101 No operation 0 × 0 0 
110 No operation 0 × 0 0 
111 No operation 0 × 0 0 

(e) 

ALoad = Q2'Q1'Q0' 
Muxsel = Q2'Q1Q0' 
BLoad = Q2'Q1 
Out = Q2Q1'Q0' 

 

(f) 
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(g) 

Figure 10.6 Construction of the control unit for Example 10.3: (a) state diagram; (b) next-state table; (c) 
implementation table using D flip-flops; (d) excitation equations; (e) output table; (f) output equations for the four 
control signals; (g) circuit. 

10.2 Generating Status Signals 
In Chapter 9, we discussed how status signals are generated and provided several examples showing how it is 

done. In situations where a register value is to be tested, we have connected a comparator to the output of that 
register. However, there are situations when connecting a comparator to the output of a register will produce the 
wrong status signal because it is comparing with an incorrect value. In Examples 10.2 and 10.3, we saw that, if we 
read from a register that has just been written to in the same clock cycle, we will be reading the old value and not the 
new value. The solution we used in Example 10.3 was simply to insert an extra state to wait for the value to be 
written into the register and thus be made available at the output of the register. 

What makes the problem even more difficult (but interesting) is that, during different clock cycles, different 
values may pass through the same point in the datapath. For example, the output of a 2-to-1 multiplexer can have 
two different values during two different times, because in one clock cycle, the select line for the multiplexer might 
be asserted, while in another clock cycle, the select line might be de-asserted—thus passing two different sources to 
the output. Another datapath component that can output different values at different times is the register file. By 
providing different read addresses to the register file, the register file will output values from different locations. 
Thus, we see that, in order to provide the correct value for the comparator to test, we have to look at not only the 
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location in the datapath where the value is stored but also the clock cycle in which the value is needed by the 
comparator. This timing information is obtained from the state diagram. The state diagram tells us in what state a 
status signal is needed, and when the FSM is in that state, what data manipulation instruction is being performed, 
and, therefore, what data is available at different points in the datapath. We will now illustrate this with two 
examples. 

Example 10.4: Generating a correct status signal by connecting the comparator to a different point in the datapath 

In Example 10.2, the state diagram shown in Figure 10.4(a) derived for the datapath shown in Figure 10.3(b) is 
wrong, because in state s_input (when the status signal for the comparison is needed), the comparator is not getting 
the correct input value. The disadvantage to the solution used in Example 10.3 is that an extra clock cycle is needed 
for the execution of the algorithm because of the extra state.  

Another way to resolve this timing problem is to connect the comparator to a different point in the datapath 
instead of adding the extra state to the state diagram. The state diagram in Figure 10.4(a) shows that we need to use 
the input value right away in state s_input for the comparison (A = 5). The datapath shown in Figure 10.3(b) has the 
comparator connected to the output of register A. Because of this, we need an extra clock cycle to wait until the 
input value has been written into the register before it is available to be tested. 

Instead of connecting the comparator to the output of the register, we can connect the comparator directly to the 
primary input (i.e., to the input of the register), as shown in Figure 10.7. This way, we do not have to wait for the 
input value to be written into the register first, but instead, the input value will be available immediately in state 
s_input. As a result, the comparator will have the correct value for performing the test in the right clock cycle, and 
we will not have to add an extra state to the state diagram.  ♦  

Load 4-bit Register
D3-0

A
Q3-0Clock

ALoad

4

Input

4

A3
(A = 5)

Load 4-bit Register
D3-0

B
Q3-0Clock

BLoad

Out

01

'8' '13'

4

4

Muxsel

Clock

A0

Output  
Figure 10.7 Generating the correct status signal for Example 10.4. 

Example 10.5: Summation of n down to 1 

We will now derive the state diagram and generate the correct status signal for the general datapath from 
Example 9.10 for summing the numbers from n down to 1, where n is an input number. The algorithm, general 
datapath, and control words from Example 9.10 are repeated here in Figure 10.8. Figure 10.8(c) shows the five 
control words for controlling the general datapath shown in Figure 10.8(b) for performing the algorithm shown in 
Figure 10.8(a). 

Figure 10.9(a) shows a first attempt to derive the state diagram for the algorithm in Figure 10.8(a). The five data 
manipulation instructions are assigned to five states. On reset, the FSM starts from state s0, where it initializes sum 
to 0 and waits for the Start signal. The Start signal is for telling the control unit when the data input is ready and to 
begin the execution of the algorithm. (The Start signal is similar in function to the Enter key found on personal 
computer keyboards.) The remaining edges in the state diagram follow the execution sequence in the algorithm. 
State s1 executes control word 2 to input the number for n. State s2 executes control word 3 to sum n. State s3 
executes control word 4 to decrement n. Finally, state s4 executes control word 5 to output the value for sum. 

Digital Logic and Microprocessor Design with VHDL Chapter 10 - Control Units

341



1 sum = 0
2 INPUT n
3 WHILE (n ≠ 0){
4 sum = sum + n
5 n = n - 1
6 }
7 OUTPUT sum

(a) 

15

Data Input

WE
WA 4 x 8

RFRAE
RAA

RBE
RBA

14
13-12

11
10-9

8
7-6

Clock

5
4
3

0

IE

OE

ShifterSH1
SH0

2
1

ALU0

ALU1

ALU2 ALU

A B

A B

Data Output

01

Point C

Point D

Point E

Point A

Point B

 

(b) 
 

Control IE WE WA1,0 RAE RAA1,0 RBE RBA1,0 ALU2,1,0 SH1,0 OE 
Word Instruction 15 14 13–12 11 10–9 8 7–6 5–3 2–1 0 

1 sum = 0 0 1 00 1 00 1 00 101 (subtract) 00 0 
2 INPUT n 1 1 01 0 ×× 0 ×× ××× ×× 0 
3 sum = sum + n 0 1 00 1 00 1 01 100 (add) 00 0 
4 n = n – 1 0 1 01 1 01 0 ×× 111 (decrement) 00 0 
5 OUTPUT sum × 0 ×× 1 00 0 ×× 000 (pass) 00 1 

(c) 

Figure 10.8 The summation problem for Example 10.5: (a) algorithm; (b) general datapath; (c) control words. 

In state s1, we input a value for n and immediately test for the condition (n ≠ 0). Similarly, in state s3, we 
perform the instruction n = n – 1 and immediately test for the condition (n ≠ 0). However, we remember from 
Example 10.3 that we cannot test for a condition that involves a value that is being written into a register in the same 
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clock cycle. If we try to solve this timing problem like we did in Example 10.3, we would get the state diagram 
shown in Figure 10.9(b), where an extra wait state, s_wait, is added. On the other hand, Example 10.4 shows that 
sometimes it is not necessary to add an extra wait state if we can find a point in the datapath to connect the 
comparator so that the correct status signal can be generated. 
 

s1

s2

Start

Control Word 2
INPUT n

Start'

Control Word 3
sum = sum + n

Control Word 4
n = n −−−− 1

Control Word 5
OUTPUT sum

Control Word 1
sum = 0

s3

s4

s0

(n ≠ 0)

(n ≠ 0)'

(n ≠ 0)

(n ≠ 0)'

 

(a) 

s1

s_
wait

s2

Start

Control Word 2
INPUT n

Start'

Control Word 3
sum = sum + n

Control Word 4
n = n −−−− 1

Control Word 5
OUTPUT sum

Control Word 1
sum = 0

s3

s0

(n ≠ 0)

(n ≠ 0)'

s4

 

(b) 

Figure 10.9 Two possible state diagrams for solving the summation problem for Example 10.5: (a) without an extra 
wait state; (b) with an extra wait state. 

In terms of optimization, the state diagram in Figure 10.9(a) would be a better choice if the correct status signal 
can be generated because it requires one less state. So the problem is to find a location in the datapath to connect the 
comparator so that it will output the correct status signal for the test (n ≠ 0) during the clock cycle when it is needed. 
The state diagram in Figure 10.9(a) shows that the status signal (n ≠ 0) is needed in states s1 and s3. Therefore, we 
need to find a point in the datapath such that the correct value for n is available during the times when states s1 and 
s3 are being executed. 

In state s3, the instruction n = n – 1 is being executed. In order for the datapath to execute n = n – 1, the value 
for n must be present at the A operand input of the ALU (point C in Figure 10.8(b)), and the result for the decrement 
n – 1 will be available at the output of the ALU (point D in Figure 10.8(b)) during the same clock cycle. According 
to the state diagram in Figure 10.9(a), we want to test for n after the decrement. If we connect the comparator to the 
A operand input of the ALU at point C, we would be comparing the value of n before the decrement during this 
clock cycle. Furthermore, the value for n is not even available in the next clock cycle at point C. The reason is that 
either state s2 or s4 will be executed in the next clock cycle, and for both of these states, the value for sum is needed. 
So in the next clock cycle, the value for sum, and not n, is available at point C. Since the result of the decrement is 
available at point D in the current clock cycle, the comparator should be connected to the output of the ALU at point 
D. 
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The problem now is that we also need n in state s1. In state s1, the instruction INPUT n is executed, and the value 
for n is being stored in the register file. Looking at Figure 10.8(b), we see that, in the clock cycle when the datapath 
executes the instruction INPUT n, n is available only at the primary data input of the datapath at point A and at the 
output of the multiplexer at point B. Since the writing of n to the register file occurs at the next rising clock edge, n 
is not going to be available at the output of the register file in that same clock cycle, let alone at the output of the 
ALU. So in order for the status signal (n ≠ 0) to be correct in state s1, we need to connect the comparator to either 
the primary data input at point A or to the output of the multiplexer at point B. 

For state s3, we need to connect the comparator to point D, but for state s1, we need to connect the comparator to 
either point A or point B. However, in order to generate the correct status signal for both states, the comparator must 
be connected to a point that is correct for both cases. Notice that the execution of the instruction n = n – 1 in state s3 
requires the output of the ALU at point D be routed back to the output of the multiplexer at point B within the same 
clock cycle, so that the decremented value of n can be written into the register file at the next rising clock edge. This 
is possible because both the shifter and the multiplexer are combinational circuits. So, this new decremented value 
of n that we want for the comparison in state s3 is not only available at point D, but also available at points E and B. 
We can therefore conclude that connecting the comparator to the output of the multiplexer at point B will generate 
the correct status signal for the comparison (n ≠ 0) in both states, s1 and s3, as shown in Figure 10.10. 

One last point to note is that, since the comparator is a combinational circuit, it constantly is outputting a value. 
When the FSM is in a state other than s1 or s3, the comparator would be comparing another value with 0. For 
instance, in state s2, the ALU is evaluating sum + n, so the comparator would be comparing the result of sum + n 
with 0. However, this will not affect the correct operation of the control unit, because in state s2, the next-state logic 
does not use this status signal to determine what the next state is. Therefore, even though the comparator is 
generating an incorrect status signal in state s2, the control unit will not use it. When the status signal from the output 
of this comparator is needed in state s1 or s3, it will be the result of a correct comparison. 

Having derived the correct state diagram shown in Figure 10.9(a) and the correct status signal from the datapath 
shown in Figure 10.10, we can now finish the construction of the control unit circuit, as shown in Figure 10.11. 
From the state diagram, we can derive the next-state table, as shown in Figure 10.11(b). Three flip-flops, Q2, Q1, and 
Q0, are needed to encode the five states. In addition to the current states listed down the rows of the table, the next 
state of the FSM also is dependent on the control input signal Start and the status signal (n ≠ 0), from which we get 
the four columns. The labels for the four columns are the four combinations of the two input signals Start and 
(n ≠ 0). For example, the column labeled 10 means that the input signal Start is true (i.e., Start = 1) and the status 
signal (n ≠ 0) is false (i.e., (n ≠ 0) = 0). The derivation of the excitation equations (Figure 10.11(d)), output 
equations (Figure 10.11(f)), and finally, the complete control unit circuit (Figure 10.11(g)) follows the same 
procedure as for synthesizing a general FSM. The Done control output signal is to notify the external world that the 
execution of the algorithm has been completed and that the data at the Data Output is valid. ♦  
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Figure 10.10 Generating the status signal (n ≠ 0) in the datapath for Example 10.5. 
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Next State 

Q2next Q1next Q0next 
Start, (n ≠ 0) 

Current State 
Q2Q1Q0 

00 01 10 11 
s0 000 s0 000 s0 000 s1 001 s1 001 
s1 001 s4 100 s2 010 s4 100 s2 010 
s2 010 s3 011 s3 011 s3 011 s3 011 
s3 011 s4 100 s2 010 s4 100 s2 010 
s4 100 s4 100 s4 100 s4 100 s4 100 

Unused 101 s0 000 s0 000 s0 000 s0 000 
Unused 110 s0 000 s0 000 s0 000 s0 000 
Unused 111 s0 000 s0 000 s0 000 s0 000 

(b) 
 

s1
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(a) 

Implementation 
D2 D1 D0 

Start, (n ≠ 0) 
Current State 

Q2Q1Q0 
00 01 10 11 

000 000 000 001 001 
001 100 010 100 010 
010 011 011 011 011 
011 100 010 100 010 
100 100 100 100 100 
101 000 000 000 000 
110 000 000 000 000 
111 000 000 000 000 

(c) 
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Q1Q0
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(d) 
 

State IE WE WA1 WA0 RAE RAA1 RAA0 RBE RBA1 RBA0 ALU2 ALU1 ALU0 SH1 SH0 OE 
Q2Q1Q0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

000 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 
001 1 1 0 1 0 × × 0 × × × × × × × 0 
010 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 
011 0 1 0 1 1 0 1 0 × × 1 1 1 0 0 0 
100 × 0 × × 1 0 0 0 × × 0 0 0 0 0 1 
101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(e) 

IE = Q2'Q1'Q0 RBA1 = 0 
WE = Q2' RBA0 = Q2'Q1Q0' 
WA1 = 0 ALU2 = Q2'Q0' + Q2'Q1 
WA0 = Q2'Q0 ALU1 = Q2'Q1Q0 
RAE = Q2'Q1 + Q1'Q0' ALU0 = Q2'Q1'Q0' + Q2'Q1Q0 
RAA1 = 0  SH1 = 0 
RAA0 = Q2'Q1Q0 SH0 = 0 
RBE = Q2'Q0' OE = Q2Q1'Q0' 

(f) 
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Figure 10.11 Construction of the control unit for Example 10.5: (a) state diagram; (b) next-state table; (c) 
implementation table; (d) K-maps and excitation equations; (e) output table; (f) output equations; (g) circuit. 

10.3 Stand-Alone Controllers 
So far in the discussion, the control unit is used as a controller for the datapath. However, the control unit can be 

independent of the datapath and used as a stand-alone controller for controlling an external device. There are many 
electronic devices that use a stand-alone control unit for controlling them (for example, the controllers for a 
microwave oven, a soda dispensing machine, a traffic light signal, and a pacemaker, to name just a few). All of these 
devices do not require any calculations or data manipulations, so they do not require the use of a datapath. The 
controllers in them are used just to turn on or off a switch or a light, or whatever external devices they are made to 
control. 

For a traffic light controller, there are sets of three lights (green, yellow, and red) to turn on or off and sensors in 
the road to see if there are cars in one of the four directions. For a soda dispensing machine, there will be switches to 
sense the amount of money put in and the selection made. From these inputs, the controller will determine what 
switch to turn on to allow the selected soda to fall out. 

We will now illustrate the construction of stand-alone controllers with several examples. 

10.3.1 Rotating Lights 

Example 10.6: Stand-alone controller for rotating lights 
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For a simple, interesting example, let us implement a controller that will make the six peripheral segments in a 
7-segement LED light move around in a clockwise or counterclockwise direction, depending on the input of the 
switch W. 

Since there are six light patterns, one for each LED being on and the rest of them off, we can use six states and 
assign one light pattern to one state. Each state will go to the next state in a sequential clockwise direction if the 
switch W is pressed and to the previous state in a sequential counterclockwise direction if W is not pressed. The 
resulting state diagram is similar to the one for a modulo-6 up-down counter and is shown in Figure 10.12(a). The 
six output signals (a, b, c, d, e, and f) correspond to the six peripheral segments in a 7-segment LED. A 1 to the 
segment will turn on that LED, while a 0 will turn it off. 

The next-state table derived from the state diagram and the corresponding implementation table, using D flip-
flops, are shown in Figure 10.12(b). The resulting excitation equations (as derived from the implementation table) 
are shown in Figure 10.12(c). The output table and the resulting output equations are shown in Figure 10.12(d) and 
(e), respectively. The final controller circuit is shown in Figure 10.12(f). To see the lights move, the six output 
signals are connected to the six segments of the 7-segment LED, and a push-button switch is connected to the W 
input, as shown in Figure 10.12(g). ♦  
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(e) 

Clk

D0

Q'0

Q0

Clear

Clk

D1

Q'1

Q1

Clear

W

Clock
Reset

Clk

D2

Q'2

Q2

Clear

f

e

d

c

b

a

a

b

c

d

e

f

 

(f) 

a

b

c

d

e

f
Controller

b
a

f

e

d
c

W

Vcc Common
Vcc

for All
Segments

Reset
ClockClock

Reset

W

 

(g) 

Figure 10.12 Controller for Example 10.6: (a) state diagram; (b) next-state (implementation) table; (c) K-maps and 
excitation equations; (d) output table; (e) output equations; (f) controller circuit; (g) interface circuit. 
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10.3.2 PS/2 Keyboard Controller 

Example 10.7: Controller for a PS/2 keyboard 

In this next example, we will design and implement a more realistic and practical controller, and that is for the 
PS/2 keyboard. The UP2 development board has a 6-pin mini-DIN connector for connecting either a PS/2 keyboard 
or a PS/2 mouse to it. We will design and implement the controller for the keyboard on the FLEX chip. The 
operation of the keyboard and the controller is as follows. 

The communication between the keyboard and the controller (which will be on the FLEX chip) uses two 
signals, KeyboardClock and KeyboardData. When there is no activity, that is, when there is no key press on the 
keyboard, both KeyboardClock and KeyboardData are at a 1. When a key is pressed (or released), the keyboard 
sends a unique code for that key to the controller serially over the KeyboardData line. The serial data on the 
KeyboardData line is synchronized between the keyboard and the controller by clock pulses that the keyboard sends 
over the KeyboardClock line. 

The data for each key that is sent over the KeyboardData line consists of eleven bits. These eleven bits are: a 0 
for the start bit, eight data bits for the key code starting with the least significant bit to the most significant bit, an 
odd parity bit, and lastly, a 1 for a stop bit. Figure 10.13 lists some of the key codes generated by the keyboard when 
the corresponding key is pressed. When a key is released, a different code is generated. The odd parity bit is set such 
that the total number of 1 bits in the eight data bits plus the parity bit is an odd number. 

Figure 10.14 shows a sample timing diagram for the data transmission of the key code 4E (01001110 in binary) 
for the hyphen key. Starting from the inactive state, where both the KeyboardData and KeyboardClock lines are at a 
1, the transmission begins by setting the KeyboardData line to a 0 for the start bit. The keyboard then sends out the 
data and parity bit on the KeyboardData line at a rate of one bit per clock cycle on the KeyboardClock line. The 
clock pulses on the KeyboardClock line are generated by the keyboard. The parity bit for the key code 4E is a 1, 
since the eight data bits consist of an even number of 1 bits, therefore, to make the parity odd, the parity bit must be 
a 1. 
 

Key Key Code  Key Key Code  Key Key Code  Key Key Code 
1 16  A 1C  K 42  U 3C 
2 1E  B 32  L 4B  V 2A 
3 26  C 21  M 3A  W 1D 
4 25  D 23  N 31  X 22 
5 2E  E 24  O 44  Y 35 
6 36  F 2B  P 4D  Z 1A 
7 3D  G 34  Q 15  Esc 76 
8 3E  H 33  R 2B  BS 66 
9 46  I 43  S 1B  CR 5A 
0 45  J 3B  T 2C  Ctrl 14 

Figure 10.13 A partial list of key codes generated by the keyboard. 

start d0 d1 d2 d3 d4 d5 d6 d7 parity stop

KeyboardClock

KeyboardData

0 0 1 1 1 0 0 1 0 1 1
 

Figure 10.14 Sample timing diagram for the data transmission of the key code 4E. 

The state diagram for our keyboard controller shown in Figure 10.15(a) is derived by following the timing 
diagram shown in Figure 10.14. In each of the eight data states, d0, d1, …, d7, we will get one corresponding data 
bit from the KeyboardData input line. For example, suppose we use an 8-bit register named Keycode for storing the 

Digital Logic and Microprocessor Design with VHDL Chapter 10 - Control Units

352



eight data bits. Then in state d0, we will assign KeyboardData to Keycode0 (i.e., the 0th bit of Keycode), and in state 
d1, we will assign KeyboardData to Keycode1, and so on for all eight data bits. This is possible because the 
transition of the FSM from one state to another is synchronized by the keyboard clock signal KeyboardClock. For 
simplicity, we will not check for the start bit, parity bit, nor the stop bit. 

The next-state table and the implementation table using four D flip-flops to encode the eleven states are both 
shown in Figure 10.15(b). The excitation equations derived from the implementation table are shown in Figure 
10.15(c). 

This controller circuit actually does not control the keyboard because it does not generate control signals for the 
operation of the keyboard. Instead, it receives the serial data signals from the keyboard, and packages it into data 
bytes. The output of this controller is simply the data bytes, which represents the key code of the keys being pressed 
on the keyboard. The output table is shown in Figure 10.15(d) and the corresponding output equations in (e). In state 
d0, the bit on the KeyboardData line is loaded into bit 0 of the Keycode register; in state d1, the bit on the 
KeyboardData line is loaded into bit 1 of the Keycode register; and so on. Each bit of the Keycode register must, 
therefore, be able to load in the KeyboardData independently, and each load enable line is asserted by the 
corresponding state encoding. Hence, each of the output equations shown in Figure 10.15(e) is not implemented 
simply as a 5-input AND gate. Instead, a D flip-flop with enable is used for each output signal. The D input to the 
flip-flop is connected to the KeyboardData line. The load enable, E, on the flip-flop is asserted by ANDing the four 
Q values for that state. 

Using the excitation equations for the next-state circuit, four D flip-flops for the state memory, and the output 
equations for the output circuit, we obtain the complete controller circuit, as shown in Figure 10.15(f). The 
implementation of the controller circuit using the FLEX chip is shown in Figure 10.15(g) and is available on the 
accompanying CD-ROM in the file UP2FLEX.GDF. 

In practice, controllers are usually not design manually like what we have done. The purpose of this exercise is 
only to provide an understanding of how controllers are designed. Section 10.5 shows how controllers can be 
automatically synthesized using behavioral VHDL code. ♦  
 

start paritystop

d0 d1 d2 d3 d4 d5

d6d7

 

(a) 
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Current State 
Q3Q2Q1Q0 

Next State (Implementation) 
Q3next Q2next Q1next Q0next (D3 D2 D1 D0) 

0000 start 0001 
0001 d0 0010 
0010 d1 0011 
0011 d2 0100 
0100 d3 0101 
0101 d4 0110 
0110 d5 0111 
0111 d6 1000 
1000 d7 1001 
1001 parity 1010 
1010 stop 0000 

(b) 

Q3Q2
Q1Q0

00

00
1

1

1

01 11 10

01

11

10

D3

 

D3 = Q3Q2'Q1' + Q3'Q2Q1Q0 

Q3Q2
Q1Q0

00 1

00

1

1

1

01 11 10

01

11

10

D2

 

D2 = Q3'Q2Q1' + Q3'Q2Q0' + Q3'Q2'Q1Q0 

Q3Q2
Q1Q0

00

00

1 1 1

1 1

01 11 10

01

11

10

D1

 

D1 = Q3'Q1'Q0 + Q2'Q1'Q0 + Q3'Q1Q0' 
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Q3Q2
Q1Q0

00 1 1

00
1

1 1

01 11 10

01

11

10

D0

 

D0 = Q3'Q0' + Q2'Q1'Q0' 

(c) 
 

Current State 
Q3Q2Q1Q0 

Output 
Keycode7-0 

0000 start  
0001 d0 – – – – – – – KeyboardData 
0010 d1 – – – – – – KeyboardData – 
0011 d2 – – – – – KeyboardData – – 
0100 d3 – – – – KeyboardData – – – 
0101 d4 – – – KeyboardData – – – – 
0110 d5 – – KeyboardData – – – – – 
0111 d6 – KeyboardData – – – – – – 
1000 d7 KeyboardData – – – – – – – 
1001 parity  
1010 stop  

Where a dash (–) means no change to that Keycode bit. 

 (d) 

Keycode7 = Q3Q2'Q1'Q0' KeyboardData 
Keycode6 = Q3'Q2Q1Q0 KeyboardData 
Keycode5 = Q3'Q2Q1Q0' KeyboardData 
Keycode4 = Q3'Q2Q1'Q0 KeyboardData 
Keycode3 = Q3'Q2Q1'Q0' KeyboardData 
Keycode2 = Q3'Q2'Q1Q0 KeyboardData 
Keycode1 = Q3'Q2'Q1Q0' KeyboardData 
Keycode0 = Q3'Q2'Q1'Q0 KeyboardData 

(e) 
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(g) 

Figure 10.15 Controller for Example 10.7: (a) state diagram; (b) next-state (implementation) table; (c) K-maps and 
excitation equations; (d) output table; (e) output equations; (f) controller circuit; (g) interface circuit. 

10.3.3 VGA Monitor Controller 

Most people will think that it is way beyond the beginner’s level to design a VGA monitor controller. However, 
to the contrary, a simple VGA monitor controller can be constructed using a couple of standard sequential 
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components. In Example 10.8, we will design and implement a VGA monitor controller using an FSM for the 
control unit. However, it turns out that the VGA monitor controller is so simple that it can be constructed without 
the need of a FSM. In Example 10.9, we will show how the VGA controller can be implemented without the FSM. 
The UP2 development board has a 15-pin D-sub connector for connecting a standard VGA monitor to it. The signals 
from the D-sub connector are connected directly to the FLEX FPGA chip on the board, so we will implement our 
controller circuits on the FLEX chip. In order to design the VGA controller, we need to first understand how the 
VGA monitor works. 

The monitor screen for a standard VGA format contains 640 columns × 480 rows of picture elements called 
pixels, as shown in Figure 10.16. An image is displayed on the screen by turning on or off individual pixels. 
Although turning on just one pixel doesn’t represent much, when many pixels are turned on, the combined pixels 
portray an image. The monitor continuously scans through the entire screen turning on or off one pixel at a time at a 
very fast speed. Although only one pixel is turned on at any one time, but since the monitor is scanning through the 
screen so fast, you get the impression that all of the pixels are on at the same time. 

Figure 10.16 shows that the scanning starts from row 0, column 0 at the top left corner and moves to the right 
until it reaches the last column in the row. When the scan reaches the end of a row, it retraces to the beginning of the 
next row. When the scan reaches the last pixel at the bottom-right corner of the screen, it retraces back to the top-left 
corner of the screen and repeats the scanning process again. In order to reduce flicker on the screen, the entire screen 
must be scanned 60 times per second or higher. During the horizontal and the vertical retraces, all of the pixels are 
turned off. 

Column 0
Row 0

Column 639

Row 479

640 Pixels per Row

480 Pixels
per Column

Vertical
Retrace

Horizontal
Retrace Horizontal

Scan

VGA
Monitor
Screen

 
Figure 10.16 VGA monitor with 640 columns × 480 rows. The scan starts from row 0, column 0 and moves to the 
right and down until row 479, column 639. 

The VGA monitor is controlled by five signals: red, green, blue, horizontal synchronization, and vertical 
synchronization. The three color signals, referred to collectively as the RGB signal, are used to control the color of a 
pixel at a given location on the screen. These three color signals on the UP2 board are connected such that they can 
individually be turned on or off, hence each pixel can display only one of eight colors. In order to produce more 
colors, each analog color signal must be supplied with a voltage between 0 to 0.7 volts for varying the intensities of 
the colors. The horizontal and vertical synchronization signals are used to control the timing of the scan rate. The 
horizontal synchronization signal determines the time to scan a row, while the vertical synchronization signal 
determines the time to scan the entire screen. By manipulating these five signals, images are formed on the monitor 
screen. 

The horizontal and vertical synchronization signals timing diagram is shown in Figure 10.17. When inactive, 
both synchronization signals are at a 1. The start of a row scan begins with the horizontal synchronization signal 
going low for 3.77 µsec, as shown by region B in Figure 10.17. This is followed by a 1.79 µsec high on the signal, 
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as shown by region C. Next, the data for the three color signals are sent (one pixel at a time) for the 640 columns, as 
shown in region D for 25.42 µsec. Finally, after the last column pixel, there is another 0.79 µsec of inactivity on the 
RGB signal lines, as shown in region E, before the horizontal synchronization signal goes low again for the next row 
scan. The total time to complete one row scan is 31.77 µsec. 

The timing for the vertical synchronization signal is analogous to the horizontal synchronization signal. The 64 
µsec active-low vertical synchronization signal resets the scan to the top-left corner of the screen, as shown in region 
P, followed by a 1020 µsec high on the signal as shown by region Q. Next, there are the 480 row scans of 31.77 
µsec each, giving a total of 15250 µsec, as shown in region R. Finally, after the last row scan, there is another 450 
µsec, as shown in region S, before the vertical synchronization signal goes low again to start another complete 
screen scan starting at the top-left corner. The total time to complete one complete scan of the screen is 16784 µsec. 

In order to get the monitor to operate properly, we simply have to get the horizontal and vertical 
synchronization signals timing correct, and then send out the RGB data for each pixel at the right column and row 
position. It turns out that it is fairly simple to get the correct timing for the two synchronization signals. The built-in 
clock crystal on the UP2 board has a frequency of 25.175 MHz. The clock period is then 1 / 25.175 × 106, which is 
about 0.0397 µsec per clock cycle. For region B in the horizontal synchronization signal, we need 3.77 µsec, which 
is approximately 3.77 / 0.0397 = 95 clock cycles. For region C, we need 1.79 µsec, which is approximately 45 clock 
cycles. Similarly, we need 640 clock cycles for region D for the 640 columns of pixels and 20 clock cycles for 
region E. The total number of clock cycles needed for each row scan is, therefore, 800 clock cycles. Notice that with 
a 25.175 MHz clock, region D requires exactly 640 cycles, giving us the 640 columns per row. Hence, a different 
clock speed will produce a different screen resolution. 

The vertical timings are multiples of the horizontal cycles. For example, region P is 64 µsec, which is 
approximately two horizontal cycles (2 × 31.77). The calculation for region R is 15250 µsec / 31.77 µsec = 480. Of 
course, it has to be exactly 480 times, since we need to have 480 rows per screen. 

In addition to generating the correct horizontal and vertical synchronization signals, the circuit needs to keep 
track of the current column within the D region and the current row within the R region of the scan in order to know 
when to turn on or off a specific pixel. To make a particular pixel green for example, you need to test the values of 
the column and row counts. If they are equal to the location of the pixel that you want to turn on, then you assert the 
green signal, and that pixel will be green. 

Time and Number of
25.175 MHz Clock Cycles

C
1.79 µs

B
3.77 µs

D
25.42 µs

E
0.79 µs

Red, Green, Blue

31.77 µs

640 Column Pixels

95 cycles 45 cycles 640 cycles 20 cycles

800 cycles

Horizontal Synchronization
Signal

Time and Number of
Horizontal Cycles

Red, Green, Blue

P
64 µs

Q
1020 µs

R
15250 µs

S
450 µs

16784 µs

480 Horizontal Cycles

2 cycles 32 cycles 480 cycles 14 cycles

528 cycles

Vertical Synchronization
Signal

 
Figure 10.17 Horizontal and vertical synchronization signals timing diagram. 

Example 10.8: A VGA controller—version 1 
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To get the horizontal and vertical synchronization timing correct, we can design an FSM with 800 states 
running at a clock speed of 25.175 MHz. For the first 95 states, we will output a 0 for the horizontal synchronization 
signal H_Sync. For the next 45 + 640 + 20 = 705 states, we will output a 1 for H_Sync. The problem with this, 
however, is that it is difficult to manually derive the circuit for an 800-state FSM. A simple solution around this 
difficulty is to use just two states: one for when H_Sync is a 0 in region B and one for when it is a 1 in regions C, D, 
and E. We will then use a counter that runs at the same clock speed as the FSM to keep count of how many times we 
have been in a state. For the first state, we will stay there for 95 counts before going to the next state, and for the 
second state, we will stay there for 705 counts before going back to the first state. In the first state, we will output a 
0 for H_Sync, and in the second state, we will output a 1 for H_Sync. 

To help keep track of when the three color signals can be enabled, we will generate an additional H_Data_on 
signal the same way we generated the H_Sync signal. The H_Data_on signal is asserted in region D, and de-asserted 
in regions B, C, and E. Thus, for 640 counts of repeating in one state for region D, we will set H_Data_on to a 1 and 
to a 0 in a second state for the remaining 160 counts for regions B, C, and E. 

Combining the two states for H_Sync and two states for H_Data_on together results in the final state diagram 
for the horizontal timing, as shown in Figure 10.18(a). This FSM has four states corresponding to the four regions, 
B, C, D, and E. The counter initially is set to 0 and increments by 1 at every clock cycle. In state H_B for region B, 
the FSM outputs a 0 for both H_Data_on and H_Sync. The FSM will stay in state H_B for 95 counts. The condition 
(H_cnt = B) checks to see whether the counter is equal to B, where B is equal to 95. When the count is equal to 95, 
the FSM goes to state H_C, which corresponds to region C. In state H_C, the FSM outputs a 0 for H_Data_on and a 
1 for H_Sync for 45 counts (i.e., until H_cnt is B + C = 95 + 45 = 140). When H_cnt reaches 140, the FSM goes to 
state H_D, and outputs a 1 for both H_Data_on and H_Sync. When H_cnt reaches B + C + D = 95 + 45 + 640 = 780, 
the FSM goes to state H_E, and outputs a 0 for H_Data_on and a 1 for H_Sync. The FSM stays in state H_E for 20 
more counts until H_cnt = B + C + D + E = 95 + 45 + 640 + 20 = 800, and then it goes back to state H_B. When the 
FSM goes back to state H_B, H_cnt is reset back to 0, and the process starts all over again for the next row scan. 

The vertical synchronization timing is analogous to the horizontal synchronization timing, so we can do the 
same thing using a second counter and a second FSM. This second vertical FSM is identical to the horizontal FSM. 
The only difference is in the timing. Looking at the times for each region in the vertical synchronization signal in 
Figure 10.17, we see that the 64 µsec for region P is approximately two times the total horizontal scan time of 31.77 
µsec each. The 1020 µsec for region Q is approximately 32 horizontal scan time (1020 / 31.77 ≈ 32). For region R, it 
is 480 horizontal cycles, and for region S, it is approximately 14 horizontal cycles. Hence, the clock for both the 
vertical counter and the vertical FSM can be derived from the horizontal counter. The vertical clock ticks once for 
every 800 counts of the horizontal clock. 

The next-state tables for the horizontal FSM and the vertical FSM are shown in Figure 10.18(c) and (d), 
respectively. Notice that besides the four count conditions, the two tables are the same. Hence, we can use the same 
circuit for both FSMs. The only difference is that their status signal inputs for the four count conditions come from 
different counter comparators. The output table is also the same for both FSMs and is shown in Figure 10.18(e). 
There are only two output signals to be generated: H_Data_on and H_Sync for the horizontal FSM, and V_Data_on 
and V_Sync for the vertical FSM. Finally, the FSM circuit is shown in Figure 10.18(f). 

We will need to use two instances of this FSM circuit: one for the horizontal FSM and one for the vertical FSM. 
The clock for the horizontal FSM is the 25.175 MHz clock, while the clock for the vertical FSM is derived from the 
rollover signal from the horizontal counter. The four status signals for the four counter conditions are generated 
from two counters: a horizontal counter and a vertical counter. 
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Next State (Implementation) 
Q1next Q0next (D1 D0) 

(H_cnt = B) (H_cnt = B + C) (H_cnt = B + C + D) (H_cnt = B + C + D + E) 

Current 
State 
Q1Q0 0 1 0 1 0 1 0 1 

00 H_B 00 01             
01 H_C     01 10         
10 H_D         10 11     
11 H_E             11 00  

D1 = Q1'Q0 (H_cnt = B + C) + Q1Q0' + Q1Q0 (H_cnt = B + C + D + E)' 

D0 = Q1'Q0' (H_cnt = B) + Q1'Q0 (H_cnt = B + C)' + Q1Q0' (H_cnt = B + C + D) + Q1Q0 (H_cnt = B + C + D + E)' 

(c) 
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Current 
State 
Q1Q0 

Next State (Implementation) 
Q1next Q0next (D1 D0) 

(V_cnt = P) (V_cnt = P + Q) (V_cnt = P + Q + R) (V_cnt = P + Q + R + S) 

0 1 0 1 0 1 0 1 

00 V_P 00 01             
01 V_Q     01 10         
10 V_R         10 11     
11 V_S             11 00  

D1 = Q1'Q0 (V_cnt = P + Q) + Q1Q0' + Q1Q0 (V_cnt = P + Q + R + S)' 

D0 = Q1'Q0' (V_cnt = P) + Q1'Q0 (V_cnt = P + Q)' + Q1Q0' (V_cnt = P + Q + R) + Q1Q0 (V_cnt = P + Q + R + S)' 

(d) 
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Figure 10.18 Controller for the VGA monitor: (a) state diagram for horizontal synchronization; (b) state diagram for 
vertical synchronization; (c) next-state table for horizontal synchronization; (d) next-state table for vertical 
synchronization; (e) output table; (f) FSM circuit for both the horizontal and vertical synchronization; (g) horizontal 
synchronization counter; (h) vertical synchronization counter; (i) complete circuit for the VGA controller. 

The horizontal counter, HCount, with the four comparators for (H_cnt = B), (H_cnt = B + C), (H_cnt = B + C + 
D), and (H_cnt = B + C + D + E) is shown in Figure 10.18(g). A 10-bit counter is needed for counting from 0 up to 
800. A 10-input AND gate is used for each of the four comparators. The inputs to each AND gate is set to the 
equivalent binary value for B = 95, B + C = 95 + 45 = 140, B + C + D = 95 + 45 + 640 = 780, and B + C + D + E = 
95 + 45 + 640 + 20 = 800, respectively. The counter cycles back to 0 by asserting the Load line when the count 
reaches 800 and loading in the value 0. The output from the comparator (H_cnt = 800) is the counter rollover signal 
Roll_over, and is used as the vertical clock signal for the vertical counter, the vertical FSM, and the row counter. 

The vertical counter, VCount, with the four comparators for (V_cnt = P), (V_cnt = P + Q), (V_cnt = P + Q + R), 
and (V_cnt = P + Q + R + S), is shown in Figure 10.18(h). The circuit for this counter is just like the horizontal 
counter, except that the comparator values are different, and we do not need to output a rollover clock signal. The 
clock for this counter is the vertical clock signal Rollover from the horizontal counter. 

The complete VGA monitor controller circuit is shown in Figure 10.18(i). To make sure that the three RGB 
signals to the monitor are valid, they have to be turned on (if needed) only in regions D and R. Hence, the three color 
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output signals, Red_out, Green_out, and Blue_out, are ANDed with H_Data_on and V_Data_on. For example, if the 
input Red signal is a 1, the output Red_out signal is a 1 only when the scan is within the regions D and R. 

Finally, in order to turn on a specific pixel, the circuit needs to keep track of the current column within the D 
region and the current row within the R region of the scan. Two additional counters, Column and Row, are used for 
this purpose. Since they need to count only when the scan is in regions D and R, respectively, therefore, the Count 
input for the Column counter is asserted by the H_Data_on signal, while the Count input for the Row counter is 
asserted by the V_Data_on signal. Once the counts reach 640 and 480, respectively, they will have gone passed 
these two regions, and so the counters will not count. They will have to be reset to 0 anytime before the scan reaches 
the beginning of these two regions again. In the circuit, the two Load lines are asserted when the two respective 
counters roll back to 0. Finally, the Column counter clock is from the 25.175 MHz source, and the Row counter 
clock is from the vertical clock source Rollover derived from the horizontal counter. 

To display something on the screen, you simply have to check the current column and row that the scan is at, 
and then assert the RGB signal if you want the pixel at that location to be turned on. For example, if you simply 
assert the Red signal continuously, all of the pixels will be red, and you will see the entire screen being red. On the 
other hand, if you just want the first row of pixels to be red, then you need to assert the Red signal only when the 
Row counter is 0. To get a red border around the screen, you would assert the Red signal when Row = 0, or Row = 
639, or Column = 0, or Column = 479. Figure 10.19 shows the circuit to draw a red border around the entire screen 
using the VGA controller circuit from Figure 10.18(i). ♦  

25.175 MHz Clock
Reset

'0' VGA Monitor
Controller

Red_outRed
Green_outGreen

Blue_outBlue

Reset
25.175MHzClock

V_Sync_out
H_Sync_out

Column_out9-0
Row_out9-0

'0'

Column = 639

Column = 0

Row = 0

Row = 479
= 0111011111

= 1001111111

Red (pin 1)
Green (pin 2)
Blue (pin 3)

Vert_Sync (pin 14)
Horiz_Sync (pin 13) To

VGA Monitor
Connector

 

Figure 10.19 Circuit using the VGA controller to generate a red border around the entire screen. 

Example 10.9: A VGA controller—version 2 

If you understood the construction of the VGA controller in Example 10.8, you probably will have noticed that 
the controller circuit can be made much simpler. There are two reductions that we can make: (1) eliminate the 
column and row counters, and (2) eliminate the horizontal and vertical FSMs. 

First, the column counter is always 140 (regions B + C = 95 + 45 = 140) plus the horizontal counter when the 
H_Data_on signal is asserted, and the row counter is always 34 (regions P + Q = 2 + 32 = 34) plus the vertical 
counter when the V_Data_on signal is asserted. Therefore, if we shift the horizontal count so that count 0 is at the 
beginning of region D, and the last count 800 is at the end of region C, then we do not need the extra column 
counter. Similarly, we can get rid of the row counter by shifting the vertical count so that count 0 is at the beginning 
of region R, and the last count 528 is at the end of region Q. 
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To eliminate the two FSMs, notice that the FSMs are used simply to assert the two pairs of signals: H_Sync, 
H_Data_on and V_Sync, V_Data_on. The assertion of these four signals is dependent only on the horizontal and 
vertical counters. Therefore, we can use just the horizontal and vertical counts to assert these signals directly. 
However, we need to keep these signals unchanged until after a certain count. An SR flip-flop can be used for each 
signal to set the signal to a 0 or a 1 at the right time. The SR flip-flop works just like the SR latch, except that the 
output changes only at the active (rising) edge of the clock. When S is asserted, the flip-flop is set, and the output Q 
= 1. When R is asserted, the flip-flop is reset, and the output Q = 0. For example, the H_Sync_out signal is a 1 when 
the count is at 95 and onward, and it is a 0 when the count is at 800, wraps back to 0, and onward. Hence, we 
connect the output of the comparator for (H_cnt = 95) to the S input of an SR flip-flop and the output of another 
comparator for (H_cnt = 800) to the R input. The output Q of the flip-flop is the H_Sync_out signal. As a result, the 
signal is set to a 1 when the count reaches 95, and it will remain at a 1 until it is reset to a 0 at count 800. The other 
three signals: H_Data_on, V_Sync_out, and V_Data_on are done similarly. 

The complete version 2 of the VGA monitor controller circuit is shown in Figure 10.20. The modified 
horizontal counter, HCount, and the vertical counter, VCount, are shown in Figure 10.20(a) and (b) respectively. 
Notice that the four condition outputs for each of the two counters are different because we have shifted the counts 
so that the counting starts at the beginning of region D and R, for the horizontal and vertical counters respectively. 
The complete monitor circuit is shown in Figure 10.20(c). 

We can implement and test out this second version of the monitor controller by using the same circuit shown in 
Figure 10.19, but with the controller replaced by this new version. ♦  
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Figure 10.20 Second version of the VGA monitor controller: (a) horizontal counter HCount; (b) vertical counter 
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VCount; (c) complete controller circuit. 

10.4 * ASM Charts and State Action Tables 
The drawback to using a state diagram to describe the behavior of a sequential circuit is that it does not portray 

precisely the timing information, which is very important to the correct operation of the circuit. Algorithmic state 
machine (ASM) charts and state action tables are two alternate methods for describing sequential circuits more 
accurately and concisely. The state action table uses a tabular format, while the ASM chart uses a graphical 
flowcharting format. 

10.4.1 ASM Charts 

Algorithmic state machine (ASM) charts are used to graphically portray the operations of a FSM more 
accurately. They are similar to flowcharts used in computer programming but use different shaped boxes, as shown 
in Figure 10.21, to describe a sequence of actions. The ASM chart portrays similar information as that in the state 
diagram. However, in addition to just describing a sequence of actions as in a state diagram, ASM charts also 
describe the timing relationships between the states. 

The rectangle shown in Figure 10.21(a) is the state box for representing a state in an FSM. Each state box, 
therefore, is executed in one clock cycle and is similar to a node in a state diagram. A state in an FSM is for 
performing data manipulation and input/output actions. Each state box contains unconditional (Moore type) register-
transfer operations that are to be performed in that state. There is one path going into the state box and one path 
leading out of the state box. Outside the rectangle at the top-left corner is labeled with the symbolic state name, 
while the top-right corner is labeled with the binary state encoding (if known). For example, Figure 10.21(b) shows 
a state box with the register-transfer operation count = 0. The symbolic name given to the state is s2, and the binary 
state encoding given to it is 010. When the FSM is in state s2, the register for storing the variable count is reset to 0. 

When a register-transfer operation is not specified for a specific register in a state box, it is assumed that that 
register content remains unchanged. A register changes its value in a state only when a register-transfer operation 
writes to that register in that state box. 

The diamond-shaped box shown in Figure 10.21(c) is the decision box. The purpose of the decision box is to 
test whether the given condition written in the box is true or false. There is one path going into the decision box and 
two paths leading out of the box. The two paths coming out of the decision box are labeled 1 and 0. If the given 
condition is true, then the path labeled 1 is taken; otherwise, the path labeled 0 is taken. The decision box by itself 
does not represent a state, and no actions are written inside the box. Instead, it is used to determine the next state to 
go to. This is like the condition that is labeled on the edges in the state diagram. 

The decision box is also used to describe a Mealy FSM where actions are performed depending on a condition 
of an input. In this case, the decision box is used in conjunction with the condition box (explained next), for 
performing conditional actions. 

The oval-shaped condition box shown in Figure 10.21(d) is also used for performing register-transfer 
operations like the state box. However, unlike the state box, the condition box is used for conditional data 
manipulations in Mealy FSMs. The actual testing of the condition is not done within the condition box but rather in 
a decision box. The condition box by itself is not equivalent to one state. It must be used together with a decision 
box within an ASM block. 

The ASM block shown in Figure 10.21(e), allows a state box and zero or more decision and condition boxes to 
be grouped together to form one state. All of the actions specified inside an ASM block are executed within one 
state or one clock cycle. Like the state box, the ASM block is labeled with the state name at the outside top-left 
corner and the state encoding at the top-right corner. The ASM block must start with one state box containing zero 
or more unconditional register-transfer operations. After the state box, there can be zero or more decision and 
condition boxes. The ASM block will have one entry point, and one or more exit paths leading to other states. 

Figure 10.21(f) shows an example of an ASM block. The symbolic state name is s0 using the binary encoding 
00. When the FSM enters this state, the variable sum is initialized to 0 and the Start signal is tested. If there is no 
Start signal, that is, Start = 0, the FSM re-enters this state at the next clock cycle. If there is a Start signal, an input is 
performed to load the variable n. The actual writing of the registers sum and n with the new values occurs at the next 
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active clock edge. In other words, the register sum is not zeroed until the next clock cycle, and the input value for n 
is not available until the next clock cycle. 

Unconditional
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and Output

State
Name

State
Encoding

 

(a) 

count = 0

s2 010

 

(b) 

01
Condition

 

 (c) 

Conditional
Variable Assignment

and Output

 

(d) 
State
Name

State
Encoding

 

(e) 

INPUT n

sum = 0

Start

s0

0 1

00

 

(f) 

Figure 10.21 Symbols used in an ASM chart: (a) state box; (b) example of a state box; (c) decision box; (d) 
condition box; (e) ASM block; (f) example of an ASM block. 

Example 10.10: Moore ASM chart 

In this example, we will derive an ASM chart for a Moore type FSM based on the algorithm and datapath 
shown in Figure 10.3(a) and (b) for the IF-THEN-ELSE problem. Line 1 in the algorithm is put in a state box with the 
label s_input and encoding 000, as shown in Figure 10.22(a). A decision box is used for the conditional test in line 2 
and must be put inside an ASM block. The test is dependent on the value from state s_input; therefore, it cannot be 
performed in the same state with line 1 but is assigned to state s_extra. In state s_extra, there is no action that can be 
performed unconditionally during this clock cycle; hence, the initial state box is empty. If we put both lines 1 and 2 
in the same ASM block, as in Figure 10.22(b), then the timing will be wrong because we are again trying to read 
from the register for a value that has not been updated yet. 

For a Moore FSM, actions are performed unconditionally; therefore, lines 3 and 5 in the algorithm are put into 
two separate state boxes. The two exit paths from the decision box go to these two state boxes: one for when the 
condition is true and the other for when the condition is false. Finally, both states, s_notequal and s_equal, go to 
state s_output to do the output. If we do the output in states s_notequal and s_equal, as shown in Figure 10.22(c), 
then again, the output will be wrong because we will be reading from register B before it is updated. If we want to 
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do the output together with the assignment of B in the same state, then what we can do is output the constant value 
that is to be written into B rather than outputting the value from B. ♦  
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Figure 10.22 Moore ASM chart for Example 10.10: (a) Correct ASM chart; (b) Wrong ASM block; (c) Wrong 
output. 

Example 10.11: Mealy ASM chart 

Let us derive the ASM chart for the same IF-THEN-ELSE algorithm and datapath used in Example 10.10, except 
for a Mealy FSM. The resulting ASM chart is shown in Figure 10.23. The main difference between this and the one 
in the previous example shown in Figure 10.22(a) is that the conditional assignments (lines 3 and 5 in the algorithm) 
are performed in the same state as the test in s_extra. The two conditional assignments are put in two separate oval 
condition boxes. The paths going to them are the same as before. Since the two condition boxes are put in the same 
ASM block, the ASM block now has only one exit path to state s_output to perform the output. 

The advantage of this Mealy machine is not only the fact that it requires fewer states, thus resulting in a smaller 
control unit, but it also requires fewer clock cycles to execute the algorithm. ♦  
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Figure 10.23 Mealy ASM chart for Example 10.11. 

10.4.2 State Action Tables 

The state action table is another way to describe the behavior of a sequential circuit. Whereas the ASM chart is 
like the state diagram, the state action table is similar to the next-state and output tables combined together. It has 
three columns: current state, next state, and datapath actions.  The next state and datapath action entries can be with 
or without a condition. However, instead of enumerating all possible conditions and listing them out in columns, as 
with the next-state table, the condition is written in front of the next-state entries whenever it is needed. If no 
condition is written in front of a next-state entry, then it is an unconditional next state (i.e., the FSM will go to this 
next state unconditionally). If a next state is qualified with a condition, then the FSM will go to that state only if the 
condition is true. A branch in the state diagram corresponds to a next state with a condition, so the entry for that next 
state will have a condition. 

The datapath actions are like the control word table information. Just like the next states, these datapath actions 
can be either conditional or unconditional. If an action is not qualified with a condition in front, then it is an 
unconditional action. Otherwise, it is a conditional action, and the action is performed only if the condition is true. 
All datapath actions for a Moore FSM will not have a condition, since Moore datapath actions are only dependent on 
the current state. A Mealy FSM will have conditional actions for some of its datapath action entries. 

Figure 10.24 shows the Moore-type state action table for the corresponding ASM chart from Example 10.10. 
From current state s_input, the FSM unconditionally performs the action INPUT A, and then unconditionally goes to 
state s_extra. In state s_extra, the FSM will go to either state s_notequal or s_equal, depending on the condition 
(A = 5). No action is performed in this state. In state s_notequal, the action B = 13 is performed, and then the FSM 
unconditionally transitions to state s_output. In state s_equal, the action B = 8 is performed, and then the FSM 
unconditionally transitions to state s_output.  In state s_output, the FSM performs the action OUTPUT B and halts in 
that state by unconditionally going back to itself. All of the actions in this state action table are performed 
unconditionally; therefore, it is for a Moore type FSM. When the FSM enters a state, it always performs the 
unconditional action(s) assigned to that state first, and then determines what the next state should be. This is 
equivalent to the ASM block where the unconditional state box is always written before a decision box, if any. 

Figure 10.25 shows the Mealy-type state action table for the corresponding ASM chart from Example 10.10. In 
current state s_extra, either one of the two conditional actions is performed, depending on the result of the 
conditional test. After performing the action, the FSM goes to state s_output unconditionally. 
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Next State Datapath Actions Current 
State Condition, State Condition, Action 

s_input s_extra INPUT A 
s_extra (A = 5) s_equal 

(A = 5)' s_notequal 
 

s_notequal s_output B = 13 
s_equal s_output B = 8 
s_output s_output OUTPUT B 

Figure 10.24 A sample Moore-type state action table. 

 
Next State Datapath Actions Current 

State Condition, State Condition, Action 
s_input s_extra INPUT A 
s_extra s_output (A = 5) B = 8 

(A = 5)' B = 13 
s_output s_output OUTPUT B 

Figure 10.25 A sample Mealy-type state action table. 

10.5 VHDL for Control Units 
Figure 10.26 shows the behavioral VHDL code for the PS/2 keyboard controller from Example 10.7. The 

format follows exactly the VHDL code for Moore FSMs discussed in Section 7.6. Notice how closely the code for 
the FSM process follows the state diagram. Because of its simplicity, control units usually are synthesized this way 
rather than constructed manually, as in Example 10.7. For this example, the output process does not generate output 
signals to control the keyboard; rather, it reads in data signals from the keyboard and packages the eight data bits as 
a byte for output. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY KeyboardCtrl IS PORT (
Reset: IN STD_LOGIC;
KeyboardClock: IN STD_LOGIC;
KeyboardData: IN STD_LOGIC;
keycode: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END KeyboardCtrl ;

ARCHITECTURE Structural OF KeyboardCtrl IS
TYPE state_type IS (

s_start,s_d0,s_d1,s_d2,s_d3,s_d4,s_d5,s_d6,s_d7,s_parity,s_stop);
SIGNAL state: state_type;

BEGIN

FSM: PROCESS(KeyboardClock, Reset)
BEGIN
IF (Reset = '1') THEN
state <= s_start;

-- this FSM is driven by the keyboard clock signal
ELSIF (KeyboardClock'EVENT AND KeyboardClock = '1') THEN
CASE state is
WHEN s_start =>
state <= s_d0;
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WHEN s_d0 =>
state <= s_d1;

WHEN s_d1 =>
state <= s_d2;

WHEN s_d2 =>
state <= s_d3;

WHEN s_d3 =>
state <= s_d4;

WHEN s_d4 =>
state <= s_d5;

WHEN s_d5 =>
state <= s_d6;

WHEN s_d6 =>
state <= s_d7;

WHEN s_d7 =>
state <= s_parity;

WHEN s_parity =>
state <= s_stop;

WHEN s_stop =>
state <= s_start;

WHEN OTHERS =>
END CASE;

END IF;
END PROCESS;

output_logic: PROCESS (state)
BEGIN
CASE state IS
WHEN s_d0 =>
keycode(0) <= KeyboardData; -- read in data bit 0 from the keyboard

WHEN s_d1 =>
keycode(1) <= KeyboardData; -- read in data bit 1 from the keyboard

WHEN s_d2 =>
keycode(2) <= KeyboardData; -- read in data bit 2 from the keyboard

WHEN s_d3 =>
keycode(3) <= KeyboardData; -- read in data bit 3 from the keyboard

WHEN s_d4 =>
keycode(4) <= KeyboardData; -- read in data bit 4 from the keyboard

WHEN s_d5 =>
keycode(5) <= KeyboardData; -- read in data bit 5 from the keyboard

WHEN s_d6 =>
keycode(6) <= KeyboardData; -- read in data bit 6 from the keyboard

WHEN s_d7 =>
keycode(7) <= KeyboardData; -- read in data bit 7 from the keyboard

WHEN OTHERS =>
END CASE;

END PROCESS;
END Structural;

Figure 10.26 VHDL code for the PS/2 keyboard controller. 

10.6 Summary Checklist 
 
� Control unit 
� Datapath 
� Control signals 
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� Status signals 
� Constructing a control unit 
� Generating control signals 
� Generating status signals 
� Timing issues for a control unit 
� ASM charts 
� State action tables 
� Be able to derive a state diagram from an algorithm 
� Be able to derive output signals for a control unit from control words 
� Be able to derive status signals from the conditions in an algorithm 
� Be able to determine how a comparator for generating a status signal connects to the datapath 
� Be able to derive a control unit (FSM) from a state diagram 
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10.7 Problems 

10.1 Derive the control unit for the counting problem from Example 10.1, except use the general datapath from 
Section 9.4. 

Answer 
Next State 
Q1next Q0next 

Current State 
Q1Q0 (i ≠ 10)' (i ≠ 10) 
s0 00 s3 11 s1 01 
s1 01 s2 10 s2 10 
s2 10 s3 11 s1 01 
s3 11 s3 11 s3 11 

 
(b) 

(i ≠ 10)

s0

s1

s2

s3

control word 1

(i ≠ 10) (i ≠ 10)'

halt

(i ≠ 10)'

control word 2

control word 3

 

(a) 

Implementation 
D1 D0 

Current State 
Q1Q0 (i ≠ 10)' (i ≠ 10) 

00 11 01 
01 10 10 
10 11 01 
11 11 11 

 (c) 
 

D0 = Q1 + Q0' 
D1 = (i ≠ 10)' + Q0 

 

(d) 
 

Q1Q0 Clear 
00 1 
01 0 
10 0 
11 × 

Clear = Q1'Q0' 

(e) 
 

Q1Q0 IE ALU2 ALU1 ALU0 Load Clear OE 
00 × × × × 0 1 0 
01 0 1 0 0 1 0 0 
10 × × × × 0 0 1 
11 × × × × × × 0 

(f) 

IE = 0 
ALU2 = Q1'Q0 
ALU1 = 0 
ALU0 = 0 
Load = Q1'Q0 
Clear = Q1'Q0' 
OE = Q1Q0' 

(g) 
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output logic and
control signals to the datapath

state
memory

next-state
logic

status signal from
the datapath

Clk

D0

Q'0

Q0

Clk

D1

Q'1

Q1

Clk

(i≠10)

IE

ALU2

ALU1

ALU0

Load

Clear

OE

'0'

'0'

'0'

 

(h) 
 

10.2 Use schematic entry to implement the control unit shown in Figure 10.2(g). Simulate and test the circuit. 

10.3 Implement and test the control unit for Problem 10.2 on the UP2 board. 

10.4 Use schematic entry to implement the control unit shown in Figure 10.6(g). Simulate and test the circuit. 

10.5 Implement and test the control unit for Problem 10.4 on the UP2 board. 

10.6 Use schematic entry to implement the control unit shown in Figure 10.11(g). Simulate and test the circuit. 

10.7 Implement and test the control unit for Problem 10.6 on the UP2 board. 

10.8 Derive the control unit for: 

(a) Problem 9.23 
(b) Problem 9.24 
(c) Problem 9.25 
(d) Problem 9.26 
(e) Problem 9.27 
(f) Problem 9.28 

10.9 Use schematic entry to implement the control units for Problem 10.8. Simulate and test the circuit. 

10.10 Derive the control unit for: 

(a) Problem 9.29 
(b) Problem 9.30 
(c) Problem 9.31 
(d) Problem 9.32 
(e) Problem 9.33 
(f) Problem 9.34 
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(g) Problem 9.35. 
(h) Problem 9.36. 

10.11 Use schematic entry to implement the control units for Problem 10.10. Simulate and test the circuit. 

10.12 Instead of using an FSM circuit for the keyboard controller, as shown in Section 10.3.2, design and 
implement a keyboard controller circuit using just a serial-to-parallel shift register. 

10.13 Modify the keyboard controller circuit from Section 10.3.2 so that it will test for the correct parity bit. 

10.14 Modify the keyboard controller circuit from Problem 10.12 so that it will test for the correct parity bit. 

10.15 Construct and implement a circuit using the VGA controller from Section 10.3.3 to draw a blue triangle on 
the screen. 

10.16 Construct and implement a circuit using the VGA controller from Section 10.3.3 to draw a white square in the 
middle of the screen. 

10.17 Construct and implement a circuit using the VGA controller from Section 10.3.3 to draw a white square and a 
blue triangle on the screen. 

10.18 Using the keyboard controller from Section 10.3.2 and the VGA controller from Section 10.3.3, construct and 
implement a circuit that reads in a letter from the keyboard and displays it on the screen. 

10.19 Write VHDL code for the control units for Problem 10.8. Simulate and test the circuit. 

10.20 Write VHDL code for the control units for Problem 10.10. Simulate and test the circuit. 

10.21 Derive the ASM charts for the control units for Problem 10.8. 

10.22 Derive the ASM charts for the control units for Problem 10.10. 

10.23 Derive the state action tables for the control units for Problem 10.8. 

10.24 Derive the state action tables for the control units for Problem 10.10. 
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Chapter 11 

Dedicated Microprocessors 
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All microprocessors can be divided into two main categories: general-purpose microprocessors and 
dedicated microprocessors. General-purpose microprocessors are capable of performing a variety of computations. 
In order to achieve this goal, each computation is not hardwired into the processor, but rather is represented by a 
sequence of instructions in the form of a program that is stored in the memory, and executed by the microprocessor. 
The program in the memory can be easily changed so that another computation can be performed. Because of the 
general nature of the processor, it is likely that in performing a specific computation, not all of the resources 
available inside the general-purpose microprocessor are used. 

Dedicated microprocessors, also known as application specific integrated circuits (ASICs), on the other hand, 
are dedicated to performing only one task. The instructions for performing that one task are, therefore, hardwired 
into the processor itself, and once manufactured, cannot be modified again. In other words, no memory is required to 
store the program because the program is built right into the circuit itself. If the ASIC is completely customized, 
then only those resources that are required by the computation are included in the ASIC, and so no resources are 
wasted. Another advantage of building the program instructions directly into the microprocessor circuit itself is that 
the execution speed of the program is many times faster than if the instructions are stored in memory. 

The design of a microprocessor, whether it be a general-purpose microprocessor or a dedicated microprocessor, 
can be divided into two main parts, the datapath and the control unit as shown in Figure 11.1. The datapath is 
responsible for all the operations perform on the data. It includes (1) functional units such as adders, shifters, 
multipliers, ALUs, and comparators, (2) registers and other memory elements for the temporary storage of data, and 
(3) buses and multiplexers for the transfer of data between the different components in the datapath. External data 
can enter the datapath through the data input lines. Results from the computation can be returned through the data 
output lines.  
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Figure 11.1. Schematic of a microprocessor. 

The control unit (or controller) is responsible for controlling all the operations of the datapath by providing 
appropriate control signals to the datapath at the appropriate times. At any one time, the control unit is said to be in 
a certain state as determined by the content of the state memory. The state memory is simply a register with one or 
more (D) flip-flops. The control unit operates by transitioning from one state to another – one state per clock cycle, 
and because of this behavior, the control unit is also referred to as a finite-state machine (FSM). The next-state 
logic in the control unit will determine what state to go to next in the next clock cycle depending on the current state 
that the FSM is in, the control inputs, and the status signals. In every state, the output logic that is in the control 
unit generates all the appropriate control signals for controlling the datapath. The datapath, in return, provides status 
signals for the next-state logic. Status signals are usually from the output of comparators for testing branch 
conditions. Upon completion of the computation, the control output line is asserted to notify external devices that 
the value on the data output lines is valid. 

In chapters 9 and 10, you have learned how to design the datapath and the control unit separately. In this 
chapter, you will learn how to put them together to form a dedicated microprocessor. There are several abstraction 
levels at which a microprocessor can be designed. At the lowest level, you manually construct the circuit for both 
the control unit and the datapath separately, and then connect them together using the control and status signals. This 
manual process of constructing a microprocessor ties together everything that you have learned so far in this book. 
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However, in a real situation, this method is not too practical because the microprocessor will usually require many 
more states, input, and output signals. As a result, the manual construction process becomes much more complex. 
Furthermore, there are tools for automating this process. Nevertheless, being able to construct a microprocessor 
manually shows that you fully understand the theories and concepts of how a microprocessor is designed. 
Section 11.1 shows this complete dedicated microprocessor construction process. Section 11.2 provides several 
complete manual construction examples. All the circuits are on the accompanying CD-ROM, and can be 
downloaded onto the UP2 development board for testing. 

After manually designing a microprocessor, we can actually implement the circuit either by manually drawing 
the circuit using the Schematic Editor, or using VHDL to describe the circuit connections at the structural level. 
Constructing a microprocessor manually this way uses the FSM+D (FSM plus datapath) model. In this model, both 
the FSM and the datapath circuits are manually constructed as separate units. The FSM and the datapath are 
connected together in an enclosing unit using the control and status signals. 

The next abstraction level of microprocessor design also uses the FSM+D model. As before, you would 
manually construct the datapath. However, instead of manually constructing the FSM, you would use behavioral 
VHDL code to describe the operation of the FSM as discussed in Sections 7.6 and 10.7. There will be a next-state 
process and an output process in the behavioral code. The next-state process will generate the next-state logic, and 
the output process will generate all the control signals for driving the datapath. The final circuit for the FSM can 
then be automatically synthesized. The automatically synthesized FSM and the manually constructed datapath are 
then connected together like before in an enclosing unit using the control and status signals. In practice, this is 
probably the lowest level in which you would want to design a dedicated microprocessor. The advantage of using 
this FSM+D model is that you have full control as to how the datapath is built. Section 11.3.1 illustrates this process. 

The third level of microprocessor design uses the FSMD (FSM with datapath) model. Using this model, you 
would design the FSM using behavioral VHDL code just like in the previous level. However, instead of constructing 
the datapath manually as a separate unit, all the datapath operations are embedded within the FSM entity using the 
built-in VHDL operators. During the synthesis process, the synthesizer will automatically generate a separate FSM 
and datapath units, but these two units will be automatically connected together as one microprocessor by the 
synthesizer. The advantage of this model is that you do not have to manually design the datapath, but you still have 
full control as to what operation is executed in what state or in what clock cycle. In other words, you have control 
over the timing of the FSM circuit. Section 11.3.2 illustrates this process. 

Finally, a microprocessor can be described algorithmically at the behavioral level using VHDL. This process 
synthesizes the full microprocessor with its control unit and datapath automatically. The advantage of designing 
microprocessors this way is that you do not need to know how to manually design a microprocessor. In other words, 
you do not need to know most of the materials presented in this book. Instead, you only need to know how to write 
VHDL codes. The disadvantage is that you do not have control over the timing of the circuit. You can no longer 
specify what register-transfer operation is executed in what clock cycle. Section 11.3.3 illustrates this process. 

11.1 Manual Construction of a Dedicated Microprocessor 
In Chapter 9, we described how a datapath is designed, and how it is used to execute a particular algorithm by 

specifying the control words to manipulate the datapath at each clock cycle. In that chapter, we tested the datapath 
by setting the control word signals manually. However, to actually have the datapath automatically operate 
according to the control words, a control unit is needed that will generate the control signals that correspond to the 
control words at each clock cycle. 

The construction of the control unit was described in Chapter 10. Given the algorithm and the control words, we 
were able to derive the state diagram, from which we get the next-state table, and finally the next-state logic circuit 
for the control unit. The control words also serve as the output table; from this we get the output logic circuit. 
Combining the next-state logic circuit, the state memory, and the output logic circuit together produces the complete 
control unit circuit. 

To form a complete dedicated microprocessor, we simply have to join the control unit and the datapath together 
using the control signals and the status signals. Recall that the control signals are generated by the control unit to 
control the operations of the datapath, while the status signals are generated by the datapath to inform the next-state 
logic in the control unit as to what the next state should be in the execution of the algorithm. 
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This method of manually constructing a dedicated microprocessor is referred to as the FSM+D (FSM plus 
datapath) model because the FSM and the datapath are constructed separately, and then they are joined together 
using the control and status signals. Example 11.1 shows this manual construction of a dedicated microprocessor. 

Example 11.1 

In this example, we will manually construct the dedicated microprocessor for the summation algorithm of 
Example 9.10. Recall that the problem is to generate and add the numbers from n down to 1, where n is an input 
number. In Example 9.10, we derived the control words for solving this algorithm using the general datapath shown 
in Figure 9.32??? and repeated here in Figure 11.2(a). Example 10.6??? manually constructed the control unit circuit 
based on the state diagram and control words for the algorithm. The complete control unit circuit from Figure 10.4 is 
repeated here in Figure 11.2(b). 

The datapath circuit shown in Figure 11.2(a) uses 16 control signals. Correspondingly, the control unit circuit 
shown in Figure 11.2(b) generates the values for these 16 control signals. To combine the control unit and the 
datapath together, we simply connect the 16 control signals from the control unit to the corresponding 16 control 
signals on the datapath as shown in Figure 11.2(c). 
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(c) 

Figure 11.2. Microprocessor for the summation algorithm of Example 11.1: (a) datapath; (b) control unit; (c) 
complete microprocessor circuit. 

In addition to the 16 control signals, the control unit requires one status signal from the datapath. This status 
signal, (n ≠ 0), is generated by the OR gate comparator in the datapath, and goes to the input of the next-state logic in 
the control unit. 

The microprocessor has two types of inputs, and two types of outputs. There is a control input signal Start that 
goes into the control unit. A control output signal Done that the control unit generates. Then there is the data input 
going into the datapath. For this example, this is where the value for n is entered in. Finally, there is the data output 
from which the datapath outputs the result of the computation. This complete dedicated microprocessor, as shown in 
Figure 11.2(c), of course does nothing more then to sum the numbers from n down to 1, and outputs the result. ♦  
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11.2 Examples 
This section provides several complete examples of manually designing and constructing dedicated 

microprocessors. The complete schematic drawings are available on the accompanying CD-ROM in the respective 
directories. All the examples’ microprocessor top-level schematic design files are named MP.GDF, and can be used 
for simulation. The microprocessor circuits can also be downloaded onto the UP2 development board for testing. To 
download the design onto the UP2 development board, use either the top-level file named UP2MAX.GDF for the 
MAX chip, or UP2FLEX.GDF for the FLEX chip. In each respective directory on the CD-ROM, there is a 
README.TXT file that describes how to use the microprocessor. Furthermore, each example also has the VHDL 
codes for describing it using the FSMD model on the CD-ROM. The corresponding top level VHDL files on the 
CD-ROM are MP.VHD, UP2MAX.VHD, and UP2FLEX.VHD. 

11.2.1 Greatest Common Divisor 

Example 11.2 

In this example, we will manually design the complete dedicated microprocessor for evaluating the greatest 
common divisor (GCD) of two 8-bit unsigned numbers X and Y. For example, GCD(3,5) = 1, GCD(10,4) = 2, and 
GCD(12,60) = 12. The algorithm for solving the GCD problem is listed in Figure 11.3. 

We will first design a dedicated datapath for the algorithm. Next, we will design the control unit for the 
datapath. We will use schematic entry to implement the complete dedicated microprocessor. Finally, we will test it 
using simulation, and on the UP2 board. 

1 input X
2 input Y
3 while (X ≠ Y){
4 if (X > Y) then
5 X = X - Y
6 else
7 Y = Y - X
8 end if
9 }
10 output X

Figure 11.3. Algorithm for solving the GCD problem. 

The algorithm shown in Figure 11.3 has five data manipulation statements in lines 1, 2, 5, 7, and 10. There are 
two conditional tests in lines 3 and 4. We can conclude that the datapath requires two 8-bit registers, one for variable 
X, and one for variable Y, and a subtractor. The dedicated datapath is shown in Figure 11.4. 

We need a 2-to-1 mux for the input of each register because for each register, we need to initially load it with an 
input number, and subsequently load it with the result from the subtractor. The two control signals, In_X and In_Y, 
select which of the two sources are to be loaded into the registers X and Y respectively. The two control signals, 
Load_X and Load_Y, load a value into the respective register. 

The bottom two muxes, selected by the same XY signal, determine the source to the two operands for the 
subtractor. When XY is asserted, then the value from register X goes to the left operand, and register Y goes to the 
right operand of the subtractor. When XY is de-asserted, then Y goes to the left operand, and X goes to the right 
operand. Thus, this allows the selection of one of the two subtraction operations, X – Y or Y – X, to perform. Finally, 
a tri-state buffer is used for outputting the result from register X. The Out control signal is used to enable the tri-state 
buffer. 

A greater-than and equal-to comparator is used to generate the two needed conditional status signals. The 
comparator inputs are directly from the two X and Y registers. There are two output signals, XeqY and XgtY, from the 
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comparator. XeqY is asserted if X is equal to Y, and XgtY is asserted if X is greater than Y. The operation table and 
circuit for this comparator was discussed in Section 4.10, and shown in Figure 4.29. 

This dedicated datapath for solving the GCD problem requires six control signals, In_X, In_Y, Load_X, Load_Y, 
XY, and Out, and two status signals, XeqY, and XgtY. 
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Figure 11.4. Dedicated datapath for solving the GCD problem. 

The state diagram for the GCD algorithm requires five states as shown in Figure 11.5 (a). Four states are used 
for the five data manipulation statements, since only one state is used for performing both inputs. One “no-op” state 
is used for the conditional testing of the updated values of X and Y. The “no-operation” state 001 is needed since we 
need to test the conditions on the updated values of X and Y. From state 001, we test for the two conditions, (X=Y) 
and (X>Y). If (X=Y) is true, then the next state is 100. If (X=Y) is false, then the next state is either 010 or 011, 
depending on whether the condition (X>Y) is true of false respectively. 

This state diagram does not have a Start signal, so in order for the resulting microprocessor to read the inputs 
correctly, we must first set up the input numbers, and then assert the reset signal to clear the state memory flip-flops 
to 0. This way, when the FSM starts executing from state 000, the two input numbers are ready to be read in. 

The next-state table as derived from the state diagram is shown in Figure 11.5 (b). The table requires five 
variables; three to encode the six states, Q2, Q1, and Q0, and two status signals, (X=Y) and (X>Y). There are three 
unused state encodings, 101, 110 and 111. We have assumed that the next states from these three unused states are 
unconditionally back to state 000. 

Using D flip-flops to implement the state memory, the implementation table is the same as the next-state table 
except that the values in the table entries are the inputs to the flip-flops, D2, D1, and D0, instead of the flip-flops 
outputs, Q2next, Q1next, and Q0next. The k-maps and the excitation equations for D2, D1, and D0 are shown in Figure 
11.5 (c). 

The control words and output truth table, having the six control signals, are shown in Figure 11.5 (d). State 000 
performs both inputs of X and Y. The two mux select lines, In_X and In_Y must be asserted so that the data comes 
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from the two primary inputs. The two numbers are loaded into the two corresponding registers by asserting the 
Load_X and Load_Y lines. State 001 is for testing the two conditions, so no operations are performed. The no-op is 
accomplished by not loading the two registers, and not outputting a value. For states 010 and 011, the XY mux select 
line is used to select which of the two subtraction operations is to be performed. Asserting XY performs the 
operation X – Y, whereas, de-asserting XY performs the operation Y – X. The corresponding In_X or In_Y line is de-
asserted to route the result from the subtractor back to the input of the register. The corresponding Load_X or 
Load_Y line is asserted to store the result of the subtraction into the correct register. State 100 outputs the result from 
X by asserting the Out line. 

The output equations as derived from the output table are shown in Figure 11.5 (e). There is one equation for 
each of the six control signals. Each equation is only dependent on the current state, Q2, Q1, and Q0. We have 
assumed that the control signals have “don’t care” values in all the unused states. 

The complete control unit circuit is shown in Figure 11.5 (f). The state memory consists of three D flip-flops. 
The inputs to the flip-flops are the next-state circuits derived from the three excitation equations. The output circuits 
for the six control signals are derived from the six output equations. The two status signals, XeqY and XgtY, come 
from the comparator in the datapath. 
 

input X
input Y000

010 Y = Y - X

100

X = X - Y 011
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(X > Y)

(X = Y)001

(X > Y)'
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(a) 
 

Next State  Q2next Q1next Q0next 
 (X=Y), (X>Y) 

Current State 
Q2Q1Q0 00 01 10 11 

000 001 001 001 001 
001 011 010 100 100 
010 001 001 001 001 
011 001 001 001 001 
100 100 100 100 100 

(b) 
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(c) 
 

Control 
Word 

State 
Q2 Q1 Q0 Instruction In_X In_Y Load_X Load_Y XY Out 

0 000 Input X, Input Y 1 1 1 1 × 0 
1 001 none × × 0 0 × 0 
2 010 X = X – Y 0 × 1 0 1 0 
3 011 Y = Y – X × 0 0 1 0 0 
4 100 Output X × × 0 0 × 1 

(d) 
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Figure 11.5. Control unit for solving the GCD problem: (a) state diagram; (b) next-state table; (c) k-maps and 
excitation equations; (d) control word/output truth table; (e) output equations; (f) circuit. 

The final microprocessor can now be easily formed by connecting the control unit and the datapath together 
using the designated control and status signals as shown in Figure 11.6. A sample simulation is shown in Figure 
11.7. This complete microprocessor circuit is on the accompanying CD-ROM in the file MP.GDF, and can be 
synthesized and simulated. 
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Figure 11.6. Microprocessor for solving the GCD problem. 

 
Figure 11.7. Sample simulation for the GCD problem for the two input numbers 4 and 12. The GCD of these two 
numbers is 4. 

There is another top level file called UP2MAX.GDF in the same directory for downloading and testing this 
microprocessor circuit on the UP2 development board using the MAX EPM7128S PLD. 

You need to look at the Floorplan Editor to see how the I/O’s are mapped to the EPM7128S pins. If you prefer, 
you can re-map these pins. Note that the Reset signal must be mapped to pin 1 on the MAX chip, otherwise you 
need to remove the “Automatic Global Clear” selection checkmark from the Compiler menu Assign / Global Project 
Synthesis in order to compile this design file correctly. 

Jumper wires between the PLD pins and the appropriate switches and LED’s must be connected according to 
this floor plan. There are two sets of eight wires for the two input DIP switches. Another eight wires for the eight 
output LED’s, and one wire for the reset button. The original Done signal is mapped to segment a on digit 2. You 
may want to refer to Appendix C.9 for making these connections. 

To test this circuit, you need to first set up the two sets of eight DIP switches for the two binary unsigned input 
numbers. Then press the button connected to the Reset line. You should see the answer displayed as an 8-bit binary 
number on the eight LED’s. You should also see segment a on digit 2 light up for the Done signal. ♦  
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11.2.2 Summing Input Numbers 

Example 11.3 

In this example, we will manually design the complete dedicated microprocessor for inputting many 8-bit 
unsigned numbers through one input port, and then output the sum of these numbers. The algorithm continues to 
input numbers as long as the number entered is not a zero. Each number entered is also outputted. When the number 
entered is a zero, the algorithm stops and outputs the sum of all the numbers entered. The algorithm for solving this 
problem is listed in Figure 11.8. 

We will first design a dedicated datapath for the algorithm. Next, we will design the control unit for the 
datapath. We will use schematic entry to implement the complete dedicated microprocessor. Finally, we will test it 
using simulation, and on the UP2 board. 

1 Sum = 0
2 begin loop
3 input X
4 Sum = Sum + X
5 if (X = 0) then
6 exit loop
7 end if
8 output X
9 end loop
10 output Sum

Figure 11.8. Algorithm for summing input numbers. 

The algorithm shown in Figure 11.8 has five data manipulation statements in lines 1, 3, 4, 8, and 10. There is 
one conditional test in line 5. The algorithm requires two 8-bit registers, one for variable X, and one for variable 
Sum, and an adder. The dedicated datapath is shown in Figure 11.9. 

Line 1 in the algorithm is performed by asserting the Clear signal, line 3 is performed by asserting the Load_X 
signal, and line 4 is performed by asserting the Load_Sum signal. The algorithm continuously outputs either X or 
Sum. The Out signal selects the 2-to-1 multiplexer for one of the two sources, register X or register Sum. The output 
of the mux is always available at the output. The conditional test (X = 0) is generated by the 8-input NOR gate. 
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Figure 11.9. Dedicated datapath for the summing input numbers problem. 
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At first glance, this algorithm is very similar to the GCD algorithm in Example 11.2. However, because of the 
requirements of this problem, the actual hardware implementation of this microprocessor is slightly more difficult. 
Specifically, the requirement that many different numbers be inputted through one input port requires careful timing 
considerations, and an understanding of how mechanical switches behave. 

As a first try, we begin with the state diagram shown in Figure 11.10 (a). Line 1 of the algorithm is performed 
by the asynchronous reset, so it does not require a state to execute. Line 3 is performed in state 00, which is 
unconditionally followed by line 4 in state 01. The condition (X=0) is then tested. If the condition is true, the loop is 
exited, and the FSM goes to state 11 to output the value for Sum, and stays in that state until reset. If the condition is 
false, the FSM goes to state 10 to output X, and the loop repeats back to state 00. 

input X00

11 output Sum

(X = 0)

01 Sum = Sum + X

10

(X = 0)'

output X

output X

output X

 

(a) 

input X00

11 output Sum

(X = 0)

01 Sum = Sum + X

10

(X = 0)'

Enter'

Enter

output X

output X

output X

 

(b) 

Figure 11.10. Incorrect state diagrams for the summing input numbers problem. 

One thing to notice is that in all the states except for state 11, we need to output X. This is because in the 
datapath, we do not have a tri-state buffer to disable the output. Instead, with the mux, either one of two numbers is 
always being outputted. The behavior of this, nevertheless, is correct according to the problem specifications. 

As an exercise, you can derive the FSM circuit based on this state diagram shown in Figure 11.10 (a), and 
perform a simulation to test its operation. In the simulation, the input numbers are manually assigned, so you should 
be able to obtain the correct simulation result. 

However, if you implement this circuit in hardware, it will not work correctly. The reason is that the FSM 
cycles through the three loop states, 00, 01, and 10, very fast because of the fast clock speed. As a result, the FSM 
will have gone through state 00 to input a number many times before you can even change the input to another 
number. Hence, the same number will be summed many times. 

To correct this problem, we need to add another input signal that acts like the Enter key. This way, the FSM will 
stay in state 00, waiting for the Enter signal to be asserted. This will give the user time to set up the input number 
before pressing the enter switch. When the Enter signal is asserted, the FSM will exit state 00 with the new number 
to be processed. This modified state diagram is shown in Figure 11.10 (b). 

There is still a slight timing problem with this modified state diagram because of the fast clock speed. After 
pressing the Enter switch, and before you have time to release it, the FSM will have cycled through the complete 
loop, and is back at state 00. But since you have not yet released the Enter switch, the FSM will continue on another 
loop with the same input number. What we need to do is to break the loop by waiting for the Enter switch to be 
released. This is shown in the state diagram in Figure 11.11 (a). State 10 will wait for the Enter switch to be released 
before continuing on, and looping back to state 00. 

This last state diagram is correct. However, there might be a problem with the operation of the mechanical 
switch used for the enter signal. When a mechanical switch is pressed, it usually goes on and off several times 
before settling down in the on position. This is referred to as the “debounce” problem. When the switch is 
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fluctuating between the on and the off positions, the FSM can again be able to go through the loop many times. 
What we need to do is to debounce the switch. This however, is not done in the FSM circuit itself, but in the 
interface circuit between the FSM and the switch. We will come back to address this problem when building the 
interface circuit. 

We will now construct the control unit circuit based on the state diagram shown in Figure 11.11 (a). Four states 
are used for the five data manipulation statements. All the states except for 11 will output X. State 00 inputs X and 
waits for the Enter signal. This allows the user to set up the input number, and then press the Enter key. When the 
Enter key is pressed, the FSM goes to state 01 to sum X, and test for (X = 0). If the condition is true, the FSM 
terminates in state 11, and outputs X, otherwise, it goes to state 10 to wait for the Enter signal to be de-asserted by 
the user releasing the Enter switch. After exiting state 10, the FSM continues on to repeat the loop in state 00. 

The next-state table as derived from the state diagram is shown in Figure 11.11 (b). The table requires four 
variables; two to encode the four states, Q1 and Q0, and two status signals, Enter and (X = 0). 

Using D flip-flops to implement the state memory, the implementation table is the same as the next-state table 
except that the values in the table entries are the inputs to the flip-flops, D1 and D0, instead of the flip-flops outputs, 
Q1next and Q0next. The k-maps and the excitation equations for D1 and D0 are shown in Figure 11.11 (c). 

The control words and output truth table for the three control signals, are shown in Figure 11.11 (d). State 00 
performs Line 3 of the algorithm in Figure 11.8 by asserting Load_X, and Line 8 by de-asserting Out. When Out is 
de-asserted, X is passed to the output. State 01 performs Line 4 and Line 8. Line 4 is executed by asserting 
Load_Sum, and Line 8 is executed by de-asserting Out. State 10 again performs Line 8 by de-asserting Out. Finally, 
State 11 performs Line 10 by asserting Out. 

The output equations as derived from the output table are shown in Figure 11.11 (e). There is one equation for 
each of the three control signals. Each equation is only dependent on the current state, Q1 and Q0. 

The complete control unit circuit is shown in Figure 11.11 (f). The state memory consists of two D flip-flops. 
The inputs to the flip-flops are the next-state circuits derived from the two excitation equations. The output circuits 
for the three control signals are derived from the three output equations. The status signal, (Xeq0) come from the 
comparator in the datapath. 

 

input X00

11 output Sum

(X = 0)

01 Sum = Sum + X

10

(X = 0)'

Enter'

Enter

output X

output X

output X

Enter
Enter'

 

(a) 
 

Next State  Q2next Q1next Q0next 
Enter, (X=0) 

Current State 
Q1Q0 00 01 10 11 

00 00 00 01 01 
01 10 11 10 11 
10 00 00 10 10
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11 11 11 11 11 

(b) 

Q1Q0

Enter,(X=0)

00

01

11

10

D1

00

1 1 1 1

1 1 1 1

1 1

01 11 10

Q0

Q1 Enter

 

D1 = Q0 + Q1 Enter 

Q1Q0

Enter,(X=0)

00

01

11

10

D0

00
1 1

1 1

1 1 1 1

01 11 10

Q0 (X=0)

Q1Q0

Q1'Q0' Enter

 

D0 = Q1Q0 + Q0 (X=0) + Q1'Q0' Enter 

(c) 
 

Control 
Word 

State 
Q1 Q0 Instruction Load_X Load_Sum Out 

0 00 input X, output X 1 0 0 
1 01 Sum = Sum – X, output X 0 1 0 
2 10 output X 0 0 0 
3 11 output Sum 0 0 1 

(d) 

 Load_X = Q1'Q0' 
 Load_Sum = Q1'Q0 
 Out = Q1Q0 

(e) 
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Clr

Clk
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Clock
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Load_X

Done
Reset

Enter

Load_Sum
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(f) 

Figure 11.11. Control unit for the summing input numbers problem: (a) state diagram; (b) next-state table; (c) k-
maps and excitation equations; (d) control word/output truth table; (e) output equations; (f) circuit. 

The final microprocessor can now be easily formed by connecting the control unit and the datapath together 
using the designated control and status signals as shown in Figure 11.12. A sample simulation is shown in Figure 
11.13. This complete microprocessor circuit is on the accompanying CD-ROM in the file MP.GDF, and can be 
synthesized and simulated. 
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Figure 11.12. Microprocessor for solving the summing input numbers problem. 
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Figure 11.13. Sample simulation for the summing input numbers problem. 

In order to implement the circuit on the UP2 development board, we need to connect the microprocessor’s I/Os 
to the switches, LEDs, and clock source. The most important interface circuit for this problem is to debounce the 
Enter switch. A simple circuit to debounce a switch is to use a D flip-flop as shown in Figure 11.14. The clock 
frequency for the D flip-flop must be slow enough for the switch bounce to settle so that the flip-flop will latch in a 
single value. The exact clock frequency is not too critical. The clock divider circuit used in the example slows down 
the on-board 25MHz clock to approximately 4Hz. 

Clock

Input_X

Done Output

MP
Reset

Enter

Clock
Divider

25MHz 4Hz Clk

D Q

Reset push button switch

Enter push button switch

25MHz Clock

LED 8 LEDs

8 DIP switches

8

8

Q1
Q0

BCD
decoder

7-segment
LED

 
Figure 11.14. Interface to the summing input numbers microprocessor for the UP2 development board. 

The top-level interface circuit is in the file UP2MAX.GDF for the MAX chip on the accompanying CD-ROM. 
This circuit also displays the current state value, Q1 and Q0, on the 7-segment LED. The FLEX version of this circuit 
is in the file UP2FLEX.GDF. It displays the sum output on the two 7-segment displays instead of using the eight 
discrete LEDs. ♦  

11.2.3 High-Low Guessing Game 

Example 11.4 

In this example, we will manually design the complete dedicated microprocessor for playing the high-low 
guessing game. The user picks a number between 0 and 99, and the computer will use the binary search algorithm to 
guess the number. After each guess, the user tells the computer whether the guess is high or low compared to the 
picked number. Two push buttons, hi_button and lo_button, are used for the user to tell the computer whether the 
guess is too high, too low, or correct. The hi_button is pressed if the guess is too high, and the lo_button is pressed if 
the guess is too low. If the guess is correct, both buttons are pressed at the same time. 

The algorithm for simulating this high-low guessing game is listed in Figure 11.15. The two range boundary 
variables, Low and High, are initialized to 0 and 100 respectively. The loop between lines 3 to 11 will keep repeating 
until both buttons, hi_button and lo_button, are pressed. Inside the loop, line 4 calculates the next guess by finding 
the middle number between the lower and upper boundaries, and then outputs this new guess in line 5. Lines 6 to 10 
checks which button is pressed. If the lo_button is pressed, that means the guess is too low, so line 7 changes the 
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Low boundary to the current Guess. Otherwise if the hi_button is pressed, that means the guess is too high, and line 
9 changes the High boundary to the current Guess. The loop is then repeated with the calculation of the new Guess 
in line 4. 

When both buttons are pressed, the condition in line 11 is true, and the loop is exited. Lines 12 to 15 simply 
cause the display to blink the correct guess by turning it on and off. 

1 Low = 0 // initialize Low
2 High = 100 // initialize High
3 repeat {
4 Guess = (Low + High) / 2 // calculate guess using binary search
5 output Guess
6 if (lo_button = '1' and hi_button = '0') // low button pressed
7 Low = Guess
8 else if (lo_button = '0' and hi_button = '1') // hi button pressed
9 High = Guess
10 end if
11 } until (lo_button = '1' and hi_button = '1') // repeat until both

// buttons are pressed
12 while (lo_button = '0' and hi_button = '0')

// blink correct guess
13 output Guess
14 turn off display
15 end while

Figure 11.15. Algorithm for the high-low guessing game. 

We will first design a dedicated datapath for the algorithm. Next, we will design the control unit for the 
datapath. We will use schematic entry to implement the complete dedicated microprocessor. Finally, we will test it 
using simulation, and on the UP2 board. 

The algorithm shown in Figure 11.15 has eight data manipulation operations in lines 1, 2, 4, 5, 7, 9, 13 and 14. 
The dedicated datapath for realizing this algorithm is shown in Figure 11.16. It requires three 8-bit registers, Low, 
High, and Guess, for storing the low and high range boundary values, and the guess respectively. Two 2-to-1 muxes 
are used for the inputs to the Low and High registers to select between the initialization values for lines 1 and 2, and 
setting the new Guess value for lines 7 and 9. 

The only arithmetic operations needed are the addition and division by 2 in line 4. Hence, the outputs from the 
two registers, Low and High, go to the inputs of an adder for the addition, and the output of the adder goes to a 
shifter. The division by 2 is performed by doing a right shift of 1 bit. The result from the shifter is stored in the 
register Guess. Depending on the condition in line 6, the value in Guess is loaded into either the Low or the High 
register by asserting the corresponding load signal for that register. 

A 2-input by 8-bit AND gate is used to control the output of the Guess number. One 8-bit set of input is 
connected to the output of the Guess register. The other 8-bit set of input is connected together in common to the 
output enable OutE signal. By asserting OutE, the data from Guess is passed to the output port. To blink the output 
display in lines 13 and 14, we just toggle the OutE line. 

The datapath shown in Figure 11.16 requires five control signals, Init, LOload, HIload, GUESSload, and OutE. 
The Init signal controls the two muxes to determine whether to load in the initialization values or the new guess. The 
three load signals, LOload, HIload, and GUESSload control the writing of the three respective registers. Finally, 
OutE controls the output of the guess value. 
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Figure 11.16. Dedicated datapath for the high-low guessing game. 

The state diagram for this algorithm requires six states as shown in Figure 11.17 (a). State 000 is the starting 
initialization state. State 001 executes lines 4 and 5 by calculating the new guess, and outputting it. State 001 also 
waits for the user key press. If only the lo_button is pressed, then the FSM goes to state 010 to assign the guess as 
the new low value. If only the hi_button is pressed, then the FSM goes to state 011 to assign the guess as the new 
high value. If both buttons are pressed, then the FSM goes to state 100 go output the guess. From state 100, the FSM 
turns on and off the output by cycling between states 100 and 101 until a button is pressed. When a button is pressed 
from either state 100 or 101, the FSM goes back to the initialization state for a new game. 

The output table showing the five output signals, Init, LOload, HIload, GUESSload, and OutE, to be generated 
in each state are shown in Figure 11.17 (d). The corresponding output equations derived from the output table are 
shown in (e). 

Again, we will use D flip-flops to implement the state memory. Having six states, three flip-flops are needed, 
with two unused states. Both the next-state table and the implementation table are shown in Figure 11.17 (b). Recall 
that when D flip-flops are used for the implementation, the next-state table and the implementation table are the 
same because the characteristic equation for the D flip-flop is Qnext = D. 

The implementation table is simply the truth table for the three variables D2, D1, and D0. Hence, the excitation 
equations for the three flip-flops, D2, D1, and D0, are derived directly from the implementation table. The K-maps 
and equations for these three variables are shown in Figure 11.17 (c). 
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Using the three excitation equations for deriving the next-state logic circuit, the three D flip-flops for the state 
memory, and the five output equations for deriving the output logic circuit, we get the complete control unit circuit 
for the high-low guessing game as shown in Figure 11.17 (f). 

Low = 0
High = 100

000

010

100

011

001

hi & lo'hi' & lo

hi & lo

hi' & lo'

High = GuessLow = Guess

101

hi' & lo'

hi or lo

hi or lo

hi' & lo'

Guess = (Low + High) / 2
output Guess

Output Guess

Turn off lights
 

(a) 
 

Next State  Q2next Q1next Q0next (Implementation D2 D1 D0) 
 hi, lo 

Current State 
Q2Q1Q0 00 01 10 11 

000 001 001 001 001 
001 001 010 011 100 
010 001 001 001 001 
011 001 001 001 001 
100 101 000 000 000 
101 100 000 000 000 

110 (not used) 000 000 000 000 
111 (not used) 000 000 000 000 

(b) 

Q1Q0

hi, lo

00

01

11

10

D2 Q2 = 0

00

1

01 11 10

Q2 = 1

1

00

1

01 11 10

Q2'Q1'Q0 hi lo

Q2Q1' hi' lo'

 

D2 = Q2Q1' hi' lo' + Q2'Q1'Q0 hi lo 
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D1 = Q2'Q1'Q0 hi lo' + Q2'Q1'Q0 hi' lo 

Q1Q0
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Q2'Q1
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D0 = Q1'Q0' hi' lo' + Q2'Q0' + Q2'Q1 + Q2' lo' 

(c) 
 

Control 
Word 

State 
Q2 Q1 Q0 Instruction Init HIload LOload GUESSload OutE 

0 000 Initialize 1 1 1 0 1 
1 001 Guess 0 0 0 1 1 
2 010 Low = Guess 0 0 1 0 1 
3 011 High = Guess 0 1 0 0 1 
4 100 Correct 0 0 0 0 1 
5 101 Flash output 0 0 0 0 0 

(d) 

Init = Q2'Q1'Q0' 
HIload = Q2'Q1'Q0' + Q2'Q1Q0 
LOload = Q2'Q1'Q0' + Q2'Q1Q0' 
GUESSload = Q2'Q1'Q0 
OutE = Q2' + Q0' 

(e) 
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Figure 11.17. Control unit for the high-low guessing game: (a) state diagram; (b) next-state table; (c) k-maps and 
excitation equations; (d) control word/output truth table; (e) output equations; (f) circuit. 

Connecting the control unit circuit shown in Figure 11.17 (f) and the datapath circuit shown in Figure 11.16 
together using the control and status signals produces the final microprocessor as shown in Figure 11.18. This 
complete microprocessor circuit is on the accompanying CD-ROM in the file MP.GDF, and can be synthesized and 
simulated. 
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Figure 11.18. Microprocessor for the high-low guessing game. 
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Figure 11.19 shows the interface needed to test the high-low guessing game dedicated microprocessor on the 
UP2 development board. The top-level file UP2FLEX.GDF in the implementation directory can be used for 
downloading and testing this circuit on the UP2 development board using the FLEX PLD. ♦  
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Figure 11.19. Interface to the high-low guessing game microprocessor for the UP2 development board. 

11.2.4 Finding Largest Number 

Example 11.5 

In this example, we will implement the classic computer program of inputting several numbers, and then output 
the largest of these numbers. We will assume that the numbers, entered through one input port, are 8-bit unsigned 
numbers, and a zero will terminate the inputs. The current largest number is always displayed. The algorithm for 
solving this problem is listed in Figure 11.20. 

1 Largest = 0 // for storing the current largest number
2 input X // enter first number
3 while (X ≠ 0){
4 if (X > Largest) then // if new number greater?
5 Largest = X // yes, remember new largest number
6 end if
7 output Largest
8 input X // get next number
9 }

Figure 11.20. Algorithm for the finding largest number problem. 

We will first design a dedicated datapath for the algorithm. Next, we will design the control unit for the 
datapath. We will use schematic entry to implement the complete dedicated microprocessor. Finally, we will test it 
using simulation, and on the UP2 board. 

The algorithm shown in Figure 11.20 has five data manipulation operations in lines 1, 2, 5, 7, and 8. It requires 
two registers: an 8-bit register for storing X, and an 8-bit register for storing Largest. No functional unit for 
performing arithmetic is needed. The dedicated datapath is shown in Figure 11.21. 
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Figure 11.21. Dedicated datapath for the finding largest number problem. 

Line 1 in the algorithm is performed by asserting the Clear signal, line 2 and 8 are performed by asserting the 
Load_X signal, and line 5 is performed by asserting the Load_Largest signal. The algorithm continuously outputs 
Largest. The conditional test (X = 0) is generated by the 8-input NOR gate, and the conditional test (X > Largest) is 
generated by the greater-than comparator. 

This algorithm is very similar to the summing input numbers problem in Example 11.3, especially the situation 
for handling the Enter key for inputting each number through the same input port. The state diagram is shown in 
Figure 11.22 (a). State 00 inputs X and waits for the Enter signal. This allows the user to set up the input number, 
and then press the Enter key. When the Enter key is pressed, the FSM goes to state 01 to make two tests. If (X = 0) is 
true, the FSM terminates in state 11. If (X > Largest) is true, then the FSM goes to state 10 to assign X as the new 
largest number. If X is not 0 and not the largest, then the FSM will go back to state 00 to wait for another input 
number. Before going back to state 00 from both states 01 and 10, we need to wait for the release of the Enter key as 
explained in Example 11.3. 

The next-state table as derived from the state diagram is shown in Figure 11.22 (b). The table requires five 
variables; two to encode the four states, Q1 and Q0, and three status signals, Enter, (X = 0), and (X > Largest). 

Using D flip-flops to implement the state memory, the implementation table is the same as the next-state table 
except that the values in the table entries are for the inputs to the flip-flops, D1 and D0. The k-maps and the 
excitation equations for D1 and D0 are shown in Figure 11.22 (c). 

The control words and output truth table for the three control signals, are shown in Figure 11.22 (d). State 00 
performs Lines 2 and 8 of the algorithm in Figure 11.20 by asserting the Load_X signal. All the states output 
Largest, and this action does not require any control signals. State 10 performs Line 5 by asserting Load_Largest. 
State 11 outputs a Done signal to inform the user that the FSM has stopped. 

The output equations as derived from the output table are shown in Figure 11.22 (e). There is one equation for 
each of the three control signals. Each equation is only dependent on the current state, Q1 and Q0. 

The complete control unit circuit is shown in Figure 11.22 (f). The state memory consists of two D flip-flops. 
The inputs to the flip-flops are the next-state circuits derived from the two excitation equations. The output circuits 
for the three control signals are derived from the three output equations. The status signal (Xeq0) come from the NOR 
gate comparator in the datapath, and the status signal (XgtLargest) come from the greater-than comparator in the 
datapath. 
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(a) 
 

Next State  Q2next Q1next Q0next 
Enter, (X=0), (X>Largest) 

Current State 
Q1Q0 000 001 010 011 100 101 110 111 

00 00 00 00 00 01 01 01 01 
01 00 10 11 11 01 10 11 11 
10 00 00 00 00 10 10 10 10 
11 11 11 11 11 11 11 11 11 
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D0 = Q1Q0 + Q0 (X=0) + Q1'Q0' Enter + Q1' Enter(X>Largest)' 

(c) 
 

Control 
Word 

State 
Q1 Q0 Instruction Load_X Load_Largest Done 

0 00 input X, output Largest 1 0 0 
1 01 output Largest 0 0 0 
2 10 Largest = X, output Largest 0 1 0 
3 11 output Largest 0 0 1 

(d) 

 Load_X = Q1'Q0' 
 Load_Largest = Q1Q0' 
 Done = Q1Q0 

(e) 

Clk

D0

Q'0

Q0

Clr

Clk

D1

Q'1

Q1

Clr

Clock

Xeq0

Load_X

Reset

Enter

Load_Largest

Done

XqtLargest  

(f) 

Figure 11.22. Control unit for the finding largest number problem: (a) state diagram; (b) next-state table; (c) k-maps 
and excitation equations; (d) control word/output truth table; (e) output equations; (f) circuit. 

Connecting the control unit and the datapath together using the control and status signals produces the final 
microprocessor as shown in Figure 11.23. A sample simulation is shown in Figure 11.24. This complete 
microprocessor circuit is on the accompanying CD-ROM in the file MP.GDF, and can be synthesized and simulated.  

The top-level interface circuit for testing this microprocessor on the UP2 development board using the MAX 
chip is shown in Figure 11.25, and is in the file UP2MAX.GDF on the accompanying CD-ROM. Like the circuit for 
Example 11.2, this circuit displays the largest number on the eight LEDs in binary, and the current state value, Q1 
and Q0, on the 7-segment LED. Again, a debounce circuit is needed for the Enter switch. The 8-bit number inputs 
are through the eight DIP switches. The FLEX version of this circuit is in the file UP2FLEX.GDF. Instead of 
displaying the largest number on the eight discrete LEDs, it displays the number on the two 7-segment displays.  ♦  
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Figure 11.23. Microprocessor for solving the finding largest number problem. 

 
Figure 11.24. Sample simulation trace for the finding largest number problem. The last output number 15 when 
Done is asserted is the largest of the six numbers entered 7, 4, 12, 8, 15, and 6. 
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Figure 11.25. Interface to the finding largest number microprocessor for the UP2 development board. 
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11.3 VHDL for Dedicated Microprocessors 
In the introduction to this chapter, we mentioned that we can use VHDL based on different models to 

automatically synthesize a microprocessor. The FSM+D model requires the manual construction of the datapath, but 
the FSM is described using VHDL, and is synthesized automatically. The FSMD model also uses VHDL to describe 
the FSM, but in addition, the datapath operations are imbedded within the FSM VHDL code using built-in VHDL 
operators. Finally, the behavioral model uses VHDL to describe the behavior of the complete microprocessor 
algorithmically, and so both the control unit and the datapath are synthesized automatically. 

11.3.1 FSM + D Model 

In Section 11.1, we constructed a dedicated microprocessor by manually constructing the circuits for a control 
unit and a datapath. These two components are then connected together to form the microprocessor. Instead of 
manually constructing the control unit circuit, an alternative way is to automatically synthesize it from behavioral 
VHDL code. A separate datapath circuit is still manually constructed like before. The two components are then 
joined together to form the complete microprocessor. 

Writing the behavioral VHDL code for the control unit was discussed in Chapter 10. The method is again 
illustrated in Example 11.6. The final dedicated microprocessor is constructed using an enclosing VHDL entity 
written at the structural level that combines the VHDL code for both the control unit entity and the datapath entity. 

Example 11.6 

In this example, we will again construct the dedicated microprocessor for the summation algorithm of 
Example 9.3 similar to Example 11.1. However, unlike Example 11.1 where the circuit for the control unit is 
manually derived, we will use VHDL to automatically synthesize the control unit circuit. In order to write the 
behavioral VHDL code for the control unit, we need to use the information from the state diagram and the control 
words derived for the algorithm. The control words were manually derived in Example 9.3, and the state diagram 
was manually derived in Example 10.2. The state diagram and control words from these two examples are repeated 
here in Figure 11.26. 

The complete behavioral VHDL code for the control unit is shown in Figure 11.27. In the entity section, the 
output signals include the 16 control signals for controlling the datapath. There is one input signal neq0 in the entity 
section, which is the status signal (n ≠ 0) from the datapath. In addition to the control and status signals, there is the 
control input signal Start and the control output signal Done. Finally, there are the two global input signals Clock 
and Reset. The Reset signal is to reset all the flip-flops in the state memory to zero. 

The architecture section starts out with using the TYPE statement to define all the states used in the state 
diagram. The SIGNAL statement declares the signal state to remember the current state of the FSM. There are two 
processes in the architecture section, the next-state logic process and the output logic process that execute 
concurrently. As the name suggests, the next-state process defines the next-state logic circuit that is inside the 
control unit, and the output logic process defines the output logic circuit inside the control unit. The main statement 
within these two processes is the CASE statement that determines what the current state is. For the next-state process, 
the CASE statement is executed only at the rising clock edge because of the test (clock'EVENT AND clock = '1') in the 
IF statement. Hence, the State signal is assigned a new state value only at the rising clock edge. The new state value 
is, of course, dependent on the current state and input signals, if any. For example, in state s0, the next state is 
dependent on the input signal Start, whereas, in state s1, the next state is unconditionally s2. 

In the output process, all control signals are generated for every case, i.e., all the control signals must be 
assigned a value in every case. Recall from Section 6.13.1 that VHDL synthesizes a signal using a memory element 
if the signal is not assigned a value in all possible cases. However, the output circuit is a combinational circuit, and it 
should not contain any memory elements. For each state in the CASE statement in the output process, the values 
assigned to each of the output signal are taken directly from the control word/output table. 

For the datapath, we are using the same general datapath as discussed in Section 8.5. The VHDL code for this 
datapath is listed in Figure 8.12 and Figure 8.13. Figure 8.12 describes the individual components used in the 
datapath and Figure 8.13 combines these components into the desired datapath. 
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Finally, Figure 11.28 combines the datapath and the control unit together using structural VHDL coding to 
produce the top-level entity sum for the microprocessor. The entity section specifies the primary I/O signals for the 
microprocessor. In addition to the global Clock and Reset signals, there are the four I/O signals shown in Figure 
11.2. These are the control input Start signal, the control output Done signal, the datapath input, and the datapath 
output. The architecture section declares the two components, fsm and datapath, used in this module. These two 
components are connected together using the 16 control signals and one status signal, and are declared as internal 
signals using the SIGNAL declaration statement. Finally, two PORT MAP statements are used to actually connect the 
control unit and the datapath together. 

A sample simulation trace is shown in Figure 11.29 for the input n = 10. After asserting the Start signal in state 
s0, the input value 10 is read in during state s2. The value 10 is written to RF1 at the next rising clock edge, which 
also brings the FSM to state s3. RF1 is for storing n that counts from 10 down to 0. RF0 is for storing sum and is 
updated after each count of n. When RF1 reaches zero, the sum 55 from RF0 is sent to the output, and the Done 
signal is asserted. At this point, the FSM stays in state s0 indefinitely waiting for another start signal.  ♦  

 

s1

s2

s3

Start

control word 2
input n

Start'

control word 3
sum = sum + n

control word 4
n = n - 1

control word 5
output sum

control word 1
sum = 0

s4

s5

(n ≠ 0)

(n ≠ 0)'

s0

 

(a) 
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Control IE WE WA1,0 RAE RAA1,0 RBE RBA1,0 ALU2,1,0 SH1,0 OE 
Word Instruction 15 14 13-12 11 10-9 8 7-6 5-3 2-1 0 

1 sum = 0 0 1 00 1 00 1 00 101 (subtract) 00 0 
2 input n 1 1 01 0 ×× 0 ×× ××× 00 0 
3 sum = sum + n 0 1 00 1 00 1 01 100 (add) 00 0 
4 n = n – 1 0 1 01 1 01 0 ×× 111 (decrement) 00 0 
5 output sum × 0 ×× 1 00 0 ×× 000 (pass) 00 1 

(b) 

Figure 11.26. For Example 11.6: (a) state diagram; (b) control words. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY fsm IS PORT (
clock, reset, start: IN STD_LOGIC;
IE: OUT STD_LOGIC;
WE: OUT STD_LOGIC;
WA: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
RAE: OUT STD_LOGIC;
RAA: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
RBE: OUT STD_LOGIC;
RBA: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
aluSel : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
shSel: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
OE: OUT STD_LOGIC;
done: OUT STD_LOGIC;
neq0: IN STD_LOGIC);

END fsm;

ARCHITECTURE fsm_arc OF fsm IS
TYPE state_type IS (s0, s1, s2, s3, s4, s5);
SIGNAL state: state_type;

BEGIN
next_state_logic: PROCESS(reset, clock)
BEGIN

IF(reset = '1') THEN
state <= s0;

ELSIF(clock'EVENT AND clock = '1') THEN
CASE state IS
WHEN s0 =>

IF(start = '1') THEN state <= s1; ELSE state <= s0; END IF;
WHEN s1 =>

state <= s2;
WHEN s2 =>

state <= s3;
WHEN s3 =>

state <= s4;
WHEN s4 =>

IF(neq0 = '1') THEN state <= s3; ELSE state <= s5; END IF;
WHEN s5 =>

state <= s0;
WHEN OTHERS =>

state <= s0;
END CASE;
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END IF;
END PROCESS;

output_logic: PROCESS(state)
BEGIN

CASE state IS
WHEN s1 =>

IE<='0'; WE<='1'; WA<="00"; RAE<='1'; RAA<="00"; RBE<='1';
RBA<="00"; aluSel<="101"; shSel<="00"; OE<='0'; done<='0';

WHEN s2 =>
IE<='1'; WE<='1'; WA<="01"; RAE<='0'; RAA<="00"; RBE<='0';
RBA<="00"; aluSel<="000"; shSel<="00"; OE<='0'; done<='0';

WHEN s3 =>
IE<='0'; WE<='1'; WA<="00"; RAE<='1'; RAA<="00"; RBE<='1';
RBA<="01"; aluSel<="100"; shSel<="00"; OE<='0'; done<='0';

WHEN s4 =>
IE<='0'; WE<='1'; WA<="01"; RAE<='1'; RAA<="01"; RBE<='0';
RBA<="00"; aluSel<="111"; shSel<="00"; OE<='0'; done<='0';

WHEN s5 =>
IE<='0'; WE<='0'; WA<="00"; RAE<='1'; RAA<="00"; RBE<='0';
RBA<="00"; aluSel<="000"; shSel<="00"; OE<='1'; done<='1';

WHEN others =>
IE<='0'; WE<='0'; WA<="00"; RAE<='0'; RAA<="00"; RBE<='0';
RBA<="00"; aluSel<="000"; shSel<="00"; OE<='0'; done<='0';

END CASE;
END PROCESS;

END fsm_arc;

Figure 11.27. FSM+D model of the control unit for the summation algorithm. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY sum IS PORT (
clock, reset, start: IN STD_LOGIC;
input: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
done: OUT STD_LOGIC;
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END sum;

ARCHITECTURE Structural OF sum IS

COMPONENT fsm PORT (
clock, reset, start: IN STD_LOGIC;
IE: OUT STD_LOGIC;
WE: OUT STD_LOGIC;
WA: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
RAE: OUT STD_LOGIC;
RAA: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
RBE: OUT STD_LOGIC;
RBA: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
aluSel : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
shSel: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
OE: OUT STD_LOGIC;
done: OUT STD_LOGIC;
neq0: IN STD_LOGIC);
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END COMPONENT;

COMPONENT datapath PORT (
clock: IN STD_LOGIC;
input: IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );
IE, WE: IN STD_LOGIC;
WA: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
RAE: IN STD_LOGIC;
RAA: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
RBE: IN STD_LOGIC;
RBA: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
aluSel : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
shSel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
OE: IN STD_LOGIC;
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
neq0: OUT STD_LOGIC);

END COMPONENT;

SIGNAL sIE, sWE: STD_LOGIC;
SIGNAL sWA: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL sRAE: STD_LOGIC;
SIGNAL sRAA: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL sRBE: STD_LOGIC;
SIGNAL sRBA: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL sAluSel: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL sShSel: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL sOE: STD_LOGIC;
SIGNAL sneq0: STD_LOGIC;

BEGIN
-- doing structural modeling here
-- Control unit
U0: fsm PORT MAP(clock,reset,start,sIE,sWE,sWA,sRAE,sRAA,sRBE,sRBA,

sAluSel,sShSel,sOE,done,sneq0);
-- Datapath
U1: datapath PORT MAP (clock,input,sIE,sWE,sWA,sRAE,sRAA,sRBE,sRBA,

sAluSel,sShSel,sOE,output,sneq0);
END Structural;

Figure 11.28. FSM+D model of the microprocessor for the summation algorithm. . 

 
Figure 11.29. Simulation trace of the FSM+D summation algorithm with input n = 10. 
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11.3.2 FSMD Model 

When writing VHDL code using the FSM+D model, we need to manually construct the datapath module. The 
FSM module can be constructed either manually or synthesize automatically. These two modules are then joined 
together at the structural level using the control signals and status signals. Although we can automatically synthesize 
the FSM, using the FSM+D method to build a microprocessor with a large datapath still requires a lot of work. We 
need to first manually construct the datapath, and then we need to connect the numerous control and status signals 
together between the two modules. 

The FSMD (FSM with datapath) model is an abstraction used when we write VHDL code for a microprocessor. 
Instead of separating the FSM and the datapath into two different modules, we combine the FSM and the datapath 
together into the same entity. In other words, all the data operations that need to be performed by the datapath are 
actually imbedded in the FSM coding itself as VHDL data manipulation statements. After all, there are built-in 
VHDL operators to perform data manipulations. As a result, when writing VHDL code for the FSMD model, we do 
not need to manually construct the datapath module, and therefore, there are no control and status signals to be 
connected together. The FSM module is written using behavioral VHDL code just like with the FSM+D model. 
Thus, the FSMD model is an abstraction for simplifying the VHDL code for a microprocessor. 

Using the FSM+D model allows us to have full control as to what components are used in the datapath, and 
how these components are used by the FSM. Whereas, using the FSMD model automates the datapath construction 
process. The synthesizer now decides what components are needed by the datapath. However, whether you use the 
FSM+D model or the FSMD model, the FSM is still constructed the same way using behavioral VHDL code. It is 
just that for the FSMD model, the VHDL code for the FSM has extra data manipulation statements imbedded in it. 
Because the FSM is still written manually, you still have full control as to what instructions are executed in what 
state, and the number of states needed to execute the algorithm. Example 11.7 shows the process to construct a 
microprocessor using the FSMD model. 

Example 11.7 

Figure 11.30 shows the complete microprocessor VHDL code using the FSMD model for the summation 
algorithm of Example 9.3. Notice the simplicity of this code as compare to the code for the FSM+D model shown in 
the previous section. Here, we have just one entity, which serves as both the top-level microprocessor entity and the 
FSMD entity. The architecture section is written similar to a regular FSM with the different cases for each of the 
states. Like before for the next-state process, the CASE statement selects the current state and determines the next 
state. But in addition to setting the next state, each case (state) also contains data operation statements such as sum = 
sum + n. The primary output signals are still generated in the output process. A sample simulation trace is shown in 
Figure 11.31 for the input n = 10.  ♦  

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY sum IS PORT (
clock, reset, start: IN std_logic;
input: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
done: OUT STD_LOGIC;
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END sum;

ARCHITECTURE FSMD OF sum IS
TYPE state_type IS (s0, s1, s2, s3, s4, s5);
SIGNAL state: state_type;
SIGNAL sum: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL n: STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
next_state_logic: PROCESS(reset, clock)
BEGIN
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IF(reset = '1') THEN
state <= s0;

ELSIF(clock'EVENT AND clock = '1') THEN
CASE state IS
WHEN s0 =>

IF (start = '1') THEN state <= s1; ELSE state <= s0; END IF;
WHEN s1 =>

state <= s2;
sum <= (others => '0');

WHEN s2 =>
state <= s3;
n <= input;

WHEN s3 =>
state <= s4;
sum <= sum + n;

WHEN s4 =>
-- reading n in the following IF statement is BEFORE the

decrement
-- update, therefore, we need to compare with 1 and not 0
n <= n - 1;
IF (n /= 1) THEN state <= s3; ELSE state <= s5; END IF;

WHEN s5 =>
state <= s0;

WHEN OTHERS =>
state <= s0;

END CASE;
END IF;

END PROCESS;

output_logic: PROCESS(state)
BEGIN

CASE state IS
WHEN s5 =>

done <= '1';
output <= sum;

WHEN OTHERS =>
done <= '0';
output <= (others => 'Z');

END CASE;
END PROCESS;

END FSMD;

Figure 11.30. FSMD model of the microprocessor for the summation algorithm. 
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Figure 11.31. Simulation trace of the FSMD summation algorithm with input n = 10. 

11.3.3 Behavioral Model 

The complete microprocessor can also be designed by writing VHDL code in a truly behavioral style so that 
both the FSM and the datapath are synthesized automatically. Using the behavioral model to design a circuit is quite 
similar to writing computer programs using a high-level language. The synthesizer, like the compiler, will translate 
the VHDL behavioral description of the circuit automatically to a netlist. This netlist can then be programmed 
directly onto a FPGA chip. 

Since the synthesizer automatically constructs both the FSM and the datapath, therefore, you have no control 
over what components are used in the datapath, and what control words are executed in what state of the FSM. Not 
being able to decide what components are used in the datapath is not too big of a problem because the synthesizer 
does do a good job in deciding that for you. The issue is with not being able to specify what control words are 
executed in what state of the FSM. This is purely a timing issue. In some timing critical applications such as 
communication protocols and real-time controls, we need to control exactly in what clock cycle a certain register-
transfer operation is performed. In other words, we need to be able to assign a control word to a specific state of the 
FSM. 

Behavioral VHDL code offers all the basic language constructs that are available in most computer 
programming languages such as variable assignments, FOR LOOPs and IF-THEN-ELSEs.  These statements, written 
within a process block, are executed sequentially. Besides the fact that we have no control over which clock cycle 
each operation is performed in, using the behavioral model is very powerful and simple. If timing is not an issue for 
your circuit, then between the different models, this should be the method of choice. 

Example 11.8 

Figure 11.32 shows the VHDL code using the behavioral model for the summation algorithm of Example 9.3. 
Note that some VHDL synthesizers such as MaxPlus+II do not allow the use of loops that cannot be unrolled, i.e., 
loops with variables for their starting or ending value whose values are unknown at compile time. Hence, in the 
code, the value for the variable n cannot be from a user input.  ♦  

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY sum IS PORT (
start: IN STD_LOGIC;
done: OUT STD_LOGIC;
output: OUT INTEGER);

END sum;

ARCHITECTURE Behavioral OF sum IS
BEGIN
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PROCESS
VARIABLE n: integer;
VARIABLE sum: integer;

BEGIN
IF (start = '0') THEN

done <= '0';
output <= 0;

ELSE
sum := 0;
n := 10; -- cannot be user input
FOR i IN n DOWNTO 1 LOOP

sum := sum + i;
END LOOP;
done <= '1';
output <= sum;

END IF;
END PROCESS;

END Behavioral;

Figure 11.32. Behavioral model of the microprocessor for the summation algorithm. 

 

11.4 Summary Checklist 

� Be able to manually construct the complete circuit for a dedicated microprocessor from a given algorithm 
� Be able to construct a dedicated microprocessor from a given algorithm using the FSM+D model with 

VHDL 
� Be able to construct a dedicated microprocessor from a given algorithm using the FSMD model with 

VHDL 
� Be able to construct a dedicated microprocessor from a given algorithm using the behavioral model with 

VHDL 

11.5 Problems 

11.1 Manually construct a dedicated microprocessor to enter two 8-bit numbers, and output the larger of the two 
numbers. The two numbers are entered through two separate input ports. Implement the circuit on the UP2 
board. 

11.2 Manually construct a dedicated microprocessor to enter two 8-bit numbers, and output the larger of the two 
numbers. The two numbers are entered through one input port. Assume that the two input numbers are always 
available at the input port whenever it is needed. 

11.3 Implement the circuit from Problem 11.2 on the UP2 board. Notice that in order for the number to be inputted 
correctly, you cannot assume that the two input numbers are always available. Instead, you need an extra 
Enter signal to tell the FSM when the data is available. 

11.4 Manually construct a dedicated microprocessor to enter one 8-bit number. Output a 1 if the number has five 1 
bits, otherwise, output a 0. 
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11.5 Manually construct a dedicated microprocessor to enter two 8-bit numbers. Output a 1 if the two numbers 
together has five 1 bits, otherwise, output a 0. 

11.6 Manually construct a dedicated microprocessor to enter two numbers, and output the product of these two 
numbers. 

11.7 Manually construct a dedicated microprocessor to enter two numbers. Output a 1 if the first number is 
divisible by the second number, otherwise, output a 0. 

11.8 Manually construct a dedicated microprocessor to enter three numbers, and output the larger of the three 
numbers. 

11.9 Manually construct a dedicated microprocessor to enter three numbers. Output the three numbers in 
ascending order. 

11.10 Manually construct a dedicated microprocessor to evaluate the factorial of n. The algorithm is shown below 

product = 1
input n
while (n > 1){
product = product * n
n = n – 1
}

output product

11.11 Manually construct a dedicated microprocessor to enter several numbers until a 0 is entered. Output the 
largest and second largest of the numbers entered. 

11.12 Manually construct a dedicated microprocessor to input one 8-bit value, and then determine whether the input 
value has an equal number of 0 and 1 bits. The microprocessor outputs a 1 if the input value has the same 
number of 0’s and 1’s, otherwise, it outputs a 0. For example, the number 10111011 will produce a 0 output, 
whereas, the number 00110011 will produce a 1 output. The algorithm is as follows: 

1 Count = 0 // for counting the number of 1 bits
2 input N
3 while (N ≠ 0){
4 if (N(0) = 1) then // least significant bit of N
5 Count = Count + 1
6 end if
7 N = N >> 1 // shift N right one bit
8 }
9 output (Count = 4) // output 1 if the test (Count = 4) is true

Answer: 
Custom datapath 
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(a) 
 

Next State  Q2next Q1next Q0next 
 (N=0), (N(0)=1) 

Current State 
Q2Q1Q0 00 01 10 11 

000 001 001 001 001 
001 011 010 100 100 
010 001 001 001 001 
011 001 001 001 001 
100 100 100 100 100 

(b) 
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Q1Q0

(N=0),(N(0)=1)

00

01

11

10

D2 Q2 = 0

00

1 1

01 11 10

Q2 = 1

1 1

00
1 1

01 11 10

Q2'Q1'Q0 (N=0)

Q2Q1'Q0'

 

D2 = Q2Q1'Q0' + Q2'Q1'Q0 (N=0) 

Q1Q0

00

01

11

10

D1 Q2 = 0

00

1 1

01 11 10

Q2 = 1

00 01 11 10
(N=0),(N(0)=1)

Q2'Q1'Q0 (N=0)'

 

D1 = Q2'Q1'Q0 (N=0)' 

Q1Q0

00

01

11

10

D0 Q2 = 0

1 1

00
1 1

1

1 1 1 1

1 1 1 1

01 11 10

Q2 = 1

00 01 11 10
(N=0),(N(0)=1)

Q2' (N=0)' (N(0)=1)'

Q2'Q0'

Q2'Q1

 

D0 = Q2'Q0' + Q2' (N=0)' (N(0)=1)' + Q2'Q1 

(c) 
 

Control 
Word 

State 
Q2 Q1 Q0 Instruction Load_N Shift_N Count Done 

0 000 Input N 1 0 0 0 
1 001 none 0 0 0 0 
2 010 Count = Count + 1, N = N >> 1 0 1 1 0 
3 011 N = N >> 1 0 1 0 0 
4 100 Output (Count = 4) 0 0 0 1 

(d) 

Load_N = Q2'Q1'Q0' 
Shift_N = Q1 
Count = Q2'Q1Q0' 
Done = Q2 

(e) 
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(f) 
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Control
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(g) 

 

11.13 Assume that the following control unit and datapath circuits are used to construct a dedicated microprocessor. 
Determine the instructions being executed in each state of the FSM. Write out the complete algorithm that the 
resulting microprocessor will execute. In other words, write out the pseudo-code for the algorithm. Briefly 
describe what the algorithm does. 
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Q1

Clear

ClrX
LoadY
inZ
LoadX

LoadZ
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Load 8-bit register
Clear

D7-0

X
Q7-0Clock

Load 8-bit register
Clear

D7-0

Y
Q7-0Clock

Load 8-bit register
Clear

D7-0

Z
Q7-0Clock

LoadX

Clock

ClrX

LoadY
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01

+ / -

'1'

8
8

0101

'4' input
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inZ

(Z≠0)
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8

8

8 8

8

 

Answer: 
Excitation equations / Next-state equations: 
 D1 = Q1next = Q0 + (Z≠0)' 
 D0 = Q0next = Q1 + Q0' 

Output equations: 
 ClrX = LoadY = inZ = Q1'Q0' 
 LoadX = stat1 = Q1'Q0 
 LoadZ = Q0' 
 subtract = Q1Q0' 

Next-state table / Output table: 
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Next State 
Q1next Q0next 

Outputs Current 
State 
Q1Q0 (Z≠0) = 0 (Z≠0) = 1 ClrX LoadX LoadY LoadZ inZ stat1 subtract 

00 11 01 1 0 1 1 1 0 0 
01 10 10 0 1 0 0 0 1 0 
10 11 01 0 0 0 1 0 0 1 
11 11 11 0 0 0 0 0 0 0 

State diagram: 

0

1

2

3

(Z≠0) (Z≠0)'

(Z≠0)

(Z≠0)'

ClrX=1
LoadX=0
LoadY=1
LoadZ=1
inZ=1
stat1=0
subtract=0

ClrX=0
LoadX=0
LoadY=0
LoadZ=0
inZ=0
stat1=0
subtract=0

ClrX=0
LoadX=1
LoadY=0
LoadZ=0
inZ=0
stat1=1
subtract=0

ClrX=0
LoadX=0
LoadY=0
LoadZ=1
inZ=0
stat1=0
subtract=1  

 
State 0: 

X = 0 
Y = 4 
input Z 

State 1: 
X = X + Y 

State 2: 
Z = Z – 1 

State 3: 
none 
 

Algorithm: Outputs 4 × Z, where Z is an input value. 

X = 0
Y = 4
input Z

while (Z ≠ 0){
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X = X + Y
Z = Z – 1
}

11.14 Write the VHDL code for Problems 11.1 to 11.9 using the FSM+D model. 

11.15 Write the VHDL code for Problems 11.1 to 11.9 using the FSMD model. 
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Chapter 12 

General-Purpose Microprocessors 
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Unlike a dedicated or custom microprocessor that is capable of performing only one function, a general-purpose 
microprocessor, such as the Pentium  CPU, is capable of performing many different functions under the direction 
of program instructions. Given a different instruction set or program, the general-purpose microprocessor will 
perform a different function. However, a general-purpose microprocessor can also be viewed as a dedicated 
microprocessor because it is made to perform only one function, and that is to execute the program instructions. In 
this sense, we can design and construct a general-purpose microprocessor in the same way that we constructed the 
dedicated microprocessors in the last chapter. 

12.1 Overview of the CPU Design 
A general-purpose microprocessor is often referred to as the central processing unit (CPU). The CPU is simply 

a dedicated microprocessor that only executes software instructions. Figure 12.1 shows an overview of a general-
purpose microprocessor. The following discussion references this diagram. 

fetch

decode

executeinstruction1

Control
Unit

executeinstructionn

IR

PC

Memory
Datapath

for
executing

all the
instructions

address

instruction

+1

control
signals

status
signals

control
signals

Datapath

Input

Output  
Figure 12.1. Overview of a general-purpose microprocessor. 

In designing a CPU, we must first define its instruction set, and how the instructions are encoded and executed. 
We need to answer questions such as how many instructions do we want? What are the instructions? What operation 
code (opcode)  do we assign to each of the instructions? How many bits do we use to encode an instruction? 

Once we have decided on the instruction set, we can proceed to designing a datapath that can execute all the 
instructions in the instruction set. In this step we are creating a custom datapath, so we need to answer questions 
such as what functional units do we need? How many registers do we need? Do we use a single register file or 
separate registers? How are the different units connected together? 

Creating the datapath for a general-purpose microprocessor is exactly the same as creating the datapath for a 
dedicated microprocessor. However, in addition to being able to perform all the instructions in the instruction set, 
there are other data operations and registers that must be included in the datapath for the general-purpose 
microprocessor. These data operations and registers deal with how the general-purpose microprocessor fetches the 
instructions from memory and executes them. In particular, there is a program counter (PC)  that contains the 
memory location of where the next instruction is stored. There is an instruction register (IR)  for storing the 
instruction being fetched from the memory. Each time an instruction is fetched from a memory location pointed to 
by the PC, normally the PC must be incremented to the next memory location for the next instruction. Alternatively, 
if the instruction is a jump instruction, the PC must be loaded with a new memory address instead. 
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The control unit for a general-purpose microprocessor basically cycles through three main steps, usually 
referred to as the instruction cycle: 1) fetches an instruction; 2) decodes the instruction; and 3) executes the 
instruction. Each step is executed in one state of the finite-state machine. For step 3, each instruction is usually 
executed in one clock cycle, although some memory access instructions may require two or more clock cycles to 
complete, hence they may require several states for correct timing. 

For fetching the instruction in step 1, the control unit simply reads the memory location specified by the PC, 
and copies the content of that location into the instruction register (IR). The PC is then incremented by 1 (assuming 
that each instruction occupies one memory location). For decoding the instruction in step 2, the control unit extracts 
the opcode bits from the instruction register and determines what the current instruction is by jumping to the state 
that is assigned for executing that instruction. Once in that particular state, the control unit performs step 3 by simply 
asserting the appropriate control signals for controlling the datapath to execute that instruction. 

Instructions for the program are usually stored in external memory, so in addition to the CPU, there is external 
memory that is connected to the CPU via an address bus and a data bus. Hence, step 1 (fetch an instruction) usually 
involves the control unit setting up a memory address on the address bus and telling the external memory to output 
the instruction from that memory location onto the data bus. The control unit then reads the instruction from the data 
bus. To keep our design simple, instead of having external memory, we will include the memory as part of the 
datapath. This way, we do not have to worry about the handshaking and timing issues involved for accessing 
external memory. 

12.2 The EC-1 General-Purpose Microprocessor 
This first version of the EC1 computer is extremely small and very limited as to what it can do, and therefore, its 

general-purpose microprocessor is very “E-Cee” to design manually. In order to keep the manual design of the 
microprocessor manageable, we have to keep the number of variables small. Since these variables determine the 
number of states and input signals for the finite-state machine, therefore these factors have to be kept to the bare 
minimum. Nevertheless, the building of this computer demonstrates how a general-purpose microprocessor is 
designed, and how the different components are put together. After this exercise, you will quickly appreciate the 
power of designing with VHDL at a higher abstraction level, and the use of an automatic synthesizer. 

We will now design the general-purpose microprocessor for our EC-1 computer. After which, we will interface 
this microprocessor to external I/O’s, and implement the complete computer using the FLEX FPGA chip on the UP2 
development board to make it into a real working general-purpose computer. Using the few instructions available, 
we will then write a program to execute on the EC-1, and see that it actually works! 

12.2.1 Instruction Set 

The instructions that our EC-1 general-purpose microprocessor can execute, and the corresponding encodings 
are defined in Figure 12.2. The Instruction column shows the syntax and mnemonic to use for the instruction when 
writing a program in assembly language. The Encoding column shows the binary encoding defined for the 
instruction, and the Operation column shows the operation of the instruction. 

As we can see from Figure 12.2, our little computer’s instruction set has only five instructions. To encode five 
instructions, the operation code (opcode) will require three bits – giving us eight different combinations. As shown 
in the Encoding column, the first three most significant bits are the opcode given to an instruction. For example, the 
opcode for the IN A instruction is 011, and the opcode for OUT A is 100, and so on. The three encodings, 000, 001, 
and 010, are not defined, and can be used as a no-operation (nop) instruction. Since the width of each instruction is 
fixed at eight bits, the last five bits are not used by all the instructions except for the JNZ instruction. Normally, for a 
more extensive instruction set, these extra bits are used as operand bits to specify what registers or other resources to 
use. In our case, only the JNZ instruction uses the last four bits, designated as aaaa, to specify an address in the 
memory to jump to. 

The IN A instruction inputs an 8-bit value, and stores it into the accumulator (A) . The accumulator is an 8-bit 
register for performing data operations. The OUT A instruction copies the content of the accumulator to the output 
port. For the EC-1, the content of the accumulator is always available at the output port, so this OUT A instruction is 

                                                           
1 “EC” is the acronym for Enoch’s Computer. 
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not really necessary. It is only included just because a program should have an output instruction. The DEC A 
instruction decrements the content of A by 1, and stores the result back into A. The JNZ (Jump Not Zero) instruction 
tests to see if the value in A is equal to 0 or not. If A is equal to 0, then nothing is done. If A is not equal to 0, then 
the last four bits of the instruction, designated as aaaa in the encoding, is loaded into the PC. The four bits, aaaa, 
represent a memory address. When this value is loaded into the PC, we are essentially performing a jump to this new 
memory address, since the value stored in the PC is the location for the next fetch operation. Finally, the HALT 
instruction halts the CPU by having the control unit stay in the halt state indefinitely until reset. 
 

Instruction Encoding Operation Comment 
IN A 011 ××××× A ← input Input to A 
OUT A 100 ××××× output ← A Output from A 
DEC A 101 ××××× A ← A – 1 Decrement A 
JNZ address 110 ×aaaa if (A != 0) then PC = aaaa Jump to address if A is not zero 
HALT 111 ××××× Halt Halt execution 

Notations: 
A = accumulator. 
PC = program counter. 
aaaa = four bits for specifying a memory address. 
× = don’t cares. 

Figure 12.2. Instruction set for the EC-1. 

12.2.2 Datapath 

Having defined the instruction set for the EC-1 general-purpose microprocessor, we are now ready to design the 
custom datapath that will execute all the operations as defined by all the instructions. The custom datapath for the 
EC-1 is shown in Figure 12.3. 

The datapath can be viewed as having three separate parts: 1) for performing the instruction cycle operations of 
fetching an instruction, and incrementing or loading the PC, 2) the memory, and 3) for performing the data 
operations for all the instructions in the instruction set. 

The portion of the datapath for performing the instruction cycle operations basically contains the instruction 
register (IR), and the program counter (PC). The bit width of the instructions determine the size of the IR, whereas, 
the number of addressable memory locations determines the size of the PC. For this datapath, we want a memory 
with 16 locations, each being 8-bits wide, so we need a 4-bit (24 = 16) address. Hence, the PC is 4-bits wide, and the 
IR is 8-bits wide. A 4-bit increment unit is used to increment the PC by 1. The PC needs to be loaded with either the 
result of the increment unit, or the address from the JNZ instruction. A 2-to-1 multiplexer is used for this purpose. 
One input of the multiplexer is from the increment unit, and the other input is from the four least significant bits of 
the IR, IR3-0. 

As mentioned in Section 12.1, to keep our design simple, instead of having external memory, we have included 
the memory as part of the datapath. In this design, the memory is a 16 locations × 8 bits wide read-only memory 
(ROM). Since, the instruction set does not have an instruction that writes to memory, we only need a read-only 
memory. The output of the PC is connected directly to the 4-bit memory address lines, since the memory location is 
always determined by the content of the PC. The 8-bits memory output Q7..0 is connected to the input of the IR for 
executing the instruction fetch operation. 

The portion of the datapath for performing the instruction set operations includes the 8-bit accumulator A, and 
an 8-bit decrement unit. A 2-to-1 multiplexer is used to select the input to the accumulator. For the IN A instruction, 
the input to the accumulator is from the data input port, whereas for the DEC A instruction, the input is from the 
output of the decrement unit, which performs the decrement of A. The output of the accumulator is directly 
connected to the data output port, hence the OUT A instruction does not require any specific datapath actions. 
Furthermore, with this direct connection, it is equivalent to always performing the OUT A instruction. The JNZ 
instruction requires the 8-input OR gate connected to the output of the accumulator to test for the condition (A ≠ 0).  
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The actual operation required by the JNZ instruction is to load the PC with the four least significant bits of the IR. 
The HALT instruction also does not require any specific datapath actions. 

The control word for this custom datapath has five control signals, IRload, PCload, INmux, Aload, and JNZmux. 
The datapath provides one status signal, Aneq0, to the control unit. The control words for executing the instruction 
cycle operations and the instruction set operations are discussed in the next section. 
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Figure 12.3. Datapath for the EC-1. 

12.2.3 Control Unit 

The state diagram for the control unit is shown in Figure 12.4 (a), and the actions that are executed, specifically 
the control signals that are asserted in each state are shown in (d). The first START state 000 serves as the initial 
reset state. No action is performed in this state. In addition, this START state provides one extra clock cycle for 
instructions that require an extra clock cycle to complete its operation. Although, for those instructions that do not 
require this extra clock cycle to complete its operation should technically go back to the FETCH state instead, we 
have made all instructions go back to the START state so that the next-state table and the excitation equations are 
simpler. 

Of the five instructions, only the JNZ instruction requires an extra clock cycle to complete its operation. This is 
because if the condition is tested true, the PC is loaded with a new address value. This new address value is actually 
loaded into the PC at the beginning of the next clock cycle. So if we have the FSM go to the FETCH state in the 
next clock cycle, then the IR will be loaded with the memory from the old address, and not the new address. 
However, by making the FSM go back to the START state, the PC will be updated with the new address in this 
state, and the memory will be accessed during the next FETCH state from the new address. 

From the START state, the control unit goes to the FETCH state unconditionally. In the FETCH state, the IR is 
loaded with the memory content in the location specified by the PC by asserting the IRload signal. Furthermore, the 
PC is incremented by 1, and the result is loaded back to the PC by asserting the PCload signal. The DECODE state 
tests the three most significant bits of the IR, IR7-5, and goes to the corresponding state as encoded by the three bit 
opcode for executing the instruction. 
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In the five execute states corresponding to the five instructions, the appropriate control signals for the datapath 
are asserted to execute that instruction. For example, the IN A instruction requires setting the INmux signal to a 1 for 
the input multiplexer, and setting the Aload signal to a 1 to load the input value into A. Notice that in order for the 
input instruction to read in the correct value, the input value must be set up first before resetting the CPU. 
Furthermore, since the INPUT state does not wait for an Enter key signal, therefore, only one value can be read in, 
even if there are multiple input statements. The DEC A instruction requires setting INmux to 0 and Aload to 1 so that 
the output from the decrement unit is routed back to the accumulator, and gets loaded in. 

The JNZ instruction asserts the JNZmux signal to route the four address bits from the IR to the PC. Whether the 
PC actually gets loaded with this new address depends on the condition of the Aneq0 status signal. Hence, the 
PCload control signal is asserted only if Aneq0 is a 1. By asserting the PCload signal conditionally depending on the 
status signal Aneq0, the state diagram will require one less state, thus making the finite-state machine smaller, and 
making it into a Mealy FSM. Otherwise, the FSM will need two states for the JNZ instruction: one state for asserting 
the PCload signal when Aneq0 is true, and one state for de-asserting the PCload signal when Aneq0 is false. 

Once the FSM enters the HALT state, it unconditionally loops back to the HALT state, giving the impression 
that the CPU has halted. 

The next-state / implementation table for the state diagram, and the three excitation equations as derived from 
the implementation table are shown in Figure 12.4 (b) and (c) respectively. With eight states, three D flip-flops are 
used for the implementation of the control unit circuit. Notice that the derivation of the excitation equations is fairly 
straight forward since most of the entries in the table contain 0’s. Only the decode state row contains different 
values. 

The output equations shown in Figure 12.4 (e) are derived directly from the output table in (d). 

Finally, we can derive the circuit for the control unit based on the excitation equations and the output equations. 
The complete control unit circuit for the EC-1 general-purpose microprocessor is shown in Figure 12.4 (f). 
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Next State Q2next Q1next Q0next (Implementation D2 D1 D0) 
IR7, IR6, IR5 Current State 

Q2Q1Q0 000 
nop 

001 
nop 

010 
nop 

011 
input 

100 
output 

101 
dec 

110 
jnz 

111 
halt 

000 start 001 001 001 001 001 001 001 001 
001 fetch 010 010 010 010 010 010 010 010 
010 decode 000 000 000 011 100 101 110 111 
011 input 000 000 000 000 000 000 000 000 
100 output 000 000 000 000 000 000 000 000 
101 dec 000 000 000 000 000 000 000 000 
110 jnz 000 000 000 000 000 000 000 000 
111 halt 111 111 111 111 111 111 111 111 

(b) 

D2 = Q2Q1Q0 + Q2'Q1Q0'IR7 

D1 = Q2Q1Q0 + Q2'Q1Q0' (IR6IR5 + IR7IR6) + Q2'Q1'Q0 

D0 = Q2Q1Q0 + Q2'Q1Q0' (IR6IR5 + IR7IR5) + Q2'Q1'Q0' 

(c) 
 

Control 
Word 

State 
Q2Q1Q0 IRload PCload INmux Aload JNZmux Halt 

0 000 start 0 0 0 0 0 0 
1 001 fetch 1 1 0 0 0 0 
2 010 decode 0 0 0 0 0 0 
3 011 input 0 0 1 1 0 0 
4 100 output 0 0 0 0 0 0 
5 101 dec 0 0 0 1 0 0 
6 110 jnz 0 if (Aneq0 = 1) then 1 else 0 0 0 1 0 
7 111 halt 0 0 0 0 0 1 

(d) 

 IRload = Q2'Q1'Q0 
 PCload = Q2'Q1'Q0 + Q2Q1Q0' (Aneq0) 
 INmux = Q2'Q1Q0 
 Aload = Q2'Q1Q0 + Q2Q1'Q0 
 JNZmux = Q2Q1Q0' 
 Halt = Q2Q1Q0 

(e) 
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Figure 12.4. Control unit for the EC-1: (a) state diagram; (b) next-state / implementation table; (c) excitation 
equations; (d) control word/output table; (e) output equations; (f) circuit. 

12.2.4 Complete Circuit 

The complete circuit for the EC-1 general-purpose microprocessor is constructed by connecting the datapath 
from Figure 12.3 and the control unit from Figure 12.4 (f) together using the designated control and status signals as 
shown in Figure 12.5. 
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Figure 12.5. Complete circuit for the EC-1 general-purpose microprocessor. 

12.2.5 Sample Program 

Dedicated microprocessors, as discussed in the previous chapter, have the algorithm built right into the circuit 
of the microprocessor. General-purpose microprocessors, on the other hand, do not have an algorithm built into it. It 
is designed only to execute program instructions fetched from the memory. Hence, in order to test out the EC-1 
computer, we need to write a program using the instructions available in the instruction set. 

There are only five instructions in the instruction set defined for the EC-1 as shown in Figure 12.2. For our 
sample program, we will use these five instructions to write a program to input a number, and then count down from 
this input number to 0. The program is shown in Figure 12.6 (a). 

Since we do not have a compiler for the EC-1, we need to manually compile this program by hand. The binary 
executable code for this program is shown in Figure 12.6 (b). The binary code is obtained by replacing each 
instruction with its corresponding 3-bit opcode as listed in Figure 12.2, followed by five bits for the operand. All the 
instructions, except for the JNZ instruction, do not use these five operand bits, so either a 0 or a 1 can be used. From 
Figure 12.2, we find that the opcode for the IN A instruction is 011, therefore, the encoding for this first instruction 
is 01100000. Similarly, the opcode for the OUT A instruction is 100, therefore, the encoding used is 10000000. 

For the JNZ instruction, the least significant four bits represent the memory address to jump to if the condition 
is true. In the example, we are assuming that the first instruction, IN A, is stored in memory location 0000. Since the 
JNZ instruction jumps to the second instruction, OUT A, which will be stored in memory location 0001, therefore, 
the four address bits for the JNZ instruction are 0001. The opcode for the JNZ instruction is 110, hence, the 
encoding for the complete JNZ instruction is 11000001. 

IN A -- input a value into the A register
loop: OUT A -- output the value from the A register

DEC A -- decrement A by one
JNZ loop -- go back to loop if A is not zero
HALT -- halt

(a) 
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memory instruction
address encoding
0000 01100000; -- IN A
0001 10000000; -- OUT A
0010 10100000; -- DEC A
0011 11000001; -- JNZ loop
0100 11111111; -- HALT

 (b) 

Figure 12.6. Countdown program to run on the EC-1: (a) assembly code; (b) binary code. 

Normally, the program instructions are stored in memory that is external to the CPU, and the computer (with the 
help of the operating system) will provide means to independently load the instructions into the memory. However, 
to keep our design simple, we have included the memory as part of the CPU inside the datapath. Furthermore, we do 
not have an operating system for loading the instructions into the memory separately. Therefore, our program must 
be “loaded” into the memory before the synthesis of the datapath and the microprocessor. The memory circuit that 
we have used is from Altera’s LPM component library. Refer to the Altera documentation for more information on 
the usage of this component. This memory is initialized with the content of the text file named PROGRAM.MIF. 
Therefore, to load our memory with the program, we must enter the binary encoding of the program in this text file, 
and then re-synthesize the microprocessor circuit. 

The content of this PROGRAM.MIF file for the countdown program is shown in Figure 12.7. Texts after the 
two hypens ( --) are comments, and all the capitalized words are keywords. 

Remember to re-synthesize your computer every time you make changes to the PROGRAM.MIF file. For this 
purpose, you may want to check the Processing | Smart Recompile option under the Compiler menu. With this 
option checked, the compiler will not have to re-synthesize the entire computer circuit. 

-- Content of the ROM memory in the file PROGRAM.MIF

DEPTH = 16; -- Number of memory locations: 4-bit address
WIDTH = 8; -- Data Width of memory: 8-bit data

ADDRESS_RADIX = BIN; -- Specifies the address values are in binary
-- Other valid radixes are HEX, DEC, OCT, BIN

DATA_RADIX = BIN; -- Specifies the data values are in binary

-- Specify memory content.
-- Format of each memory location is
-- address : data

CONTENT
BEGIN

[0000..1111] : 00000000; -- Initialize locations range 00-1F to 0

-- Program to countdown from an input to 0

0000 : 01100000; -- input A
0001 : 10000000; -- output A
0010 : 10100000; -- decrement A
0011 : 11000001; -- jnz 0001
0100 : 11111111; -- halt

END;
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Figure 12.7. The PROGRAM.MIF file containing the Countdown program to run on the EC-1. 

12.2.6 Simulation 

Having typed in the countdown program into the PROGRAM.MIF file, and re-synthesize the computer, we can 
now run a simulation of the microprocessor executing the program. A sample simulation of the microprocessor is 
shown in Figure 12.8 showing the count down from the input 3 on the Output signal. This complete microprocessor 
circuit is on the accompanying CD-ROM in the file MP.GDF, and can be synthesized and simulated. 

 
Figure 12.8. A sample simulation trace of the countdown program running on the EC-1 starting at the input 3. 

12.2.7 Hardware Implementation 

A complete computer, according to the Von Neumann model, includes not only the microprocessor, but also the 
memory, input and output devices. We have so far only constructed the general-purpose microprocessor with the 
built-in memory for the EC-1 as shown in Figure 12.5. The final step in building the complete EC-1 computer is to 
add the input and output devices. Figure 12.9 shows the interface between the microprocessor, and the input and 
output devices on the UP2 development board. The input simply consists of eight DIP switches, and the output is the 
two 7-segment LED display. Since the microprocessor outputs an 8-bit binary number, we need an 8-bit binary to 
two digit BCD (binary coded decimal) decoder so that we can see the 8-bit binary number as two decimal digits on 
the two 7-segment LED display. A single LED is used to show when the microprocessor has halted. A push button 
switch is used as the reset button. Finally, the on-board 25MHz clock is slowed down with a clock divider circuit. 
The reason for using the slower clock speed is so that we can see some intermediate results on the display. 

This complete hardware implementation circuit is in the file UP2FLEX.GDF in the appropriate directory on the 
accompanying CD-ROM. You can use this file to download this complete EC-1 computer onto the UP2 
development board, and see the count down on the 7-segment display from any given input provided by the eight 
DIP switches. The FLEX_PB1 pushbutton switch is the Reset switch. The output is shown on the two 7-segment 
LED as a decimal number. The decimal point on the right digit is lit if the number is in the 100’s. The decimal point 
on the left digit is the Halt light, and is lit when the program terminates with the HALT instruction. 

Digital Logic and Microprocessor Design with VHDL Chapter 12 - General-Purpose Microprocessors

432



Clock

Input

Halt

OutputEC-1
microprocessor

ResetReset push button switch
FLEX_PB1

25MHz Clock

8 DIP switches

8

8

binary to
BCD

decoder

two
7-segment

LEDsClock Divider
25MHz 4Hz

LED
left digit decimal point  

Figure 12.9. Hardware implementation of the EC-1 computer. 

12.3 The EC-2 General-Purpose Microprocessor 
For our next example, we will design the general-purpose microprocessor for a second version of the EC 

computer, the EC-2. 

12.3.1 Instruction Set 

The instruction set for the EC-2 general-purpose microprocessor has eight instructions as shown in Figure 
12.10. The reason for keeping this number at eight is so that we can still use only three bits to encode them. 

The LOAD instruction loads the content of the memory at the specified address into the accumulator A. The 
address is specified by the five least significant bits of the instruction. The STORE instruction is similar to the 
LOAD except that it stores the value in A to the memory at the specified address. The ADD and SUB instructions 
respectively adds and subtracts the content of A with the content in a memory location, and stores the result back 
into A. The IN instruction inputs a value and stores it into A. The JZ instruction loads the PC with the specified 
address if A is zero. Loading the PC with a new address simply causes the CPU to jump to this new memory 
location. The JPOS instruction loads the PC with the specified address if A is positive. The value in A is taken as a 
2’s complement signed number, so a positive number is one where the most significant bit of the number is a 0. 
Finally, the HALT instruction halts the CPU. 

 
Instruction Encoding Operation Comment 
LOAD A, address 000 aaaaa A ← M[aaaaa] Load A with content of memory location aaaaa 
STORE A, address 001 aaaaa M[aaaaa] ← A Store A into memory location aaaaa 
ADD A, address 010 aaaaa A ← A + M[aaaaa] Add A with M[aaaaa] and store the result back into A 
SUB A, address 011 aaaaa A ← A – M[aaaaa] Subtract A with M[aaaaa] and store result back into A 
IN A 100 ××××× A ← input Input to A 
JZ address 101 aaaaa if (A = 0) then PC = aaaaa Jump to address if A is zero 
JPOS address 110 aaaaa if (A > 0) then PC = aaaaa Jump to address if A is positive 
HALT 111 ××××× Halt Halt execution 

Notations: 
A = accumulator. 
M = memory. 
PC = program counter. 
aaaaa = four bits for specifying a memory address. 
× = don’t cares. 

Figure 12.10. Instruction set for the EC-2. 
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12.3.2 Datapath 

The custom datapath for the EC-2 is shown in Figure 12.11. 

The portion of the datapath for performing the instruction cycle operations is very similar to that of the previous 
EC-1 with the instruction register (IR), the program counter (PC), and the increment unit for incrementing the PC. 
The minor differences between the two are in the size of the PC, and the increment unit. In this second design, we 
want a memory with 32 locations, hence the address, and therefore, the size of the PC and the increment unit must 
all be 5-bits wide. 

The main modification to this portion of the datapath is in the addition of a second 2-to-1 multiplexer that is 
connected between the output of the PC and the memory address input. One input of this multiplexer comes from 
the PC, and the other input comes from the five least significant bits of the IR, IR4-0. The reason for this is because 
there are now two different types of operations that can access memory. The first is still for the fetch operation 
where the memory address is given by the content of the PC. The second type is for the four instructions, LOAD, 
STORE, ADD, and SUB, where they use the memory as an operand. Hence, the memory address for these four 
instructions is given by the five least significant bits of the IR. The select signal for this multiplexer is Meminst. 

The memory size for the EC-2 is increased to 32 locations, thus requiring five address bits. The memory is still 
included as part of the datapath rather then as an independent external unit to the CPU. In order to accommodate the 
STORE instruction for storing the value of A into the memory, we need to use a RAM instead of the previous ROM. 
To realize this operation, the output of the accumulator A is connected to the memory data input D7-0. The signal 
MemWr, when asserted, causes the memory to write the value from register A into the location specified by the 
address in the instruction. 

The output of the memory at Q7-0 is connected to both the input of the IR and to the input of the accumulator A 
through a 4-to-1 multiplexer. The connection to the IR is for the fetch operation just like in the EC-1 design. The 
connection to the accumulator is for performing the LOAD instruction where the content of the memory is loaded 
into A. Since the memory is only one source among two other sources that is loaded into A, therefore, the 
multiplexer is needed. 

The portion of the datapath for performing the instruction set operations includes the 8-bit accumulator A, an 8-
bit adder-subtractor unit, and a 4-to-1 multiplexer. The adder-subtractor unit performs the ADD and SUB 
instructions. The Sub signal, when asserted selects the subtraction operation, and when de-asserted selects the 
addition operation. The 4-to-1 multiplexer allows the accumulator A input to come from one of three sources. For 
the ADD and SUB instructions, the A input comes from the output of the adder-subtractor unit; for the IN 
instruction, the A input comes from the input port; and for the STORE instruction, the A input comes from the 
output of the memory. The selection of this multiplexer is through the two signal lines Asel1-0. The fourth input of 
the multiplexer is not used. 

Similar to the previous EC-1 design, the output port is connected directly to the output of the accumulator A. 
Therefore, the value of the accumulator is always available at the output port, and no specific output instruction is 
necessary to output the value in A. 

For the two conditional jump instructions, JZ and JPOS, the datapath provides the two status signals, Aeq0 and 
Apos respectively, that are generated from two comparators. The Aeq0 status signal outputs a 1 if the value in A is a 
0, hence an 8-input NOR gate is used. The Apos status signal outputs a 1 if the value in A, which is treated as a 2’s 
complement signed number, is a positive number. Since for a 2’s complement signed number, a leading 0 means 
positive, and a leading 1 means negative, hence, Apos is simply the negated value of A7, the most significant bit of 
A. 

The control word for this custom datapath has five control signals, IRload, JMPmux, PCload, Meminst, 
MemWr, Asel1-0, Aload, and Sub. The datapath provides two status signals, Aeq0 and Apos, to the control unit The 
control words for executing the instruction cycle operations and the instruction set operations are discussed in the 
next section. 
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Figure 12.11. Datapath for the EC-2. 

12.3.3 Control Unit 

The state diagram for the control unit is shown in Figure 12.12 (a), and the actions that are executed, 
specifically the control signals that are asserted in each state are shown in (d). The first three states, START, 
FETCH, and DECODE, serve the same purpose as in the previous EC-1’s control unit. The DECODE state for this 
second design, however, needs to decode eight opcodes by branching to eight different states for executing the 
corresponding eight instructions. Like before, the decoding of the opcodes depends on the three most significant bits 
of the IR. 

A very important timing issue for this control unit has to do with the memory accesses of the three instructions, 
LOAD, ADD, and SUB. The problem here is that only after fetching these instructions will the address of the 
memory location for these instructions be available. Furthermore, only after decoding the instruction will the control 
unit know that the memory needs to be read. If we change the memory address during the execute state, the memory 
will not have enough time to output the value for the instruction to operate on. 

Normally, for instructions requiring a memory access for one of its operands, an extra memory read state will be 
inserted between the DECODE state and the execute state. This way, the memory will have one clock cycle to 
output the data for the instruction to operate on in the following clock cycle. This of course, is assuming that the 
memory requires only one clock cycle for a read operation. If the memory is slower, then more states must be 
inserted in between. 

In our design, however, again to minimize the number of states, we have used the decode state to also perform 
the memory read. This way, when the control unit gets to the execute state, the memory will already have the data 
ready. Whether the data from the memory is actually used or not will depend on the instruction being executed. If 
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the instruction does not require the data from the memory, it is simply ignored. On the other hand, if the instruction 
needs the data, then the data is there and ready to be used. This solution works in this design because it does not 
conflict with the operations for the rest of the instructions in our instruction set. The memory read operation 
performed in the DECODE state is accomplished by asserting the Meminst signal from this state. Looking at the 
Output table in Figure 12.12 (d), this is reflected by the 1 under the Meminst column for the DECODE state. 

The actual execution of each instruction is accomplished by asserting the correct control signals to control the 
operation of the datapath. This is shown by the assignments made for the respective rows in the Output table in 
Figure 12.12 (d). At this point, you should be able to understand why each assignment is made by looking at the 
operation of the datapath. For example, for the LOAD A, instruction, the Asel1 signal needs to be asserted and the 
Asel0 signal needs to be de-asserted in order to select input-2 of the multiplexer so that the output from the memory 
can pass to the input of the accumulator A. The actual loading of A is done by asserting the Aload signal. To 
perform the STORE A instruction, the memory address is taken from the IR by asserting Meminst. The writing into 
memory takes place when MemWr is asserted. 

The INPUT state for this state diagram waits for the Enter key signal before looping back to the START state. 
In so doing, we can read in several values correctly by having multiple input statements in the program. Notice that 
after the Enter signal is asserted, there is no state that waits for the Enter signal to be de-asserted, i.e. for the Enter 
key to be released. Hence, the input device must resolve this issue by outputting exactly one clock pulse each time 
the Enter key is pressed. This is accomplished at the computer circuit level by using a one-shot circuit. 

The next-state / implementation table for the state diagram, and the three excitation equations as derived from 
the implementation table are shown in Figure 12.12 (b) and (c) respectively. To keep the table reasonable small, all 
the possible combinations of the input signals are not listed out. All the states, except for the INPUT state, depends 
only on the three IR bits, whereas, the INPUT state depends only on the Enter signal. The blank entries in the table, 
therefore, can be viewed as having all zeros. With 11 states, four D flip-flops are used for the implementation of the 
control unit circuit. 

The output equations shown in Figure 12.12 (e) are derived directly from the output table in (d). 

Finally, we can derive the circuit for the control unit based on the excitation equations and the output equations. 
The complete control unit circuit for the EC-2 general-purpose microprocessor is shown in Figure 12.12 (f). 
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Next State Q3next Q2next Q1next Q0next (Implementation D3 D2 D1 D0) 
IR7, IR6, IR5 Enter Current State 

Q3Q2Q1Q0 000 
load 

001 
store 

010 
add 

011 
sub 

100 
input 

101 
jz 

110 
jpos 

111 
halt 0 1 

0000 start 0001 0001 0001 0001 0001 0001 0001 0001   
0001 fetch 0010 0010 0010 0010 0010 0010 0010 0010   
0010 decode 1000 1001 1010 1011 1100 1101 1110 1111   
1000 load 0000 0000 0000 0000 0000 0000 0000 0000   
1001 store 0000 0000 0000 0000 0000 0000 0000 0000   
1010 add 0000 0000 0000 0000 0000 0000 0000 0000   
1011 sub 0000 0000 0000 0000 0000 0000 0000 0000   
1100 input         1100 0000 
1101 jz 0000 0000 0000 0000 0000 0000 0000 0000   
1110 jpos 0000 0000 0000 0000 0000 0000 0000 0000   
1111 halt 1111 1111 1111 1111 1111 1111 1111 1111   

(b) 

D3 = Q3'Q2'Q1Q0' + Q3Q2Q1'Q0'Enter' + Q3Q2Q1Q0 

D2 = Q3'Q2'Q1Q0'IR7 + Q3Q2Q1'Q0'Enter' + Q3Q2Q1Q0 

D1 = Q3'Q2'Q1'Q0 + Q3'Q2'Q1Q0'IR6 + Q3Q2Q1Q0 

D0 = Q3'Q2'Q1'Q0' + Q3'Q2'Q1Q0'IR5 + Q3Q2Q1Q0 

(c) 
 

State 
Q3Q2Q1Q0 IRload JMPmux PCload Meminst MemWr Asel1,0 Aload Sub Halt 
0000 start 0 0 0 0 0 00 0 0 0 
0001 fetch 1 0 1 0 0 00 0 0 0 
0010 decode 0 0 0 1 0 00 0 0 0 
1000 load 0 0 0 0 0 10 1 0 0 
1001 store 0 0 0 1 1 00 0 0 0 
1010 add 0 0 0 0 0 00 1 0 0 
1011 sub 0 0 0 0 0 00 1 1 0 
1100 input 0 0 0 0 0 01 1 0 0 
1101 jz 0 1 Aeq0 0 0 00 0 0 0 
1110 jpos 0 1 Apos 0 0 00 0 0 0 
1111 halt 0 0 0 0 0 00 0 0 1 

(d) 

 IRload = Q3'Q2'Q1'Q0 
 JMPmux = Q3Q2Q1'Q0 + Q3Q2Q1Q0' 
 PCload = Q3'Q2'Q1'Q0 + Q3Q2Q1'Q0Aeq0 + Q3Q2Q1Q0' Apos 
 Meminst = Q3'Q2'Q1Q0' + Q3Q2'Q1'Q0 
 MemWr = Q3Q2'Q1'Q0 
 Asel1 = Q3Q2'Q1'Q0' 
 Asel0 = Q3Q2Q1'Q0' 
 Aload = Q3Q1'Q0' + Q3Q2'Q1 
 Sub = Q3Q2'Q1Q0 
 Halt = Q3Q2Q1Q0 
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Figure 12.12. Control unit for the EC-2: (a) state diagram; (b) next-state / implementation table; (c) excitation 
equations; (d) control word/output table; (e) output equations; (f) circuit. 

12.3.4 Complete Circuit 

The complete circuit for the EC-2 general-purpose microprocessor is constructed by connecting the datapath 
from Figure 12.11 and the control unit from Figure 12.12 (f) together using the designated control and status signals 
as shown in Figure 12.13. 
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Figure 12.13. Complete circuit for the EC-2 general-purpose microprocessor. 

12.3.5 Sample Program 

The memory for our computer is initialized with the content of the text file PROGRAM.MIF. A sample file is 
shown in Figure 12.14. The file contains three programs: GCD calculates the greatest common divisor of two input 
numbers; SUM evaluates the sum of all the numbers between an input n and 1; and COUNT displays the count from 
input n down to 0. Only the last program (COUNT) listed in the file is executed. To try out another program, move 
the code for that program to the end, then re-compile the entire microprocessor circuit, i.e. the UP2FLEX.GDF file 
as explained in the next section, and download the new code to the UP2 board. 

-- Content of the RAM memory in the file PROGRAM.MIF

DEPTH = 32; -- Depth of memory: 5-bit address
WIDTH = 8; -- Width of memory: 8-bit data

ADDRESS_RADIX = BIN;-- All values in binary (HEX, DEC, OCT, BIN)
DATA_RADIX = BIN;

-- Opcodes for the EC-2
-- 000 = load A,aaaaa
-- 001 = store A,aaaaa
-- 010 = add A,aaaaa
-- 011 = sub A,aaaaa
-- 100 = in A
-- 101 = jz aaaaa
-- 110 = jpos aaaaa
-- 111 = halt

-- Specify the memory content.
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-- Format of each memory location is
-- address : data

CONTENT
BEGIN
[00000..11111] : 00000000; -- Initialize locations range 00-1F to 0000

--------------------------------------------------------
-- There are three programs listed below: GCD, Sum, and Count
-- Only the progam listed last is ran.
-- To try out a different program, move the code for the program you
-- want to the end of the list, re-compile, and download to the FPGA

--------------------------------------------------------
-- GCD
-- Program to calculate the GCD of two numbers

00000 : 10000000; -- input A
00001 : 00111110; -- store A,x
00010 : 10000000; -- input A
00011 : 00111111; -- store A,y

00100 : 00011110; -- loop: load A,x -- x = y?
00101 : 01111111; -- sub A,y
00110 : 10110000; -- jz out -- x=y
00111 : 11001100; -- jp xgty -- x>y

01000 : 00011111; -- load A,y -- y>x
01001 : 01111110; -- sub A,x -- y-x
01010 : 00111111; -- store A,y
01011 : 11000100; -- jp loop

01100 : 00011110; -- xgty: load A,x -- x>y
01101 : 01111111; -- sub A,y -- x-y
01110 : 00111110; -- store A,x
01111 : 11000100; -- jp loop

10000 : 00011110; -- load A,x
10001 : 11111111; -- halt

11110 : 00000000; -- x
11111 : 00000000; -- y

--------------------------------------------------------
-- SUM
-- Program to sum N downto 1

00000 : 00011101; -- load A,one -- zero sum by doing 1-1
00001 : 01111101; -- sub A,one
00010 : 00111110; -- store A,sum

00011 : 10000000; -- input A
00100 : 00111111; -- store A,n

00101 : 00011111; -- loop: load A,n -- n + sum
00110 : 01011110; -- add A,sum
00111 : 00111110; -- store A,sum
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01000 : 00011111; -- load A,n -- decrement A
01001 : 01111101; -- sub A,one
01010 : 00111111; -- store A,n

01011 : 10101101; -- jz out
01100 : 11000101; -- jp loop
01101 : 00011110; -- out: load A,sum
01110 : 11111111; -- halt

11101 : 00000001; -- one
11110 : 00000000; -- sum
11111 : 00000000; -- n

--------------------------------------------------------
-- COUNT
-- Program to countdown from input N to 0

00000 : 10000000; -- input
00001 : 01111111; -- Sub A,11111
00010 : 10100100; -- jz 00100
00011 : 11000001; -- jp 00001
00100 : 11111111; -- halt
11111 : 00000001; -- constant 1

END;

Figure 12.14. The PROGRAM.MIF file containing three programs for the EC-2. Only the last program, COUNT, is 
executed. 

12.3.6 Hardware Implementation 

Figure 12.15 shows the interface between the EC-2 microprocessor and the input and output devices on the UP2 
development board. The input simply consists of eight DIP switches, and the output is the two 7-segment LED 
display. Since the microprocessor outputs an 8-bit binary number, we need an 8-bit binary to two digit BCD (binary 
coded decimal) decoder so that we can see the 8-bit binary number as two decimal digits on the two 7-segment LED 
display. A single LED is used to show when the microprocessor has halted. A push button switch is used as the reset 
button, and a second push button switch is used as the Enter key. A one-shot circuit is used to generate only one 
clock pulse for each key press of the Enter key switch. Finally, the on-board 25MHz clock is slowed down with a 
clock divider circuit. The reason for using the slower clock speed is so that we can see some intermediate results on 
the display. 

This complete hardware implementation circuit is in the file UP2FLEX.GDF in the appropriate directory on the 
accompanying CD-ROM. You can use this file to download this complete EC-2 computer onto the UP2 
development board, and see your very own microprocessor running a program. The COUNT program that is listed at 
the end of the PROGRAM.MIF file is executed. The FLEX_PB1 pushbutton switch is the Reset switch. The 
FLEX_PB2 pushbutton switch is the Enter switch. The eight dip switches are for the input port. The output is shown 
on the two 7-segment LED as a decimal number. The decimal point on the right digit is lit if the number is in the 
100’s. The decimal point on the left digit is the Halt light, and is lit when the program terminates with the HALT 
instruction. 
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Figure 12.15. Hardware implementation of the EC-2. 

12.4 VHDL for General-Purpose Microprocessors 
This section presents the VHDL code for the EC-2 general-purpose microprocessor using both the structural 

and the behavioral levels. First, in Section 12.4.1, we use the VHDL structural level to define the microprocessor 
based on the FSM+D model as designed manually in Section 12.3. In order to use this method, the microprocessor 
must first be designed manually. Remember that in practice, we really do not want to use this method. This exercise 
is just to show how tedious and complicated it is to do it this way, especially for a more realistic microprocessor. 

Section 12.4.2 uses the VHDL behavioral level to define the EC-2 microprocessor based on the FSMD model. 
Using this method, we only need to manually derive the state diagram. Using the VHDL template for defining a 
FSM (from Section 7.6), we can quickly translate the state diagram to the behavioral VHDL code. Comparing this 
behavioral code with the structural code, we can see how much easier it is to construct a microprocessor circuit 
using the behavioral method, and quickly appreciate the power of the VHDL synthesizer. 

12.4.1 Structural FSM+D 

Figure 12.16 shows the structural VHDL code of the datapath for the EC-2 general-purpose microprocessor. 
This code is based on the datapath circuit as derived manually from Section 12.3.2. lpm memory Figure 12.17 shows 
the code for the control unit as derived manually from Section 12.3.3. This control unit code follows very closely the 
template for writing a FSM sequential circuit as discussed in Section 7.6. Figure 12.18 shows the structural code for 
the complete EC-2 general-purpose microprocessor. 

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

LIBRARY lpm; -- for memory
USE lpm.lpm_components.ALL;

ENTITY dp IS PORT (
Clock, Clear: IN STD_LOGIC;
-- datapath input
Input: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
-- control signals
IRload, JMPmux, PCload, MemInst, MemWr: IN STD_LOGIC;
ASel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
Aload, Sub: IN STD_LOGIC;
-- status signals
IR: OUT STD_LOGIC_VECTOR(7 DOWNTO 5);
Aeq0, Apos: OUT STD_LOGIC;
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-- datapath output
Output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END dp;

ARCHITECTURE Structural OF dp IS
COMPONENT reg
GENERIC (size: INTEGER := 4); -- the actual size is defined in the

instantiation GENERIC MAP
PORT (
Clock, Clear, Load: IN STD_LOGIC;
D: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0);
Q: OUT STD_LOGIC_VECTOR(size-1 DOWNTO 0));

END COMPONENT;

COMPONENT increment
GENERIC (size: INTEGER := 8); -- default number of bits
PORT (
A: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0);
F: OUT STD_LOGIC_VECTOR(size-1 DOWNTO 0));

END COMPONENT;

COMPONENT mux2
GENERIC (size: INTEGER := 8); -- default size
PORT (
S: IN STD_LOGIC; -- select line
D1, D0: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0); -- data bus input

Y: OUT STD_LOGIC_VECTOR(size-1 DOWNTO 0)); -- data bus output
END COMPONENT;

COMPONENT mux4
GENERIC (size: INTEGER := 8); -- default size
PORT (
S: IN STD_LOGIC_VECTOR(1 DOWNTO 0); -- select line
D3, D2, D1, D0: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0); -- data bus input
Y: OUT STD_LOGIC_VECTOR(size-1 DOWNTO 0)); -- data bus output

END COMPONENT;

COMPONENT addsub
GENERIC(n: INTEGER :=4); -- default number of bits = 4
PORT(S: IN std_logic; -- select subtract signal
A: IN std_logic_vector(n-1 DOWNTO 0);
B: IN std_logic_vector(n-1 DOWNTO 0);
F: OUT std_logic_vector(n-1 DOWNTO 0);
unsigned_overflow: OUT std_logic;
signed_overflow: OUT std_logic);

END COMPONENT;

SIGNAL dp_IR, dp_RAMQ: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL dp_JMPmux, dp_PC, dp_increment, dp_meminst

: STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL dp_Amux, dp_addsub, dp_A: STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
-- doing structural modeling for the datapath here
-- IR
U0: reg GENERIC MAP(8) PORT MAP(Clock, Clear, IRLoad, dp_RAMQ, dp_IR);
IR <= dp_IR(7 DOWNTO 5);
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-- JMPmux
U1: mux2 GENERIC MAP(5) PORT MAP(JMPmux,dp_IR(4 DOWNTO 0),

dp_increment,dp_JMPmux);

-- PC
U2: reg GENERIC MAP(5) PORT MAP(Clock, Clear, PCLoad, dp_JMPmux, dp_PC);

-- Meminst
U3: mux2 GENERIC MAP(5) PORT MAP(Meminst,dp_IR(4 DOWNTO 0),

dp_PC,dp_meminst);

-- increment
U4: increment GENERIC MAP(5) PORT MAP(dp_PC,dp_increment);

-- memory
U5: lpm_ram_dq
GENERIC MAP (
lpm_widthad => 5,
lpm_outdata => "UNREGISTERED",

-- lpm_indata => "UNREGISTERED",
-- lpm_address_control => "UNREGISTERED",

lpm_file => "program.mif",-- fill ram with content of file program.mif
lpm_width => 8)

PORT MAP (
data => dp_A,
address => dp_meminst,
we => MemWr,
inclock => Clock,
q => dp_RAMQ);

-- A input mux
U6: mux4 GENERIC MAP(8) PORT MAP (

Asel,dp_RAMQ,dp_RAMQ,Input,dp_addsub,dp_Amux);

-- Accumulator
U7: reg GENERIC MAP(8) PORT MAP(Clock, Clear, ALoad, dp_Amux, dp_A);

-- Adder-subtractor
U8: addsub GENERIC MAP(8) PORT MAP(Sub,dp_A,dp_RAMQ,dp_addsub,open,open);

Aeq0 <= '1' WHEN dp_A = "00000000" ELSE '0';
Apos <= NOT dp_A(7);
Output <= dp_A;

END Structural;

Figure 12.16. VHDL code for the datapath of the EC-2. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY cu IS PORT (
Clock, Reset : IN STD_LOGIC;
-- control input
Enter: IN STD_LOGIC;
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-- control signals
IRload, JMPmux, PCload, MemInst, MemWr: OUT STD_LOGIC;
Asel: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
Aload, Sub: OUT STD_LOGIC;
-- status signals
IR: IN STD_LOGIC_VECTOR(7 DOWNTO 5);
Aeq0, Apos: IN STD_LOGIC;
-- control outputs
Halt: OUT STD_LOGIC);

END cu;

ARCHITECTURE FSM OF cu IS
TYPE state_type IS (s_start,s_fetch,s_decode,
s_load,s_store,s_add,s_sub,s_in,s_jz,s_jpos,s_halt);

SIGNAL state: state_type;
BEGIN

next_state_logic: PROCESS(Reset, Clock)
BEGIN
IF(Reset = '1') THEN
state <= s_start;

ELSIF(Clock'EVENT AND Clock = '1') THEN
CASE state IS
WHEN s_start => -- reset
state <= s_fetch;

WHEN s_fetch =>
state <= s_decode;

WHEN s_decode =>
CASE IR IS
WHEN "000" => state <= s_load;
WHEN "001" => state <= s_store;
WHEN "010" => state <= s_add;
WHEN "011" => state <= s_sub;
WHEN "100" => state <= s_in;
WHEN "101" => state <= s_jz;
WHEN "110" => state <= s_jpos;
WHEN "111" => state <= s_halt;
WHEN OTHERS => state <= s_halt;

END CASE;

WHEN s_load =>
state <= s_start;

WHEN s_store =>
state <= s_start;

WHEN s_add =>
state <= s_start;

WHEN s_sub =>
state <= s_start;

WHEN s_in =>
IF (Enter = '0') THEN -- wait for the Enter key for inputs
state <= s_in;

ELSE
state <= s_start;

END IF;
WHEN s_jz =>
state <= s_start;

WHEN s_jpos =>
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state <= s_start;
WHEN s_halt =>
state <= s_halt;

WHEN OTHERS =>
state <= s_start;

END CASE;
END IF;

END PROCESS;

output_logic: PROCESS(state)
BEGIN
CASE state IS
WHEN s_fetch =>
IRload <= '1'; -- load IR
JMPmux <= '0';
PCload <= '1'; -- increment PC
Meminst <= '0';
MemWr <= '0';
Asel <= "00";
Aload <= '0';
Sub <= '0';
Halt <= '0';

WHEN s_decode => -- also set up for memory access
IRload <= '0';
JMPmux <= '0';
PCload <= '0';
Meminst <= '1'; -- pass IR address to memory
MemWr <= '0';
Asel <= "00";
Aload <= '0';
Sub <= '0';
Halt <= '0';

WHEN s_load =>
IRload <= '0';
JMPmux <= '0';
PCload <= '0';
Meminst <= '1';
MemWr <= '0';
Asel <= "10";-- pass memory to A
Aload <= '1'; -- load A
Sub <= '0';
Halt <= '0';

WHEN s_store =>
IRload <= '0';
JMPmux <= '0';
PCload <= '0';
Meminst <= '1'; -- pass IR address to memory
MemWr <= '1'; -- store A to memory
Asel <= "00";
Aload <= '0';
Sub <= '0';
Halt <= '0';

WHEN s_add =>
IRload <= '0';
JMPmux <= '0';
PCload <= '0';
Meminst <= '1';
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MemWr <= '0';
Asel <= "00";-- pass add/sub unit to A
Aload <= '1'; -- load A
Sub <= '0'; -- select add
Halt <= '0';

WHEN s_sub =>
IRload <= '0';
JMPmux <= '0';
PCload <= '0';
Meminst <= '1';
MemWr <= '0';
Asel <= "00";-- pass add/sub unit to A
Aload <= '1'; -- load A
Sub <= '1'; -- select subtract
Halt <= '0';

WHEN s_in =>
IRload <= '0';
JMPmux <= '0';
PCload <= '0';
Meminst <= '0';
MemWr <= '0';
Asel <= "01";-- pass input to A
Aload <= '1'; -- load A
Sub <= '0';
Halt <= '0';

WHEN s_jz =>
IRload <= '0';
JMPmux <= '1'; -- pass IR address to PC
PCload <= Aeq0; -- load PC if condition is true
Meminst <= '0';
MemWr <= '0';
Asel <= "00";
Aload <= '0';
Sub <= '0';
Halt <= '0';

WHEN s_jpos =>
IRload <= '0';
JMPmux <= '1'; -- pass IR address to PC
PCload <= Apos; -- load PC if condition is true
Meminst <= '0';
MemWr <= '0';
Asel <= "00";
Aload <= '0';
Sub <= '0';
Halt <= '0';

WHEN s_halt =>
IRload <= '0';
JMPmux <= '0';
PCload <= '0';
Meminst <= '0';
MemWr <= '0';
Asel <= "00";
Aload <= '0';
Sub <= '0';
Halt <= '1';

WHEN OTHERS =>
IRload <= '0';
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JMPmux <= '0';
PCload <= '0';
Meminst <= '0';
MemWr <= '0';
Asel <= "00";
Aload <= '0';
Sub <= '0';
Halt <= '0';

END CASE;
END PROCESS;

END FSM;

Figure 12.17. VHDL code for the control unit of the EC-2. 

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY mp IS PORT (
Clock, Reset: IN STD_LOGIC;
Enter: IN STD_LOGIC;
Input: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
Output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
Halt: OUT STD_LOGIC);

END mp;

ARCHITECTURE Structural OF mp IS
COMPONENT cu PORT (
Clock, Reset : IN STD_LOGIC;
-- control input
Enter: IN STD_LOGIC;
-- control signals
IRload, JMPmux, PCload, MemInst, MemWr: OUT STD_LOGIC;
Asel: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
Aload, Sub: OUT STD_LOGIC;
-- status signals
IR: IN STD_LOGIC_VECTOR(7 DOWNTO 5);
Aeq0, Apos: IN STD_LOGIC;
-- control outputs
Halt: OUT STD_LOGIC);

END COMPONENT;

COMPONENT dp PORT (
Clock, Clear: IN STD_LOGIC;
-- datapath input
Input: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
-- control signals
IRload, JMPmux, PCload, MemInst, MemWr: IN STD_LOGIC;
ASel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
Aload, Sub: IN STD_LOGIC;
-- status signals
IR: OUT STD_LOGIC_VECTOR(7 DOWNTO 5);
Aeq0, Apos: OUT STD_LOGIC;
-- datapath output
Output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END COMPONENT;
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-- control signals
SIGNAL mp_IRload, mp_JMPmux, mp_PCload, mp_MemInst, mp_MemWr: STD_LOGIC;
SIGNAL mp_Asel: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL mp_Aload, mp_Sub: STD_LOGIC;
-- status signals
SIGNAL mp_IR: STD_LOGIC_VECTOR(7 DOWNTO 5);
SIGNAL mp_Aeq0, mp_Apos: STD_LOGIC;

BEGIN
-- doing structural modeling for the microprocessor here

U0: cu PORT MAP (
Clock, Reset,
-- control input
Enter,
-- control signals
mp_IRload, mp_JMPmux, mp_PCload, mp_MemInst, mp_MemWr,
mp_Asel,
mp_Aload, mp_Sub,
-- status signals
mp_IR,
mp_Aeq0, mp_Apos,
-- control outputs
Halt);

U1: dp PORT MAP (
Clock, Reset,
-- datapath input
Input,
-- control signals
mp_IRload, mp_JMPmux, mp_PCload, mp_MemInst, mp_MemWr,
mp_Asel,
mp_Aload, mp_Sub,
-- status signals
mp_IR,
mp_Aeq0, mp_Apos,
-- datapath output
Output);

END Structural;

Figure 12.18. Structural VHDL code for the complete EC-2 general-purpose microprocessor. 

12.4.2 Behavioral FSMD 

Figure 12.19 shows the complete behavioral FSMD VHDL code for the EC-2 general-purpose microprocessor. 
The memory used is from the Altera’s LPM component library. The three registers, IR, PC, and A, are declared as 
signals in the architecture section. Recall from Section 6.13 that if a signal is not assigned a value from all 
conditional paths, then it is synthesized as a register. The process block is structured just like a regular FSM 
following the state diagram from Figure 12.12 (a). The DECODE state uses a CASE statement to check the opcode, 
which is the first three bits of the IR. From there, the FSM jumps to the state for executing the corresponding 
instruction. For the STORE instruction, an extra state is needed to de-assert the MemWr signal before changing the 
memory address back to the location of the next instruction. 

-- EC-2 Behavioral FSMD description
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
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USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

ENTITY mp IS PORT (
clock, reset: IN STD_LOGIC;
enter: IN STD_LOGIC;
-- data input
input: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
-- data output
output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
-- control outputs
halt: OUT STD_LOGIC);

END mp;

ARCHITECTURE FSMD OF mp IS
TYPE state_type IS(s_start,s_fetch,s_decode,s_load,s_store,s_store2,

s_add,s_sub,s_input,s_jz,s_jpos,s_halt);
SIGNAL state: state_type; -- states
SIGNAL IR: STD_LOGIC_VECTOR(7 DOWNTO 0); -- Instruction register
SIGNAL PC: STD_LOGIC_VECTOR(4 DOWNTO 0); -- Program counter
SIGNAL A: STD_LOGIC_VECTOR(7 DOWNTO 0); -- Accumulator
SIGNAL memory_address: STD_LOGIC_VECTOR(4 DOWNTO 0); -- memory address
SIGNAL memory_data: STD_LOGIC_VECTOR(7 DOWNTO 0); -- memory data input
SIGNAL MemWr: STD_LOGIC;

BEGIN
memory: lpm_ram_dq -- 32 locations x 8 bits wide asynchronous memory
GENERIC MAP (
lpm_widthad => 5,
lpm_outdata => "UNREGISTERED",
lpm_indata => "UNREGISTERED",
lpm_address_control => "UNREGISTERED",
lpm_file => "program.mif", -- fill ram with content of file program.mif
lpm_width => 8)

PORT MAP (
data => A,
address => memory_address,
we => MemWr,
q => memory_data);

PROCESS(clock,reset)
BEGIN
IF(reset = '1') THEN
PC <= "00000";
IR <= "00000000";
A <= "00000000";
MemWr <= '0';
halt <= '0';
state <= s_start;

ELSIF(clock'EVENT AND clock = '1') THEN
CASE state IS
WHEN s_start => -- reset, start
memory_address <= PC;
state <= s_fetch;
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WHEN s_fetch => -- fetch
IR <= memory_data;
PC <= PC + 1;
state <= s_decode;

WHEN s_decode => -- decode
-- memory access using last 5 bits of IR
memory_address <= IR(4 DOWNTO 0);
CASE IR(7 DOWNTO 5) IS -- decode first 3 bits of IR as opcode
WHEN "000" => state <= s_load;
WHEN "001" => state <= s_store;
WHEN "010" => state <= s_add;
WHEN "011" => state <= s_sub;
WHEN "100" => state <= s_input;
WHEN "101" => state <= s_jz;
WHEN "110" => state <= s_jpos;
WHEN "111" => state <= s_halt;
WHEN OTHERS => state <= s_start;

END CASE;
WHEN s_load => -- load A from memory
A <= memory_data;
state <= s_start;

WHEN s_store => -- store A to memory
MemWr <= '1';
state <= s_store2;

WHEN s_store2 => -- need an extra state to de-assert MemWr
MemWr <= '0'; -- before changing the memory address
state <= s_start;

WHEN s_add => -- add
A <= A + memory_data;
state <= s_start;

WHEN s_sub => -- subtract
A <= A - memory_data;
state <= s_start;

WHEN s_input =>
A <= input;
IF (Enter = '0') THEN -- wait for Enter key
state <= s_input;

ELSE
state <= s_start;

END IF;
WHEN s_jz =>
IF (A = 0) THEN -- jump if A is 0
PC <= IR(4 DOWNTO 0);

END IF;
state <= s_start;

WHEN s_jpos =>
IF (A(7) = '0') THEN -- jump if MSB(A) is 0
PC <= IR(4 DOWNTO 0);

END IF;
state <= s_start;

WHEN s_halt =>
halt <= '1';
state <= s_halt;

WHEN OTHERS =>
state <= s_halt;

END CASE;
END IF;

Digital Logic and Microprocessor Design with VHDL Chapter 12 - General-Purpose Microprocessors

451



END PROCESS;

output <= A; -- send value of Accumulator to the output
END FSMD;

Figure 12.19. Behavioral VHDL code for the complete EC-2 general-purpose microprocessor. 

12.5 Summary Checklist 
 
� Instruction set 
� Opcode 
� Instruction register (IR) 
� Program counter (PC) 
� Instruction cycle 
� Be able to derive the datapath circuit for a given instruction set 
� Be able to derive the state diagram for a given instruction set 
� Be able to derive the control unit circuit for a given instruction set 
� Be able to derive the complete general-purpose microprocessor circuit 
� Be able to implement the complete computer using the general-purpose microprocessor developed 
� Be able to write programs in machine language using the implemented instruction set 
� Be able to run the programs on the implemented computer 
� Be able to write behavioral VHDL codes for general-purpose microprocessors 

12.6 Problems 

12.1 Manually re-design the EC-1 microprocessor to accommodate each of the following changes. The changes 
are to be done separately. 

a) Modify the OUTPUT instruction so that the output port outputs a value only when the OUTPUT 
instruction is executed. 

b) Modify the INPUT instruction so that it will wait for an external Enter key signal before continuing to 
the next instruction. 

c) Add an extra INC instruction, using the opcode 000, to the EC-1 instruction set. The INC instruction 
increments the accumulator. 

d) Add an extra LOAD instruction, using the opcode 001, to the EC-1 instruction set. The LOAD 
instruction loads the accumulator with the content of memory location aaaa, where aaaa are the least 
four significant bits of the instruction encoding. 

12.2 Write the behavioral VHDL code for the EC-1 microprocessor. 

12.3 Re-write the behavioral VHDL code for the EC-1 microprocessor with each of the changes from 
Problem 12.1. 

12.4 Write and run the following programs on the EC-2 computer: 
e) Input two numbers, and output the sum of these two numbers. 
f) Input two numbers, and output the larger of the two numbers. 
g) Input two numbers, and output the product of these two numbers. 
h) Keep inputting numbers until a 0. Output the number of numbers entered. 
i) Keep inputting numbers until a 0. Output the sum of these numbers. 
j) Keep inputting numbers until a 0. Output the largest of these numbers. 
k) Keep inputting numbers until a 0. Output the largest and second largest of these numbers. 
l) Input three numbers, and output these numbers in ascending order. 

12.5 Manually re-design the EC-2 microprocessor to accommodate each of the following changes. The changes 
are to be done separately. 
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a) Replace the SUB instruction in the EC-2 instruction set with a LSHIFT instruction. The LSHIFT 
instruction shifts the content of the accumulator left by one bit. The result of the shift operation is 
written back into the accumulator. 

b) Replace the SUB instruction in the EC-2 instruction set with an OUTPUT instruction. The OUTPUT 
instruction outputs the content of the accumulator to the output port. The output port should not show 
anything when the OUTPUT instruction is not being executed. 

c) Add an extra LSHIFT instruction to the EC-2 instruction set. The LSHIFT instruction is defined in a) 
above. 

d) Add an extra OUTPUT instruction to the EC-2 instruction set. The OUTPUT instruction is defined in 
b) above. 

e)  

12.6 Re-write the behavioral VHDL code for the EC-2 microprocessor with each of the changes from 
Problem 12.5. 

12.7 Given the instruction set as defined below, manually design a datapath that can realize this instruction set. 
 

Instruction Encoding Operation Comment 

Data movement instructions 
LDA A,rrr 0001 0rrr A ← R[rrr] Load accumulator from register 
STA rrr,A 0010 0rrr R[rrr] ← A Load register from accumulator 
LDM A,aaaaaa 0011 0000 

00aaaaaa 
A ← M[aaaaaa] Load accumulator from memory 

STM aaaaaa,A 0100 0000 
00 aaaaaa 

M[aaaaaa] ← A Load memory from accumulator 

LDI A,iiiiiiii 0101 0000 
iiiiiiii 

A ← iiiiiiii Load accumulator with immediate 
value (iiiiiiii is a signed number) 

Jump instructions 
JMP absolute 0110 0000 

00 aaaaaa 
PC = aaaaaa Absolute unconditional jump 

JMPR relative 0110 smmm if (smmm != 0) then  
   if (s == 0) then PC = PC + mmm 
   else PC = PC – mmm 

Relative unconditional jump (smmm 
is in sign and magnitude format) 

JZ absolute 0111 0000 
00 aaaaaa 

if (A == 0) then PC = aaaaaa Absolute jump if A is zero 

JZR relative 0111 smmm if (A == 0 and smmm != 0) then 
   if (s == 0) then PC = PC + mmm 
   else PC = PC – mmm 

Relative jump if A is zero (smmm is 
in sign and magnitude format) 

JNZ absolute 1000 0000 
00 aaaaaa 

if (A != 0) then PC = aaaaaa Absolute jump if A is not zero 

JNZR relative 1000 smmm if (A != 0 and smmm != 0) then 
   if (s == 0) then PC = PC + mmm 
   else PC = PC – mmm 

Relative jump if A is not zero 
(smmm is in sign and magnitude 
format) 

JP absolute 1001 0000 
00 aaaaaa 

if(A == positive) then PC = aaaaaa Absolute jump if A is positive 

JPR relative 1001 smmm if(A == positive and smmm != 0) then 
   if (s == 0) then PC = PC + mmm 
   else PC = PC – mmm 

Relative jump if A is positive (smmm 
is in sign and magnitude format) 

Arithmetic and logical instructions 
AND A,rrr 1010 0rrr A ← A AND R[rrr] Accumulator AND register 
OR  A,rrr 1011 0rrr A ← A OR R[rrr] Accumulator OR register 
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ADD A,rrr 1100 0rrr A ← A + R[rrr] Accumulator + register 
SUB A,rrr 1101 0rrr A ← A − R[rrr] Accumulator − register 
NOT A 1110 0000 A ← NOT A Invert accumulator 
INC A 1110 0001 A ← A + 1 Increment accumulator 
DEC A 1110 0010 A ← A − 1 Decrement accumulator 
SHFL A 1110 0011 A ← A << 1 Shift accumulator left 
SHFR A 1110 0100 A ← A >> 1 Shift accumulator right 
ROTR A 1110 0101 A ← Rotate_right(A) Rotate accumulator right 

Input / Output and Miscellaneous 
In A 1111 0000 A ← input Input to accumulator 
Out A 1111 0001 output ← A Output from accumulator 
HALT 1111 0010 Halt Halt execution 
NOP 0000 0000 no operation No operation 

Notations: 
A = accumulator. 
R = general register. 
M = memory. 
PC = program counter. 
rrr = three bits for specifying the general register number (0 – 7). 
aaaaaa = six bits for specifying the memory address. 
iiiiiiii = an eight bit signed number. 
smmm = four bits for specifying the relative jump displacement in sign and magnitude format. The most 

significant bit (s) determines whether to jump forward or backward (0 = forward, 1 = backward). The last 
three bits (mmm) specify the number of locations to increment or decrement from the current PC location. 

Answer: 
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imm_dp input_dp

muxsel_dp1,0

accwr_dp

rfwr_dp

rfaddr_dp2,1,0

alusel_dp2,1,0

shiftsel_dp1,0

1 023

y

Accumulator

A B
sel2,1,0

Shiftersel1,0

Mux

C_muxout

C_accout

C_aluout

C_shiftout

C_rfout

output_dp

addr2,1,0

wr

wr

sel1,0

ALU

8
Register File

zero_dp

positive_dp MSB

8 8

8

8

8

8

clear
rst_dp

outen_dp

 

12.8 Write the behavioral VHDL code for a microprocessor that can execute the instructions in the instruction set 
defined in Problem 12.7. 
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Appendix A Schematic Entry—Tutorial 1 

The MAX+plus II software and the UP2 development board provide all of the necessary tools for implementing 
and trying out all of the examples, including building the final general-purpose microprocessor, discussed in this 
book. The MAX+plus II software offers a completely integrated development tool and easy-to-use graphical-user 
interface for the design, and synthesis of digital logic circuits. Together with the UP2 development board, these 
circuits can be implemented on a programmable logic device (PLD) chip. After downloading the circuit netlist to the 
PLD, you can see the actual operation of these circuits in the hardware. 

A Student Edition version of the MAX+plus II software is included on the accompanying CD-ROM and can 
also be downloaded from the Altera website found at www.altera.com. The UP2 development board can be 
purchased directly from Altera. The full User Guide for using the UP2 board is on the CD-ROM, and can also be 
downloaded from the Altera website.  This tutorial assumes that you are familiar with the Windows environment, 
and that the MAX+plus II software has already been installed on your computer. Instructions for the installation of 
the MAX+plus II software can be found on the CD-ROM. You also must obtain a license file from the Altera 
website in order for the software to function correctly. Be careful that you obtain the Student Edition license, and not 
the Baseline Edition license. 

The MAX+plus II development software provides for both schematic and text entry of a circuit design. The 
Schematic Editor is used to enter a schematic drawing of a circuit. Using the Schematic Editor, logic symbols for the 
circuit can be inserted and connected together using the drawing tools. The Text Editor is used to enter VHDL or 
Verilog code for describing a circuit. 

This tutorial provides a step-by-step instruction for the schematic entry, synthesis, and simulation of an 8-bit 2-
to-1 multiplexer circuit. Tutorial 3 (Appendix C) will show how a circuit can be downloaded to the PLD on the UP2 
development board so that you actually can see this circuit executed in the hardware. 

A.1 Getting Started 

A.1.1 Preparing a Folder for the Project 

Each circuit design in MAX+plus II is called a project. Each project should be placed in its own folder, since 
the synthesizer creates many associated working files for a project. Using Windows File Manager, create a new 
folder for your new project. 

•  For this tutorial, create a folder called 2x8mux in the root directory of the C drive. 

A.1.2 Starting MAX+plus II 

After the successful installation of the MAX+plus II software, there should be a link for the program under the 
Start button. Click on this link to start the program. You should see the MAX+plus II Manager window, as shown in 
Figure A.1. 
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Figure A.1 The MAX+plus II Manager window. 

Figure A.2 shows the toolbar for accessing the main development tools. The buttons from left to right are: 

•  Hierarchy display—to show the design files used in the current project 
•  Floorplan Editor—to map the I/O signals from the circuit to the pins on the PLD chip 
•  Compiler (synthesizer)—to synthesize the circuit to its netlist 
•  Simulator—to perform circuit simulation 
•  Timing analyzer—to perform circuit timing analysis 
•  Programmer—to program the circuit to the PLD chip 
•  Open existing or new project—to select a new project 
•  Change project name to current filename—to use the current file as the new project 
•  Open top-level design file—to open the top-level design file for the current project 

 
Figure A.2 The MAX+plus II development software toolbar. 

In the MAX+plus II software, different commands in the menus are available when different windows are 
activated. This might cause some confusion at first. If you cannot find a particular command from the menu, make 
sure that the correct window for that command is the active window. 

A.1.3 Starting the Graphic Editor 

From the Manager window, select Max+plus II | Graphic Editor. You should see the Graphic Editor window 
similar to the one shown in Figure A.3. Any circuit diagram can be drawn in this Graphic Editor window. 
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•  Alternatively, you can select File | New from the Manager window menu. Select Graphic Editor file using the 
extension .gdf, and click OK. 

Turns On Rubberbanding

Turns Off Rubberbanding

Connection Dot

Fit Drawing in Window

Zooming

Text Tool

Multifunction Pointer Tool

Line/connection Tools

 
Figure A.3 The Graphic Editor window with the graphics toolbar on the left. 

A.2 Using the Graphic Editor 

A.2.1 Drawing Tools 

In Figure A.3, the tools for drawing a circuit in the Graphic Editor are shown in the toolbar on the left side. 
There are the standard text writing tool, line drawing tools for making connections between logic symbols, and 
zooming tools. The main tool that you will use is the multifunction pointer tool. This multifunction pointer allows 
you to perform many different operations depending on the context in which it is used. Two main operations 
performed by this multifunction pointer are selecting objects and making connections between logic symbols. The 
connection dot tool either makes or deletes a connection point between two crossing lines. Finally, the two 
rubberbanding buttons turn on or off the rubberbanding function. When rubberbanding is turned on, connection lines 
are adjusted automatically when symbols are moved from one location to another. When rubberbanding is turned 
off, moving a symbol will not affect the lines connected to it. 

A.2.2 Inserting Logic Symbols 

1. To insert a logic symbol, first select the multifunction pointer tool, and then double-click the pointer on an 
empty spot in the Graphic Editor window. You should see the Enter Symbol window, as shown in Figure A.4.  

Available symbol libraries are listed in the Symbol Libraries selection box. These libraries include the standard 
primitive gates, standard combinational and sequential components, and your own logic symbols located in the 
current project directory. 

All of the primitive logic gates, latches, flip-flops, and input and output connectors that we need are in the 
primitive library: …\prim. Your own circuits that you want to reuse in building larger circuits are in the directory 
that they are stored in. 
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Figure A.4 The Enter Symbol selector window. 

2. Double-click on the prim library to see a list of logic symbols available in that library. A list of logic symbols is 
shown in the Symbol Files selection box. The logic symbols are sorted in alphabetical order. To narrow down 
the list, you can type the first few letters of the symbol name followed by an asterisk in the Symbol Name text 
box. You need to either press Enter or click on the OK button to update the list. For example, typing a*, and 
pressing Enter will produce a list of all of the symbols whose name starts with the letter “a”. 

3. Double-click on the logic symbol name that you want in order to insert that symbol into the Graphic Editor. If 
you just select the symbol with a single-click, then you will also have to click on the OK button. 

For this tutorial, insert the following symbols: 

•  A 2-input AND gate (and2) 
•  A 2-input OR gate (or2) 
•  A NOT gate (not) 
•  An input signal connector (input) 
•  An output signal connector (output) 

A unique number is given to each instance of a symbol and is written at the lower-left corner of the symbol. 
This number is used only as a reference number in the output netlist and report files. These numbers may be 
different from those in the examples. 

A.2.3 Selecting, Moving, Copying, and Deleting Logic Symbols 

•  To select a logic symbol in the Graphic Editor, simply single-click on the symbol using the multifunction 
pointer tool. You can also select multiple symbols by holding down the Shift key while you select the symbols. 
An alternative method is to trace a rectangle with the multifunction tool around the objects that you want to 
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select. All objects inside the rectangle will be selected. 

•  To move a symbol, simply drag the symbol. 

•  To copy a symbol, first select it and then perform the Copy and Paste operations. An alternative method is to 
hold down the Ctrl key while you drag the symbol. 

•  To delete a symbol, first select it and then press the Delete key. 

•  To rotate a symbol, right-click on the symbol, select Rotate from the drop-down menu, and select the angle to 
rotate the symbol. 

Perform the following operations for this tutorial: 

1. Make a copy of the 2-input AND gate 

2. Make two more copies of the input signal connector 

3. Position the symbols to look like Figure A.5 

 
Figure A.5 Symbol placements for the 2-to-1 multiplexer circuit. 

A.2.4 Making and Naming Connections 

•  To make a connection between two connection points, use the multifunction pointer tool and drag from one 
connection point to the second connection point. Notice that, when you position the multifunction pointer tool 
to a connection point, the arrow pointer changes to a crosshair. 

•  To change the direction of a connection line while dragging the line, simply release and press the mouse button 
again and then continue to drag the connection line. 

•  You can also make a connection between two connection points by moving a symbol so that its connection 
point touches the other connection point. 

•  If you want to make a connection line that does not start from a connection point, you will need to use either the 
straight line drawing tool or the vertical and horizontal line drawing tool instead of the multifunction pointer 
tool. 

•  Once a connection is made to a symbol, you can move the symbol to another location, and the connection line is 
adjusted automatically if the rubberbanding function is turned on. However, if the rubberbanding function is 
turned off, the connection will be broken if the symbol is moved. 

•  To make a connection between two lines that cross each other, you need to use the multifunction pointer tool to 
select the junction point (i.e., the point where the two lines cross) and then press the connection tool button, as 
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shown in Figure A.6. The connection tool button is enabled only after you have selected a junction point. 

•  To remove a connection point, select (single-click) the point, and then press the connection tool button. 

 
Figure A.6 Making or deleting a connection point with the connection tool button. 

•  To make a bus connection (for grouping two or more lines together), first draw a regular connection line, then 
right-click on the line, select Line Style, and select the thicker, solid line style from the pop-up menu. 

•  A bus must also have a name and a width associated with it. Select the bus line at the point where you want to 
place the name and then type in the name and the width for the bus. For example, data[7..0] is an 8-bit bus with 
the name data, as shown in Figure A.7. 

•  To change the name, just double-click on the name and edit it. 

•  To connect one line to a bus, connect a single line to the bus, and then give it the same name as the bus with the 
line index appended to it. For example, data2, is bit two of the data bus, as shown in Figure A.7. 

 
Figure A.7 A single connection line connected to an 8-bit bus with the name data. 

•  To check whether a name is attached correctly to a line, select the line, and the name that is attached to the line 
will also be selected. 

•  To name an input or output connector, select its name label by double-clicking it, and then type in the new 
name. Pressing the Enter key will move the text entry cursor to the name label for the symbol below the current 
symbol. 

•  A bus line connected to an input or output connector must have the same name as the connector. 

Perform the following operations for this tutorial: 

1. Name the three input connectors d0[7..0], s, and d1[7..0], as shown in Figure A.8 

2. Name the output connector y[7..0], as shown in Figure A.8 

3. Connect and name the five bus lines d0[7..0], d1[7..0], and0[7..0], and1[7..0], and y[7..0], as shown in 
Figure A.8 

4. Connect the single lines from the input connector s to the inverter and to the two AND gates, as shown in 
Figure A.8 
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Figure A.8 Connections and names for the 2-to-1 multiplexer circuit. 

A.2.5 Selecting, Moving and Deleting Connection Lines 

•  To select a straight connection line, just single-click on it. 

•  To select an entire connection line with horizontal and vertical segments, double-click on it. 

•  To select a portion of a line, trace a rectangle with the multifunction tool around the segment. 

•  After a line is selected, it can be moved by dragging. 

•  After a line is selected, it can be deleted by pressing the Delete key. 

A.3 Specifying the Top-Level File and Project 

A.3.1 Saving the Schematic Drawing 

1. From the Graphic Editor menu, select File | Save. Select the 2x8mux directory that you created on the C drive in 
Section A.1.1. Type in the filename 2x8mux. The extension should be .gdf (for graphic design file). 

2. Click OK. 

A.3.2 Specifying the Project 

1. To use the schematic drawing file saved in Section A.3.1 as the top-level project file, select File | Project | Set 

Project to Current File from the Manager window menu, or simply click on the icon . 

•  You can open any graphic design file (with the extension .gdf) using the Manager menu command File | Open, 

and then select File | Project | Set Project to Current File, or click on the icon  to make that particular file the 
top-level project file. 

A.4 Synthesis for Functional Simulation 

1. From the Manager window menu, select MAX+plus II | Compiler, or click on the icon  to bring up the 
Compiler window. 

2. From the Compiler window menu (that is, with the Compiler window selected as the active window), select 
Processing | Functional SNF Extractor so that a check mark appears next to it. To actually see whether there is a 
check mark or not, you need to select the Processing menu again. The Compiler window for functional 
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extraction is shown in Figure A.9. 

3. Click on the Start button to start the synthesis. You will then see the progress of the synthesis. 

4. At the end of the synthesis, if there are no syntax errors, you will see a message window saying that the 
compilation was successful. Click OK to close the message window. 

 
Figure A.9 Compiler window for functional extraction. 

A.5 Circuit Simulation 

A.5.1 Selecting Input Test Signals 

1. Before you can simulate the design, you need to create test vectors for specifying what the input values are. 
From the Manager window menu, select MAX+plus II | Waveform Editor. 

2. From the Waveform Editor window menu, select Node | Enter Nodes from SNF. You can also right-click under 
the Name section in the Waveform Editor window and select Enter Nodes from SNF from the pop-up menu. You 
will see something similar to the Enter Nodes from SNF window shown in Figure A.10. 

 
Figure A.10 Window for adding signals for simulation. 
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3. Click on the List button in the Enter Nodes from SNF window, and a list of available nodes and groups will be 
displayed in the Available Nodes & Groups box. 

4. Select the signals that you want to see in the simulation trace. The signals that we want are: s (I), d1[7..0] (I), 
d0[7..0] (I), and y[7..0] (O). The letters I and O in parenthesis next to each signal denote whether the signal is an 
input or output signal, respectively. Note that the signal name such as y7 is bit seven of the bus named y, and 
d16 is bit six of the bus named d1. Multiple nodes can be selected by holding down the Ctrl or Shift key while 
clicking on the signal names. 

5. After selecting the signals, click on the => button to move the selected signals to the Selected Nodes & Groups 
box. 

6. Repeat Steps 4 and 5 until all of the signals that you want to see in the simulation are moved to the Selected 
Nodes & Groups box. 

7. Click on OK when you are finished. The selected signals will now be inserted in the Waveform Editor window 
similar to Figure A.11. 

 
Figure A.11 Waveform Editor window for simulation. 

A.5.2 Customizing the Waveform Editor 

1. You can rearrange the signals in the Waveform Editor by dragging the signal icons like  up or down. 

2. To delete a signal in the Waveform Editor, just select the signal by clicking on its name and press the Delete 
key. 

3. For signals that are composed of a group of bits (such as the data input d1), you can separate them into 
individual bits or change the radix for the displayed value by first selecting that signal and then right-click the 
mouse. A drop-down menu appears. Select Ungroup to separate the bits. To regroup them, select the bits you 
want to group and then right-click the mouse. A drop-down menu appears. Select Enter Group. Type in a group 
name, and select the Decimal radix for the display. 

4. We want to simulate for 500 nanoseconds. To change the simulation end time, select File | End Time from the 
Waveform Editor window menu. 

5. In the End Time window, type in 500ns, and click OK. 

6. To fit the entire simulation time range inside the window, select View | Fit in Window from the Waveform Editor 

window menu, or click on the icon  in the toolbar on the left. Your Waveform Editor window should now 
look like the one in Figure A.12. 
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Figure A.12 Waveform Editor window after changing the value radix and fitting the entire time range inside the 
window. Notice also the toolbar buttons on the left. 

A.5.3 Assigning Values to the Input Signals 

The next thing is to assign values to all of the input signals. 

1. Drag from time 200ns to 400ns for the s signal only, as shown in Figure A.13. 

2. Click on the icon  in the toolbar on the left to set the signal in the selected range to a logical 1 value. 

3. Drag from time 0ns to 100ns for the d0 signal only, as shown in Figure A.13. 

4. Click on the icon  in the toolbar on the left. Type in the value 5 and click OK to set the value for the d0 bus 
signal to decimal 5. 

5. Repeat Steps 3 and 4 for the remaining input values for d0 and d1, as shown in Figure A.13. 

 
Figure A.13 Changing the input signal values. 

A.5.4 Saving the Waveform File 

1. Save the Waveform Editor window by selecting File | Save. The Save As window appears. Notice that the 
default file name is the same as the top-level entity name, and the extension is .scf. For this example, the name 
is 2x8mux.scf. 

2. Click on OK to save the file. 
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A.5.5 Starting the Simulator 

1. We are now ready to simulate the design. From the Manager window menu, select MAX+plus II | Simulator, or 

click on the icon  to bring up the Simulator window. 

•  You can also save the waveform file and start the simulator in one step by selecting from the Manager window 
menu File | Project | Save & Simulate. 

2. The Simulator window as shown in Figure A.14 is displayed. Make sure that the Simulation Input filename is 
2x8mux.scf. This is the same name as your top-level entity. 

3. Click on the Start button and watch the progress of the simulation. 

 
Figure A.14 Simulator window for the multiplexer design. 

4. At the end of the simulation, if there are no errors, you will see a message window saying that the simulation 
was successful. Click OK to close the message window. 

5. Click on the Open SCF button in the Simulator window to bring up the Waveform Editor with the resulting 
simulation waveforms. The simulation result is shown in Figure A.15. The signal y is the multiplexer output. 

Notice that when s is a 0, the y output follows the d0 input, and when s is a 1, the y output follows the d1 input. 

 
Figure A.15 Resulting waveform after the simulation. 

6. You can change the input signal values of s, d0, and d1 to something different and run the simulation again. 
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A.6 Creating and Using the Logic Symbol 
If you want to use this circuit as part of another circuit, you need to create a logic symbol for this circuit. 

1. To create a logic symbol for the current active circuit diagram that is in the Graphic Editor window, from the 
Graphic Editor menu, select File | Create Default Symbol. The name of this logic symbol is the same as the name 
of the current active circuit diagram in the Graphic Editor, but with the extension .sym. 

2. You can view and edit the logic symbol by selecting File | Edit Symbol. The placements of the input and output 
signals can be moved to different locations by dragging them. The size of the symbol can also be changed by 
dragging the edges of the symbol rectangle. 

3. To use this circuit in another project, you need to copy this .sym file and the corresponding .gdf circuit file to 
the other project’s directory. This new symbol name will now show up in the Enter Symbol window like the one 
shown in Figure A.4. 
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Appendix B VHDL Entry—Tutorial 2 

This tutorial provides a step-by-step instruction for the VHDL entry, synthesis, and simulation of a 4-bit binary 
counter circuit. However, no knowledge of VHDL is required to follow this tutorial. Tutorial 3 (Appendix C) will 
show how this circuit can be downloaded to the PLD on the UP2 development board so that you actually can see this 
circuit executing in the hardware. 

This tutorial is very similar to Tutorial 1 (Appendix A) for schematic entry. The main difference is in using the 
Text Editor rather than the Graphic Editor. The procedures for project creation, synthesis, and simulation are the 
same in both cases. Even if you do not intend to write VHDL code, you should go through this tutorial so that you 
can continue on to Tutorial 3 (Appendix C) and learn how to download a circuit to the PLD on the UP2 development 
board. 

B.1 Getting Started 

B.1.1 Preparing a Folder for the Project 

1. Each circuit design in MAX+plus II is called a project. Each project should be placed in its own folder, since 
the synthesizer creates many associated working files for a project. Using Windows File Manager, create a new 
folder for your new project. This tutorial uses the folder called counter created in the root directory of the C 
drive. 

2. The VHDL source code for the counter circuit can be found on the accompanying CD-ROM in the file 
counter.vhd located in the directory <CD-ROM drive>:\VHDL Examples\Appendix B\counter. Using 
Windows File Manager, copy this file to the new folder c:\counter that you created in Step 1. 

B.1.2 Starting MAX+plus II 

After the successful installation of the MAX+plus II software, there should be a link for the program under the 
Start button. Click on this link to start the program. You should see the MAX+plus II Manager, window as shown in 
Figure B.1. 
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Figure B.1. The MAX+plus II Manager window. 

Figure B.2 shows the toolbar for accessing the main development tools. The buttons from left to right are: 

•  Hierarchy display—to show the design files used in the current project 
•  Floorplan Editor—to map the I/O signals from the circuit to the pins on the PLD chip 
•  Compiler (synthesizer)—to synthesize the circuit to its netlist 
•  Simulator—to perform circuit simulation 
•  Timing analyzer—to perform circuit timing analysis 
•  Programmer—to program the circuit to the PLD chip 
•  Open existing or new project—to select a new project 
•  Change project name to current filename—to use the current file as the new project 
•  Open top-level design file—to open the top-level design file for the current project 

 
Figure B.2 The MAX+plus II development software tool bar. 

In the MAX+plus II software, different commands in the menus are available when different windows are 
activated. This might cause some confusion at first. If you cannot find a particular command from the menu, make 
sure that the correct window is the active window. 

B.1.3 Creating a Project 

1. From the Manager window menu, select File | Project | Name, or simply click on the icon . You should see 
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the Project Name window similar to the one shown in Figure B.3.  

2. Select the C drive from the Drives dropdown list. 

3. Move to the counter directory on the C drive and double-click on it. You should see the file counter.vhd listed 
in the Files box. 

4. Select the file counter.vhd. The filename will be copied to the Project Name text field. 

5. Click OK. The MAX+plus II Manager window title should now show c:\counter\counter. 

 
Figure B.3 Project name window for creating a new project. 

•  Alternatively, you can open any VHDL entity source file (with the extension .vhd) using the Manager menu 
command File | Open. With the VHDL entity source file in the active Text Editor window, select File | Project | 

Set Project to Current File, or click on the icon  to make that particular file the top-level project file. Note 
that the name of the file must be the same as the name of the entity that is in this file. 

B.1.4 Editing the VHDL Source Code 

•  From the Manager window menu, select File | Hierarchy Project Top, or click on the icon  to open the 
VHDL source code for the counter. Notice that the entity name for this circuit is also counter. The top entity 
name for the project must be the same as the project name, and the file name. 

You can use this Text Editor to modify the code if necessary. For now, we will not make any modifications, so 
you can close this Text Editor window. 

•  If you need to create a new VHDL source file, select File | New from the Manager window menu. Select Text 
Editor file, and click OK. 

B.2 Synthesis for Functional Simulation 

1. From the Manager window menu, select MAX+plus II | Compiler, or click on the icon  to bring up the 
Compiler window. 
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2. From the Compiler window menu, that is, with the Compiler window selected as the active window, select 
Processing | Functional SNF Extractor so that a check mark appears next to it. To actually see whether there is a 
check mark or not, you need to select the Processing menu again. The compiler window for functional 
extraction is shown in Figure B.4. 

3. Click on the Start button to start the synthesis. You will then see the progress of the synthesis. 

4. At the end of the synthesis, if there are no syntax errors, you will see a message window saying that the 
compilation was successful. Click OK to close the message window. 

 
Figure B.4. Compiler window for functional extraction. 

B.3 Circuit Simulation 

B.3.1 Selecting Input Test Signals 

1. Before you can simulate the design, you need to create test vectors for specifying what the input values are. 
From the Manager window menu, select MAX+plus II | Waveform Editor. 

2. From the Waveform Editor window menu, select Node | Enter Nodes from SNF. You can also right-click under 
the Name section in the Waveform Editor window, and select Enter Nodes from SNF from the pop-up menu. 
You will see something similar to the Enter Nodes from SNF window shown in Figure B.5. 
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Figure B.5 Window for adding signals for simulation. 

3. Click on the List button in the Enter Nodes from SNF window, and a list of available nodes and groups will be 
displayed in the Available Nodes & Groups box. 

4. Select the signals that you want to see in the simulation trace. The signals that we want are: ResetN (I), Clock 
(I), and Q (O). Be careful that it is Q, and not Q0, Q1, Q2, or Q3. The letters I and O in parenthesis next to each 
signal denote whether the signal is an input or output signal, respectively. Multiple nodes can be selected by 
holding down the Ctrl or Shift key while clicking on the signal names. 

5. After selecting the signals, click on the => button to move the selected signals to the Selected Nodes & Groups 
box. 

6. Repeat Steps 4 and 5 until all of the signals that you want to see in the simulation are moved to the Selected 
Nodes & Groups box. 

7. Click on OK when you are finished. The selected signals will now be inserted in the Waveform Editor window 
similar to Figure B.6. 

 
Figure B.6 Waveform Editor window for simulation. 
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B.3.2 Customizing the Waveform Editor 

1. You can rearrange the signals in the Waveform Editor by dragging the signal icons like  up or down. Drag 
the Clock signal to the very top of the list. 

•  To delete a signal in the Waveform Editor, just select the signal by clicking on its name and press the Delete 
key. 

•  For signals that are composed of a group of bits (such as the counter output Q), you can separate them into 
individual bits or change the radix for the displayed value by first selecting that signal and then right-click the 
mouse. A drop-down menu appears. Select Ungroup to separate the bits. To regroup them, select the bits you 
want to group and then right-click the mouse. A drop-down menu appears. Select Enter Group. Type in a group 
name, and select the radix you want for the display. 

2. We want to simulate for 2 microseconds. To change the simulation end time, select File | End Time from the 
Waveform Editor window menu. 

3. In the End Time window, type in 2us, and click OK. 

4. To fit the entire simulation time range inside the window, select View | Fit in Window from the Waveform Editor 

window menu or click on the icon  in the toolbar on the left. Your Waveform Editor window should now 
look like the one in Figure B.7. 

 
Figure B.7 Waveform Editor window after rearranging the Clock signal, and fitting the entire time range inside. 
Notice also the toolbar buttons on the left. 

B.3.3 Assigning Values to the Input Signals 

The next thing is to assign values to all of the input signals. 

1. Select the Clock signal by clicking on the signal name. 

2. Click on the icon  in the toolbar on the left to define the Clock signal. 

3. Click on OK to set the clock pulse. 

4. Select the ResetN signal. The ResetN signal is active-low (i.e., a 0 value will enable the signal). 
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5. Click on the icon  in the toolbar on the left to set the signal to a 1 value. 

6. Drag from time 1.2us to 1.4us for the ResetN signal only, as shown in Figure B.8. 

 
Figure B.8 Changing the Reset signal value between times 1.2 µs and 1.4 µs. 

7. Click on the icon  in the toolbar on the left to set the signal in this selected time range to a 0 value. 

B.3.4 Saving the Waveform File 

1. Save the Waveform Editor window by selecting File | Save. The Save As window appears. Notice that the 
default file name is the same as the top-level entity name, and the extension is .scf. For this example, the name 
is counter.scf. 

2. Click on OK to save the file. 

B.3.5 Starting the Simulator 

1. We are now ready to simulate the design. From the Manager window menu, select MAX+plus II | Simulator, or 

click on the icon  to bring up the Simulator window. 

•  You can also save the waveform file and start the simulator in one step by selecting from the Manager window 
menu File | Project | Save & Simulate. 

2. The Simulator window, as shown in Figure B.9 is displayed. Make sure that the Simulation Input filename is 
counter.scf. This is the same name as your top-level entity. 

3. Click on the Start button and watch the progress of the simulation. 
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Figure B.9 Simulator window for the counter design. 

4. At the end of the simulation, if there are no errors, you will see a message window saying that the simulation 
was successful. Click OK to close the message window. 

5. Click on the Open SCF button in the Simulator window to bring up the Waveform Editor with the resulting 
simulation waveforms. The simulation result is shown in Figure B.10. The signal Q is the counter output.  

Notice that when ResetN is de-asserted (va1ue 1), Q increments at the rising edge of each clock cycle. At 600 
ns, the count is at 3. When ResetN is asserted at 1.2 µs, Q is immediately reset to 0. When ResetN is de-asserted 
again at 1.4 µs, the count starts again at the next rising clock edge. 

 
Figure B.10 Resulting waveform after the simulation. 

6. You can change the ResetN signal values to something different and run the simulation again. 
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Appendix C UP2 Programming—Tutorial 3 

Irregardless of whether the design file is a VHDL source file or a schematic drawing, the procedures for 
synthesis, simulation, and PLD programming are the same. In fact, a project can contain design files of both VHDL 
codes and schematic drawings. In this tutorial, we will program and test a 4-bit up-counter circuit on the UP2 
development board. You can start with either the VHDL source code or the schematic drawing for this counter 
circuit. In either case, the procedure and the final result will be the same. 

In Tutorial 2 (Appendix B), you saw how a VHDL description of a 4-bit up-counter circuit is synthesized and 
simulated in MAX+plus II. Test values for the input signals Clock and Clear were setup manually in the simulator. 
In order for the synthesized circuit to operate in the hardware, these input signals must be provided for by the 
hardware. For example, the Clear signal must be connected to an input switch, and a clock generator is needed for 
the Clock signal. Furthermore, the counter output signal Q must be connected to LEDs in order for us to see that the 
counter really works. 

In this tutorial, we will expand on the 4-bit up-counter circuit by adding a clock divider, and a 7-segment 
decoder. The UP2 development board already has a built-in clock source running at a frequency of 25 MHz. The 
clock-divider circuit simply divides this clock speed down to approximately 1 Hz so that you can see the counting. 
The 7-segment decoder converts the 4-bit counter output to drive a 7-segment LED display. A top-level module 
called up2flex is used to connect these three components (clockdiv, counter, and decoder) together to form one 
complete circuit. This circuit is then downloaded to the FLEX chip on the UP2 development board, and after 
applying power, you actually can see the count being displayed on the 7-segment LED. Alternatively, you can use 
the top-level module up2max for programming the MAX chip instead. 

The schematic for this complete counter circuit is shown in Figure C.1. The switches and LEDs on the UP2 
board are all active-low. This is why the inverters are needed, and the decoder outputs are all designated with an N 
to denote active-low. The eight Vcc lines are used optionally to turn off the second 7-segment LED. 

Count
Clock Q3-0
Clear

overflow

aN
bN
cN
dN
eN
fN
gN

I3-025MHz Clock

aN
bN
cN
dN
eN
fN
gN

Overflow

StopN

Clock

ResetN

Clock Divider
4-bit Up Counter

Decoder

Vcc8-1

Vcc

4

8  
Figure C.1 Complete counter circuit for implementing on the UP2 board. 

C.1 Getting Started 

C.1.1 Preparing a Folder for the Project 

1. Use Windows File Manager to create a new folder for this project. This tutorial uses a folder called counter in 
the root directory on the C drive. If you want to work with the schematic drawings, go to Step 2 to copy the 
schematic drawing source files. If you want to work with the VHDL codes, go to Step 3 to copy the VHDL 
source files. 

2. The schematic drawings for the four components, up2flex, clockdiv, counter, and decoder, are located on the 
accompanying CD-ROM in the four files up2flex.gdf, clockdiv.gdf, counter.gdf, and decoder.gdf in the 
directory <CD-ROM drive>:\Schematic Examples\Appendix C\Counter\Source. Using Windows File 
Manager, copy all of the files in this folder to the new folder c:\counter that you have created in Step 1. 
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•  All of the schematic drawing files have the extension .gdf, which stands for graphic design file. The 
Graphic Editor is used to view and edit the graphic design files. 

3. The VHDL source code for the four entities, up2flex, clockdiv, counter, and decoder, are located on the 
accompanying CD-ROM in the four files up2flex.vhd, clockdiv.vhd, counter.vhd, and decoder.vhd in the 
directory <CD-ROM drive>:\VHDL Examples\Appendix C\Counter\Source. Using Windows File Manager, 
copy all of the files in this folder to the new folder c:\counter that you have created in Step 1. 

•  All of the VHDL code files have the extension .vhd. The Text Editor is used to view and edit the VHDL 
source files. 

4. Start MAX+plus II if it is not already started. If there are windows in MAX+plus II that are opened from a 
previous session, you can close them. 

C.1.2 Creating a Project 

1. From the Manager window menu, select File | Project | Name or simply click on the icon .  

2. Select the C drive from the Drives dropdown list. 

3. Select the counter directory on the C drive. You should see the file up2flex.gdf (for schematic drawing) or 
up2flex.vhd (for VHDL code) listed in the Files box. 

4. Select this up2flex file. The filename will be copied to the Project Name text field. 

5. Click OK. The MAX+plus II Manager window title should now show c:\counter\up2flex. 

•  The top-level file up2flex.gdf or up2flex.vhd is for programming the FLEX chip on the UP2 board. If you 
want to use the MAX chip, you need to use the file up2max.gdf or up2max.vhd instead. All subsequent 
references to up2flex should then be changed to up2max. The FLEX chip has a much larger capacity, but it 
is volatile (that is, a circuit that is programmed on it will remain only as long as power is applied to it). The 
MAX chip, on the other hand, is smaller but it is nonvolatile. 

C.1.3 Viewing the Source File 

1. From the Manager window menu, select File | Hierarchy Project Top or click on the icon  to open the top-
level source file up2flex.gdf or up2flex.vhd.  

•  The Text Editor is used for viewing and editing the VHDL code. Notice that the entity name for this circuit 
is up2flex. The top entity name for the project must be the same as the project name and the file name. 

•  The Graphic Editor is used for viewing and editing the graphic design file. 

2. Use File | Open from the Manager window menu, or click on the icon  to open the other source files for 
viewing or to make changes. For this tutorial, we do not need to make any modifications. 

C.2 Synthesis for Programming the PLD 

1. From the Manager window menu, select MAX+plus II | Compiler, or click on the icon  to bring up the 
Compiler window. 

2. From the Compiler window menu (that is, with the Compiler window selected as the active window), select 
Processing and make sure that there is no check mark next to Functional SNF Extractor. If there is, then select it 
to remove the check mark. The Compiler window for full synthesis should look like Figure C.2. 
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Figure C.2 Compiler window for full synthesis. 

3. From the Compiler window menu, select Processing | Smart Recompile. With this option turned on, if you 
change any pin assignments later on and recompile, the compiler does not have to perform a full synthesis. 

4. Click on the Start button to start the synthesis. You will then see the progress of the synthesis. 

5. At the end of the synthesis, if there are no errors, you will see a message window saying that the compilation 
was successful. You can ignore the warnings, if any, for this project. Click OK to close the message window. 

C.3 Circuit Simulation 

The following steps for circuit simulation in this section are only necessary if you want to perform a simulation 
of the circuit. In practice, it is advisable to simulate the circuit to make sure that it is correct before 
implementing it on a PLD. For this tutorial, you can skip this step and go directly to Section C.4 for 
programming the PLD. 

1. From the Manager window menu, select MAX+plus II | Waveform Editor. 

2. From the Waveform Editor window menu, select Node | Enter Nodes from SNF. You can also right-click under 
the Name section in the Waveform Editor window, and select Enter Nodes from SNF from the pop-up menu.  

3. Click on the List button, and a list of available nodes and groups will be displayed in the Available Nodes & 
Groups box. You should see something similar to Figure C.3. 
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Figure C.3 Window for adding signals for simulation. 

4. Select the signals that you want to see in the simulation trace, and then click on the => button. The signals that 
we want are: StopN, ResetN, Clock, Overflow, aN, bN, cN, dN, eN, fN, and gN. The signals aN to gN are the 
signals for driving the seven LEDs on the 7-segment LED. After clicking on the => button, the selected signals 
will be moved to the Selected Nodes & Groups box. 

For this particular circuit, you may have a slight problem with the simulation, because the signal Clock is 
assumed to be running at 25 MHz, and the clockdiv component divides the clock down from 25 MHz to 1 Hz. 
So to even see a few counts, you will need the simulation end time to be very large. To make this simulation 
work, you need to remove the clockdiv component from the circuit. Remember that this is only necessary if you 
want to perform the simulation. You need to have this clockdiv component in order to see the counting on the 
UP2 board. 

5. Click on OK when you are finished. The selected signals will now be inserted in the Waveform Editor window. 

6. Select File | End Time from the Waveform Editor window menu and type in 3.5us to set the simulation end time 
to 3.5 µs. 

7. Assign values to the Clock signal using the  button. 

8. Assign a logic 1 value to both the StopN and ResetN signals using the  button. 

9. Save the Waveform Editor window file as up2flex.scf. 

10. From the Manager window menu, select MAX+plus II | Simulator, or click on the icon  to bring up the 
Simulator window, and then click on the Start button to start the simulation of the design. 

11. After the simulation has terminated, click on the Open SCF button to view the simulation result in the 
Waveform Editor window, as shown in Figure C.4. At 200 ns, the signals aN to gN are showing the count for 1 
with bN and cN being 0 and the rest being 1. For these seven signals, a 0 turns on the LED and a 1 turns it off, 
as shown in Figure C.5. 
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Figure C.4 Resulting waveform after the simulation for 3.5 µs. 
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Figure C.5 Segment placements of the 7-segment LED. 

C.4 Using the Floorplan Editor 
Since we want to download the circuit to a PLD, we need to specify what the target device is and map the I/O 

signals to the actual pins on the PLD. 

C.4.1 Selecting the Target Device 

1. Open the Device selection window by selecting Assign | Device from the Manager window menu as shown in 
Figure C.6. 
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Figure C.6 Selecting the FLEX 10K70RC240-4 PLD chip. 

2. Remove the check mark from Show Only Fastest Speed Grades. 

3. In the Device Family drop-down box, select FLEX10K. This is the larger one of the two PLD devices that is on 
the UP2 board. 

•  Select MAX7000S if you want to use the smaller PLD device on the UP2 board. 

4. In the Devices list, select EPF10K70RC240-4. 

•  Select EPM7128SLC84-7 if you want to use the smaller PLD device on the UP2 board. 

5. Put a check mark for Maintain Current Synthesis Regardless of Device or Speed Grade Changes. 

6. Click on OK. 

C.4.2 Maping the I/O Pins with the Floorplan Editor 

1. We also need to specify which physical pins on the chip will be assigned to the I/O signals for the circuit. From 

the Manager window menu, select MAX+plus II | Floorplan Editor or click on the icon  to bring up the 
Floorplan Editor window. 

2. From the Floorplan Editor window menu, select Layout | Device View. You should see a physical layout of the 
pins for the selected PLD chip, as shown in Figure C.7 for the FLEX chip. You may have to scroll the window 
or zoom out to see the pins. 

3. From the Floorplan Editor window menu, select Layout | Current Assignments Floorplan, or click on the icon 

 in the toolbar on the left. 

All of the pins are labeled with a pin number and the name of the signal that is assigned to it. Pins in blue color 
are already assigned to a signal. In the figure, the signal Clock is already assigned to pin 91. All of the pins in white 
are currently unassigned and available to use. Signals from the circuit that have not yet been assigned to any pins are 
listed in the top-right box labeled Unassigned Nodes & Pins. 
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Figure C.7 The Floorplan Editor showing a portion of the FLEX 10K70RC240-4 chip pins and the signal names for 
the circuit. 

4. To assign a signal to a pin, simply drag the icon  or  next to the signal from the Unassigned Nodes & 
Pins list box to one of the white pins in the floorplan. The pin color will change when a signal is assigned to it. 
Make sure that you drag the icon  or , and not the signal name. 

•  After making a signal assignment, you can change it by dragging the signal from one pin to another pin, or 
back to the Unassigned Nodes & Pins list box. 

•  You can delete a signal assignment by selecting the pin with that signal and then pressing the Delete key. 
This will move the signal back to the Unassigned Nodes & Pins signal list box. 

•  Perform the following signal-to-pin assignments if you have selected to use the FLEX chip from 
Section C.4.1, 

 

Signal Pin 
Number Comment 

Clock 91 Pin 91 is connected to the built-in 25 MHz clock source 
ResetN 28 Pin 28 is connected to push-button switch FLEX_PB1 
StopN 29 Pin 29 is connected to push-button switch FLEX_PB2 

aN 6 Pin 6 is connected to segment a on digit 1 of the FLEX 7-segment LED 
bN 7 Pin 7 is connected to segment b on digit 1 of the FLEX 7-segment LED 
cN 8 Pin 8 is connected to segment c on digit 1 of the FLEX 7-segment LED 
dN 9 Pin 9 is connected to segment d on digit 1 of the FLEX 7-segment LED 
eN 11 Pin 11 is connected to segment e on digit 1 of the FLEX 7-segment LED 
fN 12 Pin 12 is connected to segment f on digit 1 of the FLEX 7-segment LED 
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gN 13 Pin 13 is connected to segment g on digit 1 of the FLEX 7-segment LED 
Overflow 14 Pin 14 is connected to the decimal point on digit 1 of the FLEX 7-segment LED 

Vcc1 17 Optional assignment to turn off segment a on digit 2 of the FLEX 7-segment LED 
Vcc2 18 Optional assignment to turn off segment b on digit 2 of the FLEX 7-segment LED 
Vcc3 19 Optional assignment to turn off segment c on digit 2 of the FLEX 7-segment LED 
Vcc4 20 Optional assignment to turn off segment d on digit 2 of the FLEX 7-segment LED 
Vcc5 21 Optional assignment to turn off segment e on digit 2 of the FLEX 7-segment LED 
Vcc6 23 Optional assignment to turn off segment f on digit 2 of the FLEX 7-segment LED 
Vcc7 24 Optional assignment to turn off segment g on digit 2 of the FLEX 7-segment LED 
Vcc8 25 Optional assignment to turn off the decimal point on digit 2 of the FLEX 7-segment 

LED 

•  Perform the following signal-to-pin assignments if you have selected to use the MAX chip from 
Section C.4.1, 

 

Signal Pin 
Number Comment 

Clock 83 Pin 83 is connected to the built-in 25 MHz clock source 
ResetN 1 Connect a hook-up wire between Pin 1 and the pushbutton switch MAX_PB1 
StopN 2 Connect a hook-up wire between Pin 2 and the pushbutton switch MAX_PB2 

aN 58 Pin 58 is connected to segment a on digit 1 of the MAX 7-segment LED 
bN 60 Pin 60 is connected to segment b on digit 1 of the MAX 7-segment LED 
cN 61 Pin 61 is connected to segment c on digit 1 of the MAX 7-segment LED 
dN 63 Pin 63 is connected to segment d on digit 1 of the MAX 7-segment LED 
eN 64 Pin 64 is connected to segment e on digit 1 of the MAX 7-segment LED 
fN 65 Pin 65 is connected to segment f on digit 1 of the MAX 7-segment LED 
gN 67 Pin 67 is connected to segment g on digit 1 of the MAX 7-segment LED 

Overflow 68 Pin 68 is connected to the decimal point on digit 1 of the MAX 7-segment LED 
Vcc1 69 Optional assignment to turn off segment a on digit 2 of the MAX 7-segment LED 
Vcc2 70 Optional assignment to turn off segment b on digit 2 of the MAX 7-segment LED 
Vcc3 73 Optional assignment to turn off segment c on digit 2 of the MAX 7-segment LED 
Vcc4 74 Optional assignment to turn off segment d on digit 2 of the MAX 7-segment LED 
Vcc5 76 Optional assignment to turn off segment e on digit 2 of the MAX 7-segment LED 
Vcc6 75 Optional assignment to turn off segment f on digit 2 of the MAX 7-segment LED 
Vcc7 77 Optional assignment to turn off segment g on digit 2 of the MAX 7-segment LED 
Vcc8 79 Optional assignment to turn off the decimal point on digit 2 of the MAX 7-segment 

LED 

C.5 Fitting the Netlist and Pins to the PLD 

We need to compile the counter circuit again for fitting the netlist and pins to the selected PLD. If you have 
selected Processing | Smart Recompile in Step 3 of Section C.2, then this step would be faster, since the 
compiler does not have to re-synthesize the circuit. 

1. Bring up the Compiler window again by selecting MAX+plus II | Compiler from the Manager window menu, or 

click on the icon . 

2. Click on the Start button to start the compilation. 

3. At the end of the synthesis, if there are no syntax errors, you will see a message window saying that the 
compilation was successful. Click OK to close the message window. 
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C.6 Hardware Setup 

C.6.1 Installing the ByteBlaster Driver 

1. Windows XP, 2000, and NT users must also install the ByteBlaster driver in order to program the PLD chip on 
the UP2 board. Perform the following steps to install the driver: 

•  Get a command prompt window from Windows Start | Run, and type in cmd. 
•  Change to the \maxplus2\drivers\i386 directory under the directory where you have installed the 

MAX+plus II program. 
•  Enter the command bblpt /i <Enter> at the command prompt to install the driver. 

Refer to the ByteBlaster installation instructions in the UP2 User Guide on the accompanying CD-ROM for 
more information. 

2. From the Programmer window menu, select Options | Hardware Setup. 

3. Select ByteBlaster(MV) from the Hardware Type dropdown list. If this is not available, then go back to Step 1 to 
install the ByteBlaster device driver. 

4. Select the correct parallel port (usually LPT1). 

5. Click OK. 

C.6.2 Jumper Settings 

The four JTAG jumpers, TDI, TDO, DEVICE, and BOARD on the UP2 board must be set correctly depending 
on which PLD chip you want to use.  

•  Use the following settings for the FLEX chip: 
 

TDI  TDO  DEVICE  BOARD 

 C1    C1   C1   C1  
 C2   C2   C2   C2  
 C3   C3    C3    C3  

•  Use the following settings for the MAX chip: 
 

TDI  TDO  DEVICE  BOARD 

 C1   C1   C1   C1  
 C2   C2   C2   C2  
 C3    C3    C3    C3  

Refer to Figure C.8 for the location of these four jumpers. 

C.6.3 Hardware Connections 

1. Attach the ByteBlaster parallel cable directly to the PC’s parallel port and the JTAG_IN connector on the UP2 
development board. Refer to Figure C.8 for the location of the JTAG_IN connector. 

2. Plug in the 9 V power supply. 
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Figure C.8 UP2 development board layout. 

C.7 Programming the PLD 

1. Select MAX+plusII | Programmer from the Manager window menu, or click on the icon  to bring up the 
Programmer window. 

•  If you have selected the FLEX chip from Section C.4.1, then the window will look like the one in Figure 
C.9. Make sure that the file name shown in the window is up2flex, and the device is EPF10K70RC240-4. If 
it is not correct, then you have either selected the wrong project file from Section C.1.2, selected the wrong 
chip from Section C.4.1, or set the wrong jumpers from Section C.6.2. 

•  If you have selected the MAX chip from Section C.4.1, then the window will look like the one in Figure 
C.10. Make sure that the file name shown in the window is up2max, and the device is EPM7128SLC84-7. 
If it is not correct, then you have either selected the wrong project file from Section C.1.2, selected the 
wrong chip from Section C.4.1, or set the wrong jumpers from Section C.6.2. 

2. Click on the Configure button to start the configuration (programming) of the FLEX chip. 

•  Otherwise, click on the Program button to start the programming of the MAX chip. 

3. At the end of the programming, you will see a message window saying that the programming is successful. 
Click OK to close the message window. 
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Figure C.9 Programmer window for the FLEX chip. 

 
Figure C.10 Programmer window for the MAX chip. 

C.8 Testing the Hardware 

1. If you have programmed the FLEX chip, the push-button FLEX_PB1 is the Reset button, and the FLEX_PB2 is 
the Stop button. 

•  If you have programmed the MAX chip, you need to first connect a hook-up wire between Pin 1 on the 
MAX dual-row female header strip P1 and the push-button MAX_PB1. This push-button acts as the Reset 
button. Connect another hook-up wire between Pin 2 on the MAX dual-row female header strip P1 and the 
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push-button MAX_PB2. This push-button acts as the Stop button. Refer to Section C.9.3 for the location of 
Pins 1 and 2 on the header strip, and Section 0 for the MAX_PB1 push-button switch. 

2. You should see the counter counts on the 7-segment LED. When you press the push-button FLEX_PB1 (if you 
are using the FLEX chip) or MAX_PB1 (if you are using the MAX chip), the counter will reset to zero. When 
you press FLEX_PB2 (or MAX_PB2), the counter will stop. 

C.9 MAX7000S EPM7128SLC84-7 Summary 
The UP2 development board contains two PLDs: an EPM7128SLC84-7 and an EPF10K70RC240-4. The 

EPM7128S has a capacity of 2,500 gates and the EPF10K70 has a capacity of 70,000 gates. The board provides 
switches, LEDs, and connectors for prototyping digital circuits. Figure C.11 shows a picture and physical layout of 
the UP2 development board. 

 

(a) 

 

(b) 

Figure C.11 UP2 development board: (a) picture; (b) layout. 
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This section provides a summary of the resources available for the MAX EPM7128S PLD and the jumper 
connections for using them. All of the LEDs and switches are active-low. In other words, a 0 turns on a LED, and a 
0 is generated when a switch is pressed or in the on position. Refer to the UP2 User Guide on the accompanying 
CD-ROM for a detailed description and usage of the board. 

C.9.1 JTAG Jumper Settings 

The four JTAG jumpers, TDI, TDO, DEVICE, and BOARD, on the UP2 development board must be set 
according to Figure C.12 in order to program the EPM7128S PLD. 

 
TDI  TDO  DEVICE  BOARD 

 C1   C1   C1   C1  
 C2   C2   C2   C2  
 C3    C3    C3    C3  

Figure C.12 JTAG jumper settings for the EPM7128S device. 

C.9.2 Prototyping Resources for Use 

•  Female headers for signal pins 
•  Two momentary push-button switches 
•  Two octal, dual in-line package (DIP) switches 
•  16 LEDs 
•  Dual-digit 7-segment LED display 
•  On-board oscillator (25.175 MHz) 
•  Expansion port with 42 I/O pins and the dedicated global CLR, OE1, and OE2/GCLK2 pins 

C.9.3 General Pin Assignments 

The signal pins on the EPM7128S are connected to four dual-row female header strips surrounding the chip. 
The pin numbers for the EPM7128S device are printed on the board and summarized in Figure C.13. An “×” 
indicates an unconnected pin, and a crossed-out pin number indicates that the pin is non-assignable. 
 

  P1 11 9 7 5 3 1 83 81 79 77 75    
   × 10 8 6 4 2 84 82 80 78 76    

P2               P4  
12 13              × 74 
14 15              73 72 
16 17              71 70 
18 19     MAX      69 68 
20 21              67 66 
22 23    EPM7128SLC84-7     65 64 
24 25              63 62 
26 27              61 60 
28 29              59 58 
30 31              57 56 
32 ×              55 54 

                 
  P3 34 36 38 40 42 44 46 48 50 52 ×    
   33 35 37 39 41 43 45 47 49 51 53    

Figure C.13 Connection pins for the EPM7128S device. 
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C.9.4 Two Push-Button Switches 

•  The MAX_PB1 and MAX_PB2 are two push-button switches that provide active-low signals (i.e., they 
output a 0 when pressed). 

•  Connections to these two push-buttons are made by inserting one end of the hook-up wire into the female 
header associated with it. 

•  All of the circuits for programming the MAX chip on the accompanying CD-ROM map the two push-
button switches to the header pins on the MAX chip as shown Figure C.14. You may want to make these 
connections now using hook-up wires, and leave them connected this way for all of the exercises. 

 
MAX_PB Switch Pin 

MAX_PB1 1 
MAX_PB2 2 

Figure C.14 Hook-up wire connections for the two MAX push-button switches. 

C.9.5 16 DIP Switches 

•  The MAX_SW1 and MAX_SW2 are two dual in-line package (DIP) switches that provide active-low 
signals (i.e., they output a 0 when set to on). 

•  Connections to these DIP switches are made by inserting one end of the hook-up wire into the female 
header associated with it. 

•  All of the circuits for programming the MAX chip on the accompanying CD-ROM map the 16 DIP 
switches to the header pins on the MAX chip as shown in Figure C.15. You may want to make these 
connections now using hook-up wires and leave them connected this way for all of the exercises. 

 
MAX_SW1 Switch Pin  MAX_SW2 Switch Pin 
MAX_SW1 Switch 1 33  MAX_SW2 Switch 1 44 
MAX_SW1 Switch 2 34  MAX_SW2 Switch 2 45 
MAX_SW1 Switch 3 35  MAX_SW2 Switch 3 46 
MAX_SW1 Switch 4 36  MAX_SW2 Switch 4 48 
MAX_SW1 Switch 5 37  MAX_SW2 Switch 5 49 
MAX_SW1 Switch 6 39  MAX_SW2 Switch 6 50 
MAX_SW1 Switch 7 40  MAX_SW2 Switch 7 51 
MAX_SW1 Switch 8 41  MAX_SW2 Switch 8 52 

Figure C.15 Hook-up wire connections for the 16 MAX DIP switches. 

C.9.6 16 LEDs 

•  Each LED is turned on with a logic 0. 
•  Connections to the 16 LEDs are made by inserting one end of the hook-up wire into the female header 

associated with that LED. 
•  All of the circuits for programming the MAX chip on the accompanying CD-ROM map the 16 LEDs to the 

header pins on the MAX chip as shown in Figure C.16. You may want to make these connections now 
using hook-up wires and leave them connected this way for all of the exercises. 

 
LEDs Pin  LEDs Pin 
D1 11  D9 22 
D2 12  D10 24 
D3 15  D11 25 
D4 16  D12 27 
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D5 17  D13 28 
D6 18  D14 29 
D7 20  D15 30 
D8 21  D16 31 

Figure C.16 Hook-up wire connections for the 16 MAX LEDs. 

C.9.7 7-Segment LEDs 

•  Each LED segment is turned on with a logic 0. 
•  The dual-digit 7-segment display LEDs are connected permanently to the pins on the MAX chip, as shown 

in Figure C.17. 
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e

f g

Digit 1 Digit 2

 

Segment Digit 1 Pins Digit 2 Pins 
a 58 69 
b 60 70 
c 61 73 
d 63 74 
e 64 76 
f 65 75 
g 67 77 

Decimal Point 68 79  
Figure C.17 Connections for the two MAX 7-segment LEDs. 

C.9.8 Clock 

A 25.175 MHz clock signal is connected permanently to Pin 83 on the MAX chip. 

C.10 FLEX10K EPF10K70RC240-4 Summary 
This section provides a summary of the resources available for the FLEX EPF10K70 PLD and the pin 

connections for using them. All of the LEDs and switches are active-low. In other words, a 0 turns on a LED, and a 
0 is generated when a switch is pressed or in the on position. Refer to the UP2 User Guide on the accompanying 
CD-ROM for a detailed description and usage of the board. 

C.10.1 JTAG Jumper Settings 

The four JTAG jumpers, TDI, TDO, DEVICE, and BOARD, on the UP2 development board must be set 
according to Figure C.18 in order to program the EPF10K70 PLD. 

 
TDI  TDO  DEVICE  BOARD 

 C1    C1   C1   C1  
 C2   C2   C2   C2  
 C3   C3    C3    C3  

Figure C.18 JTAG jumper settings for the EPF10K70 device. 

C.10.2 Prototyping Resources for Use 

•  Two momentary push-button switches 
•  One octal DIP switch 
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•  Dual-digit 7-segment display 
•  On-board oscillator (25.175 MHz) 
•  PS/2 mouse or keyboard port 
•  VGA port 
•  Three expansion ports, each with 42 I/O pins and seven global pins 

C.10.3 Two Push-Button Switches 

•  The FLEX_PB1 and FLEX_PB2 are two push-button switches that provide active-low signals (i.e., they 
output a 0 when pressed). 

•  They are connected permanently to the pins on the FLEX chip as shown in Figure C.19: 
 

Name Pin 
FLEX_PB1 28 
FLEX_PB2 29 

Figure C.19 Connections for the two FLEX push-button switches. 

C.10.4 8 DIP Switches 

•  The FLEX_SW1 is a dual in-line package (DIP) switch that provides active-low signals (i.e., it outputs a 0 
when set to on). 

•  They are connected permanently to the pins on the FLEX chip, as shown in Figure C.20. 
 

Name Pin 
FLEX_SWITCH-1 41 
FLEX_SWITCH-2 40 
FLEX_SWITCH-3 39 
FLEX_SWITCH-4 38 
FLEX_SWITCH-5 36 
FLEX_SWITCH-6 35 
FLEX_SWITCH-7 34 
FLEX_SWITCH-8 33 

Figure C.20 Connections for the 8 FLEX DIP switches. 

C.10.5 7-Segment LEDs 

•  Each LED segment is turned on with a logic 0. 
•  The dual-digit 7-segment display LEDs are connected permanently to the pins on the FLEX chip, as shown 

in Figure C.21. 
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Segment Digit 1 Pins Digit 2 Pins 
a 6 17 
b 7 18 
c 8 19 
d 9 20 
e 11 21 
f 12 23 
g 13 24 

Decimal Point 14 25  
Figure C.21 Connections for the two FLEX 7-segment LEDs. 
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C.10.6 Clock 

•  A 25.175 MHz clock signal is connected permanently to Pin 91 on the FLEX chip. 

C.10.7 PS/2 Port 

•  A 6-pin mini-DIN connector is available to receive data from either a PS/2 mouse or a PS/2 keyboard. 
•  The connector is connected permanently to the FLEX chip as shown in Figure C.22. 

 
Mouse/Keyboard Signal Mini-DIN pin FLEX pin 

MOUSE_CLK, 
KEYBOARD_CLK 

1 30 

MOUSE_DATA, 
KEYBOARD_DATA 

3 31 

VCC 5 – 
GND 2 – 

Figure C.22 Connections for the PS/2 port. 

C.10.8 VGA Port 

•  The VGA interface allows the FLEX device to control an external monitor. 
•  The D-sub VGA connector is permanently connected to the FLEX chip as shown in Figure C.23. 

 
VGA Signal Mini-DIN Pin FLEX Pin 

RED 1 236 
GREEN 2 237 
BLUE 3 238 
GND 6, 7, 8, 10, 11 – 
HORIZ_SYNC 13 240 
VERT_SYNC 14 239 
No connect 4, 5, 9, 15 – 

Figure C.23 Connections for the VGA interface. 
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Appendix D VHDL Summary 

VHDL is a hardware description language for modeling digital circuits that can range from the simple 
connection of gates to complex systems. VHDL is an acronym for VHSIC Hardware Description Language, and 
VHSIC in turn is an acronym for Very High Speed Integrated Circuits. This appendix gives a brief summary of the 
basic VHDL elements and its syntax. Many advanced features of the language are omitted. Interested readers should 
refer to other references for detailed coverage. 

D.1 Basic Language Elements 

D.1.1 Comments 

Comments are preceded by two consecutive hyphens ( -- ) and are terminated at the end of the line. 

Example: 

-- This is a comment

D.1.2 Identifiers 

VHDL identifier syntax: 
•  A sequence of one or more uppercase letters, lowercase letters, digits, and the underscore 
•  Upper and lowercase letters are treated the same (i.e., case insensitive) 
•  The first character must be a letter 
•  The last character cannot be the underscore 
•  Two underscores cannot be together 

D.1.3 Data Objects 

There are three kinds of data objects: signals, variables, and constants. 

•  The data object SIGNAL represents logic signals on a wire in the circuit. A signal does not have memory; 
thus, if the source of the signal is removed, the signal will not have a value. 

•  A VARIABLE object remembers its content and is used for computations in a behavioral model. 

•  A CONSTANT object must be initialized with a value when declared and this value cannot be changed. 

Example: 

SIGNAL x: BIT;
VARIABLE y: INTEGER;
CONSTANT one: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0001";

D.1.4 Data Types 

BIT and BIT_VECTOR 

The BIT and BIT_VECTOR types are predefined in VHDL. Objects of these types can have the values ‘0’ or ‘1’. 
The BIT_VECTOR type is simply a vector of type BIT. A vector with all bits having the same value can be obtained 
using the OTHERS keyword. 

Example: 
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SIGNAL x: BIT;
SIGNAL y: BIT_VECTOR(7 DOWNTO 0);

x <= '1';
y <= "00000010";
y <= (OTHERS => '0'); -- same as "00000000"

STD_LOGIC and STD_LOGIC_VECTOR 

The STD_LOGIC and STD_LOGIC_VECTOR types provide more values than the BIT type for modeling a real circuit 
more accurately. Objects of these types can have the following values. 

'0' − normal 0 
'1' − normal 1 
'Z' − high impedance1 
'−' − don’t-care2 
'L' − weak 02 
'H' − weak 12 
'U' − uninitialized2 
'X' − unknown1 
'W' − weak unknown2 

The STD_LOGIC and STD_LOGIC_VECTOR types are not predefined, and so the following two library statements 
must be included in order to use these types. 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

If objects of type STD_LOGIC_VECTOR are to be used as binary numbers in arithmetic manipulations, then either 
one of the following two USE statements must also be included 

USE IEEE.STD_LOGIC_SIGNED.ALL;

for signed number arithmetic, or 

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

for unsigned number arithmetic. A vector with all bits having the same value can be obtained using the OTHERS 
keyword, as shown in the next example. 

Example: 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

SIGNAL x: STD_LOGIC;
SIGNAL y: STD_LOGIC_VECTOR(7 DOWNTO 0);

x <= 'Z';
y <= "0000001Z";
y <= (OTHERS => '0'); -- same as "00000000"

                                                           
1 Must use uppercase. This is only a MAX+plus II restriction. 
2 MAX+plus II only supports the values 0, 1, Z, and X. 
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INTEGER 

The predefined INTEGER type defines binary number objects for use with arithmetic operators. By default, an 
INTEGER signal uses 32 bits to represent a signed number. Integers using fewer bits can also be declared with the 
RANGE keyword. 

Example: 

SIGNAL x: INTEGER;
SIGNAL y: INTEGER RANGE –64 to 64;

BOOLEAN 

The predefined BOOLEAN type defines objects having the two values TRUE and FALSE. 

Example: 

SIGNAL x: BOOLEAN;

Enumeration TYPE 

An enumeration type allows the user to specify the values that the data object can have. 

Syntax: 

TYPE identifier IS (value1, value2, … ); 

Example: 

TYPE state_type IS (S1, S2, S3);
SIGNAL state: state_type;
state <= S1;

ARRAY 

The ARRAY type groups single data objects of the same type together into a one-dimensional or 
multidimensional array. 

Syntax: 

TYPE identifier IS ARRAY (range) OF type;  

Example: 

TYPE byte IS ARRAY(7 DOWNTO 0) OF BIT;
TYPE memory_type IS ARRAY(1 TO 128) OF byte;
SIGNAL memory: memory_type;
memory(3) <= "00101101";

SUBTYPE 

A SUBTYPE is a subset of a type, that is, a type with a range constraint. 

Syntax: 

SUBTYPE identifier IS type RANGE range;  

Example: 

SUBTYPE integer4 IS INTEGER RANGE –8 TO 7;
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SUBTYPE cell IS STD_LOGIC_VECTOR(3 DOWNTO 0);
TYPE memArray IS ARRAY(0 TO 15) OF cell;

Some standard subtypes include: 

•  NATURAL—an integer in the range 0 to INTEGER'HIGH 
•  POSITIVE—an integer in the range 1 to INTEGER'HIGH 

D.1.5 Data Operators 

The VHDL built-in operators are listed in Figure D.1. 
 

Logical Operators Operation Example 
AND AND n <= a AND b 
OR OR n <= a OR b 
NOT NOT n <= NOT a 
NAND NAND n <= a NAND b 
NOR NOR n <= a NOR b 
XOR XOR n <= a XOR b 
XNOR XNOR n <= a XNOR b 

Arithmetic Operators Operation Example 
+ Addition n <= a + b 
– Subtraction n <= a – b 
* Multiplication (integer or floating point) n <= a * b 
/ 3 Division (integer or floating point) n <= a / b 
MOD 4 Modulus (integer) n <= a MOD b 
REM 3 Remainder (integer) n <= a REM b 
** Exponentiation n <= a ** 2 
& Concatenation n <= 'a' & 'b' 
ABS Absolute  

Relational Operators Operation Example 
= Equal IF (n = 10) THEN 
/= Not equal IF (n /= 10) THEN 
< Less than IF (n < 10) THEN 
<= Less than or equal IF (n <= 10) THEN 
> Greater than IF (n > 10) THEN 
>= Greater than or equal IF (n >= 10) THEN 

Shift Operators Operation Example 
SLL Shift left logical n <= "1001010" SLL 2 
SRL Shift right logical n <= "1001010" SRL 1 
SLA Shift left arithmetic n <= "1001010" SLA 2 
SRA Shift right arithmetic n <= "1001010" SRA 1 
ROL Rotate left n <= "1001010" ROL 2 
ROR Rotate right n <= "1001010" ROR 3 

Figure D.1 VHDL built-in data operators. 

                                                           
3 Can only divide by a power of 2. This is only a MAX+plus II restriction. 
4 Not supported by MAX+ plus II. 
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D.1.6 ENTITY 

An ENTITY declaration declares the external or user interface of the module similar to the declaration of a 
function. It specifies the name of the entity and its interface. The interface consists of the signals to be passed into 
the entity or out from it using the two keywords IN and OUT, respectively. 

Syntax: 

ENTITY entity-name IS 
 PORT (list-of-port-names-and-types); 
END entity-name; 

Example: 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Siren IS PORT (
M: IN STD_LOGIC;
D: IN STD_LOGIC;
V: IN STD_LOGIC;
S: OUT STD_LOGIC);

END Siren;

D.1.7 ARCHITECTURE 

The ARCHITECTURE body defines the actual implementation of the functionality of the entity. This is similar to 
the definition or implementation of a function. The syntax for the architecture varies, depending on the model 
(dataflow, behavioral, or structural) you use. 

Syntax: Dataflow model 

ARCHITECTURE  architecture-name OF entity-name IS 
 signal-declarations; 
BEGIN 
 concurrent-statements; 
END architecture-name; 

The concurrent statements are executed concurrently. 

Example: 

ARCHITECTURE Siren_Dataflow OF Siren IS
SIGNAL term_1: STD_LOGIC;

BEGIN
term_1 <= D OR V;
S <= term_1 AND M;

END Siren_Dataflow;

Syntax: Behavioral model 

ARCHITECTURE  architecture-name OF entity-name IS 
 signal-declarations; 
 function-definitions; 
 procedure-definitions; 
BEGIN 
 PROCESS-blocks; 
 concurrent-statements; 
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END architecture-name; 

Statements within the PROCESS block are executed sequentially. However, the PROCESS block itself is a 
concurrent statement. 

Example: 

ARCHITECTURE Siren_Behavioral OF Siren IS
SIGNAL term_1: STD_LOGIC;

BEGIN
PROCESS (D, V, M)
BEGIN
term_1 <= D OR V;
S <= term_1 AND M;

END PROCESS;
END Siren_Behavioral;

Syntax: Structural model 

ARCHITECTURE  architecture-name OF entity-name IS 
 component-declarations; 
 signal-declarations; 
BEGIN 
 instance-name: PORT MAP-statements; 
 concurrent-statements; 
END architecture-name; 

For each component declaration used, there must be a corresponding entity and architecture for that component. 
The PORT MAP statements are concurrent statements. 

Example: 

ARCHITECTURE Siren_Structural OF Siren IS
COMPONENT myOR PORT (
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);

END COMPONENT;

SIGNAL term1: STD_LOGIC;

BEGIN
U0: myOR PORT MAP (D, V, term1);
S <= term1 AND M;

END Siren_Structural;

D.1.8 GENERIC 

Generics allow information to be passed into an entity so that, for example, the size of a vector in the PORT list 
does not have to be known until elaboration time. Generics of an entity are declared with the GENERIC keyword 
before the PORT list declaration for the entity. An identifier that is declared as GENERIC is a constant that only can be 
read. The identifier then can be used in the entity declaration and its corresponding architectures wherever a constant 
is expected. 

Syntax: In an ENTITY declaration 
ENTITY entity-name IS 
GENERIC (identifier: type); -- with no default value 
… 
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or 

ENTITY entity-name IS 
GENERIC (identifier: type := constant); -- with a default value given by the constant 
… 

Example: 

ENTITY Adder IS
-- declares the generic identifier n having a default value 4
GENERIC (n: INTEGER := 4);
PORT (
-- the vector size is 3 downto 0 since n is 4
A, B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
Cout: OUT STD_LOGIC;
SUM: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));
S: OUT STD_LOGIC);

END Siren;

The value for a generic constant can also be specified in a component declaration or a component instantiation 
statement. 

Syntax: In a component declaration 

COMPONENT component-name 
 GENERIC (identifier: type := constant); -- with an optional value given by the constant 
 PORT (list-of-port-names-and-types); 
END COMPONENT; 

Syntax: In a component instantiation 

label: component-name GENERIC MAP (constant) PORT MAP (association-list); 

Example: 

ARCHITECTURE ...

COMPONENT mux2 IS
-- declares the generic identifier n having a default value 4
GENERIC (n: INTEGER := 4);
PORT (
S: IN STD_LOGIC; -- select line
D1, D0: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);-- data bus input
Y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0)); -- data bus output

END COMPONENT;

...

BEGIN

U0: mux2 GENERIC MAP (8) PORT MAP (mux_select, A, B, mux_out);

...
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D.1.9 PACKAGE 

A PACKAGE provides a mechanism to group together and share declarations that are used by several entity units. 
A package itself includes a declaration and, optionally, a body. The PACKAGE declaration and body usually are 
stored together in a separate file from the rest of the design units. The file name given for this file must be the same 
as the package name. In order for the complete design to synthesize correctly using MAX+plus II, you must first 
synthesize the package as a separate unit. After that, you can synthesize the unit that uses that package. 

PACKAGE Declaration and Body 

The PACKAGE declaration contains declarations that may be shared between different entity units. It provides the 
interface, that is, items that are visible to the other entity units. The optional PACKAGE BODY contains the 
implementations of the functions and procedures that are declared in the PACKAGE declaration. 

Syntax: PACKAGE declaration 

 PACKAGE package-name IS 
  type-declarations; 
  subtype-declarations; 
  signal-declarations; 
  variable-declarations; 
  constant-declarations; 
  component-declarations; 
  function-declarations; 
  procedure-declarations; 
 END package-name; 

Syntax: PACKAGE BODY declaration 

 PACKAGE BODY package-name IS 
  function-definitions; -- for functions declared in the package declaration 
  procedure-definitions; -- for procedures declared in the package declaration 
 END package-name; 

Example: 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE my_package IS
SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);
FUNCTION Shiftright (input: IN bit4) RETURN bit4; -- declare a function
SIGNAL mysignal: bit4; -- a global signal

END my_package;

PACKAGE BODY my_package IS
-- implementation of the Shiftright function
FUNCTION Shiftright (input: IN bit4) RETURN bit4 IS
BEGIN
RETURN '0' & input(3 DOWNTO 1);

END shiftright;
END my_package;

Using a PACKAGE 

To use a package, you simply include a LIBRARY and USE statement for that package. Before synthesizing the 
module that uses the package, you need to first synthesize the package by itself as a top-level entity. 
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Syntax: 

LIBRARY WORK; 
USE WORK.package-name.ALL; 

Example: 

LIBRARY WORK;
USE WORK.my_package.ALL;

ENTITY test_package IS PORT (
x: IN bit4;
z: OUT bit4);

END test_package;

ARCHITECTURE Behavioral OF test_package IS
BEGIN
mysignal <= x;
z <= Shiftright(mysignal);

END Behavioral;

D.2 Dataflow Model Concurrent Statements 
Concurrent statements used in the dataflow model are executed concurrently. Hence, the ordering of these 

statements does not affect the resulting output. 

D.2.1 Concurrent Signal Assignment 

The concurrent signal assignment statement assigns a value or the result of evaluating an expression to a signal. 
This statement is executed whenever a signal in its expression changes value. However, the actual assignment of the 
value to the signal takes place after a certain delay and not instantaneously as for variable assignments. The 
expression can be any logical or arithmetical expressions. 

Syntax: 

signal <= expression; 

Example: 

y <= '1';
z <= y AND (NOT x);

A vector with all bits having the same value can be obtained using the OTHERS keyword as shown here. 

SIGNAL x: STD_LOGIC_VECTOR(7 DOWNTO 0);
x <= (OTHERS => '0'); -- 8-bit vector of 0, same as "00000000"

D.2.2 Conditional Signal Assignment 

The conditional signal assignment statement selects one of several different values to assign to a signal based on 
different conditions. This statement is executed whenever a signal in any one of the value or condition changes. 

Syntax: 

signal <= value1 WHEN condition ELSE 
  value2 WHEN condition ELSE 
  … 
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  value3; 

Example: 

z <= in0 WHEN sel = "00" ELSE
in1 WHEN sel = "01" ELSE
in2 WHEN sel = "10" ELSE
in3;

D.2.3 Selected Signal Assignment 

The selected signal assignment statement selects one of several different values to assign to a signal based on 
the value of a select expression. All possible choices for the expression must be given. The keyword OTHERS can be 
used to denote all remaining choices. This statement is executed whenever a signal in the expression or any one of 
the value changes. 

Syntax: 

WITH expression SELECT 
 signal <= value1 WHEN choice1, 
  value2 WHEN choice2 | choice3, 
  … 
  value4 WHEN OTHERS; 

In the above syntax, if expression is equal to choice1, then value1 is assigned to signal. Otherwise, if expression 
is equal to choice2 or choice3, then value2 is assigned to signal. If expression does not match any of the above 
choices, then value4 in the optional WHEN OTHERS clause is assigned to signal. 

Example: 

WITH sel SELECT
z <= in0 WHEN "00",

in1 WHEN "01",
in2 WHEN "10",
in3 WHEN OTHERS;

D.2.4 Dataflow Model Sample 

-- outputs a 1 if the 4-bit input is a prime number, 0 otherwise

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Prime IS PORT (
number: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
yes: OUT STD_LOGIC);

END Prime;

ARCHITECTURE Prime_Dataflow OF Prime IS
BEGIN

WITH number SELECT
yes <= '1' WHEN "0001" | "0010",

'1' WHEN "0011" | "0101" | "0111" | "1011" | "1101",
'0' WHEN OTHERS;

END Prime_Dataflow;
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D.3 Behavioral Model Sequential Statements 
The behavioral model allows statements to be executed sequentially just like in a regular computer program. 

Sequential statements include many of the standard constructs, such as variable assignments, if-then-else statements, 
and loops. 

D.3.1 PROCESS 

The PROCESS block contains statements that are executed sequentially. However, the PROCESS statement itself is 
a concurrent statement. Multiple process blocks in an architecture will be executed simultaneously. These process 
blocks can be combined together with other concurrent statements. 

Syntax: 

process-name: PROCESS (sensitivity-list) 
 variable-declarations; 
BEGIN 
 sequential-statements; 
END PROCESS process-name; 

The sensitivity list is a comma-separated list of signals, which the process is sensitive to. In other words, 
whenever a signal in the list changes value, the process will be executed (i.e., all of the statements in the sequential 
order listed). After the last statement has been executed, the process will be suspended until the next time that a 
signal in the sensitivity list changes value before it is executed again. 

Example: 

PROCESS (D, V, M)
BEGIN
term_1 <= D OR V;
S <= term_1 AND M;

END PROCESS;

D.3.2 Sequential Signal Assignment 

The sequential signal assignment statement assigns a value to a signal. This statement is just like its concurrent 
counterpart, except that it is executed sequentially (i.e., only when execution reaches it). 

Syntax: 

signal <= expression; 

Example: 

y <= '1';
z <= y AND (NOT x);

D.3.3 Variable Assignment 

The variable assignment statement assigns a value or the result of evaluating an expression to a variable. The 
value is always assigned to the variable instantaneously whenever this statement is executed. 

Variables are only declared within a process block. 

Syntax: 

signal := expression; 
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Example: 

y := '1';
yn := NOT y;

D.3.4 WAIT 

When a process has a sensitivity list, the process always suspends after executing the last statement. An 
alternative to using a sensitivity list to suspend a process is to use a WAIT statement, which must also be the first 
statement in a process5. 

Syntax6: 

WAIT UNTIL condition; 

Example: 

-- suspend until a rising clock edge
WAIT UNTIL clock’EVENT AND clock = '1';

D.3.5 IF THEN ELSE 

Syntax: 

IF condition THEN 
 sequential-statements1; 
ELSE 
 sequential-statements2; 
END IF; 

IF condition1 THEN 
 sequential-statements1; 
ELSIF condition2 THEN 
 sequential-statements2; 
…  
ELSE 
 sequential-statements3; 
END IF; 

Example: 

IF count /= 10 THEN -- not equal
count := count + 1;

ELSE
count := 0;

END IF;

D.3.6 CASE 

Syntax: 

CASE expression IS 

                                                           
5 This is only a MAX+plus II restriction. 
6 There are three different formats of the WAIT statement, however, MAX+plus II only supports one. 
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WHEN choices => sequential-statements; 
WHEN choices => sequential-statements; 
… 
WHEN OTHERS => sequential-statements; 
END CASE; 

Example: 

CASE sel IS
WHEN "00" => z <= in0;
WHEN "01" => z <= in1;
WHEN "10" => z <= in2;
WHEN OTHERS => z <= in3;
END CASE;

D.3.7 NULL 

The NULL statement does not perform any actions. 

Syntax: 

NULL; 

D.3.8 FOR 

Syntax: 

FOR identifier IN start [TO | DOWNTO] stop LOOP 
 sequential-statements; 
END LOOP; 

Loop statements must have locally static bounds7. The identifier is implicitly declared, so no explicit declaration 
of the variable is needed. 

Example: 

sum := 0;
FOR count IN 1 TO 10 LOOP
sum := sum + count;

END LOOP;

D.3.9 WHILE 

Syntax: 8 

WHILE condition LOOP 
 sequential-statements; 
END LOOP; 

 

                                                           
7 This is only a MAX+plus II restriction. 
8 Not supported by MAX+ plus II. 
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D.3.10 LOOP 

Syntax: 4 

LOOP 
 sequential-statements; 
 EXIT WHEN condition; 
END LOOP; 

 

D.3.11 EXIT 

The EXIT4 statement can only be used inside a loop. It causes execution to jump out of the innermost loop and is 
usually used in conjunction with the LOOP statement. 

Syntax: 

 EXIT WHEN condition; 

D.3.12 NEXT 

The NEXT statement can be used only inside a loop. It causes execution to skip to the end of the current iteration 
and continue with the beginning of the next iteration. It is usually used in conjunction with the FOR statement. 

Syntax: 

 NEXT WHEN condition; 

Example: 

sum := 0;
FOR count IN 1 TO 10 LOOP
NEXT WHEN count = 3;
sum := sum + count;

END LOOP;

D.3.13 FUNCTION 

Syntax: Function declaration 

 FUNCTION function-name (parameter-list) RETURN return-type; 

Syntax: Function definition 

 FUNCTION function-name (parameter-list) RETURN return-type IS 
 BEGIN 
  sequential-statements; 
 END function-name; 

Syntax: Function call 

 function-name (actuals); 

Parameters in the parameter list can be either signals or variables of mode IN only. 

Example: 
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LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY test_function IS PORT (
x: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
z: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END test_function;

ARCHITECTURE Behavioral OF test_function IS

SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);

FUNCTION Shiftright (input: IN bit4) RETURN bit4 IS
BEGIN
RETURN '0' & input(3 DOWNTO 1);

END shiftright;

SIGNAL mysignal: bit4;

BEGIN
PROCESS
BEGIN
mysignal <= x;
z <= Shiftright(mysignal);

END PROCESS;
END Behavioral;

D.3.14 PROCEDURE 

Syntax: Procedure declaration 

 PROCEDURE procedure -name (parameter-list); 

Syntax: Procedure definition 

 PROCEDURE procedure-name (parameter-list) IS 
 BEGIN 
  sequential-statements; 
 END procedure-name; 

Syntax: Procedure call 

 procedure -name (actuals); 

Parameters in the parameter-list are variables of modes IN, OUT, or INOUT. 

Example: 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY test_procedure IS PORT (
x: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
z: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END test_procedure;

ARCHITECTURE Behavioral OF test_procedure IS

SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);
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PROCEDURE Shiftright (input: IN bit4; output: OUT bit4) IS
BEGIN
output := '0' & input(3 DOWNTO 1);

END shiftright;

BEGIN
PROCESS
VARIABLE mysignal: bit4;

BEGIN
Shiftright(x, mysignal);
z <= mysignal;

END PROCESS;
END Behavioral;

D.3.15 Behavioral Model Sample 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY bcd IS PORT (
I: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Segs: OUT STD_LOGIC_VECTOR(1 TO 7));

END bcd;

ARCHITECTURE Behavioral OF bcd IS
BEGIN
PROCESS(I)
BEGIN
CASE I IS
WHEN "0000" => Segs <= "1111110";
WHEN "0001" => Segs <= "0110000";
WHEN "0010" => Segs <= "1101101";
WHEN "0011" => Segs <= "1111001";
WHEN "0100" => Segs <= "0110011";
WHEN "0101" => Segs <= "1011011";
WHEN "0110" => Segs <= "1011111";
WHEN "0111" => Segs <= "1110000";
WHEN "1000" => Segs <= "1111111";
WHEN "1001" => Segs <= "1110011";
WHEN OTHERS => Segs <= "0000000";
END CASE;

END PROCESS;
END Behavioral;

D.4 Structural Model Statements 
The structural model allows the manual connection of several components together using signals. All 

components used must first be defined with their respective ENTITY and ARCHITECTURE sections, which can be in the 
same file or can be in separate files. 

In the topmost module, each component used in the netlist is first declared using the COMPONENT statement. The 
declared components are then instantiated with the actual components in the circuit using the PORT MAP statement. 
SIGNALs are then used to connect the components together according to the netlist. 
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D.4.1 COMPONENT Declaration 

The COMPONENT declaration statement declares the name and the interface of a component that is used in the 
circuit description. For each COMPONENT declaration used, there must be a corresponding ENTITY and 
ARCHITECTURE for that component. The declaration name and the interface must match exactly the name and 
interface that is specified in the ENTITY section for that component. 

Syntax: 

COMPONENT component-name IS 
 PORT (list-of-port-names-and-types); 
END COMPONENT; 

or 

COMPONENT component-name IS 
 GENERIC (identifier: type := constant);  
 PORT (list-of-port-names-and-types); 
END COMPONENT; 

Example: 

COMPONENT half_adder IS PORT (
xi, yi, cin: IN STD_LOGIC;
cout, si: OUT STD_LOGIC);

END COMPONENT;

D.4.2 PORT MAP 

The PORT MAP statement instantiates a declared component with an actual component in the circuit by 
specifying how the connections to this instance of the component are to be made. 

Syntax: 

label: component-name PORT MAP (association-list); 

or 

label: component-name GENERIC MAP (constant) PORT MAP (association-list);  

The association list can be specified using either the positional or named method. 

Example: Positional association 

SIGNAL x0, x1, y0, y1, c0, c1, c2, s0, s1: STD_LOGIC;
U1: half_adder PORT MAP (x0, y0, c0, c1, s0);
U2: half_adder PORT MAP (x1, y1, c1, c2, s1);

Example: Named association 

SIGNAL x0, x1, y0, y1, c0, c1, c2, s0, s1: STD_LOGIC;
U1: half_adder PORT MAP (cout=>c1, si=>s0, cin=>c0, xi=>x0, yi=>y0);
U2: half_adder PORT MAP (cin=>c1, xi=>x1, yi=>y1, cout=>c2, si=>s1);
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D.4.3 OPEN 

The OPEN keyword is used in the PORT MAP association list to signify that that particular output port is not 
connected or used. It cannot be used for an input port. 

Example: 

U1: half_adder PORT MAP (x0, y0, c0, OPEN, s0);

D.4.4 GENERATE 

The GENERATE statement works like a macro expansion. It provides a simple way to duplicate similar 
components. 

Syntax: 

label: FOR identifier IN start [TO | DOWNTO] stop GENERATE 
 port-map-statements; 
END GENERATE label; 

Example: 

-- using a FOR-GENERATE statement to generate four instances of the full adder
-- component for a 4-bit adder
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Adder4 IS PORT (
Cin: IN STD_LOGIC;
A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Cout: OUT STD_LOGIC;
SUM: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END Adder4;

ARCHITECTURE Structural OF Adder4 IS
COMPONENT FA PORT (
ci, xi, yi: IN STD_LOGIC;
co, si: OUT STD_LOGIC);

END COMPONENT;

SIGNAL Carryv: STD_LOGIC_VECTOR(4 DOWNTO 0);

BEGIN
Carryv(0) <= Cin;

Adder: FOR k IN 3 DOWNTO 0 GENERATE
FullAdder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+1), SUM(k));

END GENERATE Adder;

Cout <= Carryv(4);
END Structural;

D.4.5 Structural Model Sample 

This example is based on the following circuit: 
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-- declare and define the 2-input OR gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY myOR IS PORT (
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);

END myOR;

ARCHITECTURE OR_Dataflow OF myOR IS
BEGIN
out1 <= in1 OR in2; -- performs the OR operation

END OR_Dataflow;

 
-- declare and define the 2-input AND gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY myAND IS PORT (
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);

END myOR;

ARCHITECTURE OR_Dataflow OF myAND IS
BEGIN
out1 <= in1 AND in2; -- performs the AND operation

END OR_Dataflow;

 
-- topmost module for the siren
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY Siren IS PORT (
M: IN STD_LOGIC;
D: IN STD_LOGIC;
V: IN STD_LOGIC;
S: OUT STD_LOGIC);

END Siren;

ARCHITECTURE Siren_Structural OF Siren IS
-- declaration of the needed OR gate
COMPONENT myOR PORT (
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);

END COMPONENT;

-- declaration of the needed AND gate
COMPONENT myAND PORT (
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);

END COMPONENT;

-- signal for connecting the output of the OR gate
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-- with the input to the AND gate
SIGNAL term1: STD_LOGIC;

BEGIN
U0: myOR PORT MAP (D, V, term1);
U1: myAND PORT MAP (term1, M, S);

END Siren_Structural;

D.5 Conversion Routines 

D.5.1 CONV_INTEGER() 

The CONV_INTEGER() routine converts a STD_LOGIC_VECTOR type to an INTEGER type. Its use requires the 
inclusion of the following library. 

LIBRARY IEEE; 

USE IEEE.STD_LOGIC_UNSIGNED.ALL; 

Syntax: 

CONV_INTEGER(std_logic_vector) 

Example: 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

SIGNAL four_bit: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL n: INTEGER;

n := CONV_INTEGER(four_bit);

D.5.2 CONV_STD_LOGIC_VECTOR(,) 

The CONV_STD_LOGIC_VECTOR(,) routine converts an INTEGER type to a STD_LOGIC_VECTOR type. Its use 
requires the inclusion of the following library. 

LIBRARY IEEE; 

USE IEEE.STD_LOGIC_ARITH.ALL; 

Syntax: 

CONV_STD_LOGIC_VECTOR (integer, number_of_bits)  

Example: 

LIBRARY IEEE;
USE IEEE.STD_LOGIC_ARITH.ALL;

SIGNAL four_bit: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL n: INTEGER;

four_bit := CONV_STD_LOGIC_VECTOR(n, 4);
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