Digital Logic and
Microprocessor Design
With VHDL

Enoch O. Hwang
La Sierra University, Riverside

E Brooks / Cole 2005
ISBN: 0-534-46593-5

5 Team ELECTRONIX 2004

To my wife and children, Windy, Jonathan and Michelle

Contents

000101] 1 TSP TP 5
PIETACE ...t R Rt 13
Chapter 1 Designing MICIOPIOCESSONS. ...c.ueeueiuieitiaiesieesteaeesseesteaseesseessesseesseessesseesseessesseesseesses 16
1.1 OVErVIEW OF @ IMIICTOPIOCESSONueuieiieieite sttt ettt bbbttt b e bt e b ekt ehe e s e e b e e b e s besbeeb e e s enbesbesbesreaneas 17
1.2 DeSign ADSIFACTION LEVEIS....c.eiiiiiiie ettt bbbt s et e e e b e b e bt e b e e e e besaesbesbeeneas 20
1.3 EXamples of @ 2-10-1 MURIPIEXEToiviiiie et et saesresreeneas 20
131 BENAVIOTAI LEVEL.......cviiecie e 21
1.3.2 GALE LBVEL ...t 22
1.3.3 TTANSISION LEVEL ...ttt 23
1.4 INrOUCTION 10 WHDL ..ottt 23
LT 1431 OSSP 26
LG o] [o T o] T Lo OO USSP 26
1.7 SUMMAIY CRECKIIST. ...ttt e bbbt et b e b e e bt b e e bt et et sbesbesbeene e e ennas 27
IS T o (0] o] 1= 0 T OOV UR TR USOUPPUTPRURROS 27
Chapter 2 DiIgital CIFCUITS......ccuiiiiiiee ettt este e e sreenas 29
S = T 0 T VA V0 LT S 30
N = 10T 1 VA LT/ (o S 32
2.3 Basic Logic Operators and LOGIC EXPIESSIONScoueueitirieirririeeitinseeetinteeestsie et s s sse e snese e 33
N I €11 T 1= o] USRS 34
2.5 Boolean Algebra and Boolean FUNCHIONooiiiiiiiiiiiieie s 35
251 BOO0IEAN AIGEDIA ..ottt 35
252 F DUAIIEY PIINCIPIE ..ottt et bbbttt ettt et sb e e 37
253 Boolean FuNnction and the INVEISE. ... 37
2.6 MiINErmMS @N0 IMAXEEIMMISc.vvireiirieieieser ettt b bt e bt r bt r bt n bt nn e e 40
2.6.1 IVIINIEEIINIS ..ot h R R e R R Rt R Rt 40
2.6.2 FIMAXIEIIMS L.t e 42
2.7 Canonical, Standard, and NON-StaNArd FOMMS..........ccviiiiirrieiiseene e 43
2.8 Logic Gates and CirCUIt DIAGIAMS.civeeeieeiieriertesesesteseseeeesae e stestestesseaseeseesseseessestesaeateessesteseestesseeneeses 44
2.9 Example: Designing @ Car SECUILY SYSTEMoiviiiiiiirieieiisteeeie sttt 46
2.10 VHDL TOF DIgGItal CIFCUITS ... c.eivitiiiititiiisteitet stttk b ekt b ettt 48
2.10.1 VHDL code for a 2-iNput NAND GaLE........cceiiirieiierieeste ettt 48
2.10.2 VHDL code for @ 3-inpUut NOR QALE........cceiiiiiieiieiee ettt 49
2.10.3 VHDL cOde fOr @ FUNCHIONoouiieiiiiiice ettt sn e s 50
211 SUMMAIY CRECKIISTottt bbb bbbt b bbb 51
2,02 PIODIEIMS ..ot R n et 52
Chapter 3 Combinational CirCUITS.........ccuiiiiiiiiiie e 59
3.1 Analysis of CombBINAtIONAI CIrCUITS..........iiiiiiiiiiiitit bbb 60
311 USING @ TIUEN TADIE ..ottt 60
3.12 USIiNG @ BOOIEAN FUNCLION.cviiiiiiiitiitcic ettt 63
3.2 Synthesis of COmMDINAtIONAL CIFCUILScviiieiieieeie ettt e e steeaeeneeeneennee e 64
TG T =Tod a1 T (oo YA Y/ F- Vo o] [o SO 66
3.4 Minimization of ComBINAtioNal CIFCUITScuiiiiiriiiii s 69
34.1 [L 0 (0o IV T oSSR 69
3.4.2 DONMTE-CAES ...ttt bbb 74
343 * TabUulAtion METNOG.........cviiiecireec et 75
3.5 *Timing Hazards and GIILCREScoiiiiiiiiiie et 76

35.1 L LT] 1] (o] o= 78

3.6 BCD t0 7-SEOMENE DECOUETecvverieieieiteste et ete st e e steste e e e e et e besteste s e eseeseesbesbeaseateeneeneeseesaeseeseentenneeneeseens 78
3.7 VHDL for Combinational CIFCUISccvrviriririrreiisiseise s 80
3.7.1 Structural BCD t0 7-SegMENt DECOUEN.........couiiuiiiieiieiieieie ettt sttt sbe e sne e 81
3.7.2 Dataflow BCD t0 7-SegMENE DECOUETeiviiiiiiieiiiieite sttt sttt sttt sae bbb b be e 85
3.7.3 Behavioral BCD t0 7-SEgMENT DECOUETcouiiuiriiriieiieieeie ettt ettt sbe bbb 85
3.8 SUMMAIY CRECKIIST. ...ttt bbbt e b e b e e bt bt bt e s e et e besbesbesaeeneennens 87
RS I o 0] o] [1 SO SO U URTURUR 88
Chapter 4 Standard Combinational COmMPONENTS...........ccccccveiieieiieie e 101
4.1 Signal Naming CONVENTIONScuciveiiiiiiieitraeeeee e st e sesteses e e e sae st e testeateaseeseeseestesbesaeateaseaneeseesesseseessesseans 102
O o [0 [T PSS TE TSP UR ST PE VRS PTR PPN 102
421 FUIT AGAET ...t E ettt e r et b e nen e 102
4.2.2 o] o] F=R o 14 YA o o L] S 104
4.2.3 Bl 0% 14 YA [0T0] =T 1= Uo7 Ao (o[- RSP 105
4.3 Two’s Complement BiNary NUMDEISccoiiiiireieicse et s te e e e s eneeseenresneens 106
U o] 1 T (o] SRR PP 108
4.5 Adder-Subtractor COMDINALION.iiiriiieie ettt sttt e e et sbeseeeneenee s 110
4.6 AFTNMELIC LOGIC UNIT....oiiiiiiiiiiitiie ettt bbbttt b bbb r et nb e 112
B 1= oo o L OSSO P PR 117
O 1 [oTo o [T TSSO UP PRSP 119
4.8.1 Bl 104 VA = 4ot o [T USSR 120
e B\ [T o] (=37 SO 120
4.9.1 * Using Multiplexers to Implement @ FUNCHIONccvcieiiiiie et 123
410 TH-SEALE BUFTET ..ottt 123
L R 0 1 0 L= Lo O TP U POV PP OPRTRUPRPPRRTPR 125
A.L2 0 SRITLEE .o E Rt R R 128
O R = T 14 (1 IS 111 -1 USRS TP 130
413 F IMUITIPIIET .ot b bbb bbb bbb bbbt b bbbt b et nn 130
414 SUMMAEY CRECKIIST.viiiiiiteite sttt bbb st bbbt bt b et b 132
LT (o] o] (=T 43RS P PR 133
Chapter 5 * Implementation TeChNOIOGIEScc.coiiiiiieieiie e 145
LT R o 013 o L 413 i (ot 4 o o SR 146
5.2 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).......ccooviriiiiniiiiniesceseecseeee s 147
5.3 CIMOS LOGIC. c.ttuteueetiteiettst ettt ettt stttk bbbt bbb bbb bbbt b bbb bbb et 148
LR O 1V (@ 1S O [o1 U 3SR 149
54.1 (081 (@ N 01V ¢ =] PSPPSR 149
5.4.2 CIMOS NAIND QATE.....eiuteiteeiteeitte sttt ettt et te e e sbe e s beesbeesbeasbeeaeesbeeabeesbeesbe st eesbeesbeenbeesbeenbeaneeaneeseee e 150
543 CIMIOS AND QATE......eeiiteiieeitee sttt ettt ettt ettt et e s be e sbe e et e st e eaeesbe e bt e st e esbe et e e sbeesbe e beenbeenbeaneeeneeneee e 151
5.44 CMOS NOR QN0 OR GALESveuiiiiiiirieieisieieese ettt b ettt b et n et n et 153
5.4.5 TEANSMISSION GALEveveeiiireeeieire ettt ettt r et r et r et b e b er e nr e nn s 153
5.4.6 2-INput MUltipleXer CMOS CIICUIL........vcviiieiie it se ettt e e et e e ra e teesaeenteenreeneeens 153
5.4.7 CMOS XOR aNd XNOR GaLES......vcveririieirieieiisiereesies ettt rar e sn ettt b e s e b b ne b e srenes 155
5.5 ANAlYSIS OFf CIMOS CHICUILSeevieiieeitecie ettt te et e e s te e te st esae e sae e s be e teesbeesaessaesteesreesteenseenseenseans 156
5.6 Using ROMS to IMplement & FUNCLIONoiiiiiiiieee bbb 157
5.7 Using PLAS to Implement & FUNCLIONcoviiiiiiiiiee e 159
5.8 Using PALS to IMplement & FUNCLIONouiiiiiiiiiiiic e 163
5.9 Complex Programmable LogiC DeVICe (CPLD)ccooiiiiiiiriiieinieeeie sttt 165
5.10 Field Programmable Gate Array (FPGA) ..ottt 167
511 SUMMAIY CRECKIIST... ..ottt bbbttt b ettt bbb 168
ST (0] o] (<] 0 LT TSSO T TSP 168

Chapter 6 Latches and FHP-FIOPS ..o s 175

6.1 BiStADIE EIBIMENLottt bbbttt b e bbb bt b bt s e et et nheebenreeneas 176
8.2 SRILALCK ...ttt bbb £ b e bR £ bR e b bt e bRt b bbbt e 177
6.3 SR LAtCh WIth BNADIE ..ot e b ettt sbe st b eneas 179
8.4 D LALCKN ..t 180
6.5 D Latch With ENADIEcooiiiiicc s 181
8.6 CIOCK ...ttt 182
T A B 0 VT o (o] oSSR 183
6.7.1 * Alternative SMAllEr CIrCUIT........oov s 184
6.8 D FHP-FIOP With ENADIEcoeoeieeeeee ettt n e e e rentesneene e e enes 185
6.9 ASYNCNIONOUS TNPULS ...ttt ettt e bbbt b e et e s b se e e b e sb e bt e b e e ne e beebesbesbeene e e ennas 186
6.10 DeSCription OF & FIIP-FIOPcoeiiie e bbbt b et st 187
6.10.1 CharaCteriStiC TaDIE ... bbbttt bbb 187
6.10.2 CharacCteriStic EQUALTION........couiiiii i ettt e bbbttt se et sbesbe s 187
B.10.3 STALE DIAGIAM ...ttt ettt b b e bbbt b e e Rt e Rt e e e bt bt bt b e Rt e R e e b et nreebe e nee e 188
6.10.4 EXCItALION TADIE...c.eiieiitiiieee et bttt b e bt b ae e e et et sbe st e e neene e 188

B. 11 THMING ISSUEBS ..uteteeueesietestestesteeteestestestestestesteeteeseeseeseestesbeateeseaseaseeneesteseeaeeaseanseseesseseeneeseeabeaneeseenseneeneenrenrnnneas 188
6.12 Example: Car Security SYSIEM — VEISION 2.......cccviviiieiieeieieeseseseseseesseseeste e sressesseesaeseessesaesressessesnessesnses 189
6.13 VHDL for Latches and FIP-FIOPS........ccoviiiieieicc et st ene e enns 190
6.13.1 Implied MemOrY EIBMENT.......ciiiiice et re e e e s e e nnesreeneens 190
6.13.2 VHDL Code for a D Latch With ENADIEcccoeiiiiiiieeee s 191
6.13.3 VHDL Code fOr @ D FHP-FIOP ..c.eoiiiiiiiiieiee e et 191
6.13.4 VHDL Code for a D Flip-Flop with Enable and Asynchronous Set and Clearccocvoviieiinenne 194
B.14 F FLIP-FIOP TYPES -ttt e ettt bbbt et bbbt bt e bt e R e e et sbeeb e e beebe e bt e me e besbesbesbeene e e ennas 195
B.14.1 SR FIIP-FIOP ...ttt ettt b bbbt £ bbbt bbbkt b 195
B.14.2 JK FIIP-FIOP .ttt bbbt bbbt bbbttt n bbb 196
B.14.3 T FIIP-FIOP .tttk bbb e bR bbb bbb e bbb 197
B.15 SUMMAIY ChECKIIST......cuiiiieie ettt se e et e s te s e e st e e seeseereene e eesrentesreeneeneenees 198
B.16 PrODIEMS ...t 199
Chapter 7 SeqUeNTIal CIrCUITSiiiiiiiiiiee e 201
7.1 Finite-State-Maching (FSIM) MOTEIScoiiiiiiiiiiie et 202
7.2 STALE DIAGIAMS ...tttk b et b e bbbt bt bbb e bt e b e eh e e b et ekt eb et ek e ee e bt eb e nb e b b ebenb e ebenb e b nnes 204
7.3 Analysis OF SEQUENTIAI CIFCUITS........ciiiiiiiieiiie e ettt eb e eb e e ene e 207
7.3.1 (o] e AT T =T [0 L4 o] o ST 207
7.3.2 N Lo Sy = (=3 o [0 Lo) o OSSP 208
7.3.3 INEXE-SEALE TADIE ...ttt 208
7.3.4 (@ TNy o100 o [0 L4 T o 209
7.3.5 OUIPUE TADIE ... r ettt 209
7.3.6 Y=L (=J0) T-To [L34S 209
7.3.7 Example: Analysis 0f @ MOOIE FSMoiiiiiiiiiiii e 210
7.3.8 Example: Analysis 0f @ MealY FSMcooiiiiiiicee e 212
7.4 Synthesis of SEQUENTIAT CIICUILSc.oiviiiiiiiitee bbbt b e eb e e 214
7.4.1 STALE DHAGIAM ...ttt ettt bbbt b bbbt b e bbb b b e bbbt bbbt b et e bt bbbt b r et 214
7.4.2 NEXE-SEALE TADIE ... ettt ettt bbb et et sbesbesbeere et eneas 215
7.4.3 IMPIEMENLALION TADIEiiiieeiee e et sr et e e et besreere e e enes 217
7.4.4 Excitation Equation and NeXt-State CiFCUILccccviiveireieiiiiie st sre s 218
7.4.5 Output Table anNd EQUALIONcceiiiieieice st e ettt e e e e st e e neereeneeseeseeseesreareenes 218
7.4.6 FSIM CIICUIL ...ttt e et R bt r et n bt nn et n e 218
7.4.7 Examples: Synthesis 0f IMO0IE FSIVIS........coviiciiiic sttt sn et sresreens 218
7.4.8 Example: Synthesis 0f @ Mealy FSIM.........covoiiiiiiii e sre s 224
7.5 Unused State Encodings and the ENCOdINg OF StAES........cccirviiiiiiiiiiieiieeseeese e 226
7.6 Example: Car Security SYSIEM — VEISION 3.....c.ciiiiiiiiiieiiierieie sttt ettt eb e ene s 228
7.7 VHDL fOr SEQUENTIAI CIFCUILSveiiiiitiictiiteieees ettt et eb e b sn e en e 229

7.8 * Optimization for SEqUENtIAl CIrCUILSccveiiiii i e ne e enes 235

7.8.1 STALE REAUCTION ...t n et 235
7.8.2 S = L= = 70 1o 113 o S 236
7.8.3 ChOICE OF FLIP-FIOPS ...ttt bbbttt e bbbt b et b et e e ee st st besbeenes 237
7.9 SUMMAIY CRECKIIST. ...ttt et e bbbt e s se e b e s b e bt et e et et sbesbesbeene e e ennas 239
A KO o (0] o] 1= o TSSOSO TP URO VPPN 240
Chapter 8 Standard Sequential COMPONENTScceiviiieiiier e 260
TS A (-0 1) (1 £ S 261
ST 1) =T | 1] (=] S 263
8.2.1 Serial-to-Parallel Shift REGISIEcviiiiii e 263
8.2.2 Serial-to-Parallel and Parallel-to-Serial Shift REGISErcccoiiiiiiiiiere e 265
R T O 10 1 (< £ TSSO P PRSP 267
8.3.1 BiINAIY UDP COUNTET ...ttt bbbt b bbbttt bttt et 268
8.3.2 BiNary UpP-DOWN COUNTETeuiiiitiiiiitiiteieiit bbbt bbbt b et sbe et 270
8.3.3 Binary Up-Down Counter with Parallel LOAdccccouiiiiiiiiiiiicicseseeee e 272
8.34 BCD UP COUNLEE ..ttt sttt sttt stttk et ek e et e st e et e e e s e e e nbe e s bt e e snbeeanbeennbee s 273
8.3.5 BCD UP-DOWN COUNTEE ..ttt sttt st sttt sttt e et esbb e e s rb e e st e e nnbeennnee s 274
B (- o 1) (1 g |1 276
8.5 StatiC RANAOM ACCESS IMEBIMOIYcuiiviiieeieeieiteste st st s e ste et e e e e st e te s te e teeseess e e et e teseesbestesaeesee e enteseesteaneeneeses 280
I I T (o - g1V =Ty 4o} TSR 284
8.6.1 MOTE MEMOIY LOCALIONScueivieiiitiiteiete sttt bbb bbbt bbbt b bt ann 284
8.8.2 WIEr BIt WILh ...t 284
8.7 SUMMAIY CRECKIIST.......eiuieiiiitit itttk et bbbttt 287
IR B o 0] o] < 1RSSR 287
Chapter 9 Datapathscc.ooiiiiiccecce e e 289
9.1 Designing Dedicated DatapathS........ccvciieiiiieiie ittt nne e 291
911 SEIECTING REGISLETS. ... vttt bbbt b ettt et b ettt nb s 294
9.12 Selecting FUNCLIONAT UNIES.......coiiiiiiiiiie bbbttt e 295
9.13 Data Transfer METNOUSoiiiiiiec bbbt 296
9.14 Generating STAtUS STGNAISovivirieiiee bbbt 297
9.2 UsSiNg Dedicated DAtaPatiS.civiiiiriiiitirieiiite ettt b bbb 298
9.3 Examples of Dedicated Datapatisc.ciiiiiiriiiiiieie e 298
9.31 SIMPIE IF-THEN-ELSE.......ooi ittt 299
9.3.2 L@ oTH 011 T T o TSRS 300
9.33 SUMMALION OF NAOWN 10 Lot 302
9.34 FACTOTTAL ...t 303
9.35 COUNTE ZBIO-OMNE ...ttt bbb bbb bbb e a e s b e e b s 305
LS 1T g 1o - B U o L1 USRS 307
9.5 USiNg General DAtapathsccoiiiiiiii e 308
9.6 A More Complex General Datapathccciiiiiiiiiiie e e 310
0.7 THMING ISSUBS ...ttt ettt ettt bt bt b bbb bt bbbt bbb bbbt b s bbbt bbb bbb et be e 314
0.8 WHDL TOF DAAPALNS.cveitiietiteeest ekt b bbbttt bbb bbbt 316
9.8.1 Dedicated DAtAPAtN.cciviiiiiie bbb 316
9.8.2 GeNEral DAtAPALNec e re e te e nteereenrenree e 317
9.9 SUMIMANY ChECKIIST......ccuiiiie et e e e esae et e et e e st e e seesraesteesreesteenteereenseans 322
LT O (6] o] (<] 0 L TSSO T TSP PP PR PR 322
Chapter 10 CONTrol UNITS ...c.ooiiiiiiiiieeeee et 328
10.1 Constructing the CONIOl UNIT..........ccoiiiiiiiiieieiie sttt et et sr e ebe e 330
10.2 EXAMPIES .ottt b et b etk b e bbb R R b bRt h ek h bt bR e Rt h b btk bt et nnes 330

72 R o 1T ¢ (o T 0 330

10.2.2 SUMMALION OF L 10 N oottt bbb bbbttt b ettt 334
10.3 Generating StatUS SIGNAIScveveriieieiese ettt eene s e et e e e e e re et e e nrenrenreene e e enren 340
L0.4 THMING ISSUBS ...t tteteeuteieeste sttt ettt ettt et be bt et e e ea e e beebeebe e bt eb e e Reem e e b e eb e e Eeebeeb £ eheeR e e ebeebeeEeebees e e b enbenbeebesneaneas 342
10.5 StANAIONE CONTIOIIEIS. ...ttt bbbt e b et b e b e b e eb e e b e et et sbesbesbeene e e ennas 348

10.5.1 ROEALING LIGNES ..ottt bttt b e bbbt b e bt e e et e nbesbe et e e neenee e 348

10.5.2 PS/2 Keyboard CONIOIIET..........co.oiiiiiie ettt r bbbt 352

10.5.3 VGA MONITOF CONIOIETeiii ettt e bbbt be bt 356
10.6 * ASM Charts and State ACLION TADIESceoiiiiiiiiieie et sbesbe e eneas 367

L0.8.1 ASIM ChaAS .ottt b et b ettt b etk b et b e s b et ek e bbbt b e bt be et r bt ren e 367

10.6.2 State ACHION TADIES.....c.iiiiiiiie bbbt b ettt e bt nr s 370
10.7 VHDL FOr CONIOL UNIES....oviiiitiiiiietiiteeese ettt b ettt b bttt eb et e neans 371
10.8 SUMMAIY CHECKIIST......c.viiiiiieii ettt ettt et e e e e st e e et e ntesreereene e eesresreareeneeneenes 372
ORI o 0] o] [=] 11 SO OO TP PSP URPREPRPRPIPRPR 374

Chapter 11 Dedicated MICIOPIOCESSOISc.veviveviiiriirieaiieieeseeee st ste st sbe et eeeesresre s b b nreas 378
11.1 Manual Construction of a Dedicated MiCIOPIOCESSOLcvitirieiiiierieriite ettt ere e 380
L1.2 EXAIMPIES .ottt bt b e bbb bt E s R b E Rt R R b e bR bt bt ne bt b e r e b r et er e 384

11.2.1 GreateSt COMMON DIVISOEcviiuiiiiiiiiieitieieeiee e sttt eesee e tesbe b sbesbeese e e et e tesbesbesbeeseeseenbeseesneanes 384

11.2.2 SUMMING INPUE NUMDEIS ...ttt bbb bbbttt bbbt ebn 390

11.2.3 High-LOW GUESSING GAITIEcutiuiieiiiteiietisie ettt ettt sttt ettt et b bbb bbbt sb bbb bbbt 395

11.2.4 Finding Largest NUMDETcciiiiicieiee ettt et sbeera e e enae e e s e beseesreeneeneeses 401
11.3 VHDL for DediCated MiCIOPIOCESSOIScuvivereerretestesresreesteeessestessessesseasseseessessessessessesssnsesssessessessessessesseesees 406

1131 FSM D IMOUEL ...ttt ettt sttt 406

11,32 FSIMD MOGEL ...ttt bbbttt s et bbb s bbb 411

11.3.3 BehaVioral IMOUEIc.oviiiiiiiiiee bbbttt bbbt 413
W g U VA O 1o T OSSR 414
T o (0] o] 1= 0 TS S TP UPTPRPRROS 414

Chapter 12 General-Purpose MICrOPIOCESSOKSccueiveireeieeiieiieeresteesteeeeseesseeseesseesseseesseeses 422
12,1 OVErview OF the CPU DESIQN ...vcviiiiiie ettt ettt et te e e ae s e s e e ste e teesaesneeansaesaesraesneesreenreeneas 423
12.2 The EC-1 General-Purp0Se IMICIOPIOCESSONc.veiviiureireestiesteeiesstesseesieesseesseesseasseassesssessessseessessssssesssesssesnees 424

1221 INSEFUCTION SEL.....eititiitiitieii ettt sttt b ettt b e et b ekt b bt be e b et e bt nb e eb e e bt bt bt e bt e nb e st e e e nbenbesneens 424

I T L o | 1 SO 425

I B O 211 (o] B T ORI 426

12.2.4 COMPIELE CIICUIL.....viueieitieiitirieiet stttk bbbt b bbbttt nb et nbns 429

12.2.5 SAMPIE PrOGIAM....ceiiiiiiitiieiietiiee ettt bbb bbbt bbbtk ettt b ettt b et 430

I T 11101 AT o PSSR 432

12.2.7 Hardware IMpIEMENTATIONcoveiiiiiiiiie bbb bbb 432
12.3 The EC-2 General-Purpose MICIOPIOCESSONc.viuirreriitirteriatesteeeteste et st e et st et sre et abe et b e ebe b nneseebe e 433

12.3. 1 INSEFUCTION SEL......itiiteitieiiei ettt sttt bbb b et e e ne e bt e bt bt e b e e bt e bt e s b e b e besbeeb e e neenee e 433

I T B T L o | 1 SRR 434

12.3.3 CONEIOL UNIT ..ot ekt e e bbbt bttt e b bt b e b e e et b sbe et e e neenee e 435

I T S O 1] U] (= O 1 (o U | USSP 438

R T ST Y-V 11 o] (=T (T [o ST 439

12.3.6 Hardware IMpIEMENTAIONcc.oiiiiiiiiie bbbt e e s 441
12.4 VHDL for General-PurpoSe MICIOPIOCESSONScuervereetirierieterteeatesteneetesteseete st et sre et b e ebesbe e ebesbe e e ere e 442

12.4.1 SETUCIUIAL FSIMIHD ..ottt ettt sttt b et et e bt ne st et e neenns 442

12.4.2 BehaVIOIal FSIMDooiiiiicieice sttt sttt et s e e et et et et e e st e st e e nbenreereenes 449
12.5 SUMMANY CRECKIIST.. ..ottt bbb bbb bbbt bbbt bbb bbb e ens 452
02 T o (0] o] 1= 0 TSSOSO UPNPRTRSS 452

Appendix A Schematic Entry TUtOrial 1ccooiiiiiiiiice e 456

Y R €1 1T TS =T (o (OSSO PP 456
A1l Preparing a Folder fOr the PrOJECT.........coi i bbb 456
AL2 SEArtING MAXFPIUS ..ottt bbbt bbbttt s e e e et b ebe e e 456
A.L13 Starting the GraphiC EQITOr........cuciviieiie s st sne e se e neneesreene e 457

A2 USING the GraphiC EAITOrccviiirciece st sr e reene e s e e e eeneenrenneens 458
AN R T - 11T oo T I o TSP 458
A2.2 INSErting LOGIC SYMBOISciiiiiiecrciee ettt e e e et e e nneereene e 458
A.2.3 Selecting, Moving, Copying, and Deleting Logic SYmbOIS.........c.cccoceviiieiieiininieeeee e 459
A2.4 Making and Naming CONNECLIONScceieieriieaeeieeiesie e e steste s e esee e saeseesresse s e esae e ensesaesresreseesrensens 460
A.25 Selecting, Moving and Deleting ConNection LINEScccuiiririiriiie s 462

A.3 Specifying the Top-LeVel File and PrOJECT.........ccoui ittt e 462
A3.1 Saving the SChEMALIC DIAWINGcuiiiiiiie ettt se b bbbt b e se b e sbe e e 462
A.3.2 SPECITYING the PrOJECL.c..i ittt bbbt b et e e et b be e e 462

A4 Synthesis for Functional SIMUIALIONccoiiiii e e 462

AL CIFCUIT STMUIBTION ...ttt ettt b bttt e e b ek bt bt b e e bt e seeeb e e bt e be e s e e b e besbeebeane e 463
AB5.1 Selecting INPUL TESE SIGNALSveviieieiisese et st re e s e e e s e e e aesresreeneens 463
A5.2 Customizing the Waveform EQITOr..........cccoviiiieiieicrcse sttt sne e e 464
A5.3 Assigning Values to the INPUL SIGNAISccveviiiieiire e e 465
A5.4 Saving the WaVETOIM Fleccviv ittt n e see s reene e 465
ABL5 Starting the SIMUIALOTc.eieiiccce ettt re et e e e e nesreereeneens 466

A.6 Creating and Using the LOGIC SYMDOL.......cc.oiiiiiiiee et 467

Appendix B VHDL ENtry TULOFIAl 2.......ocooiiee s 468

2 I €T 4 [TR 7= T T PR 468
B.1.1 Preparing a Folder fOr the PrOJECE.......cociiiiiie ettt eneas 468
B.1.2 Starting MAXAHPIUS [l ..ottt sttt e et et e neenaera e e e e seentenreeneas 468
2 00 G T 1 (7= [T K= Y d (] T OSSR 469
B.1.4 Editing the VHDL SOUICE COUEecviuieieieiesie st sie st e ettt sttt sa ettt e e stesraeneeseesaestesreaneas 470

B.2 Synthesis for FUNCEIONAl SIMUIALIONcoiiiiiiieee e 470

B.3 CIICUIT STMUIBLION. ...ttt ettt b ettt ettt e es e st et e s be et e e beene e e et e sbesbesbeene e 471
B.3.1 Selecting INPUL TESE SIGNALSc.ooviiiiiitiiciiieie bbb 471
B.3.2 Customizing the Waveform EditOrcoiiiiiiiiiiiiiei e 473
B.3.3 Assigning Values to the INPUt SIGNAIScviiiiiiiiiic e 473
B.3.4 Saving the Waveform Fil ..o 474
B.3.5 Starting the SIMUIALOTcciiiie ittt e et e st et e besaeere e e e besaestenreeneas 474

Appendix C UP2 Programming TUEOFIal 3...........cccoiiiiiiiiiieccee s 476

C.1 GELLING STAMEUeieeectieeet et bbbt b e bbb bt bbbt e bt s b e bt b e nb e e ebenb e et e st e ebennes 476
C.1.1 Preparing a Folder fOr the PrOJECT.........coiiiiiii e 476
C.1.2 CreatiNg @ PrOJECEc.eiuiieiietiite etttk bbb bbbtk bbbt 477
C.1.3 ViIeWiNG the SOUICE FlEoviiiieiiiiieec bbb bbb 477

C.2 Synthesis for Programming the PLDcociiiiiiiiiiie et 477

C.3 CHICUIT STMUIATION. ...ttt et r et ar et r e nr e e r e nn e enenn e erennes 478

(O A U T g To g Lol o oo o] - Vg o 1 o OSSR 480
C.4.1 Selecting the Target DEVICEciuiiiecie ettt e st et et e e s e s raesteestesneesraenneenneennas 480
C.4.2 Maping the I/O Pins with the FIOOrplan EQItOr..........cccoveiieiiie et 481

C.5 Fitting the Netlist and PiNS 10 the PLDccveiiiiicc ettt et 483

C.6 HAITUWAIE SELUDeveeviiteietiit ettt bbbt bbbt h bbbt bbb bbbt e b bt n bt bbbt eb bbb 484
C.6.1 Installing the BYEBIASIEr DIIVETccoiiiieiiiiiieie sttt 484
C.6.2 JUMPET SEHINGS. ...ttt etttk et bbbt bbbt bbbt bbb ettt b e b et bt 484
C.6.3 Hardware CONNECLIONS.cueiiiiieie sttt ettt ee ettt re e s e s e e e besbesbeeteeneer e et e beseeereeseeneenes 484

C.7 Programming the PLDcciiiiiiiiieiie ettt b et sb e et b bbbt et e e e ebenb e et e st e ebennes 485

C.8 TEStING the HAMGWAE. ..ottt bbb bbb bbbttt bbb e e 486

C.9 MAXT000S EPM7128SLCB84-7 SUMMAIY......ccviueuirirtereearesereasesessasesessesesessesesessesesessesessesesessesesessesesesseseseseans 487

C.9.1 JTAG JUMPEE SEELINGS ..eevveueeieriesiesieeteeeeie e ste e ste s e e e e e e seessestestesseeseaseeaessestesaeeseeseenseseensenseseessanneeneeses 488
C.9.2 Prototyping RESOUICES FOI USEiiiiiiiiii e e et e ettt st anaen et sresneeneenee s 488
C.9.3 GENEral PinN ASSIGNIMENTS.....ciiiiieieiteeeseeree e e e ste e e eree e eaeseesresreaneesee e e teseessesteaneereesensesresreareeneeses 488
C.9.4 TWO PUShDULLON SWITCRES.ottt et bbbttt se bbb s 489
C.9.5 16 DIP SWILCNES 1.vitiiiitiiiiietiiieisti ettt ettt n bbbt et re st n et 489
C.9.6 LB LEDS ..t iiiicieiietcte ettt sttt et bbbt bt Ee bt E e bt Ee bt Re bt re et b neane 489
C.O.7 T-SEOMENE LEDS..... ..ottt ettt ettt b e b e e b e eb e ae e e ae e ebe e bt et e e st e sseesreesaeesneennas 490
(O IR O [0 T OSSOSO 490
C.10 FLEX10K EPF10KT70RC240-4 SUMIMAIYcvevitiiereatisiesiasessessasessessesessessessssessessssessessessssessessssessessssessessases 490
C.10.1 JTAG JUMPEE SEELINGS ..vivveueerieiistesiesteseaseesaesees e saessestesseaseeseesseseessessessessaeseessessessessesseaseessessessessensesneenes 490
C.10.2 Prototyping RESOUICES FOI USEciiiiiiiieeieiiese e e sttt sttt teanaena e e aesresnenneeneees 490
C.10.3 TWO PUShDULLON SWILCRES.....cviiiiiiiiiicie ettt et et 491
C.10.4 B DIP SWILCNES ..oteieieiie ettt ettt bbbttt b e bbb et 491
C.L10.5 7-SEUMENT LEDS........iiiiiieitieiee e sie st ste st ee et et et e ste e e e saesseesteesteesaeeseeaneeaneeaseenteesseeseenneesreesneenneenns 491
(O3 T O (o o OO OO SO TSPV OUR P PR 492
O A T b7 o) SO SOPPSP 492
(O T Y €7 = OSSOSO 492
APPENdiX D VHDL SUMMAIY ..ottt sttt te e sraestaaneesreenneennens 493
D.1 BaSiC LangUage EIBMENTS........ccvciiiiiii ettt sttt e e e e besbe st e e teene e e et e besrenrenneens 493
[200 R O 4 11 1 =T PP TP PP PR 493

D 20 A [(=101 1) =T OSSOSO 493
D.1.3 DALA ODJECLS ...eveeeiiitieetieteieetest etttk et b bbbt bt bbb bbbt bbb bt 493
D.L1i4 Data TYPES ..ttt e 493
D.1.5 DaAta OPEIAIOIS .. .cuiiviiiieeieiiet ettt e e e r Rt bbbt r e b nr e r e 496
D.1.6 L]V I I PSP TPPP 497
D.1.7 ARCHITECTURE ...ttt e st e e s s e e e te e e st e e e beeasbe e e beeanbee e teeenbeeesteaenseeans 497
D.1.8 GENERICottt et e et et e e et e e te e et e e e be e e bt e e be e et e e e ta e e be e e taeeabeeenraeenrre e 498
D.1.9 PACKAGE ..ottt b et R bR bRt R et R Rt b et bttt n b s 500
D.2 Dataflow Model CONCUIMTENT SEAIEMENTS......ciiieirieietirieiee ettt st sb et e see e sbeseeeerens 501
D.2.1 Concurrent Signal ASSIGNIMENTcviieiieiiiie s se et se e st e s e e e e e e testesresteaseeseeseesresresneereenes 501
D.2.2 Conditional Signal ASSIGNMENTccviiiieiiieie st se et e s et e e e tesbesresressrestesneeneenes 501
D.2.3 Selected Signal ASSIGNMENT.......cveiviieieieiese e et e ettt e et e e e e rae e e b e seestestesaestesseeseeseenseseeseestesneaneas 502
D.2.4 Dataflow Model EXAMPIE......cciiiiiiiccie ettt ettt te e tenneene e nes 502
D.3 Behavioral Model Sequential StAtEMENTScoviiiiiiiieiie et 503
DR T R = = {0 0 1 SRR SPSP 503
D.3.2 Sequential Signal ASSIGNIMENTcoiiiiitiiiiitiiei bbbt 503
D.3.3 Variahle ASSIGNIMENTc.eiiiiitiieiiet bbbttt bbbt b bbbt 503
DG 3 S V1V AN [RSOSSN 504
D.3.5 IFETHEN ELSE... ..ottt ettt ettt s bt s st et b et et e s e ane e 504
D318 CASE ..ottt bR R bR R bR R bR bRt be bR bttt rene e 504

3 26 T A N 1 OO OPS TP S P TSP 505
D.3.8 FOR iR R R R R R R R Rt Rt Re bR bttt e 505
D.3.9 WHILE .o bbb bbbt Rt R bbbt r et ne e 505
D2 1 0T 10 1 L OSSPSR 506
020G T O = I OSSPSR 506
DR T A N G OSSPSR 506
G 1 T o U N[0 I OSSR 506
D.3.14 PROGCEDURE.......cciititittititieti ettt ettt ettt sttt b e b st et e s e st e s e s et e e e be st e s e b e et e s e b e n b e s eseate st eneaneee 507
D.3.15 Behavioral Model EXAMPIE ..ot 508
D.4 Structural MOGEI STAEEMENTS.eii ettt ettt ettt et et seesbesbe bt e beeseeseenbesbesbesbeane e 508
D.41 COMPONENT DECIAIALIONc.ciuiiiiiiieiiiiiteieiesiesie sttt st sttt sttt st ene s 509
D42 PORT IMARP .ottt ettt bbbt bbbt b skt b et b bbb sttt ben b et n et 509
D43 OPEN ..ottt b R bR bR R bR R bR R Rt R bRt be bt Re bbbt e ne e 510
D44 GENERATE ...ttt ettt b bbbt b et s bt bRt bbbttt ettt n et 510
D.4.5 Structural Model EXAMPIEcociiiiece sttt ra et et saesre e eneas 510

11

D.5 CONVEISION ROULINES......cccveiiitiiiiriiiitieeetee st eeeette s st essebee s st e s e sbee s st essabesssbesssbesesbessabeeesbeeesseessbassabeessbbessnbesssbessnrenas
D.5.1 CONV_INTEGER() c.iivititiieistiitet sttt sttt sttt sttt sttt e bbb e st et b et et ebe st et ese b e s atesbe s eneane
D.5.2 CONV_STD_LOGIC VECTOR(,) . ceiireeterrireareirereiresteestesseessessesessessessssessassssesssssssesssssssessssessessssessenns

12

Digital Logic and Microprocessor Design with VHDL Preface

Preface

This book is about the digital logic design of microprocessors. It is intended to provide both an understanding of
the basic principles of digital logic design, and how these fundamental principles are applied in the building of
complex microprocessor circuits using current technologies. Although the basic principles of digital logic design
have not changed, the design process, and the implementation of the circuits have changed. With the advances in
fully integrated modern computer aided design (CAD) tools for logic synthesis, simulation, and the implementation
of circuits in programmable logic devices (PLDs) such as field programmable gate arrays (FPGAS), it is now
possible to design and implement complex digital circuits very easily and quickly.

Many excellent books on digital logic design have followed the traditional approach of introducing the basic
principles and theories of logic design, and the building of separate combinational and sequential components.
However, students are left to wonder about the purpose of these individual components, and how they are used in
the building of microprocessors — the ultimate in digital circuits. One primary goal of this book is to fill in this gap
by going beyond the logic principles, and the building of individual components. The use of these principles and the
individual components are combined together to create datapaths and control units, and finally the building of real
dedicated custom microprocessors and general-purpose microprocessors.

Previous logic design and implementation techniques mainly focus on the logic gate level. At this low level, it is
difficult to discuss larger and more complex circuits beyond the standard combinational and sequential circuits.
However, with the introduction of the register-transfer technique for designing datapaths, and the concept of a finite-
state machine for control units, we can easily implement an arbitrary algorithm as a dedicated microprocessor in
hardware. The construction of a general-purpose microprocessor then comes naturally as a generalization of a
dedicated microprocessor.

With the provided CAD tool, and the optional FPGA hardware development kit, students can actually
implement these microprocessor circuits, and see them execute, both in software simulation, and in hardware. The
book contains many interesting examples with complete circuit schematic diagrams, and VHDL codes for both
simulation and implementation in hardware. With the hands-on exercises, the student will learn not only the
principles of digital logic design, but also in practice, how circuits are implemented using current technologies.

To actually see your own microprocessor comes to life in real hardware is an exciting experience. Hopefully,
this will help the students to not only remember what they have learned, but will also get them interested in the
world of digital circuit design.

Advanced and Historical Topics

Sections that are designated with an asterisk (*) are either advanced topics, or topics for a historical
perspective. These sections may be skipped without any loss of continuity in learning how to design a
microprocessor.

Summary Checklist

There is a chapter summary checklist at the end of each chapter. These checklists provide a quick way for
students to evaluate whether they have understood the materials presented in the chapter. The items in the checklists
are divided into two categories. The first set of items deal with new concepts, ideas, and definitions, while the
second set deals with practical how to do something types.

Design of Circuits Using VHDL

Although this book provides coverage on VHDL for all the circuits, it can be omitted entirely for the
understanding and designing of digital circuits. For an introductory course in digital logic design, learning the basic
principles is more important than learning how to use a hardware description language. In fact, instructors may find
that students may get lost in learning the principles while trying to learn the language at the same time. With this in
mind, the VHDL code in the text is totally independent of the presentation of each topic, and may be skipped
without any loss of continuity.

13

Digital Logic and Microprocessor Design with VHDL Preface

On the other hand, by studying the VHDL codes, the student can not only learn the use of a hardware
description language, but also learn how digital circuits can be designed automatically using a synthesizer. This
book provides a basic introduction to VHDL, and uses the learn-by-examples approach. In writing VHDL code at
the dataflow and behavioral levels, the student will see the power and usefulness of a state-of-the-art CAD synthesis
tool.

Using this Book

This book can be used in either an introductory, or a more advanced course in digital logic design. For an
introductory course with no previous background in logic, Chapters 1 to 4 are intended to provide the fundamental
concepts in designing combinational circuits, and Chapters 6 to 8 cover the basic sequential circuits. Chapters 9 to
12 on microprocessor design can be introduced and covered lightly. For an advanced course where students already
have an exposure to logic gates and simple digital circuits, Chapters 1 to 4 will serve as a review. The focus should
be on the register-transfer design of datapaths and control units, and the building of dedicated and general-purpose
microprocessors as covered in Chapters 9 to 12. A lab component should complement the course where students can
have a hands-on experience in implementing the circuits presented using the included CAD software, and the
optional development kit. A brief summary of the topics covered in each chapter follows.

Chapter 1 — Designing a Microprocessor gives an overview of the various components of a microprocessor
circuit, and the different abstraction levels in which a circuit can be designed.

Chapter 2 — Digital Circuits provides the basic principles and theories for designing digital logic circuits by
introducing the use of truth tables and Boolean algebra, and how the theories get translated into logic gates, and
circuit diagrams. A brief introduction to VHDL is also given.

Chapter 3 — Combinational Circuits shows how combinational circuits are analyzed, synthesized and
reduced.

Chapter 4 — Combinational Components discusses the standard combinational components that are used as
building blocks for larger digital circuits. These components include adder, subtractor, arithmetic logic unit,
decoder, encoder, multiplexer, tri-state buffer, comparator, shifter, and multiplier. In a hierarchical design, these
components will be used to build larger circuits such as the microprocessor.

Chapter 5 — Implementation Technologies digresses a little by looking at how logic gates are implemented at
the transistor level, and the various programmable logic devices available for implementing digital circuits.

Chapter 6 — Latches and Flip-Flops introduces the basic storage elements, specifically, the latch and the flip-
flop.

Chapter 7 — Sequential Circuits shows how sequential circuits in the form of finite-state machines, are
analyzed, and synthesized. This chapter also shows how the operation of sequential circuits can be precisely
described using state diagrams.

Chapter 8 — Sequential Components discusses the standard sequential components that are used as building
blocks for larger digital circuits. These components include register, shift register, counter, register file, and
memory. Similar to the combinational components, these sequential components will be used in a hierarchical
fashion to build larger circuits.

Chapter 9 — Datapaths introduces the register-transfer design methodology, and shows how an arbitrary
algorithm can be performed by a datapath.

Chapter 10 — Control Units shows how a finite-state machine (introduced in Chapter 7) is used to control the
operations of a datapath so that the algorithm can be executed automatically.

Chapter 11 — Dedicated Microprocessors ties the separate datapath and control unit together to form one
coherent circuit — the custom dedicated microprocessor. Several complete dedicated microprocessor examples are
provided.

Chapter 12 — General-Purpose Microprocessors continues on from Chapter 11 to suggest that a general-
purpose microprocessor is really a dedicated microprocessor that is dedicated to only read, decode, and execute
instructions. A simple general-purpose microprocessor is designed and implemented, and programs written in
machine language can be executed on it.

14

Digital Logic and Microprocessor Design with VHDL Preface

Software and Hardware Packages

The newest student edition of Altera’s MAX+Plus Il CAD software is included with this book on the
accompanying CD-ROM. The optional UP2 hardware development kit is available from Altera at a special student
price. An order form for the kit can be obtained from Altera’s website at www.altera.com.

Source files for all the circuit drawings and VHDL codes presented in this book can also be found on the
accompanying CD-ROM.
Website for the Book

The website for this book is located at the following URL:

www.cs.lasierra.edu/~ehwang

The website provides many resources for both faculty and students.

Enoch O. Hwang
Riverside, California

15

Chapter 1

Designing Microprocessors

Control Data
Inputs Microprocessor Inputs
Y
Control Unit
Bl —
— State Output > >
Next- . > >
state Memory Logic Control
Logic Register B'D Slggals
A < <
Status
v Signals
Control Data

Outputs Outputs

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

Being a computer science or electrical engineering student, you probably have assembled a PC before. You may
have gone out to purchase the motherboard, CPU (central processing unit), memory, disk drive, video card, sound
card, and other necessary parts, assembled them together, and have made yourself a state-of-the-art working
computer. But have you ever wondered how the circuits inside those IC (integrated circuit) chips are designed? You
know how the PC works at the system level by installing the operating system and seeing your machine come to life.
But have you thought about how your PC works at the circuit level, how the memory is designed, or how the CPU
circuit is designed?

In this book, I will show you from the ground up, how to design the digital circuits for microprocessors, also
known as CPUs. When we hear the word “microprocessor,” the first thing that probably comes to many of our
minds is the Intel Pentium® CPU, which is found in most PCs. However, there are many more microprocessors that
are not Pentiums, and many more microprocessors that are used in areas other than the PCs.

Microprocessors are the heart of all “smart” devices, whether they be electronic devices or otherwise. Their
smartness comes as a direct result of the decisions and controls that microprocessors make. For example, we usually
do not consider a car to be an electronic device. However, it certainly has many complex, smart electronic systems,
such as the anti-lock brakes and the fuel-injection system. Each of these systems is controlled by a microprocessor.
Yes, even the black, hardened blob that looks like a dried-up and pressed-down piece of gum inside a musical
greeting card is a microprocessor.

There are generally two types of microprocessors: general-purpose microprocessors and dedicated
microprocessors. General-purpose microprocessors, such as the Pentium CPU, can perform different tasks under
the control of software instructions. General-purpose microprocessors are used in all personal computers.

Dedicated microprocessors, also known as application-specific integrated circuits (ASICs), on the other
hand, are designed to perform just one specific task. For example, inside your cell phone, there is a dedicated
microprocessor that controls its entire operation. The embedded microprocessor inside the cell phone does nothing
else but control the operation of the phone. Dedicated microprocessors are, therefore, usually much smaller and not
as complex as general-purpose microprocessors. However, they are used in every smart electronic device, such as
the musical greeting cards, electronic toys, TVs, cell phones, microwave ovens, and anti-lock break systems in your
car. From this short list, I’m sure that you can think of many more devices that have a dedicated microprocessor
inside them. Although the small dedicated microprocessors are not as powerful as the general-purpose
microprocessors, they are being sold and used in a lot more places than the powerful general-purpose
microprocessors that are used in personal computers.

Designing and building microprocessors may sound very complicated, but don’t let that scare you, because it is
not really all that difficult to understand the basic principles of how microprocessors are designed. We are not trying
to design a Pentium microprocessor here, but after you have learned the material presented in this book, you will
have the basic knowledge to understand how it is designed.

This book will show you in an easily understandable approach, starting with the basics and leading you through
to the building of larger components, such as the arithmetic logic unit (ALU), register, datapath, control unit, and
finally to the building of the microprocessor — first dedicated microprocessors, and then general-purpose
microprocessors. Along the way, there will be many sample circuits that you can try out and actually implement in
hardware using the optional Altera UP2 development board. These circuits, forming the various components found
inside a microprocessor, will be combined together at the end to produce real, working microprocessors. Yes, the
exciting part is that at the end, you actually can implement your microprocessor in a real IC, and see that it really
can execute software programs or make lights flash!

1.1 Overview of a Microprocessor

The Von Neumann model of a computer, shown in Figure 1.1, consists of four main components: the input, the
output, the memory, and the microprocessor (or CPU). The parts that you purchased for your computer can all be
categorized into one of these four groups. The keyboard and mouse are examples of input devices. The CRT
(cathode ray tube) and speakers are examples of output devices. The different types of memory (cache, read-only
memory (ROM), random-access memory (RAM), and the disk drive) are all considered part of the memory box in
the model. In this book, the focus is not on the mechanical aspects of the input, output, and storage devices. Rather,

17

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

the focus is on the design of the digital circuitry of the microprocessor, the memory, and other supporting digital
logic circuits.

The logic circuit for the microprocessor can be divided into two parts: the datapath and the control unit, as
shown in Figure 1.1. Figure 1.2 shows the details inside the control unit and the datapath. The datapath is
responsible for the actual execution of all data operations performed by the microprocessor, such as the addition of
two numbers inside the arithmetic logic unit (ALU). The datapath also includes registers for the temporary storage
of your data. The functional units inside the datapath, which in our example includes the ALU and the register, are
connected together with multiplexers and data signal lines. The data signal lines are for transferring data between
two functional units. Data signal lines in the circuit diagram are represented by lines connecting two functional
units. Sometimes, several data signal lines are grouped together to form a bus. The width of the bus (that is, the
number of data signal lines in the group) is annotated next to the bus line. In the example, the bus lines are thicker
and are 8-bits wide. Multiplexers, also known as MUXes, are for selecting data from two or more sources to go to
one destination. In the sample circuit, a 2-to-1 multiplexer is used to select between the input data and the constant
‘0’ to go to the left operand of the ALU. The output of the ALU is connected to the input of the register. The output
of the register is connected to three different destinations: (1) the right operand of the ALU, (2) an OR gate used as a
comparator for the test “not equal to 0,” and (3) a tri-state buffer. The tri-state buffer is used to control the output of
the data from the register.

Memory
Control
Input Unit Datapath Output
Microprocessor
Figure 1.1. Von Neumann model of a computer.
Control Data
Inputs Inputs
Y
Control Unit
ol T
— State » Output > >
Next-) > >
state Memory Logic g-ontr?l
Logic Register 33 gnals |
x < <
Status
v Signals
Control Data
Outputs Outputs

Figure 1.2. Internal parts of a microprocessor.

Even though the datapath is capable of performing all of the data operations of the microprocessor, it cannot,
however, do it on its own. In order for the datapath to execute the operations automatically, the control unit is
required. The control unit, also known as the controller, controls all of the operations of the datapath, and therefore,
the operations of the entire microprocessor. The control unit is a finite state machine (FSM) because it is a machine
that executes by going from one state to another and that there are only a finite number of states for the machine to
go to. The control unit is made up of three parts: the next-state logic, the state memory, and the output logic. The
purpose of the state memory is to remember the current state that the FSM is in. The next-state logic is the circuit for

18

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

determining what the next state should be for the machine. And the output logic is the circuit for generating the
actual control signals for controlling the datapath.

Every digital logic circuit, regardless of whether it is part of the control unit or the datapath, is categorized as
either a combinational circuit or a sequential circuit. A combinational circuit is one where the output of the circuit
is dependent only on the current inputs to the circuit. For example, an adder circuit is a combinational circuit. It
takes two numbers as inputs. The adder evaluates the sum of these two numbers and outputs the result.

A sequential circuit, on the other hand, is dependent not only on the current inputs, but also on all the previous
inputs. In other words, a sequential circuit has to remember its past history. For example, the up-channel button on a
TV remote is part of a sequential circuit. Pressing the up-channel button is the input to the circuit. However, just
having this input is not enough for the circuit to determine what TV channel to display next. In addition to the up-
channel button input, the circuit must also know the current channel that is being displayed, which is the history. If
the current channel is channel 3, then pressing the up-channel button will change the channel to channel 4.

Since sequential circuits are dependent on the history, they must therefore contain memory elements for
remembering the history; whereas combinational circuits do not have memory elements. Examples of combinational
circuits inside the microprocessor include the next-state logic and output logic in the control unit, and the ALU,
multiplexers, tri-state buffers, and comparators in the datapath. Examples of sequential circuits include the register
for the state memory in the controller and the registers in the datapath. The memory in the Von Neuman computer
model is also a sequential circuit.

Irregardless of whether a circuit is combinational or sequential, they are all made up of the three basic logic
gates: AND, OR, and NOT gates. From these three basic gates, the most powerful computer can be made.
Furthermore, these basic gates are built using transistors — the fundamental building blocks for all digital logic
circuits. Transistors are just electronic binary switches that can be turned on or off. The on and off states of a
transistor are used to represent the two binary values: 1 and 0.

Figure 1.3 summarizes how the different parts and components fit together to form the microprocessor. From
transistors, the basic logic gates are built. Logic gates are combined together to form either combinational circuits or
sequential circuits. The difference between these two types of circuits is only in the way the logic gates are
connected together. Latches and flip-flops are the simplest forms of sequential circuits, and they provide the basic
building blocks for more complex sequential circuits. Certain combinational circuits and sequential circuits are used
as standard building blocks for larger circuits, such as the microprocessor. These standard combinational and
sequential components usually are found in standard libraries and serve as larger building blocks for the
microprocessor. Different combinational components and sequential components are connected together to form
either the datapath or the control unit of a microprocessor. Finally, combining the datapath and the control unit
together will produce the circuit for either a dedicated or a general microprocessor.

19

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

Transistors

Gates

.

Combinational :
Circuits 3 Flip-flops
Sequential
Circuits 7
A 4 A 4
Combinational + Sequential
Components 4 Components g

Datapath o Control Unlt10

\/

Dedicated
M icroprocessof,

_ General
Mlcroprocessolr2

Figure 1.3. Summary of how the parts of a microprocessor fit together. The numbers in each box denote the chapter
number in which the topic is discussed.

1.2 Design Abstraction Levels

Digital circuits can be designed at any one of several abstraction levels. When designing a circuit at the
transistor level, which is the lowest level, you are dealing with discrete transistors and connecting them together to
form the circuit. The next level up in the abstraction is the gate level. At this level, you are working with logic gates
to build the circuit. At the gate level, you also can specify the circuit using either a truth table or a Boolean equation.
In using logic gates, a designer usually creates standard combinational and sequential components for building
larger circuits. In this way, a very large circuit, such as a microprocessor, can be built in a hierarchical fashion.
Design methodologies have shown that solving a problem hierarchically is always easier than trying to solve the
entire problem as a whole from the ground up. These combinational and sequential components are used at the
register-transfer level in building the datapath and the control unit in the microprocessor. At the register-transfer
level, we are concerned with how the data is transferred between the various registers and functional units to realize
or solve the problem at hand. Finally, at the highest level, which is the behavioral level, we construct the circuit by
describing the behavior or operation of the circuit using a hardware description language. This is very similar to
writing a computer program using a programming language.

1.3 Examples of a 2-to-1 Multiplexer

As an example, let us look at the design of the 2-to-1 multiplexer from the different abstraction levels. At this
point, don’t worry too much if you don’t understand the details of how all of these circuits are built. This is intended
just to give you an idea of what the description of the circuits look like at the different abstraction levels. We will get
to the details in the rest of the book.

An important point to gain from these examples is to see that there are many different ways to create the same
functional circuit. Although they are all functionally equivalent, they are different in other respects such as size (how
big the circuit is or how many transistors it uses), speed (how long it takes for the output result to be valid), cost

20

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

(how much it costs to manufacture), and power usage (how much power it uses). Hence, when designing a circuit,
besides being functionally correct, there will always be economic versus performance tradeoffs that we need to
consider.

The multiplexer is a component that is used a lot in the datapath. An analogy for the operation of the 2-to-1
multiplexer is similar in principle to a railroad switch in which two railroad tracks are to be merged onto one track.
The switch controls which one of the two trains on the two separate tracks will move onto the one track. Similarly,
the 2-to-1 multiplexer has two data inputs, do and d;, and a select input, s. The select input determines which data
from the two data inputs will pass to the output, y.

Figure 1.4 shows the graphical symbol also referred to as the logic symbol for the 2-to-1 multiplexer. From
looking at the logic symbol, you can tell how many signal lines the 2-to-1 multiplexer has, and the name or function
designated for each line. For the 2-to-1 multiplexer, there are two data input signals, d; and do, a select input signal,
s, and an output signal, y.

Figure 1.4. Logic symbol for the 2-to-1 multiplexer.

1.3.1 Behavioral Level

We can describe the operation of the 2-to-1 multiplexer simply, using the same names as in the logic symbol, by
saying that

do passes to y when s =0, and
d; passestoy whens =1

Or more precisely, the value that is at dy passes to y when s = 0, and the value that is at d; passes to y when s = 1.

We use a hardware description language (HDL) to describe a circuit at the behavioral level. When describing a
circuit at this level, you would write basically the same thing as in the description, except that you have to use the
correct syntax required by the hardware description language. Figure 1.5 shows the description of the 2-to-1
multiplexer using the hardware description language called VHDL.

LI BRARY i eee;
USE ieee.std_logic_1164. ALL;

ENTITY mul ti pl exer 1S PORT (
do, di, s: IN STD LOA G
y: OUT STD LOd O);

END mul ti pl exer;

ARCHI TECTURE Behavioral OF nultiplexer IS

BEG N
PROCESS(s, d0, d1)
BEG N
y <= d0 WHEN s = ' 0' ELSE di;
END PROCESS;

END Behavi or al ;

Figure 1.5. Behavioral level VHDL description of the 2-to-1 multiplexer.

The LIBRARY and USE statements are similar to the “#include” preprocessor command in C. The IEEE library
contains the definition for the STD_LOGIC type used in the declaration of signals. The ENTITY section declares the

21

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

interface for the circuit by specifying the input and output signals of the circuit. In this example, there are three input
signals of type STD_LOGIC, and one output signal also of type STD_LOGIC. The ARCHITECTURE section defines the
actual operation of the circuit. The operation of the multiplexer is defined in the one conditional signal assignment
statement

y <= d0 WHEN s = '0' ELSE di;

The statement, which uses the symbol <= to denote the signal assignment, says that the signal y gets the value of d,
when s is equal to 0, otherwise, y gets the value of d;.

As you can see, when designing circuits at the behavioral level, we do not need to know what logic gates are
needed or how they are connected together. We only need to know their interface and operation.

1.3.2 Gate Level

At the gate level, you can draw a schematic diagram, which is a diagram showing how the logic gates are
connected together. Two schematic diagrams of a circuit are shown in Figure 1.6(a) and (b). In Figure 1.6(a), the
circuit uses three inverters (), four 3-input AND gates (3D-), and one 4-input or gate (2>-). In Figure 1.6(b),
only one inverter, two 2-input AND gates, and one 2-input OR gate are needed. Although one circuit is larger (in
terms of the number of gates needed) than the other, both of these circuits realize the same 2-to-1 multiplexer
function. Therefore, when we want to actually implement a 2-to-1 multiplexer circuit, we will want to use the
second, smaller circuit rather than the first.

s d, d
VIV[Y R
L I s —4 y
i y 1
(@) (b)

Figure 1.6. Gate level circuit diagram for the 2-to-1 multiplexer: (a) circuit using eight gates; (b) circuit using four
gates.

At the gate level, you can also describe the 2-to-1 multiplexer using a truth table or with a Boolean equation as
shown in Figure 1.7(a) and (b) respectively. For the truth table, we list all possible combinations of the binary values
for the three inputs s, dy and dj, and then determine what the output value y should be based on the functional
description of the circuit. We see that for the first four rows of the table when s = 0, y has the same values as d,
whereas in the last four rows when s = 1, y has the same values as d;.

The Boolean equation in (b) can be derived from either the schematic diagram or the truth table. The first
equality in (b) matches the truth table in (a), and also the schematic diagram in Figure 1.6(a). The second equality in
(b) matches the schematic diagram in Figure 1.6(b). To derive the equation from the truth table, we look at all the
rows where the output y is a 1. Each of these rows results in a term in the equation. For each term, the variable is
primed (') when the value of the variable is a 0, and unprimed when the value of the variable is a 1.

d

o
flry

o

y:S'dl'd0+5'd1d0+5d1d0'+sd1d0
:SId0+5d1

R OO0 O0O|w
[} Sl el o]
O IO O
O IO oI

22

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

1[o0of]z1To
1101 (b)
1111

@

Figure 1.7. Gate level description of the 2-to-1 multiplexer: (a) using a truth table; (b) using a Boolean equation.

1.3.3 Transistor Level

The 2-to-1 multiplexer circuit at the transistor level is shown in Figure 1.8. It contains six transistors, three of

which are PMOS (f—ll_), and three are NMOS (_IJ—‘L). The pair of transistors on the left forms an inverter for the
signal s, while the two pairs of transistors on the right form two transmission gates. The transmission gate allows or
disallows the data signal dq or d; to pass through, depending on the control signal s. The top transmission gate is
turned on when s is a 0, and the bottom transmission gate is turned on when s is a 1. Hence, when s is 0, the value at
do is passed to y, and when s is 1, the value at d; is passed to y.

<
38

oY
T
I

Figure 1.8. Transistor circuit for the 2-to-1 multiplexer.

1.4 Introduction to VHDL

The popularity of using hardware description languages (HDL) for designing digital circuits began in the mid-
1990s when commercial synthesis tools became available. Two popular HDLs used by many engineers today are
VHDL and Verilog. VHDL, which stands for VHSIC Hardware Description Language, and VHSIC, in turn, stands
for Very High Speed Integrated Circuit, was jointly sponsored and developed by the U.S. Department of Defense
and the IEEE in the mid-1980s. It was standardized by the IEEE in 1987 (VHDL-87), and later extended in 1993
(VHDL-93). Verilog, on the other hand, was first introduced in 1984, and later in 1988, as a proprietary hardware
description language by the two companies Synopsys and Cadence Design Systems. In this book, we will use
VHDL.

VHDL, in many respects, is similar to a regular computer programming language, such as C++. For example, it
has constructs for variable assignments, conditional statements, loops, and functions, just to name a few. In a
computer programming language, a compiler is used to translate the high-level source code to machine code. In
VHDL, however, a synthesizer is used to translate the source code to a description of the actual hardware circuit that
implements the code. From this description, which we call a netlist, the actual physical digital device that realizes
the source code can be made automatically. Accurate functional and timing simulation of the code is also possible in
order to test the correctness of the circuit.

You saw in Section 1.3.1 how we used VHDL to describe the 2-to-1 multiplexer at the behavioral level. VHDL
can also be used to describe a circuit at other levels. Figure 1.9 shows the VHDL code for the multiplexer written at
the dataflow level. The main difference between the behavioral VHDL code shown in Figure 1.5 and the dataflow
VHDL code is that in the behavioral code there is a PROCESS block statement, whereas in the dataflow code, there is

23

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

no PROCESS statement. Statements within a PROCESS block are executed sequentially like in a computer program,
while statements outside a PROCESS block (including the PROCESS block itself) are executed concurrently or in
parallel. The signal assignment statement, using the symbol <=, is derived directly from the Boolean equation for the
multiplexer as shown in Figure 1.7(b) using the built-in VHDL operators AND, OR, and NOT.

LI BRARY i eee;
USE i eee.std | ogic _1164. ALL;

ENTI TY mul ti pl exer 1'S PORT(
do, di, s: IN STD LOG G
y: OUT STD LOd O);

END nul ti pl exer;

ARCHI TECTURE Dat af |l ow OF mul ti pl exer 1S
BEA N

y <= ((NOT s) AND d0) OR (s AND d1);
END Dat af | ow;

Figure 1.9. Dataflow level VHDL description of the 2-to-1 multiplexer.

In addition to the behavioral and dataflow levels, we can also write VHDL code at the structural level. Figure
1.11 shows the VHDL code for the multiplexer written at the structural level. The code is based on the circuit shown
in Figure 1.10. The three different gates (and2gate, or2gate, and notgate) used in the circuit are first declared and
defined using the ENTITY and ARCHITECTURE statements respectively. After this, the multiplexer is declared, also
with the ENTITY statement. The actual structural definition of the multiplexer is in the ARCHITECTURE section for
multiplexer2. First of all, the COMPONENT statements specify what components are used in the circuit. The SIGNAL
statement declares three internal signals that will be used in the connection of the circuit. Finally, the PORT MAP
statements declare the instances of the gates used in the circuit, and also specify how they are connected using the
external and internal signals.

]
d

LI BRARY i eee;
USE i eee.std logic 1164. ALL;
ENTI TY notgate | S PORT(
i: IN STD LOG G
o: OQUT STD LOA C);
END not gat e;
ARCHI TECTURE Dat afl ow OF notgate IS
BEG N
0 <= not i;
END Dat af | ow,

————————————————— 2-input AND gate ---------------
LI BRARY i eee;
USE ieee.std_logic_1164. ALL;
ENTI TY and2gate IS PORT(
il, i2: INSTD LOGE G

24

Digital Logic and Microprocessor Design with VHDL

Chapter 1 - Designing Microprocessors

o: OUT STD LOA C);
END and2gat e;
ARCHI TECTURE Dat af | ow OF and2gate IS
BEG N
0 <=il AND i 2;
END Dat af | ow,

LI BRARY i eee;
USE ieee.std_logic_1164. ALL;
ENTI TY or2gate | S PORT(
il, i2: INSTD LOGEC
o: QUT STD LOGA ©);
END or 2gat e;
ARCHI TECTURE Dat af | ow OF or2gate | S
BEG N
0<=il ORIiZ2
END Dat af | ow,

LI BRARY i eee;

USE i eee.std | ogic 1164. ALL;
ENTITY mul ti pl exer 1'S PORT(
do, di, s: IN STD LOA G

y: OQUT STD LOG O);
END mul ti pl exer;
ARCHI TECTURE Structural OF nultiplexer IS
COVPONENT not gat e PORT(
i: IN STD LOd G
o: OQUT STD LOA C);
END COVPONENT;
COVPONENT and2gat e PORT(
il, i2: INSTD LOGEC
o: QUT STD LOA ©);
END COVPONENT;
COVPONENT and3gat e PORT(
il, i2, i3: INSTD LOGEC
o: QUT STD LOA ©);
END COVPONENT;
COVPONENT or 2gat e PORT(
il, i2: INSTD LOGEC
o: QUT STD LOA ©);
END COVPONENT;

2-to-1 nultiplexer

SI GNAL sn, sndO, sdl: STD LCG C
BEG N

Ul: notgate PORT MAP(s, sn);
U2: and2gate PORT MAP(dO, sn,
U3: and2gate PORT MAP(d1, s,
U4: or2gate PORT MAP(sndO,

END Structural;

snd0) ;
sdl);
sdl, vy);

2-input ORgate ----------------

Figure 1.11. Structural level VHDL description of the 2-to-1 multiplexer.

25

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

1.5 Synthesis

Given a gate level circuit diagram, such as the one shown in Figure 1.6, you can actually get some discrete logic
gates, and manually connect them together with wires on a breadboard. Traditionally, this is how electronic
engineers actually designed and implemented digital logic circuits. However, this is not how electronic engineers
design circuits anymore. They write programs, such as the one in Figure 1.5, just like what computer programmers
do. The question then is how does the program that describes the operation of the circuit actually get converted to
the physical circuit?

The problem here is similar to translating a computer program written in a high-level language to machine
language for a particular computer to execute. For a computer program, we use a compiler to do the translation. For
translating a digital logic circuit, we use a synthesizer. Instead of using a high-level computer language to describe
a computer program, we use a hardware description language (HDL) to describe the operations of a digital logic
circuit. Writing a description of a digital logic circuit is similar to writing a computer program; the only difference is
that a different language is used. A synthesizer is then used to translate the HDL program into the circuit netlist. A
netlist is a description of how a circuit is actually realized or connected using basic gates. This translation process
from a HDL description of a circuit to its netlist is referred to as synthesis.

Furthermore, the netlist from the output of the synthesizer can be used directly to implement the actual circuit in
a programmable logic device (PLD) chip such as a field programmable gate array (FPGA). With this final step, the
creation of a digital circuit that is fully implemented in an integrated circuit (IC) chip can be easily done. The
Appendix gives a tutorial of the complete process from writing the VHDL code to synthesizing the circuit and
uploading the netlist to the FPGA chip using Altera’s development system.

1.6 Going Forward

We will now embark upon a journey that will take you from a simple transistor to the building of a
microprocessor. Figure 1.2 will serve as our guide and map. If you get lost on the way, and do not know where a
particular component fits in the overall picture, just refer to this map. At the beginning of each chapter, I will refresh
your memory with this map by highlighting the components in the map that the chapter will cover.

Figure 1.12 is an actual picture of the circuitry inside an Intel Pentium 4 CPU. When you reach the end of this
book, you still may not be able to design the circuit for the P4, but you will certainly have the knowledge of how a
microprocessor is designed because you will actually have designed and implemented a working microprocessor
yourself.

Figure 1.12. The internal circuitry of the Intel P4 CPU.

26

Digital Logic and Microprocessor Design with VHDL

Chapter 1 - Designing Microprocessors

1.7 Summary Checklist

Iy U B S S iy Wy

Microprocessor
General-purpose microprocessor
Dedicated microprocessor, ASIC
Datapath

Control unit

Finite state machine (FSM)
Next-state logic

State memory

Output logic

Combinational circuit
Sequential circuit

Transistor level design

Gate level design
Register-transfer level design
Behavioral level design

Logic symbol

VHDL

Synthesis

Netlist

1.8 Problems

1.1

1.2,

1.3.

1.4.

1.5.

1.6.

1.7.

Find out the approximate number of general-purpose microprocessors sold in the US in a year versus the
number of dedicated microprocessors sold.
Compile a list of devices that you use during one regular day that are controlled by a microprocessor.
Describe what your regular daily routine will be like if there is no electrical power, including battery power,
available.
Apply the Von Neumann model of a computer system as shown in Figure 1.1 to the following systems.
Determine what parts of the system correspond to the different parts of the model.
a) Traffic light
b) Heart pace maker
¢) Microwave oven
d) Musical greeting card
e) Hard disk drive (not the entire personal computer)
The speed of a microprocessor is often measured by its clock frequency. What is the clock frequency of the
fastest general-purpose microprocessor available?
Compare some typical clock speeds between general-purpose microprocessors versus dedicated
mMicroprocessors.
Summarize the mainstream generations of the Intel general-purpose microprocessors used in personal
computers starting with the 8086 CPU. List the year introduced, the clock speed, and the number of
transistors in each.

Answer

27

Digital Logic and Microprocessor Design with VHDL Chapter 1 - Designing Microprocessors

CPU Year Introduced | Clock Speed Number of Transistors
8086 1978 4.7 -10 MHz 29,000
80286 1982 6-12 MHz 134,000
80386 1985 16 — 33 MHz 275,000
80486 1989 25 -100 MHz 1.2 million
Pentium 1993 60 — 200 MHz 3.3 million
Pentium Pro | 1995 150 — 200 MHz 5.5 million
Pentium 11 1997 234 — 450 MHz 7.5 million
Celeron 1998 266 — 800 MHz 19 million
Pentium 111 | 1999 400 MHz - 1.2 GHz | 28 million
Pentium 4 2000 14 -3 GHz 42 million

1.8. Using Figure 1.9 as a template, write the dataflow VHDL code for the 2-to-1 multiplexer circuit shown in
Figure 1.6(a).

1.9. Using Figure 1.11 as a template, write the structural VHDL code for the 2-to-1 multiplexer circuit shown in
Figure 1.6(a).

1.10. Do Tutorial 1 in Appendix A.
1.11. Do Tutorial 2 in Appendix B.

1.12. Do Tutorial 3 in Appendix C.

28

Chapter 2

Digital Circuits

Control Data
Inputs Inputs
Y
Control Unit
Biol-HH —
— State Output > >
Next- . » >
state Memory Logic C_ontrol
Logic Register %::> Slg;nals s
A < <
Status
v Signals
Control Data

Outputs Outputs

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

Our world is an analog world. Measurements that we make of the physical objects around us are never in
discrete units, but rather in a continuous range. We talk about physical constants such as 2.718281828... or
3.141592.... To build analog devices that can process these values accurately is next to impossible. Even building a
simple analog radio requires very accurate adjustments of frequencies, voltages, and currents at each part of the
circuit. If we were to use voltages to represent the constant 3.14, we would have to build a component that will give
us exactly 3.14 volts every time. This is again impossible; due to the imperfect manufacturing process, each
component produced is slightly different from the others. Even if the manufacturing process can be made as perfect
as perfect can get, we still would not be able to get 3.14 volts from this component every time we use it. The reason
being that the physical elements used in producing the component behave differently in different environments, such
as temperature, pressure, and gravitational force, just to name a few. Therefore, even if the manufacturing process is
perfect, using this component in different environments will not give us exactly 3.14 volts every time.

To make things simpler, we work with a digital abstraction of our analog world. Instead of working with an
infinite continuous range of values, we use just two values! Yes, just two values: 1 and 0, on and off, high and low,
true and false, black and white, or however you want to call it. It is certainly much easier to control and work with
two values rather than an infinite range. We call these two values a binary value for the reason that there are only
two of them. A single 0 or a single 1 is then a binary digit or bit. This sounds great, but we have to remember that
the underlining building block for our digital circuits is still based on an analog world.

This chapter provides the theoretical foundations for building digital logic circuits using logic gates, the basic
building blocks for all digital circuits. In order to understand how logic gates are used to implement digital circuits,
we need to have a good understanding of the basic theory of Boolean algebra, Boolean functions, and how to use
and manipulate them. Most people may find Sections 2.5 and 2.6 on these theories to be boring, but let me
encourage you to grind through it patiently, because if you do not understand it now, you will quickly get lost in the
later chapters. The good news is that these two sections are the only sections in this book on theory, and I will try to
keep it as short and simple as possible. You will also find that many of the Boolean Theorems are very familiar,
because they are similar to the Algebra Theorems that you have learned from your high school math class. As you
can see from the microprocessor road map, this chapter affects all the parts for building a microprocessor.

2.1 Binary Numbers

Since digital circuits deal with binary values, we will begin with a quick introduction to binary numbers. A bit,
having either the value of 0 or 1, can represent only two things or two pieces of information. It is, therefore,
necessary to group many bits together to represent more pieces of information. A string of n bits can represent 2"
different pieces of information. For example, a string of two bits results in the four combinations 00, 01, 10, and 11.
By using different encoding techniques, a group of bits can be used to represent different information, such as a
number, a letter of the alphabet, a character symbol, or a command for the microprocessor to execute.

The use of decimal numbers is quite familiar to us. However, since the binary digit is used to represent
information within the computer, we also need to be familiar with binary numbers. Note that the use of binary
numbers is just a form of representation for a string of bits. We can just as well use octal, decimal, or hexadecimal
numbers to represent the string of bits. In fact, you will find that hexadecimal numbers are often used as a shorthand
notation for binary numbers.

The decimal number system is a positional system. In other words, the value of the digit is dependent on the
position of the digit within the number. For example, in the decimal number 48, the decimal digit 4 has a greater
value than the decimal digit 8 because it is in the tenth position, whereas the digit 8 is in the unit position. The value
of the number is calculated as 4x10" + 8x10°.

Like the decimal number system, the binary number system is also a positional system. The only difference
between the two is that the binary system is a base-2 system, and so it uses only two digits, 0 and 1, instead of ten.
The binary numbers from 0 to 15 (decimal) are shown in Figure 2.1. The range from 0 to 15 has 16 different
combinations. Since 2* = 16, therefore, we need a 4-bit binary number, i.e., a string of four bits, to represent this
range.

When we count in decimal, we count from 0 to 9. After 9, we go back to 0, and have a carry of a 1 to the next
digit. When we count in binary, we do the same thing except that we only count from 0 to 1. After 1, we go back to
0, and have a carry of a 1 to the next bit.

30

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

The decimal value of a binary number can be found just like for a decimal number except that we raise the base
number 2 to a power rather than the base number 10 to a power. For example, the value for the decimal number 658
is

65810 = 6x10° + 5x10" + 8x10° = 600 + 50 + 8 = 658y,
Similaly, the decimal value for the binary number 1011011, is

1011011, = 1x2°% + 0x2° + 1x2* + 1x23 + 0x2% + 1x2' + 1x2° =64 + 16 + 8 + 2 + 1 = 91,

To get the decimal value, the least significant bit (in this case, the rightmost 1) is multiplied with 2°. The next
bit to the left is multiplied with 2*, and so on. Finally, they are all added together to give the value 91y.

Notice the subscript 10 in the decimal number 658,44, and the 2 in the binary number 1011011,. This subscript is
used to denote the base of the number whenever there might be confusion as to what base the number is in.

Decimal | Binary | Octal | Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Figure 2.1 Numbers from 0 to 15 in binary, octal, and hexadecimal.

Converting a decimal number to its binary equivalent can be done by successively dividing the decimal number
by 2 and keeping track of the remainder at each step. Combining the remainders together (starting with the last one)
forms the equivalent binary number. For example, using the decimal number 91, we divide it by 2 to get 45 with a
remainder of 1. Then we divide 45 by 2 to get 22 with a remainder of 1. We continue in this fashion until the end as
shown below.

2191 1 least significant bit

2145 1

2122 0

2111 1 =1011011
21 5 1

2.2 0

1 most significant bit
Concatenating the remainders together starting with the last one results in the binary number 1011011,.

Binary numbers usually consist of a long string of bits. A shorthand notation for writing out this lengthy string
of bits is to use either the octal or hexadecimal numbers. Since octal is base-8 and hexadecimal is base-16, both of
which are a power of 2, a binary number can be easily converted to an octal or hexadecimal number, or vice versa.

31

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

Octal numbers only use the digits from 0 to 7 for the eight different combinations. When counting in octal, the
number after 7 is 10 as shown in Figure 2.1. To convert a binary number to octal, we simply group the bits into
groups of threes starting from the right. The reason for this is because 8 = 2°. For each group of three bits, we write
the equivalent octal digit for it. For example, the conversion of the binary number 1 110 011, to the octal humber
1635 is shown below.

01 110 011

1 6 3

Since the original binary number has seven bits, we need to extend it with two leading zeros to get three bits for
the leftmost group. Note that when we are dealing with negative numbers, we may require extending the number
with leading ones instead of zeros.

Converting an octal number to its binary equivalent is just as easy. For each octal number, we write down the
equivalent three bits. These groups of three bits are concatenated together to form the final binary number. For
example, the conversion of the octal number 57244 to the binary number 101 111 010 100, is shown below.

5 7 2 4
101 111 010 100

The decimal value of an octal number can be found just like for a binary or decimal number except that we raise
the base number 8 to a power instead. For example, the octal number 57244 has the value

57245 = 5x8° + 7x8% + 2x8' + 4x8% = 2560 + 448 + 16 + 4 = 3028,

Hexadecimal numbers are treated basically the same way as octal numbers except with the appropriate changes
to the base. Hexadecimal (or hex for short) numbers use base-16, and thus require 16 different digit symbols as
shown in Figure 2.1. Converting binary numbers to hexadecimal numbers involve grouping the bits into groups of
fours since 16 = 2*. For example, the conversion of the binary number 110 1101 1011, to the hexadecimal number
6DB s is shown below. Again, we need to extend it with a leading zero to get four bits for the leftmost group.

0110 1101 1011
6 D B

To convert a hex number to a binary number, we write down the equivalent four bits for each hex digit, and
then concatenate them together to form the final binary number. For example, the conversion of the hexadecimal
number 5C4A s to the binary number 0101 1100 0100 1010, is shown below.

5 Cc 4 A
0101 1100 0100 1010

The following example shows how the decimal value of the hexadecimal number C4Ay; is evaluated.
C4A = Cx16° + 4x16" + Ax16° = 12x16° + 4x16" + 10x16° = 3072 + 64 + 10 = 3146,

2.2 Binary Switch

Besides the fact that we are working only with binary values, digital circuits are easy to understand because
they are based on one simple idea of turning a switch on or off to obtain either one of the two binary values. Since
the switch can be in either one of two states (on or off), we call it a binary switch, or just a switch for short. The
switch has three connections: an input, an output, and a control for turning the switch on or off as shown in Figure
2.2. When the switch is opened as in (a), it is turned off and nothing gets through from the input to the output. When
the switch is closed as in (b), it is turned on, and whatever is presented at the input is allowed to pass through to the
output.

32

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

control
in - out in out
o——o0 o ') © o)
(@) (b)

Figure 2.2 Binary switch: (a) opened or off; (b) closed or on.

Uses of the binary switch idea can be found in many real world devices. For example, the switch can be an
electrical switch with the input connected to a power source and the output connected to a siren S as shown in Figure
2.3.

Switch

— O—m Sier

Battery —
L

Figure 2.3 A siren controlled by a switch.

When the switch is closed, the siren turns on. The usual convention is to use a 1 to mean “on” and a 0 to mean
“off.” Therefore, when the switch is closed, the output is a 1 and the siren will turn on. We can also use a variable, x,
to denote the state of the switch. We can let x = 1 to mean the switch is closed and x = 0 to mean the switch is
opened. Using this convention, we can describe the state of the siren S in terms of the variable x using a simple logic
expression. Since S=1ifx=1and S =0 if x =0, we can write

S=x
This logic expression describes the output S in terms of the input variable x.

2.3 Basic Logic Operators and Logic Expressions

Two binary switches can be connected together either in series or in parallel as shown in Figure 2.4.

X y
F F
o—/o—e/o—o o— I

(@) (b)

Figure 2.4 Connection of two binary switches: (a) in series; (b) in parallel.

If two switches are connected in series as in (a), then both switches have to be on in order for the output F to be
al. Inother words, F =1ifx =1 AND y = 1. If either x or y is off, or both are off, then F = 0. Translating this into a
logic expression, we get
F=XANDY

Hence, two switches connected in series give rise to the logical AND operator. In a Boolean function (which we
will explain in more detail in section 2.5) the AND operator is either denoted with a dot (*) or no symbol at all. Thus
we can rewrite the above expression as

F=xe y

or simply

33

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

F=xy

If we connect two switches in parallel as in (b), then only one switch needs to be on in order for the output F to
be a 1. In other words, F = 1 if either x =1, ory = 1, or both x and y are 1’s. This means that F = 0 only if both x
and y are 0’s. Translating this into a logic expression, we get

F=XO0Ry

and this gives rise to the logical OR operator. In a Boolean function, the OR operator is denoted with a plus symbol
(+). Thus we can rewrite the above expression as

F:X+y

In addition to the AND and OR operators, there is another basic logic operator — the NOT operator, also known as
the INVERTER. Whereas, the AND and OR operators have multiple inputs, the NOT operator has only one input and
one output. The NOT operator simply inverts its input, so a 0 input will produce a 1 output, and a 1 becomes a 0. In a
Boolean function, the NOT operator is either denoted with an apostrophe symbol (') orabarontop (™) asin

F=x
or
F=X

When several operators are used in the same expression, the precedence given to the operators are, from highest
to lowest, NOT, AND, and OR. The order of evaluation can be changed by means of using parenthesis. For example,
the expression

F=xy+7
means (x and y) or (not z), and the expression

F=x(y+2)
means x and (not (y or z)).

2.4 Truth Tables

The operation of the AND, OR, and NOT logic operators can be formally described by using a truth table as
shown in Figure 2.5. A truth table is a two-dimensional array where there is one column for each input and one
column for each output (a circuit may have more than one output). Since we are dealing with binary values, each
input can be either a 0 or a 1. We simply enumerate all possible combinations of 0’s and 1’s for all the inputs.
Usually, we want to write these input values in the normal binary counting order. With two inputs, there are 2°
combinations giving us the four rows in the table. The values in the output column are determined from applying the
corresponding input values to the functional operator. For the AND truth table in Figure 2.5(a), F = 1 only when x
and y are both 1, otherwise, F = 0. For the oR truth table (b), F = 1 when either x or y or both is a 1, otherwise F = 0.
For the NOT truth table, the output F is just the inverted value of the input x.

X y F X y F
0 0 0 0 0 0 X F
0 1 0 0 1 1 0 1
1 0 0 1 0 1 1 0
1 1 1 1 1 1

(a) (b) (c)

Figure 2.5 Truth tables for the three basic logical operators: (a) AND; (b) OR; (C) NOT.

Using a truth table is one method to formally describe the operation of a circuit or function. The truth table for
any given logic expression (no matter how complex it is) can always be derived. Examples on the use of truth tables

34

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

to describe digital circuits are given in the following sections. Another method to formally describe the operation of
a circuit is by using Boolean expressions or Boolean functions.

2.5 Boolean Algebra and Boolean Function

2.5.1 Boolean Algebra

George Boole, in 1854, developed a system of mathematical logic, which we now call Boolean algebra. Based
on Boole’s idea, Claude Shannon, in 1938, showed that circuits built with binary switches can easily be described
using Boolean algebra. The abstraction from switches being on and off to the use of Boolean algebra is as follows.
Let B = {0, 1} be the Boolean algebra whose elements are one of the two values, 0 and 1. We define the operations
AND (*), OR (+), and NOT (") for the elements of B by the axioms in Figure 2.6(a). These axioms are simply the
definitions for the AND, OR, and NOT operators.

A variable x is called a Boolean variable if x takes on only values in B, i.e. either 0 or 1. Consequently, we
obtain the theorems in Figure 2.6(b) for single variable and Figure 2.6(c) for two and three variables.

Theorems in Figure 2.6(b) can be proved easily by substituting the binary values into the expressions and using
the axioms. For example, to show that Theorem 6a is true, we substitute 0 into x to get axiom 3a, and substitute 1
into x to get axiom 2a.

To prove the theorems in Figure 2.6(c), we can use either one of two methods: 1) use a truth table, or 2) use
axioms and theorems that have already been proven. We show these two methods in the following two examples.

la. | 0«0=0 1b. | 1+1=1
2a. | 1.1=1 2b. | 0+0=0
3a. | 0e1=1+0=0 3b. | 1+0=0+1=1
4a. | 0'=1 4b. | 1'=0
(@)

5a. | x«0=0 5h. | x+1=1 Null element
Ba. | xel=1lex=X 6b. | x+0=0+x=x Identity
7a. | Xex=x 7b. | x+x=X Idempotent
8a. | (X') =x Double complement
9a. | xex'=0 | 9b. [x+x'=1 Inverse

(b)
10a. | xey=yex 10b. | x+y=y+x Commutative
11a. | (xey)ez=xe (y*2) 11b. | (x+y)+z=x+(y+ 2) Associative
12a. | xe (y+2)=(Xey)+(x*2) 12b. | x+(ye2) =(x+y)e (x+2) Distributive
13a. | xe* (x+y)=x 13b. | x+(xey)=x Absorption
a. | (xey)+(xey')=x 14b. | (x+y)e (x+y')=x Combining
15a. | (xey)'=x"+y' 15b. | (x+y)'=x'-y DeMorgan’s

(©)

Figure 2.6 Boolean algebra axioms and theorems: (a) Axioms; (b) Single variable theorems; (c) two and three
variable theorems.

Example 2.1: Proof of theorem using a truth table.

Theorem 12a states that x » (y +2z) = (x ¢ y) + (X * 2). To prove that Theorem 12a is true using a truth table, we
need to show that for every combination of values for the three variables x, y, and z, the left-hand side of the
expression is equal to the right-hand side. The truth table below is constructed as follows:

35

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

XYy |z +2) | (xoy) [(x22) [xe(y+2) | (X2 y) +(x*2)
ofofo] o 0 0 0 0
ojof1] 1 0 0 0 0
of1]o] 1 0 0 0 0
oj1[1] 1 0 0 0 0
1{ofo] o 0 0 0 0
t{of1] 1 0 1 1 1
1[1]o0] 1 1 0 1 1
1[1]1] 1 1 1 1 1

We start with the first three columns labeled x, y, and z, and enumerate all possible combinations of values for
these three variables. For each combination (row), we evaluate the intermediate expressions y+z, xey, and xez by
substituting the values of x, y, and z into the expression. Finally, we obtain the values for the last two columns,
which correspond to the left-hand side and right-hand side of Theorem 12a. The values in these two columns are
identical for every combination of x, y, and z, therefore, we can say that Theorem 12a is true. .

Example 2.2: Proof of theorem using axioms and theorems.

Theorem 13b states that x + (x » y) = x. To prove that Theorem 13b is true using axioms and theorems, we can
argue as follows:

X+ (Xey) =(xe1)+(xey) by Identity Theorem 6a
=xe(1+y) by Distributive Theorem 12a
=xe (1) by Null element Theorem 5b
=X by Identity Theorem 6a .

Example 2.2 shows that some theorems can be derived from others that have already been proven with the truth
table. Full treatment of Boolean algebra is beyond the scope of this book and can be found in the references. For our
purposes, we simply assume that all the theorems are true and will just use them to show that two circuits are
equivalent as depicted in the next two examples.

Example 2.3: Use Boolean algebra to reduce the equation F,, = (X' +y' + X'y' + xy) (X' + yz) as much as possible.

F =X +y +Xy +xy) (X' +yz)

=(X'e1+y' e 1l+XYy +xy) (X +y2) by Identity Theorem 6a
=(X(Y+Y') +Yy (X +X')+ XY +xy) (X +Yy2) by Inverse Theorem 9b

= (XY + XY +yx+yxX + XY +xy) (X' +yz) by Distributive Theorem 12a
= (XY + XY HYX Y+ +xy) (X +y2) by Idempotent Theorem 7b
=X (Y+Y)+x(y+y) (X +y2) by Distributive Theorem 12a
=(x"e1+xe1)(X'+y2) by Inverse Theorem 9b

= (X" +x) (X' +vy2) by Identity Theorem 6a
=1(x'+y2) by Inverse Theorem 9b

= (X' +yz) by Identity Theorem 6a

Since the expression (x' +y' + x'y' + xy) (X' + yz) reduces down to (x' + yz), therefore, we do want to implement
the circuit for the latter expression rather then the former because the circuit size for the latter is much smaller. .

Example 2.4: Show, using Boolean algebra, that the two equations F; = (xy' + X'y + X' +y' +2') (x +y' + z) and
F, =y + X'z + xz' are equivalent.
Fir=(y +xXy+xX +y +17') (x+y' +2)
=XY'X XYY FXYZHEXYX XYY FXYZE XX XY FX2HYX Y'Y Yz IX Y+ 22
=XY' + XY +XyZ+0+0+Xyz+ 0+ XY +XZ2+Xy' +Yy +yz+x2+y7'+0
=Xy +HXy'zZ+HXYyz+XY +Xz2+y +yz+x2+y'7
Sy'(X+xz+x' +1+z+2)+xz(y +1) +xz'

36

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

=y +Xx'z+xz'
:Fz ¢

2.5.2 * Duality Principle

Notice in Figure 2.6 that we have listed the axioms and theorems in pairs. Specifically, we define the dual of a
logic expression as one that is obtained by changing all + operators with ¢ operators, and vice versa, and by
changing all 0’s with 1’s, and vice versa. For example, the dual of the logic expression

(xey'ez) + (xeysz') + (y*2) + 0

(xty'+2) « (xty+z') « (y+2) * 1
The duality principle states that if a Boolean expression is true, then its dual is also true. Be careful in that it
does not say that a Boolean expression is equivalent to its dual. For example, Theorem 5a in Figure 2.6 says that

x ¢ 0 =0is true, thus by the duality principle, its dual, x + 1 = 1 is also true. However, x « 0 =0 is not equal to x + 1
=1, since 0 is definitely not equal to 1.

We will see in Section 2.5.3 that the inverse of a Boolean expression can be obtained by first taking the dual of
that expression, and then complementing each Boolean variable in the resulting dual expression. In this respect, the
duality principle is often used in digital logic design. Whereas an expression might be complex to implement, its
inverse might be simpler, thus resulting in a smaller circuit, and inverting the final output of this circuit will produce
the same result as from the original expression.

2.5.3 Boolean Function and the Inverse

As we have seen, any digital circuit can be described by a logical expression, also known as a Boolean function.
Any Boolean functions can be formed from binary variables and the Boolean operators ¢, +, and * (for AND, OR, and
NOT respectively). For example, the following Boolean function uses the three variables or literals x, y, and z. It has
three AND terms (also referred to as product terms), and these AND terms are orRed (summed) together. The first
two AND terms contain all three variables each, while the last AND term contains only two variables. By definition,
an AND (or product) term is either a single variable, or two or more variables ANDed together. Quite often, we refer
to functions that are in this format as a sum-of-products or or-of-ands.

3 AND terms

F(X’yyz):xy'z+xyz' +yz

3 variables 2 variables

The value of a function evaluates to either a 0 or a 1 depending on the given set of values for the variables. For
example, the function above evaluates to a 1 when any one of the three AND terms evaluate to a 1, since 1 OR x is 1.
The first AND term, xy'z, equals to a 1 if

x=1,y=0,andz=1

because if we substitute these values for x, y, and z into the first AND term xy'z, we get a 1. Similarly, the second AND
term, xyz', equals to a 1 if

x=1,y=1andz=0.

The last AND term, yz, has only two variables. What this means is that the value of this term is not dependent on the
missing variable x. In other words x can be eithera 0 or a 1, but as longasy = 1 and z = 1, this term will equal to a 1.

Thus, we can summarize by saying that F evaluates to a 1 if
x=1,y=0,andz=1
or

37

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

x=1,y=1l,andz=0
or

x=0,y=1l,andz=1
or

x=1,y=1landz=1.
Otherwise, F evaluates to a 0.

It is often more convenient to summarize the above verbal description of a function with a truth table as shown
in Figure 2.7 under the column labeled F. Notice that the four rows in the table where F = 1 match the four cases in
the description above.

m

R|IO|O(FR|IFPIO|I0O|I<

PP PO|IR|IOolo|o|T

PRI OIOIOIO|X

P O|IFRP IO IO IO|N
O|0O|O(FR|IO|FR|F| k-

[ERN

Figure 2.7 Truth table for the function F = xy'z + xyz' +yz

The inverse of a function, denoted by F', can be easily obtained from the truth table for F by simply changing
all the 0’s to 1’s and 1’s to 0’s as shown in the truth table in Figure 2.7 under the column labeled F'. Therefore, we
can write the Boolean function for F' in the sum-of-products format, where the AND terms are obtained from those
rows where F' = 1. Thus, we get

F' =xy7'+xyz+xyz' +xy'z
To deduce F' algebraically from F requires the use of DeMorgan’s Theorem (Theorem 15a) twice. For example,
using the same function
F =xy'z+xyz' +yz
we obtain F' as follows
F' = (xy'z+xyz' +yz)'
= (xy'2)" s (xyz)"* (y2)'
= (X+y+z') « (X'+y'+2) « (y'+2')
There are three things to notice about this equation for F'. First, F' is just the dual of F (as defined in
Section 2.5.2) and then having all the variables inverted. Second, instead of being in a sum-of-products format, it is
in a product-of-sums (and-of-ors) format where three OR terms (also referred to as sum terms) are ANDed together.

Third, from the same original function F, we obtained two different equations for F'. From the truth table, we
obtained

F' =xy7'+xXyz+xyz' +xy'?
and from applying DeMorgan’s Theorem to F, we obtained
F' o= (Xy+z') o (X+y'+z) » (y'+2')

Hence, we must conclude that these two expressions for F', where one is in the sum-of-products format, and the
other is in the product-of-sums format, are equivalent. In general, all functions can be expressed in either the sum-
of-products or product-of-sums format.

38

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

Thus, we should also be able to express the same function F = xy'z + xyz' + yz in the product-of-sums format.
We can derive it using one of two methods. For method one, we can start with F' and apply DeMorgan’s Theorem to
it just like how we obtained F' from F.
F =F"'
= (Xy'Z' +Xyz+xyz' +xy'z')
=(xyz)' s (Xy2)' s (Xy2')'s (y'2')
= (xty+z) o (xty+z') o (x+y'+2) © (X'+y+2)
For the second method, we start with the original F and convert it to the product-of-sums format using the
Boolean theorems.

F =xyz+xyz'+yz
= (chxHy) o (0H2) o (YY) © (Hy42) » (XH24y) » Qebzng) (step 1)
Qrxby) o (Y4XHZ) @ Lybyy) o (ydysz) o (yzy) « (ysz+z) »
(Z+x+y) o (z+%47) (z4y+y) * (24Y+2) * {p4z4y) « @242)

= (xhy) * (x42) « 6 + (342) + (XFZHY) + (1'4X47) + i) e @4+ (249) * 62+9) (step 2)
= (x#y) * (x42) * (cHy#2) « (ray3z') = (x2y'+2) + (@) (step 3)
= (xhy+22') « (XHYY'42) + (K4Y42) + (A7)+ (39'42) » (X +y+2) (step 4)

= (XHy+z) o (XTYHZ) @ fxbyz) o (XHY'H2) @ Grbyhz) o ekyz) o (k) o Oebyz) o (XHy+z) (step 5)

= (xry+2) « (HYHZ) + (k442 © (XY +2)

In the first step, we apply Theorem 12b (Distributive) to get every possible combination of sum terms. For
example, the first sum term (x+x+y) is obtained from getting the first x from xy'z, the second x from xyz', and the y
from yz. The second sum term (x+x+z) is obtained from getting the first x from xy'z, the second x from xyz', and the z
from yz. This is repeated for all combinations. In this step, the sum terms, such as (x+z'+z), where it contains
variables of the form v + v' can be eliminated sincev+v'=1,and 1 « x = x.

In the second and third steps, duplicate variables and terms are eliminated. For example, the term (x+x+y) is
equal to just (x+y+y), which is just (x+y). The term (x+z'+z) is equal to (x+1), which is equal to just 1, and therefore,
can be eliminated completely from the expression.

In the fourth step, every sum term with a missing variable will have that variable added back in by using
Theorems 6b and 9a, which says that x + 0 = x and yy' = 0, therefore, x + yy' = x.

Step five uses the Distributive Theorem, and the resulting duplicate terms are again eliminated to give us the
format that we want.

Functions that are in the product-of-sums format (such as the one shown below) are more difficult to deduce
when they evaluate to a 1. For example, using

F = (a2)+ (CHy'4) » (42)

F' evaluates to a 1 when all three terms evaluate to a 1. For the first term to evaluate to a 1, x can be 0, or y can be 1,
or z can be 0. For the second term to evaluate to a 1, x can be 0, or y can be 0, or z can be 1. Finally, for the last term,
y can be 0, or z can be 0, or x can be either a 0 or a 1. As a result, we end up with many more combinations to
consider, even though many of the combinations are duplicates.

However, it is easier to determine when a product-of-sums format expression evaluates to a 0. For example,
using the same expression

F' o= (XHy+z') « (X+y'+2) « (y'+2')

F' evaluates to 0 when any one of the three OR terms is 0, since 0 AND x is 0; and this happens when
x=1,y=0, and z = 1 for the first OR term,

or
x=1,y=1,and z = 0 for the second OR term,

or

y=1,z=1, and x can be either 0 or 1 for the last or term.

39

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

Similarly, for a sum-of-products format expression, it is easy to evaluate when it is a 1, but difficult to evaluate
when itisaO0.

These four conditions in which F' evaluates to a 0 match exactly those rows in the table shown in Figure 2.7
where F' = 0. Therefore, we see that in general, the unique algebraic expression for any Boolean function can be
specified by either (1) selecting the rows from the truth table where the function is a 1 and use the sum-of-products
format, or (2) selecting the rows from the truth table where the function is a 0 and use the product-of-sums format.
Whatever format we decide to use, the one thing to remember is that we are always interested in only when the
function (or its inverse) is equal to a 1.

Figure 2.8 summarizes these two formats for the function F = xy'z + xyz' + yz and its inverse F'. Notice that the
sum-of-products format for F is the dual with its variables inverted of the product-of-sums format for F'. Similarly,
the product-of-sums format for F is the dual with its variables inverted of the sum-of-products format for F'.

Sum-of-products Product-of-sums

F X'yzZ + Xy'z + xyz' + xyz ~oqual (X+y+z) o (X+y+2Z') o (X+y'+2) o (X'+y+2)

inverse

F' X'y'z' +X'y'z + X'yz' + xy'z' ~Lqual g (X+y'+z") o (X'+y+2") o (X'+Yy'+2) (X'+y'+2)

Figure 2.8 Relationships between the function F = xy'z + xyz' + yz and its inverse F', and the sum-of-products and
product-of-sums formats. The label “inverted dual” means applying the duality principle and then inverting the
variables.

2.6 Minterms and Maxterms

As you recall, a product term is a term with either a single variable, or two or more variables ANDed together,
and a sum term is a term with either a single variable, or two or more variables ORed together. To differentiate
between a term that contains any number of variables with a term that contains all the variables used in the function,
we use the words minterm and maxterm. We are not introducing new ideas here, rather, we are just introducing two
new words and notations for defining what we have already learned.

2.6.1 Minterms

A minterm is a product term that contains all the variables used in a function. For a function with n variables,
the notation m; where 0 < i < 2", is used to denote the minterm whose index i is the binary value of the n variables
such that the variable is complemented if the value assigned to it is a 0, and uncomplemented if itis a 1.

For example, for a function with three variables x, y, and z, the notation ms is used to represent the term in
which the values for the variables xyz are 011 (for the subscript 3). Since we want to complement the variable whose
value is a 0, and uncomplement it if it is a 1. Hence ms is for the minterm x'yz. Figure 2.9(a) shows the eight
minterms and their notations for n = 3 using the three variables x, y, and z.

When specifying a function, we usually start with product terms that contain all the variables used in the
function. In other words, we want the sum of minterms, and more specifically the sum of the one-minterms, that is
the minterms for which the function is a 1 (as opposed to the zero-minterms, that is the minterms for which the
function is a 0). We use the notation 1-minterm to denote one-minterm, and 0-minterm to denote zero-minterm.

40

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

X |y | z| Minterm | Notation X |y | z| Maxterm | Notation
0]0|0] xyZ My 0]0|0| x+y+z Mg
0(0(1 X'y'z m; 0101 x+ty+7Z M,
0(1]0 X'yz m, 0|1|0| x+y'+z M,
0j1(1 X'yz ms 0|11 x+y'+7 Ms
1/0|0 Xy'z my 110|0]| xX+y+z M,
1/0(1 Xy'z ms 110|1]| xX+y+7 Ms
11110 Xyz Mg 11|00 xX+y+z Mg
1/1]1 XYz my 1111 X+y'+7 M-
(@) (b)

Figure 2.9 (a) Minterms for three variables. (b) Maxterms for three variables.

The function from the previous section

F =xy'z+xyz' +yz
=X'yz + xy'z + xyz' + xyz

and repeated in the following truth table has the 1-minterms ms, ms, mg, and ms.

X|y|z|F|F | Minterm | Notation
ojofojo|1 X'y'z Mo
ojof1j011 X'y'z m;
0Oj1(0j0]1 X'yz m,
O(1(1(11]0 X'yz ms
110{0j0 |1 xy'z my
110{1j1|0 Xy'z ms
111{0j1|0 Xyz Mg
1(1{1j1|0 XYz m;

Thus, a shorthand notation for the function is
F(X,y,2) =m3+ ms+ mg+ my

By just using the minterm notations, we do not know how many variables are in the original function.
Consequently, we need to explicitly specify the variables used by the function as in F(x, y, z). We can further
simplify the notation by using the standard algebraic symbol X for summation. Therefore, we have

F(x,y,2)=2(3,5,6,7)
These are just different ways of expressing the same function.
Since a function is obtained from the sum of the 1-minterms, the inverse of the function, therefore, must be the

sum of the 0-minterms. This can be easily obtained by replacing the set of indices with those that were excluded
from the original set.

Example 2.5: Given the Boolean function F(x, y, z) =y + X'z, use Boolean algebra to convert the function to the
sum-of-minterms format.

This function has three variables. In a sum-of-minterms format, all product terms must have all variables. To do
so, we need to expand each product term by ANDing it with (v + v') for every missing variable v in that term. Since
(v+Vv') =1, therefore, ANDing a product term with (v + v') does not change the value of the term.

F =y+xz
= y(x+x')(z+2') + X'z(y+y') expand 1% term by ANDing it with (x+x')(z+z'), and 2" term with (y+y")
=XyZ +Xxyz'+ X'yz + X'yz' + ¥yz + X'y'z
=my+Mg+Mmz+m,+m;

41

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

=3(1,2,3,6,7) sum of 1-minterms .

Example 2.6: Given the Boolean function F(x, y, z) =y + X'z, use Boolean algebra to convert the inverse of the
function to the sum-of-minterms format.

F' =(y+x72) inverse
=y'e (x2)' use DeMorgan
=y'e (x+Z') use DeMorgan
zy'xX+y'7 use Distributive Theorem to change to sum of products format
=y'X(z+2') + y'Z' (x+X") expand 1% term by ANDing it with (z+z'), and 2" term with (x+x")
=XY'Z+Xy'Z + %y + XYy
=Mmg+ My + My
=3(0,4,5) sum of 0-minterms .

2.6.2 * Maxterms

Analogous to a minterm, a maxterm is a sum term that contains all the variables used in the function. For a
function with n variables, the notation M; where 0 < i < 2", is used to denote the maxterm whose index i is the binary
value of the n variables such that the variable is complemented if the value assigned to it is a 1, and
uncomplemented if itis a 0.

For example, for a function with three variables x, y, and z, the notation M is used to represent the term in
which the values for the variables xyz are 011. For maxterms, we want to complement the variable whose value is a
1, and uncomplement it if it is a 0. Hence Mj is for the maxterm x +y' + z'. Figure 2.9(b) shows the eight maxterms
and their notations for n = 3 using the three variables x, y, and z.

We have seen that a function can also be specified as a product of sums, or more specifically, a product of 0-
maxterms, that is, the maxterms for which the function is a 0. Just like the minterms, we use the notation
1-maxterm to denote one-maxterm, and 0-maxterm to denote zero-maxterm. Thus, the function

F(X,y,2) =xy'z+xyz' +yz
=(x+y+z)e (x+y+z)e (x+y +2z)e (X' +y+2)

which is shown in the following table

x|y|z]|F|F | Maxterm | Notation
00|00 | 1| x+y+z Mg
01020 | 1| x+y+Z M,
01200 | 1] x+ty+z M,
0121 (2)1]|0|x+ty+7 M,
10|00 | 1] x+y+z M,
10110 |x+y+7 Ms
1(1]0)1]0|x+y+z Mg
111110 |x+y+7 My

can be specified as the product of the 0-maxterms My, My, M,, and M,. The shorthand notation for the function is
F(X,y,2) =Mg* My* My My

Again, by using the standard algebraic symbol I for product, the notation is further simplified to
F(x,y,2) =N (0,1, 2, 4)

The following summarizes these relationships for the function F = xy'z + xyz' + yz and its inverse. Comparing
these equations with those in Figure 2.8, we see that they are identical.

42

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

F(X,y,2) =X'yz+Xy'z+xyz +xyz
=Mz + Mg+ Mg+ My

=2(3,5,6,7) ¥ 1-minterms I
= (X+y+z) . (X+y+z') . (X+y'+z) . (X'+y+Z) eqUIvaIent
=Mo My * My s My M 0-maxterms . |
=MN0,1,2,4) inverted inverse
F(X,Y,2) =Xy Z+XYyz+XyzZ +xy'?Z duals
=Me+my+m,+my ¥ 0-minterms | |
=3(0, 1, 2, 4) _
equivalent

= (x+y'+z') o (XHy+z') o (X'Hy'+Z) o (X'+y'+2")
=M3° Ms' Mg‘ M7
=MN(@3,5,6,7)

Notice that it is always the > of minterms and I of maxterms; you never have ~ of maxterms or I of minterms.

M 1-maxterms |

Example 2.7: Given the Boolean function F(x, y, z) =y + X'z, use Boolean algebra to convert the function to the
product-of-maxterms format.

To change a sum term to a maxterm, we expand each term by oRring it with (v) for every missing variable v in
that term. Since (w') = 0, therefore, ORing a sum term with (vw') does not change the value of the term.

F =y+xtz
=y +(x2)
= (y+x')(y+2) use Distributive Theorem to change to product of sums format
= (y+X' +22')(y+z+xx") expand 1 term by oring it with zz', and 2" term with xx'
= (X +y+27) (X +y+7') (x+y+2) Oc+y+2}
= |\/|4 . M5 . MO
=1(0, 4,5) product of 0-maxterms .

Example 2.8: Given the Boolean function F(x, y, z) = y + X'z, use Boolean algebra to convert the inverse of the
function to the product-of-maxterms format.

F'=(y+x2) inverse
=y'e(X'2) use DeMorgan
=y'e (x+2') use DeMorgan

= (y' +xx' +2z') * (x+z' +yy') expand 1% term by ORing it with xx' +zz', and 2" term with yy'

= (XY 42) (xty' +7') (X +Y' +2) (X' 4y +7") (x+y+2") eky—+2)

:MZ- M3- M6° |\/|7o Ml

=MNn(,23,6,7) product of 1-maxterms .

2.7 Canonical, Standard, and non-Standard Forms

Any Boolean function that is expressed as a sum of minterms, or as a product of maxterms is said to be in its
canonical form. For example, the following two expressions are in their canonical forms

F=x'yz+xy'z+xyz +xyz
F'= (xty'+z') « (X+y+2') o (X'+y'+2) © (X'+Y'+2")
As noted from the previous section, to convert a Boolean function from one canonical form to its other

equivalent canonical form, simply interchange the symbols X with I1, and list the index numbers that were excluded
from the original form. For example, the following two expressions are equivalent

43

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

Fi(x,y,2)=2(3,5,6,7)
Fa(x,y,2)=1(0, 1, 2,4)

To convert a Boolean function from one canonical form to its inverse, simply interchange the symbols > with
I, and list the same index numbers from the original form. For example, the following two expressions are inverses

Fi(x,y,2)=2(3,5,6,7)
Fa(x,y,2)=T11(3,5,6,7)

A Boolean function is said to be in a standard form if a sum-of-products expression or a product-of-sums
expression has at least one term that is not a minterm or a maxterms respectively. In other words, at least one term in
the expression is missing at least one variable. For example, the following expression is in a standard form because
the last term is missing the variable x.

F=xy'z+xyz'+yz

Sometimes, common variables in a standard form expression can be factored out. The resulting expression is no
longer in a sum-of-products or product-of-sums format. These expressions are in a non-standard form. For
example, starting with the previous expression, if we factor out the common variable x from the first two terms, we
get the following expression, which is in a non-standard form.

F=x(y'z+yz) +yz

2.8 Logic Gates and Circuit Diagrams

Logic gates are the actual physical implementations of the logical operators discussed in the previous sections.
Transistors, acting as tiny electronic binary switches are connected together to form these gates. Thus, we have the
AND gate, the OR gate, and the NOT gate (also called the INVERTER) for the corresponding AND, OR, and NOT logical
operators. These gates form the basic building blocks for all digital logic circuits. The name “gate” comes from the
fact that these devices operate like a door or gate to let or not to let things (in our case, current) through.

In drawing digital circuit diagrams, also called schematic diagrams, or just schematics, we use special logic
symbols to denote these gates as shown in Figure 2.10. The AND gate, or specifically, the 2-input AND gate, in
Figure 2.10(a) has two input connections coming in from the left and one output connection going out on the right.
Similarly, the 2-input OR gate in Figure 2.10(b) has two input connections and one output connection. The INVERTER
in Figure 2.10(c) has one input coming from the left and one output going to the right. The outputs from these gates,
of course, are dependent on their inputs, and are defined by their logical functions.

- D> >
(@) (b) (©
Figure 2.10 Logic symbols for the three basic logic gates: (a) 2-input AND; (b) 2-input OR; (C) NOT.

Sometimes, an AND gate or an OR gate with more than two inputs are needed. Hence, in addition to the 2-input
AND and OR gates, there are 3-input, 4-input, or as many inputs as are needed of the AND and OR gates. In practice,
however, the number of inputs is limited to a small number, such as five. The logic symbols for some of these gates
are shown in Figure 2.11(a) to (d).

There are several other gates that are variants of the three basic gates that are also often used in digital circuits.
They are the NAND gate, the NOR gate, the XOR gate, and the XNOR gate. The NAND gate is derived from an AND gate
and the INVERTER connected in series so that the output of the AND gate is inverted. The name “NAND” comes from
the description “Not AND.” Similarly, the NOR gate is the OR gate with its output inverted. The XOR, or eXclusive OR
gate is like the OR gate except that when both inputs are 1, the output is a 0 instead. The XNOR, or eXclusive NOR
gate is just the inverse of the XOR gate for when there are an even number of inputs (like 2 inputs). When there are
an odd number of inputs (like 3 inputs), the XOR is the same as the XNOR. The logic symbols and their truth tables
for some of these gates are shown in Figure 2.11 and Figure 2.12 respectively.

44

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

Notice, in Figure 2.11, the use of the little circle or bubble at the output of some of the logic symbols. This
bubble is used to denote the inverted value of a signal. For example, the NAND gate is the inverse of the AND gate,
thus the NAND gate logic symbol is the same as the AND gate logic symbol except that it has the extra bubble at the
output.

-2 D3> D>

@ ® © @ ©
- 2D - -
® @ ® O 0

Figure 2.11 Logic symbols for: (a) 3-input AND; (b) 4-input AND; (c) 3-input OR; (d) 4-input OR; (e) 2-input NAND;
(f) 2-input NOR; (g) 3-input NAND; (h) 3-input NOR; (i) 2-input XOR; (j) 2-input XNOR.

2-NAND | 2-NOR | 2-XOR | 2-XNOR

X |y (xey)' (x+y)' | xOy xOy

0]0 1 1 0 1

0|1 1 0 1 0

11]0 1 0 1 0

1] 1 0 0 0 1

3-AND 3-OR 3-NAND 3-NOR 3-XOR 3-XNOR

X y z Xeyez X+y+z (xeyez) | x+y+2) | xOyDOz XOy®z
00O 0 0 1 1 0 0
0|01 0 1 1 0 1 1
0]11]0 0 1 1 0 1 1
0|11 0 1 1 0 0 0
11010 0 1 1 0 1 1
1101 0 1 1 0 0 0
11110 0 1 1 0 0 0
1111 1 1 0 0 1 1

Figure 2.12 Truth tables for: 2-input NAND; 2-input NOR; 2-input XOR; 2-input XNOR; 3-input AND; 3-input
OR; 3-input NAND; 3-input NOR; 3-input XOR; 3-input XNOR.

The notations used for these gates in a logical expression are (xy)' for the 2-input NAND gate, (x+y)' for the 2-
input NOR gate, x [0 y for the XOR gate, and x ® y for the XNOR gate.

Looking at the truth table for the 2-input XOR gate, we can derive the equation for the 2-XOR gate as
xOy=xy+xy'
Similarly, the equation for the 2-input XNOR gate as derived from the 2-XNOR truth table is
X®@y=xYy +xy
The equation for the 3-input XOR gate is derived as follows
xOyQz
=(xOy)dz
=(Xy+xy')0z

=(Xy+xy')z + (Xy +xy')z
=Xyz' +xy'Z' + (Xy) (xy')'z

45

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

=Xyz XY’z + (xty') (X'+y) 2
=X'YZ' +XY'Z + 2+ XYZ + XY'Z + Y2
=X'y'z+X'yz' + xy'z' + xyz
The last four product terms in the above derivation are the four 1-minterms in the 3-input XOR truth table. For 3
or more inputs, the XOR gate has a value of 1when there is an odd number of 1’s in the inputs, otherwise, it is a 0.

Notice also that the truth tables for the 3-input XOR and XNOR gates are identical. It turns out that for an even
number of inputs, XOR is the inverse of XNOR, but for an odd number of inputs, XOR is equal to XNOR.

All these gates can be interconnected together to form large complex circuits which we call networks. These
networks can be described graphically using circuit diagrams, with Boolean expressions or with truth tables.

Example 2.9: Draw the circuit diagram for the equation F(x, y, z) =y + X'z.

In the equation, we need to first invert x, and then AND it with z. Finally, we need to OR y with the output of the
AND. The resulting circuit is shown below. For easy reference, the internal nodes in the circuit are annotated with the
two intermediate values x' and x'z.

X'
X

z

y ¢

Example 2.10: Draw the circuit diagram for the equation F(X, y, z) = xyz + xyz' + X'yz + x'yz' + X'y'z.

The equation consists of five AND terms that are oRred together. Each AND term requires three inputs for the
three variables. Hence, the circuit shown below has five 3-input AND gates, whose outputs are connected to a 5-input
OR gate. The inputs to the AND gates come directly from the three variables x, y, and z, or their inverted values.
Notice that in the equation, there are six inverted variables. However, in the circuit, we do not need six inverters,
rather, only three inverters are used; one for each variable.

X Z

vV]Y

P
|—#/

U E U E U

2.9 Designing a Car Security System

In a car security system, we usually want to connect the siren in such a way that the siren will activate when it is
triggered by one or more sensors. In addition, there will be a master switch to turn the system on or off. Let us
assume that there is a car door switch D, a vibration detector switch V, and the master switch M. We will use the
convention that when the door is opened D = 1, otherwise, D = 0. Similarly, when the car is being shaken, V = 1,
otherwise, V = 0. Thus, we want the siren S to turn on, that is, set S = 1, when either D = 1 or V = 1, or when both
D = 1and V =1, but only for when the system is turned on, that is, when M = 1. However, when we turn off the
system, and either enter or drive the car, we do not want the siren to turn on. Hence, when M = 0, it does not matter
what values D and V have, the siren should remain off.

Given the above description of a car security system, we can build a digital circuit that meets our specifications.
We start by constructing a truth table, which is basically a precise way of stating the operations for the device. The
table will have three input columns M, D, and V, and an output column S as shown below

46

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

i Il === =] <
= =]]
R|olk|lo|r|lolkr|lo|<
== =]l=]{=] %]

The values under the S column are obtained from interpreting the description of when we want the siren to turn
on. When M = 0, we don’t want the siren to come on, regardless of what the values for D and V are. When M = 1,
we want the siren to come on when either or both D and V is a 1.

The truth table can be described formally with a logic expression written in words as
S = (M AND (NOT D) AND V) OR (M AND D AND (NOT V)) OR (M AND D AND V)
or preferably using the simpler notation of a Boolean function

S=(MD'V)+(MDV)+(MDV)

Again, what this equation is saying is that we want the siren to activate, S = 1, when the master switch is on and
the door is not opened and the vibration switch is on, or the master switch is on and the door is opened and the
vibration switch is not on, or the master switch is on and the door is opened and the vibration switch is on. Notice
that we are only interested in the situations when S = 1. We ignore the rows when S = 0. When we construct circuits
from truth tables, we always use only the rows where the output is a 1.

Finally, we can translate this equation into a circuit diagram. The translation is a simple one-to-one mapping of
changing the AND operator into the AND gate, the OR operator into the OR gate, and the NOT operator into the
INVERTER. Thus, we get the following circuit diagram for our car security system

M D

K4

A careful reader might notice that the Boolean equation shown above and the circuit for specifying when the
siren is to be turned on can be simplified to

D
i~ D
S=M(D+V) M

This simplified equation says that the siren is to be turned on only when the master switch is on and either the door
switch or vibration switch is on. Just by using simple reasoning, we can see that this simplified circuit will do
exactly what the previous circuit does. In other words, both circuits are functionally equivalent.

More formally, we can use the Boolean Theorems from Section 2.5.1 to show that these two equations are
indeed equivalent as follows

S=(MD'V)+(MDV)+(MDV)

47

Digital Logic and Microprocessor Design with VHDL

=M(D'V+DV'+DV)
=M(D'V+DV'+DV+DV)
=M (D(\V'+V)+V(D'+D))
=M (D(1) + V(1))

=M (D+V)

by Distributive Theorem 12a
by Idempotent Theorem 7b
by Distributive Theorem 12a
by Inverse Theorem 9b

by Identity Theorem 6a

Chapter 2 - Digital Circuits

Figure 2.13(a) shows a sample simulation trace of the car security system circuit. Between times 0 and 200ns,
the master switch M is a 0, so regardless of the values of D and V, the siren is off (Siren=0). Between times 200ns
and 600ns, M = 1. During this time, whenever either D = 1 or V = 1, the siren is on. This is a functional trace of the
circuit, and so all the signal edges line up exactly, i.e., the output signal edge changes at exactly the same time (with
no delay) as the input edge that caused it to change. For a timing trace, on the other hand, the output signal edge will
be delayed slightly after the causing input edge as shown in Figure 2.13(b).

Mare l 1. Ling .-.'_LIIL'I'I:'- A IUI'I*'.- 41 ILll'l‘? *.!'.Ul_r'li- L IUII*': s

=M T |
7 | |

- | |
=L SEan | |
(@)
Hame l 1. 0ns 200 Oris =0.0ns 400.0n= SO0 Oris E00.0n= 00

= Il T |
= | |
o 1

=g Sran | |

(b)

Figure 2.13 Sample simulation trace of the car security system circuit: (a) functional trace; (b) timing trace.

When building a circuit, besides having a functionally correct circuit, we also want to optimize it in terms of its
size, speed, heat dissipation, and power consumption. We will see in later sections how circuits are optimized.

2.10 VHDL for Digital Circuits

A digital circuit that is described with a Boolean function can easily be converted to VHDL code using the
dataflow model. At the dataflow level, a circuit is defined using built-in VHDL logic operators such as AND, OR, and
NOT. These operators are applied to signals using concurrent signal assignment statements.

2.10.1 VHDL code for a 2-input NAND gate

Figure 2.14 shows the VHDL code for a 2-input NAND gate. It also serves as a basic template for all VHDL
codes. Lines starting with two hyphens are comments. The LIBRARY and USE statements specify that the IEEE
library is needed and that all the components in that library package can be used. These two statements are
equivalent to the “#include” preprocessor line in C++.

Every component defined in VHDL, whether it is a simple NAND gate or a complex microprocessor, has two
parts: an ENTITY section and an ARCHITECTURE section. The entity section is similar to a function declaration in C++
and serves as the interface between the component and the outside. It declares all the input and output signals for a
circuit. Every entity must have a unique name; in the example, the name NAND2gate is used. The entity contains a
PORT list, which, like a parameter list, specifies the data to be passed in and out of the component. In the example,
there are two input signals called x and y of type STD_LOGIC and an output signal called f of the same type. The
STD_LOGIC type is like the BIT type, except that it contains additional values besides just 0 and 1.

48

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

The architecture is the definition of the component, and contains the code that realizes the operation of the
component. For every architecture, you need to specify its name, and which entity it is for. In the example, the name
is Dataflow, and it is for the entity NAND2 gate. It is possible for one entity to have more then one architecture,
since an entity can be implemented in more than one way. Within the body of the architecture, we can have one or
more concurrent statements. Unlike statements in C++ where they are executed in sequential order, concurrent
statements in the architecture body are executed in parallel. Thus, the ordering of these statements is irrelevant. The
symbol “<="is used for a signal assignment statement. The expression on the right-hand side of the <= symbol is
evaluated when either x or y changes values (either from 0 to 1, or from 1 to 0), and the result is assigned to the
signal on the left-hand side. The NAND operator is a built-in VHDL operator.

-- this is a datafl ow nodel of a 2-input NAND gate
LI BRARY | EEE;
USE | EEE. STD LOd C_1164. al | ;

ENTI TY NAND2gate IS PORT (
x: I N STD_LQOG G
y: IN STD LCd C
f: QUT STD LCA O);

END NAND2gat e;

ARCHI TECTURE Dat af | ow OF NAND2gate IS
BEA N

f <= x NAND vy; -- signal assignment
END Dat af | ow;

Figure 2.14 VHDL code for a 2-input NAND gate.

2.10.2 VHDL code for a 3-input NOR gate

Figure 2.15(a) shows the VHDL code for a 3-input NOR gate. In addition to the three input signals x, y, and z,
and one output signal f declared in the entity section, this example has two internal signals, xory and xoryorz, both of
which are of type STD_LOGIC. The keyword SIGNAL in the architecture section is used to declare these two internal
signals. Internal signals are used for naming connection points (or nodes) within a circuit. Three concurrent signal
assignment statements are used. All the signal assignment statements are executed concurrently, so the ordering of
the statements is irrelevant. The coding of these three signal assignment statements is based on the 3-input NOR gate
circuit shown in Figure 2.15(b).

Figure 2.15(c) shows a sample simulation trace of the circuit. In the trace, we see that the output signal fisa 1
only when all three inputs are 0’s. This occurs twice, first time between 0 and 100ns, and second time between
800ns and 900ns. For all the other times, f is a 0, since not all three inputs are 0’s. Hence, the simulation trace shows
the correct operation of this circuit for the 3-input NOR gate.

LI BRARY | EEE;
USE | EEE. STD_LOG C _1164. al | ;

ENTI TY NOR3gate |I'S PORT (
x: IN STD_LCG G
y: IN STD LCG C
z: IN STD _LOG G
f: OQUT STD LOd O);
END NOR3gat e;

ARCHI TECTURE Dat af | ow OF NOR3gate | S
SIGNAL xory, xoryorz : STD LOQ G
BEG N
xory <= x ORYy; -- three concurrent signal assignnents

49

Digital Logic and Microprocessor Design with VHDL

Chapter 2 - Digital Circuits

xoryorz <= xory OR z;
f <= NOT xoryorz;

END Dat af | ow,

@

X xory
y xoryorz ;
z

(b)
Marme: l 1EIEI.IEIn5 EEIEI.IEIns HDD.II:Ins fiEII:I.IEIna EEII:I.IEIna EEIEI.IEInS ?EIEI.IEInS EEIEI.IEInS BEIEI.IEInS
1=
= |
=y | |

= | T L 1T 1 LT

= f |]

L

(©

Figure 2.15 3-input NOR gate: (a) VHDL code; (b) circuit; (c) simulation trace.

2.10.3 VHDL code for a function

Figure 2.16 shows the VHDL code, and the simulation trace for the car security system circuit of Section 2.9.

The function implementedisS=(MD'V) + (MD V') + (MDV).

This VHDL code (as well as the ones from the two previous sections) is written at the dataflow level, not
because the name of the architecture is “Dataflow.” Dataflow level coding uses logic equations to describe a circuit,
and this is done by using the built-in VHDL operators such as AND, OR, and NOT in concurrent signal assignment

statements.

LI BRARY | EEE;
USE | EEE. STD LCd C _1164. al | ;

ENTITY Siren IS PORT (
M IN STD LOG C;
D IN STD LOG C;
V: IN STD LOG G
S: QUT STD LOd ©);
END Siren;

ARCHI TECTURE Dat afl ow OF Siren IS

BEG N
term1 <= M AND (NOT D) AND V;
term?2 <= M AND D AND (NOT V);
term3 <= M AND D AND V;
S<=terml ORterm2 ORtermS3;
END Dat af | ow,

SIGNAL term1, term2, term3: STD LCG C

@

50

Digital Logic and Microprocessor Design with VHDL

Chapter 2 - Digital Circuits

Marme: 'L 1EIIZI.IEIn5 EEIIZI.IEIns SDD.IIIIns flEIIZI.IEIns EIZIEI.IEIns EIZIEI.IEIns ?EIEI.IEIns BIZIEI.IEIns EIEIEI.IEIns

P i
=D | | | L
>-v [T | [1L T 1 [1 T
- 5 |

(b)

Figure 2.16 The car security circuit of Section 2.9: (a) dataflow VHDL code; (b) simulation trace.

2.11 Summary Checklist

| Iy vy iy oy oy oy oy oy oy oy oy o oy o oy)

Binary number

Hexadecimal number

Binary switch

AND, OR, and NOT

Truth table

Boolean algebra axioms and theorems

Duality principle

Boolean function and the inverse

Product term

Sum term

Sum-of-products, or-of-ands

Product of sums, and-of-ors

Minterm and maxterm

Sum-of minterms

Product-of-maxterms

Canonical, standard, and non-standard form

Logic gate, logic symbol

Circuit diagram

NAND, NOR, XOR, XNOR

Network

VHDL

Be able to derive the Boolean equation from a truth table, or vice versa
Be able to derive the circuit diagram from a Boolean equation, or vice versa
Be able to derive the circuit diagram from a truth table, or vice versa
Be able to use Boolean algebra to reduce a Boolean equation

51

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

2.12 Problems

2.1 Convert the following decimal numbers to binary:
a) 66
b) 49
c) 513
d) 864
e) 1897
f) 2004

2.2 Convert the following unsigned binary numbers to decimal, hexadecimal and octal:

a) 11110

b) 11010

c) 100100011
d) 1011011

e) 1101101110
f) 101111010100

Answer:
a) 3019, 1E4, 365
e) 8784, 36E, 15565

2.3 Convert the following hexadecimal numbers to binary:
a) 66
b) E3
c) 2FE8
d) 7C2
e) 5A2D
f) EO08B

2.4 Derive the truth table for the following Boolean functions.
a) F(xy,z) =xYy'7' +X'yz +xy'z' + xyz
b) F(x\y,2) =xy'z + X'yz' + xyz + xyz'
c) F(wxX\y,z) =w'Xy'z + W'Xyz + WXy'z + wxyz
d) F(wx\y,z) =wxy'z + w'yz' + wxz + xyz'
e) F(xy,z) =xy'+XxYy'z+xyz
f) F(wXy,z) =w'z' + w'xy + wWx'z + wxyz
9) F(xy.z)=[(x+y") (y2)'] (xy' +xy)
h) F(N3,N2,N1,No) = Na'N2'N1Ng' + N3'Np'NiNg + N3N2'NiNg' + N3No'NiNg + N3NoN;y'

No' + N3N2N;Np

Answer:

9)

X Iy [z [X [y [x+y yz [(y2)' [[x+y) (v2)' T I xy' [Xy | (xy' +XYy) | [(x+y) (v2)' T (xy' +XYy)
olofJofaf2] 2 o] 1 1 o] o0 0 0
olof1]1]1] 2 o] 1 1 0] o0 0 0
ol1]of1]o] o o] 1 0 01 1 0
of1]1]1]o] o [21] o 0 01 1 0
1f{ofofof1] 1 Jo] 1 1 1]0 1 1
1fofrfof1] 12 Jo] 1 1 1]0 1 1
1{1]ofofo] 1 Jo] 1 1 0] o0 0 0
1l1]2fofo] 2 [1] o 0 0] o0 0 0

2.5 Derive the Boolean function for the following truth tables:

52

Chapter 2 - Digital Circuits

Digital Logic and Microprocessor Design with VHDL

b)

a)

z

F

No

Ny

w x|y

0[(0j0J0]0
0j0[0|1]0
0jo0[1|0]1
0jo0[1]1]0
0j1{0|0]1
0j1]|0|1]1
0j1{1]/0]0
0Oj1(1]1]1
1/0(0]0]0
1/0]0]1]1
1/0]1]0]1
1/0(1]1]0
1/1]0]0]1
1/1]0]1]1
1/1]1/0]0
111111

0[{0]0]O

0(0]1)0

0j1]0)1

0Oj1]1)1

1/0/0]0

1/0[1]0

1/1]0]1
1/1]1]0

d)

c)

N,

Ns

F2

1
1
1
1
0
1
0
0
1
1
0
0
1
1
1
1

Fy

1
0

1

1
1
0

1
1
0
1
0

1

0j]0j0]oO

0j0j0]1

0jo0j1j(0})0

0j0]1]1

0j1/0(/0}0

0[1]0]1

0l1(1]0

0(1]1]1

1/0]0J0] 0
1/0]0]1
1]0]1]0

11011

1/1]0]0
1]1]0]1

1]1]1]0)0
11111

Use a truth table to show that the following expressions are true:

a) W'Z'+ WXy +Wx'z+wxyz=w'z"+xyz +wx'y'z + wyz

b) z+y' +yz=1

2.6

C) Xy'Z'+x +xyz'=x"+7
d) xy+xz+yz=xy+x7z

Answer:

d)

Xy+X'z

Xy+X'z+yz

yz

X'z

Xy

53

Digital Logic and Microprocessor Design with VHDL

2.7

2.8

29

1

1

0

1

0

1

1

1

1

0

e) WwX'yz'+w'x'yz + wx'yz' + wx'yz + wxyz = y(x' + wz)
f) W'Xy'z + W'xyz + wxy'z + WXyz = xz
Q) Xiyi + CilXi + Yi) = XiYiCi + XiiCi' + Xi¥i'Ci + Xi'ViCi

h) xy; + Ci(xi +yi) = Xiyi + ci(xi O y;)

Use Boolean algebra to show that the expressions in Problem 2.6 are true.

a) Answer

w'z' + w'xy + wx'z + wxyz

=wX'y'Z' + wX'yz' + wxy'z' + w'xyz' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz

=wX'Y'Z' + wX'yz' + wxy'z' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz
=W'z' + w'xyz + wx'y'z + wx'yz + wxyz
= W'z + (W'Hw)xyz + wx'y'z + w(x'+x)yz

=W'z'+ xyz + wx'y'z + wyz

c)

Answer:

XY'Z'+X +XxyzZ'=xz' (y+y) +x
xz'+x
xz'+1x

=+ +x)@ + 1) +x)
=lelel(Z+X)

=x'+7z
f)
Answer:

W'XY'z + W'Xyz + WXy'z + wxyz
=xy'z(w' + w) + xyz(w' + w)
=Xy'z + xyz
=xz(y +Y)
=Xz

9)
Answer:
XiYi + Ci(Xi +Yi)

= XiYi + XiCi + YiCi

= XiYi(Ci + €') + Xi(yi + i)ci + (i + X" JyiCi

= XiYiCi + XiYiCi' + %¥i6i + XiYi'Ci + %¥i€i + X{'YiCi

= XiYiCi + XiYiCi' + Xi¥i'Ci + Xi'YiCi

Use Boolean algebra to reduce the functions in Problem 2.4 as much as possible.

Answer:
a)

F(x,y,2) = X'y'z' + X'yz + xy'z' + xyz
=Yz (x+Xx) +yz(x + X')
=y +yz
=(y+7) (' +2)
zy®z

Chapter 2 - Digital Circuits

Any function can be implemented directly as specified or as its inverted form with a not gate added at the

54

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

final output. Assume that the circuit size is proportional to only the number of AND gates and OR gates, i.e.
ignore the number of NOT gates in determining the circuit size. Determine which form of the function (the
inverted or un-inverted) will result in a smaller circuit size for the following function. Give your reason and
specify how many AND and OR gates are needed to implement the smaller circuit.

F(x,y,2) =X'y'Z' + X'y'z + Xy'z + xy'z' + xyz

2.10 Derive the truth table for the following logic gates:
a) A 4-input AND gate.
b) A 4-input NAND gate.
c) A4-input NOR gate.
d) A 4-input XOR gate.
e) Ad-input XNOR gate.
f) A b5-input XOR gate.
g) A5-input XNOR gate.
2.11 Derive the truth table for the following Boolean functions.
a) F(wxyz)=[(x®y) +(xyz)] (W +x+2)
b) F(xy,2)=x0Oy0Oz
c) Fwxy,z)=[wxyz+wz(yOXx)]
2.12 Use Boolean algebra to convert the functions in Problem 2.11 to:
a) The sum-of-minterms format.
b) The product-of-maxterms format.
2.13 Use Boolean algebra to reduce the functions in Problem 2.11 as much as possible.
2.14 Use a truth table to show that the following expressions are true:
a) (xUy)=(x0oy)
b) xOy'=xQ@y
) WOX)@yI2))=(wOX)O® (y®2)=((wOx)®y)®2).
Answer
Wx|y|Z]|whx|yDz | (wOx)® (yOz) | wOX | yOz | (WOX) © (yO7) | ((WOX)®y)®2)
0/0]|0|0O]| O 0 1 1 1 1 1
0|0|0f1] O 1 0 1 0 0 0
0|0|1]0]| O 1 0 1 0 0 0
0|0|1|1] O 0 1 1 1 1 1
0|1]0f0]| 1 0 0 0 1 0 0
0|1]0f1]| 1 1 1 0 0 1 1
0|1]1]0]| 1 1 1 0 0 1 1
O|1]1(1| 1 0 0 0 1 0 0
1]1]0/0|0] 1 0 0 0 1 0 0
1]0|/0|1] 1 1 1 0 0 1 1
1]0]1|0] 1 1 1 0 0 1 1
1]0)1]1] 1 0 0 0 1 0 0
1]1]1/0|/0] O 0 1 1 1 1 1
1]1/0|1] O 1 0 1 0 0 0
1]1/1/0] O 1 0 1 0 0 0
1]1|]1]1] O 0 1 1 1 1 1
d) ()% ((xy)y) T'=x0y
2.15 Use Boolean algebra to show that the expressions in Question 2.14 are true.
d)

55

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

Answer:
F=[((xy)%) () T
= ((xy)x) + ((xy)'y)

(X +y x+ (X +y)y
¥+ XY + XY + Yy
=xy' + Xy

=x0y

2.16 Use Boolean algebra to show that XOR = XNOR for three inputs.
Answer:
xOyOz=x0Oy)Oz
(xy+xy) Dz
(Xy +xy') 2+ (Xy +xy') 2’
(Xy)" - (xy')' 2+ X'yz' + xy'Z'
=(x+y) - (X +y)z+ Xy +xy'7
=Xz +Xyz+X'y'z +yyz+x'yz' + xy'z'
=(xy +Xy)z+(Xy +xy) 7'
=(xy +Xy)z+ (xy +xy) 7
= (xO®y) z+ (x®y)' '
=XxOy®z

2.17 Express the Boolean functions in Question 2.4 using:
a) The X notation.
b) The I notation.

2.18 Write the following expression as a Boolean function in the canonical form:
c) F(xvy,2)=2(1,3,7)
d) F(w,x,y,2)=2(1,3,7)
e) Fx,y,2)=N(,3,7)
) F(w,xy2)=1(13,7)
g9 F &Y 2=2(1,37)
hy F(x,y,2)=T(13,7)

2.19 GivenF' (x,Y,2) =2(1, 3, 7), express the function F using a truth table.
Answer:
F' is expressed as a sum of its O-minterms. Therefore, F is the sum of its 1-minterms = (0, 2, 4, 5, 6). Using
three variables, the truth table is as follows:

X |y |z Minterms F
0|0]|0O0 my=x'y" z' 1
0|01 m;=x"'y'z 0
0|1]0 m,=x"'y z' 1
0|11 ms=x"y Z 0
1/01]0 my=xy'z' 1
101 Ms=X y' Z 1
11110 Mg=xy ' 1
1111 m;=xy z 0

2.20 Use Boolean algebra to convert the function F(x, y, z) = 2(3, 4, 5) to its equivalent product-of-sum canonical
form.
Answer:
F :2(3,4,5)=m3+m4+m5
=X'yz+xy'z’ +xy’z

XA XYY }

56

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

=y (X +Y +Y)X +Y +2)
(: Hl Z! ;:)(X’ + Z, + y!)E;:5 Z, Z)
(Y + X+ X3y y + X +2)

(1 1 i ;E)(l 1 i ![1)E![?[1 Z)

(1 + 2+ -4y +2+2)

(zZ+x+xX)(z+x+y)(z+x+2)
@+y +x)(z+y +y)z+y +2)
(242" XYz 2 by YWz b 2 2)

=(CHY +D) (CHY +2) (Hy+2) (+Y +2) K+ +2)

2.21 Given F =xy'z' + xy'z + xyz' + xyz, write the expression for F ' using:

a) the AND-of-OR format

Answer:
AND-of-OR format is obtained by using the duality principle or De Morgan’s Theorem:
F'= (X+y+z) o (X'+y+Z') o (X'+y'+2) o (X'+Y'+7)

b) the OR-of-AND formats

Answer:
OR-of-AND format is obtained by first constructing the truth table for F and then inverting the 0’s and 1’s
to get F . Then we simply use the AND terms where F' = 1.

Rk k|olo|lolo|x
Rk |o|lo|k|r|ololx
Rlo|k|o|k|olk|o|~
[EN FEN FEN PN e Y === 1!
o|lo|o|o|r|r|r|~|T

F'=xy7' +xy'z+xyz' +x'yz

2.22 Use Boolean algebra to convert the equation F=w ® x ® y © z to:
a) The sum-of-minterms format.
Answer
F=wOXx@y®z
=(Wwx+wx')Oy©®z
= [(wx +w'Xx")y + (wx +w'x')'y']z + [(wx +wXx)y +(wx+wx)y]z
= wxyz + wx'yz + (wx)' (W'x')'y'z + [(wx + w'x')y + (wx +w'x')'y']' Z'
= Mgs + Mg + (WX)(WHX)Y'z + [(Wx + WX)y + (Wx +w'X')'y'] 7'
= M5+ M3 +WXY'Z+wx'y'z + [(wx +wXx')y +(wx+wx')y]z
= Mg + Mg + Mg + Mg + [(Wx +wX') y]' [(wx +wx')"y] 2
= Mys + Mg + Mg + Mg + [(WX + WX)" +y"] [(wx +wX')+y]Z
= Mgs + Mg + Mg + Mg + [(Wx)" (W) +y"] [wxz' + WX’ 2" +y7']
Mys + Mg + Mg + Mg + [(WX")(Wx) +y'] [wxz' + WX’ 2" +y7']
=M+ Mg+ Mg+ Mg+ [Wx+wx' +y'][wxz'+ wx' z' +yz']
=mys + Mg + mg + mg + W'xyz' + wx'yz' + wxy'z' + w'x'y'z'
=Mys + M3 + Mg + Mg + Mg + Mg + My + My

b) The product-of-maxterms format.
2.23 Write the complete dataflow VHDL code for the Boolean functions in Problem 2.4,

2.24 Write the complete dataflow VHDL code for the logic gates in Problem 2.10.

57

Digital Logic and Microprocessor Design with VHDL Chapter 2 - Digital Circuits

2.25 Write the complete dataflow VHDL code for the Boolean functions in Problem 2.11.

58

Chapter 3

Combinational Circuits

Control Data
Inputs Inputs
Y
Control Unit
— State Output > >
Next- . » >
state Memory Logic Control
Logic Register Bp; Slggals
A < <
Status
3 Signals
Control Data

Outputs Outputs

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

Digital circuits, regardless of whether they are part of the control unit or the datapath, are classified as either
one of two types: combinational or sequential. Combinational circuits are the class of digital circuits where the
outputs of the circuit are dependent only on the current inputs. In other words, a combinational circuit is able to
produce an output simply from knowing what the current input values are. Sequential circuits, on the other hand,
are circuits whose outputs are dependent on not only the current inputs, but also on all of the past inputs. Therefore,
in order for a sequential circuit to produce an output, it must know the current input and all past inputs. Because of
their dependency on past inputs, sequential circuits must contain memory elements in order to remember the history
of past input values. Combinational circuits do not need to know the history of past inputs, and therefore, do not
require any memory elements. A “large” digital circuit may contain both combinational circuits and sequential
circuits. However, regardless of whether it is a combinational circuit or a sequential circuit, it is nevertheless a
digital circuit, and so they use the same basic building blocks — the AND, OR, and NOT gates. What makes them
different is in the way the gates are connected.

The car security system from Section 2.9 is an example of a combinational circuit. In the example, the siren is
turned on when the master switch is on and someone opens the door. If you close the door then the siren will turn off
immediately. With this setup, the output, which is the siren, is dependent only on the inputs, which are the master
and door switches. For the security system to be more useful, the siren should remain on even after closing the door
after it is first triggered. In order to add this new feature to the security system, we need to modify it so that the
output is not only dependent on the master and door switches, but also dependent on whether the door has been
previously opened or not. A memory element is needed in order to remember whether the door was previously
opened or not, and this results in a sequential circuit.

In this and the next chapter, we will look at the design of combinational circuits. In this chapter, we will look at
the analysis and design of general combinational circuits. Chapter 4 will look at the design of specific combinational
components. Some sample combinational circuits in our microprocessor road map include the next-state logic and
output logic in the control unit, and the multiplexer, ALU, comparator, and tri-state buffer in the datapath. We will
leave the design of sequential circuits for a later chapter.

In addition to being able to design a functionally correct circuit, we would also like to be able to optimize the
circuit in terms of size, speed, and power consumption. Usually, reducing the circuit size will also increase the speed
and reduce the power usage. In this chapter, we will look only at reducing the circuit size. Optimizing the circuit for
speed and power usage is beyond the scope of this book.

3.1 Analysis of Combinational Circuits

Very often, we are given a digital logic circuit, and we would like to know the operation of the circuit. The
analysis of combinational circuits is the process in which we are given a combinational circuit, and we want to
derive a precise description of the operation of the circuit. In general, a combinational circuit can be described
precisely either with a truth table or with a Boolean function.

3.1.1 Using a Truth Table

For example, given the combinational circuit of Figure 3.1, we want to derive the truth table that describes the
circuit. We create the truth table by first listing all of the inputs found in the circuit, one input per column, followed
by all of the outputs found in the circuit. Hence, we start with a table with four columns: three columns (x, y, z) for
the inputs, and one column (f) for the output, as shown in Figure 3.2(a).

60

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

X

[V]Y

Figure 3.1 Sample combinational circuit.

x|y |z]|f
0|0]|O
0|01
x| ylz]|f ojl1]o0
0|11
1/01|0
1011
1110
11111
(@) (b)
X 'y 1z Xy z
0 0 0 0 0 1
| [t 1| [t
[0 ™\ 1
——1 J —
[\O)0
0 1
—\0 f —0 f
)0)0
—— J —— J
(c) (d)
x|y |lz]|f
0O|O0|O0]O
0O|0|1]1
oO|1(0]|O
0O|1(|1]1
1/0|0(0O
10|11
1/1]|0f0
11|11

©

Figure 3.2 Deriving the truth table for the sample circuit in Figure 3.1: (a) listing the input and output columns; (b)
enumerating all possible combinations of the three input values; (c) circuit annotated with the input values xyz =
000; (d) circuit annotated with the input values xyz = 001; (e) complete truth table for the circuit.

61

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

The next step is to enumerate all possible combinations of 0’s and 1’s for all of the input variables. In general,
for a circuit with n inputs, there are 2" combinations, from 0 to 2" — 1. Continuing on with the example, the table in
Figure 3.2(b) lists the eight combinations for the three variables in order.

Now, for each row in the table (that is, for each combination of input values) we need to determine what the
output value is. This is done by substituting the values for the input variables and tracing through the circuit to the
output. For example, using xyz = 000, the outputs for all of the AND gates are 0, and oring all the zeros gives a zero,
therefore, f = 0 for this set of values for x, y, and z. This is shown in the annotated circuit in Figure 3.2(c).

For xyz = 001, the output of the top AND gate gives a 1, and 1 or with anything gives a 1, therefore, f = 1, as
shown in the annotated circuit in Figure 3.2(d).

Continuing in this fashion for all of the input combinations, we can complete the final truth table for the circuit,
as shown in Figure 3.2(e).

A faster method for evaluating the values for the output signals is to work backwards, that is, to trace the circuit
from the output back to the inputs. You want to ask the question: When is the output a 1 (or a 0)? Then trace back to
the inputs to see what the input values ought to be in order to get the 1 output. For example, using the circuit in
Figure 3.1, f is a 1 when any one of the four OR gate inputs is a 1. For the first input of the OR gate to be a 1, the
inputs to the top AND gate must be all 1’s. This means that the values for x, y, and z must be 0, 0, and 1, respectively.
Repeat this analysis with the remaining three inputs to the or gate. What you will end up with are the four input
combinations for which f is a 1. The remaining input combinations, of course, will produce a 0 for f.

Example 3.1: Deriving a truth table from a circuit diagram

Derive the truth table for the following circuit with three inputs, A, B and C, and two outputs, P and Q:

A B C

v[v]y

T

)
Q

The truth table will have three columns for the three inputs and two columns for the two outputs. Enumerating
all possible combinations of the three input values gives eight rows in the table. For each combination of input
values, we need to evaluate the output values for both P and Q. For P to be a 1, either of the OR gate inputs must be
a 1. The first input to this Or gate isa 1 if ABC = 001. The second input to this OR gate is a 1 if AB = 11. Since C is
not specified in this case, it means that C can be either a 0 or a 1. Hence, we get the three input combinations for
which P is a 1, as shown in the following truth table under the P column. The rest of the input combinations will
produce a 0 for P. For Q to be a 1, both inputs of the AND gate must be a 1. Hence, A must be a 0, and either B is a 0

or C is a 1. This gives three input combinations for which Q is a 1, as shown in the truth table below under the Q
column.

===l {=11 =] lav]
o|o|o|o|r o | —[O

=l =l =l Tl le) (@]

il el Ll k=lE= == P d
PR Oolo|rR|rkr|lolo|m

62

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.1.2 Using a Boolean Function

To derive a Boolean function that describes a combinational circuit, we simply write down the Boolean logical
expressions at the output of each gate (instead of substituting actual values of 0’s and 1’s for the inputs) as we trace
through the circuit from the primary input to the primary output. Using the sample combinational circuit of Figure
3.1, we note that the logical expression for the output of the top AND gate is x'y'z. The logical expressions for the
following AND gates are, respectively x'yz, xy'z, and xyz. Finally, the outputs from these AND gates are all ored
together. Hence, we get the final expression

f=xy'z+xX'yz+xy'z+xyz

To help keep track of the expressions at the output of each logic gate, we can annotate the outputs of each logic
gate with the resulting logical expression as shown here.

X z
X'y
[\ XYz
! Xyz X'Y'Z + X'yz + Xy'z + Xyz
f
{
Xy'z

)

——1 J xyz

If we substitute all possible combinations of values for all of the variables in the final equation, we should
obtain the same truth table as before.

Example 3.2: Deriving a Boolean function from a circuit diagram

Derive the Boolean function for the following circuit with three inputs, x, y, and z, and one output, f.

EE—

> f

Starting from the primary inputs x, y, and z, we annotate the outputs of each logic gate with the resulting logical
expression. Hence, we obtain the annotated circuit:

X pA

’Y y xy'

WEUIR vy 0 2)

The Boolean function for the circuit is the final equation, f = x' (xy' + (y O 2)), at the output of the circuit. ¢

If a circuit has two or more outputs, then there must be one equation for each of the outputs. All the equations
are then derived totally independent of each other.

63

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.2 Synthesis of Combinational Circuits

Synthesis of combinational circuits is just the reverse procedure of the analysis of combinational circuits. In
synthesis, we start with a description of the operation of the circuit. From this description, we derive either the truth
table or the Boolean logical function that precisely describes the operation of the circuit. Once we have either the
truth table or the logical function, we can easily translate that into a circuit diagram.

For example, let us construct a 3-bit comparator circuit that outputs a 1 if the number is greater than or equal to
5 and outputs a 0 otherwise. In other words, construct a circuit that outputs a 0 if the input is a number between 0
and 4 inclusive and outputs a 1 if the input is a number between 5 and 7 inclusive. The reason why the maximum
number is 7 is because the range for an unsigned 3-bit binary number is from 0 to 7. Hence, we can use the three
bits, x5, X1, and Xy, to represent the 3-bit input value to the comparator. From the description, we obtain the following
truth table:

Decimal | Binary number | Output
number | X, | X1 | Xo f

0 0 0|0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 0

4 1 0|0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

In constructing the circuit, we are interested only in when the output is a 1 (i.e., when the function f is a 1).
Thus, we only need to consider the rows where the output function f = 1. From the previous truth table, we see that
there are three rows where f = 1, which give the three AND terms x,X;'Xo, XoX1Xo', and x»X;Xo. Notice that the variables
in the AND terms are such that it is inverted if its value is a 0, and not inverted if its value is a 1. In the case of the
first AND term, we want f = 1 when x, = 1 and x; = 0 and xo = 1, and this is satisfied in the expression X,X;'Xo.
Similarly, the second and third AND terms are satisfied in the expressions X,xiXo' and X,x1Xq respectively. Finally, we
want f = 1 when either one of these three AND terms is equal to 1. So we ORed the three AND terms together giving us
our final expression:

f= X2X1'X0 + X2X:|_X0I + XoX1Xo (31)

In drawing the schematic diagram, we simply convert the AND operators to AND gates and OR operators to OR
gates. The equation is in the sum-of-products format, meaning that it is summing (ORing) the product (AND) terms.
A sum-of-products equation translates to a two-level circuit with the first level being made up of AND gates and the
second level made up of OR gates. Each of the three AND terms contains three variables, so we use a 3-input AND
gate for each of the three AND terms. The three AND terms are ORed together, so we use a 3-input OR gate to connect
the output of the three AND gates. For each inverted variable, we need an inverter. The schematic diagram derived
from Equation (3.1) is shown here.

X2 X

K4

From this discussion, we see that any combinational circuit can be constructed using only AND, OR, and NOT
gates from either a truth table or a Boolean equation.

Example 3.3: Synthesizing a combinational circuit from a truth table

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

Synthesize a combinational circuit from the following truth table. The three variables, a, b, and c, are input
signals, and the two variables, x, and y, are output signals.

N ===1=] I
N = =1 == =Z
o|r|o|r|o|r|o|o
Rk |o|k|k|o|k|x
ok |r|lo|lr|lo|lolx

=
=
=
o
o

We can either first derive the Boolean equation from the truth table, and then derive the circuit from the
equation, or we can derive the circuit directly from the truth table. For this example, we will first derive the Boolean
equation. Since there are two output signals, there will be two equations; one for each output signal.

From Section 2.6, we saw that a function is formed by summing its 1-minterms. For output x, there are five 1-
minterms: mg, m,, M3, ms, and mg. These five minterms represent the five AND terms, a'b'c’, a'bc’, a'bc, ab'c, and
abc'. Hence, the equation for x is

x=a'b'c' +a'bc' + a'bc + ab'c + abc'
Similarly, the output signal y has three 1-minterms, and they are a'bc’, ab'c’, and ab'c. Hence, the equation for y
is
y=a'bc' +ab'c' + ab'c
The combinational circuit constructed from these two equations is shown in Figure 3.3(a). Each 3-variable AND
term is replaced by a 3-input AND gate. The three inputs to these AND gates are connected to the three input variables
a, b, and c, either directly if the variable is not primed or through a NOT gate if the variable is primed. For output x, a

5-input OR gate is used to connect the outputs of the five AND gates for the corresponding five AND terms. For output
y, a 3-input OR gate is used to connect the outputs of the three AND gates.

Notice that the two AND terms, a'bc’, and ab'c, appear in both the x and the y equations. As a result, we do not
need to generate these two signals twice. Hence, we can reduce the size of the circuit by not duplicating these two

AND gates, as shown in Figure 3.3(b). .
a b c a b c
))
—1 —1
))
—1 —1
R y R ——'_7>_ .
L/ LJ /
) { |
L J |
))
—1 —1
)
—1
R) :D_
— y —1 y
)
| J
(@) (b)

Figure 3.3 Combinational circuit for Example 3.2: (a) no reduction; (b) with reduction.

65

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.3 *Technology Mapping

To reduce implementation cost and turnaround time to produce a digital circuit on an IC, designers often make
use of off-the-shelf semi-custom gate arrays. Many gate arrays are ICs that have only NAND gates or NOR gates built
in them, but their input and output connections are not yet connected. To use these gate arrays, a designer simply has
to specify where to make these connections between the gates. The problem here is that, when we use these gate
arrays to implement a circuit, we need to convert all AND, OR, and NOT gates in the circuit to use only NAND or NOR
gates, depending on what is available in the gate array. In addition, these NAND and NOR gates usually have the same
number of fixed inputs, for example, only three inputs.

In Section 3.2, we saw that any combinational circuit can be constructed with only AND, OR, and NOT gates. It
turns out that any combinational circuit can also be constructed with either only NAND gates or only NOR gates. The
reason why we want to use only NAND or NOR gates will be made clear when we look at how these gates are built at
the transistor level in Chapter 5. We will now look at how a circuit with AND, OR, and NOT gates is converted to one
with only NAND or only NOR gates.

The conversion of any given circuit to use only 2-input NAND or 2-input NOR gates is possible by observing the
following equalities. These equalities, in fact, are obtained from the Boolean algebra theorems from Chapter 2.

Rulel: x''=x (double NoT)
Rule2: x'=(xex)'=(xe1) (NOT to NAND)
Rule3: x'=(x+x) = (x+0) (NOT to NOR)
Rule 4: xy = ((xy))' (AND t0 NAND)
Rule5: x+y=(x+Yy)) =(XYy) (OR to NAND)
Rule6: xy = ((xy))' = (X +Yy) (AND to NOR)
Rule 7: x+y=((x+Yy)) (OR to NOR)

Rule 1 simply says that a double inverter can be eliminated altogether. Rules 2 and 3 convert a NOT gate to a
NAND gate or a NOR gate, respectively. For both Rules 2 and 3, there are two ways to convert a NOT gate to either a
NAND gate or a NOR gate. For the first method, the two inputs are connected in common. For the second method, one
input is connected to the logic 1 for the NAND gate and to O for the NOR gate. Rule 4 applies Rule 1 to the AND gate.
The resulting expression gives us a NAND gate followed by a NOT gate. We can then use Rule 2 to change the NOT
gate to a NAND gate. Rule 5 changes an OR gate to use two NOT gates and a NAND gate by first applying Rule 1 and
then De Morgan’s theorem. Again, the two NOT gates can be changed to two NAND gates using Rule 2. Similarly,
Rule 6 converts an AND gate to use two NOT gates and a NOR gate, and Rule 7 converts an OR gate to a NOR gate
followed by a NOT gate.

In a circuit diagram, these rules are translated to the equivalent circuits, as shown in Figure 3.4. Rules 2, 4, and
5 are used if we want to convert a circuit to use only 2-input NAND gates; whereas, Rules 3, 6, and 7 are used if we
want to use only 2-input NOR gates.

66

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

Rule 1: —{>—>0—

Rule 2:

b
0
Rule 3: = ‘LDV
Rule & DD

Rule 5:

Rule 6:

Rule 7:

o
D

v oY 0y

Figure 3.4 Circuits for converting from AND, OR, or NOT gates to NAND or NOR gates.

Another thing that we might want is to get the functionality of a 2-input NAND or 2-input NOR gate from a 3-
input NAND or 3-input NOR gate, respectively. In other words, we want to use a 3-input NAND or NOR gate to work
like a 2-input NAND or NOR gate, respectively. On the other hand, we might also want to get the reverse of that (that
is, to get the functionality of a 3-input NAND or 3-input NOR gate from a 2-input NAND or 2-input NOR gate,
respectively). These equalities are shown in the following rules and their corresponding circuits in Figure 3.5.

Rule8: (Xey)=(Xeyey) (2-input to 3-input NAND)
Rule9: (x+y)=(Xx+y+y) (2-input to 3-input NOR)
Rule 10: (abc)' = ((ab) ¢)' = ((ab)" c)' (3-input to 2-input NAND)
Rule 11: (at+b+c)' = ((a+b) + ¢)' = ((a+b)" + ¢)' (3-input to 2-input NOR)

Rule 8 converts from a 2-input NAND gate to a 3-input NAND gate. Rule 9 converts from a 2-input NOR gate to a
3-input NOR gate. Rule 10 converts from a 3-input NAND gate to using only 2-input NAND gates. Rule 11 converts
from a 3-input NOR gate to using only 2-input NOR gates. Notice that, for Rules 10 and 11, an extra NOT gate is
needed in between the two gates.

67

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

e T = eD—
Rue: T)> = —g>—

Figure 3.5 Circuits for converting 2-input to 3-input NAND or NOR gate and vice versa.

Example 3.4: Converting a circuit to 3-input NAND gates
Convert the following circuit to use only 3-input NAND gates.

X pA

vy

First, we need to change the 4-input OR gate to a 3- and 2-input OR gates.

VY

Z
—
—)
—)
— |_Z/ f
——)

Then we will use Rule 4 to change all of the AND gates to 3-input NAND gates with inverters and Rule 5 to
change all of the OR gates to 3-input NAND gates with inverters. The 2-input NAND gates are replaced with 3-input
NAND gates with two of its inputs connected together.

X P4

VY

68

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

Finally, we eliminate all the double inverters and replace the remaining inverters with NAND gates with their
inputs connected together.

X

O

z
™
—)
™
—
™
—— /)

—
¢
3.4 Minimization of Combinational Circuits

When constructing digital circuits, in addition to obtaining a functionally correct circuit, we like to optimize it
in terms of circuit size, speed, and power consumption. In this section, we will focus on the reduction of circuit size.
Usually, by reducing the circuit size, we will also improve on speed and power consumption. We have seen in the
previous sections that any combinational circuit can be represented using a Boolean function. The size of the circuit
is directly proportional to the size or complexity of the functional expression. In fact, it is a one-to-one
correspondence between the functional expression and the circuit size. In Section 2.5.1, we saw how we can
transform a Boolean function to another equivalent function by using the Boolean algebra theorems. If the resulting
function is simpler than the original, then we want to implement the circuit based on the simpler function, since that
will give us a smaller circuit size.

Using Boolean algebra to transform a function to one that is simpler is not an easy task, especially for the
computer. There is no formula that says which is the next theorem to use. Luckily, there are easier methods for
reducing Boolean functions. The Karnaugh map method is an easy way for reducing an equation manually and is
discussed in Section 3.4.1. The Quine-McCluskey or tabulation method for reducing an equation is ideal for
programming the computer and is discussed in Section 3.4.3.

3.4.1 Karnaugh Maps

To minimize a Boolean equation in the sum-of-products form, we need to reduce the number of product terms
by applying the Combining Boolean theorem (Theorem 14) from Section 2.5.1. In so doing, we will also have
reduced the number of variables used in the product terms. For example, given the following 3-variable function:

F=xy'z' +xyz'
we can factor out the two common variables xz' and reduce it to

F=xz'(y'+Y)
=xz'1
=xz'

In other words, two product terms that differ by only one variable whose value is a 0 (primed) in one term and a
1 (unprimed) in the other term, can be combined together to form just one term with that variable omitted as shown
in the previous equations. Thus, we have reduced the number of product terms, and the resulting product term has
one less variable. By reducing the number of product terms, we reduce the number of OR operators required, and by
reducing the number of variables in a product term, we reduce the number of AND operators required.

Looking at a logic function’s truth table, sometimes it is difficult to see how the product terms can be combined
and minimized. A Karnaugh map (K-map for short) provides a simple and straightforward procedure for
combining these product terms. A K-map is just a graphical representation of a logic function’s truth table, where
the minterms are grouped in such a way that it allows one to easily see which of the minterms can be combined. The

69

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

K-map is a 2-dimensional array of squares, each of which represents one minterm in the Boolean function. Thus, the
map for an n-variable function is an array with 2" squares.

Figure 3.6 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice the labeling of the columns and
rows are such that any two adjacent columns or rows differ in only one bit change. This condition is required
because we want minterms in adjacent squares to differ in the value of only one variable or one bit, and so these
minterms can be combined together. This is why the labeling for the third and fourth columns and for the third and
fourth rows are always interchanged. When we read K-maps, we need to visualize them as such that the two end
columns or rows wrap around, so that the first and last columns and the first and last rows are really adjacent to each
other, because they also differ in only one bit.

In Figure 3.6, the K-map squares are annotated with their minterms and minterm numbers for easy reference
only. For example, in Figure 3.6(a) for a 2-variable K-map, the entry in the first row and second column is labeled
X'y and annotated with the number 1. This is because the first row is when the variable x is a 0, and the second
column is when the variable y is a 1. Since, for minterms, we need to prime a variable whose value is a 0 and not
prime it if its value is a 1, therefore, this entry represents the minterm x'y, which is minterm number 1. Be careful
that, if we label the rows and columns differently, the minterms and the minterm numbers will be in different
locations. When we use K-maps to minimize an equation, we will not write these in the squares. Instead, we will be
putting 0’s and 1’s in the squares.

For a 5-variable K-map, as shown in Figure 3.6(d), we need to visualize the right half of the array (where v = 1)
to be on top of the left half (where v = 0). In other words, we need to view the map as three-dimensional. Hence,
although the squares for minterms 2 and 16 are located next to each other, they are not considered to be adjacent to
each other. On the other hand, minterms 0 and 16 are adjacent to each other, because one is on top of the other.

yz
WX 00 01 11 10
0 1 3 2

X y 0 1 X yz 00 01 11 10 00 wxy'z' | wx'y'z | wx'yz | wx'yz'

0| xy X'y 0] xyz X'y'z x'yz X'yz' 01 wxy'z | wxyz | wxyz | wxyz

1 xy' Xy 1] xyz Xy'z Xyz xyz' 11 wy'z | wy'z wyz wyz'

10 wx'y'z' | wx'y'z | wx'yz | wx'yz'

(@) (b) (©
v=0 v=1
yz
WX 00 01 11 10 00 01 11 10
0 1 3 2 16 17 19 18
00 VWXY'Z' | VWX'Y'Z| VWX'YZ | V'WX'yZ' VWX'Y'Z' | vWX'Y'Z | WX'yZ | vWX'yZ'
4 5 7 6 20 21 23 22

01 V'WXY'Z' | VW'XY'Z | V'WXYZ | V'W'XyZ' VWXY'Z' | VWXY'Z | VW'XYZ | VWXYZ'

12 13 15 14 28 29 31 30

11 V'WXY'Z' | V'WXY'Z | V'WXyZ | V'wxyZ' VWXY'Z' | VWKY'Z | VWXYZ | VWXyZ'

8 9 11 10 24 25 27 26

10 VWX'Y'Z'| VWK'Y'Z | V'WX'YZ | V'wX'yzZ' vwx'y'z' | vwx'y'z | vwx'yz | vwx'yz'
(d)

Figure 3.6 Karnaugh maps for: (a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables.

Given a Boolean function, we set the value for each K-map square to either a 0 or a 1, depending on whether
that minterm for the function is a 0-minterm or a 1-minterm, respectively. However, since we are only interested in
using the 1-minterms for a function, the 0’s are sometimes not written in the 0-minterm squares.

For example, the K-map for the 2-variable function:

70

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

F=xy +Xy+xy

The 1-minterms, my (X'y") and m; (xy), are adjacent to each other, which means that they differ in the value of
only one variable. In this case, x is 0 for both minterms, but for y, it is a 0 for one minterm and a 1 for the other
minterm. Thus, variable y can be dropped, and the two terms are combined together giving just x'. The prime in X" is
because x is 0 for both minterms. This reasoning corresponds with the expression:

Xy +Xy=x(y'+y)=x'(1) =x

Similarly, the 1-minterms m; (x'y) and mg (xy) are also adjacent and y is the variable having the same value for
both minterms, and so they can be combined to give

Xy+xy=(X+xy=(1)y=y
We use the term subcube to refer to a rectangle of adjacent 1-minterms. These subcubes must be rectangular in
shape and can only have sizes that are powers of two. Formally, for an n-variable K-map, an m-subcube is defined as
that set of 2™ minterms in which n — m of the variables will have the same value in every minterm, while the
remaining variables will take on the 2™ possible combinations of 0’s and 1’s. Thus, a 1-minterm all by itself is called

a 0-subcube, two adjacent 1-minterms is called a 1-subcube, and so on. In the previous 2-variable K-map, there are
two 1-subcubes: one labeled with x' and one labeled with y.

A 2-subcube will have four adjacent 1-minterms and can be in the shape of any one of those shown in Figure
3.7(a) through (e). Notice that Figure 3.7(d) and (e) also form 2-subcubes, even though the four 1-minterms are not
physically adjacent to each other. They are considered to be adjacent because the first and last rows and the first and
last columns wrap around in a K-map. In Figure 3.7(f), the four 1-minterms cannot form a 2-subcube, because even
though they are physically adjacent to each other, they do not form a rectangle. However, they can form three 1-
subcubes - y'z, x'y" and x'z.

We say that a subcube is characterized by the variables having the same values for all of the minterms in that
subcube. In general, an m-subcube for an n-variable K-map will be characterized by n — m variables. If the value that
is similar for all of the variables is a 1, that variable is unprimed; whereas, if the value that is similar for all of the
variables is a 0, that variable is primed. In an expression, this is equivalent to the resulting smaller product term
when the minterms are combined together. For example, the 2-subcube in Figure 3.7(d) is characterized by z', since
the value of z is 0 for all of the minterms, whereas the values for x and y are not all the same for all of the minterms.
Similarly, the 2-subcube in Figure 3.7(e) is characterized by x'z".

F 'z
F \ E yz y
yz X wx _00 01/ 11 10
X \ 00 01/11 10 X 10 00 +
O|{1 | 1| 1] 13
01 1
1 1
11 1
(a) (b) 10 1
(©)

71

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

F oy 7
x _00 01/ 11 1

©

Figure 3.7 Examples of K-maps with 2-subcubes: (a) and (b) 3-variable; (c) 4-variable; (d) 3-variable with wrap
around subcube; (e) 4-variable with wrap around subcube; (f) four adjacent minterms that cannot form one 2-
subcube.

For a 5-variable K-map, as shown in Figure 3.8, we need to visualize the right half of the array (where v =1) to
be on top of the left half (where v = 0). Thus, for example, minterm 20 is adjacent to minterm 4 since one is on top
of the other, and they form the 1-subcube w'xy'z'. Even though minterm 6 is physically adjacent to minterm 20 on
the map, they cannot be combined together, because when you visualize the right half as being on top of the left
half, then they really are not on top of each other. Instead, minterm 6 is adjacent to minterm 4 because the columns
wrap around, and they form the subcube v'w'xz'. Minterms 9, 11, 13, 15, 25, 27, 29, and 31 are all adjacent, and
together they form the subcube wz. Now that we are viewing this 5-variable K-map in three dimensions, we also
need to change the condition of the subcube shape to be a three-dimensional rectangle.

You can see that this visualization becomes almost impossible to work with very quickly as we increase the
number of variables. In more realistic designs with many more variables, tabular methods (instead of K-maps) are
used for reducing the size of equations.

V'w'xz' w'xy'z'
F yz Lov=0 / v=1

wx _ 00 0l 11 /0 | 00 01 11 10
00 0| vl 3 2 16 17 19 18

22,

o1

30
11

26
10

Figure 3.8 A 5-variable K-map with wrap-around subcubes.

The K-map method reduces a Boolean function from its canonical form to its standard form. The goal for the K-
map method is to find as few subcubes as possible to cover all of the 1-minterms in the given function. This
naturally implies that the size of the subcube should be as big as possible. The reasoning for this is that each subcube
corresponds to a product term, and all of the subcubes (or product terms) must be ORed together to get the function.
Larger subcubes require fewer AND gates because of fewer variables in the product term, and fewer subcubes will
require fewer inputs to the oR gate.

The procedure for using the K-map method is as follows:

1. Draw the appropriate K-map for the given function and place a 1 in the squares that correspond to the function’s
1-minterms.

2. For each 1-minterm, find the largest subcube that covers this 1-minterm. This largest subcube is known as a

72

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

prime implicant (PI). By definition, a prime implicant is a subcube that is not contained within any other
subcube. If there is more than one subcube that is of the same size as the largest subcube, then they are all prime
implicants.

3. Look for 1-minterms that are covered by only one prime implicant. Since this prime implicant is the only
subcube that covers this particular 1-minterm, this prime implicant must be in the final solution. This prime
implicant is referred to as an essential prime implicant (EPI). By definition, an essential prime implicant is a
prime implicant that includes a 1-minterm that is not included in any other prime implicant.

4. Create a minimal cover list by selecting the smallest possible number of prime implicants such that every 1-
minterm is contained in at least one prime implicant. This cover list must include all of the essential prime
implicants plus zero or more of the remaining prime implicants. It is acceptable that a particular 1-minterm is
covered in more than one prime implicant, but all 1-minterms must be covered.

5. The final minimized function is obtained by oring all of the prime implicants from the minimal cover list.

Note that the final minimized function obtained by the K-map method may not be in its most reduced form. It is
only in its most reduced standard form. Sometimes, it is possible to reduce the standard form further into a non-
standard form.

Example 3.5: Using K-map to minimize a 4-variable function

Use the K-map method to minimize a 4-variable (w, X, y, and z) function F with the 1-minterms: my, m,, ms, my,
Mig, My3, Myg, AN Mys.

We start with the following 4-variable K-map with a 1 placed in each of the eight minterm squares:

E
WX 00 01 11 10

0| 1 3 2
00| 1 1
4 5 7 6
01 1 1
12 13 15 14
11 1 1 1
8 o 11 10
10 1

The prime implicants for each of the 1-minterms are shown in the following K-map and table:

1-minterm | Prime Implicant
mg w'x'z'

m, w'x'z', x'yz'

Ms Xz

m; Xz

Myg x'yz', wyz'

M3 Xz

My Wyz', WXy

Mis Xz

For minterm m,, there is only one prime implicant w'x'z". For minterm m,, there are two 1-subcubes that cover
it, and they are the largest. Therefore, m, has two prime implicants, w'x'z' and x'yz'. When we consider my, again
there are two 1-subcubes that cover it, and they are the largest. So my4 also has two prime implicants. Minterm m;s,
however, has only one prime implicant xz. Although the 1-subcube wxy also covers mys, it is not a prime implicant
for mys because it is smaller than the 2-subcube xz.

73

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

From the K-map, we see that there are five prime implicants: w'x'z', x'yz', xz, wyz', and wxy. Of these five prime
implicants, w'x'z" and xz are essential prime implicants, since mq is covered only by w'x'z', and ms, m;, and my; are
covered only by xz.

We start the cover list by including the two essential prime implicants w'x'z" and xz. These two subcubes will
have covered the minterms mg, my, ms, mz, my3, and mys. To cover the remaining two uncovered minterms, m;, and
my,, We want to use as few prime implicants as possible. Hence, we select the prime implicant wyz', which covers
both of them.

Finally, our reduced standard form equation is obtained by ORing the two essential prime implicants and one
prime implicant in the cover list:

F=wX'z"+ xz + wyz'

Notice that we can reduce this standard form equation even further by factoring out the z' from the first and last
term to get the non-standard form equation

F=2"(wx +wy)+xz .

Example 3.6: Using K-map to minimize a 5-variable function

Use the K-map method to minimize a 5-variable function F (v, w, X, y and z) with the 1-minterms: v'w'x'yz’,

V'WX'yz, V'W'XY'Z, V'W'XYZ, VW'X'YZ', VW'X'YZ, VW'XYZ', VW'XYZ, VWX'Y'Z, VWX'YZ, VWXY'Z, and VWXYZ.

wxy w'yz

F _n 4 _
yz v=0 | fov=l

WX 00 01 11 10 | 00 01 11 10
00 L)
01 |

V'W'XZ < -

11 W'y
10

¥
VWZ

The list of prime implicants is: v'w'xz, w'x'y, w'yz, vw'y, vyz, and vwz. From this list of prime implicants, w'yz
and vyz are not essential. The four remaining essential prime implicants are able to cover all of the 1-minterms.
Hence, the solution in standard form is

F =v'w'xz + wx'y + vw'y + vwz .

3.4.2 Don't-cares

There are times when a function is not specified fully. In other words, there are some minterms for the function
where we do not care whether their values are a 0 or a 1. When drawing the K-map for these “don’t-care”
minterms, we assign an “x” in that square instead of a 0 or a 1. Usually, a function can be reduced even further if we
remember that these x’s can be either a 0 or a 1. As you recall when drawing K-maps, enlarging a subcube reduces
the number of variables for that term. Thus, in drawing subcubes, some of them may be enlarged if we treat some of
these x’s as 1’s. On the other hand, if some of these x’s will not enlarge a subcube, then we want to treat them as 0’s
so that we do not need to cover them. It is not necessary to treat all x’s to be all 1’s or all 0’s. We can assign some
x’s to be 0’s and some to be 1’s.

For example, given a function having the following 1-minterms and don’t-care minterms:
1-minterms: mg, my, My, M3, M4, My, Mg, and Mgy

X-minterms: My, My1, My2, M1z, M14, and My

we obtain the following K-map with the prime implicants x', yz, and y'z".

74

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

Notice that, in order to get the 4-subcube characterized by x', the two don’t-care minterms, myq and m,y, are
taken to have the value 1. Similarly, the don’t-care minterms, m;, and mys are assigned a 1 for the subcubes y'z' and
yz, respectively. On the other hand, the don’t-care minterms, ms and my,, are taken to have the value 0, so that they
do not need to be covered in the solution. The reduced standard form function as obtained from the K-map is,
therefore,

F=x'+yz+y7
Again, this equation can be reduced further by recognizing thatyz + y'z' =y ® z. Thus,
F=x'+(y®2)

3.4.3 * Tabulation Method

K-maps are useful for manually obtaining the minimized standard form Boolean function for maybe up to, at
most, five variables. However, for functions with more than five variables, it becomes very difficult to visualize how
the minterms should be combined into subcubes. Moreover, the K-map algorithm is not as straightforward for
converting to a computer program. There are tabulation methods that are better suited for programming the
computer, and thus, can solve any function given in canonical form having any number of variables. One tabulation
method is known as the Quine-McCluskey method.

Example 3.7: Illustrating the Quine-McCluskey algorithm
We now illustrate the Quine-McCluskey algorithm using the same four-variable function from Example 3.5 and
repeated here
F(w,x,y,z) = 2(0,2,5,7,10,13,14,15)

To construct the initial table, the minterms are grouped according to the number of 1’s in that minterm
number’s binary representation. For example, my (0000) has no 1’s; m, (0010) has one 1; ms (0101) has two 1°s; etc.
Thus, the initial table of 0-subcubes (i.e. subcubes having only one minterm) as obtained from the function stated
above is

Subcube | Subcube Value | Subcube

Group Minterms | w | x | y | z | Covered
Gy Mo 0 0[(0|0O0 v
G, m 0 0(11/0 v
G, Mg 0 11011 v

M1 1 0(11/0 4
G; my 0 1(1]1 v
Mq3 1 11011 4
M1y4 1 11110 4
Gy Mg 1 1(1]1 4

The “Subcube Covered” column is filled in from the next step.

In the second step, we construct a second table by combining those minterms in adjacent groups from the first
table that differ in only one bit position, as shown next. For example, my and m, differ in only the y bit. Therefore, in
the second table, we have an entry for the 1-subcube containing the two minterms, my and m,. A hyphen (=) is used

75

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

in the bit position that is different in the two minterms. Since this 1-subcube covers the two individual minterms, m
and m,, we make a note of it by checking these two minterms in the “Subcube Covered” column in the previous
table. This process is equivalent to saying that the two minterms, my (w'x'y'z') and m, (w'x'yz'), can be combined
together and is reduced to the one term, w'x'z'. The hypen under the y column simply means that y can be either a 0
or a 1, and therefore, y can be discarded. Thus, this second table simply lists all of the 1-subcubes. Again, the
“Subcube Covered” column in this second table will be filled in from the third step.

Group Sl_chube Subcube Value | Subcube
Minterms | w | x | y | z | Covered
Gy Mo, M> 0 0(-10
G, my, M1 -10(1110
G, ms,m; 0O|1(|-11 v
Ms,M13 -|11]0]|1 v
Myg,My4 1(-111]0
G; m7,Mys -|11]1]|1 v
Mams | 1 (1] -1 v
My4,My5 1(1|1]-

In step three, we perform the same matching process as before. We look for subcubes in adjacent groups that
differ in only one bit position. In the matching, the hyphen must also match. These subcubes are combined to create
the next subcube table. The resulting table, however, is a table containing 2-subcubes. From the above 1-subcube
table, we get the following 2-subcube table:

Grou Subcube Subcube Value | Subcube
P Minterms w | x|y]| z| Covered
G, Ms,Mz,Mi3Mys | — | 1 | =11

From the 1-subcube table, subcubes msm; and mysm;s can be combined together to form the subcube
msm,;my3Mys in the 2-subcube table, since they differ in only the w bit. Similarly, subcubes msm;; and m;m;s from the
1-subcube table can also be combined together to form the subcube msm;m.sm;s, because they differ in only the y
bit. From both of these combinations, the resulting subcube is the same. Therefore, we have the four checks in the 1-
subcube table, but only one resulting subcube in the 2-subcube table. Notice that in the subcube msm;m;sm;s, there
are two hypens; one that is carried over from the previous step, and one for where the bit is different from the
current step.

We continue to repeat the matching as long as there are adjacent subcubes that differ in only one bit position.
We stop when there are no more subcubes that can be combined. The prime implicants are those subcubes that are
not covered, (i.e. those without a check mark in the “Subcube Covered” column). The only subcube in the 2-subcube
table does not have a check mark, and it has the value x = 1 and z = 1; thus we get the prime implicant xz. The 1-
subcube table has four subcubes that do not have a check mark; they are the four prime implicants: w'x'z', x'yz', wyz',
and wxy. Note that these prime implicants may not necessarily be all in the last table. These five prime implicants

(xz, w'x'z', x'yz', wyz', and wxy) are exactly the same as those obtained in Example 3.5. .

3.5 *Timing Hazards and Glitches

As you probably know, things in practice don’t always work according to what you learn in school. Hazards and
glitches in circuits are such examples of things that may go awry. In our analysis of combinational circuits, we have
been performing only functional analysis. A functional analysis assumes that there is no delay for signals to pass
from the input to the output of a gate. In other words, we look at a circuit only with respect to its logical operation as
defined by the Boolean theorems. We have not considered the timing of the circuit. When a circuit is actually
implemented, the timing of the circuit (that is, the time for the signals to pass from the input of a logic gate to the
output) is very critical and must be treated with care. Otherwise, an actual implementation of the circuit may not
work according to the functional analysis of the same circuit. Timing hazards are problems in a circuit as a result of
timing issues. These problems can be observed only from a timing analysis of the circuit or from an actual
implementation of the circuit. A functional analysis of the circuit will not reveal timing hazard problems.

76

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

A glitch is when a signal is expected to be stable (from a functional analysis), but it changes value for a brief
moment and then goes back to what it is expected to be. For example, if a signal is expected to be at a stable 0, but
instead, it goes up to a 1 and then drops back to a 0 very quickly. This sudden, unexpected transition of the signal is
a glitch, and the circuit having this behavior contains a hazard.

Take, for example, the simple 2-to-1 multiplexer circuit shown in Figure 3.9(a). Let us assume that both d, and
d, are at a constant 1, and that s goes from a 1 to a 0. For a functional analysis of the circuit, the output y should
remain at a constant 1. However, if we perform a timing analysis of the circuit, we will see something different in
the timing diagram. Let us assume that all of the logic gates in the circuit have a delay of one time unit. The
resulting timing trace is shown in Figure 3.9(b). At time t,, s drops to a 0. Since it takes one time unit for s to be
inverted through the inverter, s' changes to a 1 after one time unit at time t;. At the same time, it takes the bottom
AND gate one time unit for the output sd; to change to a 0 at time t;. However, the top AND gate will not see any
input change until time t;, and when it does, it takes another one time unit for its output s'dy to rise to a 1 at time t,.
Starting at time t;, both inputs of the OR gate are 0, so after one time unit, the OR gate outputs a 0 at time t,. At time
t5, when the top AND gate outputs a 1, the OR gate will take this 1 input, and outputs a 1 after one time unit at t;. So
between times t, and t;, output y unexpectedly drops to a 0 for one time unit, and then rises back to a 1. Hence, the
output signal y has a glitch, and the circuit has a hazard.

As you may have noticed, glitches in a signal are caused by multiple sources having paths of different delays
driving that signal. These types of simple glitches can be easily solved using K-maps. A glitch generally occurs if,
by simply changing one input, we have to go out of one prime implicant in a K-map and into an adjacent one (i.e.
moving from one subcube to another). The glitch can be eliminated by adding an extra prime implicant, so that when
going from one prime implicant to the adjacent one, we remain inside the third prime implicant.

Figure 3.9(c) shows the K-map with the two original prime implicants, s'd, and sd,, that correspond to the
circuit in (a). When we change s from a 1 to a 0, we have to go out of the prime implicant sd; and into the prime
implicant s'dy. Figure 3.9(d) shows the addition of the extra prime implicant did,. This time, when moving from the
prime implicant sd; to the prime implicant s'dy, we remain inside the prime implicant did,. The 2-to-1 multiplexer
circuit with the extra prime implicant d,d, added as shown in Figure 3.9(e) will prevent the glitch from happening.

dO
d
1
d d s Y d,d, ?/do
0 2% T s\, 00 01/
s y s M 0
d, 5d, s'd, 1
sd \
1 - ; sd,
y
tO t1 t2 t3
(@) (b) (©
y dldO
s 00
0
1

(d) (e)

Figure 3.9 Example of a glitch: (a) 2-to-1 multiplexer circuit with glitches; (b) timing trace; (c) K-map with
glitches; (d) K-map without glitches; (e) 2-to-1 multiplexer circuit without the glitches.

77

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.5.1 Using Glitches

Sometimes, we can use glitches to our advantage, as shown in the following example.

Example 3.8: A one-shot circuit using glitches

A circuit that outputs a single short pulse when given an input of arbitrary time length is known as a one-shot. A
one-shot circuit is used, for example, for generating a single short 1 pulse when a key is pressed. Sometimes, when a
key is pressed, we do not want to generate a continuous 1 signal for as long as the key is pressed. Instead, we want
the output signal to be just a single short 1 pulse, even if the key is still being pressed.

Since logic gates have an inherent signal delay, we can use this delay to determine the duration of the short
pulse that we want. This short pulse, of course, is really just a glitch in the circuit. Figure 3.10(a) shows a sample
one-shot circuit using signal delays through three inverters. Figure 3.10(b) shows a sample timing trace for it.

Delay through
the Inverters

Input
Input A
npu —> Output
Output
A
Delay through
the AND gate
(@) (b)

Figure 3.10 A one-shot circuit: (a) using signal delay through three inverters; (b) timing trace.

Initially, assume that the value for Input is a 0, and point A is a 1, therefore, the output of the AND gate is a 0.
When we set Input to a 1 momentarily, both inputs to the AND gate will be 1’s, and so after a delay through the AND
gate, Output will be a 1. After a delay through the three inverters, with Input still at a 1, point A will go to a 0, and
Output will change back to a 0. When we set Input back to a 0, Output will continue to be a 0. After the delay
through the inverters when point A goes back to a 1, Output remains at a 0.

As a result, a glitch is created by the signal delay through the three inverters. This glitch, however, is the short 1
pulse that we want, and the length of this pulse is determined by the delay through the inverters. With this one-shot
circuit, it does not matter how long the input key is being pressed, the output signal will always be the same 1 pulse
each time that the key is pressed. .

3.6 BCDto 7-Segment Decoder

We will now synthesize the circuit for a BCD to 7-segment decoder for driving a 7-segment LED display. The
decoder converts a 4-bit binary coded decimal (BCD) input to seven output signals for turning on the seven lights in
a 7-segment LED display. The 4-bit input encodes the binary representation of a decimal digit. Given the decimal
digit input, the seven output lines are turned on in such a way so that the LED displays the corresponding digit. The
7-segment LED display schematic with the names of each segment labeled is shown here

f b

e

a

| |

I_I
d

78

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

The operation of the BCD to 7-segment decoder is specified in the truth table in Figure 3.11. The four inputs to
the decoder are i3, iy, iy, and iy, and the seven outputs for each of the seven LEDs are labeled a, b, ¢, d, ¢, f, and g.
For each input combination, the corresponding digit to display on the 7-segment LED is shown in the “Display”
column. The segments that need to be turned on for that digit will have a 1 while the segments that need to be turned
off for that digit will have a 0. For example, for the 4-bit input 0000, which corresponds to the digit 0, segments a, b,
¢, d, e, and f need to be turned on, while segment g needs to be turned off.

Notice that the input combinations 1010 to 1111 are not used, and so don’t-care values are assigned to all of the
segments for these six combinations.

Inputs Decimal | a b c d e f
is | iy | iy | ip | Digit | Display " o] ! SN . =
ojofo0]o0 0 H 1 1 1 1 1 1 0
olo|o0]1 1 - 0 1 1 0 0 0 0
ojof1]o0 2 a2 1 1 0 1 1 0 1
o011 3 H 1 1 1 1 0 0 1
0l1]0]0 4 0 1 1 0 0 1 1
0|1]0]1 5 H 1 0 1 1 0 1 1
o110 6 H 1 0 1 1 1 1 1
0111 7] 1 1 1 0 0 0 0
10|00 8 H 1 1 1 1 1 1 1
1/0]0]1 9 H 1 1 1 0 0 1 1
rest of the combinations x x x x x X X

Figure 3.11 Truth table for the BCD to 7-segment decoder.

From the truth table in Figure 3.11, we are able to specify seven equations that are dependent on the four inputs
for each of the seven segments. For example, the canonical form equation for segment a is
a =gl 'ip" + 3"l "iglo" + i3'Iy"Igig + ig'loly"ig + 13'Ipiglg" + 13'Iplglg + i3ly"iy " + i3iy"y I
Before implementing this equation directly in a circuit, we want to simplify it first using the K-map method.
The K-map for the equation for segment a is

a

I3l

From evaluating the K-map, we derive the simpler equation for segment a as
a =iz+iy+ixip +ixig = ig+ iy + (i, @ o)
Proceeding in a similar manner, we get the following remaining six equations
b =iy + (i1 @ i)

c :i2+i1'+i0

79

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

d= i]_iol + izlio' + izli]_ + izillio
e = i]_iol + izlio'
f = i3 + izill + iziol + illio'
g =iz + (i O iy) + isdo’
From these seven simplified equations, we can now implement the circuit, as shown in Figure 3.12. The
labeling of the nodes and gates in the drawing will be explained and used in Section 3.7.1.

ip, ip, ip,
A | 4 a
-
S — b
) 7 C
U
8 d
U
~ d, d
|U10 a
3
{U)
eV
U
1
e
0]

Figure 3.12 Circuit for the BCD to 7-segment decoder.

3.7 VHDL for Combinational Circuits

Writing VHDL code to describe a digital circuit can be done using any one of three models or levels of
abstraction: structural, dataflow, or behavioral. The choice of which model to use usually depends on what is
known about the circuit. At the structural level, which is the lowest level, you first have to manually design the
circuit. Having drawn the circuit, you use VHDL to specify the components and gates that are needed by the circuit
and how they are connected together by following your circuit exactly. Synthesizing a structural VHDL description
of a circuit will produce a netlist that is like your original circuit. The advantage of working at the structural level is
that you have full control as to what components are used and how they are connected together. The disadvantage,
of course, is that you need to manually come up with the circuit, and so the full capabilities of the synthesizer are not
utilized. A simple example of a structural VHDL code for a 2-input multiplexer was shown in Figure 1.11.

At the dataflow level, the circuit is defined using built-in VHDL logic operators (such as the AND, OR, and NOT)
that are applied to input signals. In order to work at this level, you need to have the Boolean equations for the circuit.
Hence, the dataflow level is best suited for describing a circuit that is already expressed as a Boolean function. The

80

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

equations are easily converted to the required VHDL syntax using signal assignment statements. A simple example
of a dataflow VHDL code for a 2-input multiplexer was shown in Figure 1.9.

All of the statements used in the structural and dataflow levels are executed concurrently, as opposed to
statements in a computer program, which are usually executed in a sequential manner. In other words, the ordering
of the VHDL statements written in the structural or dataflow level does not matter — the results would be exactly the
same.

Describing a circuit at the behavioral level is very similar to writing a computer program. You have all of the
standard high-level programming constructs—such as the FOR LOOP, WHILE LOOP, IF THEN ELSE, CASE, and variable
assignments. The statements are enclosed in a PROCESS block and are executed sequentially. A simple example of a
behavioral VHDL code for a 2-input multiplexer was shown in Figure 1.5.

3.7.1 Structural BCD to 7-Segment Decoder

Figure 3.13 shows the structural VHDL code for the BCD to 7-segment decoder based on the circuit shown in
Figure 3.12. The code starts with declaring and defining all of the components needed in the circuit. For this decoder
circuit, only basic gates (such as the NOT gate, 2-input AND, 3-input AND, etc.) are used. The ENTITY statement is
used to declare all of these components, and the ARCHITECTURE statement is used to define the operation of these
components. Since we are using only simple gates, defining these components using the dataflow model is the
simplest. For more complex components (as we will see in later chapters) we want to choose the model that is best
suited for the information that we have available for the circuit. The reason why the code shown in Figure 3.13 is
structural is not because of how these components are defined, but rather on how these components are connected
together to form the enclosing entity; in this case, the bcd entity. Notice that the LIBRARY and USE statements need to
be repeated for every ENTITY declaration.

The actual structural code begins with the bcd ENTITY declaration. The bed circuit shown in Figure 3.12 has four
input signals, i3, i», i1, and ip, and seven output signals, a, b, ¢, d, e, f, and g. These signals are declared in the PORT
list using the keyword IN for the input signals, and ouT for the output signals; both of which are of type STD_LOGIC.

The ARCHITECTURE section begins by specifying the components needed in the circuit using the COMPONENT
statement. The port list in the COMPONENT statements must match exactly the port list in the entity declarations of
the components. They must match not only in the number, direction, and type of the signals, but also in the names
given to the signals. Note also that names in the component port list can be the same as the names in the bcd entity
port list, but they are not the same signals. For example, the and2gate component port list and the bcd entity port list
both have two signals called i; and i,. References to these two signals in the body of the bcd architecture are for the
signals declared in the bcd entity.

After the COMPONENT statements, the internal node signals are declared using the SIGNAL statement. The names
listed are the same as the internal node names used in the circuit in Figure 3.12 for easy reference.

Following all of the declarations, the body of the architecture starts with the keyword BEGIN. For each gate used
in the circuit, there is a corresponding PORT MAP statement. Each PORT MAP statement begins with an optional label
(such as Uy, U,, and so on) followed by the name of the component (as previously declared with the COMPONENT
statements) to use. Again, the labels used in the PORT MAP statements correspond to the labels on the gates in the
circuit in Figure 3.12. The parameter list in the PORT MAP statement matches the port list in the component
declaration. For example, Uq is instantiated with the component notgate. The first parameter in the PORT MAP
statement is the input signal ip, and the second parameter is the output signal ipy. U, is instantiated with the 3-input
OR gate. The three inputs are is, i3, and a;, and the output is a. Here, a; is the output from the 2-input XNOR gate of
Us. The rest of the PORT MAP statements in the program are obtained in a similar manner.

All the PORT MAP statements are executed concurrently, and therefore, the ordering of these statements is
irrelevant. In other words, changing the ordering of these statements will still produce the same result. Any time
when a signal in a PORT MAP statement changes value, i.e., from a 0 to a 1, or vice versa, that PORT MAP statement is
executed.

81

Digital Logic and Microprocessor Design with VHDL

Chapter 3 - Combinational Circuits

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
ENTI TY notgate | S PORT(
i: IN STD LOd G
o: QUT STD LCGd ©);
END not gat e;
ARCHI TECTURE Dat af | ow OF notgate IS
BEA N
0 <= NOT i;
END Dat af | ow;

LI BRARY | EEE;
USE | EEE. STD LOd C _1164. ALL;
ENTI TY and2gate IS PORT(
il, i2: INSTD LOGEC
o: OQUT STD_LOA C);
END and2gat e;
ARCHI TECTURE Dat af | ow OF and2gate | S
BEG N
0 <=il1l AND i 2;
END Dat af | ow;

LI BRARY | EEE;
USE | EEE. STD LOd C _1164. ALL;
ENTI TY and3gate IS PORT(
il, i2, i3: INSTD LOGEC
o: OQUT STD LOA ©);
END and3gat e;
ARCHI TECTURE Dat af | ow OF and3gate | S
BEG N
0 <= (il ANDi2 ANDi3);
END Dat af | ow,

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
ENTI TY or2gate | S PORT(
il, i2: INSTD_LOG G
o: QUT STD LOA ©);
END or 2gat e;
ARCHI TECTURE Dat af | ow OF or2gate | S
BEA N
0<=il ORIiZ2
END Dat af | ow;

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
ENTI TY or3gate IS PORT(
il, i2, i3: INSTD LOGEC
o: QUT STD LOGA ©);
END or 3gat e;
ARCHI TECTURE Dat afl ow OF or3gate IS

----------------- 2-input AND gate -----------

----------------- 3-input AND gate -----------

————————————————— 2-input OR gate ------------

————————————————— 3-input OR gate ------------

82

Digital Logic and Microprocessor Design with VHDL

Chapter 3 - Combinational Circuits

BEG N
0<=i1O0RI2 ORI3;
END Dat af | ow;

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
ENTI TY ordgate | S PORT(
il, i2, i3, i4: INSTD LOGEC
o: QUT STD LOGA ©);
END or 4gat e;
ARCHI TECTURE Dat af | ow OF or4gate IS
BEG N
0<=i1ORiI2ORI3ORIY4
END Dat af | ow;

LI BRARY | EEE;
USE | EEE. STD LOd C _1164. ALL;
ENTI TY xor2gate IS PORT(
il, i2: INSTD_LOG G
o: QUT STD LOA ©);
END xor 2gat e;
ARCHI TECTURE Dat af | ow OF xor2gate IS
BEG N
0 <=il XORi2;
END Dat af | ow;

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
ENTI TY xnor2gate | S PORT(
il, i2: INSTD LOGEC
o: QUT STD_LOA ©);
END xnor 2gat e;
ARCHI TECTURE Dat af | ow OF xnor2gate IS
BEG N
0 <= NOT(il XCOR i2);
END Dat af | ow;

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

ENTITY bcd |'S PORT(
i0, i1, i2, i3: INSTD LOGEC
a, b, ¢, d, e, f, g QUT STD LOG C);
END bcd;
ARCHI TECTURE Structural OF becd IS
COVPONENT not gat e PORT(
i: IN STD LOG G
o: QUT STD LOA ©);
END COVPONENT;
COVPONENT and2gat e PORT(
il, i2: INSTD LOGEC
o: QUT STD LOA ©);

————————————————— 4-input OR gate ------------

————————————————— 2-input XOR gate -----------

----------------- 2-input XNOR gate ----------

----------------- bcd entity -----------------

83

Digital Logic and Microprocessor Design with VHDL

Chapter 3 - Combinational Circuits

END

END

END

END

END

END

END

BEG N
U0:
Ul:
u2:
U3:
Ww.
US:
U6:
Ur:
Us:
LB.

U10:
Ull:
ulz:
U13:
ul4:
Ul5s:
Ul16:
Ul7:
u18:
U19:
U20:
u21:
u22:
END Structural;

COVPONENT;

COVPONENT and3gat e PORT(
il, i2, i3: INSTD LOG G
o:

OUT STD LOG O);
COVPONENT;

COVPONENT or 2gat e PORT(
il, i2: INSTD LOG G
o:

QUT STD LCd O ;
COVPONENT;

COVPONENT or 3gat e PORT(
il, i2, i3: INSID LOGE G
o:

QUT STD_ LCd O ;
COVPONENT;

COVPONENT or 4gat e PORT(
il, i2, i3, i4: INSTD LOGQC
o:

QUT STD _LCd O ;
COVPONENT;

COVPONENT xor 2gat e PORT(
il, i2: INSTD_LOG G
o:

OUT STD LOG O);
COVPONENT;

COVPONENT xnor 2gat e PORT(
il, i2: INSTD LOG G
o:

OUT STD LOG O);
COVPONENT;

not gat e PORT MAP(i 0, i p0);

not gat e PORT MAP(i 1,ipl);

not gat e PORT MAP(i 2,i p2);

xnor 2gate PORT MAP(i 2, i0, al);

or3gate PORT MAP(i 3, i1, al, a);

xnor 2gate PORT MAP(i 1, i0, bl);

or2gate PORT MAP(ip2, bl, b);

or3gate PORT MAP(i2, ipl, i0, c);

and2gate PORT MAP(i 1, ip0O, dl);

and2gate PORT MAP(i p2, ip0, d2);
and2gate PORT MAP(ip2, i1, d3);
and3gate PORT MAP(i 2, ipl, i0, d4);
or4gate PORT MAP(d1l, d2, d3, d4, d);
and2gate PORT MAP(i 1, ip0, el);
and2gate PORT MAP(i p2, ip0, e2);
or2gate PORT MAP(el, e2, e);
and2gate PORT MAP(i 2, ipl, fl);
and2gate PORT MAP(i 2, ip0, f2);
and2gate PORT MAP(i pl, ip0, f3);
ord4gate PORT MAP(i 3, f1, f2, f3, f);
xor2gate PORT MAP(i2, i1, gl);
and2gate PORT MAP(i 1, ip0, g2);
or3gate PORT MAP(i 3, g1, g2, 0);

SIGNAL i p0,ipl,ip2, al, b1, d1, d2, d3, d4, el, e2,f1,f2,13,g1,g2: STD LOG C

Figure 3.13 Structural VHDL code of the BCD to 7-segment decoder.

84

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.7.2 Dataflow BCD to 7-Segment Decoder

Figure 3.14 shows the dataflow VHDL code for the BCD to 7-segment decoder based on the Boolean equations
derived in Section 3.6. The ENTITY declaration for this dataflow code is exactly the same as that for the structural
code, since the interface for the decoder remains the same.

In the ARCHITECTURE section, seven concurrent signal assignment statements are used: one for each of the seven
Boolean equations, which corresponds to the seven LED segments. For example, the equation for segment a is

a=iz+ip+ (i, © ig)

This is converted to the signal assignment statement:
a<=i3 OR i1 OR (i2 XNOR i0);

Proceeding in a similar manner, we obtain the signal assignment statements in the dataflow code for the
remaining six equations.

All of the signal assignment statements are executed concurrently, and therefore, the ordering of these
statements is irrelevant. In other words, changing the ordering of these statements will still produce the same result.
Any time when a signal on the right-hand side of an assignment statement changes value (i.e., froma0Otoa 1, or
vice versa) that assignment statement is executed.

LI BRARY | EEE;

USE | EEE. STD LOd C 1164. ALL;

ENTITY bcd |'S PORT(

i0, il, i2, i3: INSTD LOGEC

a, b, ¢, d e f, g OQUT STD LOG C);

END bcd;

ARCHI TECTURE Dat af | ow OF bcd 1S

BEG N

a<=i30RiIl1OR(i2 XNOR i0); -- seg a

b <= (NOT i2) OR NOT (il XOR i0); -- seg b

C <=i2 OR(NOTil) ORIiO; -- seg c

d <= (il AND NOT i0) OR (NOT i2 AND NOT i0) -- seg d
OR (NOT i2 ANDil) OR(i2 AND NOT i1l AND i 0);

e <= (i1l AND NOT i0) OR (NOT i2 AND NOT i0); -- seg e

f <= 13 OR (i2 AND NOT i1) -- seg f
OR (i 2 AND NOT i0) OR (NOT i1l AND NOT i0);

g <=i30R(i2XORil) OR (il AND NOT i0); -- seg g

END Dat af | ow,

Figure 3.14 Dataflow VHDL code of the BCD to 7-segment decoder.

3.7.3 Behavioral BCD to 7-Segment Decoder

The behavioral VHDL code for the BCD to 7-segment decoder is shown in Figure 3.15. The port list for this
entity is slightly different from the two entities in the previous sections. Instead of having the four separate input
signals, ig, iy, Ip, and i3, we have declared a vector, I, of length four. This vector, I, is declared with the type keyword
STD_LOGIC_VECTOR, that is, a vector of type STD_LoGIC. The length of the vector is specified by the range (3
DOWNTO 0). The first number (3) in the range denotes the index of the most significant bit of the vector, and the
second number (0) in the range denotes the index of the least significant bit of the vector. Likewise, the seven output
signals, a to g, is replaced with the STD_LOGIC_VECTOR Segs of length 7. This time, however, the keyword TO is
used in the range to mean that the most significant bit in the vector is index 1, and the least significant bit in the
vector is index 7.

In the architecture section, a PROCESS statement is used. All of the statements inside the process block are
executed sequentially. The process block itself, however, is treated as a single concurrent statement. Thus, the

85

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

architecture section can have two or more process blocks together with other concurrent statements, and these will
all execute concurrently.

The parenthesized list of signals after the PROCESS keyword is referred to as the sensitivity list. The purpose of
the sensitivity list is that, when a value for any of the listed signals changes, the entire process block is executed
from the beginning to the end.

In the code, there is a CASE statement inside the process block. Depending on the value of I, one of the wHEN
parts will be executed. A WHEN part consists of the keyword wWHEN followed by a constant value for the variable | to
match, followed by the symbol “=>.” The statement or statements after the symbol “=>" is executed when | matches
that corresponding constant. In the code, all of the WHEN parts contain one signal assignment statement. All of the
signal assignment statements assign a string of seven bits to the output signal Segs. This string of seven bits
corresponds to the on-off values of the seven segments, a to g, as shown in the 7-segment decoder truth table of
Figure 3.11. For example, looking at the truth table, we see that when | = “0000” (that is, for the decimal digit 0) we
want all of the segments to be on except for segment g. Recall that in the declaration of the Segs vector, the most
significant bit, which is the leftmost bit in the bit string, is index 1, and the least significant bit, which is the
rightmost bit, is index 7. In VHDL, the notation Segs(n) is used to denote the index n of the Segs vector. In the code,
we have designated Segs(1) for segment a, Segs(2) for segment b, and so on to Segs(7) for segment g. So, in order to
display the decimal digit O, we need to assign the bit string “1111110” to Segs.

If the value of | does not match any of the WHEN parts, then the WHEN OTHERS part will be chosen. In this case,
all of the segments will be turned off. Notice that for both the structural and the dataflow code, the segments are not
all turned off when 1 is one of these values. Instead, a certain combination of LEDs are turned on because the K-
maps assigned some of the don’t-cares to 1’s. If we assign all the don’t-cares to 0, then all the LEDs will be turned
off. An alternative to turning all of the segments off for the remaining six cases is to display the six alphabets, A, b,
C, d, E, and F, for the six hexadecimal digits. The two letters, b, and d, have to be displayed in lower case, because
otherwise, it will be the same as the numbers 8 and 0, respectively.

A sample simulation trace of the behavioral 7-segment decoder code is shown in Figure 3.16.

LI BRARY | EEE;
USE | EEE. STD_LCGQ C_1164. ALL,

ENTI TY bed |'S PORT (
I: IN STD_LOG C_VECTOR (3 DOWNTO 0);
Segs: OUT STD LOG C_VECTOR (1 TO 7));
END bcd;

ARCHI TECTURE Behavi oral OF bcd IS
BEG N
PROCESS(1)
BEG N
CASE | 1S
VWHEN "0000" => Segs <= "1111110";
WHEN "0001" => Segs <= "0110000";
WHEN "0010" => Segs <= "1101101";
WHEN "0011" => Segs <= "1111001";
WHEN "0100" => Segs <= "0110011";
WHEN "0101" => Segs <= "1011011";
WHEN "0110" => Segs <= "1011111";
WHEN "0111" => Segs <= "1110000";
WHEN "1000" => Segs <= "1111111";
WHEN "1001" => Segs <= "1110011";
VWHEN OTHERS => Segs <= "0000000";
END CASE;
END PROCESS;
END Behavi or al ;

86

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

Figure 3.15 Behavioral VHDL code of the BCD to 7-segment decoder.

Marme:

l 100.0ns 200.0ns 300.0ns 400.0ns 500.0ns GO00.0ns 700.0ns 800.0ns 900.0ns 1.C

- |

T o0 ¥ 1 ¥ 2 V3 ¥ 1 V85 ¥ & ¥ 7 ¥ 8 Y 9

S Segs 1111100110000 31101101 §1111001 §0110011 1011011 }1011111 §1110000 §1111111 ¥1110011

Figure 3.16 A sample simulation trace of the behavioral 7-segment decoder code.

3.8 Summary Checklist

oooo0oo0oo0oU0oo0oDO0DO0OO0D00O

Combinational circuit

Analysis of combinational circuit

Synthesis of combinational circuit

Technology mapping

Using K-maps to minimize a Boolean function

The use of don’t-cares

Using don’t-cares in a K-map

Using the Quine-McCluskey method to minimize a Boolean function

Timing hazards and glitches

How to eliminate simple glitches

Writing structural, dataflow, and behavioral VHDL code

Be able to analyze any combinational circuit by deriving its truth table, or Boolean function
Be able to synthesize a combinational circuit from a given description, truth table, or Boolean function
Be able to reduce any combinational circuit to its smallest size

87

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.9 Problems
3.1 Derive the truth table for the following circuits:

a)
Xy z
1 E
L]
b)
w
X F
y
z
c)
X z
.—\I F
\
d)
a b ¢
Answer:
a)
Xx|y|z|F
0oj(o0f(0]oO
oOjo0f1]O0
0[{1]0]0
0[{1|1]0
1/{0(0]1
1/0(1]1
1(1/0]1
1(1(1(1
b)

88

Digital Logic and Microprocessor Design with VHDL

w(x+y)

(W(x+y))"

' +2)

[(wix+y))' (' + 2)]

0

1

1

1

e Ll L Ll L ===l =l el el e] =
N = === L =l =1 =1=] B
N == == == R == B
ROk ook ok |o|lr|olr|lo|r|lo|~
S ==l ==ll=] ===}

olo|o|o|lo|o|lr|r|r|k|r|kr kL |k

RloR|klko|k|klk ok lkik ol

O|O|0|0|0|O|FR|FP|IFPIOIFP(FP|IFPIO|F-

PR RPRPPPO OO IOoo|Fr|Io|olm

Chapter 3 - Combinational Circuits

(x+y) | x+y+7)

xty+z')

(x+y)l(x+y+z')

1

0

0

R RklR|rklololo|lo|x
R R|lo|lok|r|o|lolx
~lo|rk|olr|lo|r|lol~
N =)

N =)

[ellellelielie] el

[ellellelleolle]le]lle]

N

d)

[<3]

(a'0c)

(c'b'a)

(c'b'a)

(@' 0c)+(c'b'a)

0

1

1

Rk lk|rlolo|lolo|w
PR OIO|FR(Fk,RIO|IOoO|T
R|o|k|o|k|o|rk|o|o
o|o|o|o|r |k k|-
N =1 ===

O|0|O(r|O|O0O|O

=

RlRR|o|lk|k| -

= ==

3.2 Derive the Boolean function directly from the circuits in Problem 3.1.

Answer:
a) F=xy+(xy (x+z'))
b) F=[wx+y) (' +2)I

) F=[x+y)(y'+Z+xX+y)(x+y+2')T
d F=[@0Oc)+(c'ba)]®b

3.3 Draw the circuit diagram that implements the following truth tables:

89

Chapter 3 - Combinational Circuits

Digital Logic and Microprocessor Design with VHDL

JA

F

No

Ny

w|Xx|y

0|0j0j0]O
0j0f|0]|1]0
0jo0[1|0]1
0jof[1]1]0
0j1{0]|0]1
0j1]{0|1]1
0j1(1|0]0
0Oj1(1]1]1

1/0[0]0]0
1/0]0]1]1
1/0]1]0]1
1/0(1]1]0
1/1]0]0]1
1]1]0]1]1
1/1]1]/0]0
111111

b)

0[{0]0]0O

0j0j1])0

0j1]0)1

0Oj1]1)1

1/0/0]0

1/0]1]0

1/1]0]1

1/1]1]0

a)

N>

Ns

d)

1
1
1
1
0
1
0
0
1
1
0
0
1
1
1
1

1
0

1

1
1
0

1
1
0
1
0

1

0j]0j0]oO

0j0j0]1

0jo0j1/0})0

0j0]1]1

0j1/0(/0})0

0[1]0]1
0l1]1]0

0(1]1]1

1/0]0j0] 0

1/10]0]1
1/10]1]0

11011

1/1]0]0
1)11]0]1

1]1]1]0)0

11111

c)

3.4 Draw the circuit diagram that implements the following expressions:

(0, 1, 6)

a) F(xy.2)

Answer:

(0, 1, 6)

Fxy.2)

Mo + My + Mg

X'y'z+xyz+xyz

90

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.5

3.6

3.7

3.8

3.9

Xy

i

§7
Cite
b) F(wxvY,2)=2(0,1,6)
c) F(wxy,2)=2(2,6, 10,11, 14, 15)
d) F(xy,2)=M(0,1,6)

e) F(wx Yy, z)=r(0,1,6)
f) F(wxy, z)=0N(2 6,10, 11, 14, 15)

Draw the circuit diagram that implements the following Boolean functions using as few basic gates as possible,
but without modifying the equation.

a) F=xy +xYy'z+xyz

b) F=wz"+w'xy + wx'z + wxyz

C) F=wXxy'z+wXxyz+wxy'z + wxyz

d) F=N3'N2'NiNo' + N3'N2'NiNg + NaNo'NiNg" + N3No'NiNo + N3NoN;'Ng' + N3N,N;Ng
e) F=[(x®y)+(xyz2)]T(W +x+2)

fy F=xOy0Oz

9 F=lwxyz+wz(yOx)J]

Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 2-input AND, 2-input
OR, and NOT gates.

Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number is any one of the
following numbers: 2, 3, 10, 11, 12, and 15. Otherwise, it outputs a 0.

Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number is greater than or equal to
5. Otherwise, it outputs a 0.

Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number has an even number of
zeros. Otherwise, it outputs a 0.

3.10Construct the following circuit. The circuit has five input signals and one output signal. The five input lines are

labeled W, X, Y, Z, and E, and the output line is labeled F. E is used to enable (turn on) or disable (turn off) the
circuit; thus, when E = 0, the circuit is disabled, and F is always 0. When E = 1, the circuit is enabled, and F is
determined by the value of the four input signals, W, X, Y, and Z, where W is the most significant bit. If the
value is odd, then F = 1, otherwise F = 0.

Answer:

91

Digital Logic and Microprocessor Design with VHDL

Chapter 3 - Combinational Circuits

E

3.11Draw the smallest circuit that inputs two 2-bit numbers. The circuit outputs a 2-bit number that represents the
count of the number of even numbers in the inputs. The number 0 is taken as an even number. For example, if
the two input numbers are 0 and 3, then the circuit outputs the number 1 in binary. If the two input numbers are
0 and 2, then the circuit outputs the number 2 in binary. Show your work by deriving the truth table, the
equation, and finally the circuit. You need to minimize all of the equations to standard forms.

Answer:
X1 | Xo | Y1 | Yo | OUty | OUg
0(0|0]|O 1 0
0|]0]0]1 0 1
0|j0|1]0 1 0
00|11 0 1
0|1]0]0 0 1
0|1]0]1 0 0
0O|1]1]0 0 1
0O|1]1]1 0 0
110010 1 0
11001 0 1
110110 1 0
11011 0 1
111010 0 1
111011 0 0
111110 0 1
111(1]1 0 0

outy = X1'Xo'y1'Yo' + X1'Xo'Y1Yo' + X1Xo'Y1'Yo' + X1Xo'Y1Yo'
=Xo' Yo'

OUty = X1'Xo'Y1'Yo + X1'Xo'Y1Yo + X1'XoY1'Yo' + X1'Xoy1Yo' + X1Xo'Y1'Yo + X1Xo'Y1Yo + X1XoY1'Yo' + X1XoY1Yo'

=Xo O Yo

92

Digital Logic and Microprocessor Design with VHDL

Chapter 3 - Combinational Circuits

3.12Derive and draw the circuit that inputs two 2-bit unsigned numbers. The circuit outputs a 3-bit signed number
that represents the difference between the two input numbers (i.e. it is the result of the first number minus the

second number). Derive the truth table and equations in canonical form.

Answer:

x
=
x
S
<<
-
<<
o
o
N
o
flry
o
S

PRk Rk |lo|lolo|lo|o|lo|o|o

PRk |lo|lo|o|ok|krkiklololo|lo
R|k|o|o|k|r|o|lok|k|lolokk|lo|lo
R|o|k|o|r|o|r|o|r|o|rk|or|lolr|o
o|o|o|o|r|o|o|o|r|r|o|o|r|k ko
o|o|r|r|r|o|o|r|r|r|loloolr|r|lo
o|lr|o|r|r|lo|r|olor|o|k|ir|lolr|o

da = X1'Xo'Y1'Yo + X1'Xo'Y1Yo' + X1'Xo'Y1Yo + X1'XoY1Yo' + X1'XoY1Yo + X1Xo'Y1Yo

d1 = X1'Xo'Y1'Yo + X1'Xo'Y1Yo' + X1'XoY1Yo' + X1'XoY1Yo + X1Xo'Y1'Yo' + X1Xo'Y1Yo + XaXoY1'Yo' + X1XoY1'Yo
do = X1'Xo'Y1'Yo + X1'Xo'Y1Yo + X1'XoY1'Yo' + X1'XoY1Yo' + X1Xo'Y1'Yo + X1Xo'Y1Yo + XaXoY1'Yo' + XaXoY1Yo'

93

Digital Logic and Microprocessor Design with VHDL

|
|
|
|

ml m2m3 m4m6 m7m8m9m1{n

!

3

Chapter 3 - Combinational Circuits

1£n1£n14

3

o3

3
IS

3

o

3

3

bDbDDQDbbDb

3.13Use Boolean algebra to show that the following circuit is equivalent to the NOT gate.

— —

3.14Construct a 4-input NAND gate circuit using only 2-input NAND gates.

Answer:

3.15Implement the following circuit using as few NAND gates (with any number of inputs) as possible.

Answer:

AxnorB = (Axor B)'
= (AB'+ A'B)'
= (AB")' (A'B)'

=[(AB') (AB)T"

94

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

> ©r
z
m
-
>
w

Out

Out

3.16Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 2-input NAND gates.
3.17Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 3-input NAND gates.
3.18Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 3-input NOR gates.

3.19Convert the following circuit as is (i.e., do not reduce it first) to use only 2-input NOR gates.

Answer:

Do
—— 0>

3.20Convert the following full adder circuit to use only eleven 2-input NAND gates.

95

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

| J
Cout
Gn
Answer:

Recall that wx + yz = ((wx)' (y2)")'. Furthermore, x Oy 0 z=x @y ® zand x ® y = (X'y" +xy).

X y
C.
e s ii E "
S

3.21Perform a timing analysis of the circuit shown in Figure 3.9(c) to see that the circuit does not produce any
glitches.

3.22Derive a circuit for the 2-input XOR gate that uses only 2-input NAND gates.

Answer
X
y F
F=x0Oy
= xy' + x'y

=xx'+xy' + X'y +y'y
=X Y)X+ (X Y)Y
= ((xy)x) + ((xy)'y)

= [((xy)%)" ((xy)'y)' T

3.23Use K-maps to reduce the Boolean functions represented by the truth tables in Problem 3.3 to standard form.

96

Digital Logic and Microprocessor Design with VHDL

3.24Use K-maps to reduce the Boolean functions in Problem 3.4 to standard form.
3.25Use K-maps to reduce the Boolean functions in Problem 3.5 to standard form.

3.26L.ist all of the Pls, EPIs, and all of the minimized standard form solutions for the following equation.

F(v,w,x,y,z) = M(2,3,4,5,6,7,8,9,11,13,15,18,19,20,21,22,29,30,31)

Answer

F(v,w,xy,2) = 1(2,3,4,5,6,7,8,9,11,13,15,18,19,20,21,22,29,30,31)
=5(0,1,10,12,14,16,17,23,24,25,26,27,28)

10

F yz v=0 v=1
WX 00 01 11 10|00 01 11 10
00 1 1 1 1
01 1
11) 1 1 1
10 1 1 1 1 1
w'x'y
F . v=o0 / -
wx _ 0001 11/10 | 0001 11
¥
WXY'Z".

/

VWXZ' V'wyz' vwy'z'

WX'yZ'

MJWV

Chapter 3 - Combinational Circuits

PI’s: wxy'z', w'x'y', vx'y', vw'xyz, vwx', wx'yz', vwy'z', v'wyz', v'wxz'

PI’s 0|1 (10|12 |14 |16 |17 |23 |24 |25 |26 |27 | 28
WXy'z' v v
w'x'y' EPI | M | 4 v v
vx'y' v | v v | v
VW'XyZ EPI M
vwx' EPI v v v |H
wx'yz' v v
vwy'z' v v
v'wyz' v 4
V'Wxz' V| v

EPI covered minterms 0|1 16 | 17 | 23| 24 | 25| 26 | 27

EPI’s: w'x'y', vw'xyz, vwx'
Solution:

F=wX'y' + vw'xyz + vwx' + v'wyz' + wxy'z'

97

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.27Use K-maps to reduce the following 4-variable Boolean functions F(w, X, y, z) to standard form;
a) 1-minterms: my, ms, My, Ms
Don’t-care minterms: myg, My, M2, My3, M1g, M5
b) 1-minterms: 1,3,4,7,9
Don’t-care minterms: 0, 2, 13, 14, 15
c) 1-minterms: 2,3,8,9
Don’t-care minterms: 1, 5, 6, 7, 8, 13, 15

Answer:

a)

WX 00 01 1116,
00 I

01 i1 1

11 | x x x x

10 x ><

3.28Use K-maps to reduce the following 5-variable Boolean functions F(v, w, X, y, z) to standard form;
a) 1-minterms: 1,3,4,7,9
Don’t-care minterms: 0, 2, 13, 14, 15
b) 1-minterms:

3.29Use the Quine-McCluskey method to simplify the function f(w,x,y,z) = 2(0,2,5,7,13,15). List all the PI’s, EPI’s,
cover lists, and solutions.

Answer:

Group | Subcube | Subcube Value | Subcube
ID | Minterms | w | x | y | z | Covered
Go Mo 0(0|0]|O v
G, m o(of1]0 v
G, Mg 0 101 v
Gs my 0 111 v

M13 1 101 v
Gy Mg 1 111 v

Group | Subcube | Subcube Value | Subcube
ID | Minterms | w | x | y | z | Covered
Gy Mo 0/0]-1]0
G, Ms 7 0 1 - 1 v

Ms 13 - 1(0]|1 v
Gs M7.15 111 v
My3.15 1]1]-]1 v

Group | Subcube | Subcube Value | Subcube

ID | Minterms | w | x | y | z | Covered
Gy Ms7a3q5 | - |1]-]1
Prime Prime Implicant Function Minterms

5

Implicant | Implicant | Minterms | o | 2
Name Expression

7‘13’15

98

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

P, w'x'z' 0,2) Oo|0Od

P, Xz (5,7,13,15) ololo|o

EPI Covered Minterms: | 0 | 2 | 5 | 7 |13 | 15
Not Covered Minterms:

Pl list: w'x'z', xz
EPI list: w'x'z', xz
Cover list: w'x'z', xz
f=wx'z'+xz

3.30Use the Quine-McCluskey method to reduce the Boolean functions in Problem 3.4 to standard form.

3.31Write the function that eliminates the static hazard(s) in the function F = w'z + xyz' + wx'y.

Answer:
yz 00 01 11 10 yz 00 01 11 10
WX WX
—
0 T 3 2 0 1 3 2
00 1 1 00 1 H
4 5 7 6 4 5 |:L 6
01 1 1 H 01 1 1 1
12 13 15 12 13 15 4
1 E'A 1 m
8 9 Ij:llo 8 9 1
10 1 1 10 1 MO
L]
Original function After adding the overlaps

F=w'z+xyz' + wx'y + w'xy + wyz' + x'yz

3.32Write the function that eliminates the static hazard(s) in the function F = y'z' + wz + w'X'y.

Answer:

F F
yz

WX 00 01 11 10 WX
00 1
01} 1
11171 | 1] w1 |
0011 |1 00 1|1 |1

With hazard Without hazard

F=y'z'+wz+wXy+wy' +X'yz +wX'z
3.33Write the complete structural VHDL code for the Boolean functions in Problem 3.4.
3.34Write the complete dataflow VHDL code for the Boolean functions in Problem 3.4.

3.35Write the complete behavioral VHDL code for the Boolean functions in Problem 3.4.

99

Digital Logic and Microprocessor Design with VHDL Chapter 3 - Combinational Circuits

3.36Write the complete dataflow VHDL code for the Boolean functions in Problem 3.5.

3.37Write the behavioral VHDL code for converting an 8-bit unsigned binary number to two 4-bit BCD numbers.
These two BCD numbers represent the tenth and unit digits of a decimal number. Also, turn on the decimal
point LED for the unit digit if the 8-bit binary number is in the one hundreds range, and turn on the decimal
point LED for the tenth digit if the 8-bit binary number is in the two hundreds range. This circuit is used as the
output circuit for many designs in later chapters.

100

Chapter 4

Standard Combinational Components

Control
Inputs

\

y

Data
Inputs

Control Unit
N —
State Output > >
Next- . » »
state Memory Logic C.OntrOI
Logic Register B}D Slg;nals s
A < <
Status
v Signals

Control
Outputs

Data
Outputs

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

As with many construction projects, it is often easier to build in a hierarchical fashion. Initially, we use the very
basic building blocks to build slightly larger building blocks, and then from these larger building blocks, we build
yet larger building blocks, and so on. Similarly, in constructing large digital circuits, instead of starting with the
basic logic gates as building blocks each time, we often start with larger building blocks. Many of these larger
building blocks are often used over and over again in different digital circuits, and therefore, are considered as
standard components for large digital circuits. In order to reduce the design time, these standard components are
often made available in standard libraries so that they do not have to be redesigned each time that they are needed.
For example, many digital circuits require the addition of two numbers; therefore, an adder circuit is considered a
standard component and is available in most standard libraries.

Standard combinational components are combinational circuits that are available in standard libraries. These
combinational components are used mainly in the construction of datapaths. For example, in our microprocessor
road map, the standard combinational components are the multiplexer, ALU, comparator, and tri-state buffer. Other
standard combinational components include adders, subtractors, decoders, encoders, shifters, rotators, and
multipliers. Although the next-state logic and output logic circuits in the control unit are combinational circuits, they
are not considered as standard combinational components because they are designed uniquely for a particular control
unit to solve a specific problem, and usually are never reused in another design.

In this chapter, we will design some standard combinational components. These components will be used in
later chapters for the building of the datapath in the microprocessor. When we use these components to build the
datapath, we do not need to know the detailed construction of these components. Instead, we only need to know how
these components operate, and how they connect to other components. Nevertheless, in order to see the whole
picture, we should understand how these individual components are designed.

4.1 Signal Naming Conventions

So far in our discussion, we have always used the words “high” and “low” to mean 1 or 0, or “on” or “off”,
respectively. However, this is somewhat arbitrary, and there is no reason why we can’t say a 0 is a high or a 1 is off.
In fact, many standard off-the-shelf components use what we call negative logic where 0 is for on and 1 is for off.
Using negative logic is usually more difficult to understand because we are used to positive logic where 1 is for on,
and 0 is for off. In all of our discussions, we will use the more natural, positive logic that we are familiar with.

Nevertheless, in order to prevent any confusion as to whether we are using positive logic or negative logic, we
often use the words “assert,” “de-assert,” “active-high,” and “active-low.” Regardless of whether we are using
positive or negative logic, active-high always means that a 1 (i.e., a high) will cause the signal to be active or
enabled and that a 0 will cause the signal to be inactive or disabled. For example, if there is an active-high signal
called add and we want to enable it (i.e. to make it do what it is intended for, which in this case is to add something)
then we need to set this signal line to a 1. Setting this signal to a 0 will cause this signal to be disabled or inactive.
An active-low signal, on the other hand, means that a O will cause the signal to be active or enabled, and that a 1 will
cause the signal to be inactive or disabled. So if the signal add is an active-low signal, then we need to set it to a 0 to
make it add something.

We also use the word “assert” to mean: to make a signal active or to enable the signal. To de-assert a signal is
to disable the signal or to make it inactive. For example, to assert the active-high add signal line means to set the
add signal to a 1. To de-assert an active-low line also means to set the line to a 1—since a 0 will enable the line
(active-low)—and we want to disable (de-assert) it.

4.2 Adder

421 Full Adder

To construct an adder for adding two n-bit binary numbers, X = X1 ... Xoand Y =y, ... Yo, We need to first
consider the addition of a single bit slice, x; with y;, together with the carry-in bit, c;, from the previous bit position
on the right. The result from this addition is a sum bit, s;, and a carry-out bit, c;.;, for the next bit position. In other
words, s; = X; +y; + ¢, and ¢;.; = 1 if there is a carry from the addition to the next bit on the left. Note that the +
operator in this equation is addition and not the logical OR.

102

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

For example, consider the following addition of the two 4-bit binary numbers, X = 1001 and Y = 0011.

+
o -

The result of the addition is 1100. The addition is performed just like that for decimal numbers, except that there is a
carry whenever the sum is either a 2 or a 3 in decimals, since 2 is 10 in binary and 3 is 11. The most significant bit in
the 10 or the 11 is the carry-out bit. Looking at the bit slice that is highlighted in blue where x, =0,y; =1, and ¢; =
1, the addition for this bit slice is x; +y; + ¢; =0+ 1 + 1 = 10. Therefore, the sum bit is s; = 0, and the carry-out bit
isc,=1.

The circuit for the addition of a single bit slice is known as a full adder (FA), and its truth table is shown in
Figure 4.1(a). The derivation of the equations for s; and c;.; are shown in Figure 4.1(b). From these two equations,
we get the circuit for the full adder, as shown in Figure 4.1(c). Figure 4.1(d) shows the logic symbol for it. The
dataflow VHDL code for the full adder is shown in Figure 4.2.

C;

<
k)
v

s

1

Si = XViCi+ X'YiC + XiYi'Ci' + XiYiCi
= (XY + Xiyi)C" + (G + XiYi)Ci
=(x Oy)ei' + (x Oy)c
=x; U Yi O ¢

Cir1 = Xi'ViCi + Xi¥i'Ci + Xi¥iCi' + XiYiCi
= XiYi(Gi' + i) + Ci(Xi'y; + Xiyi')
=Xiyi + ci(xi O y)

= ===
R |o|lor|r|lo|loIK
=l = = =)
=l ===}
==l = =)

(b)

—~
£

Xij Yi

d
S

Cit <«—c,FA c«—
Ci

Y 7

(c) (d)
Figure 4.1 Full adder: (a) truth table; (b) equations for s; and c;.4; (¢) circuit; (d) logic symbol.

LI BRARY | EEE;
USE | EEE. STD_LOGQ C_1164. ALL,

ENTITY fa | S PORT (
G, Xi, Yi: INSTD LOG C
G1l, Si: OQUT STD LOd ©O);
END f a;

103

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

ARCHI TECTURE Dataflow OF fa IS
BEG N

Cl<=(Xi ANDYi) OR(C AND (Xi XOR Yi));
Si <= Xi XORYi XOR G ;
END Dat af | ow;

Figure 4.2 Dataflow VHDL code for a 1-bit full adder.

4.2.2 Ripple-carry Adder

The full adder is for adding two operands that are only one bit wide. To add two operands that are, say four bits
wide, we connect four full adders together in series. The resulting circuit (shown in Figure 4.3) is called a ripple-
carry adder for adding two 4-bit operands.

Since a full adder adds the three bits, x;, y; and c;, together, we need to set the first carry-in bit, co, to 0 in order
to perform the addition correctly. Moreover, the output signal, coy, is a 1 whenever there is an overflow in the
addition.

The structural VHDL code for the 4-bit ripple-carry adder is shown in Figure 4.4. Since we need to duplicate
the full adder component four times, we can use either the PORT MAP statement four times or by using the FOR-
GENERATE statement as shown in the code to automatically generate the four components. The statement FOR k
IN 3 DOWNTO 0 GENERATE determines how many times to repeat the PORT MAP statement that is in the body
of the GENERATE statement and the values used for k. The vector signal Carryv is used to propagate the carry bit
from one FA to the next.

out 3

«—C,=0

Figure 4.3 Ripple-carry adder.

LI BRARY | EEE;
USE | EEE. STD_LOd C_1164. ALL;

ENTI TY Adder4 1S PORT (
A, B: IN STD LOG C VECTOR(3 DOWNTO 0);
Cout: QUT STD LOGE G,
SUM OUT STD LOJ C VECTOR(3 DOMNTO 0));
END Adder 4;

ARCHI TECTURE Structural OF Adder4 IS
COVPONENT FA PORT (
ci, xi, yi: INSTD LOd C
co, si: QUT STD LG O);
END COVPONENT;

SIGNAL Carryv: STD_LOG C_VECTOR(4 DOWNTO 0);

BEGA N
Carryv(0) <="'0";

Adder: FOR k IN 3 DOANTO 0 GENERATE
Ful | Adder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+l), SUMK));

104

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

END GENERATE Adder;

Cout <= Carryv(4);
END Structural;

Figure 4.4 VHDL code for a 4-bit ripple-carry adder using a FOR-GENERATE statement.

4.2.3 * Carry-lookahead Adder

The ripple-carry adder is slow because the carry-in for each full adder is dependent on the carry-out signal from
the previous FA. So before FA; can output valid data, it must wait for FA;_; to have valid data. In the carry-
lookahead adder, each bit slice eliminates this dependency on the previous carry-out signal and instead uses the
values of the two input operands, X and Y, directly to deduce the needed signals. This is possible from the following
observations regarding the carry-out signal. For each FA;, the carry-out signal, ci.s, is set to a 1 if either one of the
following two conditions is true:

xpi=landy;=1
or
(x;=1ory;=1)andc¢;=1
In other words,
Cie1 = XiYi + Ci(X; +Yi) (4.1)

At first glance, this carry-out equation looks completely different from the carry-out equation deduced in Figure
4.1(b). However, they are equivalent (see Problem 2.6(g)).

If we let
gi = XiYi
and
Pi =X *Vi

then Equation (4.1) can be rewritten as
Ci+1 = i + PiCi (4.2)

Using Equation (4.2) for c;.;, we can recursively expand it to get the carry-out equations for any bit slice, ¢;, that
is dependent only on the two input operands, X and Y, and the initial carry-in bit, c,. Using this technique, we get the
following carry-out equations for the first four bit slices

C1 =0Jo * PoCo (4.3)
C; =01*+piC

=01 + P1(go + PoCo)

=01+ P19o + P1PaCo (4.4)

C3 =02t Pk
=02 + P2 (91 + P19o + P1PeCo)
=02+ P2 91+ P2P19o + P2P1 PoCo (4.5)

C4s =03+ PsC3
=03 + P3(2 + P21 + P2P1g0 + P2P1PoCo)
=03+ P3Y2 + P3P201 + PsP2P19o + P3P2P1P0Co (4.6)

Using Equations (4.3) to (4.6), we obtain the circuit for generating the carry-lookahead signals for ¢, to c,, as

shown in Figure 4.5(a). Note that each equation is translated to a three-level combinational logic—one level for
generating the g; and p;, and two levels (for the sum-of-products format) for generating the c; expression. This carry-

105

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

lookahead circuit can be reduced even further because we want ¢, to be a 0 when performing additions, and this 0
will cancel the rightmost product term in each equation.

The full adder for the carry-lookahead adder can also be made simpler since it is no longer required to generate
the carry-out signal for the next bit slice. In other words, the carry-in signal for the full adder now comes from the
new carry-lookahead circuit rather than from the carry-out signal of the previous bit slice. Thus, this full adder only
needs to generate the sum; signal. Figure 4.5(b) shows one bit slice of the carry-lookahead adder. For an n-bit carry-
lookahead adder, we use n bit slices. These n bit slices are not connected in series as with the ripple-carry adder,
otherwise, it defeats the purpose of having the more complicated carry-out circuit.

Xy Y3 X, Y, Xy Y1 X, Yo
g@ XY, XO"|'Xi—1 yO"|'yi—l

9y Py 95 Py 9 Py 99 Po Carry-
lookahead
Circuit
G

sum,

Cy
(@ (b)

Figure 4.5 (a) Circuit for generating the carry-lookahead signals, c; to c4; (b) one bit slice of the carry-lookahead
adder.

4.3 Two’s Complement Binary Numbers

Before introducing subtraction circuits, we need to review how negative numbers are encoded using two’s
complement representation. Binary encoding of humbers can be interpreted as either signed or unsigned. Unsigned
numbers include only positive numbers and zero, whereas signed numbers include positive, negative, and zero. For
signed numbers, the most significant bit (MSB) tells whether the number is positive or negative. If the most
significant bit is a 1, then the number is negative; otherwise, the number is positive. The value of a positive signed
number is obtained exactly as for unsigned numbers described in Section 2.1. For example, the value for the positive
signed number 01101001, is just 1 x 28+ 1 x 2° + 1 x 2° + 1 x 2° = 105 in decimal.

However, to determine the value of a negative signed number, we need to perform a two-step process: 1) flip all
the 1 bits to 0’s and all the 0 bits to 1’s, and 2) add a 1 to the result obtained from step 1). The number obtained from
applying this two-step process is evaluated as an unsigned number for its value. The negative of this resulting value
is the value of the original negative signed number.

Example 4.1: Finding the value for a signed number

Given the 8-bit signed number 11101001,, we know that it is a negative number because of the leading 1. To
find out the value of this negative number, we perform the two-step process as follows:

11101001 (original number)
00010110 (flip bits)
00010111 (add a 1 to the previous number)

The value for the resulting number 00010111 is 1 x 2* + 1 x 22 + 1 x 2! + 1 x 2° = 23. Therefore, the value of the
original number 11101001 is negative 23 (-23). .

106

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

Example 4.2: Finding the value for a signed number

To find the value for the 4-bit signed number 1000, we apply the two-step process to the number as follows:

1000 (original number)
0111 (flip bits)
1000 (add a 1 to the previous humber)

The resulting number 1000 is exactly the same as the original number! This, however, should not confuse us if
we follow exactly the instructions for the conversion process. We need to interpret the resulting number as an
unsigned number to determine the value. Interpreting the resulting number 1000 as an unsigned number gives us the
value of 8. Therefore, the original number, which is also 1000, is negative 8 (-8). .

Figure 4.6 shows the two’s complement numbers for four bits. The range goes from -8 to 7. In general, for an
n-bit two’s complement number, the range is from —2"* to 2"* - 1.

4-bit Binary | Two’s Complement
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Pl pr e
HNw#mm\lm\lmmwaHo

Figure 4.6 4-bit two’s complement numbers.

The nice thing about using two’s complement to represent negative numbers is that when we add a number with
the negative of the same number, the result is zero as expected. This is shown in the next example.

Example 4.3: Adding 4-bit signed numbers

Use 4-bit signed arithmetic to perform the following addition.

3 = 0011
+(=3) = +1101
0 = 10000

The result 10000 has five bits. But since we are using 4-bit arithmetic (that is, the two operands are 4-bits wide)
the result must also be in 4-bits. The leading 1 in the result is, therefore, an overflow bit. By dropping the leading
one, the remaining result 0000 is the correct answer for the problem. Although this addition resulted in an overflow
bit, but by dropping this extra bit, we obtained the correct answer. .

Example 4.4: Adding 4-bit signed numbers

Use 4-bit signed arithmetic to perform the following addition.

107

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

6 = 0110
+3 = + 0011
9 z 1001

The result 1001 is a 9 if we interpret it as an unsigned number. However, since we are using signed numbers,
we need to interpret the result as a signed number. Interpreting 1001 as a signed number gives — 7, which of course
is incorrect. The problem here is that the range for a 4-bit signed number is from — 8 to + 7, and + 9 is outside of this
range. .

Although the addition in this example did not resulted in an overflow bit, but the final answer is incorrect. In
order to correct this problem, we need to add (at least) one extra bit by sign extending the number. The corrected
arithmetic is shown in Example 4.5.

Example 4.5: Adding 5-bit signed numbers

Use 5-bit signed arithmetic to perform the following addition.

6 = 00110
+3 = + 00011
9 = 01001
The result 01001, when interpreted as a signed number, is 9. .

To extend a signed number, we need to add leading 0’s or 1’s depending on whether the original most
significant bit is a 0 or a 1. If the most significant bit is a 0, we sign extend the number by adding leading O’s. If the
most significant bit is a 1, we sign extend the number by adding leading 1’s. By performing this sign extension, the
value of the number is not changed, as shown in Example 4.6.

Example 4.6: Performing sign extensions

Sign extend the numbers 10010 and 0101 to 8-bits wide.

For the number 10010, since the most significant bit is a 1, therefore, we need to add leading 1’s to make the
number 8-bits long. The resulting number is 11110010. For the number 0101, since the most significant bit is a 0,
therefore, we need to add leading 0’s to make the number 8-bits long. The resulting number is 00000101. The
following shows that the two resulting numbers have the same value as the two original numbers. Since the first
number is negative (because of the leading 1 bit) we need to perform the two-step process to evaluate its value. The
second number is positive, so we can evaluate its value directly.

Original Sign Original Sign
Number Extended Number Extended
10010 11110010 0101 00000101

Flip bits 01101 00001101
Add 1 01110 00001110
Value -14 -14 5 5

4.4 Subtractor

We can construct a one-bit subtractor circuit similar to the method used for constructing the full adder.
However, instead of the sum bit, s;, for the addition, we have a difference bit, d;, for the subtraction, and instead of
having carry-in and carry-out signals, we have borrow-in (b;) and borrow-out (b;.;) signals. So, when we subtract the
i bit of the two operands, x; and y;, we get the difference d; = x; — y;. If, however, the previous bit on the right has to
borrow from this i bit, then input b; will be set to a 1, and the equation for the difference will be d; = x; — b; — y;. On
the other hand, if the i bit has to borrow from the next bit on the left for the subtraction, then the output by, will be
set to a 1. The value borrowed is a 2, and so the resulting equation for the difference will be d; = x; — b; + 2bj; — V.
Note that the symbols + and — used in this equation are for addition and subtraction, and not for logical operations.
The term 2bj,; is “2 multiply by bj.;.” Since b, is a 1 when we have to borrow, and we borrow a 2 each time,

108

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

therefore, the equation just adds a 2 when there is a borrow. When there is no borrow, b, is 0, and so the term bj,;
cancels out to 0.

For example, consider the following subtraction of the two 4-bit binary numbers, X = 0100 and Y = 0011:

tgﬂ bi
11
o ol o
~ 0 o0 i1 1
0o o lof 1

Consider the bit position that is highlighted in blue. Since the subtraction for the previous bit on the right has to
borrow, therefore, b; is a 1. Moreover, b;,; is also a 1 because the current bit has to borrow from the next bit on the
left. When it borrows, it gets a 2. Therefore, d; = x; — b; + 2bj,; —yi=0-1+2(1)-1=0.

The truth table for the 1-bit subtractor is shown in Figure 4.7(a), from which the equations for d; and b, as
shown in Figure 4.7(b), are derived. From these two equations, we get the circuit for the subtractor as shown in
Figure 4.7(c). Figure 4.7(d) shows the logic symbol for the subtractor.

Building a subtractor circuit for subtracting an n-bit operand can be done by daisy-chaining n 1-bit subtractor
circuits together, similar to the adder circuit shown in Figure 4.3. However, there is a much better subtractor circuit,
as shown in the next section.

Xi | Yi | bi] bivg | di
olofo] oo . . "
olol1] 1 [1 di = x'yibi + X7'yibi' + xiyi'bi' + Xiyib
ol1lo] 1 [1 = (X'Yi + Xxyi)b + (i + xiyi)b;
ol1[2] 1 o = (xi O y)by' + (x; O yi)'b;
1lofof o |1 =x; Oy O b
110111010 bisa = Xi'yi'i + Xi'yibi" + Xi'yib; + Xiyibj
111/0]0 10 = xi'biyi" + yi) + xi'yi(bi" + bi) +yibi(xi" + x;)
1111112 =X'bi + Xi'yi + yib
(a) (b)
Xj Yi
b
bi+1)t)*I
I
Ll «b, FS bj—
di
L v
S?
(c) (d)

Figure 4.7 1-bit subtractor: (a) truth table; (b) equations for d; and b;.+; (c) circuit; (d) logic symbol.

109

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

45 Adder-Subtractor Combination

It turns out that instead of having to build a separate adder and subtractor units, we can modify the ripple-carry
adder (or the carry-lookahead adder) slightly to perform both operations. The modified circuit performs subtraction
by adding the negated value of the second operand. In other words, instead of performing the subtraction A — B, the
addition operation A + (- B) is performed.

Recall that in two’s complement representation, to negate a value involves inverting all 0’s to 1’sand 1’s to 0’s,
and then adding a 1. Hence, we need to modify the adder circuit so that we can selectively do either one of two
things: 1) flip the bits of the B operand and then add an extra 1 for the subtraction operation, or 2) not flip the bits
and not add an extra 1 for the addition operation.

For this adder-subtractor combination circuit, in addition to the two input operands A and B, a select signal, s, is
needed to select which operation to perform. The assignment of the two operations to the select signal s is shown in
Figure 4.8(a). When s = 0, we want to perform an addition, and when s = 1, we want to perform a subtraction. When
s = 0, B does not need to be modified, and like the adder circuit from Section 4.2.2, the initial carry-in signal ¢,
needs to be set to a 0. On the other hand, when s = 1, we need to invert the bits in B and add a 1. The addition of a 1
is accomplished by setting the initial carry-in signal ¢, to a 1. Two circuits are needed for handling the above
situations: one for inverting the bits in B and one for setting c,. Both of these circuits are dependent on s.

The truth table for these two circuits is shown in Figure 4.8(b). The input variable b; is the i bit of the B
operand. The output variable y; is the output from the circuit that either inverts or does not invert the bits in B. From
this truth table, we can conclude that the circuit for y; is just a 2-input XOR gate, while the circuit for c, is just a
direct connection from s. Putting everything together, we obtain the adder-subtractor combination circuit (for four
bits) as shown in Figure 4.8(c). The logic symbol for the circuit is shown in Figure 4.8(d).

S | bi] yilCo
s | Function Operation 0|{0|0]|O
Add F=A+B 0]1]1]0
1| Subtract | F=A+B'+1 1(01]1
1101
(a) (b)
a, b, a, b, a b, a b,
| | | |
S >
4 U U U J£4 J£4
vl e [y e
. Unsigned_ Adder-
Unsigned_ _ Cou_ G G, | G G «—] er
Overflow FA 1« FA [« FA 1« FA SVQ?SL‘)_W Subtractor
Signed “overflow
Overflow G\

<
«—
o —
<«

%4
F
(c) (d)

Figure 4.8 Adder-subtractor combination: (a) operation table; (b) truth table for y; and co; (c) circuit; (d) logic
symbol.

—h
—h

w
o

Notice the adder-subtractor circuit in Figure 4.8(c) has two different overflow signals, Unsigned_Overflow and
Signed_Overflow. This is because the circuit can deal with both signed and unsigned numbers. When working with
unsigned numbers only, the output signal Unsigned_Overflow is sufficient to determine whether there is an overflow
or not. However, for signed numbers, we need to perform the Xor of Unsigned_Overflow with cs, producing the
Signed_Overflow signal in order to determine whether there is an overflow or not.

110

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

For example, the valid range for a 4-bit signed number goes from —2° to 2°~1 (i.e., from -8 to 7). Adding the
two signed numbers, 4 + 5 = 9 should result in a signed number overflow since 9 is outside the range. However, the
valid range for a 4-bit unsigned number goes from 0 to 2*-1 (i.e., 0 to 15). If we treat the two numbers 4 and 5 as
unsigned numbers, then the result of adding these two unsigned numbers, 9, is inside the range. So when adding the
two numbers 4 and 5, the Unsigned_Overflow signal should be de-asserted, while the Signed_Overflow signal
should be asserted. Performing the addition of 4 + 5 in binary as shown here:

Unsigned *+ 071 0 1
Overflow™qg 1 9 0o 1

. 0XOR1=1
Signed

Overflow

we get 0100 + 0101 = 1001, which produces a 0 for the Unsigned_Overflow signal. However, the addition produces
a 1 for c3 and xoring these two values, 0 for Unsigned Overflow and 1 for c;, results in a 1 for the
Signed_Overflow signal.

In another example, adding the two 4-bit signed numbers, —4 + (-3) = —7 should not result in a signed overflow.
Performing the arithmetic in binary, —4 = 1100 and -3 = 1101, as shown here:
C3
1 / 1 0
Unsigned * 171 0
Overflow™1 1 9 0o 1

= O

. 1XOR1=0
Signed

Overflow

we get 1100 + 1101 = 11001, which produces a 1 for both Unsigned_Overflow and cs. XORing these two values
together gives a 0 for the Signed_Overflow signal. On the other hand, if we treat the two binary numbers, 1100 and
1101, as unsigned numbers, then we are adding 12 + 13 = 25. 25 is outside the unsigned number range, and so the
Unsigned_Overflow signal should be asserted.

The behavioral VHDL code for the 4-bit adder-subtractor combination circuit is shown in Figure 4.9. The
GENERIC keyword declares a read-only constant identifier, n, of type INTEGER having a default value of 4. This
constant identifier is then used in the declaration of the STD_LOGIC_VECTOR size for the three vectors: A, B, and F.

The Unsigned_Overflow bit is obtained by performing the addition or subtraction operation using n + 1 bits.
The two operands are zero extended using the & symbol for concatenation before the operation is performed. The
result of the operation is stored in the n + 1 bit vector, result. The most significant bit of this vector, result(n), is the
Unsigned_Overflow bit.

To get the Signed_Overflow bit, we need to XOR the Unsigned_Overflow bit with the carry bit, c3, from the
second-to-last bit slice. The c; bit is obtained just like how the Unsigned_Overflow bit is obtained, except that the
operation is performed on only the first n — 1 bits of the two operands. The vector ¢3 of length n is used for storing
the result of the operation. The Signed_Overflow signal is the XOR of signed_result(n) with c3(n-1).

LI BRARY | EEE;
USE | EEE. STD_LOd C_1164. ALL;
USE | EEE. STD_LOd C_UNSI GNED. ALL;

111

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

ENTI TY AddSub IS
GENERI C(n: | NTEGER :=4); -- default nunber of bits = 4

PORT(S: IN STD LOGA C, -- select subtract signal
A: IN STD_LOG C_VECTOR(n-1 DOANTO 0);
B: IN STD_LOG C_VECTOR(n-1 DOWNTO 0);
F: OUT STD_LOG C_VECTOR(n-1 DOWNTO 0);
unsi gned_overflow. OUT STD LOG C
signed_overflow OUT STD LOG Q) ;

END AddSub;

ARCHI TECTURE Behavi oral OF AddSub IS
-- tenporary result for extracting the unsigned overflow bit
SIGNAL result: STD LOG C VECTOR(n DOANTO 0);
-- temporary result for extracting the c3 bit
SIGNAL c3: STD LOd C VECTOR(n-1 DOAWNTO 0);

BEGI N
PROCESS(S, A B)
BEG N
IF (S ="'0) THEN -~ addition

-- the two operands are zero extended one extra bit before adding
-- the & is for string concatination

result <= ("0 & A + ('0" &B);

c3 <= ('0" & A(n-2 DOMNTO 0)) + (‘0" & B(n-2 DONTO 0));

F <= result(n-1 DOANTO 0); -- extract the n-bit result

unsi gned_overfl ow <= result(n); -- get the unsigned overflow bit

signed_overflow <= result(n) XOR c3(n-1); -- get signed overflow bit
ELSE -- subtraction

-- the two operands are zero extended one extra bit before subtracting
-- the &is for string concatination

result <= ('0" &A - (‘0" & B);

c3 <= ('0" & A(n-2 DOMNTO 0)) - ('0" & B(n-2 DOMTO 0));

F <= result(n-1 DOANTO 0); -- extract the n-bit result
unsi gned_overfl ow <= result(n); -- get the unsigned overflow bit
signed_overfl ow <= result(n) XOR c3(n-1); -- get signed overflow bit
END | F;
END PROCESS;

END Behavi or al ;

Figure 4.9 Behavioral VHDL code for a 4-bit adder-subtractor combination component.

4.6 Arithmetic Logic Unit

The arithmetic logic unit (ALU) is one of the main components inside a microprocessor. It is responsible for
performing arithmetic and logic operations, such as addition, subtraction, logical AND, and logical or. The ALU,
however, is not used to perform multiplications or divisions. It turns out that, in constructing the circuit for the ALU,
we can use the same idea as for constructing the adder-subtractor combination circuit, as discussed in the previous
section. Again, we will use the ripple-carry adder as the building block and then insert some combinational logic
circuitry in front of the two input operands to each full adder. This way, the primary inputs will be modified
accordingly, depending on the operations being performed before being passed to the full adder. The general, overall
circuit for a 4-bit ALU is shown in Figure 4.10(a), and its logic symbol in (b).

As we can see in the figure, the two combinational circuits in front of the full adder (FA) are labeled LE and
AE. The logic extender (LE) is for manipulating all logical operations; whereas, the arithmetic extender (AE) is for
manipulating all arithmetic operations. The LE performs the actual logical operations on the two primary operands,
a; and b;, before passing the result to the first operand, x;, of the FA. On the other hand, the AE only modifies the
second operand, b;, and passes it to the second operand, y;, of the FA where the actual arithmetic operation is
performed.

112

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

az b3 a by a by =) bo
Sy>»
S1
So
YV Y YVY Y YV Y YV Y
4 LE | [AE 4 LE | [H AE 4 LE | [H AE 4 LE | [HAE
X3 Y3 X2] X1 Y1 Xo Yo
i C c [c C
Unsigned_ 4 FA G EA T FA P FA PR P
Overflow
Signed_
Overflow 3
\ 4
f3 fa fi fo
(a)
1 1
SIS A B
——>S
Unsigned_
Overflow ALU
Signed_
Overflow

1

=

(b)
Figure 4.10 4-bit ALU: (a) circuit; (b) logic symbol.

We saw from the adder-subtractor circuit that, to perform additions and subtractions, we only need to modify y;
(the second operand to the FA) so that all operations can be done with additions. Thus, the AE only takes the second
operand of the primary input, b;, as its input and modifies the value depending on the operation being performed. Its
output is y;, and it is connected to the second operand input of the FA. As in the adder-subtractor circuit, the addition
is performed in the FA. When arithmetic operations are being performed, the LE must pass the first operand
unchanged from the primary input a; to the output x; for the FA.

Unlike the AE (where it only modifies the operand) the LE performs the actual logical operations. Thus, for
example, if we want to perform the operation A OR B, the LE for each bit slice will take the corresponding bits, a;
and b;, and oR them together. Hence, one bit from both operands, a; and b;, are inputs to the LE. The output of the
LE is passed to the first operand, x;, of the FA. Since this value is already the result of the logical operation, we do
not want the FA to modify it but to simply pass it on to the primary output, f;. This is accomplished by setting both
the second operand, y;, of the FA, and ¢, to 0 since adding a 0 will not change the resulting value.

The combinational circuit labeled CE (for carry extender) is for modifying the primary carry-in signal, c,, so
that arithmetic operations are performed correctly. Logical operations do not use the carry signal, so ¢, is set to O for
all logical operations.

113

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

S, | s1 | So | Operation Name | Operation X; (LE) y; (AE) | ¢, (CE)
0 0 0 | Pass Pass A to output a 0 0
0 0 1 | AND A AND B a; AND b; 0 0
0 1 0 | OR AORB a; OR b; 0 0
0 1 1 | NOT A a;' 0 0
1 0 0 | Addition A+B a b; 0
1 0 1 | Subtraction A-B a b;' 1
1 1 0 | Increment A+l 3 0 1
1 1 1 | Decrement A-1 3 1 0
(@)
Sp | S | So | bi |
0 x x x 0
1 0 0 0 0
S2 S So Xi 1 0 0 1 1 S2 | S1 | So | G
0 0 0 a; 1 0 1 0 1 0 x x 0
0 0 1 a b 1 0 1 1 0 1 0 0 0
0 1 0 | a+b; 1 1 0 0 0 1 0 1 1
0 1 1 a;' 1 1 0 1 0 1 1 0 1
1 x x a 1 1 1 0 1 1 1 1 0
1 1 1 1 1
(b) (c) (d)

Figure 4.11 ALU operations: (a) function table; (b) LE truth table; (c) AE truth table; (d) CE truth table.

In the circuit shown in Figure 4.10, three select lines, s,, s1, and sg, are used to select the operations of the ALU.
With these three select lines, the ALU circuit can implement up to eight different operations. Suppose that the
operations that we want to implement in our ALU are as defined in Figure 4.11(a). The x; column shows the values
that the LE must generate for the different operations. The y; column shows the values that the AE must generate.
The ¢ column shows the carry signals that the CE must generate.

For example, for the pass-through operation, the value of a; is passed through without any modifications to x;.
For the AND operation, X; gets the result of a; AND b;. As mentioned before, both y; and ¢, are set to 0 for all of the
logical operations, because we do not want the FA to change the results. The FA is used only to pass the results from
the LE straight through to the output F. For the subtraction operation, instead of subtracting B, we want to add —B.
Changing B to —B in two’s complement format requires flipping the bits of B and then adding a 1. Thus, y; gets the
inverse of b;, and the 1 is added through the carry-in co. To increment A, we set y; to all 0’s, and add the 1 through
the carry-in co. To decrement A, we add a —1 instead. Negative one in two’s complement format is a bit string with
all 1’s. Hence, we set y; to all 1’s and the carry-in ¢, to 0. For all the arithmetic operations, we need the first operand,
A, unchanged for the FA. Thus, x; gets the value of a; for all arithmetic operations.

Figure 4.11(b), (c) and (d) show the truth tables for the LE, AE, and CE respectively. The LE circuit is derived
from the x; column of Figure 4.11(b); the AE circuit is derived from the y; column of Figure 4.11(c); and the CE
circuit is derived from the ¢, column of Figure 4.11(d). Notice that x; is dependent on five variables, s, s1, So, a;, and
b;; whereas y; is dependent on only four variables, s,, S1, Sp, and b;; and ¢, is dependent on only the three select lines,
Sy, 81, and sp. The K-maps, equations, and schematics for these three circuits are shown in Figure 4.12.

The behavioral VHDL code for the ALU is shown in Figure 4.13, and a sample simulation trace for all the
operations using the two inputs 5 and 3 is shown in Figure 4.14.

114

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

a; b,
s, >
Sl
s0
$,5,58 S,S,.a/'b, s,'ab, LE
X;
Xi = S@ + So'ay + S1'aib; + $5's1a'b; + $5's1S0a"
= S8 + So'a; + S1'aib; + 55'518"(Di + o)
€Y
Y;
So0; b.
5,5\ 00 01 11 10 i
00 s 1

PR

8,815 D;

AE
Yi
Yi = S281S0 + S2Soby" + 5;81'S0'D;
= $550(S1 + by'") + 8581'sp'h;
(b)
% s.S
1 S, S, S
s;\ 00 01 11 10 J:[:
0
CE
1
CO
Co = S81'Sp + $51S0"
= $y(s1 [sp)
(©

Figure 4.12 K-maps, equations, and schematics for: (a) LE; (b) AE; and (c) CE.

115

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

LI BRARY | EEE;

USE | EEE. STD LOd C 1164. ALL;

-- The foll owi ng package is needed so that the STD LOd C VECTOR si gnal s
-- A and B can be used in unsigned arithnmetic operations.

USE | EEE. STD_LOJd C_UNSI GNED. ALL;

ENTITY alu I S PORT (

S: IN STD_LOGE C VECTOR(2 DOMNTO 0); -- select for operations
A, B IN STD LOG C VECTOR(3 DOANTO 0); -- input operands
F: OUT STD LOG C_VECTOR(3 DOANTO 0)); -- output
END al u;
ARCHI TECTURE Behavior OF alu IS
BEG N
PROCESS(S, A, B)
BEG N
CASE S IS
WHEN " 000" => -- pass A through
F <=A
VWHEN "001" => -- AND
F <= A AND B;
WHEN "010" => -- OR
F <= A OR B
WHEN "011" => -- NOT A
F <= NOT A
VWHEN " 100" => -- add
F <= A+ B;
WHEN "101" => -- subtract
F <= A- B
VWHEN " 110" => -- increnment
F <= A+ 1;
VWHEN OTHERS => -- decrenent
F<=A- 1,
END CASE;
END PROCESS;

END Behavi or;

Figure 4.13 Behavioral VHDL code for an ALU.

Pass A AND OR NOT A Add Subtract Increment Decrement
Marme: l EDD.IIIIns A00.0ns B00.0ns BIIIIII.IIZ

ﬁ-"S"T){1}(2}(3}I(4}(5}I(E}{F}(
5
3

= A
- B

= F N

Figure 4.14 Sample simulation trace with the two input operands 5 and 3 for all of the eight operations.

116

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

4.7 Decoder

A decoder, also known as a demultiplexer, asserts one out of n output lines, depending on the value of an m-
bit binary input data. In general, an m-to-n decoder has m input lines, Ay, ..., Ag, and n output lines, Y4, ..., Yo,
where n = 2", In addition, it has an enable line, E, for enabling the decoder. When the decoder is disabled with E set
to 0, all the output lines are de-asserted. When the decoder is enabled, then the output line whose index is equal to
the value of the input binary data is asserted. For example, for a 3-to-8 decoder, if the input address is 101, then the
output line Ys is asserted (set to 1 for active-high) while the rest of the output lines are de-asserted (set to 0 for
active-high).

A decoder is used in a system having multiple components, and we want only one component to be selected or
enabled at any one time. For example, in a large memory system with multiple memory chips, only one memory
chip is enabled at a time. One output line from the decoder is connected to the enable input on each memory chip.
Thus, an address presented to the decoder will enable that corresponding memory chip. The truth table, circuit, and
logic symbol for a 3-t0-8 decoder are shown in Figure 4.15.

A larger size decoder can be implemented using several smaller decoders. For example, Figure 4.16 uses seven
1-to-2 decoders to implement a 3-t0-8 decoder. The correct operation of this circuit is left as an exercise for the
reader.

The behavioral VHDL code for the 3-t0-8 decoder is shown in Figure 4.17.

>
N
>
s
>
o
<
3
<
D
=<
92
<
S
<
w
<
N
<
=
<
o

N =]]
Rk lojlo|lolo|x
N == R = =1
~lo|rk|olk|o|r|lo|x
~|lo|lo|lo|lojo|o|lo|o
ol |o|lo|lo|o|o|o|o
olo|r|o|lojo|lo|lo|o
olo|o|r|ojo|o|lo|o
olo|o|o|r|o|lo|lo|lo
olo|o|o|o|r|o|lo|lo
o|lo|o|o|o|o|r|o|lo
olo|o|o|lo|o|o|r|o

—~
=y
R

m

N

Vvl

° A, A A
el insicsisninsisniE —{E
Hj kH Hj kH VoY, Yo Y, Y Y, Y, Y
Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO l l
(b) (©)

Figure 4.15 A 3-to-8 decoder: () truth table; (b) circuit; (c) logic symbol.

117

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

A A Ao

Ei o T
L L
I 1)
El o 181 o 1% 151
|| |] || |]

Figure 4.16 A 3-to-8 decoder implemented with seven 1-to-2 decoders

-- A 3-to-8 decoder
LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;

ENTI TY Decoder |S PORT(

E: IN STD LOG G -- enabl e
A: IN STD LOG C VECTOR(2 DOWNTO 0); -- 3 bit address
Y: OUT STD LOG C VECTOR(7 DOWNTO 0)); -- data bus out put
END Decoder;
ARCHI TECTURE Behavi oral OF Decoder |S
BEG N
PROCESS (E, A)
BEG N
IF (E="'0") THEN -- disabl ed
Y <= (OTHERS => '0'); -- 8-bit vector of 0
ELSE
CASE A IS -- enabl ed
VWHEN " 000" => Y <= "00000001";
VWHEN " 001" => Y <= "00000010";
VWHEN " 010" => Y <= "00000100";
VWHEN " 011" => Y <= "00001000";
VWHEN " 100" => Y <= "00010000";
VWHEN " 101" => Y <= "00100000";
VWHEN " 110" => Y <= "01000000";
VWHEN " 111" => Y <= "10000000";
VWHEN OTHERS => NULL;
END CASE;
END | F;
END PROCESS;

END Behavi or al ;

Figure 4.17 Behavioral VHDL code for a 3-to-8 decoder.

118

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

4.8 Encoder

An encoder is almost like the inverse of a decoder where it encodes a 2"-bit input data into an n-bit code. The
encoder has 2" input lines and n output lines, as shown by the logic symbol in Figure 4.18(c) for n = 3. The
operation of the encoder is such that exactly one of the input lines should have a 1 while the remaining input lines
should have 0’s. The output is the binary value of the index of the input line that has the 1. The truth table for an 8-
to-3 encoder is shown in Figure 4.18(a). For example, when input |5 is a 1, the three output bits Y,, Yy, and Y, are set
to 011, which is the binary number for the index 3. Entries having multiple 1’s in the truth table inputs are ignored,
since we are assuming that only one input line can be a 1.

Looking at the three output columns in the truth table, we obtain the three equations shown in Figure 4.18(b),
and the resulting circuit in (c). The logic symbol is shown in Figure 4.18(d).

Encoders are used to reduce the number of bits needed to represent some given data either in data storage or in
data transmission. Encoders are also used in a system with 2" input devices, each of which may need to request for
service. One input line is connected to one input device. The input device requesting for service will assert the input
line that is connected to it. The corresponding n-bit output value will indicate to the system which of the 2" devices
is requesting for service. For example, if device 5 requests for service, it will assert the 15 input line. The system will
know that device 5 is requesting for service, since the output will be 101 = 5. However, this only works correctly if
it is guaranteed that only one of the 2" devices will request for service at any one time.

If two or more devices request for service at the same time, then the output will be incorrect. For example, if
devices 1 and 4 of the 8-to-3 encoder request for service at the same time, then the output will also be 101, because
I, will assert the Y, signal, and I, will assert the Y, signal. To resolve this problem, a priority is assigned to each of
the input lines so that when multiple requests are made, the encoder outputs the index value of the input line with the
highest priority. This modified encoder is known as a priority encoder.

I [e | s [ds] Ll [lo Y] VY] Yo
0lololo|o]oJol1]o]o]o
0lololo|o]o|1lo|o]o0]1
0olololo|o|1]ololo]z1]o0
0lololo|l1]o0]o0]o0lo0]1]1 Yo=li+l3+ls+1s
0ololo|1]o]olo]o|lz1]o0]o0 Yizh+la+lg+l;
0lo|1]0]o0o]lo]lo]ol1]o0]1 Yo=litls+ls+ 1
0o|l1]0lo0]o0o]o]olo|l1]1]o0
1]o]ololo]o]olo|1]1]1
(@ (b)

7

W

N

iy

o

3
o
o
EN

o
~<
~
=<
o
=<
s
~<
=}

(©) (d)
Figure 4.18 An 8-to-3 encoder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol.

119

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

4.8.1 * Priority Encoder

The truth table for an active-high 8-to-3 priority encoder is shown in Figure 4.19. The table assumes that input
I; has the highest priority, and I, has the lowest priority. For example, if the highest priority input asserted is I3, then
it doesn’t matter whether the lower priority input lines, I,, I, and |y, are asserted or not; the output will be for that of
Is, which is 011. Since it is possible that no inputs are asserted, there is an extra output, Z, that is needed to
differentiate between when no inputs are asserted and when one or more inputs are asserted. Z is set to a 1 when one
or more inputs are asserted; otherwise, Z is set to 0. When Z is 0, all of the Y outputs are meaningless.

3
&
by
=
b
&
e
s
o<
=<
<

RlO|lOo|lo|lo|lo|o|o|lo
X |kr|lO|lo|o|lo|ojo|o
X |X |r|lOolo|lo|lojlo|lo
X|X|X|—~|lOlololoo
X |X|X|X|—r|lO|lOlo|o
X |X|X|X|X|—r|lOlO|lO
X |X|X|[X|X|X|—rlO|lO
X |X|X|[X|X|X]|X|[|lO
Rl RlO|lO|O|O|X
Rl |lO|olr|k|lo|lo|Xx
RO | Olr|Oo|r|o|x
i L L L L L L K=l Y

Figure 4.19 An 8-to-3 priority encoder truth table.

An easy way to derive the equations for the 8-to-3 priority encoder is to define a set of eight intermediate
variables, vy, ..., V7, such that v is a 1 if I is the highest priority 1 input. Thus, the equations for v, to v are:

Vo = |7' Ie' |5I |4I |3' |2' Ill Io
Vi = |7' Ie' |5I |4I |3' |2' Il
Vo= 17" 1g' 15" 14" 13" |
va=17"lg"I5' 14 I3

Va= 17" 1" 15" 1y

Vg = |7' |6' |5
Ve = |7' |6
V7 = |7

Using these eight intermediate variables, the final equations for the priority encoder are similar to the ones for
the regular encoder, namely:

Y0:V1+V3+V5+V7
Yl:V2+V3+V6+V7
Y2:V4+V5+V6+V7

Finally, the equation for Z is simply

Z:|7+|6+|5+|4+|3+|2+|1+|0

4.9 Multiplexer

The multiplexer, or MUX for short, allows the selection of one input signal among n signals, where n > 1, and
is a power of two. Select lines connected to the multiplexer determine which input signal is selected and passed to
the output of the multiplexer. In general, an n-to-1 multiplexer has n data input lines, m select lines where m = log,
n, i.e. 2" = n, and one output line. For a 2-to-1 multiplexer, there is one select line, s, to select between the two
inputs, dg and d;. When s = 0, the input line d, is selected, and the data present on dy is passed to the output y. When
s =1, the input line d; is selected and the data on d; is passed to y. The truth table, equation, circuit, and logic
symbol for a 2-to-1 multiplexer are shown in Figure 4.20.

120

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

s | di [do |y
0 0 01O
Ooj]0 |11
oOoj1|07]0
0 1 1 1 y = S'dl'do + S'dldo + SdldoI + SdldO
1(0]01]O0 =s'dy(d;" + dy) + sdy(dy' + dy)
1/ofl1]o0 =s'do + sd;
1 1 0 1
1 1 1 1
(a) (b)
dO
s y G
dl
(b) (c)

Figure 4.20 A 2-to-1 multiplexer: (a) truth table; (b) equation; (c) circuit; (d) logic symbol.

Constructing a larger size multiplexer, such as the 8-to-1 multiplexer, can be done similarly. In addition to
having the eight data input lines, d, to d, the 8-to-1 multiplexer has three (2° = 8) select lines, So, S1, and s,.
Depending on the value of the three select lines, one of the eight input lines will be selected and the data on that
input line will be passed to the output. For example, if the value of the select lines is 101, then the input line ds is
selected, and the data that is present on ds will be passed to the output.

The truth table, circuit, and logic symbol for the 8-to-1 multiplexer are shown in Figure 4.21. The truth table is
written in a slightly different format. Instead of including the d’s in the input columns and enumerating all 2** =
2048 rows (the eleven variables come from the eight d’s and the three s’s), the d’s are written in the entry under the
output column. For example, when the select line value is 101, the entry under the output column is ds, which means
that y takes on the value of the input line ds.

To understand the circuit in Figure 4.21(b), notice that each AND gate acts as a switch and is turned on by one
combination of the three select lines. When a particular AND gate is turned on, the data at the corresponding d input
is passed through that AND gate. The outputs of the remaining AND gates are all 0’s.

d; dg ds dy d3 dp o do

: SO

(@) (b) (©

w
N
’d
-
wn
o
<<
w
i

| ||
d,d, d

27170

| ||
d.d,d

6 -5

473

Rkl lolo|lolo

R |lo|lor|r|lolo

ol |lor oo
f

Figure 4.21 An 8-to-1 multiplexer: (a) truth table; (b) circuit; (c) logic symbol.

Instead of using 4-input AND gates (where three of its inputs are used by the three select lines to turn it on) we
can use 2-input AND gates, as shown in Figure 4.22(a). This way the AND gate is turned on with just one line. The

121

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

eight 2-input AND gates can be turned on individually from the eight outputs of a 3-to-8 decoder. Recall from
Section 4.7 that the decoder asserts only one output line at any time.

Larger multiplexers can also be constructed from smaller multiplexers. For example, an 8-to-1 multiplexer can
be constructed using seven 2-to-1 multiplexers as shown in Figure 4.22(b). The four top-level 2-to-1 multiplexers
provide the eight data inputs and all are switched by the same least significant select line sq. This top level selects
one from each group of two data inputs. The middle level then groups the four outputs from the top level again into
groups of two and selects one from each group using the select line s;. Finally, the multiplexer at the bottom level
uses the most significant select line s, to select one of the two outputs from the middle level multiplexers.

The VHDL code for an 8-bit wide 4-to-1 multiplexer is shown in Figure 4.23. Two different implementations of
the same multiplexer are shown. Figure 4.23(a) shows the architecture code written at the behavioral level, since it
uses a PROCESS statement. Inside the PROCESS block, a CASE statement is used to select between the four choices for
S. Figure 4.23(b) shows a dataflow level architecture code using a concurrent selected signal assignment statement
using the keyword WiTH ... SELECT. In the first choice, if S is equal to 00, then the value Dy is assigned to Y. If S
does not match any one of the four choices, 00, 01, 10, and 11, then the WHEN OTHERS clause is selected. The syntax
(0THERS => 'U") means to fill the entire vector with the value “U”.

d7 dg ds dg d3 dp Clil do

w
Decoder
~NOUIRWNFO

(@) (b)

Figure 4.22 An 8-to-1 multiplexer implemented using: (a) a 3-to-8 decoder; (b) seven 2-to-1 multiplexers.

-- A4-to-1 8-bit wide nultiplexer
LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

ENTITY Multiplexer IS

PORT(S: IN STD LOGd C VECTOR(1 DOWNTO 0); -- select lines
DO, D1, D2, D3: IN STD LOQd C VECTOR(7 DOAMNTO 0); -- data bus input
Y: OUT STD LOd C VECTOR(7 DOWNTO 0)); -- data bus out put

END Mul ti pl exer;

-- Behavioral |evel code
ARCHI TECTURE Behavioral OF Multiplexer IS

BEG N
PROCESS ('S, DO, D1, D2, D3)
BEG N

CASE S IS

VWHEN " 00" => Y <= DO;
WHEN " 01" => Y <= Di;
WHEN " 10" => Y <= D2;
WHEN " 11" => Y <= D3;
VWHEN OTHERS => Y <= (OTHERS => 'U); -- 8-bit vector of U

122

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

END CASE;
END PROCESS;

END Behavi or al ;

(a)
-- Dataflow | evel code
ARCHI TECTURE Dat af |l ow OF Mul ti pl exer 1S
BEG N
WTH S SELECT Y <=
DO VWHEN " 00",
D1 WHEN "O01",
D2 VWHEN " 10",
D3 WHEN " 11",
(OTHERS => 'U) WHEN OTHERS; -- 8-bit vector of U
END Dat af | ow,
(b)

Figure 4.23 VHDL code for an 8-bit wide 4-to-1 multiplexer: (a) behavioral level; (b) dataflow level.

4.9.1 * Using Multiplexers to Implement a Function

Multiplexers can be used to implement a Boolean function very easily. In general, for an n-variable function, a
2"-to-1 multiplexer (that is, a multiplexer with n select lines) is needed. An n-variable function has 2" minterms, and
each minterm corresponds to one of the 2" multiplexer inputs. The n input variables are connected to the n select
lines of the multiplexer. Depending on the values of the n variables, one data input line will be selected, and the
value on that input line is passed to the output. Therefore, all we need to do is to connect all the data input lines to
either a 1 or a 0, depending on whether we want that corresponding minterm to be a 1-minterm or a 0-minterm,
respectively.

Figure 4.24 shows the implementation of the 3-variable function, F (x, y, z) = X'y'z' + X'yz' + Xy'z + xyz' + xyz.
The 1-minterms for this function are mg, m,, ms, mg, and m,, so the corresponding data input lines, dg, d,, ds, dg, and
d; are connected to a 1, while the remaining data input lines are connected to a 0. For example, the 0-minterm x'yz
has the value 011, which will select the ds input, so a 0 passes to the output. On the other hand, the 1-minterm xy'z
has the value 101, which will select the ds input, so a 1 passes to the output.

—o
o

|
d

170

o
o
o

Figure 4.24 Using an 8-to-1 multiplexer to implement the function F (x, y, z) = X'y'z" + X'yz' + xy'z + xyz' + xyz.

4.10 Tri-state Buffer

A tri-state buffer, as the name suggests, has three states: 0, 1, and a third state denoted by Z. The value Z
represents a high-impedance state, which for all practical purposes acts like a switch that is opened or a wire that is
cut. Tri-state buffers are used to connect several devices to the same bus. A bus is one or more wire for transferring
signals. If two or more devices are connected directly to a bus without using tri-state buffers, signals will get
corrupted on the bus because the devices are always outputting either a 0 or a 1. However, with a tri-state buffer in
between, devices that are not using the bus can disable the tri-state buffer so that it acts as if those devices are

123

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

physically disconnected from the bus. At any one time, only one active device will have its tri-state buffers enabled,
and thus, use the bus.

The truth table and symbol for the tri-state buffer is shown in Figure 4.25(a) and (b). The active high enable line
E turns the buffer on or off. When E is de-asserted with a 0, the tri-state buffer is disabled, and the output y is in its
high-impedance Z state. When E is asserted with a 1, the buffer is enabled, and the output y follows the input d.

A circuit consisting of only logic gates cannot produce the high impedance state required by the tri-state buffer,
since logic gates can only output a 0 or a 1. To provide the high impedance state, the tri-state buffer circuit uses two
transistors in conjunction with logic gates, as shown in Figure 4.25(c). Section 5.3 will discuss the operations of
these two transistors in detail. For now, we will keep it simple. The top PMOS transistor is enabled with a 0 at the
node labeled A, and when it is enabled, a 1 signal from Vcc passes down through the transistor to y. The bottom
NMOS transistor is enabled with a 1 at the node labeled B, and when it is enabled, a 0 signal from ground passes up
through the transistor to y. When the two transistors are disabled (with A = 1 and B = 0) they will both output a high
impedance Z value; so y will have a Z value.

Having the two transistors, we need a circuit that will control these two transistors so that together they realize
the tri-state buffer function. The truth table for this control circuit is shown in Figure 4.25(d). The truth table is
derived as follows. When E = 0, it does not matter what the input d is, we want both transistors to be disabled so that
the output y has the Z value. The PMOS transistor is disabled when the input A = 1; whereas, the NMOS transistor is
disabled when the input B = 0. When E = 1 and d = 0, we want the output y to be a 0. To get a 0 on y, we need to
enable the bottom NMOS transistor and disable the top PMOS transistor so that a O will pass through the NMOS
transistor to y. To get a 1 on y for when E = 1 and d = 1, we need to do the reverse by enabling the top PMOS
transistor and disabling the bottom NMOS transistor.

The resulting circuit is shown in Figure 4.25(c). When E = 0, the output of the NAND gate is a 1, regardless of
what the other input is, and so the top PMOS transistor is turned off. Similarly, the output of the AND gate is a 0, so
the bottom NMOS transistor is also turned off. Thus, when E = 0, both transistors are off, so the output y is in the Z
state.

When E = 1, the outputs of both the NAND and AND gates are equal to d'. So if d = 0, the output of the two gates
are both 1, so the bottom transistor is turned on while the top transistor is turned off. Thus, y will have the value 0,
which is equal to d. On the other hand, if d = 1, the top transistor is turned on while the bottom transistor is turned
off, and y will have the value 1.

The behavioral VHDL code for an 8-bit wide tri-state buffer is shown in Figure 4.26.

E Vce
e P e) o T Ejd]ABlY
Ely olofJ1]o0]z
0]z d y — o110z
1(d B [NMOS 101 110
1(1(0(0|1
@) (b) © ’ (d)

Figure 4.25 Tri-state buffer: (a) truth table; (b) logic symbol; (c) circuit; (d) truth table for the control portion of the
tri-state buffer circuit.

LI BRARY | EEE;
USE | EEE. STD_LCGQ C_1164. ALL,

ENTITY Tri State Buffer IS PORT (
E: IN STD_LOG G
d: IN STD LOd C VECTOR(7 DOMNTO 0);
y: OUT STD LOG C _VECTOR(7 DOANTO 0));
END Tri State_ Buffer;

124

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

ARCHI TECTURE Behavioral OF Tri State Buffer IS
BEG N
PROCESS (E, d)
BEG N
IF (E="'1) THEN
y <=d;
ELSE
y <= (OTHERS => 'Z'); -- to get 8 Z val ues
END | F;
END PROCESS;
END Behavi or al ;

Figure 4.26 VHDL code for an 8-bit wide tri-state buffer.

4.11 Comparator

Quite often, we need to compare two values for their arithmetic relationship (equal, greater, less than, etc.). A
comparator is a circuit that compares two binary values and indicates whether the relationship is true or not. To
compare whether a value is equal or not equal to a constant value, a simple AND gate can be used. For example, to
compare a 4-bit variable x with the constant 3, the circuit in Figure 4.27(a) can be used. The AND gate outputs a 1
when the input is equal to the value 3. Since 3 is 0011 in binary, therefore, x; and x, must be inverted.

The XOR and XNOR gates can be used for comparing inequality and equality, respectively, between two values.
The XOR gate outputs a 1 when its two input values are different. Hence, we can use one XOR gate for comparing
each bit pair of the two operands. A 4-bit inequality comparator is shown in Figure 4.27(b). Four XOR gates are used,
with each one comparing the same bit from the two operands. The outputs of the XOR gates are ORrRed together so that
if any bit pair is different then the two operands are different, and the resulting output is a 1. Similarly, an equality
comparator can be constructed using XNOR gates instead, since the XNOR gate outputs a 1 when its two input values
are the same.

To compare the greater-than or less-than relationships, we can construct a truth table and build the circuit from
it. For example, to compare whether a 4-bit value X is less than five, we get the truth table, equation, and circuit
shown in Figure 4.27(c).

125

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

X X X X
S E N W
M
< X<
= E NN
T

—~~
£
~
O
~

>
w
x
N
=
2
>
o
>
(&)

(X<5)

~lo|lo|lo|lo|o|lo|lojo
X |||k~ |lolo|o|lo
X ||~ |o|lolk|k|lo|lo
X |—|lo|k|olr|o|r|o
o|lo|o|o|r k||| A

(X'<5) =X3'%," + X3'%X1'%o'

(©

Figure 4.27 Simple 4-bit comparators for: (a) X =3; (b) X £ Y; (¢c) X< 5.

Instead of constructing a comparator for a fixed number of bits for the input values, we often prefer to construct
an iterative circuit by constructing a 1-bit slice comparator and then daisy chaining n of them together to make an
n-bit comparator. The 1-bit slice comparator will have, in addition to the two input operand bits, x; and y;, a p; bit
that keeps track of whether all the previous bit pairs compared so far are true or not for that particular relationship.
The circuit outputs a 1 if p; = 1, and the relationship is true for the current bit pair x; and y;. Figure 4.28(a) shows a 1-
bit slice comparator for the equal relationship. If the current bit pair, x; and y;, is equal, the XNOR gate will output a 1.
Hence, pi.; = 1 if the current bit pair is equal and the previous bit pair, p;, is a 1. To obtain a 4-bit iterative equality
comparator, we connect four 1-bit equality comparators in series, as shown in Figure 4.28(b). The initial p, bit must
be set to a 1. Thus, if all four bit pairs are equal, then the last bit, p4, will be a 1; otherwise, p, will be a 0.

*i Yy X; Ys X, Y, X, Y1 X Yo
o ANAS AN
Piss b 4] EQ 3 EQ 2 EQ 1 EQ _2_']_.
(@) (b)

Figure 4.28 Iterative comparators: (a) 1-bit slice for x; = y;; (b) 4-bit X =Y.

Building an iterative comparator circuit for the greater-than relationship is slightly more difficult. The 1-bit slice
comparator circuit for the condition x; > y; is constructed as follows. In addition to the two operand input bits, x; and
y;, there are also two status input bits, g;, and e;,. Here, g, is a 1 if the condition x; > y; is true for the previous bit
slice; otherwise, g;, is a 0. Furthermore, €;, is a 1 if the condition x; = y; is true; otherwise e;, is a 0. The circuit also
has two status output bits, gu, and ey, having the same meaning as the g;, and e;, signals. These two input and two
output status bits allow the bit slices to be daisy-chained together. Following the above description of the 1-bit slice,
we obtain the truth table shown in Figure 4.29(a). The equations for ey and g, are shown in Figure 4.29(b), and the
1-bit slice circuit in (c).

126

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

In order for the bit slices to operate correctly, we need to perform the comparisons from the most significant bit
to the least significant bit. The complete 4-bit iterative comparator circuit for the condition x; > y; is shown in Figure
4.29(d). The initial values for g;, and e;, must be set to g;, =0 and e;, = 1.

If x =y, then the last e, is a 1, otherwise, ey is a 0. If the last e is a 0, then the last g, can be either a 1 or a
0. If x > y then g, is a 1; otherwise, g is @ 0. Notice that both ey, and g, cannot be both 1’s. The operation of this
comparator circuit is summarized in Figure 4.29(e).

Oin | €in | Xi | Vi Meaning Gout | Cout
00| x| x < 0 0
0(11]0]|0 = 0 1
0(1]]0]|1 < 0 0
0O(11]1]0 > 1 0
01]1]1 = 0 1
110 | x| x > 1 0
1|1 |x]|x]| Invalid 1 1
(a)
gout eout
XY XY
9inBin 00 01 11 10 Ginin 00 01 11 10
00 00|
01 1 01 i1 1
11 1 1 11 11 |1 1 1 1
10 1 1 1 1 10
Jout = Gin + einxiyil €out = Jin€in + einxilyi' + EinXiYi
(b)
XI yi

]
eOLI'(
€in]
(©
X3 y3 X2 y2 Xl yl XO yO
0 gin gout > gout > gout > gout x>y
1 ein > eout > > eout > > eout > > eout x=y
(d)

127

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

Condition | ot | Gout
Invalid 1 1

X=y 1 0

X>y 0 1

X<y 0 0
(e)

Figure 4.29 Comparator for x > y: (a) truth table for 1-bit slice; (b) K-maps and equations for g and eqy; (C) circuit
for 1-bit slice; (d) 4-bit x >y comparator circuit; (e) operational table.

4.12 Shifter

The shifter is used for shifting bits in a binary word one position either to the left or to the right. The operations
for the shifter are referred to either as shifting or rotating, depending on how the end bits are shifted in or out. For a
shift operation, the two end bits do not wrap around; whereas for a rotate operation, the two end bits wrap around.
Figure 4.30 shows six different shift and rotate operations.

For example, for the “Shift left with 0” operation, all the bits are shifted one position to the left. The original

leftmost bit is shifted out (i.e. discarded) and the rightmost bit is filled with a 0. For the “Rotate left” operation, all
the bits are shifted one position to the left. However, instead of discarding the leftmost bit, it is shifted in as the
rightmost bit (i.e. it rotates around).
For each bit position, a multiplexer is used to move a bit from either the left or right to the current bit position. The
size of the multiplexer will determine the number of operations that can be implemented. For example, we can use a
4-to-1 multiplexer to implement the four operations, as specified by the table in Figure 4.31(a). Two select lines, s;
and s, are needed to select between the four different operations. For a 4-bit operand, we will need to use four 4-to-
1 multiplexers as shown in Figure 4.31(b). How the inputs to the multiplexers are connected will depend on the
given operations.

Operation Comment Example
Shift bits to the left one position. The 10110100
Shift left with 0 leftmost bit is discarded and the rightmost LSS A
bit is filled with a 0. %01101000«
. . Same as above, except that the rightmost bit 10110100
Shiftleftwith 1| i< filled with a 1. it
Shift bits to the right one position. The 10110100
Shift right with 0 rightmost bit is discarded and the leftmost OO
bit is filled with a 0. ~01011010K
— . Same as above, except that the leftmost bit is 10110100
Shiftrightwith 1| 0 /a1 »:L\:‘L\O\:L\:‘L\b\l\()\&
Shift bits to the left one position. The 10110100
Rotate left leftmost bit is moved to the rightmost bit 55884
Shift bits to the right one position. The 10110100
Rotate right rightmost bit is moved to the leftmost bit OO

Figure 4.30 Shifter and rotator operations.

128

Digital Logic and Microprocessor Design with VHDL Chapter 4 - Standard Combinational Components

S; | Sp | Operation

Pass through

Shift left and fill with 0
Shift right a